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RANDOM SURFACES

Scott Sheffield

Abstract. — We study the statistical physical properties of (discretized) “random
surfaces,” which are random functions from Z? (or large subsets of Z%) to E, where
E is Z or R. Their laws are determined by convex, nearest-neighbor, gradient Gibbs
potentials that are invariant under translation by a full-rank sublattice £ of Z%; they
include many discrete and continuous height function models (e.g., domino tilings,
square ice, the harmonic crystal, the Ginzburg-Landau V¢ interface model, the linear
solid-on-solid model) as special cases.

We prove a wvariational principle — characterizing gradient phases of a given slope
as minimizers of the specific free energy — and an empirical measure large deviations
principle (with a unique rate function minimizer) for random surfaces on mesh ap-
proximations of bounded domains. We also prove that the surface tension is strictly
convex and that if u is in the interior of the space of finite-surface-tension slopes, then
there exists a minimal energy gradient phase u,, of slope wu.

Using a new geometric technique called cluster swapping (a variant of the Swendsen-
Wang update for Fortuin-Kasteleyn clusters), we show that u., is unique if at least
one of the following holds: E = R, d € {1, 2}, there exists a rough gradient phase of
slope u, or u is irrational. When d = 2 and E = Z, we show that the slopes of all
smooth phases (a.k.a. crystal facets) lie in the dual lattice of L.

In the case E = Z and d = 2, our results resolve and greatly generalize a number of
conjectures of Cohn, Elkies, and Propp — one of which is that there is a unique ergodic
Gibbs measure on domino tilings for each non-extremal slope. We also prove several
theorems cited by Kenyon, Okounkov, and Sheffield in their recent exact solution of
the dimer model on general planar lattices. In the case £ = R, our results generalize
and extend many of the results in the literature on Ginzurg-Landau V¢-interface
models.
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Résumé (Surfaces aléatoires). — Nous étudions les propriétés a grande échelle de
“surfaces aléatoires” qui sont ici des applications aléatoires de Z? (ou de grandes
parties de Z?) a valeurs dans un ensemble E qui est égal & R ou Z. Leur loi est donnée
via un potentiel Gibbsien qui est une fonction convexe des gradients discrets (locaux)
de la fonction, et qui est supposé invariant par rapport aux translations d’un véritable
sous-réseau L de Z¢. Ceci inclut beaucoup de modéles dits de hauteurs (pavages par
dominos, glace carrée, le cristal harmonique, le modéle de Ginzburg-Landau V¢, le
modele SOS linéaire).

Nous établissons un principe variationnel qui caractérise les mesures de Gibbs
d’une pente donnée comme minimiseurs de ’énergie libre spécifique, et un principe
de grande déviations pour la mesure empirique pour les surfaces aléatoires sur des
approximations par un réseau de domaines bornés. Nous montrons également que la
tension de surface est strictement convexe et que lorsque la pente u définit une tension
de surface finie, alors il existe une unique mesure de Gibbs pu, de pente u ergodique
par rapport & L et d’énergie minimale.

En utilisant une nouvelle idée géométrique de changement de clusters (qui est
une variante de 'algorithme de Swendsen-Wang pour les modéles de percolation de
Fortuin et Kasteleyn), nous montrons que la mesure p,, est unique dés lors que 'une
des conditions suivantes est vérifiée : E = R, d = {1, 2}, il existe une mesure de Gibbs
“irréguliére” de pente u, ou u est irrationnel.

Lorsque d = 2 et E = 7Z, nous montrons que les pentes de toute mesure lisse
(les faces du cristal) sont dans le réseau dual a L. Lorsque d = 2 et £ = Z, nos
résultats résolvent des conjectures de Cohn, Elkies et Propp; nous montrons par
exemple qu’il existe une seule mesure de Gibbs ergodique sur les pavages par dominos
pour chaque pente non-extrémale. Nous établissons aussi des résultats utilisés par
Kenyon, Okounkov et Sheffield pour résoudre de maniére exacte le modéle de dimeéres
sur des réseaux plans généraux. Lorsque E = R, nos résultats généralisent nombre de
résultats sur les modéles d’interfaces V¢ de Ginzburg-Landau.
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CHAPTER 1

INTRODUCTION

The following is a fundamental problem of variational calculus: given a bounded
open subset D of R% and a free energy function o : D x R¢ x R¥*™ - R, find the
differentiable function f : D — R™ that (possibly subject to boundary conditions)
minimizes the free energy integral:

/ o(, f(z), V f(x)) dr.
D

Since the seventeenth century, these free-energy-minimizing functions have been
popular models for determining (among other things) the shapes assumed by solid
objects in the presence of outside forces: ropes suspended between poles, elastic sheets
stretched to boundary conditions, and twisted or otherwise strained three-dimensional
solids. They are also useful in modeling surfaces of water droplets and other phase
interfaces. Rigorous formulations and solutions to these problems rank among the
great achievements of classical analysis (including work by Fermat, Newton, Leibniz,
the Bernoullis, Euler, Lagrange, Legendre, Jacobi, Hamilton, Weierstrass, etc. [49])
and play important roles in physics and engineering.

All of these models assume that matter is continuous and distributes force in a
continuous way. One of the goals of statistical physics has become not merely to solve
variational problems but to understand and, in some sense, to justify them in light of
the fact that matter is comprised of individual, randomly behaving atoms. To this
end, one begins by postulating a simple form for the local particle interactions: one
approach — the one we will study in this work — is to represent the “atoms” of the
solid crystal by points in a subset A of Z%, each of which has a “spatial position” given
by a function ¢ : A — R™, and to specify the interaction between the particles by a
Gibbs potential ® that possesses certain natural symmetries. The next step is to show
that — at least in some “thermodynamic limit” — a random Gibbs configuration will
approximate a free-energy-minimizing function like the ones described above.

Another problem, which has no analog in the deterministic, non-atomic classical
theory, is the investigation of local statistics of a physical system. How likely are



2 CHAPTER 1. INTRODUCTION

particular microscopic configurations of atoms to occur as sub-configurations of a
larger system? How are these occurrences distributed? To what extent is matter
homogenous throughout small but non-microscopic regions? Our solutions to these
problems will involve large deviations principles, which we precisely define later on.

Finally, we want to investigate more directly the connections between the Gibbs po-
tential ® and the kinds of behavior that can occur in these small but non-microscopic
regions. This will require us to ask, given ®, what are the “gradient phases” (i.e.,
the ergodic gradient Gibbs measures with finite specific energy) p of a given slope?
Does the p-variance of the height difference of points n units apart remain bounded
independently of n or does it tend to infinity with n? When is the surface tension
function o (defined precisely in Chapter 4) strictly convex?

Before we state our results precisely and describe some of the previous work in
this area, we will need several definitions. While we attempt to make our exposition
relatively self-contained — and define the terms we use precisely — we will also draw
heavily from the results in some standard texts: Sobolev Spaces by Adams [1] and
recent extensions by Cianchi ([14], [15], [16]); Large Deviations Techniques and Ap-
plications by Dembo and Zeitouni [21]; Large Deviations by Deuschel and Stroock
[25]; and Gibbs Measures and Phase Transitions by Georgii [42]. We will carefully
state, if not prove, the outside theorems we use.

1.1. Random surfaces and gradient Gibbs measures

1.1.1. Gradient potentials. — The study of random functions ¢ from the lattice
74 to a measure space (E, €) is a central component of ergodic theory and statistical
physics. In many classical models from physics (e.g., the Ising model, the Potts model,
Shlosman’s plane rotor model), F is a space with a finite underlying measure A, € is
the Borel o-field of E, and ¢(z) has a physical interpretation as the spin (or some
other internal property) of a particle at location z in a crystal lattice. (See e.g.,
[42].) In the models of interest to us, (F, &) is a space with an infinite underlying
measure \ — either R™ with Lebesgue measure or Z™ with counting measure — where
& is the Borel o-algebra of F and ¢(z) usually has a physical interpretation as the
spatial position of a particle (or the vertical height of a phase interface) at location
z in a lattice. For example, if m = d = 3, ¢ could describe the spatial positions
of the components of an elastic crystal; if m = 1 and d = 2, ¢ could describe the
solid-on-solid or Ginzburg-Landau approximations of a phase interface [38].
Throughout the exposition, we denote by  the set of functions from Z? to E and
by F the Borel o-algebra of the product topology on Q. If A C Z¢, we denote by Fa
the smallest o-algebra with respect to which ¢(x) is measurable for all x € A. We
write Tao = Fza_p. We write A CC 7% if A is a finite subset of Z¢. A subset of Q
is called a cylinder set if it belongs to Fp for some A CC Z%. Let F be the smallest
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1.1. RANDOM SURFACES AND GRADIENT GIBBS MEASURES 3

o-algebra on € containing the cylinder sets. We write T for the intersection of Ty
over all finite subsets A of Z%; the sets in T are called tail-measurable sets.

We will also always assume that we are given a family ® of measurable potential
functions @5 : Q2 +— RU {oo} (one for each finite subset A of Z?); each ®, is Fo mea-
surable. We will further assume that ® is invariant under the group © of translations
of Z¢ by members of some rank-d lattice £ — i.e., if s € £, then &5 (¢s) = Pa(¢),
where ¢, is defined by ¢s(i) = ¢(i — s). (In many applications, we can take L = Z.)
We also assume that ® is invariant under a group 7 of measure-preserving transla-
tions of F — i.e., ®p(¢) = Pa(7¢), where 7¢ is simply defined by (7¢)(x) = 7(p(x)).
Potentials @ satisfying the above requirements are called © x T-invariant potentials
or L x T-invariant potentials. For all of our main results, we will assume that 7 is the
full group of translations of Z™ or R™; in this case, each ®5(¢) is a function of the
gradient of ¢, written V¢ and defined by

Vo(z) = (¢(x + e1) — ¢(2), d(z + e2) — ¢(2), ..., p(z + eq) — d(2)),

where e; are the standard basis vectors of Z%. In this setting, we will refer to £ x 7-
invariant potentials as L-periodic or L-invariant gradient potentials. We use the term
shift-invariant to mean L-invariant when £ = Z%. In some of our applications, we
also restrict our attention to mearest-neighbor potentials, i.e., those potentials ® for
which ®4 = 0 unless A is a single pair of adjacent vertices in Z¢. We say that
® has finite range if there exists an r such that ®4 = 0 whenever the diameter of
A is greater than r. For each finite subset A of Z¢ we also define a Hamiltonian:
HA(9) = X aunszo Pa(e), where the sum is taken over finite subsets A of VA
We define the interior Hamiltonian of A, written HR (), to be:

HY(6) = > ®a(d).
ACA
This is different from Ha because the former sum includes sets A that intersect A but
are not strictly contained in A. On the other hand, HR is F} measurable, which is
not true of Hy. (This HY is sometimes called the free boundary Hamiltonian for A.)

1.1.2. Gibbs Measures. — To define Gibbs measures and gradient Gibbs mea-
sures, we will need some additional notation. Let (X, X) and (Y, Y) be general measure
spaces. A function 7 : X X Y +— [0, 00] is called a probability kernel from (Y,Y) to
(X,X) if

1. m(-]y) is a probability measure on (X, X) for each fixed y € Y, and

2. w(AJ]-) is Y-measurable for each fixed A € X.

Since a probability kernel maps each point in Y to a probability measure on X,
we may interpret a probability kernel as giving the law for a random transition from
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