
PANORAMAS ET SYNTHÈSES 27

INTERACTIVE MODELS OF COMPUTATION
AND PROGRAM BEHAVIOR

Pierre-Louis Curien, Hugo Herbelin, Jean-Louis
Krivine, Paul-André Melliès

Société mathématique de France 2009
Publié avec le concours du Centre national de la recherche scientifique

Pierre-Louis Curien

PPS, CNRS and Université Paris 7

E-mail : Pierre-Louis.Curien@pps.jussieu.fr

Hugo Herbelin

INRIA and Université Paris 7

E-mail : Hugo.Herbelin@inria.fr

Jean-Louis Krivine

University Paris VII, C.N.R.S., P.P.S. Team, 2 Place Jussieu 75251 Paris Cedex 05,

France

E-mail : Jean-Louis.Krivine@pps.jussieu.fr

Paul-André Melliès

Laboratoire Preuves, Programmes, Systèmes, CNRS & Université Paris Diderot,

75205 Paris Cedex 13, France

E-mail : Paul-Andre.Mellies@pps.jussieu.fr

2000 Mathematics Subject Classification. — 03F05, 03F52, 68Q55, 03B40, 03B70,

03G30, 68N18, 68N20.

Key words and phrases. — Proof theory, realisability, abstract machines, linear logic,

game semantics.

Mots-clé et phrases. — Théorie de la démonstration, réalisabilité, machines abstraites,

logique linéaire, sémantique des jeux.

INTERACTIVE MODELS OF COMPUTATION
AND PROGRAM BEHAVIOR

Pierre-Louis Curien, Hugo Herbelin,
Jean-Louis Krivine, Paul-André Melliès

Abstract. — This volume contains three contributions in the field of logic and com-

putation, that reflect current trends towards an interactive account of the meaning

of proofs and programs. The contributions can be read independently and use or

introduce fundamental tools in the field: categories, realizability, abstract machines.

Throughout the volume, a unifying theme is that of games and strategies, that turns

the correspondence between proofs and programs (the so-called Curry-Howard isomor-

phism) into a triangle whose third corner emphasizes interaction and duality between

a program and its environment or between a proof and counter-proofs. The intro-

duction to the volume places the contributions in perspective and provides a gentle

beginner’s introduction to the lambda-calculus, which is and remains the backbone

of the whole field.

Résumé (Modèles interactifs de calcul et de comportement de programme)
Ce volume rassemble trois contributions portant sur le domaine « logique et calcul »

et qui reflètent un courant actuel d’explicitation du contenu interactif des preuves et

des programmes. Les trois chapitres peuvent être lus indépendamment et utilisent ou

introduisent des outils fondamentaux du domaine : catégories, réalisabilité, machines

abstraites. Un thème unificateur à travers l’ensemble du volume est celui des jeux

et stratégies, qui transforme la correspondance entre preuves et programmes (connue

sous le nom d’isomorphisme de Curry-Howard) en un triangle dont le troisième som-

met met en valeur l’interaction et la dualité entre un programme et son contexte

d’exécution, entre une preuve et des contre-preuves. L’introduction au volume place

les contributions en perspective et offre une initiation rapide au lambda-calcul qui est

et demeure l’épine dorsale de tout ce domaine de recherche.

TABLE DES MATIÈRES

Résumés des articles . vii

Abstracts . ix

Introduction . xi

Paul-André Melliès — Categorical Semantics of Linear Logic 1

1. Proof theory : a short introduction . 2

2. Semantics : proof invariants and categories . 19

3. Linear logic and its cut-elimination procedure . 37

4. Monoidal categories and duality . 57

5. Adjunctions between monoidal categories . 78

6. Monoids and monads . 104

7. Categorical models of linear logic . 130

8. Two models of interaction : spaces and games . 159

9. Conclusion . 181

References . 190

Index . 195

Jean-Louis Krivine — Realizability in classical logic . 197

Introduction . 197

Terms, stacks, processes, execution . 198

The axiom of choice in analysis . 216

The standard generic model . 224

References . 229

Pierre-Louis Curien & Hugo Herbelin — Abstract Machines for Dialogue

Games . 231

1. Introduction . 231

2. The Geometric Abstract Machine . 233

3. Examples . 239

4. The View Abstract Machine . 250

5. A concrete version of the GAM . 252

vi TABLE DES MATIÈRES

6. Strong reduction . 254

7. Evaluating non-normal forms . 257

8. Evaluating and separating untyped λ-terms . 259

9. Further work . 268

A. Machine equivalences . 268

References . 273

PANORAMAS & SYNTHÈSES 27

RÉSUMÉS DES ARTICLES

Sémantique catégorielle de la logique linéaire

Paul-André Melliès . 1

La théorie de la démonstration est issue d’une histoire courte et tumultueuse,

construite en marge des mathématiques traditionnelles. Aussi, son langage reste

souvent idiosyncratique : calcul des séquents, élimination des coupures, propriété

de la sous-formule, etc. Dans cet article, nous avons voulu guider le lecteur à

travers la thématique, en lui traçant un chemin progressif et raisonné, qui part

des mécanismes symboliques de l’élimination des coupures, pour aboutir à leur

transcription algébrique en diagrammes de cohérence dans les catégories monöı-

dales. Cette promenade spirituelle au point de convergence de l’algèbre et de la

linguistique est ardue parfois, mais aussi pleine d’attraits : car à ce jour, aucune

langue (formelle ou informelle) n’a été autant étudiée par les mathématiciens que

la langue des démonstrations logiques.

Réalisabilité en logique classique

Jean-Louis Krivine . 197

On construit un cadre, appelé maintenant « réalisabilité classique », pour ex-

plorer la correspondance de Curry-Howard (preuves-programmes).

Le côté « programmation » de la correspondance est un langage impératif

de bas niveau, basé sur une machine lambda-calcul en appel par nom. Le côté

« preuve » est la formalisation habituelle de l’Analyse en logique du second ordre.

On obtient ainsi des programmes pour toutes les preuves classiques de theo-

rèmes d’Analyse. Pour certains d’entre eux, on résout le problème de la « spéci-

fication » : trouver le comportement commun de tous ces programmes, pour un

théorème donné.

On montre que l’axiome du choix dépendant (qui est essentiel pour l’Analyse)

correspond, en programmation, à des instructions très simples : l’horloge et la

signature.

viii RÉSUMÉS DES ARTICLES

Machines abstraites pour jeux de dialogue

Pierre-Louis Curien & Hugo Herbelin . 231

La notion d’arbre de Böhm abstrait, introduite et étudiée dans les deux ar-

ticles, est une distillation de travaux en sémantique des jeux, issue d’une volonté

d’en expliciter la nature calculatoire. Cet article réexamine cette notion, en four-

nissant un support syntaxique plus conséquent ainsi que des exemples plus nom-

breux (comme l’évaluation en appel par valeur), et illustre ainsi la généralité du

dispositif de calcul sous-jacent.

PANORAMAS & SYNTHÈSES 27

ABSTRACTS

Categorical Semantics of Linear Logic

Paul-André Melliès . 1

Proof theory is the result of a short and tumultuous history, developed on

the periphery of mainstream mathematics. Hence, its language remains often

idiosyncratic: sequent calculus, cut-elimination, subformula property, etc. This

survey is designed to guide the novice reader and the itinerant mathematician

along a smooth and consistent path, investigating the symbolic mechanisms of

cut-elimination, and their algebraic transcription as coherence diagrams in cate-

gories with structure. This spiritual journey at the meeting point of linguistic and

algebra is demanding at times, but a rewarding experience: to date, no language

(either formal or informal) has been studied by mathematicians as thoroughly as

the language of proofs.

Realizability in classical logic

Jean-Louis Krivine . 197

We build a framework, now called“classical realizability”, to explore the Curry-

Howard (proof-program) correspondence.

The “programming” side of the correspondence is an imperative low level lan-

guage, based on a call-by-name lambda-calculus abstract machine. The “proof”

side is usual formalization of Analysis in second order logic.

In this way, we can get programs for all classical proofs of theorems in Analysis.

For some of them, we solve the“specification problem”: find the common behavior

of all these programs, for a given theorem.

We show that the axiom of dependent choice (essential for Analysis) corre-

sponds to very simple programming instructions: clock and signature.

x ABSTRACTS

Abstract Machines for Dialogue Games

Pierre-Louis Curien & Hugo Herbelin . 231

The notion of abstract Böhm tree has arisen as an operationally-oriented dis-

tillation of works on game semantics, and has been investigated in two papers.

This paper revisits the notion, providing more syntactic support and more ex-

amples (like call-by-value evaluation) illustrating the generality of the underlying

computing device. Precise correspondences between various formulations of the

evaluation mechanism of abstract Böhm trees are established.

PANORAMAS & SYNTHÈSES 27

INTRODUCTION

Since the mid-eighties of the last century, a fruitful interplay between computer

scientists and mathematicians has led to much progress in the understanding of pro-

gramming languages, and has given new impulse to areas of mathematics such as

proof theory or category theory. Two of the authors of the present volume (Krivine

and Curien) designed independently, at around the same time (1985), interpreters

for the lambda-calculus, which both turned out to have important consequences.

The lambda-calculus, besides being one of the formalisms capturing the notion of

computable function, is by far the best understood core programming language. It

underlies many modern programming languages, like LISP, ML, Haskell.

– Curien’s device (developed in collaboration with Cousineau and Mauny), called

the Categorical Abstract Machine (CAM) [1], served as the basis for the compiler

of the French dialect of ML, the language CAML – a language which is well-

suited for teaching computer programming, and for prototyping various pieces

of software.

– Krivine’s device, called Krivine Abstract Machine (KAM) [5], is at the heart of

his subsequent work on the extraction of computational contents from mathe-

matical axioms and statements.

In the CAM acronym, “categorical” stands for the connection between the lambda-

calculus and cartesian closed categories. As a matter of fact, lots of structuring

thoughts and results have come from the triangle formed by the languages of proofs,

categories, and programs, respectively. Melliès’ contribution to this volume recounts

the latest state of the art on this correspondence, which has learned a lot from the

rise of Girard’s linear logic, from 1986 on [3]. Categories are particularly good at

capturing some invariants in an algebraic way. We just mentioned cartesian closed

categories which capture the invariance of λ-terms under the two basic equalities in

this theory, β and η, in terms of the universal constructions of categorical product

and internal homspace. In his contribution, Melliès places this role of categories in

context, by recalling the role of categories in capturing, say, the invariants of knot

theory.

In the rest of this introduction, we give some background on the lambda-calculus

and its dynamics. Lambda-calculus comes in two flavors: untyped and typed. Melliès’

© Panoramas et Synthèses 27, SMF 2009

xii INTRODUCTION

contribution in this volume is of the second flavor, while the other two contributions

build on untyped terms.

The λ-calculus is a language of terms built with only three operations:

1. variables: x is a λ-term (think of an identifier in a program, or of a variable in

a function f(x));

2. application: if M , N are terms, then MN is a term (think of the application

f(a) of a function f to an argument a);

3. abstraction: if M is a term, then λx.M is a term.

One may also wish to add constants, as Krivine does a lot in his contribution to this

volume.

Above, λ is the only non-familiar symbol for the general mathematician (or the

high school student). It makes explicit on which parameter we want the term M to

depend. Think of an expression like x2 + 3mx + 4, where m is a parameter, and

x is the unknown – a difference of status that one might want to stress by writing

x 7→ x.x2 + 3mx+ 4, or λx.x2 + 3mx+ 4 in the notation of the λ-calculus.

The next important thing to know about the λ-calculus is its dynamics: λ-terms

are programs, and hence should be executable. The theoretical model for this is

by successive transformations, or rewritings, of the term, using again and again the

following unique rule, called β-reduction:

(λx.M)N →M [x← N]

(for example, (λx.x2 + 3mx + 4)(5 + y) → (5 + y)2 + 3m(5 + y) + 4). This is the

only computational rule of the pure λ-calculus, i.e., without constants. Generally,

when constants are added, corresponding rules are given (for example, for an addition

constant +, one has, say, 3 + 4→ 7).

The β-rule can be applied to any subterm of our working term, and hence gives

rise to a number of possible rewriting paths. For example, if N = (λx.P)Q, then we

can reduce (λx.M)N either to M [x ← N] or to (λx.M)N ′, where N ′ = P [x ← Q].

The first key theorem of the λ-calculus is the confluence theorem, which says that no

matter which paths are used, they can be made to converge to a same term: if M

rewrites (in a number of steps) to M ′ and to M ′′, then there exists a term M ′′′ which

can be reached by rewriting both from M ′ and from M ′′.

We also mentioned a further equality above, the η rule, which is the following:

λx.Mx = M

where x is chosen so as not to appear free in M . (The notions of free and bound

variables are rather straightforward, e.g. x is bound and y is free in λx.xy.)

This rule is quite different from β. Its primary purpose is to assert that (in the

untyped λ-calculus) every term is a function. Thus, the most interesting way to

look at this equality is to orient it from right to left: this is called η-expanding).

Curien and Herbelin’s contribution sheds some light on η-expansion, and gives it

some computational meaning.

PANORAMAS & SYNTHÈSES 27

INTRODUCTION xiii

There are more practical models of the dynamics of the λ-calculus than the one

given by the notion of β-reduction, that are formalized through an abstract machine,

like the CAM or the KAM (cf. above). While we refer to the respective papers for

their precise description, we just mention here that they share a common structure.

Computation proceeds by successively rewriting triples, or states, or processes, as

Krivine calls them, of the form

(term, environment, stack)

The environment is there to avoid actually performing the (costly) substitution

M [x← N]. Typically, starting from

((λx.M)N, empty, empty)

(empty environment and empty stack), we reach (roughly – we only want to give an

idea here)

(M, [x← N], empty) .

where [x ← N] has now the meaning of storing the value N for x. Later on, when

we reach a variable, we consult its value in the environment: so if we reach a state

whose first two components are x and [. . . , x ← N, . . .], then the machine proceeds

by replacing x by N in the first component (variable look-up). Formally, the machine

will thus proceed from

(x, [. . . , x← N, . . .], S)

to

(N, [. . . , x← N, . . .], S)

The third component serves to store the context of a computation. Typically, if the

actual β-reduction is applied to a subterm (λx.P)Q of M – a situation that we can

write formally as M = C[(λx.P)Q]], where C is a context, i.e. a λ-term with a hole,

which is filled here with (λx.P)Q – , then the abstract machine will lead us, typically,

from

(M, empty, empty)

to

((λx.P)Q, empty, C[]) .

For example, in Krivine abstract machine, if C has the form ([]N1)N2, and hence

M = (((λx.P)Q)N1)N2, then starting from (M, empty, empty), one reaches

(((λx.P)Q)N1, empty, []N2], and then ((λx.P)Q, empty, [[]N1]N2]) (and then, cf.

above, (P, [x ← Q], [[]N1]N2]). Thus we use the stack to store the context, which is

accumulated gradually. Read [[]N1]N2] as the context obtained from the context []N2

by placing in its hole the context []N1, which results in the context C = ([]N1)N2,

which in English spells as “apply to N1, and then to N2.

The reader will see two different simplified versions of such abstract machines in

this volume:

– In Krivine’s paper, the environment component is omitted. The machine is

extended to deal with various new instructions that are added to the λ-calculus.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2009

xiv INTRODUCTION

– In Curien and Herbelin’s paper (see in particular section 5.2), in order to stress

the duality between the term and the environment, the framework is adapted

so as to avoid the use of a stack.

Also, both in Curien-Herbelin’s and in Krivine’s papers, the computing devices, or

the programs, receive a natural interpretation in a two-player’s game:

– In Curien-Herbelin’s paper, this idea is so basic that it has guided the first

author in the design of a generalization of the λ-calculus (first described in [2])

that encompasses various common extensions of the λ-calculus. We explain

briefly the idea. The reader may easily check that a λ-term P in normal form

(i.e., which cannot be further reduced) is made of bricks of the form

λx1.(λx2.(λxm.(. . . (yP1) . . . Pn)) . . .)

where the Pi’s are themselves (hereditarily) of this form. Such a brick is called a

head normal form, and y, which is the most important information in the brick,

is called the head variable. The brick can itself be divided in two “moves”:

• a move “λx1.(λx2;(λxm” made by a player called Opponent (or at-

tacker, or context),

• and a move y made by the other player, called Player (or defendant, or

program).

The Opponent’s move reads as a question: “what is the head variable of P?”,

while the Player’s move reads as an answer to this question. Then the Opponent

may pick up one of the i’s, and ask the same question relative to Pi, etc...

Potentially infinite normal forms as above in the λ-calculus are called Böhm

trees.

– In Krivine’s paper, it is shown that all the proofs (in fact, all the realizers, see

below for this notion) of an arithmetic formula of the form

∃x∀y. f(x, y) = 0

behave like the following strategy: the defendant (or proof) plays an x = m0,

the attacker then tries a y = n0. If f(m0, n0) = 0, then the attacker failed in

disproving the formula, and the game is over. Otherwise, the play goes on: the

player chooses a new m1, and so on. Of course it is not through a single play of

this kind that the formula can be fully proved. But the fact that the attacker

looses in all possible plays characterizes the validity of the formula.

We end this introduction with a short hint on types and on the logical background

of the λ-calculus. Originally, the λ-calculus served to describe formally languages

of formulas, for example A ⇒ B is represented by the term (⇒ A)B, where ⇒
is a constant. But a tighter connection, known as the Curry-Howard isomorphism,

arises when λ-terms are used to denote not formulas, but proofs of formulas: then

we restrict attention to λ-terms denoting proofs, that are called typed λ-terms. We

illustrate this here only with a trivial example: λx.x denotes the identity function,

but it also denotes a proof of A⇒ A, for any A. In typed λ-calculus, terms come with

a type (which can be explicit, or can be reconstructed from type informations in the

PANORAMAS & SYNTHÈSES 27

INTRODUCTION xv

term, or can be inferred). More precisely, typed λ-terms are formalized as so-called

judgements of the form

x1 : A1, . . . , xn : An `M : A

where x1, . . . , xn include the free variables of M . From there, the categorical reading

(alluded to above) is easy: M is (interpreted as) a morphism from A1×· · ·×An to A.

In other words, formulas correspond to objects and λ-terms correspond to morphisms

in a suitable category (with products). This is very much the starting point of Melliès’

contribution to this volume.

There are less typed λ-terms than untyped ones: in other words, not all λ-terms are

typable. A second key theorem of (typed) λ-calculus is that typed terms M terminate,

i.e. there is no infinite reduction sequence

M →M1 → · · · →Mn → . . .

Since some λ-terms (like (λx.xx)(λx.xx)) do not terminate, not all λ-terms are ty-

pable.

Also, in some sense, when remaining in the untyped realm, there are more “types”

(and more “typed terms”). While in typed λ-calculi there is a fixed, extrinsic syntax

of types (or formulas), in untyped λ-calculus one can define types intrinsically (or

internally) as sets of (untyped) terms “behaving the same way”. More precisely, and

equivalently, a type U is given by any set of contexts, and the terms “of that type”,

or realizing that type, are the terms M such that

for any C[] ∈ U,C[M] ∈ ⊥⊥,

where ⊥⊥ is a fixed set of terms (actually, of processes – read C[M] as a state (M,C)

in Krivine stack-free abstract machine, cf. above). Saying that C[M] belongs to ⊥⊥
formalizes the fact M and C[] “get along” well, or socialize, as Girard would say. The

notion of “term of type A” (above) and “term realizing (the interpretation of) A” are

related by inclusion of the former concept in the latter one (a result which is called

Adequation by Krivine). The set ⊥⊥ can itself vary (and it does vary in the different

applications of the idea described in Krivine’s paper), but then we get a different

whole model.

These models are called realizability models. The general idea goes back to Kleene

(see e.g. [4]), whose motivation was to connect formally logic and recursive func-

tion theory. Krivine makes an intensive use of the flexibility offered by the whole

framework, with the aim of associating λ-terms, that is, computer programs, with

mathematical statements: every theorem is a specification, all its realizers behave

according to this specification, and in many cases this behavior can be described in

illuminating terms. The flexibility is also offered by the possibility of adding insight-

ful new constants to realize different axioms, the most challenging being the axiom of

choice.

Just as there are untyped and typed λ-calculi, there are typed and untyped ap-

proaches to games and strategies. We mentioned two untyped approaches above. In

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2009

