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INTRODUCTION

by

Aline Bonami, Stéphane Jaffard & Stéphane Seuret

Yves Meyer is a world famous mathematician and his scientific achievements
have been eminently publicized, for example when he received the Gauss and
the Abel prizes. So one might wonder whether a selection of his collected works
could shed any additional light on them. Actually these prizes focused attention
on the role he had played in the birth and elaboration of wavelet analysis,
certainly a key step in his scientific trajectory but not one that should shade
his many other discoveries. We truly believe that even this major achievement
can only be fully appreciated if one is aware of the diversity and depth which
characterize the other periods of his scientific trajectory, and how these periods
interrelate, in particular leading to the development of wavelet theory.

The purpose of these Selecta is to illustrate this evolution and to explain
its coherence through two families of articles. First, we have collected and re-
produced a series of articles by Yves Meyer, two of them unpublished, which
are representative of each of the topics on which he worked. Second, we have
supplemented these by companion texts from other mathematicians, who have
been collaborating with Yves or who have been influenced by his ideas. To-
gether they put into perspective the wide range of subjects he has considered,
from the time he first became interested in them to their current status. They
highlight the many breakthroughs he has made and their lasting impact.

All these texts will allow the readers to measure for themselves the impres-
sive influence of Yves Meyer’s achievements in various mathematical fields,
from number theory to functional and harmonic analysis, and PDEs, to name
but a few. It is also striking that this impact often extended to other sciences—a
typical example is what is now called “Meyer sets” in crystallography (see the
contribution of Denis Gratias and Marianne Quiquandon). Another remark-
able example is the revolution that wavelets brought about in mathematical
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2 A. BONAMI, S. JAFFARD & S. SEURET

statistics. At the end of the 1980’s, David Donoho had developed a frame-
work in order to create mini-max estimators which required a basis that could
“work” simultaneously for a large collection of function spaces. More precisely,
the functions belonging to these spaces had to be characterized by conditions
bearing on the moduli of their coefficients with respect to this basis. It was
well known that the Fourier basis could not be used (for example, this prop-
erty fails for Lp spaces as soon as p ̸= 2), and the same obstruction shows up
for the “classical” bases commonly found in analysis textbooks. David Donoho
discussed this problem with Dominique Picard and Gérard Kerkacharian, and
they immediately realized that such magic bases were already presented in the
book “Ondelettes et opérateurs” (at that time available only in French) which
Yves had just published, and which contained a detailed study of the wavelet
characterization of Sobolev and Besov spaces. This conversation was the start-
ing point of many key works that changed the field of mathematical statistics
at the beginning of the 1990s.

The role of serendipity in the evolution of Yves Meyer’s interests has often
been mentioned. His meeting in 1984 with Jean Lascoux copying the semi-
nal wavelet paper by Alex Grossmann and Jean Morlet on the copy machine
shared with the theoretical physics department at École polytechnique is now
part of the folklore of wavelets. It is emblematic of his openness to new ideas
and readiness to jump into new subjects. Of other less publicized examples let
us mention just one. In 1974, during a visit at the mathematics department of
Washington University in Saint Louis, Yves was engaged by the energetic moti-
vation of Raphy Coifman, and persuaded to work on the Calderón conjectures.
This initial impulse would lead to a life-lasting collaboration and friendship
of two mathematicians whose frames of mind complement each other ideally.
This also gave rise to a remarkable mathematical school around Calderón’s
and Kato’s conjectures, as shown in the contributions by Pascal Auscher, Joan
Verdera and Raphy Coifman himself.

This book makes it clear that Yves Meyer never rested in the comfort of
bounding his thought to a specific subject. Nonetheless, his trajectory has not
consisted of random jumps between unrelated areas of mathematics. He has
always wanted to be challenged by new questions, attacking new problems with
creativity and the extensive scientific knowledge and techniques that he had
assimilated from his past achievements. This is made particularly obvious by
his work on crystalline measures. This topic is related to one of the very first
on which he worked in the 1960s, and recently he has come back to it (see
Chapter 1 of this volume), but now with a new approach fed by 60 years of
enrichment, which is allowing him to reach results that would not have been
accessible in the 1960s.
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INTRODUCTION 3

The scientific career of Yves Meyer is a remarkable interplay between seren-
dipity and coherence. We hope that these volumes will give a rich and multi-
faceted understanding of how a great scientific mind developed and flourished,
and serve as an example to younger generations of how major scientific ad-
vances can be made possible. Yves kindly agreed to write a description of his
personal mathematical trajectory, “A Wanderer,” for this Selecta.

Let us now describe the content of the three volumes. It should first be
emphasized that while Yves wrote several books, these are not reproduced
here. Furthermore we had to choose among his numerous articles, preferring
ones giving less technical descriptions, some of them published in proceedings
of seminars or conferences. In each chapter, several original contributions put
Yves’s contributions in perspective, explaining their influence in and out of the
considered field.

It was natural to start with his first contributions in harmonic analysis, in
relation with number theory and their interplay with crystallography. This is
the content of the first chapter, which constitutes the first volume. In this
area one should also mention his fundamental book “Algebraic Numbers and
Harmonic Analysis,” which was published in 1972. Some papers related to this
book are reproduced here. Many of the tools that Yves created at that time,
and in particular the notion of model sets, have proved to be fundamental in
the mathematical theory of quasicrystals. Yves came back to the subject later
on, so that the first volume contains 13 papers of several different periods,
including his most recent articles on crystalline measures. Among the origi-
nal contributions, one article due to Robert Moody illustrates the links of his
work with quasicrystals. Another text by Valérie Berthé and Reem Yassawi
describes its influence on the study of discrete dynamical systems arising in
computer science. Denis Gratias and Marianne Quiquandon give the point of
view of specialists of crystallography. The last contribution, written by Alexan-
der Olevskii and Alexander Ulanovskii, discusses generalized Poisson formulas
and crystalline measures.

This chapter also contains one original text by Yves himself, that comes
back to the link between crystalline measures and zeta functions and evokes
many authors, from various periods of time, such as Hamburger, Kahane, Man-
delbrojt, Guinand. It also gives him the occasion to return to his “amours de
jeunesse,” but in today’s language and framework.

In the second volume we have gathered in Chapter 2 some of his achieve-
ments on singular integral operators and their applications. This is followed by
a chapter containing some of his results on partial differential equations. This
represents respectively 13 and 6 articles by Yves Meyer that are reproduced in
this volume.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2025



4 A. BONAMI, S. JAFFARD & S. SEURET

In Chapter 2, the collected papers post-date the start of his collaboration
with Raphy Coifman in 1974 around Calderón’s program and most are in col-
laboration with him. Then, the contribution of Joan Verdera is concerned with
the boundedness of the Cauchy integral for complex domains, and different
proofs and applications, starting from the work of Coifman and Meyer. In
parallel, the paper by Pascal Auscher deals with Kato’s conjecture, from the
fundamental paper of Coifman, Meyer and McIntosh (which deals with the
one variable case) to the most recent developments. Raphy Coifman himself
comes back with an original article jointly written with Yves. It deals with the
Riemann mapping from a simply connected Lipschitz domain of the complex
plane into the unit disc. They proved that this mapping depends in an analytic
way of the domain. This is a striking result that they obtained in the 1980s
but remained isolated and unfinished until now. This paper is complemented
by a text of Raphy written especially for this volume. Finally Alexander Vol-
berg bridges the seminal papers of Coifman and Meyer on multipliers and
paraproducts with recent results in a multiparameter context with spectacular
applications to complex analysis.

Chapter 3 deals with the contributions of Yves Meyer in PDEs. Even if he
did not publish many articles in this domain (when compared to the other
chapters), he had a widespread influence, as witnessed by Pierre-Louis Lions,
through seminar talks, informal discussions and supervisions of many students.
Fabrice Planchon explains how Yves and his collaborators introduced new
strategies leading to fine estimates, for instance for the div-curl lemma. The
text by Jean-Yves Chemin is centered around non smooth pseudo-differential
operators as developed by Yves and Raphy Coifman. Enrique Zuazua describes
the influence of Yves in control theory and goes further with new results. Fi-
nally Pierre-Louis Lions proposes an article on his collaboration with Yves, in
particular around the div-curl lemma and its applications.

The third volume is devoted to the spectacular research advances consti-
tuted by wavelet theory and related topics, in particular their implications
in signal and image processing. These works are those for which Yves Meyer
has been most recognized. This volume contains 16 articles written (alone or
with collaborators) between 1986 and 2016, as well as texts by some of the
main actors in the developments of the wavelet framework, Ingrid Daubechies
and Stéphane Mallat, and also by scientists who used them to investigate im-
plications in mathematical analysis and random processes, such as Stéphane
Seuret, or in signal or image processing, such as Patrick Flandrin, Antonin
Chambolle and Jean-Michel Morel. A paper by Virginia Ajani, Valeria Pet-
torino and Jean-Luc Starck describes the use of wavelets in the processing of
astronomical images. These are domains where the influence of Yves through
the books he wrote was also decisive. We already mentioned “Ondelettes et
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Opérateurs,” later translated in English as “Wavelets and operators,” which
was one of the very first books on wavelet analysis, and remains today as
the one with the most developed mathematical content. “Wavelet methods for
pointwise regularity and local oscillation of functions” (in collaboration with
Stéphane Jaffard) was an important milestone in the mathematical classifica-
tion of pointwise singularities and the characterization of “chirp behavior,” as
was “Wavelets, vibrations and scalings”. In the beginning of the 2000’s, Yves
wrote “Oscillating patterns in image processing and nonlinear evolution equa-
tions,” in which, in particular, he revisited the famous Rudin–Osher image
denoising algorithm. This book opened the way to important advances in im-
age processing. In a completely different spirit, “Wavelets: tools for Science and
Technology” (in collaboration with Stéphane Jaffard and Robert Ryan), which
was meant for a very wide scientific audience, gave a broad and nontechnical
panorama of the many breakthroughs, both in mathematics and in a large
variety of sciences, that were made possible by wavelet analysis.

Finally the third volume also contains the list of publications of Yves Meyer.

We address our warmest thanks to Pascal Auscher, Guy David, Basarab
Mattei and Hervé Queffelec who helped us during the collecting and editing
process, to the authors of the “companion texts,” to the numerous referees for
their helpful support and contributions, and to the Société Mathématique de
France, who constantly encouraged and helped us during this endeavor. Most
of all we thank Yves Meyer himself who was present to answer questions, give
advices, . . . all along the process of conception of this book.

We hope that you will enjoy the discovery of the original papers and the
reading of the older ones as much as we appreciated collecting them.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2025





Documents mathématiques
22, 2025, p. 7–21

A WANDERER

by

Yves Meyer

I am alone. I am walking day and night in the wilderness. I am overwhelmed by
the beauty of the forest. I am excited and terrified. I am completely lost when
I discover the immense river. I suddenly feel peace. Now I can find my way.

1. A promenade

1.1. Harmonic Analysis and Number Theory (1964–1973). — I was my own
supervisor when I was writing my PhD. This was not uncommon in France
in the sixties. I studied the multipliers of the Hardy space H1 and the dual
of this Hardy space. My results anticipated some fundamental discoveries by
C. Fefferman and E. Stein [8]. I extended my research to the study of multipliers
of closed ideals of the Wiener algebra. A function f of a real variable belongs to
the Wiener algebra A if f is the Fourier transform of an integrable function g.
To every closed set E ⊂ R is associated a closed ideal I(E) ⊂ A consisting
of all functions f ∈ A which vanish on E. Is any closed ideal defined by its
zero set? That is the problem of spectral synthesis. A multiplier of I(E) is
simply a continuous function m on the open set which is the complement of E
such that f ∈ A implies mf ∈ A. My results permitted to solve a problem
about ‘strong Ditkin sets’ which was raised by Lennart Carleson [9]. When
my manuscript was completed and typed by my wife, Anne, I brought it to
Jean-Pierre Kahane. Kahane was satisfied with my work and I could obtain a
“thèse d’État”.

During these three years at Strasbourg (1963–1966), Paul-André Meyer was
my mentor and soon became a close friend. I owe him my understanding of
probability theory. In collaboration with Paul-André I explored the connections
between the Littlewood-Paley decomposition and the theory of martingales.
This line of research preluded the beautiful results obtained a few years later
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8 Y. MEYER

by Burkholder and Gundy. Twenty years later Martin Meyer, Paul-André’s
son, became my PhD student.

After completing my PhD in 1967, I was hired at the mathematical de-
partment of the new born “Centre Universitaire d’Orsay” which in 1966 was
still a piece of “Université de Paris”. After the huge students riots of 1968 the
Université de Paris was cut into 13 independent pieces (divide and rule pol-
icy) and the Centre Universitaire d’Orsay proudly became “Université Paris-
Sud”. Banach algebras were studied intensively and almost each week spec-
tacular results were announced and proved at Kahane’s “séminaire d’analyse
harmonique”. I admired Nicolas Varopoulos and his beautiful ‘tensor algebras’
(1967). After reading Ensembles parfaits et séries trigonométriques by Kahane
and Salem, I became fascinated by the role of Pisot numbers in harmonic
analysis. I found a new approach to a theorem by R. Salem and A. Zygmund
concerning sets of uniqueness of trigonometric expansion. A set E ⊂ [0, 2π] is
a set of uniqueness if any (formal) trigonometric series which converges to 0
everywhere on [0, 2π] \ E is identically 0. Let Eθ be the Cantor set constructed
with a constant dissection ratio 1/θ (instead of 1/3 in the usual Cantor set).
R. Salem and A. Zygmund proved that Eθ is a set of uniqueness if and only if θ
is a Pisot number. I proved that these Cantor type sets Eθ also have the prop-
erty of spectral synthesis (Carl Herz proved it for the usual Cantor set E3).
This paved the road to my construction of quasicrystals. Let us begin with
what is today known as a Meyer set (this terminology is due to R.V.Moody).
A Delone set Λ ⊂ Rn is (1) a uniformly discrete set such that (2) there exists
a compact set K such that Λ +K = Rn. A Meyer set Λ is defined in [10] by
the two following properties: (1) Λ is a Delone set and (2) there exists a finite
set F such that Λ − Λ ⊂ Λ + F. Later on J. Lagarias proved the following: If
both Λ and Λ − Λ are Delone sets then Λ is a Meyer set. Here is my favorite
result: If Λ is a Meyer set, if θ > 1 is a real number, and if we have θΛ ⊂ Λ,
then θ is a Pisot or a Salem number. The converse is true: for each Pisot or
Salem number θ, there exists a Meyer set Λ such that θΛ ⊂ Λ. I also unveiled
the spectral properties of a narrower class of Meyer set which I called model
sets. Penrose pavings came a few years later. Soon after some strange patterns
observed by D. Shechtman in some chemical alloys were identified to specific
model sets. These patterns are named quasicrystals. I was astounded to see
the relevance of my model sets in chemistry. Robert V.Moody wrote:

Initially introduced by Y. Meyer in the context of Diophantine approximation
and harmonic analysis in his extraordinary book, model sets have become an
important tool in the mathematical study of aperiodic order and quasicrystals.

Model sets Λ also play a role in the theory of mean-periodic functions.
Mean-periodic functions were introduced and studied by Jean Delsarte and
Jean-Pierre Kahane. Let Λ = {λj , j ∈ Z} be an increasing sequence of real
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A WANDERER 9

numbers. Let us assume that the vector space VΛ consisting of all finite sums
f(x) =

∑∞
−∞ cj exp(iλjx), equipped with the topology of uniform convergence

on compact intervals, is not dense in the space V of all continuous functions on
the real line. Then one can define the vector space CΛ as the closure of VΛ in V.
Uniform convergence on the real line would yield almost periodic functions.
Then Delsarte and Kahane proved the following: there exists a compact set K
such that any f ∈ CΛ which vanishes on K vanishes identically. A quantitative
statement would be the existence of a (positive and finite) weight function ω
such that for every x and f ∈ CΛ we have

|f(x)| ≤ ω(x) sup
y∈K

|f(y)|. (∗)

We say that Λ is a coherent set of frequencies if in (∗) the weight ω is a constant.
This is equivalent to say that any f ∈ CΛ is a Bohr almost periodic function.
Model sets are coherent sets of frequencies. More generally I proved that the
growth at infinity of the functions f ∈ CΛ depends on the Diophantine approx-
imation properties of Λ [12]. These remarks apply to vibrating spheres [13].
Mean periodic functions in several variables were studied by Alain Yger. Forty
five years later I returned to these problems and I proved that a locally finite
set Λ ⊂ Rn is a coherent set of frequencies if and only if Λ satisfies the Bochner
property [20]. This important result should have been proved much earlier.

I constructed an increasing sequence of integers Λ = {λ1, λ2, . . . } such that,
for any real number α, the sequence λnα, n ≥ 1, is equidistributed mod 1 if
and only if α is transcendental [11]. This result preluded the characterization
by G.Rauzy of what he called ‘normal sets’.

During my years at Orsay Michel Herman was proving his extraordinary
theorem. Here is the result: If ϕ is an orientation preserving diffeomorphism
of the circle and if the rotation number α of ϕ satisfies a precise Diophantine
property, then ϕ is C∞-conjugate to the associated rotation. The linear equation
which governs this problem is f(x+α)−f(x) = g(x) where g is given and f is
the unknown. Marvellous discussions with Herman led to [14].

1.2. Singular integral operators (1974–1984). — In 1974 R.R. Coifman con-
vinced me to attack the famous Calderón’s conjectures. Alberto Calderón
aimed at constructing an improved pseudo-differential calculus where the
smoothness assumptions on the coefficients are minimal. He wrote:

The aim of this greater generality is to obtain stronger estimates and to
prepare the ground for applications to the theory of quasilinear and nonlinear
differential equations.

Following Calderón’s views, these new operators should be defined as sin-
gular integral operators, an approach which is much more flexible than the
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10 Y. MEYER

standard representation of an operator in terms of its symbol. The most fa-
mous examples are the Cauchy kernel on a Lipschitz curve or the double layer
potential on a Lipschitz surface. Calderón was trying to prove that these oper-
ators are bounded on L2. During a visit to Orsay (1980-1981) Alan McIntosh
unveiled the unexpected connection between Calderón’s program and Kato’s
conjectures on the domain of square roots of accretive operators. This deep ob-
servation and the theory of multilinear operators developed with R. R.Coifman
were seminal in the proof of the boundedness of the Cauchy integral on Lips-
chitz curves (May 1981). Let me now quote [8]:

I used a new magic trick provided by Alan McIntosh and coming from a
world which had been mostly ignored by harmonic analysis people. This new
world was familiar to those mathematical physicists who were opening new av-
enues in operator theory and quantum mechanics. Alan discovered that a very
natural conjecture raised by Tosio Kato implies the boundedness of the Cauchy
kernel on any Lipschitz curve. This conjecture says that the domain of the
square root of a maximal accretive operator coincides with the domain of the
sesquilinear form defining this operator. How a conjecture which seems so ab-
stract could be connected with the Cauchy kernel on Lipschitz curves? This is
the magic of Calderón’s program. At this level of generality Kato’s conjecture
was untrue but this new perspective reshaped everything and we could prove
the boundedness of the Cauchy integral on Lipschitz curves... But this detour
by mathematical physics was not needed. Guy David built some new “real vari-
able methods” and deduced “the full theorem” from a partial result obtained by
Calderón... The story of the boundedness of the Cauchy integral did not stop
there. Indeed in 1995, M. Melnikov and J. Verdera found an extraordinary proof.
The starting point is a geometric identity due to Karl Menger and rediscovered
by M. Melnikov. Karl Menger (1902-1985) was living in Chicago in these times
but his work was not given the attention it deserved. M. Melnikov and J.Verdera
cleverly used the Menger curvature and gave us the simplest and the most beau-
tiful proof of the L2 boundedness of the Cauchy integral on Lipschitz curves.
Combining this new approach with some subtle variations on the T(b)-theorem,
Guy David proved the Vitushkin conjecture which is a special case of Painlevé’s
problem on analytic capacity. Finally Xavier Tolsa solved Painlevé’s conjecture.

Among the byproducts of this intense mathematical activity, let us mention
the solution of the Dirichlet problem in Lipschitz domains by the method
of layer potentials (Gregory Verchota), the T(1)-theorem (Guy David and
Jean-Lin Journé), the fundamental work by Guy David and Stephen Semmes
on singular integral operators on rough surfaces, and the solution of Kato’s con-
jecture about square roots of accretive differential operators (Pascal Auscher,
Philippe Tchamitchian, et al.). Guy David, Jean-Lin Journé, Pascal Auscher
and Philippe Tchamitchian were my graduate students.
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A WANDERER 11

Meanwhile I wished to fill the gap between the theory of pseudo-differential
operators and these new singular integral operators introduced by Calderón.
I wrote Au delà des opérateurs pseudo-différentiels [3] in that spirit. This book
is co-authored with Raphy Coifman. The new mathematical tools I developed
in [3] happened to be seminal in the beautiful theory of paradifferential opera-
tors elaborated by Jean-Michel Bony. Paradifferential calculus can be used in
nonlinear PDE’s which was exactly Calderón’s program. But singular integral
operators were no longer needed in Bony’s work.

1.3. Control theory. — Let me quote [17] :

It happened the 28th of February, 1984. I was running the Goulaouic-
Schwartz seminar after Charles Goulaouic’s death. Salah Baouendi had already
moved to Purdue. Jacques-Louis Lions was then the head of the French Space
Agency (CNES). Lions accepted to give a talk at the seminar. The main issue
raised by Lions was the control and stabilization of some large oscillations
which might occur on the Space Laboratory and be dangerous for this flexible
structure. The problem had to be fixed before launching the satellite and begin-
ning the construction of the International Space Station. Lions was suggesting
that one could attenuate and eventually cancel the vibrations by commanding
a tiny rocket fixed on the structure. Lions built a mathematical model for
addressing this problem and asked us about a solution. To my greatest surprise
I succeeded in solving the problem raised by Lions. My proof [15] relied on some
properties of nonharmonic Fourier series. Soon after Louis Nirenberg found a
simpler proof. Finally Lions discovered a third proof.

A reference is J.-L. Lions, Sur le contrôle ponctuel de systèmes hyperboliques
ou de type Petrowski. Séminaire EDP (Polytechnique) 1983–1984, no. 20. This
had a great impact on my scientific life. I understood that some tools I was
using in pure mathematics could be efficient in applied problems. This line of
research was completed by Stéphane Jaffard.

1.4. Signal and image processing (1984–1993). — Signal and image processing
gave me a second scientific life. As it will be detailed below, I could bridge the
gap between (1) the atomic decompositions which were used in signal process-
ing by Dennis Gabor and his followers and (2) some other atomic decompo-
sitions which were discovered in mathematics by L.Carleson, R.R. Coifman,
G. Weiss, et al. Before unveiling this connection, let me begin with defining
analysis and atoms in signal processing. In the Webster’s dictionary, the word
analysis is given the following meaning: A breaking up of a whole into its parts
so as to find out their nature. In signal or image processing, these parts or
simpler entities are named building blocks, time-frequency atoms, or wavelets.
Let me explain how building blocks, time-frequency atoms, and wavelets were

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2025



12 Y. MEYER

discovered and why orthonormal wavelet bases can be labelled by suitable
partitions of the time-frequency plane.

The story begins in the early thirties when Eugene Wigner (Nobel prize
laureate) introduced the time-frequency plane together with the famous Wigner
transform. The Wigner transform W (t, ω) of a signal f(t) is a function of the
time variable t and the frequency variable ω and is providing a description of f
which should be both accurate in time and frequency. In other words, for each
given value t of the time variableW (t, ω) should be the value at the frequency ω
of the ‘instantaneous Fourier transform’ of f. But this instantaneous Fourier
transform does not exist and cannot be defined as the limit of a short-time
Fourier transform when the size of the window tends to 0. An obstruction is
given by Heisenberg uncertainty principle. This principle says that we cannot
simultaneously measure the time and the frequency. Therefore unfolding a
signal in the time-frequency plane without an a priori information on this signal
is an impossible task. The Wigner transform is one among infinitely many other
solutions. The Wigner transform of a function f ∈ L2(R) is defined by

W (t, ω) =

∫ ∞

−∞
exp(−iωτ)f(t+ τ/2)f(t− τ/2) dτ.

The generalization to f ∈ L2(Rn) is straightforward. The Wigner transform
of a signal f with finite energy (or of a function belonging to L2) is the Weyl
symbol of the orthogonal projector Pf : L2 7→ L2 on that function. This obser-
vation by Hermann Weyl leads to an important remark. Returning to the one
dimensional case a family ψλ(x), λ ∈ Λ, is an orthonormal basis of L2(R) if and
only if the Wigner transforms Ψλ of ψλ satisfy the three following conditions:

(i)
∑

λ∈Λ Ψλ(t, ω) = 1,

(ii)
∫
R2 ΨλΨ′λ dt dω = 0 if λ ̸= λ′,

(iii)
∫
R2 |Ψλ|2 dt dω = 2π.

If these Wigner transforms were the indicator functions of some subsets Bλ,
λ ∈ Λ, of the time-frequency plane, these subsets would form a partition and
satisfy |Bλ| = 2π, λ ∈ Λ. The converse problem reads as follows:

Let Bλ, λ ∈ Λ, be a partition of the time-frequency plane into a disjoint
union of Heisenberg boxes. Does there exist an ‘adapted orthonormal basis’ ψλ,
λ ∈ Λ?

The basis ψλ, λ ∈ Λ, is adapted to the corresponding Heisenberg boxes Bλ

if, for any λ ∈ Λ, the Wigner transform of ψλ is ‘almost supported’ by Bλ. In
other words this Wigner transform is O(N−q), q = 1, 2, . . . outside the dilated
boxes N Bλ as N tends to infinity. This relation between orthonormal bases
and coverings of the time-frequency plane paved the way to D.Gabor’s work
and to my own contribution.
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Dennis Gabor (Nobel prize laureate) was familiar with Wigner’s ideas
and proposed (1945) to decompose speech signals into a linear com-
bination of ‘logons’ which are aimed at modeling what linguists call
phonemes. Today these logons are named Gabor wavelets. Gabor wavelets
wk,l(t) = exp(−(t− k)2) exp(2πtl), k, l ∈ Z, are associated to a partition of
the time-frequency plane with ‘disjoint congruent squares’ Qk,l defined by

Qk,l = {(t, ω) ∈ [k − 1/2, k + 1/2]× [2πl − π, 2πl + π], k, l ∈ Z}.
Gabor thought that his wavelets were a basis. Forty years later the scientific
landscape changed. We know that Gabor was wrong. The unexpected twist
which is needed to fix this problem was suggested in the early eighties by
Kenneth Wilson, a Nobel prize laureate. At the same time Henrique Malvar
discovered the same recipe independently. Wilson’s claim was proved to be
true in a beautiful paper by Ingrid Daubechies, Stéphane Jaffard and Jean-Lin
Journé. This finding happened to be seminal in the detection of gravitational
waves [5].

We now leave time-frequency atoms and reach time-scale wavelets. In his
work on the renormalization of critical phase transitions, K. Wilson (1972)
asserted (without proof) the existence of orthonormal wavelet bases of the
form 2nj/2ψ(2jx − k), j ∈ Z, k ∈ Zn, where ψ belongs to the Schwartz class.
In one dimension the corresponding Heisenberg boxes Bj,k,η are defined by

Bj,k,η = {(t, ω) ∈ [k2−j − 2−j−1, k2−j + 2−j−1]× [ηπ2j , ηπ2j+1], k, j ∈ Z, η = ±1}.
Today we know that 2n − 1 such ‘mother wavelets’ ψ are needed in n dimen-
sions. A few years later (1977) A. Croisier, D. Esteban and C. Galand (IBM
Company) designed the famous quadrature mirror filters. Their work concerned
the new-born digital telephone. It seemed that time was ripe for constructing
time-scale wavelets after Wilson’s claims and the discovery of quadrature mir-
ror filters. It did not happen that way, the construction of time-scale wavelets
took about ten years and did not follow the main road. The beautiful con-
nection between quadrature mirror filters and orthonormal wavelet bases was
discovered much later by Stéphane Mallat.

Here is the story. We owe time-scale wavelets to Jean Morlet. In the seventies
Jean Morlet was a research scientist working for the Elf-Aquitaine Co. He was
using Gabor wavelets to process seismic data. He was puzzled by some artifacts
which came out in this processing. He understood that these artifacts were
coming from some strong transients in the data. He knew that Fourier analysis
is adapted to stationary signals and may perform poorly in other situations.
Similarly Gabor wavelets are adapted to quasi-stationary signals. An example
of a quasi-stationary signal is given by the tonal component of an audio signal.
That is how and why in the late seventies Morlet switched from time-frequency
wavelets to time-scale wavelets. In his work on non-stationary signals, J. Morlet
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revived an identity which was previously discovered by A. Calderón in the late
fifties. Morlet was unaware of Calderón’s work. Morlet could not prove his
identity and was advised by Roger Balian to meet Alex Grossmann.

Alex Grossmann was a renowned physicist who has been mainly working in
quantum mechanics. He proved the identity which was proposed by Morlet. He
did it using the theory of coherent states in quantum mechanics. Grossmann
was unaware of K.Wilson’s claims. Then Grossmann and Morlet began a fruit-
ful collaboration and promoted a continuous wavelet analysis which yields a
highly redundant representation of a signal in the time-frequency plane. Gross-
mann and Morlet coined the word time-scale plane to stress the special features
of their representation.

At about the same time J-O. Strömberg constructed an orthonormal wavelet
basis (1981) in which the mother wavelet ψ is smooth (r continuous deriva-
tives) and localized (exponential decay). Strömberg was unaware of K. Wilson’s
work. He was not interested in signal processing at that time. Strömberg re-
lated wavelet expansions to the theory of unconditional bases of Banach spaces.
An unconditional basis yields improved stability in numerical analysis. Indeed
the quantization noise (real numbers are replaced by digital approximations)
does not damage expansions in an unconditional basis. That is why orthonor-
mal wavelet expansions are numerically stable in most function spaces, while
Fourier expansions are unstable. This stability is crucially needed in Donoho’s
work on wavelet shrinkage. Here we are anticipating since Donoho’s achieve-
ments on denoising appeared in 1993. One wants to recover a signal which
has been altered by an additive white noise. Some a priori knowledge on this
signal is assumed. This knowledge is given in terms of smoothness or shape.
The recipe consists in putting to 0 all the wavelet coefficients whose magni-
tude is smaller than a small constant depending on the noise level. The other
coefficients are moved towards 0 by an amount given by this small constant.
This wavelet shrinkage does not alter the a priori knowledge on the signal if
wavelets form an unconditional basis of the Banach space which is used in the
modeling.

My contribution consisted in organizing these separate findings into a uni-
fied theory. In 1984, I related the Grossmann-Morlet wavelets to Calderón’s
work. Motivated by my joint work with Ingrid Daubechies [4] I constructed
(1985) an orthonormal wavelet basis of L2(Rn) of the form 2nj/2ψ(2jx − k),
j ∈ Z, k ∈ Zn, where ψ belongs to the Schwartz class. Indeed 2n−1 such func-
tions ψ are needed. The n dimensional case is a joint work with Pierre-Gilles
Lemarié [7]. K.Wilson’s claims were given a scientific status. Then I discov-
ered that these wavelets are the approximate eigenfunctions of many of the
generalized Calderón-Zygmund singular integral operators I had constructed
with R.R. Coifman. This yielded sparse matrix representations and has far
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reaching applications in numerical analysis. Finally I stressed the relevance of
Strömberg’s work.

The digital revolution bloomed in the eighties and efficient algorithms were
crucially needed in signal and image processing. The JPEG standard (still
image compression) was developed at that time. In 1987 Ingrid Daubechies
achieved the outstanding construction of compactly supported wavelets with
an assigned regularity. Moreover she designed efficient (i.e. stable) and fast
algorithms for computing the corresponding wavelet coefficients.

As it was said above my unified theory was further completed by Stéphane
Mallat. In 1986, still being a graduate student, Mallat understood that the
quadrature mirror filters designed by Esteban and Galand were paving the
road to the construction of orthonormal wavelet bases. Mallat also made the
connection with the pyramidal algorithms of Burt and Adelson. This bridged
gaps between (1) orthonormal wavelet bases, (2) pyramidal algorithms in image
processing, and (3) numerical analysis. Finally A.Cohen proved that generic
quadrature mirror filters generate orthonormal wavelets.

Ingrid Daubechies and Albert Cohen designed bi-orthogonal wavelet bases
with compact supports. By renouncing to orthogonality they could impose
symmetry which is crucial in image processing. These algorithms are used in
the new-born standard for still image compression (JPEG2000) and are also
present inside existing toolkits which are used in signal or image processing.

Today wavelets and multiscale methods are present in numerical analysis,
signal and image processing, and statistics. But the fundamental issue raised
by Eugene Wigner is still open. It consists in finding the optimal unfolding of
a given signal f in the time-frequency plane. It is what the Wigner transform
of f is aimed at doing but does not actually do. Let us describe some tentative
work in this direction.

The Yale group around Raphy Coifman proposed an interesting answer to
the problem raised by Eugene Wigner. Coifman used a deep observation which
was already mentioned: orthonormal bases are labelled by partitions of the
time-frequency plane. Here are some examples. Paving the plane with con-
gruent squares leads to Gabor wavelets. More precisely it leads to the Malvar-
Wilson basis which is the orthogonal version of the Gabor wavelets. If one is us-
ing Heisenberg boxes of the form [k2−j , (k + 1)2−j)× [ηπ2j , ηπ2j+1), k, j ∈ Z,
η = ±1, usual orthonormal wavelet bases are obtained. But infinitely many
other choices exist. Among these new bases we find wavelet-packets which yield
an adaptive filtering of a given signal s(t). If one is looking for an adaptive seg-
mentation of s(t), local trigonometric bases should be used. The discovery of
local trigonometric bases was anticipated by Henrique Malvar who was working
on audio signals, and also by Martin Vetterli.
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The best basis algorithm was proposed by the Yale group. A library of bases
is given. Each ‘book’ in the library is an orthonormal basis composed of time-
frequency atoms. Each ‘book’ is accessed by a fast algorithm. The best basis
algorithm selects the basis in which the representation of a given signal is the
‘shortest one’. A similar definition extends to a collection C of signals equipped
with some probability measure µ which tells how likely a given signal is to be
found in C. Sparsity is measured by the entropy of the string of coefficients
which appears in the expansion and is averaged over µ. This approach paves
the road between time-frequency analysis and other best basis algorithms as
Karhunen-Loève expansions or Independent Component Analysis (ICA).

Wavelet series expansions have some remarkable mathematical properties
which Fourier series expansions cannot offer. Stéphane Jaffard proved that one
can evaluate the Hölder exponent of a continuous function f at a given point
x0 by size estimates on the wavelet coefficients of f around x0. The precise
statement can be found in [6]. Antoni Zygmund was extremely surprised by
this theorem. Indeed Fourier series expansions cannot achieve this goal. That
is why wavelets are seminal in multifractal analysis, a chapter of mathematical
physics which was opened by Uriel Frisch and Giorgio Parisi and developed by
Jaffard.

An unexpected vindication of wavelet analysis ends this section. The 14th of
September 2015 gravitational waves were detected by the LIGO observatories.
The algorithm used in this detection was elaborated by Sergey Klimenko. Time-
frequency wavelets are playing a seminal role in Klimenko’s algorithm. As it
was said above Klimenko’s algorithm is based on the remarkable Malvar-Wilson
basis constructed by I. Daubechies, Stéphane Jaffard and Jean-Lin Journé [5].

1.5. Navier-Stokes equations (1994–1999). — My interest in Navier-Stokes
equations arose from the wavelet revolution and, more precisely, by a question
raised by Jacques-Louis Lions. J-L. Lions wanted to know my opinion on
an intriguing paper by Guy Battle and Paul Federbush entitled ‘Navier and
Stokes meet the wavelets’. Lions was not convinced by the paper and asked me
for a deeper analysis. This paper was motivated by the following remarks. It
was reasonable to believe that wavelet based Galerkin schemes could overcome
pseudo-spectral algorithms which were acknowledged as being the best solvers
for Navier-Stokes equations. This belief was grounded on some well known
observations: Turbulent flows are active over a full range of scales and one
is tempted (1) to decouple Navier-Stokes equations as a sequence Ej , j ∈ Z,
of equations where the evolution is confined to a given scale 2−j and (2) to
understand the nonlinear interactions between scales and the energy transfers
across scales. But the only existing algorithms which permit to travel across
scales while keeping an eye on the frequency contents are the Littlewood-Paley
expansion or the wavelet analysis. Furthermore micro-local analysis and

DOCUMENTS MATHÉMATIQUES 22



A WANDERER 17

Littlewood-Paley expansions have been successfully applied to Navier-Stokes
or Euler equations by Jean-Yves Chemin and his students. Times were ripe
for replacing Littlewood-Paley analysis by fast numerical schemes which have
the same scientific contents, i.e. by wavelet analysis.

But this endeavour was not a success story. As often in science, something
else was found. Marco Cannone made two main discoveries. He proved that
Littlewood-Paley expansions were more effective than the wavelet expansions
used in the Battle-Federbush paper. He then observed that a strategy due to
Fujita and Kato but also used by Cazenave and Weissler was even more effec-
tive. Once this was clarified, Marco Cannone and Fabrice Planchon improved
on the Fujita-Kato theorem. Indeed they proved global existence for solutions
u(x, t) ∈ C([0,∞), L3(R3)) to the Navier-Stokes equations whenever the initial
condition u0 is oscillating. Uniqueness was proved by Pierre-Gilles Lemarié a
few years later. The oscillating character of u0 is defined by the smallness of a
Besov norm in a suitable Besov space Bp, 3 ≤ p < ∞, the precise bound de-
pending on p. An equivalent condition is given by simple size estimates of the
wavelet coefficients. These methods did not apply to the limiting case p = ∞.
The best result in this direction was finally obtained by Herbert Koch and
Daniel Tataru. M.Cannone, Pierre-Gilles Lemarié, and F.Planchon prepared
their PhD under my direction.

1.6. The div-curl lemma. — In 1989 I was a professor at Université Paris-
Dauphine. One day Pierre-Louis Lions jumped into my office, happy and en-
ergetic and asked me if the following fact could be true: Let E = (E1, . . . , En)
and R = (R1, . . . , Rn) be two vector fields belonging to (L2(Rn))n. Let us as-
sume that the divergence of E is identically 0 and that the curl of R is also
identically 0. Then Pierre-Louis Lions claimed that the pointwise inner prod-
uct f(x) = E(x) · R(x) = E1(x)R1(x) + · · · + En(x)Rn(x) should belong to
the Hardy space H1(Rn). I was skeptical and answered to Pierre-Louis “If it
were true, I would know it”. My answer was ridiculous since I proved Pierre-
Louis’s claim during the night. Other proofs were discovered by R. Coifman
and S. Semmes [1, 2]. We have more: Let us assume now that E belongs to Lp

and R to Lq where 1 < p <∞ and 1/p+1/q = 1. Then the same hypothesis on
the divergence of E and on the curl of B implies that E(x)·R(x) belongs to the
Hardy space H1(Rn). This is striking since each product Ej(x)Rj(x) belongs
to L1 but certainly not to H1(Rn). There is a hidden cancellation occurring in
the sum. When I could prove this theorem I immediately sent the proof to Eli
Stein. He was delighted. This theorem is deeply related to the famous div-curl
lemma of F. Murat and L.Tartar (1978). The remarkable paper On the product
of functions in BMO and H1 by Aline Bonami, Tadeusz Iwaniec, Peter Jones,
and Michel Zinsmeister belongs to this line of research.
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1.7. Improved Sobolev embeddings (2000–2004). — My interest in nonlinear
evolution equations oriented my research in another direction. The above men-
tioned results let me hope that a functional norm could govern the eventual
blowup of Navier-Stokes equations. This endeavour opened a program which
was completed by some unexpected improvements on Gagliardo-Niremberg in-
equalities. For a number of nonlinear evolution equations, blowup may happen
even if the initial condition is smooth and compactly supported. The new
Gagliardo-Nirenberg inequalities improve our understanding of the occurrence
of blow-up for solutions of the nonlinear heat equation. More precisely these
new Gagliardo-Nirenberg inequalities explain why there is no blowup when the
initial condition is oscillating. Our approach does not yield new results here
but places classical facts in a new perspective.

This line of research led to important results by Albert Cohen, Ingrid
Daubechies, Michel Ledoux and Ron DeVore.

A reference is [16].

1.8. Image processing. — My work in image processing stems from my friend-
ship with Jean-Michel Morel. Morel is suggesting that I was his mentor when
we were together at Université Paris-Dauphine. My enthusiasm for signal pro-
cessing would have been contagious and have led him to image processing.
Then he built his extraordinary school. I am feeling quite the opposite and
I can assert that Morel was my mentor and my guide. In the Greek mythol-
ogy, Mentor was the tutor of Telemachus. In [16] I proposed a new model for
still image processing. It is a refinement on a celebrated model proposed by
S. Osher, L. Rudin, and E. Fatemi. It amounts to see textures as oscillating
patterns and to use some adapted functional spaces to model such textures.
This line of research was followed by V. Caselles, A. Chambolle, L. Vese, and
by my students Jérôme Gilles and Ali Haddad.

1.9. Crystalline measures, quasicrystals and irregular sampling. — Since 2010
I am collaborating with Alexander Olevskii. It is delightful. We were addressing
some intriguing issues on irregular sampling. This line of investigation has
some unexpected connections with quasicrystals and with the work of Andrew
Guinand in number theory. I could prove some intriguing results announced
by Guinand [18, 19]. I found a new proof of a beautiful theorem by Hans
Hamburger relating quasicrystals to zeta functions [21].

I proved that a locally finite set Λ ⊂ Rn is a coherent set of frequencies if and
only if Λ has the Bochner property [20]. The Bochner property is the following
assertion: for any Radon measure µ on the Bohr compactification of Rn there
exists a bounded Radon measure ν on Rn such that the Fourier transforms of
µ and ν coincide on Λ.
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2. Key Career Highlights

Appointments

1999–2008: Professor at École Normale Supérieure de Cachan
1995–1999: Full research position at CNRS
1985–1995: Professor at Université Paris-Dauphine
1980–1986: Professor at École polytechnique
1966–1980: Professor at Université Paris-Sud
1963–1966: Teaching assistant at Université de Strasbourg
1960–1963: High school teacher
1957–1960: École Normale Supérieure (Ulm)

Scientific distinctions. — Peccot Prize (1969), Salem Prize (1970), Carrière
Prize (1972), Grand Prix de l’Académie des Sciences (1984), Gauss Prize
(2010), Abel Prize (2017), Membre de l’Académie des sciences (France), For-
eign Honorary Member of the American Academy of Arts & Sciences, Foreign
Associate of the National Academy of Sciences, Member of the Norwegian
Academy of Science and Letters, Doctor honoris causa of Universidad Au-
tonoma de Madrid, Doctor honoris causa of EPFL.

Ph.D. students supervised by Yves Meyer. — Aline Bonami, Noel Lohoué,
Jean-Pierre Schreiber, Michel Bruneau (codir. P-A. Meyer), Marc Frisch,
Françoise Piquard (codir. N. Varopoulos), Gérard Bourdaud, Alain Yger,
Michel Zinsmeister, Jean-Lin Journé, Guy David, Michel Emsalem, François
Gramain, Jean-Paul Allouche, Miguel Escobedo Martinez (codir. H. Brezis),
Pierre-Gilles Lemarié, Martin Meyer, Philippe Tchamitchian, Chantal Tran-
Oberlé, Mohamed El Hodaibi, Oscar Barraza, Yang Qi Xiang, Ramzi Labidi,
Pascal Auscher, Stéphane Jaffard, Albert Cohen, Salifou Tembely, Sylvia
Dobyinski, Sylvain Durand, Taoufik El Bouayachi, Marco Cannone, Freddy
Paiva, Khalid Daoudi (codir. J. Levy-Véhel, INRIA), Abderrafiaa El-Kalay,
Hong Xu, Fabrice Planchon, Fatma Trigui, Patrick Andersson, Antoine
Ayache, Henri Oppenheim, Mehdi Abouda, Guillaume Bernuau, Frédéric Oru,
Lorenzo Brandolese, Soulaymane Korry (codir. B. Maurey), Ali Haddad, Diego
Chamorro, Jérôme Gilles, Xiaolong Li.
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