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STABILITY AND INSTABILITY IN

NINETEENTH-CENTURY FLUID MECHANICS

by Olivier DARRIGOL (*)

There is scarcely any question in dynamics
more important for Natural Philosophy than
the stability of motion.

W. Thomson and P.G.Tait [1867, § 346]

ABSTRACT. — The stability or instability of a few basic flows was conjectured,
debated, and sometimes proved in the nineteenth century. Motivations varied from
turbulence observed in real flows to permanence expected in hydrodynamic theories
of matter. Contemporary mathematics often failed to provide rigorous answers, and
personal intuitions sometimes gave wrong results. Yet some of the basic ideas and
methods of the modern theory of hydrodynamic instability occurred to the elite of
British and German mathematical physics, including Stokes, Kelvin, Helmholtz, and
Rayleigh. This usually happened by reflecting on concrete specific problems, with a
striking variety of investigative styles.

RÉSUMÉ. — STABILITÉ ET INSTABILITÉ EN MÉCANIQUE DES FLUIDES AU

XIX
e

SIÈCLE. — Au dix-neuvième siècle, la stabilité ou l’instabilité de quelques
écoulements simples fut l’objet de conjectures, de débats et parfois de preuves mathé-
matiques. Les motivations pour ce type de recherche variaient considérablement, de
la turbulence observée d’écoulements réels à la permanence attendue dans les théories

hydrodynamiques de la matière. Les mathématiques contemporaines étaient rarement
en mesure de fournir des réponses rigoureuses et les intuitions des uns et des autres
conduisirent parfois à des résultats faux. Néanmoins, quelques grands de la physique
mathématique britannique et allemande — Stokes, Kelvin, Helmholtz et Rayleigh —
développèrent certaines idées et méthodes de base de la théorie moderne des instabilités
hydrodynamiques. Ils y parvinrent en réfléchissant à des problèmes spécifiques concrets,
avec une étonnante diversité de styles.
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Jussieu, 75251 Paris Cedex 05. Courrier électronique: darrigol@paris7.jussieu.fr

Keywords: Hydrodynamic instability, Stokes, Helmholtz, Kelvin, Rayleigh, Reynolds.

AMS classification: 76E
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Instability of motion haunted celestial mechanics from the beginning

of Newtonian theories. In the nineteenth century, it became a central

question of the developing fluid mechanics, for two reasons. Firstly,

the discrepancy between actual fluid behavior and known solutions of

the hydrodynamic equations suggested the instability of these solutions.

Secondly, the British endeavor to reduce all physics to the motion of a

perfect liquid presupposed the stability of the forms of motion used to

describe matter and ether. Instability in the former case, stability in the

latter needed to be proved.

In nineteenth-century parlance, kinetic instability broadly meant depar-

ture from an expected regularity of motion. In hydrodynamics alone, it

included unsteadiness, non-uniqueness of motion, sensibility to infinitesi-

mal local perturbation, sensibility to infinitesimal harmonic perturbations,

sensibility to finite perturbations, sensibility to infinitely small viscosity.

This spectrum of meanings is much wider than a modern treatise on hydro-

dynamic stability would tolerate. A narrower selection would not befit a

historical study, for it would artificially separate issues that nineteenth-

century writers conceived as a whole.

The first section of this paper is devoted to George Stokes’ pioneering

emphasis on hydrodynamic instability as the probable cause of the fail-

ure of Eulerian flows to reproduce essential characteristics of the observed

motions of slightly viscous fluids (air and water). Stokes believed instabil-

ity to occur whenever the lines of flow diverged too strongly, as happens

in a suddenly enlarged conduit or past a solid obtacle. The second section

recounts how Hermann Helmholtz (1868) and William Thomson (1871)

introduced another type of instability, now called the Kelvin-Helmholtz

instability, following which the discontinuity surface between two adjacent

parallel flows of different velocities loses its flatness under infinitesimal

perturbation. Helmholtz thus explained the instability of a jet of a fluid

through a stagnant mass of the same fluid, for instance the convolutions

of the smoke from a chimney. Thomson’s motivation was the theory of

wave formation on a water surface under wind.

In the Helmholtz-Kelvin case, instability was derived from the hydro-

dynamic equations. In Stokes’ case, it only was a conjecture. Yet the

purpose was the same: to save the phenomena. In contrast, Thomson’s

vortex theory of matter required stability for the motions he imagined in
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the primitive perfect liquid of the world. This theory, which began in 1867,

is discussed in the third section of this paper. Thomson could only prove

the stability of motions simpler than those he needed. For many years, he

contented himself with an analogy with the observed stability of smoke

rings. At last, in the late 1880s, he became convinced that vortex rings

were unstable.

Owing to their different interests, Stokes and Thomson had opposite

biases about hydrodynamic (in)stability. This is illustrated in the fourth

section of this paper, through an account of their long, witty exchange on

the possibility of discontinuity surfaces (infinitely thin layers of infinite

shear) in a perfect liquid. From his first paper (1842) to his last letter

to Thomson (1901), Stokes argued that the formation of surfaces of

discontinuity provided a basic mechanism of instability for the flow of

a perfect liquid past a solid obstacle. Thomson repeatedly countered that

such a process would violate fundamental hydrodynamic theorems and

that viscosity played an essential role in Stokes’ instabilities. The two

protagonists never came to an agreement, even though they shared many

cultural values within and without physics.

The fifth section of this paper deals with the (in)stability of parallel

flow. The most definite nineteenth-century result on this topic was Lord

Rayleigh’s criterion of 1880 for the stability of two-dimensional parallel

motion in a perfect liquid. The context was John Tyndall’s amusing

experiments on the sound-triggered instability of smoke jets. However, the

strongest motivation for theoretical inquiries in parallel-flow stability was

Osborne Reynolds’ precise experimental account (1883) of the transition

between laminar and turbulent flow in the case of circular pipes. In 1887

Cambridge authorities, including Stokes and Rayleigh, made the theory

of this transition the topic of the Adams prize for 1889. This prompted

Thomson to publish proofs of instability for two cases of parallel, two-

dimensional viscous flow. Rayleigh soon challenged these proofs. William

Orr proved their incompleteness in 1907.

In sum, the nineteenth-century concern with hydrodynamic stability

led to well-defined, clearly stated questions on the stability of the solutions

of the fundamental hydrodynamic equations (Euler and Navier-Stokes).

Most answers to these questions were tentative, controversial, or plainly

wrong. The subject that Rayleigh judged “second to none in scientific
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as well as practical interest” [RSP 2, p. 344] remained utterly confused.

Besides the Helmholtz-Kelvin instability and Rayleigh’s inflection theo-

rem, the theoretical yield was rather modest: there was Stokes’ vague,

unproved instability of divergent flows, Thomson’s unproved instability

of vortex rings, the hanging question of the formation of discontinuity

surfaces, and two illusory proofs of stability for simple cases of parallel

viscous flow.

The situation could be compared to number theory, which is reputed for

the contrast between the simple statements of some of its problems and the

enormous difficulty of their solution. The parallel becomes even stronger

if we note that some nineteenth-century questions on hydrodynamic

stability, for example the stability of viscous flow in circular pipes or the

stability of viscous flow past obstacles are yet to be answered, and that

the few available answers to such questions were obtained at the price of

considerable mathematical efforts. This long persistence of basic questions

of fluid mechanics is the more striking because in physics questions tend

to change faster than their answers.

In number theory, failed demonstrations of famous conjectures some-

times brought forth novel styles of reasoning, interesting side-problems,

and even new branches of mathematics. Something similar happened in

the history of hydrodynamic stability, though to a less spectacular extent.

Stokes’ and Helmholtz’s surfaces of discontinuity were used to solve the

old problem of the vena contracta and to determine the shape of liquid

jets [Kirchhoff 1869], [Rayleigh 1876]. They also permitted Rayleigh’s solu-

tion (1876) of d’Alembert’s paradox, and inspired some aspects of Ludwig

Prandtl’s boundary-layer theory (1904). Rayleigh’s formulation of the sta-

bility problem in terms of the real or imaginary character of the frequency

of characteristic perturbation modes is the origin of the modern method

of normal modes [Drazin and Reid 1981, pp. 10–11].

As a last important example of fruitful groping, Stokes, Thomson,

and Rayleigh all emphasized that the zero-viscosity limit of viscous-fluid

behavior could be singular. Stokes regarded this singularity as a symptom

of instability of inviscid, divergent flows; Thomson as an indication that

the formation of unstable states of parallel motion required finite viscosity;

Rayleigh as a clue to why some states of parallel motion were stable

for zero viscosity and unstable for small, finite viscosity. Rayleigh [1892,
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p. 577] even anticipated the modern concept of boundary-layer instability:

“But the impression upon my mind is that the motions calculated above

for an absolutely inviscid liquid may be found inapplicable to a viscid

liquid of vanishing viscosity, and that a more complete treatment might

even yet indicate instability, perhaps of a local character, in the immediate

neighbourhood of the walls, when the viscosity is very small.”

In the absence of mathematical proof, the value of such utterances may

be questioned. Rayleigh himself [1892, p. 576] warned that “speculations

on such a subject in advance of definite arguments are not worth much.”

Many years later, Garrett Birkhoff [1950] reflected that speculations were

especially fragile on systems like fluids that have infinitely many degrees of

freedom. Yet by imagining odd, singular behaviors, the pioneers of hydro-

dynamics instability avoided the temptation to discard the foundation of

the field, the Navier-Stokes equation; and they sometimes indicated fertile

directions of research.

In sum, early struggles with hydrodynamic stability are apt to inform

the later history of this topic. They also reveal fine stylistic differences

among some of the leading physicists of the nineteenth century. In the

lack of rigorous mathematical reasoning, these physicists had to rely on

subtle, personal combinations of intuition, past experience or experiment,

and improvised mathematics. They ascribed different roles to idealizations

such as inviscidity, rigid walls, or infinitely sharp edges. For instance,

Helmholtz and Stokes believed that the perfect liquid provided a correct

intuition of low-viscosity liquid behavior, if only discontinuity surfaces

were admitted. Thomson denied that, and reserved the perfect liquid

(without discontinuity) for his sub-dynamics of the universe. As the means

lacked to exclude rigorously one of these two views, the protagonists

preserved their colorful identities.

In the following, vector notation is used anachronistically for the

sake of concision. Following Thomson’s convention, by perfect liquid is

meant an incompressible, inviscid fluid. In order that the present paper

may be read independently, some sections of earlier papers of mine (on

Helmholtz’s surfaces of discontinuity and on Reynolds’ study of pipe flow)

are reproduced in abbreviated form.


