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STRICHARTZ ESTIMATES FOR SCHRODINGER
EQUATIONS WITH VARIABLE COEFFICIENTS

Luc Robbiano, Claude Zuily

Abstract. — We prove the (local in time) Strichartz estimates (for the full range of
parameters given by the scaling unless the end point) for asymptotically flat and non
trapping perturbations of the flat Laplacian in R™, n > 2. The main point of the
proof, namely the dispersion estimate, is obtained in constructing a parametrix. The
main tool for this construction is the use of the FBI transform.

Résumé (Inégalités de Strichartz pour I’équation de Schrodinger a coefficients va-
riables)

On démontre les inégalités de Strichartz (locales en temps) pour l'ensemble des
indices donnés par l'invariance d’échelle (sauf le point final) pour des perturbations
asymptotiquement plates et non captantes du laplacien usuel de R™, n > 2. Le point
principal de la preuve, & savoir I’estimation de dispersion, est obtenu en construisant
une paramétrixe. L’outil principal de cette construction est la théorie de la transfor-
mation de FBI construite par Sjostrand.
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CHAPTER 1

INTRODUCTION AND STATEMENT OF THE RESULT

The purpose of this work is to provide a proof of the full (local in time) Strichartz
estimates for the Schrédinger operator related to a non trapping asymptotically flat
perturbation of the usual Laplacian in R™.

Let o be in ]0,1[. We introduce a space of symbols which decay like (z)~1-7°
where (z) = (1 4 |z|?)*/2. More precisely we set

(1.0.1)
o) n n e CO( n
BUO:{GEC (R )ZVQEN ,HCa>OZ |8 a(m)|<W,VxER }
Let P be a second order differential operator,
" . " 10
(1.02) P= Y D;j(¢™(z) Dx) + > (D;bj(x) +bj(x) D) + V(z), D; = G0z,

Jk=1 j=1
with principal symbol p(z, ) = E?,k:l g% (2) € & (Here giF = gM).
We shall make the following assumptions.
(i)  The coefficients g7%, b;, V are real valued, 1 < j < k < n.
(1.0.3) (i)  There exists og > 0 such that ¢g/* — ik € Boy, bj € By,
Here §;1, is the Kronecker symbol.
(iii) V € L*=(R"™).
(1.0.4)  There exists v > 0 such that for every (z,¢) in R™ x R”, p(z, &) > v |¢[%

Then P has a self-adjoint extension with domain H?(R").
Now we associate to the symbol p the bicharacteristic flow given by the following
equations for j =1,...,n,
. op
xj(t) = % ((E(t), f(t))a LEJ(O) =Zj,
J
. ap
fj(t) = T oz, (z(1), £(1)), 5](0) =¢-
Ty
We shall denote by (z(t, z,£),£(t, x,£)) the solution, whenever it exists, of the system
(1.0.5). In fact it is an easy consequence of (1.0.3) and (1.0.4) that this flow exists for

(1.0.5)
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all £ in R. Indeed by (1.0.4) we have
v[EM)? < p(x(t), £(1t)) = pla, ),
and it follows from (1.0.4) that
n
250 <2 197 (@) & ()] < C )| < C v/ pla, ),

k=1
Our last assumption will be the following.
(1.0.6) For all (z,&) in T*R"™ \ {0} we have . ligl |x(t, z,&)| = +o0.

This means that the flow is not trapped backward nor forward. Now let us denote by
e~ P the solution of the following initial value problem

. Ou
(1.0.7) igy ~Pu=0
u(0, ) = uo.

Then the main result of this work is the following.

THEOREM 1.0.1. — Assume that the operator P satisfies the conditions (1.0.8),
(1.0.4), (1.0.6). Let T >0 and (q,7) be a couple of real numbers such that ¢ > 2 and
% = 5 — . Then there exists a positive constant C' such that

(1.0.8) He_itp’u,oHLq([,T,T]’Lr(]Rﬂ)) < C ||UOHL2(]R7L),

for all ug in L*(R™).

Such estimates are known in the literature under the name of Strichartz estimates.
They have been proved for the flat Laplacian by Strichartz [Str] when p = ¢ = %
and extended to the full range of (p,q) given by the scaling by Ginibre-Velo [GV]
and Yajima [Y]. The limit case ¢ = 2 (the end point) when n > 3 is due to Keel-Tao
[KT]. These estimates have been a key tool in the study of non linear equations. Very
recently several works appeared showing a new interest for such estimates in the case
of variable coefficients. Staffilani-Tataru [ST] proved Theorem 1.0.1 under conditions
(1.0.4) and (1.0.6) for compactly supported perturbations of the flat Laplacian. In [B]
Burq gave an alternative proof of this result using the work of Burg-Gérard-Tzvetkov
[BGT]. In the same work Burq announced without proof that if you accept to replace
in the right hand side of (1.0.8) the L? norm by an H¢ norm, for any small € > 0,
then you can weaken the decay hypotheses on the coefficients of P in the sense that
you may replace in the definition (1.0.1) of B,, the power |a| + 1+ o¢ by |a| + oo.
We have also to mention a recent work of Hassell-Tao-Wunsch [HTW1] who proved
in dimension n = 3 a weaker form of our result corresponding to the case where
q = 4, r = 3, under conditions similar to ours. Still more recently these three authors
announced the same result as ours under hypotheses on the coefficients similar to ours
(see [HTWZ2]).
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It is also worthwhile to mention the work of Burq-Gérard-Tzvetkov who investigate
the Strichartz estimates on compact Riemannian manifolds. In that case they show
that such estimates hold with the L? norm replaced by the H'/¢ norm. In the same
paper these authors show that the same result holds on R™ when the coefficients of
their Laplacian (and its derivatives) are merely bounded. Let us note also that these
estimates concern also the wave equation and many works have been devoted to this
case. However we would like to emphasize that, due to the finite speed of propagation,
the extension to the variable coefficients case appear to be much less technical (see
[SS]).

Let us now give some ideas on the proof. It is by now well known that a proof
of the Strichartz estimates can be done using a dispersion result, duality arguments
and the Hardy-Littlewood-Sobolev lemma. This has been formulated as an abstract
result in the paper [KT] as follows. Assume that for every ¢t € R we have an operator
U (t) which maps L?(R") to L?(R") and satisfies,

1) [1U®) fllee@ny < C || fllL2@ny, Yt € R, C independent of ¢,
(ii) 1U(s)U )" gllLoeny < Clt =572 lgllLrqn), t# s,

then the Strichartz estimates (1.0.5) hold for U(t). It is not difficult to see that the
serious estimate to be proved is (ii). In the case when U (t) = e*2¢ (the flat Laplacian)
this estimate is obtained by the explicit formula giving the solution in term of the
data ug. In the variable coefficients case such a formula is of course out of hope and
the better we can have is a parametrix. However due to strong technical difficulties
(which we try to explain below) which seem to be serious we are not able to write
a parametrix for e~“F so we have to explain what we do instead. First of all let
¢o € C3°(R™) be such that pg(z) =1 if |z| < 2 and supp o C [—1,1]. With a large
R > 0 we write
e P ug(z) = goo(%) e P ug(x) + (1 - 900(}%)) e P uo(x) = v+ w.

It is not difficult to see that the Strichartz estimates for v will be ensured by the result
of Staffilani-Tataru [ST] while the same estimate for w leads to consider an operator
which is a small perturbation of the Laplacian (see Chapter 2).

Now it is not a surprise that microlocal analysis is strongly needed in our proof.
So let & € R™, |[€y| = 1 be a fixed direction. Let xg € C*(R), xo(s) = 11if s < %,
Xo(s) =0if s > 1,0 < xo < 1 and let us set x4(x) = Xo(—x~§0/61), x—(x) =
xo(z - &/61), 01 > 0. We set Uy(t) = x4e ™, U_(t) = x_e P, Now since
X+(z) + x—(z) > 1 for all  in R™ then Strichartz estimates separately for Uy (t) and
U_(t) will give the result. It is therefore sufficient to prove the estimate (ii) above
for Uy (s) (Uy(t)* = x4 €’ . (and for U_(s)(U_(t))*). In our proof we shall
construct a parametrix for these operators.
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Our construction relies heavily on the theory of FBI transform (see Sjostrand [Sj]
and Melin-Sjostrand [MS]) viewed as a Fourier integral operator with complex phase.
One of the reason of our choice is that in our former works on the analytic smoothing
effect [RZ2] we have already done similar constructions (but only near the outgoing
points: see below). Let us explain very roughly the main ideas. The standard FBI
transform is given by
(1.0.9) Tu(o, A) = cp )\3"/4/ e y—az)ag—3ly—as "+ 3ol v(y) dy

n

where o = (az, a¢) € R” x R™ and ¢, is a positive constant.
Let us note that the phase can be written iApg where ¢o(y, @) = £ (y— (o +iae))?
Then T maps L?(R") into the space L?(R?", e Mael? da). The adjoint T of T is given

by a similar formula (see (6.1.2)) and we have,
(1.0.10) T*T is the identity operator on L*(R™).

We embed the transform 7" into a continuous family of FBI transform

Tov(a, A :/\3"/4/ 0w a0y o) v(y) dy with
(L.0.11) pv(a, A) (0, y,a)v(y) dy

0(0,y,a) = %(y — (ag + iag))Q, a(0,y,a) = c,.

Let us set U(0,t,a,\) = Tp[K+(t) uo)(cx,\), where K4 (t) = x+ e~ ®F y+. Then it is
shown that if ¢ satisfies the eikonal equation,
d¢ d¢
1.0.12 {— ( 7—” y Ly ) = U,
(1.0.12) ag—l—pxax 0,z,a) =0
and if the symbol a satisfies appropriate transport equations then U is a solution of
the following equation

(%—[Z—F)\%—Z)(G,t,a,/\) ~0.

It follows that essentially we have, U(0,t,a, A) = V(0 — A\t,a, A). In particular this
shows that U(0,t, a, \) = U(=At, 0, a, \). Written in terms of the transformations Ty
this reads
T[K+(t)uol(e, \) = T-xe[xZ o) (e, A).

Applying T* to both members and using (1.0.10) we obtain

K+ (t) uo(x) = T*{T-xe[xZ uol (-, M) }(t, 2).
Thus we have expressed the solution in terms of the data through a Fourier integral
operator with complex phase.

This short discussion shows that as usual the main point of the proof is to solve
the eikonal and transport equations. Let us point out the main difficulties which
occur in solving these equations. They are of three types: the bad behavior of the
flow from incoming points and for large time, the global (in 6,z) character of all
our constructions and the mixing of C*° coefficients and complex variables (coming
from the non real character of our phase). Let us discuss each of them. First of all
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