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ON THE COMPUTATION OF THE DIFFERENCE GALOIS
GROUPS OF ORDER 3 EQUATIONS

by Thomas Dreyfus & Marina Poulet

Abstract. — In this paper we consider the problem of computing the difference
Galois groups of order 3 equations for a large class of difference operators including the
shift operator (Case S), the q-difference operator (Case Q), the Mahler operator (Case
M) and the elliptic case (Case E). We show that the general problem can be reduced to
several ancillary problems. We prove criteria to detect the irreducible and imprimitive
Galois groups. Finally, we give a sufficient condition of differential transcendence of
solutions of order 3 difference equations. We also compute the difference Galois group
of an equation suggested by Wadim Zudilin.
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144 T. DREYFUS & M. POULET

Résumé (Sur le calcul des groupes de Galois aux différences d’équations d’ordre trois).
— Dans cet article, nous considérons le problème du calcul des groupes de Galois aux
différences des équations d’ordre trois pour une large classe d’opérateurs aux différences
incluant l’opérateur de différence finie (Cas S), l’opérateur aux q-différences (Cas Q),
l’opérateur de Mahler (Cas M) et le cas elliptique (Cas E). Nous montrons que ce
problème général peut se réduire à l’étude de plusieurs problèmes auxiliaires. Nous
prouvons un critère pour reconnaître les groupes de Galois irréductibles et imprimitifs.
Pour terminer, nous donnons une condition suffisante qui garantit la transcendance
différentielle des solutions d’équations aux différences d’ordre trois. Nous calculons
aussi le groupe de Galois aux différences d’une équation suggérée par Wadim Zudilin.

1. Introduction

Difference Galois theory has been the subject of many recent papers because,
for instance, of its application to (differential) transcendence of solutions of
difference equations. More precisely, consider a field k equipped with an au-
tomorphism φ. Let C ⊂ C be an algebraically closed field of characteristic 0.
Typical examples that we are going to consider in this paper are
• (Case S, shift) k = C(z) and φY (z) = Y (z + h) with h ∈ C∗.
• (Case Q, q-difference) k = C

(
z1/∗) :=

⋃∞
`=1 C(z1/`) and φY (z) = Y (qz)

with q ∈ C∗ that is not a root of unity.
• (Case M, Mahler) k = C

(
z1/∗) and φY (z) = Y (zp) with p ≥ 2 an

integer.
• (Case E, elliptic) Let Λ be a lattice of C. Without loss of generality,

we assume that Λ = Z + Zτ with Im(τ) > 0. Let ℘(z) be the cor-
responding Weierstrass function. In this example, k = Mer(Λ∞) :=⋃∞
`=1 C(℘(z/`), ∂z℘(z/`)) and φY (z) = Y (z + h) with h ∈ C∗ such that

hZ ∩ Λ = {0}.
Then, consider the difference system

φY = AY, A ∈ GLn(k).
The algebraic relations between functions that are entries of matrix solutions
of the difference system are reflected by a difference Galois group, which is an
algebraic group attached to a difference equation (see, for example, [36, 38]).
Roughly speaking, if the difference Galois group is sufficiently big, then there
are no algebraic relations between these functions. Moreover, thanks to a
differential Galois theory for difference equations (see [27]), one can attach a
differential algebraic group to a difference equation, which is Zariski-dense in
the difference Galois group. Under conditions on the difference Galois groups,
this theory may also prove that some solutions of linear difference equations do
not satisfy algebraic differential equations (see [7, 8, 10, 11, 19, 20, 27]) and has
been recently used to prove that, in some cases, the generating series of walks
in the quarter plane are differentially transcendental; see, for instance, [21].
There are many other applications of difference Galois theory that motivate
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ON THE COMPUTATION OF GALOIS GROUPS OF ORDER 3 EQUATIONS 145

the computation of the difference Galois groups. We could also mention the
computation of the difference Galois groups of q-hypergeometric equations;
see [42] and density theorems [37, 39], but the present introduction does not
pretend to be exhaustive.

Toward the proof of differential transcendence, we often need to prove that
the difference Galois group is sufficiently big, making it important to be able to
compute the latter. However, the computation of difference Galois groups is, in
general, a difficult task. In the literature, one can find many algorithms for the
computation of Galois groups. The most developed area is the one of differential
equations; many algorithms are given to compute differential Galois groups
(which are algebraic groups attached to a linear differential system); see, for
example, [12, 17, 23, 32, 44]. There is a general algorithm for the computation
of the Galois groups of linear differential equations of an arbitrary order, but
it is not effective (see, for example, the algorithm of Hrushovski in [31] and
some improvements [9, 24]). In contrast, the case of difference equations is
less developed. Algorithms have been given for the computation of difference
equations of order 1 and 2 in these four famous cases: the shift (see [29, 38]), the
q-difference (see [28]), the Mahler (see [43]) and the elliptic cases (see [22]). For
the shift case, an analogue of Hrushovski’s algorithm was developed in [25]. It
computes the Galois groups for equations of arbitrary order whose coefficients
are rational functions but is still inefficient. However, in general, for the Galois
groups of difference equations of order 3 or more, only a few things are known.
The aim of this article is to explain how one can compute Galois groups of
difference equations of order 3 under mild assumptions on the difference field
to which the coefficients of the difference equations belong. In particular, it
takes into account the four previous difference equations. We also recall general
strategies for computing the Galois groups of difference equations of order 1
and 2. We highlight that we are mainly concerned with the theoretical aspects
of the algorithm, and no study of complexity will be made. Throughout this
paper, we explain what we need to be able to do to use it in practice. In fact,
one of the key points to apply it concretely is to be able to find rational (resp.,
hyperexponential) solutions to certain difference equations.

The starting point of this paper was an example suggested byWadim Zudilin.
This example runs as a common thread throughout this paper. The following
double sum is related to the Rogers–Ramanujan identities

U(z, t) =
∞∑

m,n=0

qm
2+3mn+3n2

zmtn

(q; q)m(q3; q3)n
, with (?; q)n = (1− ?)× · · · × (1− ?qn−1).

For each fixed value of t, z 7→ U(z, t) satisfies a q-difference equation:

ty(q3z)− (t+ qt+ q4z2)y(q2z) + q(t− q2z)y(qz) + q3zy(z) = 0.(1)
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146 T. DREYFUS & M. POULET

One of the questions asked by Zudilin was the computation of the Galois groups
for the values t = 1 and t = q2. We are going to compute the difference Galois
groups over C(z1/∗) for every value of t 6= 0 and see that it does not depend
on the parameter t. Note that when t = 0, (1) is a q-difference equation of
order 2, and the computation could be made using [29].

Theorem (Theorem 6.13). — For all t ∈ C∗, the difference Galois group
of (1) is GL3(C).

Using [20, Corollary 3.1] and Theorem 6.13, we may prove that for all t ∈ C∗,
there are no nontrivial algebraic differential relations between U(z, t), U(qz, t)
and U(q2z, t) over C(z1/∗).

Now, we describe the content of this paper more precisely. After some
reminders about the Galois theory of difference equations in Section 2.1, we
recall a criterion in Section 2.2 to determine whether or not the Galois group
G of a difference equation is reducible. In Section 2.3, we explain what we
need, as a framework, in order to compute G in practice. In Section 3 we prove
general results about Galois groups of difference systems of arbitrary order. We
explain the strategy for computing G if G is reducible in Section 3.1. If G is
not reducible, we distinguish two cases: the imprimitive case and the primitive
case. For the imprimitive case, we give information (the connected component
of the identity and its index in G) on the possible Galois groups that occur when
the order of the difference system is a prime number in Section 3.2. Moreover,
we know what information corresponds to G thanks to the knowledge of the
determinant of G (which is the Galois group of an equation of order 1). After
these general results, we recall strategies for computing the Galois groups of
the difference equations of order 1 and the diagonal systems in Section 4 and
the strategies for the difference equations of order 2 in Section 5. Section
6 is devoted to the order 3 case. We give an application to the differential
transcendence in Section 7.

Notations and conventions. — In what follows, all rings are commutative with
identity and contain the field of rational numbers. In particular, all fields are
of characteristic zero.

If G is an algebraic group, we denote by G0 the connected component of
the identity of G. Let (k, φ) be a difference field, that is, a field equipped
with an automorphism and let [A]φ be the difference system φ(Y ) = AY where
A ∈ GLn (k). To lighten notations, we denote it by [A] when there is no
ambiguity.
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ON THE COMPUTATION OF GALOIS GROUPS OF ORDER 3 EQUATIONS 147

2. Difference algebra

2.1. Galois groups. — In this section, we give a short overview of the Galois
theory of linear difference equations. For more details on what follows, we refer
the reader to [38, Chapter 1].

A difference ring is a commutative ring R equipped with an automorphism
φ : R → R. We denote by CR := {c ∈ R|φ(c) = c}, the constants of the
difference ring (R, φ). A difference ideal I of a difference ring (R, φ) is an ideal
such that φ(I) ⊂ I. If R is a field, we call (R, φ) a difference field. In this case,
CR is a field, the field of constants. With an abuse of notations, we will often
denote by R the difference ring (R, φ).

Throughout this paper, we assume that (k, φ) is a difference field such that
its field of constants Ck is algebraically closed.

If we consider a difference system

φ(Y ) = AY, with A ∈ GLn (k) ,(2)

according to [38, Section 1.1], there exists a difference ring extension (L, φ) of
(k, φ) such that:
• There exists a fundamental matrix of solutions of (2) with entries in L,
that is, a matrix U ∈ GLn (L) such that φ (U) = AU .
• L is generated as a k-algebra by the entries of U and det (U)−1.
• The only difference ideals of L are {0} and L.

A difference ring L that satisfies these conditions is called a Picard–Vessiot ring
for the system (2) over k. It is unique up to isomorphisms of difference rings
over k. We have the following property: CL = Ck.

The difference Galois group G of (2) over k is the group of k-linear auto-
morphisms of L commuting with φ, that is,

G := {σ ∈ Aut(L/k) | σ ◦ φ = φ ◦ σ}.

For any fundamental matrix U ∈ GLn(L), an easy computation shows that
U−1σ(U) ∈ GLn(CL) = GLn(Ck) for all σ ∈ G. By [38, Theorem 1.13], the
faithful representation

ρ : G→ GLn(Ck)
σ 7→ U−1σ(U)

identifies G with a linear algebraic subgroup G ⊂ GLn(Ck). If we take another
fundamental matrix of solutions V , we find an algebraic group that is conju-
gated to the first one. In this paper, by “computation of the difference Galois
group G”, we mean “computation of an algebraic subgroup of GLn (Ck) conju-
gated to ρ(G)”, and, thus, we work up to conjugations. Abusing notations, we
will still denote by G the image of the difference Galois group under the above
representation.
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