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0 I n t r o d u c t i o n 

Suppose X is a smooth and projective scheme over a perfect field k with 
Witt ring W. Mazur's fundamental theorem [23] establishes a striking link 
between the action of Frobenius and the Hodge filtration on the crystalline 
cohomology of X/W and suggests a close connection and analogy between 
F-crystals and Hodge structures. Applications of Mazur's theorem and its 
concomitant philosophy include Katz's conjecture on Newton polygons [op. 
cit], a crystalline Torelli theorem for certain K3 surfaces [26], and a simple 
proof of the degeneration of the Hodge spectral sequence [7]. The theorem 
also underlies the deeper manifestations of the theory of p-adic periods, de­
veloped by Fontaine-Messing [12], Faltings [9], and Wintenberger [29]. 

Our main goal in this monograph is to formulate and prove a version 
of Mazur's theorem with coefficients in an F-crystal. In order to do this 
it is necessary to define and describe a "Hodge filtration" on an F-crystal 
and on its cohomology. This suggests our second goal, the development of a 
crystalline version of the notion of a complex variation of Hodge structure, 
which we call a "T-crystal" (the "T" is for transverse). These objects make 
sense on any formal scheme of finite type over W, especially for schemes 
smooth over W or over Wfl =: W/jfW for /x G Z +. Putting together the 
"F" and the "T," we obtain the notion of "F-T-crystal," which we hope is a 
reasonable analog of a variation of Hodge structure, on any smooth complete 
scheme over W^. In particular, F-T-crystals of level one should correspond 
to p-divisible groups. 1 We show how to attach to a T-crystal (#', A) to 

1This seems to follow easily from a recent result of Kato, which is essentially the case 
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a suitable F-crystal (F, $), and our formulation of Mazur's theorem relates 
the action of Probenius on the cohomology of the F-crystal (F, $) to the 
corresponding Hodge filtration on the cohomology of (E\A). 

This paper can be seen as a continuation of our previous study [24, 25] 
of Griffiths transversality and crystalline cohomology, here with emphasis on 
global, rather than local, results. An important feature of our approach is 
that we work systematically with the Hodge filtration on crystalline coho­
mology over W, not just its image in the De Rham cohomology over k. 

Before describing the plan of our paper, it is helpful to begin by briefly 
reviewing the statement of Mazur's theorem. Let k be a perfect field of 
characteristic p and let W be its Witt ring, with F denoting the Frobenius 
automorphisms of k and of W. Then a nondegenerate F-crystal on k/W is a 
finitely generated free W-module F, together with an F-semi-linear injective 
endomorphism <fr. Even if k is algebraically closed, the classification of such 
objects is quite complicated, as is the case for Hodge structures. Now a Hodge 
structure can be greatly simplified by forgetting its integral lattice—one then 
just obtains a filtered vector space (i/, Fil) determined up to isomorphism 
by the Hodge numbers hl =: dimGr^i/. Mazur's crystalline analog of 
this simplification is the passage from an F-crystal <I> to the associated F-
span E' —• F, in which one simply forgets that the source and target 
of $ are one and the same VT-module. It is easy to classify F-spans up 
to isomorphism. Namely, still following Mazur, we define a filtration on E 
by taking MXE' =: $_1(p*F); it is then easy to to see that our span is 
determined up to isomorphism by the Hodge numbers of the filtered vector 
space (F' <g> fc, M). Actually it turns out to be more convenient to work with 
a slightly different filtration A, given by AiE' =: X^p^M^'F', which in fact 
induces the same filtration as does M on E' <S> k. This construction defines 
a functor ctk/w from the category of F-crystals on k/W to the category of 
filtered VF-modules. We can now state Mazur's fundamental result [4, 8.41] 
in the following way: if we apply cxk/w to the canonical F-crystal structure 
on the crystalline cohomology of a suitable X/k, the resulting filtration A is 
just the Hodge filtration: 

AiE = H»(X/W,J®/w). 

Now suppose that we have a family of F-crystals (F,(I>) on a smooth 
X/k, i.e., an injective map of locally free crystals <I>: Fx/WE —> E. Such 
an object is usually just called an "F-crystal on X/W" and we view it 

/x = l. 
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as an analog of a variation of Hodge structure. Similarly, one can view 
an F-span <J>: F^^E1 —» E as an analog of a complex variation of Hodge 
structure. For each point x of X, one can perform Mazur's construction, 
and obtain a filtered W(k(x)y module (E'(x),A(x)). It turns out that these 
filtrations vary nicely in a family: they fit together to form a filtration A of 
the crystal E'. As in the complex case, A is not a filtration by subcrystals, but 
rather by sheaves in the crystalline topos, satisfying a crystalline version of 
Griffiths transversality. For example the filtration associated to the constant 
F-crystal is the filtration by the divided powers of the ideal Jx/w- We call 
the data (E\ A) a "T-crystal," and thus we obtain a functor ax/w from the 
category of F-spans on X/W to the category of T-crystals. It turns out that 
this functor is even an equivalence for crystals of level less than p. Now 
our generalization (c./. (7.4.3) and (7.5.3)) of Mazur's theorem says that 
the functor a commutes with the formation of higher direct images, under 
suitable conditions. 

The use of logarithmic structures in crystalline cohomology greatly in­
creases its range of applicability, so we begin in Section 1 by reviewing and 
extending the theory of logarithmic crystals, due originally to Faltings [10], 
Fontaine and Illusie, Hyodo, and Kato [15], [20]. The main new features 
of our presentation are the systematic study of logarithmic differential op­
erators and the theory of p-curvature and Carrier descent in a logarithmic 
context. This section may be of some foundational interest independent of 
the rest of the article. On the other hand, those readers who want to avoid 
the technical difficulties of logarithmic structures can omit it and just work 
with the trivial logarithmic structures throughout the rest of the paper. 

The first real task in our program is the systematic study of Griffiths 
transversality in the crystalline setting. The advantage of this viewpoint, 
aside from its aesthetic appeal, is that it allows us to work in arithmetic 
and geometric directions simultaneously. The basic idea is the following: If 
(£?, 4̂) is a filtered 0-module over a ring O and J is an CMdeal, we say that 
(E, A) is "G-transversal to J" if JE D A*E = JA^E for every i. If (J, 7 ) is 
a divided power ideal ("PD-ideal"), this notion must be modified to read: 

JE n AlE = JA{-lE + J[2]A{-2E + • • •; 

we then say that (E, A) is "G-transversal to (J, 7 )" or just "PD-transversal to 
J." Section 2 discusses this notion in detail, investigates its behavior under 
pullback, and establishes the technical and geometric underpinnings of our 
work. 

We begin the study of crystals and Griffiths transversality per se in Sec-
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tion 3. Recall that if Y/W is smooth, there is an equivalence between the 
category of crystals of CV/w-modules and the category MIC(Y/W) of pairs 
(Ey, V) consisting of a quasi-coherent sheaf Ey of CV-modules endowed with 
an integrable and p-adically nilpotent connection V. Consider the category 
of triples (EY, V, Ay), where (Ey, V) is an object of MIC(Y/W) and Ay is 
a filtration on Ey which is Griffiths transversal to V. We shall see that this 
category is equivalent to the category of pairs (£7, A), where E is as before 
a crystal of CV/̂ -modules and A is a filtration of E by subsheaves in the 
crystalline site which is PD-transversal to the PD-ideal Jy/w of Oy/w It 
is then easy to give a natural generalization of this condition for arbitrary 
schemes X/W (for example, for smooth schemes over fc); we thus construct 
the category of T-crystals on X/W. 

Section 4 develops the language and techniques that we shall use to inter­
polate the various nitrations that arise in our work on Mazur's theorem. For 
example, if (if, A, B) is a bifiltered object then for any subset a of Z x Z, we 
obtain a subobject Ka = : £{J4* D Bj : (ij) G a}. This defines a filtration of 
K indexed by the lattice of subsets of Z x Z, and the correspondence o Ka 

is compatible with the lattice structure—a fact which plays a key technical 
role in our proofs. There is also a close connection between this lattice and 
the lattice of gauges ("1-gauges" in our terminology) considered by Mazur in 
[23]. After slightly modifying his notion of a "tame gauge structure," we dis­
cover a close connection between such structures and G-transversality. The 
section ends with a discussion of the cohomology of tame gauge structures, 
generalizing and simplifying the results of §2 and §3 of [23] and §8 of [4]. 

Section 5 prepares the way for our formulation of the generalization of 
Mazur's theorem. Suppose for simplicity that X is smooth over a perfect field 
k (and we are working with trivial log structures.) Instead of studying F-
crystals, it is more natural and general to work with F-spans, i.e. p-isogenies 
$:F££" E in the category of crystals on X/W {c.f. (5.2.1)). We find 
a close connection between F-spans and T-crystals. Namely, we construct 
a functor ax/w from the category of F-spans to the category of T-crystals, 
interpolating Mazur's construction of the filtration M on E1 when X is a 
point. For spans of small level (or "width," c.f. (5.1.1)), this functor even 
turns out to be an equivalence of categories. We then introduce the notion 
of an "F-T-crystal" on a smooth lifting Y of X to Wfl\ this is an F-crystal on 
X/W together with a lifting of its associated T-crystal to Y/W. The section 
ends with a discussion of the relationship between such F-T-crystals and the 
category MFV of Fontaine-modules, including a simple proof of Faltings' 
structure theorem for Fontaine-modules. 
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Section 6 discusses the cohomology of T-crystals. It includes a filtered 
Poincaré lemma for T-crystals and some technical preparations that allow us 
to study bifiltered complexes and the associated hypercohomology spectral 
sequences. In particular, we show that T-crystals can often be "pushed 
forward." Thus if /: X —> Y is a smooth proper morphism of smooth W^-
schemes and if (E', A) is a T-crystal on X/W, the crystalline cohomology 
sheaves Rqf*E' inherit a T-crystal structure, under suitable hypotheses, c./. 
(6.3.2). We take care to describe as carefully as possible the behavior of the 
Hodge filtration even when the dimension is large compared to p. 

Section 7 is devoted to the formulation and proof of our analog of Mazur's 
theorem. The main formulation (7.3.1) of this theorem takes place on the 
level of complexes. We prove it by an unscrewing procedure based on the 
interpolation techniques of Section 4 until we are essentially reduced to a 
filtered version of the Cartier isomorphism. On the level of cohomology, 
our theorem asserts (7.4.3) that, with suitable hypotheses, the functor ax/w 
commutes with higher direct images. This result allows us to show in (7.5.3) 
that (with suitable hypothesis), the higher direct images of F-T-crystals again 
form F-T-crystals. As this manuscript was nearing completion, I learned with 
great interest that Kazuya Kato [18] is working on a theory (cohomology of 
F-gauges), which is closely related to our treatment of Mazur's theorem, but 
uses a different point of view. (The original definition of F-gauges is due to 
Ekedahl, [8], and is inspired by work of Fontaine, Lafaille, Nygaard, and of 
course Mazur.) 

Section 8 contains examples and applications of our theory. It begins 
with a very cursory discussion of liftings of T-crystals in mixed character­
istic, leading to generalizations of the decomposition theorems of Deligne 
and Illusie [7] as well as vanishing theorems of Kodaira-type, all with coef­
ficients in the Hodge complexes associated to an F-T-crystal. We also give 
a slight refinement (8.2.2) of a result of Faltings [9, IVb], which shows that 
the Hodge spectral sequence and torsion in crystalline cohomology are well-
behaved, provided that the prime p is large compared to the dimension of 
the space and the width of the crystal. Next we discuss Hodge and Newton 
polygons associated to F-spans and F-crystals, and in particular establish a 
form of Katz's conjecture with coefficients in an F-crystal (fulfilling, at least 
partially, a hope expressed in [1]). One application of our use of logarithmic 
structures is the link we find between the mixed Hodge structure of a smooth 
variety in characteristic zero and the Newton polygon of its reduction modulo 
a suitable prime p (8.3.7). Finally we work out what our theory says about 
the cohomology of symmetric powers of F-T crystals on curves, with an eye 
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