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p-ADIC HODGE THEORY AND VALUES OF
ZETA FUNCTIONS OF MODULAR FORMS

by

Kazuya Kato

Abstract. — If f is a modular form, we construct an Euler system attached to f
from which we deduce bounds for the Selmer groups of f. An explicit reciprocity law
links this Euler system to the p-adic zeta function of f which allows us to prove a
divisibility statement towards Iwasawa’s main conjecture for f and to obtain lower
bounds for the order of vanishing of this p-adic zeta function. In particular, if f is
associated to an elliptic curve E defined over Q, we prove that the p-adic zeta function
of f has a zero at s = 1 of order at least the rank of the group of rational points
on E.
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Introduction

One of the most fascinating subjects in number theory is the study of mysterious
relations between zeta functions and “arithmetic groups”. Here “arithmetic groups”
include ideal class groups of number fields, Mordell-Weil groups of abelian varieties
over number fields, Selmer groups associated to Galois representations of number
fields, etc., which play important roles in number theory. Among such relations,
we have Iwasawa theory (relation between zeta functions and ideal class groups)
which is a refinement in 20th century of the class number formula in 19th century,
Birch Swinnerton-Dyer conjectures (relation between zeta functions and Mordell-Weil
groups), etc., and much of such relations are still conjectural. When we study such
relations, a big difficulty is that zeta functions and arithmetic groups are too much
different in nature; zeta functions are analytic and arithmetic groups are algebraic
and it is very difficult to understand why they are closely related.

After Kolygavin, it was recognized that zeta functions have not only the usual
analytic shapes (Euler products), but also arithmetic shapes (Euler systems), and that
it is useful to consider these arithmetic shapes for the study of relations between zeta
functions and arithmetic groups; it is more easy to understand the relation between
the arithmetic shapes of zeta functions and arithmetic groups which are not far in
nature, than the relation of analytic shapes and arithmetic groups.

zeta function (_too—far_) arithmetic groups

(analytic) (algebraic)
Euler systems BT, arithmetic groups
(= arithmetic shapes (algebraic)

of zeta functions)
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In this paper, by considering the Euler systems of Beilinson elements in Kg of
modular curves, which are regarded as “arithmetic shapes” of zeta functions of elliptic
modular forms, and by using p-adic Hodge theory, we obtain results on the relations
between zeta functions of elliptic modular forms and Selmer groups associated to
modular forms, and results in Iwasawa theory of modular forms.

Since it is now known that all elliptic curves over Q are modular ([Wi] [BCDT]),
this gives also results on Birch Swinnerton-Dyer conjectures for elliptic curves over Q.

The main results of this paper are the following. (Please see the text for the precise
statements.)

Theorem. — Let f be an eigen cusp form for I'1(N) of weight k > 2.

(1) (Thm. 14.2) Letr € Z, 1 < v < k — 1, and assume v # k/2. Then for any
finite abelian extension K of Q, the Selmer group Sel(K, f,r) of f over K with r twist
is a finite group.

(2) (Thm. 14.2) Assume k is even. Let K be a finite abelian extension of Q. Let
x : Gal(K/Q) — C* be a character, and assume L(f,x,k/2) # 0. Then the x-part
Sel(K, f, k/2)(X) of Sel(K, f,k/2) is a finite group.

(3) (Thm. 18.4) Assume k is even. Then

p-adic corank of Sel (K,f, k/2) <ordg—k/2 (p-adic zeta function of f).
(4) (Thm. 17.4) Assume f is good ordinary at p. Then

X = Hom(lim Sel(Q(¢pr), £,7), (Qp/Zy)(7))

for 1 <r < k—1 is independent of r and the characteristic ideal of X divides p™ times
the p-adic zeta function of f for somen 2= 0.

In some cases, we can drop p” in (4) (Thm 17.4 (3)). This (4) is a partial answer
to a conjecture of Greenberg ([Grl], the case of elliptic curves was conjectured by
Mazur [Mal]) who predicts the equality in place of divisibility in (4). We also obtain
results on “Iwasawa main conjecture for modular forms without p-adic zeta functions”
(Thm. 12.5) and results on Tamagawa number conjectures ([BK2]) for modular forms
(Thm. 14.5).

There are already many results on these subjects (for example, [BD], [CW], [Ru2],
[Ko], [Ne],...). Most of former works use elliptic units and Heegner points as “arith-
metic shapes of zeta functions”, whereas we use Beilinson elements instead. The part
of the above Theorem concerning eigen cusp forms f with complex multiplication
depends on results of [Ru2] on main conjectures of imaginary quadratic fields.

The plan of this paper is as follows. In Chapter I, we define Euler systems of
Beilinson elements in K3 of modular curves (§2) and also Euler systems in the spaces
of modular forms (§4). The former Euler systems are related to lim,_.o s~ L(f, s)
for cusp forms f of weight 2 by the theory of Beilinson, and the latter Euler systems
are related to the zeta values L(f,7r) (r € Z, 1 < r < k— 1) of cusp forms f of weight
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k > 2 by the theory of Shimura. In Chapter 2, by using the above Euler systems
in K2 of modular forms, we define p-adic Euler systems in the Galois cohomology of
p-adic Galois representations associated to eigen cusp forms of weight > 2 (§8). We
prove that via p-adic Hodge theory, these p-adic Euler systems are closely related to
the Euler systems in the space of modular forms (§9), and hence closely related to
the zeta values L(f,r) (r € Z, 1 < r < k — 1) for cusp forms of weight £k > 2. In
chapter III and Chapter IV, by using this relation of our p-adic Euler systems with
zeta values, and by using the general theory of Euler systems in Galois cohomology,
we obtain our main results.

A large part of results of this paper in the case of modular forms of weight 2 were
introduced in Scholl [Sc2] and Rubin [Ru3].

This work is a continuation of my joint work with S. Bloch on Tamagawa numbers
of motives ([BK2]), and I am very thankful to him for his great influences. I express
my sincere gratitude to J. Coates, M. Kurihara, and T. Saito for their constant en-
couragements in my writing this paper. I am thankful to N. Kurokawa, for teaching me
modular forms and Rankin convolutions. I am also thankful to J. Coates, G. Faltings,
M. Flach, H. Hida, N. Katz, M. Kurihara, B. Mazur, T. Shioda, T. Tsuji, A. Wiles,
for advice, and to P. Colmez for corrections on the manuscript.

Some part of this work was done during the author was a visitor of Japan-US.
Math. Inst. in the Johns Hopkins Univ. in 1990, and some improvements in this
work were obtained during the author was a visitor of Newton Institute in 1993 and
of the Institute for Advanced Study in 1995. I express my sincere gratitude to their
hospitalities.

CHAPTER 1

EULER SYSTEMS IN K; OF MODULAR CURVES AND EULER
SYSTEMS IN THE SPACES OF MODULAR FORMS

In this Chapter I, we consider Euler systems in K5 of modular curves (§2) and
Euler systems in the spaces of modular forms (§4). The former (resp. latter) come
from the work of Beilinson [Be] (resp. Shimura [Sh]) and are related to the zeta values
lim,_0 s71L(f,s) (resp. L(f,r) (1 < r < k—1)) for cusp forms f of weight 2 (resp. k),
by the theory in [Be] (resp. [Sh]).

§1 is a review on Siegel units (resp. Eisenstein series) and is a preparation for §2
(resp. §4).
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