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5. T H E G E N U S OF T H E E N D O M O R P H I S M S OF A 

S U P E R S I N G U L A R E L L I P T I C C U R V E 

by 

Torsten Wedhorn 

Abstract. — We describe the genus of the quadratic space H o m ( E , E) of homomor-
phisms of two supersingular elliptic curves E and E' and study the map {E', E) i—» 
Hom(E'/, E) from the set of pairs of supersingular elliptic curves over Fp to the set 
of proper classes in this genus. We show that this map is surjective and determine 
its fibres. In the last section we use the Minkowski-Siegel formula to express the 
mean value of the representation of a ternary quadratic form in this genus by local 
representation densities. 

Résumé (Le genre des endomorphismes d'une courbe elliptique supersingulière) 
Nous décrivons le genre de l'espace quadratique Hom(E'/, E) des homomorphismes 

de deux courbes elliptiques supersingulières E et E' et nous étudions l'application 
E', E) i—>• Hom(jE'/, E) de l'ensemble des paires de courbes elliptiques supersingulières 

sur Fp vers l'ensemble des classes propres dans ce genre. Dans le dernier paragraphe, 
on utilise la formule de Minkowski-Siegel pour exprimer la moyenne de la repré-
sentation d'une forme quadratique ternaire dans ce genre en termes de densités de 
représentation locales. 

Introduction 

Let p > 0 be a prime and let D be the unique quaternion division algebra with 

center Q which is ramified precisely at p and at infinity. The reduced norm Nrd is 

a quadratic form on D. We will study lattices and maximal orders in D. Recall 

that two lattices A and A' are said to be in the same proper class if there exists a 

g e SO(L>, Nrd) such that g = '. 

We will relate the lattices and the maximal orders in D to supersingular elliptic 

curves. Many of these results, although formulated somewhat differently, can already 

be found in [Do] (see also [GZ]). 

2000 Mathematics Subject Classification. — 11E08, 14K07, 11E12. 
Key words and phrases. — Supersingular elliptic curve, quaternion algebra, genus, Minkowski-Siegel 
formula. 

© Astérisque 312, SMF 2007 



26 T. WEDHORN 

Fix a supersingular elliptic curve EQ over ¥p set O — End (Eh). Then O is a 
maximal order in the quadratic space O 0 z Q, where the quadratic form is given by 
the degree, and we can and will identify the rational quadratic spaces O 0 z Q with D. 

The first result is the following (proved in sections 2.9 and 2.15): 

Theorem. — Consider isomorphism classes of pairs (E, p) where E is a supersingular 
elliptic curve over ¥p and p: E —> E0 is a quasi-isogeny. 

(1) The map (E,p) i—> <pHom(Eo, E) induces a bijection of the set of isomorphism 
classes of supersingular elliptic curves over ¥p and the set of right ideal classes 
ofO. 

(2) The map (E, p) H-» pEnd(E)p~1 induces a surjection from the set of isomorphism 
classes of supersingular elliptic curves over ¥p to the set of conjugacy classes of 
maximal orders in D. Two supersingular elliptic curves E and E' are sent to 
the same conjugacy class if and only if there exists a a G Gal(Fp/Fp) such that 
E1 ^ E ^ . 

For all pairs (E',E) of supersingular elliptic curves it is possible to choose 
quasi-isogenies p: E —» EQ and p' : E' —» EQ with deg(<^) = deg(p'). Then 
pRom(Ef, E)^^1 is a lattice in D whose proper class is independent of the choice of 
p and p'. In this way we can consider HomfE', E) as a proper class of lattices in D. 

The second theorem describes these proper classes (see sections 3.1 and Proposi-
tion 3.2). 

Theorem. — Let A be a lattice in D. Then the proper class [A] of A is the proper 
class associated to Hom(E', E) if and only if A is in the same genus as O. 

It follows that the map ( (£ , p), (Er, p')) h-» (^Hom(JE/, E)^^1 induces a surjection 
(E,Ef) i—> [Hom(E', E)] from the set of pairs of isomorphism classes of supersingu-
lar elliptic curves onto the set of proper classes of lattices in D which are locally 
isomorphic to O. The next theorem describes the fibres of this map and number of 
automorphisms of the quadratic space Hom(£, E') (see Proposition 3.3 and Corol-
lary 3.5). 

Theorem 

(1) Two pairs (E,Er) and (F,F') are sent to the same proper class if and only if 

there exists a a G Gal(Fp/Fp) such that F = E^ and F' = E'^\ 

(2) For all (£, E') 

#SO([Hom(£' ,£ ) ] ) = 
# A u t ( £ ) # Aut(£"), E, E' both defined over ¥p; 
i 

. 2 
# A u t ( £ ) # Aut(E'), otherwise. 
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Now fix a positive definite ternary quadratic form Q over Z. By the theorems 
above we can consider the expression 

2 
E 

1 
# A u t ( £ ) 

-2 

(E',E) 

Rllom(E'E)(Q) 

# A u t ( £ ' ) # Aut(E) 

as the mean value of the representation of Q by the genus of End(^o) (here E and 
E' run through all isomorphism classes of supersingular elliptic curves over Fp, and 
Rnom(E',E)(Q) denotes the number of isometries Q —* Hom(£", E)). Hence it can be 
expressed as a product of local representation densities ai(Q, End(E'o)) (see 4.3) by 
the Minkowski-Siegel formula. We obtain (theorem 4.3): 

Theorem. — The mean value is qiven by 

(E>,E) 

Rliom(E':E)(Q) 

# A u t ( £ ' ) # Aut(£) 
= 2 

p - 1 

12 

2 
7T4 

P3 
I 

c ^ E n d ^ o ) ) , 

where I runs through all prime numbers I. 

This article is organized as follows. In the first section some definitions and results 
on quadratic spaces and quaternion algebras are recalled. The second section ad-
dresses the correspondence between supersingular elliptic curves, right ideal classes, 
and conjugacy classes of maximal orders. In the third section the above results on the 
quadratic spaces H o m ( ^ , E) are proved. The Minkowski-Siegel formula is applied in 
the last section. 

Acknowledgements. — I am very grateful to S. Kudla for his helpful remarks and to 
M. Rapoport, T. Yang and the referee for their comments. 

1. Preliminaries on quadratic spaces and quaternion algebras 

1.1. In this section we recall some definitions and results on quadratic spaces. 
If R is a commutative ring, a quadratic space over R is a free i?-module M together 

with a map Q: M —» such that 

(a) Q(rra) = r2Q(m) for all r G R and m G M. 

(b) The form bq(x,y) = Q(x + y) — Q(x) — Q{y) is jR-bilinear and nondegenerate 
{i.e., the ^-linear map M —>• M * corresponding to 6Q is injective). 

The map Q is called the quadratic form of the quadratic space (M, Q). 
Two quadratic spaces (M, Q) and (Mf,Qf) over R are said to be isomorphic if 

there exists an ^-linear isomorphism / : M —> M' such that Q'(f(m)) — Q(m) for all 
m G M. We then write (M, Q) ^ (M;, Q'). 

The group of automorphisms of a quadratic space will be denoted by 0 ( M , Q), the 
subgroup of automorphisms g G 0 ( M , Q) with det(g) = 1 is denoted by SO(M, Q). 
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1.2. In the sequel we will only consider quadratic spaces (M, Q) over integral domains 
R whose field of fractions has characteristic not equal to 2. Then we write Symn(i?)v 
for the set of symmetric matrices n by n matrices A — (a^) with coefficients in 
Quot(i?) such that an G R for all i and such that 2a^ G R for all Moreover, we 
denote by BQ the Quot(i2)-valued bilinear form 

BQ: M x M —> Quot(iT), (x, y) i—> 
1 
2 

[Q(x + y)-Q(x)-Q(y)). 

Let £> = ( e i , . . . , en) be an i2-basis of M. The matrix 

5Q = (SQ(ei,eJ-)) GSymn(iî)v 

is called the matrix associated to (M, Q,B). 
We denote by det(M) = det((M,Q)) the class of det(SQ) modulo (Rx)2. This is 

independent of the choice of B. 

1.3. Very often we will consider quadratic spaces which arise as follows: Let (V, Q) 
be a quadratic space over Q and let A be a Z-lattice of V (i.e., a finitely generated 
Z-submodule A such that AQ — V). If Q(A) c Z , the restriction of Q to A defines a 
quadratic form on A over Z . 

If / is a finite place of Q, Ai = A ^ ^ Z / is a lattice in the Q^-vector space Vi = V<g>Qi. 
Recall that to give a Z-lattice A in V is the same as to give a Z/-lattice A/ for all / 
such that there exists a Z-lattice T of V with A/ = Ti for almost all I. 

Denote by A / the ring of finite adeles of Q. An element g G GL(V 0 A j ) is an 
element (gi) G Yii GL(Vi) where I runs over all finite places of Q such that gi(Ai) = Ai 
for almost all I (this condition is independent of A). Hence g = (gi) acts on the set of 
lattices by setting 

5(A) = 
I 

( V n 5 J ( A j ) ) . 

We obtain an action of GL(V (8) A / ) on the set of lattices in V and in particular 
an action of the subgroups 0 ( V ® A / ) and SO(U (g) A / ) . 

Definition 1.1. — We say that two quadratic spaces M and M7 over Z are related if 
M and M7 are isomorphic over Z/ for all places I of Q (with the convention Z ^ = R). 

1.4. If M and Mx are related, they are of course also isomorphic over Qi for all 
places I and hence they are isomorphic over Q by the weak approximation theorem for 
quadratic spaces. If we choose an isomorphism of rational quadratic spaces M (g) Q = 
M1 0 Q, we can consider M and Mf both as lattices in the same quadratic space V 
over Q. Moreover, the fact that M and M' are related just means that there exists a 
g G 0 ( V ) ( A / ) with g(M) = M'. This leads us to the following definition: 

Definition 1.2. — Let V be a quadratic space over Q. We say that two lattices A and 
A7 in V are related if there exists a g G 0(V)(hf) such that g(A) = A7. 

An 0(V)(A/)-orbit of lattices in V is called a genus. 

A S T É R I S Q U E 312 



5. THE GENUS OF THE ENDOMORPHISMS OF A SUPERSINGULAR ELLIPTIC CURVE 29 

Lemma 1.3. — Let I be a prime number and let (M, Q) be a quadratic space over 7L{. 
Then there exists a reflection in 0(M,Q). 

Proof. — Let x G M be an element such that the Z-adic valuation of Q(x) is mini-
mal among the elements in M. Then an easy calculation shows that the reflection 
associated to x preserves M. • 

Corollary 1.4. — Let V be a quadratic space over Q. Two lattices A and A' in V are 
in the same genus if and only if there exists a g G SO(V 0 A / ) such that g(A) = A7. 

Definition 1.5. — Let V be a quadratic space over Q. Two lattices A and A' in V 
are said to be in the same proper class or to be properly equivalent if there exists a 
g G SO(V) such that g(A) = A'. 

They are in the same class or equivalent if there exists a g G O(V) such that 
5(A) = A'. 

Obviously, every genus of a lattice is the disjoint union of classes and every class is 
the disjoint union of one or two proper classes. Moreover, it is well known (e.g., [Ki, 
6.1.2]) that in each genus there are only finitely many proper classes. 

The class of a lattice A is equal to the proper class of A if and only if there exists 
a g G 0(V) with det(g) = - 1 such that g(A) = A, i.e., if and only if SO(A) ^ 0 ( A ) . 

1.5. We will be mostly interested in quadratic spaces which arise from quaternion 
algebras: By a quaternion algebra over a field F we mean a central simple algebra D 
over F of dimension 4. We write Trd and Nrd for the reduced trace and the reduced 
norm on D, respectively, and we denote by x i—>• x := Tvd(x) — x the canonical 
involution on D. 

Assume that F is the field of fractions of Dedekind domain A (e.g., A — Z or 
A = Z/) . Let A be some A-lattice of D. Then we set 

(l.i) Ot(A) = {deD\dAc A } , 

(1.2) Or(A) = {d e D I Ad c A } . 

These are orders in D. We call them the left order (resp. right order) of A. We sa 
that A is normal if Oi(A) and Or(A) are maximal orders. 

Lemma 1.6. — Let F be a field with char(F) ^ 2 and let D be a quaternion algebra 
over F. We set 

S{D) := { (d,d') eDx xDx I Nrd(d) = Nrd(d') } . 

Consider the qrouv homomorphism 

a: S{D) —> 0(D,Nrd) , 

(d,dr) H - > (ô - ^ d ô d ' - 1 ) . 
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