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Société Mathématique de France 2006
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MATHEMATICAL STUDY OF THE BETAPLANE
MODEL: EQUATORIAL WAVES AND CONVERGENCE

RESULTS

Isabelle Gallagher, Laure Saint-Raymond

Abstract. — We are interested in a model of rotating fluids, describing the motion
of the ocean in the equatorial zone. This model is known as the Saint-Venant, or
shallow-water type system, to which a rotation term is added whose amplitude is
linear with respect to the latitude; in particular it vanishes at the equator. After a
physical introduction to the model, we describe the various waves involved and study
in detail the resonances associated to those waves. We then exhibit the formal limit
system (as the rotation becomes large), obtained as usual by filtering out the waves,
and prove its wellposedness. Finally we prove three types of convergence results: a
weak convergence result towards a linear, geostrophic equation, a strong convergence
result of the filtered solutions towards the unique strong solution to the limit system,
and finally a “hybrid” strong convergence result of the filtered solutions towards a
weak solution to the limit system. In particular we obtain that there are no confined
equatorial waves in the mean motion as the rotation becomes large.

Résumé (Étude mathématique du modèle bétaplan : ondes équatoriales et résultats de
convergence)

On s’intéresse à un modèle de fluides en rotation rapide, décrivant le mouvement de
l’océan dans la zone équatoriale. Ce modèle est connu sous le nom de Saint-Venant, ou
système « shallow water », auquel on ajoute un terme de rotation dont l’amplitude est
linéaire en la latitude ; en particulier il s’annule à l’équateur. Après une introduction
physique au modèle, on décrit les différentes ondes en jeu et l’on étudie en détail les
résonances associées à ces ondes. On exhibe ensuite un système limite formel (dans
la limite d’une forte rotation), obtenu comme d’habitude en filtrant les ondes, et l’on
démontre qu’il est bien posé. Enfin on démontre trois types de résultats de conver-
gence : un théorème de convergence faible vers un système géostrophique linéaire, un
théorème de convergence forte des solutions filtrées vers la solution unique du système
limite, et enfin un résultat « hybride » de convergence forte des solutions filtrées vers
une solution faible du système limite. En particulier on démontre l’absence d’ondes
équatoriales confinées dans le mouvement moyen, quand la rotation augmente.
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CHAPTER 1

INTRODUCTION

The aim of this paper is to obtain a description of geophysical flows, especially
oceanic flows, in the equatorial zone. For the scales considered, i.e., on domains
extending over many thousands of kilometers, the forces with dominating influence are
the gravity and the Coriolis force. The question is therefore to understand how they
counterbalance eachother to impose the so-called geostrophic constraint on the mean
motion, and to describe the oscillations which are generated around this geostrophic
equilibrium.

At mid-latitudes, on “small” geographical zones, the variations of the Coriolis force
due to the curvature of the Earth are usually neglected, which leads to a singular per-
turbation problem with constant coefficients. The corresponding asymptotics, called
asymptotics of rotating fluids, have been studied by a number of authors. We refer
for instance to the pioneering work [22] and to the review by R. Temam and M. Ziane
[34], or to the work by J.-Y. Chemin, B. Desjardins, I. Gallagher and E. Grenier [4].

In order to a get a more realistic description, which allows for instance to exhibit
the specificity of the equatorial zone, one has to study more intricate models, taking
into account especially the interaction between the fluid and the atmosphere (free
surface), and the geometry of the Earth (variations of the local vertical component
of the Earth rotation). The mathematical modelling of these various phenomenon,
as well as their respective importance according to the scales considered, have been
studied in a rather systematic way by A. Majda [25], and R. Klein and A. Majda [19].
We refer also to [9] for a review of mathematical methods for the study of geophysical
fluids.

Here we will focus on quasigeostrophic, oceanic flows, meaning that we will consider
horizontal length scales of order 1000km and vertical length scales of order 5 km, so
that the aspect ratio is very small and the shallow-water approximation is relevant (see
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for instance the works by D. Bresch, B. Desjardins and C.K. Lin [3] or by J.-F. Ger-
beau and B. Perthame [13]). In this framework, the asymptotics of homogeneous
rotating fluids have been studied by D. Bresch and B. Desjardins [2].

For the description of equatorial flows, one has to take further into account the
variations of the Coriolis force, and especially the fact that it cancels at equator. The
inhomogeneity of the Coriolis force has already been studied by B. Desjardins and
E. Grenier [6] and by the authors [10] for an incompressible fluid without pressure,
and [11] for an incompressible fluid with rigid lid upper boundary (see also [7] for
a study of the wellposedness and weak asymptotics of a non-viscous model). The
question here is then to understand the combination of the effects due to the free
surface, and of the effects due to the variations of the Coriolis force.

Note that, for the sake of simplicity, we will not discuss the effects of the interaction
with the boundaries, describing neither the vertical boundary layers, known as Ekman
layers (see for instance the paper by D. Gérard-Varet [12]), nor the lateral boundary
layers, known as Munk and Stommel layers (see for instance [6]). We will indeed
consider a purely horizontal model, assuming periodicity with respect to the longitude
(omitting the stopping conditions on the continents) and and infinite domain for the
latitude (using the exponential decay of the equatorial waves to neglect the boundary).

1.1. Physical phenomenon observed in the equatorial zone of the earth

The rotation of the earth has a dominating influence on the way the atmosphere
and the ocean respond to imposed changes. The dynamic effect is caused (see [14],
[16], [28]) by the Coriolis acceleration, which is equal to the product of the Coriolis
parameter f and the horizontal velocity.

An important feature of the response of a rotating fluid to gravity is that it does
not adjust to a state of rest, but rather to an equilibrium which contains more poten-
tial energy than does the rest state. The steady equilibrium solution is a geostrophic
balance, i.e., a balance between the Coriolis acceleration and the pressure gradient
divided by density. The equation determining this steady solution contains a length
scale a, called the Rossby radius of deformation, which is equal to c/|f | where c is the
wave speed in the absence of rotation effects. If f tends to zero, then a tends to infin-
ity, indicating that for length scales small compared with a, rotation effects are small,
whereas for scales comparable to or larger than a, rotation effects are important.
Added to that mean, geostrophic motion, are time oscillations which correspond to
the so-called ageostrophic motion. The use of a constant-f approximation to describe
motion on the earth is adequate to handle the adjustment process at mid-latitudes:
Kelvin [35] stated that his wave solutions (also known as Poincaré waves) are appli-
cable “in any narrow lake or portion of the sea covering not more than a few degrees
of the earth’s surface, if for 1

2f we take the component of the earth’s angular velocity
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round a vertical through the locality, that is to say

1
2
f = Ω sin φ,

where Ω denotes the earth’s angular velocity and φ the latitude.”
The adjustment processes are somewhat special when the Coriolis acceleration

vanishes: the equatorial zone is actually found to be a waveguide: as explained in [14],
there is an equatorial Kelvin wave, and there are equatorially trapped waves, which are
the equivalent of the Poincaré waves in a uniformly rotating system. There is also an
important new class of waves with much slower frequencies, called planetary or quasi-
geostrophic waves. These owe their existence to the variations in the undisturbed
potential vorticity and thus exist at all latitudes. However, the ray paths along which
they propagate bend, as do the paths of gravity waves, because of the variation of
Coriolis parameter with latitude, and it is this bending that tends to confine the waves
to the equatorial waveguide.

1.2. A mathematical model for the ocean in the equatorial zone

In order to explore the qualitative features of the equatorial flow, we restrict our
attention here to a very simplified model of oceanography. More precisely, we consider
the ocean as an incompressible viscous fluid with free surface submitted to gravitation,
and further make the following classical assumptions:

(H1) the density of the fluid is homogeneous,

(H2) the pressure law is given by the hydrostatic approximation,

the motion is essentially horizontal and
does not depend on the vertical coordinate,(H3 )

leading to the so-called shallow water approximation.
We therefore consider a so-called viscous Saint-Venant model, which describes ver-

tically averaged flows in three dimensional shallow domains in terms of the horizontal
mean velocity field u and the depth variation h due to the free surface. Taking into
account the Coriolis force, a particular model reads as

(1.2.1)
∂th + ∇· (hu) = 0

∂t(hu) + ∇· (hu ⊗ u) + f(hu)⊥ +
1

Fr2
h∇h − h∇K(h) − A(h, u) = 0

where f denotes the vertical component of the earth rotation, Fr the Froude number,
and K and A are the capillarity and viscosity operators. We have written u⊥ for the
vector (u2,−u1).

Note that, from a theoretical point of view, it is not clear that the use of the
shallow water approximation is relevant in this context since the Coriolis force is
known to generate vertical oscillations which are completely neglected in such an
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approach. Nevertheless, this very simplified model is commonly used by physicists
[14, 29] and we will see that its study already gives a description of the horizontal
motion corresponding to experimental observations.

Of course, in order that the curvature of the earth can be neglected, and that
latitude and longitude can be considered as cartesian coordinates, we should consider
only a thin strip around the equator. This means that we should study (1.2.1) on
a bounded domain, and supplement it with boundary conditions. Nevertheless, as
we expect the Coriolis force to confine equatorial waves, we will perform our study
on R × T where T is the one-dimensional torus R/2πZ, and check a posteriori that
oscillating modes vanish far from the equator, so that it is reasonable to conjecture
that they should not be disturbed by boundary conditions.

1.3. Some orders of magnitude in the equatorial zone

For motions near the equator, the approximations

sin φ ∼ φ, cosφ ∼ 1

may be used, giving what is called the equatorial betaplane approximation. Half of
the earth’s surface lies at latitudes of less than 30o and the maximum percentage
error in the above approximation in that range of latitudes is only 14%. In this
approximation, f is given by

f = βx1,

where x1 is distance northward from the equator, taking values in the range

x1 ∈ [−3000 km , 3000 km],

and β is a constant given by

β =
2Ω
r

= 2.3 × 10−11 m−1 s−1.

A formal analysis of the linearized versions of the equations shows then that ro-
tation effects do not allow the motion in each plane x1 = const to be independent
because a geostrophic balance between the eastward velocity and the north-south
pressure gradient is required. Equatorial waves actually decay in a distance of order
ae, the so-called equatorial radius of deformation,

ae =
(

c

2β

)1/2

where c is the square root of gH , H being interpreted as the equivalent depth.
For baroclinic ocean waves, appropriate values of c are typically in the range
0.5ms−1 to 3ms−1, so the order of the equatorial Rossby radius is

ae ∼ 100 km,
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