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WELL-POSEDNESS FOR THE PRANDTL SYSTEM
WITHOUT ANALYTICITY OR MONOTONICITY

 D GÉRARD-VARET  N MASMOUDI

A. – It has been thought for a while that the Prandtl system is only well-posed under
the Oleinik monotonicity assumption or under an analyticity assumption. We show that the Prandtl
system is actually locally well-posed for data that belong to the Gevrey class 7/4 in the horizontal
variable x. Our result improves the classical local well-posedness result for data that are analytic in x

(that is Gevrey class 1). The proof uses new estimates, based on non-quadratic energy functionals.

R. – Il a longtemps été supposé que l’équation de Prandtl n’est bien posée que sous
l’hypothèse de monotonie d’Oleinik, ou pour des données analytiques. Nous montrons qu’elle est en
fait localement bien posée pour des données appartenant à la classe Gevrey 7/4 en la variable x. Nous
améliorons ainsi le résultat classique d’existence locale de solutions analytiques en la variable x (classe
Gevrey 1). La preuve repose sur de nouvelles estimations, faisant appel à des fonctionnelles d’énergie
non-quadratiques.

1. Introduction

Our concern in this paper is the well-posedness of the Prandtl system. This system, by now
classical, was introduced by Prandtl in 1904 to describe an incompressible flow near a wall, at
high Reynolds number. Formally, it is derived from the Navier-Stokes equation with no-slip
condition:

(1.1)


∂tu + u · ∇u +∇p− ε∆u = 0, x ∈ Ω,

∇ · u = 0, x ∈ Ω,

u|∂Ω = 0,

that we consider for simplicity in Ω := T× R+. We recall that u(t,x) = (u, v)(t, x, y) is the
velocity field of the fluid, and p its pressure field. The parameter 0 < ε� 1 is the inverse of
the Reynolds number. In the limit case ε = 0, one is left formally with the Euler equation,
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for which only the impermeability condition u ·n|∂Ω = 0 can be prescribed. Mathematically,
this singular change of boundary condition generates strong gradients of the Navier-Stokes
solution uε, as ε → 0. These gradients correspond to a concentration of the fluid flow
in a thin zone near the wall ∂Ω: the so-called boundary layer. The understanding of the
boundary layer is a great mathematical challenge, that makes the convergence of Navier-
Stokes solutions to Euler ones a big open problem, even for smooth data.

To tackle this problem, Prandtl proposed in 1904 an asymptotic model for the flow, based
on two different asymptotic expansions of uε, resp. outside and inside the boundary layer:

– outside the boundary layer, no concentration should occur: one should have

uε(t,x) ∼ u0(t,x), the solution of the Euler equation.

– inside the boundary layer, uε should exhibit strong gradients, transversally to the
boundary: more precisely, the asymptotics suggested by Prandtl is

uε(t, x, y) ∼ u(t, x, y/
√
ε), vε(t, x, y) ∼

√
εv(t, x, y/

√
ε)

where u = u(t, x, Y ) and v = v(t, x, Y ) are boundary layer profiles, depending on
a rescaled variable Y = y/

√
ε, Y > 0. Note that the scale

√
ε is coherent with the

parabolic part of (1.1a).

If we plug the expansion above in (1.1) and keep the leading order terms, we derive the
famous Prandtl system (denoting Y instead of y):

(1.2)



∂tu+ u∂xu+ v∂yu+ ∂xp− ∂2
yu = 0,

∂yp = 0,

∂xu+ ∂yv = 0,

u|y=0 = v|y=0 = 0, lim
y→+∞

u = U, lim
y→+∞

p = P,

where U(t, x) := u0(t, x, 0) and P (t, x) := p0(t, x, 0) are the Euler tangential velocity and
pressure at the boundary. We refer to [18] for the formal derivation of the Prandtl system.
The condition at y = +∞ in (1.2d) is a matching condition near the boundary between the
boundary layer flow and the Euler flow (matched asymptotics). Note that, combining (1.2b)
with the boundary condition on p, we get p ≡ P . Hence, the pressure is not an unknown in
the Prandtl model: v is obtained in terms of u by integrating the divergence-free condition
(1.2c), so that (1.2a) is a scalar evolution equation on u, which is a priori much simpler than
the original Navier-Stokes equation.

However, this appealing formal asymptotics raises strong mathematical issues: well-
posedness of the limit Prandtl system on one hand, justification of the Prandtl asymptotics
of uε on the other hand. The difficulty comes from numerous underlying fluid instabilities,
that can invalidate the Prandtl model: we refer to [11] for a basic presentation of these
aspects.

The aim of the present paper is to investigate this stability problem, from a mathematical
viewpoint. We shall focus on the limit Prandtl system, namely on its well-posedness. For
simplicity, we shall restrict to homogeneous data: U = P = 0. Extension of our results
to the case of constant U would not raise any problem. Extension to some U = U(t, x)
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would require some modifications, see [15] for a similar problem. Hence, we consider here
the following system:

(1.3)


∂tu+ u∂xu+ v∂yu− ∂2

yu = 0,

∂xu+ ∂yv = 0,

u|y=0 = v|y=0 = 0, lim
y=+∞

u = 0

with initial condition u|t=0 = u0.

Before stating our theorem, let us review briefly known results on the existence theory for
(1.2). So far, well-posedness has been established in two settings:

– The first results go back to Oleinik [22], who obtained some local well-posedness for
initial data that are monotonic with respect to y:U > 0, ∂yu > 0. For such data, one can
use the Crocco transform: in short, using u as an independent variable instead of y and
w := ∂yu as an unknown instead of u, one is left with a nonlinear parabolic equation
on w, for which maximum principles are available: see [22] for details. Note that under
the extra condition ∂xP ≤ 0 (favorable pressure gradient), one can go from local to
global well-posedness, cf. [26]. From the point of view of physics, this monotonicity
assumption is known to be stabilizing: it avoids the boundary layer separation, see [11].

– Without monotonicity, well-posedness has been established only locally in time, for
initial data that are analytic with respect to x. We refer to [25, 17], and to the recent
extensions [15, 14]. The assumption of analyticity can be understood as follows. By the
divergence-free condition, one obtains v = −

∫ y
0
∂xu. Thus, the term v ∂yu in (1.3a)

(seen as a functional of u) is first order in x. Moreover, it is not hyperbolic. For
instance, let us consider the linearization of the Prandtl equation around a shear flow
u = (Us(y), 0):

(1.4) ∂tu+ Us∂xu+ U ′sv − ∂2
yu = 0, ∂xu+ ∂yv = 0.

If we freeze the coefficients at some y0 and compute the dispersion relation, we obtain
the growth rate

σ(kx, ky) = U ′s(y0)
kx
ky
− k2

y

that increases linearly with the wavenumber kx. This kind of growth rate would prevent
any well-posedness result outside the analytic setting.

However, as discussed in [12], this dispersion relation, formally obtained by freezing the
coefficients, is misleading: for instance, the inviscid version of Prandtl (that is removing the
∂2
yu term) is locally well-posed in Ck, through the method of characteristics.

In the case of the full Prandtl system (1.3), the situation is even more complex, and was
addressed recently by the first author and Emmanuel Dormy in article [7] (see also [8]). This
article contains a careful study of the linearized system (1.4), in the case of a non-monotonic
base flow Us:

∃a, U ′s(a) = 0, U ′′s (a) 6= 0.
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