Astérisque

THOMAS ZINK The display of a formal *p*-divisible group

Astérisque, tome 278 (2002), p. 127-248 http://www.numdam.org/item?id=AST 2002 278 127 0>

© Société mathématique de France, 2002, tous droits réservés.

L'accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

THE DISPLAY OF A FORMAL *p*-DIVISIBLE GROUP

by

Thomas Zink

Abstract. — We give a new Dieudonné theory which associates to a formal p-divisible group X over an excellent p-adic ring R an object of linear algebra called a display. On the display one can read off the structural equations for the Cartier module of X, and find the crystal of Grothendieck-Messing. We give applications to deformations of formal p-divisible groups.

Introduction

We fix throughout a prime number p. Let R be a commutative unitary ring. Let W(R) be the ring of Witt vectors. The ring structure on W(R) is functorial in R and has the property that the Witt polynomials are ring homomorphisms:

$$\mathbf{w}_n: \qquad W(R) \longrightarrow R$$
$$(x_0, \dots, x_i, \dots) \longmapsto x_0^{p^n} + px_1^{p^{n-1}} + \dots + p^n x_n$$

Let us denote the kernel of the homomorphism \mathbf{w}_0 by I_R . The Verschiebung is a homomorphism of additive groups:

$$V: W(R) \longrightarrow W(R)$$

 $(x_0, \dots x_i, \dots) \longmapsto (0, x_0, \dots x_i, \dots)$

The Frobenius endomorphism $F: W(R) \to W(R)$ is a ring homomorphism. The Verschiebung and the Frobenius are functorial and satisfy the defining relations:

$$\mathbf{w}_n({}^F x) = \mathbf{w}_{n+1}(x), \text{ for } n \ge 0 \\ \mathbf{w}_n({}^V x) = p \mathbf{w}_{n-1}(x), \text{ for } n > 0, \quad \mathbf{w}_0({}^V x) = 0.$$

2000 Mathematics Subject Classification. — 14L05, 14F30.

Key words and phrases. — p-divisible groups, crystalline cohomology.

Moreover the following relations are satisfied:

$$^{FV}=p,$$
 $^{V}(^{F}xy)=x^{V}y,$ $x,y\in W(R)$

We note that $I_R = {}^V W(R)$.

Let P_1 and P_2 be W(R)-modules. An ^F-linear homomorphism $\phi : P_1 \to P_2$ is a homomorphism of abelian group which satisfies the relation $\phi(wm) = {}^Fw\phi(m)$, where $m \in P, w \in W(R)$. Let

$$\phi^{\sharp}: W(R) \otimes_{F, W(R)} P_1 \longrightarrow P_2$$

be the linearization of ϕ . We will call ϕ an ^{*F*}-linear epimorphism respectively an ^{*F*}-linear isomorphism if ϕ^{\sharp} is an epimorphism respectively an isomorphism.

The central notion of these notes is that of a display. The name was suggested by the displayed structural equations for a reduced Cartier module introduced by Norman [N]. In this introduction we will assume that p is nilpotent in R.

Definition 1. — A 3*n*-display over *R* is a quadruple (P, Q, F, V^{-1}) , where *P* is a finitely generated projective W(R)-module, $Q \subset P$ is a submodule and *F* and V^{-1} are ^{*F*}-linear maps $F: P \to P$, $V^{-1}: Q \to P$.

The following properties are satisfied:

- (i) $I_R P \subset Q \subset P$ and P/Q is a direct summand of the W(R)-module $P/I_R P$.
- (ii) $V^{-1}: Q \longrightarrow P$ is a ^F-linear epimorphism.

(iii) For $x \in P$ and $w \in W(R)$, we have

$$V^{-1}(^Vwx) = wFx.$$

If we set w = 1 in the relation (iii) we obtain:

$$Fx = V^{-1}(^{V}1x)$$

One could remove F from the definition of a 3n-display. But one has to require that the F-linear map defined by the last equation satisfies (iii).

For $y \in Q$ one obtains:

$$Fy = p \cdot V^{-1}y$$

We note that there is no operator V. The reason why we started with V^{-1} is the following example of a 3n-display. Let R = k be a perfect field and let M be a Dieudonné module. It is a finitely generated free W(k)-module which is equipped with operators F and V. Since V is injective, there is an inverse operator $V^{-1} : VM \to M$. Hence one obtains a display (M, VM, F, V^{-1}) . In fact this defines an equivalence of the category of Dieudonné modules with the category of 3n-displays over k.

Let us return to the general situation. The W(R)-module P always admits a direct decomposition

$$P = L \oplus T,$$

such that $Q = L \oplus I_R T$. We call it a normal decomposition. For a normal decomposition the following map is a ^F-linear isomorphism:

$$V^{-1} \oplus F : L \oplus T \longrightarrow P$$

Locally on Spec R the W(R)-modules L and T are free. Let us assume that T has a basis e_1, \ldots, e_d and L has a basis e_{d+1}, \ldots, e_h . Then there is an invertible matrix (α_{ij}) with coefficients in W(R), such that the following relations hold:

$$Fe_j = \sum_{i=1}^h \alpha_{ij} e_i, \quad \text{for } j = 1, \dots, d$$
$$V^{-1}e_j = \sum_{i=1}^h \alpha_{ij} e_i \quad \text{for } j = d+1, \dots, h$$

Conversely for any invertible matrix (α_{ij}) these relations define a 3n-display.

Let (β_{kl}) the inverse matrix of (α_{ij}) . We consider the following matrix of type $(h-d) \times (h-d)$ with coefficients in R/pR:

$$B = (\mathbf{w}_0(\beta_{kl}) \text{ modulo } p)_{k,l=d+1,\dots,h}$$

Let us denote by $B^{(p)}$ be the matrix obtained from B by raising all coefficients of B to the power p. We say that the 3n-display defined by (α_{ij}) satisfies the V-nilpotence condition if there is a number N such that

$$B^{(p^{N-1})}\cdots B^{(p)}\cdot B=0.$$

The condition depends only on the display but not on the choice of the matrix.

Definition 2. — A 3n-display which locally on Spec R satisfies the V-nilpotence condition is called a display.

The 3n-display which corresponds to a Dieudonné module M over a perfect field k is a display, iff V is topologically nilpotent on M for the p-adic topology. In the covariant Dieudonné theory this is also equivalent to the fact that the p-divisible group associated to M has no étale part.

Let S be a ring such that p is nilpotent in S. Let $\mathfrak{a} \subset S$ be an ideal which is equipped with divided powers. Then it makes sense to divide the Witt polynomial \mathbf{w}_m by p^m . These divided Witt polynomials define an isomorphism of additive groups:

$$W(\mathfrak{a}) \longrightarrow \mathfrak{a}^{\mathbb{N}}$$

Let $\mathfrak{a} \subset \mathfrak{a}^{\mathbb{N}}$ be the embedding via the first component. Composing this with the isomorphism above we obtain an embedding $\mathfrak{a} \subset W(\mathfrak{a})$. In fact \mathfrak{a} is a W(S)-submodule of $W(\mathfrak{a})$, if \mathfrak{a} is considered as a W(S)-module via \mathbf{w}_0 . Let $R = S/\mathfrak{a}$ be the factor ring. We consider a display $\widetilde{\mathcal{P}} = (\widetilde{P}, \widetilde{Q}, \widetilde{F}, \widetilde{V}^{-1})$ over S. By base change we obtain a display over R:

$$\mathcal{P}_R = \mathcal{P} = (P, Q, F, V^{-1})$$

By definition one has $P = W(R) \otimes_{W(S)} \widetilde{P}$. Let us denote by $\widehat{Q} = W(\mathfrak{a})\widetilde{P} + \widetilde{Q} \subset \widetilde{P}$ the inverse image of Q. Then we may extend the operator \widetilde{V}^{-1} uniquely to the domain of definition \widehat{Q} , such that the condition $\widetilde{V}^{-1}\mathfrak{a}\widetilde{P} = 0$ is fulfilled.

Theorem 3. — With the notations above let $\widetilde{\mathcal{P}}' = (\widetilde{P}', \widetilde{Q}', \widetilde{F}, \widetilde{V}^{-1})$ be a second display over S, and $\mathcal{P}' = (P', Q', F, V^{-1})$ the display over R obtained by base change. Assume we are given a morphism of displays $u : \mathcal{P} \to \mathcal{P}'$ over R. Then u has a unique lifting \widetilde{u} to a morphism of quadruples:

$$\widetilde{u}: (\widetilde{P}, \widehat{Q}, \widetilde{F}, \widetilde{V}^{-1}) \longrightarrow (\widetilde{P}', \widehat{Q}', \widetilde{F}, \widetilde{V}^{-1}).$$

This allows us to associate a crystal to a display: Let R be a ring, such that p is nilpotent in R. Let $\mathcal{P} = (P, Q, F, V^{-1})$ be a display over R. Consider a surjection $S \to R$ whose kernel \mathfrak{a} is equipped with a divided power structure. If p is nilpotent in S we call such a surjection a pd-thickening of R. Let $\widetilde{\mathcal{P}} = (\widetilde{P}, \widetilde{Q}, \widetilde{F}, \widetilde{V}^{-1})$ be any lifting of the display \mathcal{P} to S. By the theorem the module \widetilde{P} is determined up to canonical isomorphism by \mathcal{P} . Hence we may define:

$$\mathcal{D}_{\mathcal{P}}(S) = S \otimes_{W(S)} \widetilde{P}$$

This gives a crystal on $\operatorname{Spec} R$ if we sheafify the construction.

Next we construct a functor BT from the category of 3n-displays over R to the category of formal groups over R. A nilpotent R-algebra \mathcal{N} is an R-algebra (without unit), such that $\mathcal{N}^N = 0$ for a sufficiently big number N. Let Nil_R denote the category of nilpotent R-algebras. We will consider formal groups as functors from the category Nil_R to the category of abelian groups. Let us denote by $\widehat{W}(\mathcal{N}) \subset W(\mathcal{N})$ the subgroup of all Witt vectors with finitely many nonzero components. This is a W(R)-submodule. We consider the functor $\mathbf{G}^0_{\mathcal{P}}(\mathcal{N}) = \widehat{W}(\mathcal{N}) \otimes_{W(R)} P$ on Nil_R with values in the category of abelian groups. Let $\mathbf{G}^{-1}_{\mathcal{P}}$ be the subgroup functor which is generated by all elements in $\widehat{W}(\mathcal{N}) \otimes_{W(R)} P$ of the following form:

$${}^V\!\xi\otimes x,\quad \xi\otimes y,\qquad \xi\in \widehat{W}(\mathcal{N}),\; y\in Q,\; x\in P.$$

Then we define a map:

(1)
$$V^{-1} - \mathrm{id} : \mathbf{G}_{\mathcal{P}}^{-1} \longrightarrow \mathbf{G}_{\mathcal{P}}^{0}$$

On the generators above the map V^{-1} – id acts as follows:

$$(V^{-1} - \mathrm{id})(^{V}\xi \otimes x) = \xi \otimes Fx - {}^{V}\xi \otimes x$$
$$(V^{-1} - \mathrm{id})(\xi \otimes y) = {}^{F}\xi \otimes V^{-1}y - \xi \otimes y$$

Theorem 4. — Let $\mathcal{P} = (P, Q, F, V^{-1})$ be a 3n-display over R. The cokernel of the map (1) is a formal group $BT_{\mathcal{P}}$. Moreover one has an exact sequence of functors on Nil_R:

$$0 \longrightarrow \mathbf{G}_{\mathcal{P}}^{-1} \xrightarrow{V^{-1} - \mathrm{id}} \mathbf{G}_{\mathcal{P}}^{0} \longrightarrow BT_{\mathcal{P}} \longrightarrow 0$$