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WHY ARE BRAIDS ORDERABLE?

Patrick Dehornoy, Ivan Dynnikov, Dale Rolfsen, Bert Wiest

Abstract. — In the decade since the discovery that Artin’s braid groups enjoy a
left-invariant linear ordering, several quite different approaches have been applied to
understand this phenomenon. This book is an account of those approaches, involving
self-distributive algebra, uniform finite trees, combinatorial group theory, mapping
class groups, laminations, and hyperbolic geometry.

Résumé (Pourquoi les tresses sont-elles ordonnables ?). — Environ dix ans ont passé
depuis la découverte du caractère ordonnable des groupes de tresses, et des méthodes
diverses ont été proposées pour expliquer le phénomène. Le but de ce texte est de
présenter ces approches variées, qui mettent en jeu l’algèbre auto-distributive, les
arbres finis, la théorie combinatoire des groupes, les groupes de difféomorphismes, la
théorie des laminations, et la géométrie hyperbolique.

Ein Jahrzehnt ist vergangen seit der Entdeckung, dass Artins Zopfgruppen eine
links-invariante Ordnung besitzen, und verschiedene Methoden wurden in der Zwi-
schenzeit vorgeschlagen, um zu einem tieferen Verständnis dieses Phänomens zu ge-
langen. Ziel dieses Buches ist es, ein Resümee dieser Techniken zu geben. Selbst-
distributive Algebren, endliche Bäume, kombinatorische Gruppentheorie, Abbildungs-
klassengruppen, Laminationen, und hyperbolische Geometrie kommen dabei zusam-
men.

Za des�t� let, proxedxie posle otkryti�, qto artinovskie gruppy kos
oblada�t levoinvariantnym lineĭnym por�dkom, voznik celyĭ r�d razliq-
nyh podhodov dl� ob��sneni� �togo �vleni�. Danna� kniga posv�wena opi-
sani� �tih podhodov, kotorye osnovany na samodistributivnyh operaci�h,
teorii odnorodnyh koneqnyh derev�ev, kombinatornoĭ teorii grupp, grup-
pah klassov otobra#eniĭ, laminaciah i giperboliqeskoĭ geometrii.
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INTRODUCTION

An idea whose time was overdue.

This book is about braids and orderings. The braid groups Bn were introduced by
Emil Artin [2] in 1925 (see also [3]) and have been studied intensively ever since [17,
20]. Indeed, many of the ideas date back to the 19th century, in the works of Hurwicz,
Klein, Poincaré, Riemann, and certainly other authors. One can even find a braid
sketched in the notebooks of Gauss [66]—see [123] for a discussion about Gauss and
braids, including a reproduction of the picture he drew in his notebook. The n-strand
braid group Bn has the well-known presentation (other definitions will be given later):

Bn = 〈σ1, . . . , σn−1 ; σiσj = σjσi for |i− j| � 2, σiσjσi = σjσiσj for |i− j| = 1〉.

We use B+
n for the monoid with the above presentation, which is called the n-strand

braid monoid. To each braid, there is an associated permutation of the set {1, . . . , n},
with σi �→ (i, i + 1), defining a homomorphism Bn → Sn, where Sn denotes the
symmetric group on n objects. The kernel of this mapping is the pure braid group Pn.

The theory of ordered groups is also well over a hundred years old. One of the basic
theorems of the subject is Hölder’s theorem, published in 1902 [75], that characterizes
the additive reals as the unique maximal Archimedian ordered group. It is remarkable,
and somewhat puzzling, that it has taken so long for these two venerable subjects to
come together as they now have.

A group or a monoid G is left-orderable if there exists a strict linear ordering < of
its elements which is left-invariant: g < h implies fg < fh for all f , g, h in G. If, in
addition, the ordering is a well-ordering, we say that G is left-well-orderable. If there
is an ordering of G which is invariant under multiplication on both sides, we say that
G is orderable, or for emphasis, bi-orderable. This book is devoted to explaining the
following results, discovered within the last decade:

Theorem I.1. — The Artin braid group Bn is left-orderable, by an ordering which is
a well-ordering when restricted to B+

n .

Theorem I.2. — The pure braid group Pn is bi-orderable, by an ordering which is a
well-ordering when restricted to Pn ∩B+

n .



viii INTRODUCTION

The braid groups have been an exceptionally active mathematical subject in recent
decades. The field exploded in the mid 1980’s with the revolutionary discoveries of
Vaughan Jones [78], providing strong connections with operator theory, statistical
mechanics and other notions of mathematical physics. Great strides have been made
in recent years in understanding the very rich representation theory of the braid
groups. The classical Burau representation [13] was shown to be unfaithful [108],
[97]. The long-standing question of whether the braid groups are linear (isomorphic
to finite-dimensional matrix groups) was recently answered in the affirmative, by Daan
Krammer [84, 85] and Stephen Bigelow [6].

Despite the high degree of interest in braid theory, the importance of the left-
orderability of the braid groups, announced in 1992 [33], was not widely recognized
at first. A possible explanation for this is that the methods of proof were rather
unfamiliar to most topologists, the people most interested in braid theory. As will
be seen in Chapter 2, that proof involves rather delicate combinatorial and algebraic
constructions, which were partly motivated by (while being logically independent of)
questions in set theory — see [81] for a good introduction. Subsequent combinatorial
work brought new results and proposed new approaches: David Larue established
in [88, 87] results anticipating those of [59], Richard Laver proved in [93] that the
restriction of the braid ordering to B+

n is a well-ordering (presumably the deepest
result known so far about the braid order), Serge Burckel gave an effective version of
the latter result in [14, 15]. However, these results were also not widely known for
several years.

The challenge of finding a topological proof of left-orderability of Bn led to the five-
author paper [59], giving a completely different construction of an ordering of Bn as a
mapping class group. Remarkably, it leads to exactly the same ordering as [33]. Soon
after, a new technique [130] was applied to yield yet another proof of orderability of
the braid groups (and many other mapping class groups), using ideas of hyperbolic
geometry, and moreover giving rise to many possible orderings of the braid groups.
This argument, pointed out by William Thurston, uses ideas of Nielsen [111] from the
1920’s. It is interesting to speculate whether Nielsen himself might have solved the
problem, if asked whether braid groups are left-orderable in the following language:
Does the mapping class group of an n-punctured disk act effectively on the real line
by order-preserving homeomorphisms? Nielsen had laid all the groundwork for an
affirmative answer.

More recently, a new topological approach using laminations was proposed, one
that is also connected with the Mosher normal form based on triangulations [109].
Also, a combinatorial interpretation of the results of [130] was proposed by Jonathon
Funk in [64], including a connection with the theory of topoi.

The braid groups are known to be automatic [137]. Without burdening the reader
with technical details, it should be mentioned that the ordering of Bn and certain

PANORAMAS & SYNTHÈSES 14



THE IMPORTANCE OF BEING ORDERABLE ix

other surface mapping class groups (nonempty boundary) can be considered auto-
matic as well, meaning roughly that it may be determined by some finite-state au-
tomaton [128].

Theorem I.2 appeared in [82], and it relies on a completely different approach,
namely using the Magnus representation of a free group. Subsequent work [127] has
shown how different general braid groups Bn and the pure braid groups Pn are from
the point of view of orderability: in particular, for n � 5, the group Bn is not locally
indicable, which implies that it is not bi-orderable in a strong sense, namely that no
left-ordering of Bn can bi-order a subgroup of finite index, such as Pn [125].

The importance of being orderable

As will be recalled in Chapter 1, the orderability of a group implies various struc-
tural consequences about that group and derived objects. The fact that Bn is left-
orderable implies that it is torsion-free, which had been well known. However, it
also implies that the group ring ZBn has no zero-divisors, which was a natural open
question. Biorderability of Pn shows that ZPn embeds in a skew field. In addition, it
easily implies that the group Pn has unique roots, a result proved in [4] by complicated
combinatorial arguments, and definitely not true for Bn.

One may argue that such general results did not dramatically change our un-
derstanding of braid groups. The main point of interest, however, is not—or not
only—the mere existence of orderings on braid groups, but the particular nature and
variety of the constructions we shall present. Witness the beautiful way the order
on Pn is deduced from the Magnus expansion in Chapter 9, the fascinating connec-
tion between the uncountable family of orderings on Bn constructed in Chapter 7 and
the Nielsen–Thurston theory, and, chiefly, the specific properties of one particular
ordering on Bn. Here we refer to the ordering of Bn sometimes called the Dehornoy
ordering in literature, which will be called the σ-ordering in this text.

Typically, it is the specific form of the braids greater than 1 in the σ-ordering that
led to the new, efficient algorithm for the classical braid isotopy problem described in
Chapter 3, and motivated the further study of the algorithms described in Chapters 6
and 8. But what appears to be of the greatest interest here is the remarkable conver-
gence of many approaches to one and the same object: at least six different points of
view end up today with the σ-ordering of braids, and this, in our opinion, is the main
hint that this object has an intrinsic interest. Just to let the reader feel the flavour of
some of the results, we state below various characterizations of the σ-ordering—the
terms will be defined in the appropriate place. So, the braid β1 is smaller than the
braid β2 in the σ-ordering if and only if

– (in terms of braid words) the braid β−1
1 β2 has a braid word representative where

the generator σi with smallest index i appears only positively (no σ−1
i );

– (in terms of action on self-distributive systems) for some/any ordered LD-
system (S, ∗, <), and for some/any sequence �x in S, we have �x · β1 <Lex �x · β2;
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x INTRODUCTION

– (in terms of braid words combinatorics) any sequence of handle reductions from
any braid word representing β−1

1 β2 ends up with a σ-positive word;
– (in terms of trees, assuming β1 and β2 to be positive braids) the irreducible

uniform tree associated with β1 is smaller than the one associated with β2;
– (in terms of automorphisms of a free group) for some i, the automorphism

associated with β−1
1 β2 maps xj to xj for j < i, and it maps xi to a word that

ends with x−1
i ;

– (in terms of mapping class groups) the standardized curve diagram associated
with β1 first diverges from the one associated with β2 towards the left;

– (in terms of hyperbolic geometry) the endpoint of the lifting of β1(γa) is larger
(as a real number) than the endpoint of the lifting of β2(γa);

– (in terms of free group ordering) we have β1 · z � β2 · z in F̂∞;
– (in terms of Mosher’s normal form) the last flip in the normal form of β−1

2 β1
occurs in the upper half-plane.

– (in terms of laminations) the first nonzero coefficient of odd index in the se-
quence β−1

1 β2 · (0, 1, . . . , 0, 1) is positive.
Even if the various constructions of the σ-ordering depend on choosing a partic-

ular family of generators for the braid groups, namely the Artin generators σi, this
convergence might suggest to call this ordering canonical or, at least, standard. This
convergence is the very subject of this text: our aim here is not to give a com-
plete study of any of the different approaches—so, in particular, our point of view
is quite different from that of [39] which more or less exhausts the combinatorial
approaches—but to try to let the reader feel the flavour of these different approaches.
More precisely—and with the exceptions of Chapter 7 which deals with more general
orderings, and of Chapter 9 which deals with ordering pure braids—our aim will be to
describe the σ-ordering of braids in the various possible frameworks: algebraic, com-
binatorial, topological, geometric, and to see which properties can be established by
each technique. As explained in Chapter 1, exactly three properties of braids, called
A, C, and S here, are crucial to prove that the σ-ordering exists and to establish
its main properties. Roughly speaking, each chapter of the subsequent text (except
Chapters 7 and 9) will describe one possible approach to the question of ordering the
braids, and, in each case, explain which of the properties A, C, and S can be proved:
some approaches are relevant for establishing all three properties, while others enable
us only to prove one or two of them, possibly assuming some other one already proved.

Organization of the text

Various equivalent definitions of the braid groups are described in Chapter 1, which
also includes a general discussion of orderable groups and their rather special algebraic
properties. The well-ordering of B+

n is also introduced in this chapter.
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ORGANIZATION OF THE TEXT xi

The remaining chapters contain various approaches to the orderability phe-
nomenon. The combinatorial approaches are gathered in Chapters 2 to 5, while the
topological approaches are presented in Chapters 6 to 8.

Chapter 2 introduces left self-distributive algebraic systems (LD-systems) and the
action of braids upon such systems. This is the technique whereby the orderability of
braids was first demonstrated and the σ-ordering introduced. The chapter sketches a
self contained proof of left-orderability of Bn, by establishing Properties A, C (actu-
ally details are given only for its weak variant C∞) and S with arguments utilizing
LD-systems. Here we consider colourings of the strands of the braids, and observe
that the braid relations dictate the self-distributive law among the colours. Then
we can order braids by choosing orderable LD-systems as colours, a simple idea yet
the existence of an orderable LD-system requires an indirect argument. The chapter
concludes with a discussion of the historical origins of orderable LD-systems, which
arise in the study of elementary embeddings in the foundations of set theory.

A combinatorial algorithm called handle reduction is the subject of Chapter 3.
This procedure, which extends the idea of word reduction in a free group, is a very
efficient procedure in practice for determining whether a braid word represents a
braid larger than 1, and incidentally gives a rapid solution to the word problem in
the braid groups. Handle reduction gives an alternative proof of Property C, under
the assumption that Property A holds.

Another combinatorial technique, due to Serge Burckel, is to encode positive braid
words by finite trees. This is the subject of Chapter 4, in which one proves that the
restriction of the σ-ordering to B+

n is a well-ordering by considering a natural ordering
of the associated trees and using a tricky transfinite induction. This approach provides
arguments for Properties C and S, however assuming (as with handle reduction)
Property A. The advantage of the method is that it assigns a well-defined ordinal to
each braid in B+

n . By using a variant of the σ-ordering, one obtains a well-ordering
of B+

∞.
Chapter 5 contains an approach to the σ-ordering using a very classical fact, that

the braid groups can be realized as a certain group of automorphisms of a free group.
As observed by David Larue, this method yields a quick proof of Property A, an
alternative proof of PropertyC (hence an independent proof of left-orderability ofB∞)
and a simple criterion for recognizing whether a braid is σ-positive, in terms of its
action on the free group.

We begin the topological description of the σ-ordering in Chapter 6. Here we
realize Bn as the mapping class group of a disk with n punctures. The braid action
can be visualized by use of curve diagrams which provide a canonical form for the
image of the real line, if the disk is regarded as the unit complex disk. This was
the first geometric argument for the left-orderability of the braid groups, and it is
remarkable that the ordering described in this way is identical with the original, i.e.,
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xii INTRODUCTION

with the σ-ordering. An advantage of this approach is that it also applies to more
general mapping class groups. We emphasize that Chapters 5 and 6 are based on very
similar ideas, except that the first one is algebraic while the second is more geometric.

The discussion in Chapter 7 interprets braid orderings in terms of Nielsen–Thur-
ston theory. The key observation is that the universal cover of the punctured disk
has a natural embedding in the hyperbolic plane. Thereby, braids act on a family
of hyperbolic geodesics, which have a natural ordering. This point of view provides
an infinitude of inequivalent orderings of braid groups and many other mapping class
groups. The σ-ordering on Bn corresponds to choosing a particular geodesic in H2.
We also outline in this chapter the interpretation developed by Jonathon Funk, in
which a certain linear ordering of words in the free group is preserved under the braid
automorphisms as considered in Chapter 5.

Chapter 8 continues the discussion of the σ-ordering in terms of mapping classes.
However, here, the geometric approach is rephrased in combinatorial terms by use
of two somewhat different devices involving triangulations. The first was inspired by
the technique employed by Lee Mosher to establish that mapping class groups are
automatic. It develops a new canonical form for braids and a method for determining
σ-ordering by means of a finite state automaton. The second approach, developed
in [53], uses integral laminations. One encodes the action of a braid on the disk
by counting intersections of the image of a certain triangulation with a lamination.
This leads to an independent proof of Property A and yet another characterization
of braids larger than 1 in the σ-ordering.

The final chapter is an account of an ordering of the pure braid groups. Unlike
the full braid groups, the groups Pn of pure braids can be given an ordering which is
invariant under multiplication on both sides. This ordering is defined algebraically,
using the Artin combing technique, together with a specific ordering of free groups
using the Magnus expansion. By appropriate choice of conventions, this ordering
has the property that braids in Pn ∩ B+

n are larger than 1 and well-ordered. The
chapter ends with a discussion showing that any two-sided ordering of Pn is necessarily
incompatible with every left-ordering of Bn for n � 5.

Guidelines to the reader

There are many sorts of readers who may be interested in this text, with various
styles of mathematical understanding. Thus different approaches are bound to appeal
to different readers. The reader with a mostly algebraic or combinatorial culture
may feel uncomfortable with informal definitions in the geometric constructions of
Chapters 6, 7, or 8, while another reader coming from the world of topology or
geometry may find Chapter 2 and, even more, Chapter 4 quite mysterious, and lacking
conceptual understanding in the case of the latter. It is impossible to claim that one
approach is definitely better than another, as every one of them brings some specific
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result or intuition that is so far inaccessible to the others. An attempt has been made
to keep the chapters relatively self-contained; so, apart from Chapter 1, all chapters
are parallel one to the other rather than logically interdependent, and, therefore, from
Chapter 2, the reader can take the chapters essentially in whatever order he or she
likes.

We mentioned that three properties of braids called A, C, and S play a crucial
role, and that our main task in this text will be to prove these properties using various
possible approaches. In spite of the above general remarks, it might be useful that
we propose answers to the question: which of these approaches offers the quickest,
or the most elementary, proof of Properties A, C, and S? The answer depends of
course on the mathematical preferences of the reader. As for PropertyA, the shortest
proofs are the one using the automorphisms of a free group in Chapter 5, and—even
shorter once the formulas (8.5.14) have been guessed—the one using laminations in
Chapter 8. The argument involving self-distributivity by contrast is more conceptual
and naturally connected with orderings, but it is technically quite involved. As for
Property C, the shortest argument is probably the one involving self-distributivity as
outlined in Chapter 2, but one may prefer the approach through handle reduction,
which uses nothing exotic and gives an efficient algorithm in addition, or the curve
diagram approach of Chapter 6, which gives a less efficient method and requires
considerable effort to be made rigorous, but appeals to a natural geometric intuition.
Finally, for Property S, the hyperbolic geometry argument of Chapter 7 is probably
the more interesting one, as it gives the result not only for the σ-ordering, but also
for a whole family of different orderings. On the other hand, even if it may appear
conceptually less satisfactory in its present exposition, the combinatorial approach of
Chapter 4 gives the most precise and effective version of Property S.

Although they are conceptually simple, the braid groups are very subtle nonabelian
groups which have given up their secrets only reluctantly over the years. They will
undoubtedly continue to supply us with surprises and fascination, and so will in
particular their orderings: despite the many approaches and results mentioned in the
text below, a lot of questions about braid orderings remain open today, and further
developments can be expected. For the moment, we hope that this small text, which
involves techniques of algebra, combinatorics, hyperbolic geometry, topology, and has
even a loose connection with set theory, can illuminate some facets of the question,
“Why are braids orderable?”

The preparation of this text was coordinated by P.D.; Chapters 2 to 4 have been
mostly written by P.D., Chapters 6 and 7 by B.W., Chapter 8 by I.D., and Chapter 9
by D.R.; the other chapters are common work of two or more authors.

We thank all colleagues and friends who have suggested corrections or improve-
ments, specially Roger Fenn and Christian Kassel. We also thank Hervé Sibert for
his help in practical implementations, and the referees for their valuable suggestions.
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CHAPTER 1

A LINEAR ORDERING OF BRAIDS

In this chapter, we briefly recall some of the standard definitions of the braid groups.
Then we introduce three basic properties of braids, called A, C, and S in the sequel,
and we show how they allow us to define a linear ordering of braids that is compatible
with multiplication on one side. Finally, we describe some general properties of this
ordering.

1.1. Braid groups

As mentioned before, the Artin braid group on n strands, denoted by Bn, is defined
by the presentation

Bn = 〈σ1, . . . , σn−1 ; σiσj = σjσi for |i− j| � 2, σiσjσi = σjσiσj for |i− j| = 1〉.

The braid group on infinitely many strands, denoted B∞, is defined by a presentation
with infinitely many generators σ1, σ2, . . . subject to the same relations.

The aim of this section is to show how the groups Bn arise in several different ways
as special cases of some natural mathematical objects in geometry and algebra.

1.1.1. Isotopy classes of braid diagrams. — Let D2 be the unit disk with cen-
tre 0 in the complex plane C, and let Dn be the disk D2 with n regularly spaced points
in the real axis as distinguished points; we call these points the puncture points of D2.

Definition 1.1.1. — We define an n-strand geometric braid to be the image of an em-
bedding b of the disjoint union

∐n
j=1[0j , 1j] of n copies of the interval [0, 1] into the

cylinder [0, 1]×D2 satisfying the following properties: (i) for t in [0j, 1j ], the point b(t)
lies in {t}×D2; (ii) the set {b(01), . . . , b(0n)} is the set of punctures of {0}×D2, and
similarly the set {b(11), . . . , b(1n)} is the set of punctures of {1} ×D2.

The image of each interval is called a strand of the braid; the idea is that we have n
strands running continuously from left to right (visualizing the unit interval as being


