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SOLVING AN INDETERMINATE THIRD DEGREE EQUATION

IN RATIONAL NUMBERS. SYLVESTER AND LUCAS

Tatiana LAVRINENKO (*)

ABSTRACT. — This article concerns the problem of solving Diophantine equations
in rational numbers. It traces the way in which the 19th century broke from the
centuries-old tradition of the purely algebraic treatment of this problem. Special
attention is paid to Sylvester’s work “On Certain Ternary Cubic-Form Equations”
(1879–1880), in which the algebraico-geometrical approach was applied to the study
of an indeterminate equation of third degree.

RÉSUMÉ. — RÉSOLUTION EN NOMBRES RATIONNELS DES ÉQUATIONS

INDÉTERMINÉES DU 3e
DEGRÉ: SYLVESTER ET LUCAS. — L’article est consacré

au problème de la résolution des équations diophantiennes en nombres rationnels. On
examine comment s’est passée, au XIXe siècle, la transition d’un traitement purement
algébrique caractéristique des travaux de Diophante à Cauchy, vers des recherches
en termes de géométrie algébrique. L’article analyse notamment l’écrit de Sylvester
“On Certain Ternary Cubic-Form Equations” (1879–1880), où l’approche de géométrie
algébrique était utilisée pour étudier les équations indéterminées du 3e degré.

1. INTRODUCTION

As is well-known, Poincaré laid the foundation for the arithmetic of

algebraic curves in his study of the structure of the rational points set

of such curves, namely his paper “Sur les propriétés arithmétiques des

courbes algébriques” [Poincaré 1901]. His work can be interpreted as
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the study of the set of rational solutions of either an indeterminate,

or Diophantine, equation

(1) f(x, y) = 0

where f(x, y) is a polynomial in two variables x, y with rational coeffi-

cients, or an indeterminate equation

(2) F (u, v, w) = 0

where F (u, v, w) is a homogeneous polynomial in the variables u, v, w with

rational coefficients. Indeed, we can interpret (1) as an equation of some

curve in Cartesian coordinates x, y and (2) as an equation of a plane

curve in homogeneous coordinates u, v, w. Without loss of generality, the

coefficients in (2) can be considered integer, and because of homogeneity,

the problem of solving equation (2) over the rational numbers is equivalent

to the problem of its solution over the integers.

As a basis for classifying indeterminate equations, Poincaré took the

concept of birational equivalence (over the field Q of rational numbers).1

His investigation showed that the most important properties of the set

of rational solutions of equation (2) are determined by the corresponding

curve’s genus, which is a birational invariant, and not by the degree of

this polynomial. In [Poincaré 1901], the main results dealing with the set

of rational points of curves of genus 0 were proved (they had also been

obtained by Gilbert and Hurwitz 10 years before), and the principles for

the study of the arithmetic of curves of genus 1 (that is elliptic curves) were

founded. Poincaré established that an elliptic curve, which has a rational

point, is birationally equivalent to some curve of third degree. Thus, in this

case, the problem reduces to the investigation of curves of the third degree.

For them, Poincaré considers two procedures: a) determination of a new

rational point of the curve from a known rational point P as the point

of intersection of the curve with the tangent line to the curve at P (the

1 Recall that in Diophantine analysis two absolutely irreducible algebraic curves X
and Y, given by equations with coefficients from the field Q, are termed birationally
equivalent, or birationally isomorphic, if there exist Q-rational maps (i.e., maps given
by rational functions with coefficients from the field Q) from X to Y and from Y to X,
which are inverse to each other. Poincaré [1901] calls such maps “transformations
birationnelles à coefficients rationnels”.



SOLVING AN INDETERMINATE THIRD DEGREE EQUATION 69

tangent method); b) determination of a new rational point of the curve

from two known rational points M and N as the third point of the curve’s

intersection with the straight line drawn through M and N (the secant

method). To describe the set of rational points, which can be obtained

by means of these procedures, Poincaré uses a parametric representation

of a cubic curve by means of elliptic functions. He shows that the rational

point with an elliptic argument α generates on a cubic curve a set of

rational points with elliptic arguments (3k+ 1)α, k ∈ Z, by means of the

tangent and secant methods. Proceeding from several rational points of a

cubic with elliptic arguments α, α1, . . . , αq, one can obtain rational points

with elliptic arguments

(3) α+ 3nα+ p1(α1 − α) + p2(α2 − α) + · · ·+ pq(αq − α),

where n, pi ∈ Z, by means of the tangent and secant methods.2 Poincaré

writes: “On peut se proposer de choisir les arguments α, α1, . . . , αq, de

telle façon que la formule (3) comprenne tous les points rationnels de

la cubique” [Poincaré 1901, p. 492f ]. He calls the least number q + 1 of

rational points of a cubic possessing such a quality, the rank of a cubic.

Poincaré poses the question: “Quelles valeurs peut-on attribuer au nombre

entier que nous avons appelé le rang d’une cubique rationnelle?” [Poincaré

1901, p. 492f ]. In the definition of the rank and in the question as posed,

mathematicians recognized a tacit supposition about the finiteness of the

rank. This supposition, subsequently called Poincaré’s hypothesis, was

proved by Mordell in 1922. After Poincaré’s investigation, there remained

one more step to take in order to get a clear description of the structure

of the set of rational points on a cubic curve of genus 1: to introduce the

operation of adding rational points by means of the tangent and secant

methods in such a way that the addition of points corresponded to the

addition of their elliptic arguments. This step, according to Schappacher

[1991, p. 179], was taken by the middle of the 1920s. It is not difficult to

establish that the set of rational points of a cubic forms an abelian group

with respect to the introduced operation. Poincaré’s hypothesis, proved

by Mordell, implies that this group is finitely generated.

2 The expression (3) can be presented in a more symmetrical form, as mα +m1α1 +
· · · + mqαq , where m,m1, . . . ,mq ∈ Z and m + m1 + · · · + mq ≡ 1 (mod 3). And if
we add a point with elliptic argument 0 to the initial system of rational points with
elliptic arguments α, α1, . . . , αq , then m,m1, . . . ,mq can assume any integer values.
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Poincaré’s work can be considered as the beginning of a new stage

in the investigation of indeterminate equations characterized by a new

algebraico-geometrical view of the problem and by the use of concepts

and results from the theory of algebraic curves. The earlier period in

the study of indeterminate equations (at least up to the 1870s) was

based entirely upon an algebraic approach to their solution. It had long

seemed that the algebraic methods of Diophantus, Fermat, and Euler had

nothing in common with the modern methods of finding rational points

on algebraic curves and that these algebraic methods had completely

exhausted themselves in the solution of separate indeterminate equations

and of a small number of types already in Euler’s works. However

from the 1960s on, a new interpretative model was built mostly by

Russian historians, who brought a new reading to the fore. In this new

view suggested and substantiated in [Hofmann 1961], [Bashmakova 1968

and 1981], [Kauchikas 1979], [Weil 1983], [Lavrinenko 1983], [Rashed 1984]

for example, the ancient algebraic methods of solving indeterminate

equations may be interpreted geometrically, and even, according to some

investigations, in terms of the modern algebraico-geometrical approach.

The presence, in the works of Fermat and Euler, of general methods

still used today in the arithmetic of elliptic curves is likewise noted by

[Ellison 1978]. Indeed, using a purely algebraic approach to indeterminate

equations, methods were obtained of determining new rational solutions

from one or two known rational solutions of third degree equations of the

following kind

(4) y2 = f3(x) or y3 = f3(x),

where f3(x) is a polynomial of third degree with rational coefficients.

Simple geometrical interpretation of these methods gives just the tan-

gent and secant methods (see [Bashmakova 1981], [Lavrinenko 1988]; for

the geometrical interpretation of Fermat’s methods in the literature on

the history of mathematics as well as for a detailed bibliography, see

[Goldstein 1995]). Still, neither Euler’s works nor those of Fermat and

Diophantus contain any such geometrical interpretations. That is why the

question of historical interpretation is important here. Various positions

were expressed by different researchers, but this will not be our issue here.

We will leave this question out. The greatest achievements of the algebraic
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approach in the arithmetic of elliptic curves were, first of all, Lagrange’s

formulation of the method for finding a new rational solution from one

known rational solution of the general equation of third degree

(5) f3(x, y) ≡ a+bx+cy+dx2+exy+fy2+gx3 +hx2y+kxy2 +`y3 = 0

with rational coefficients [Lagrange 1777] and, secondly, methods stated

by Cauchy [1826] in his work “Sur la résolution de quelques équations

indéterminées en nombres entiers” for finding a new solution in integers

from one or two known solutions in integers of the general homogeneous

equation of third degree

(6) F (x, y, z) ≡ Ax3 +By3 + Cz3 +Dyz2 +Ezx2

+ Fxy2 +Gzy2 +Hxz2 + Iyx2 +Kxyz = 0

with integer coefficients. These methods also admit simple geometrical

interpretation and present nothing but the tangent and secant methods

for third degree equations of the most general form, the latter formulated,

however, not in terms of geometry but purely analytically. And, although

works appeared throughout the nineteenth century which considered

Diophantine equations purely algebraically, no further general results in

the arithmetic of elliptic curves were obtained in this way.

The question this paper wants to address is the following: How did the

transition take place from the traditional algebraic approach to solving

indeterminate third degree equations in rational numbers to the new

approach stated in Poincaré’s work? Did Poincaré have any predecessors?3

The present study, without being comprehensive, focusses on some 19th-

century investigations reflective of this transition. Special attention will

be paid to Sylvester’s work “On Certain Ternary Cubic-Form Equations”

[Sylvester 1879/1880].

Two steps were necessary to have the transition take place:

3 Note that Poincaré’s first predecessor in applying an analytical approach to Dio-
phantine equations was Jacobi. He pointed out the possibility of using theorems con-
cerning the addition of elliptic integrals for studying the set of rational solutions of
Diophantine equations of the type (4) with y2 = f3(x) in his work [Jacobi 1835] (see
[Schlesinger 1909], [Bashmakova 1981]). Apparently, this idea did not attract the atten-
tion of mathematicians in the 19th century. We don’t find any attempts to apply the
theory of elliptic integrals and functions to the study of Diophantine equations in the
works of that time (at least up to 1880).


