Astérisque

ALLEN E. HATCHER JOHN B. WAGONER Pseudo-isotopies of compact manifolds

Astérisque, tome 6 (1973)

<http://www.numdam.org/item?id=AST_1973__6__1_0>

© Société mathématique de France, 1973, tous droits réservés.

L'accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

TABLE OF CONTENTS

PART I. THE FIRST OBSTRUCTION FOR PSEUDO-ISOTOPIES.

INTRODUCTION

CHAPTER	I.	Pseudo-isotopies and real valued functions	Ρ	16
§1.	Cerf	f's functional approach to pseudo-isotopies	Ρ	17
§2.	The	stratification of ${m {\cal F}}$	Ρ	20
§3.	Grad	lient-like vector fields	Ρ	32
§4.	Gene	eral position of nice gradient-like vector fields.	Ρ	51
§5.	Susp	pension	Ρ	54
§6.	Inde	ependence of birth and death points	Ρ	62
§7.	Inde	ependent trajectories	Ρ	64
§8.	0ne	and two parameter ordering	Ρ	68

CHAPTER II. Geometry of the Steinberg group.

§1.	Geometric realization o	of the	Steinberg	group	Ρ	79
§2.	Multi-level Steinberg w	ords	•••••		Ρ	98

CHAPTER III. More about Wh2.

§1.	Presentations of Wh ₂	Ρ	103
§2.	Relations in the Steinberg group	Ρ	109
§3.	Construction of Σ : Ω + Wh_2	Ρ	118

CHAPTER IV. The Wh_2 invariant for pseudo-isotopies.

§1.	Definition of Σ : π_0 (\mathcal{P}) $\rightarrow Wh_2$	P	126
§2.	The three basic relations 1 -	P	131

§3. $\Sigma : \pi_0$ (°) \rightarrow Wh₂ is well-defined p 156

CHAPTER	V. Deformations of the graphic.
§1.	Cancelling critical points p 172
§2.	Introducing critical points p 180
§3.	Two indices p 184
§4.	The butterfly and the elliptic umbilic p 199
§5.	Eliminating all dovetails p 206
§6.	The two index definition of Σ p 208
CHAPTER	VI. The kernel of Σ p 211
CHAPTER	VII. The $Wh_1(\pi_1^M;Z_2 \times \pi_2^M)$ invariant for pseudo-
	isotopies p 220
CHAPTER	VIII. Product and duality formulae p 231
REFERENC	ES p 236
PART II.	THE SECOND OBSTRUCTION FOR PSEUDO-ISOTOPIES
§O.	Introduction p 240
§1.	Algebraic preliminaries p 240
§2.	Definition of the $Wh_1(\pi_1;Z_2 \times \pi_2)$ obstruction $\theta \dots p$ 244
§3.	Proof that θ is well-defined p 256
§4.	Product and duality formulae ; Applications p 264
§5.	Pseudo-isotopy versus isotopy p 271
	References p 275

PREFACE

The two papers in this volume compute the components of the space of pseudoisotopies of a compact manifold of dimension at least seven and the main result can be viewed as a third step in relating differential topology to algebraic K-theory. Historically, the first step was Whitehead's theory of simple homotopy types, the Franz-Reidemeister torsion invariant, and then later Smale's h-cobordism theorem and its generalization to the non-simply connected case ; namely, the s-cobordism theorem of Barden-Mazur-Stallings, which showed how the Whitehead group measured the obstruction to putting a product structure on an h-cobordism. Next, work of Browder-Levine-Livesay followed by work of Siebenmann, of Golo, and of Wall in the non-simply connected case showed how the Grothendieck group K_{Ω} of the category of finitely generated, projective modules gave the obstructions to putting a boundary on an open manifold. On the algebraic side Serre showed that algebraic vector bundles over an affine variety correspond to finitely generated projective modules over its coordinate ring. Then Swan showed that the Atiyah-Hirzebruch group of virtual vector bundles over a compact space was just K_0 for the ring of continuous functions on that space. Bass studied the functor K_1 on rings, of which the Whitehead group is a suitable quotient, and showed how to fit K_0 and K_1 into an exact sequence similar to the one in the Atiyah-Hirzebruch K-theory. Consequently, a feeling emerged that there must be an "algebraic" K-theory concerned with an appropriate sequence of functors K_0, K_1, K_2 , etc. Such a theory has recently been developed and is an active area of research. The third step began on the geometric side with Cerf's theorem that pseudo-isotopy implies isotopy in the simply connected case in dimensions at least five. Just as the s-cobordism theorem was related to the uniqueness of putting a boundary on an open manifold, the pseudo-isotopy problem measures the

- 3 -

uniqueness of a product structure on a trivial h-cobordism and it seemed natural that a non-simply connected version of Cerf's result would be related to a functor K_2 . Around 1967 Milnor defined a K_2 group along the lines of Steinberg's work on universal coverings of Chevalley groups and this turned out to be what was needed. However, unlike the previous two geometric problems corresponding to K_0 and K_1 the non-simply connected pseudo-isotopy theorem requires a second obstruction which depends not only on the fundamental group but on the second homotopy group as well. For a precise statement of the result see the Introduction to Part I of this volume.