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Abstract

After briefly describing the mathematical structure of modern
physics, this paper analyzes the divergence between the develop-
ment of physics and of mathematics in the first half of the 20th
century, with emphasis on the role in each discipline of rigorous
definitions and proofs, of algebraic calculations and of intuitive
ideas.

Résumé

Après avoir décrit la structure mathématique de la physique mo-
derne, cet article analyse la divergence entre mathématiques et
physique dans la première moitié du XXe siècle, en étudiant,
pour chacune des disciplines, le rôle respectif des définitions et
démonstrations rigoureuses, des calculs algébriques et des idées
intuitives.

1. Foreword

I would like to start with an explicit description of the conceptual framework
of this study.

To render it concisely, it is useful to look at the case of comparative
linguistics. The history of a language is not a history of all, or even of “the
most important,” utterances (oral or written) in this language. Rather, it is a
history of evolution of the language as a system. Hence we need a preliminary
description of the system(s) whose genesis we are studying.
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An application of this Saussurian scheme to the history of mathematics
(which, incidentally, I do not consider to be a mere language) was probably
particularly appealing to Jean Dieudonné who, as an active member of the
Bourbaki group, participated in the creation of a systematic picture of modern
mathematics.1 In this talk I follow his example, on a much humbler scale.
Needless to say that restrictions of time, space, and competence, force me to
choose a thin chain of connected ideas and present them in a highly selective
way.

Thus I refuse (somewhat reluctantly) to discuss the history with Rankean
insistence on wie es eigentlich gewesen ist. One reason for this refusal is that
the history of contemporary mathematics tends to degenerate into credit and
priority assignments, lacking pathetically the dramatic appeal with which the
history of struggles for real power is charged. A more personal and compelling
motive is succinctly put by Joseph Brodsky in his autobiographical essay Less
Than One: “The little I remember becomes even more diminished by being
recollected in English.”

A last word of warning and apology is due. Any system is, of course, a
theoretical construct. As such, it is at best relative and culture dependent, at
worst subjective. It is precisely in this function that it can serve as material
for the history of mathematics of the 20th century.

2. Mathematical Physics as a System

2.1. Physics

Physics describes the external world, and in its domain of competence, does
this in two complementary modes: classical and quantum.

In the classical mode, events occur to the matter and fields which reside
and evolve in the space–time. Physical laws directly constrain observables.
They are basically deterministic and expressed by the differential equations
which (sometimes demonstrably, sometimes hypothetically) satisfy appropri-
ate uniqueness and existence theorems.

A statistical submode of the classical mode of description deals with proba-
bilities and averages which (sometimes demonstrably, sometimes presumably)
can be deduced from an ideal deterministic description. The need for a statis-

1Jean Dieudonné, as I remember him, had a strong voice, strong hands, and strong
opinions. In particular, he insisted on using tensor products and commutative diagrams
instead of classical subscripts and superscripts in calculations involving tensors. I used to
believe his judgement that this was a chalk–saving device, until one day I had to calculate
with tensors myself. Then I found out that subscripts were much more economical.

SÉMINAIRES ET CONGRÈS 3
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tical treatment arises from two basic premises: too many degrees of freedom
and/or instability. (Metaphorically speaking, instability means that each con-
secutive decimal digit is a new degree of freedom.)

A fundamental physical abstraction is that of an isolated system which
evolves in oblivion of the rest of the world, and of interaction between poten-
tially isolated systems, or one isolated system and the rest of the world.

In one of the most remarkable flights of fancy of classical physics, space–
time itself appears as such an isolated system governed by Einstein’s equations
of general relativity (perhaps, with an energy–momentum tensor summarily
responsible for everything which is not pure space–time).

In the quantum mode of theoretical description, the observable world is
inherently probabilistic. Moreover, and more significantly, the basic laws
— which are in a sense deterministic — govern an unobservable entity, the
probability amplitude, which is a complex valued function on a quantum path
space. Roughly speaking, the amplitude of a composite event is the product
of the amplitudes of its constituents, whereas the amplitude of an event which
is a sum of alternatives is the sum of the amplitudes of these alternatives.

The probability of an event is the modulus squared of its amplitude. Phys-
ical observables are the appropriate averages, even if one speaks about an
elementary act of scattering of an individual particle. The observable wave
behavior of, say, light is only an imperfect reflection of the inherent wave
behavior of the amplitudes (wave functions) of an indeterminate number of
photons described by the Fock space of the quantized electromagnetic field.

Partly as a result of historical development, many quantum models con-
tain as an intermediate stage a classical model which is then quantized. The
word “quantization” rather indiscriminately refers to a wide variety of pro-
cedures of which two of the most important are operator, or Hamiltonian,
quantization, and path integral quantization. The first is more algebraic and
usually has a firmer mathematical background. The second possesses an enor-
mous heuristic and aesthetic potential. I haven chosen the latter for my more
detailed subsequent discussion.

If I had included the first one, the picture of the divergence of Mathematics
and Physics in the first half of this century sketched below in Sec. IV would
appear less pronounced. Nevertheless, the main results of my analysis would
survive.

One more subject matter deserving a separate historical and structural
study is the duality between these two approaches. It started with clas-
sical mechanics, Lagrange, and Hamilton, and continued via Heisenberg–
Schrödinger wave mechanics to the path integral/scattering matrix contro-
versy. On the fringes of physics it contains such recent mathematical gems as

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 1998



160 YU. I. MANIN

Virasoro algebra representations on the moduli spaces of curves.

2.2. Mathematics

If there is one most important notion of mathematical physics, it is that of
action functional. It encompasses the classical ideas of energy and work, its
density in a domain of space–time is the Lagrangian, and multiplied by

√
−1

and exponentiated, it furnishes the basic probability amplitude. Action is
measured in absolute Planck units, and therefore can be thought of as a real
number. More precisely, we will consider the following scheme of description
central for both modes of physical description referred to above.

The modeling of a physical system starts with the specification of its
kinematics. This includes a space P of virtual classical paths of the system and
an action functional S : P → R. For example, P may consist of parametrized
curves in a classical phase space of a mechanical system, or of Riemannian
metrics on a given smooth manifold (space–time), or of triples (a connection
on a given vector bundle, a metric on it, a section of it) etc. The value of the
action functional at a point p ∈ P is usually given in the form

∫
p L, that is a

volume form integrated over one of the spaces figuring in the description of p.
Classical equations of motion specify a subspace Pcl ⊂ P. This subset

consists of the solutions of the variational equations δ(S) = 0, i. e., of the
stationary points of the action functional.

If the classical description is the statistical one, then exp(−S) is the prob-
ability density.

In the quantum description, we choose physically motivated subsets
B ⊂ P, typically determined by boundary conditions, and define the average
of an observable O in B by a path integral of the type

(2.1) 〈O〉B :=
∫

B
O(p) e i

R
p
L Dp.

These are our main actors. In the following, I present some musings about
the history of this picture as seen through the eyes of physicists and mathe-
maticians.

I will be most interested in the idea of the integral and its final incarnation,
in the form of the path integral.

3. The Integral

The notion of an integral is one of the central and recurring themes in the
history of mathematics for the last two millennia. The ardent problem solving
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is periodically followed by the anxious definition seeking, only to be replaced
by new non–rigorous but amazingly efficient heuristics leaving a logically–
minded fundamentalist in each of us baffled.

Richard Feynman who created the hierogram (2.1) (still lacking a pre-
cise mathematical meaning exactly in those cases when it is most needed by
physicists2) used to boast that (2.1) allowed the calculation of the anomalous
magnetic momentum of the electron, which coincided with its experimental
value up to ten digits:

“As of 1983, the theoretical number was 1.00115965246, with an un-
certainty of about 20 in the last two digits; the experimental number was
1.00115965221, with an uncertainty of about 4 in the last digit. This accu-
racy is equivalent to measuring the distance from Los Angeles to New York, a
distance of over 3000 miles, to within the width of a human hair.” [Feynman
1988, p. 118]

This feat was recently matched by physical calculations (even called “pre-
dictions”, cf. [Candelas et al. 1991]) of various interesting numbers in algebraic
geometry, such as the number Nd of rational curves of degree d on a generic
three–dimensional quintic (e. g. 70428 81649 78454 68611 34882 49750 for
d = 10, a theoretical(?) number still unchecked in an experiment(?) involv-
ing a mathematical definition of Nd and a computer.) The ideology of path
integration played an essential role in these calculations, leading to an inter-
pretation of an instance of (2.1) as a sum over instantons in a sigma–model,
which in this particular case are rational curves on a quintic.

The intuitive physical picture of an integral is the quantity of something
in a domain. If the first calculations of this “something” are later interpreted
as, say, the volume of a pyramid, one can hardly doubt that they were used
for estimating the actual quantity of stone (and slaves’ labor) needed for the
building of an Egyptian pharaoh’s tomb. Kepler’s Stereometria Doliorum
mentions wine casks in its title. The domain in question acquired a temporal
dimension when the length of a path was calculated as an integral of velocity,
and the notion of energy was gradually replaced by that of action. In the
twentieth century, topology became one of the substances the quantity of which
could be measured by integration of closed differential forms (De Rham theory
of periods anticipated by Poincaré). Probability turned out to be another
such substance, and Wiener’s treatment of Brownian motion as a measure in
a space of continuous paths paved the way both for Kolmogorov’s axiomatic

2For a more positive view, see [Glimm and Jaffe 1981], a remarkable book which in-
fluenced the structure of this essay. On page 313 however the authors say: “... it is a
theoretical puzzle whether a theory of electrodynamics exists in the sense of a mathematical
framework ...”
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