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T H E D I S P L A Y O F A F O R M A L p - D I V I S I B L E G R O U P 

by 

Thomas Zink 

Abstract. — We give a new Dieudonne theory which associates to a formal p-divisible 
group X over an excellent p-adic ring R an object of linear algebra called a display. 
On the display one can read off the structural equations for the Cartier module of X, 
and find the crystal of Grothendieck-Messing. We give applications to deformations 
of formal p-divisible groups. 

Introduction 

We fix throughout a prime number p. Let R be a commutative unitary ring. Let 
W(R) be the ring of Witt vectors. The ring structure on W(R) is functorial in R and 
has the property that the Witt polynomials are ring homomorphisms: 

wn : W(R) —• R 

(x0j.. .a:*,...) i—> x% -\-px^ H \-pnxn 
Let us denote the kernel of the homomorphism wo by IR. The Verschiebung is a 
homomorphism of additive groups: 

v : W(R) • W(R) 

(x0j... Xi, . . . ) i—• (0, x0,... Xi, . . . ) 

The Probenius endomorphism F : W(R) —+ W(R) is a ring homomorphism. The 
Verschiebung and the Frobenius are functorial and satisfy the defining relations: 

wn(Fx) == wn+i(x), for n > 0 
wn(vx) = pwn-i(x), for n > 0, w0(vx) = 0. 
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128 T. ZINK 

Moreover the following relations are satisfied: 

FV = p, v(Fxy) = xvy, x,yeW(R) 

We note that IR = VW(R). 
Let Pi and P2 be VF(P)-modules. An F-linear homomorphism <fi : Pi —* P2 is a 

homomorphism of abelian group which satisfies the relation cf)(wm) = Fw</)(m), where 
ra G P , w G W(R). Let 

: W{R) ®F,w(R) Pi —> P2 

be the linearization of <fi. We will call 0 an F-linear epimorphism respectively an 
F-linear isomorphism if <ffi is an epimorphism respectively an isomorphism. 

The central notion of these notes is that of a display. The name was suggested 
by the displayed structural equations for a reduced Cartier module introduced by 
Norman [N]. In this introduction we will assume that p is nilpotent in R. 

Definition 1. — A 3n-display over R is a quadruple (P, Q, P, V~1), where P is a 
finitely generated projective W(R)-module, Q C P is a submodule and F and V~x 
are ^-linear maps F : P —> P, V~x : Q —> P . 

The following properties are satisfied: 
(i) IRP C Q C P and P/Q is a direct summand of the W(P)-module P/IRP. 

(ii) V~x : Q —> P is a F-linear epimorphism. 
(iii) For x G P and w € W(P), we have 

V-^^wx) = wFx. 

If we set w = 1 in the relation (iii) we obtain: 

Fx = V~1(vlx) 

One could remove F from the definition of a 3n-display. But one has to require that 
the F-linear map defined by the last equation satisfies (iii). 

For y G Q one obtains: 
Fy = p - V~xy 

We note that there is no operator V. The reason why we started with V~l is the 
following example of a 3n-display. Let R — k be a perfect field and let M be a 
Dieudonne module. It is a finitely generated free W(fc)-module which is equipped with 
operators F and V. Since V is injective, there is an inverse operator V~x : VM —• M. 
Hence one obtains a display (M, VM, P, V-1). In fact this defines an equivalence of 
the category of Dieudonne modules with the category of 3n-displays over k. 

Let us return to the general situation. The M^(P)-module P always admits a direct 
decomposition 

P = L 0 T, 
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such that Q = L 0 IRT. We call it a normal decomposition. For a normal decompo­
sition the following map is a F-linear isomorphism: 

V'1 0 F : L 0 T • P 

Locally on Specie the W(i?)-modules L and T are free. Let us assume that T has 
a basis e i , . . . , e<f and L has a basis e^+i , . . . , e^. Then there is an invertible matrix 
{otij) with coefficients in W(R), such that the following relations hold: 

Fej = r 

wqs 
^oiijei, for j = 1 , . . . ,d 

(wo(0ki 
SAI 

sd+d 
a^-e* for j = d + 1 , . . . , ft, 

Conversely for any invertible matrix (a^) these relations define a 3n-display. 
Let ((3ki) the inverse matrix of (a^) . We consider the following matrix of type 

(ft, — d) x (ft — d) with coefficients in R/pR: 

B = (wo(0ki) modulo p)fe,i=d+i,...,/i 
Let us denote by be the matrix obtained from B by raising all coefficients of B 
to the power p. We say that the 3n-display defined by (a^) satisfies the F-nilpotence 
condition if there is a number iV such that 

JB(PJV-1)...JB(P).JB = 0. 

The condition depends only on the display but not on the choice of the matrix. 

Definition!. — A 3n-display which locally on Speci? satisfies the F-nilpotence con­
dition is called a display. 

The 3n-display which corresponds to a Dieudonne module M over a perfect field 
k is a display, iff V is topologically nilpotent on M for the p-adic topology. In the 
covariant Dieudonne theory this is also equivalent to the fact that the p-divisible group 
associated to M has no etale part. 

Let S be a ring such that p is nilpotent in S. Let a C S be an ideal which is 
equipped with divided powers. Then it makes sense to divide the Witt polynomial 
wm by pm. These divided Witt polynomials define an isomorphism of additive groups: 

W(a) —> aN 
Let a C aN be the embedding via the first component. Composing this with the 
isomorphism above we obtain an embedding a C W(a). In fact a is a VF(Sf)-submodule 
of W(a), if a is considered as a VT(5)-module via wo. Let R = S/a be the factor 
ring. We consider a display V = (P, Q, Fy V~x) over S. By base change we obtain a 
display over R: 

VR = V = (P,Q,F,V-1) 

SOCIÉTÉ MATHÉMATIQUE DE PRANCE 2002 



130 T. ZINK 

By definition one has P = W(R)®w(S) P- Let us denote by Q = W(a)P + Q C P the 
inverse image of Q. Then we may extend the operator V~x uniquely to the domain 
of definition Q, such that the condition V~xaP = 0 is fulfilled. 

Theorem 3. — With the notations above let V' = (P ' , Q', P , V~x) be a second display 
over S, and V = (P ' , Q', P, V~1) the display over R obtained by base change. Assume 
we are given a morphism of displays u : V —> V over R. Then u has a unique lifting 
u to a morphism of quadruples: 

u : (P, Q, F, V-1) — (P', Q', F, V^1). 

This allows us to associate a crystal to a display: Let R be a ring, such that p is 
nilpotent in R. Let V = (P, <2, P, V~x) be a display over R. Consider a surjection 
S R whose kernel a is equipped with a divided power structure. If p is nilpotent 
in S we call such a surjection a pd-thickening of R. Let V = (P, Q, P , V~1) be any 
lifting of the display V to S. By the theorem the module P is determined up to 
canonical isomorphism by V. Hence we may define: 

VV{S) = S®W{S)P 

This gives a crystal on Spec R if we sheafify the construction. 
Next we construct a functor ET from the category of 3n-displays over R to the 

category of formal groups over R. A nilpotent P-algebra Af is an P-algebra (without 
unit), such that AfN = 0 for a sufficiently big number N. Let NUR denote the 
category of nilpotent R-algebras. We will consider formal groups as functors from the 
category Nil/? to the category of abelian groups. Let us denote by W(J\f) C W(J\T) 
the subgroup of all Witt vectors with finitely many nonzero components. This is a 
W(P)-submodule. We consider the functor G^{J\T) = W(Af) <8>w(R) P on NilR with 
values in the category of abelian groups. Let G^1 be the subgroup functor which is 
generated by all elements in W(N) ®w(R) P of the following form: 

v€®x, <£®y, f e W{N), y e Q, x e P. 

Then we define a map: 

(1) V'1 - id : G~x —• G°v 

On the generators above the map V~x — id acts as follows: 

(V1 - id)(v£ 0 x) = £ (8) Fx - v£ ® x 

(V-1 - id)(£ ® i/) = Fe ® V~xy -Z®y 

Theorem 4. — Let V = (P, Q,P, V~x) be a Sn-display over R. The cokernel of the 
map (1) is a formal group BT-p. Moreover one has an exact sequence of functors on 
Nil*; 

0 _ + G-1 y " 1 ~ l d ) —• BTV —• 0 
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