
aNNALES
SCIENnIFIQUES

      SUPÉRIEUkE

de
L ÉCOLE
hORMALE

ISSN 0012-9593

ASENAH

SOCIÉTÉ MATHÉMATIQUE DE FRANCE

quatrième série - tome 47 fascicule 3 mai-juin 2014

Steve HOFMANN & José María MARTELL

Uniform rectifiability and harmonic measure I: Uniform rectifiability
implies Poisson kernels in Lp



Ann. Scient. Éc. Norm. Sup.

4 e série, t. 47, 2014, p. 577 à 654

UNIFORM RECTIFIABILITY AND HARMONIC
MEASURE I: UNIFORM RECTIFIABILITY IMPLIES

POISSON KERNELS IN Lp

 S HOFMANN  J M MARTELL

A. – We present a higher dimensional, scale-invariant version of a classical theorem of
F. and M. Riesz [37]. More precisely, we establish scale invariant absolute continuity of harmonic
measure with respect to surface measure, along with higher integrability of the Poisson kernel, for a
domain Ω ⊂ Rn+1, n ≥ 2, with a uniformly rectifiable boundary, which satisfies the Harnack chain
condition plus an interior (but not exterior) Corkscrew condition. In a companion paper to this one
[28], we also establish a converse, in which we deduce uniform rectifiability of the boundary, assuming
scale invariant Lq bounds, with q > 1, on the Poisson kernel.

R. – On présente une version invariante par échelles et en dimension supérieure à 3, d’un
théorème classique de F. et M. Riesz [37]. Plus précisément, on établit l’absolue continuité de la mesure
harmonique par rapport à la mesure de surface, ainsi qu’un gain d’intégrabilité pour le noyau de
Poisson, pour un domaine Ω ⊂ Rn+1, n ≥ 2, à bord uniformément rectifiable, vérifiant une condition
de chaîne de Harnack et une condition de type « points d’ancrage » ou « Corkscrew » intérieure (mais
pas extérieure). L’article associé [28] établit une réciproque, c’est-à-dire l’uniforme rectifiabilité du bord
en supposant des estimées invariantes par échelle Lq pour q > 1 sur le noyau de Poisson.

1. Introduction

In [37], F. and M. Riesz showed that for a simply connected domain in the complex plane
with a rectifiable boundary, harmonic measure is absolutely continuous with respect to arc
length measure. A quantitative version of this theorem was obtained by Lavrentiev [35]. More
generally, if only a portion of the boundary is rectifiable, Bishop and Jones [8] have shown
that harmonic measure is absolutely continuous with respect to arclength on that portion.
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They also present a counter-example to show that the result of [37] may fail in the absence
of some topological hypothesis (e.g., simple connectedness).

In this paper we extend the results of [37] and [35] to higher dimensions, without im-
posing extra assumptions on either the exterior domain or the boundary, as has been done
previously. Our extension (Theorem 1.26 below) is “scale-invariant”, i.e., assuming scale-
invariant analogues of the hypotheses of [37], we show that harmonic measure satisfies a
scale-invariant version of absolute continuity, namely the weak-A∞ condition (cf. Defi-
nition 1.19 below). More precisely, let Ω ⊂ Rn+1, n ≥ 2, be a connected, open set. We
establish the weak-A∞ property of harmonic measure, assuming that ∂Ω is uniformly recti-
fiable (cf. (1.13) below), and that Ω satisfies interior (but not necessarily exterior) Corkscrew
and Harnack chain conditions (cf. Definitions 1.4 and 1.6 below). Uniform rectifiability is
the scale-invariant version of rectifiability, while the Corkscrew and Harnack chain con-
ditions are scale invariant analogues of the topological properties of openness and path
connectedness, respectively. We emphasize that in contrast to previous work in this area in
dimensions n + 1 ≥ 3, we impose no restriction on the geometry of the exterior domain
Ωext := Rn+1 \ Ω, nor any extra condition on the geometry of the boundary, beyond
uniform rectifiability. In particular, we do not require that any component of Ωext satisfy a
Corkscrew condition (as in [29], [39, 6]) or even an n-disk condition as in [17]; nor do we
assume that ∂Ω contains “Big Pieces” of the boundaries of Lipschitz sub-domains of Ω, as
in [7]. The absence of such assumptions is the main advance in the present paper.

In addition, in a companion paper to this one [28], written jointly with I. Uriarte-Tuero,
we establish a converse, Theorem 1.28, in which we deduce uniform rectifiability of the
boundary, given a certain scale invariant localLq estimate, with q > 1, for the Poisson kernel
(cf. (1.24)). The method of proof in [28] may be of independent interest, as it entails a novel
use of “Tb” theory to obtain a free boundary result.

Taken together, the main results of the present paper and of [28], namely Theorems 1.26
and 1.28 below, may be summarized as follows (the terminology and notation used in the
statement will be clarified or cross-referenced immediately afterwards):

T 1.1. – Let Ω ⊂ Rn+1, n ≥ 2, be a connected open set which satisfies interior
Corkscrew and Harnack chain conditions, and whose boundary ∂Ω is n-dimensional Ahlfors-
David regular. Then the following are equivalent:

1. ∂Ω is uniformly rectifiable.

2. For every surface ball ∆ = ∆(x, r) ⊂ ∂Ω, with radius r . diam ∂Ω, the harmonic
measure ωX∆ ∈ weak-A∞(∆).

3. ω � σ, and there is a q > 1 such that the Poisson kernel kX∆ satisfies the scale invariant
Lq bound (1.24), for every ∆ = ∆(x, r) ⊂ ∂Ω, with radius r . diam ∂Ω.

R 1.2. – By the counter-example of [8], one would not expect to obtain the impli-
cation (1) =⇒ (2), without some sort of connectivity assumption; for us, the interior Har-
nack chain condition plays this role.

Given a domain Ω ⊂ Rn+1, a “surface ball” is a set ∆ = ∆(x, r) := B(x, r) ∩ ∂Ω, where x ∈ ∂Ω,
and B(x, r) denotes the standard (n + 1)-dimensional Euclidean ball of radius r centered
at x. For such a surface ball ∆, we let ωX∆ denote harmonic measure for Ω, with pole at the
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“Corkscrew point” X∆ (see Definition 1.4). The Corkscrew and Harnack chain conditions,
as well as the notions of Ahlfors-David regularity (ADR), uniform rectifiability (UR) and
weak-A∞, are described in Definitions 1.4, 1.6, 1.7, 1.9, and 1.19 below.

The present paper treats the direction (1) implies (2). That (2) implies (3) is well known
(see the discussion following Definition 1.19). The main result in [28] is that (3) implies (1).
We mention also that we obtain in the present paper an extension of (1) implies (2), in which
our hypotheses are assumed to hold only in an “interior big pieces” sense (cf. Definition 1.14
and Theorem 1.27 below).

To place Theorem 1.1 in context, we review previous related work in dimension n+ 1 ≥ 3.
We recall that in [29], the authors introduce the notion of a “non-tangentially accessible”
(NTA) domain: Ω is said to be NTA if it satisfies the Corkscrew and Harnack chain con-
ditions (“interior Corkscrew and Harnack chain conditions”), and also if the exterior do-
main, Ωext := Rn+1 \ Ω (which need not be connected), satisfies the Corkscrew condition
(“exterior Corkscrew condition”). The latter was relaxed in [17] to allow a sort of “weak ex-
terior Corkscrew” condition in which the analogue of the exterior Corkscrew point is the
center merely of an n-dimensional disk in Ωext, rather than of a full Euclidean ball. A key
observation made in [17] was that the weak exterior Corkscrew condition is still enough to
obtain local Hölder continuity at the boundary of harmonic functions which vanish on a
surface ball. In [17], the authors prove that, in the presence of Ahlfors-David regularity of
the boundary, the NTA condition of [29] or even its relaxed version with “weak exterior
Corkscrews”, implies that Ω satisfies an “interior big pieces” of Lipschitz sub-domains con-
dition (cf. Definition 1.14 below). By a simple maximum principle argument (plus the deep
result of [15]), one then almost immediately obtains a certain lower bound for harmonic mea-
sure, to wit that there are constants η ∈ (0, 1) and c0 > 0 such that for each surface ball
∆ ⊂ ∂Ω, and any Borel subset A ⊂ ∆, we have

(1.3) ωX∆(A) ≥ c0, whenever σ(A) ≥ η σ(∆).

In turn, still given NTA, or at least the relaxed version of [17], the latter bound self-improves
to an A∞ estimate for harmonic measure, via the comparison principle. The same A∞ con-
clusion was also obtained by a different argument in [39], under the full NTA condition
of [29]. In [7], the authors impose an interior Corkscrew condition, but in lieu of the Harnack
chain and exterior (or weak exterior) Corkscrew conditions, the authors assume instead the
consequence of these conditions deduced in [17], namely, that Ω satisfies the aforementioned
condition concerning “interior big pieces” of Lipschitz sub-domains. The bound (1.3)
(suitably interpreted) then holds almost immediately (again by the maximum principle),
but the self-improvement argument, in the absence of the Harnack chain and exterior (or
weak exterior) Corkscrew conditions, is now more problematic (indeed, the usual proofs of
the comparison principle rely on Harnack’s inequality and local Hölder continuity at the
boundary), and the authors conclude in [7] only that ω is weak-A∞. On the other hand,
they give an example to show that this conclusion is best possible (that is, they construct a
domain which satisfies the “interior big pieces” condition, but whose harmonic measure fails
to be doubling). We mention also in this context the recent paper [6], in which the geometric
conclusion of [17], namely the existence of “interior big pieces” of Lipschitz sub-domains,
is shown to hold assuming the full NTA condition (with two-sided Corkscrews), but in
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which only the lower (but not the upper) bound is required in the Ahlfors-David condition
(cf. (1.8)).

In the present paper, we improve the results of [7] and of [17] by removing the “big pieces
of Lipschitz sub-domains” hypothesis, as well as all assumptions regarding the exterior
domain. That is, in Theorem 1.26, we assume only that Ω satisfies interior Corkscrew and
Harnack chain conditions, and that its boundary is uniformly rectifiable. More generally,
in Theorem 1.27, we suppose only that these hypotheses hold in an appropriate “interior
big pieces” sense (in particular, our results include those of [7] as a special case, since their
Lipschitz sub-domains clearly satisfy our hypotheses). The difficulty now, and the heart of
the proof, is to establish (1.3); with the latter in hand, the self-improvement to weak A∞
proceeds as in [7]. We mention that by an unpublished example of Hrycak, UR does not, in
general, imply big pieces of Lipschitz graphs(1) (that the opposite implication does hold for
ADR sets is easy, and well known). Moreover, in [28] we obtain a converse which shows that
the UR hypothesis is optimal. In this connection, we mention also the following observation,
which was brought to our attention by M. Badger and T. Toro. Let F ⊂ R2 denote the
“4 corners Cantor set” of J. Garnett (see, e.g., [19, p. 4]), and let F ∗ := F × R ⊂ R3 be the
“cylinder” above F . Then Ω := R3 \ F ∗ satisfies the (interior) Corkscrew and Harnack
chain conditions, and has a 2-dimensional ADR boundary, but the boundary is not UR, and
therefore its harmonic measure is not weak-A∞.

We conclude this historical survey by providing some additional context for our work here
and in [28], namely, that our results may be viewed as a “large constant” analogue of the
work of Kenig and Toro [32, 33, 34]. The latter, taken collectively, say that in the presence of a
Reifenberg flatness condition and Ahlfors-David regularity, one has that log k ∈ VMO if and
only if ν ∈ VMO, where k is the Poisson kernel with pole at some fixed point, and ν is the unit
normal to the boundary. Moreover, given the same background hypotheses, the condition
that ν ∈ VMO is equivalent to a uniform rectifiability (UR) condition with vanishing
trace, thus log k ∈ VMO ⇐⇒ vanishing UR.On the other hand, our large constant version
“almost” says “ log k ∈ BMO ⇐⇒ UR ”, given interior Corkscrews and Harnack chains.
Indeed, it is well known that the A∞ condition (i.e., weak-A∞ plus the doubling property)
implies that log k ∈ BMO, while if log k ∈ BMO with small norm, then k ∈ A∞.

In order to state our results precisely, we shall first need to discuss some preliminary
matters.

1.1. Notation and definitions

– We use the letters c, C to denote harmless positive constants, not necessarily the same at
each occurrence, which depend only on dimension and the constants appearing in the hy-
potheses of the theorems (which we refer to as the “allowable parameters”). We shall also

(1) On the other hand, Azzam and Schul [5] have recently shown that every UR set contains “big pieces of
big pieces of Lipschitz graphs” (see [19, pp. 15-16] or [5] for a precise formulation). This is a beautiful result,
but seems inapplicable to the estimates for harmonic measure considered here: to enable essential use of the
maximum principle, one would need “interior big pieces (cf. Definition 1.14 below) of interior big pieces of Lipschitz
subdomains” (say, in the presence of the 1-sided NTA condition), and it is not clear that the methods of [5] would
yield such a result . We do expect that the methods of the present paper could be pushed to do so, and we plan to
present these arguments, with applications to more general elliptic-harmonic measures, in a forthcoming paper.
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