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DIFFERENTIAL FORMS IN POSITIVE CHARACTERISTIC
AVOIDING RESOLUTION OF SINGULARITIES

BY ANNETTE HUBER, STEFAN KEBEKUS & SHANE KELLY

ABsTrACT. — This paper studies several notions of sheaves of differential forms that
are better behaved on singular varieties than Kéahler differentials. Our main focus
lies on varieties that are defined over fields of positive characteristic. We identify two
promising notions: the sheafification with respect to the cdh-topology, and right Kan
extension from the subcategory of smooth varieties to the category of all varieties.
Our main results are that both are cdh-sheaves and agree with Kahler differentials on
smooth varieties. They agree on all varieties under weak resolution of singularities.

A number of examples highlight the difficulties that arise with torsion forms and
with alternative candiates.

Texte regu le 24 avril 2015, modifié le 3 juin 2016, accepté le 20 septembre 2016.
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1. Introduction

Sheaves of differential forms play a key role in many areas of algebraic and
arithmetic geometry, including birational geometry and singularity theory. On
singular schemes, however, their usefulness is limited by bad behavior such as
the presence of torsion sections. There are a number of competing modifications
of these sheaves, each generalizing one particular aspect. For a survey see the
introduction of [14].

In this article we consider two modifications, 27, and 3, to the presheaves
Q" of relative k-differentials on the category Sch(k) of separated finite type
k-schemes. By €7, we mean the sheafification of 2™ with respect to the cdh-
topology, cf. Definition 5.5, and by Q} . we mean the right Kan extension along
the inclusion Sm(k) — Sch(k) of the restriction of Q™ to the category Sm(k) of
smooth k-schemes, cf. Definition 5.2.

The following are three of our main results.

THEOREM 1.1. — Let k be a perfect field and n > 0.

1. (Theorem 5.11). If X is a smooth k-variety then Q™(X) = QU (X).
The same is true in the rh- or eh-topology.
2. (Observation 5.3, Proposition 5.12). Q. _ is a cdh-sheaf and the canon-
ical morphism
Qean = Qo
is a monomorphism.
3. (Proposition 5.13). Under weak resolution of singularities, this canonical

morphism is an isomorphism Q7 = QY . O

Item 1 was already observed by Geisser, assuming a strong form of resolu-
tion of singularities, [8]. We are able to give a proof which does not assume
any conjectures. The basic input into the proof is a fact about torsion forms
(Theorem 5.8): given a torsion form on an integral variety, there is a blow-up
such the pull-back of the form vanishes on the blow-up.

1.1. Comparison to known results in characteristic zero. — This paper aims to
extend the results of [14] to positive characteristic, avoiding to assume reso-
lution of singularities if possible. The following theorem summarizes the main
results known in characteristic zero.

THEOREM 1.2 ([14]). — Let k be a field of characteristic zero, X a separated
finite type k-scheme, and n > 0.

1. The restriction of )} to the small Zariski site of X is a torsion-free
coherent sheaf of Ox-modules.
2. If X is reduced we have

O™ (X)/{torsion elements} C Qp(X)
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and if X is Zariski-locally isomorphic to a normal crossings divisor in
a smooth variety then

O™ (X)/{torsion elements} = Qp (X).

3. If X is smooth, then Q"(X) = QP (X) and Hy,(X,Q") = H (X, Q)
for alli > 0. The same is true using the cdh-or eh-topology in place of
the h-topology.

4. We have QY. = QF, cf. Definition 5.2. O

Failure of Items 1 and 2 in positive characteristic. — In positive characteristic,
the first obstacle to this program one discovers is that Q) = 0 for n > 1,
cf. Lemma 6.1. This is due to the fact that the geometric Frobenius is an
h-cover, which induces the zero morphism on differentials. However, almost all
of the results of [14] are already valid in the coarser cdh-topology, and remain
valid in positive characteristic if one assumes that resolutions of singularities
exist. So let us use the cdh-topology in place of the h-topology. But even then,
Items 1 and 2 of Theorem 1.2 seem to be lost causes:

COROLLARY 1.3 (Corollary 5.16, Corollary 5.17, Example 3.6). — For perfect
fields of positive characteristic, there exist varieties X such that the restriction
of QL to the small Zariski site of X is not torsion-free.

Moreover, there exist morphisms Y — X and torsion elements of Qly, (X)
(resp. Q1 (X)) whose pull-back to QL4 (Y) (resp. QY(Y)) are not torsion. O

Note that functoriality of torsion forms over the complex numbers is true,
cf. Theorem 3.3, [18, Corollary 2.7].

Positive results. — On the positive side, Item 1 in Theorem 1.1 can be seen as
an analog of Item 3 in Theorem 1.2. In particular, we can give an unconditional
statement of the case i = 0. In a similar vein, Items 2 and 3 of Theorem 1.1
relate to Item 4 in Theorem 1.2.

1.2. Other results. — Many of the properties of Q} . hold for a more gen-
eral class of presheaves, namely unramified presheaves, introduced by Morel,
cf. Definition 4.5. The results mentioned above are based on the following very
general result which should be of independent interest.

PROPOSITION 1.4 (Proposition 4.18). — Let S be a Noetherian scheme. If
F is an unramified presheaf on Sch(S) then Fqy, is an th-sheaf. In particular,
if F is an unramified Nisnevich (resp. étale) sheaf on Sch(S) then Fqay: is a
cdh-sheaf (resp. eh-sheaf). a

In our effort to avoid assuming resolution of singularities, we investigated the
possibility of a topology sitting between the cdh-and h-topologies which might
allow the theorems of de Jong or Gabber on alterations to be used in place
of resolution of singularities. An example of the successful application of such
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