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Abstract. — This edition of “Panoramas & Syntheéses” follows the thematic trimester
“Singularities in Mechanics” that was organized at the Institut Henri Poincaré during
winter 2008 by Jens Eggers, Christophe Josserand and Laure Saint-Raymond.

The central questions — which are discussed in a transverse way — are the forma-
tion, the propagation and the microscopic description of singularities. This volume
gathers different articles showing the variety of mathematical approaches and physical
problems, ranging from surface singularities in fluid mechanics to self-similar solutions
of the Non Linear Schrédinger equation. In fluid mechanics, the wave breaking dy-
namics is investigated (Yves Pomeau and Martine Le Berre), the evolution of vortex
filaments (Valeria Banica and Luis Vega) as well as the formation and cusps in sur-
face flows (Jens Eggers and Marco Fontelos) while the mathematical grounds of such
singularities are described for capillary flows (Antoine Mellet) and two dimensional
surface flows (Claude Bardos and David Lannes).
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iv

Résumé (Singularités en Mécanique : formation, propagation et description microsco-
pique)

Cette édition de « Panoramas et Synthéses » fait suite au trimestre thématique
« Singularités en Mécanique » organisé a I'Institut Henri Poincaré pendant 1’hiver
2008 par Jens Eggers, Christophe Josserand et Laure Saint-Raymond. Les questions
centrales — qui y sont abordées de fagon transverse — sont la formation, la propa-
gation et la description microscopique des singularités. Les différents articles réunis
dans cette revue illustrent la variété des méthodes mathématiques utilisées et des
problémes physiques concernés, des singularités d’interfaces en mécanique des fluides
aux solutions auto-similaires de ’équation de Schrodinger nonlinéaire.

Les problémes abordés concernent le déferlement des vagues (Yves Pomeau et Mar-
tine Leberre), I'évolution des filaments de vortex (Valeria Banica et Luis Vega), la
formation de cusps en mécanique des fluides (Jens Eggers et Marco Fontelos), les fon-
dements mathématiques de ces singularités étant abordés dans le cas de la capillarité
(Antoine Mellet) et des instabilités des interfaces (Claude Bardos et David Lannes).
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FOREWORD

The contributions gathered in this volume correspond to courses and series of
lectures that have been delivered at the Institut Henri Poincaré in 2008, in the occasion
of the interdisciplinary program “Singularities in mechanics : formation, propagation,
microscopic description”. By “singularities” we mean all phenomena involving strong
focusing or rapid oscillations, leading to non-smooth behavior in some continuum
description.

The study of such behaviors is of crucial importance from an experimental, as well
as from a theoretical and numerical point of view. The issue is to understand whether
a continuum description, which is valid only away from any singular set, is still
able to deliver a coherent description of the emergence of a singularity, and perhaps
even of the dynamics after, in the presence of a singularity.

The study of singularities is well established in solid mechanics (cracks), in both
compressible and incompressible fluid dynamics (shocks, vortices), and is central for
problems involving fronts and interfaces (drops and bubbles, surface instabilities).
The precise description of a singularity will certainly be different in different systems,
but a number of qualitative properties (such as the type of self-similar behavior), as
well as methods of mathematical analysis (such as the definition of functional spaces
which define which singularities are admissible) should be applicable in a much more
general fashion.

In order to identify the different issues we will deal with in the sequel, we start
by considering a very simple example of equation for which explicit computations
allow to understand the structure and the dynamics of singular solutions. This model
has no direct physical application, but it is a prototype of monodimensional hyperbolic
systems of conservation laws which arise for instance in fluid mechanics or in elasticity.

Then, general considerations on the characterization of singularities will be dis-
cussed in order to introduce the different contributions of this volume.

1. Singular solutions of the Hopf equation

The Hopf equation is a scalar, one-dimensional equation, meaning that the un-
known u is real and depends on time ¢ € R™ and on one space variable z € R.



viii FOREWORD

It states

(1.1) 6tu+8z(%u2) -0
or equivalently for classical solutions

(1.2) Oru + u0zu = 0.

This last equation is also called the inviscid Burgers equation and can be deduced
in many physical systems where transport is crucial, such as film dynamics [12], shock
waves, front dynamics [4, 10] or traffic jam modeling for instance (see also [2, 9, 11]
for general reviews). Using this last form, one can compute explicitly the solution in
terms of the initial data

Ujt=0 = U0,
at least for small times. For general transport equations, one indeed has the so-called
method of characteristics which is described in the next paragraph.

1.1. The method of characteristics. — The solutions to the transport equation

(1.3) 0w +a(t,r) 0,v =0, vp—o = Vo

can be written simply in terms of the solutions to the ordinary differential equation
dX

(1.4) = a(t,X), X(O,xo) = Z0-

dt
We indeed have

v(t, X (t,20)) = vo(xo)-
If X;:x+— X(t ) is a bijection, then

v(t, x) = vo(X; ' ().
In the case of a constant convection field a, the motion is uniform (see Fig. 1)
v(t, z) = vo(z — at).

Under suitable regularity assumptions on a, the Cauchy-Lipschitz theorem ensures
that the trajectories of (1.4) are locally well-defined and unique, so that X; is invertible
(see Fig. 2).

In the case of the Hopf equation, the velocity field u is transported by itself. We thus

have Ax
- = u(t,X), X(0,z0) = xo,
u(t, X (t,z)) = uo(x).
as long as X is a diffeomorphism, i.e., a smooth change of variables. Note that the fact
that X is a diffeomorphism is related to the regularity of u (by the Cauchy-Lipschitz
theorem).
Differentiating the equation of characteristics with respect to x, we get
d dX d
—— = —(u(t, X)) = ugy(z).
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(xo,to c

FIGURE 1. Characteristics are straight lines

characteristics

(x0.t0)

s~

FIGURE 2. Characteristics give a mapping from R to R

Integrating with respect to t, we obtain
X
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At time
1

supg g (—p(2))+
dx

the function %= cancels at least in one point, so that X is no more a diffeomorphism.

to =

(xo,to0)
characteristics

(x1,0) (x2,0)

FIGURE 3. Crossing of characteristics

A singularity appears at time to. Indeed, at point (o, zg) the solution u becomes mul-
tivalued and thus u(tg, o) is not defined. Furthermore, there is a jump discontinuity
lim w(tg,x) # lim wu(to,x).

T .'E—>.'E3r
In other words, ty is the time of breakdown, corresponding to the formation of a
singularity.
It is then natural to ask whether the solutions can be defined in some weaker sense
for later times.

1.2. Weak solutions, entropy and uniqueness. — A solution in the sense of
distributions of the Hopf equation is any function u € L®(R* x R) (defined and
bounded almost everywhere) such that for all ¢ € C°(R*T x R)

// (u O + %u’z am) dz dt = /uo¢lt:0 e

PANORAMAS & SYNTHESES 38



1. SINGULAR SOLUTIONS OF THE HOPF EQUATION xi

Remarks

(i) Note that, because u is a function (defined and bounded almost everywhere), u?
is defined : it is a function defined and bounded almost everywhere.

(ii) Note also that, in distributional sense, both formulations (1.1) and (1.2) of the
Hopf equation are not equivalent : we will use the conservative form (1.1).

With that notion of solution, we have no more uniqueness! Starting for instance
from the Heaviside function ug = H, we can check that both functions u; and wus
defined respectively by

1
ui(t,z) = H(:r - 51&),
0ifx <0
ug(t,w) = ¢ Fif0<z<t
life>t
and represented on Fig. 4, are solutions in the sense of distributions of the Hopf

equation, i.e.,
// (u O + %uz 8m¢) dx dt = /u0¢|t:0 dx.

s=1/2

u=0 U rarefactio fan

FIGURE 4. Non uniqueness of distributional solutions: a) characteristics
associated to H b) solution u1 c¢) solution usa
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Physically relevant solutions are selected by imposing further conditions, which should
especially guarantee uniqueness.

Consider the characteristics of our problem, and consider a shock, i.e., a disconti-
nuity propagating at speed s that satisfies the jump condition

Through every point of the shock, one can draw two characteristics, one of each side
of the shock. Either both of them can be traced back to the initial line (see Fig. 5a),
or both can be traced upwards to the future (see Fig. 5b). A shock is said to satisfy
the entropy condition in the first case. Shocks of the second kind, called rarefaction
shocks, are not admissible since they are not determined by the initial data (causality
principle) [1].

Shock speed
ADMISSIBLE t (u+ur)/2
ur<s<ul
a)
ur s
7
7
7
e b
7 7
b 7
7 7
7 7 e
7 7 7
b b 7
b b 7
e e £ £

\ | Shockspeed
t ‘\ \ ‘\ (ur+ur)/2

NON ADMISSIBLE
ur<s<ur

FIGURE 5. Entropy condition

One can prove (using the weak formulation of the equation and integrations by
parts outside from shock lines) that the energy [w?(t,x)dz cannot increase for a
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1. SINGULAR SOLUTIONS OF THE HOPF EQUATION xiii

weak solution whose shocks satisfy the entropy condition. Admissible solutions actu-
ally satisfy

Oyu’ + Bm(gu‘n’) <0

which expresses the second principle of thermodynamics, namely the fact that the
entropy increases. Both criteria are actually equivalent.

With this additional constraint, we will retrieve the uniqueness of the solutions. In
other words, the system

1
6tu + §6TU2 =0
(1.5) in the sense of distributions

2
8tu2 + gaTUS S 0
captures the dynamics beyond the apparition of the singularities.

Remark. — We will see in the next paragraph that the entropy condition is inherited
from the microscopic structure of shocks, starting from a suitable kinetic model and
considering its fast relaxation limit as the mean free-path tends to 0.

1.3. A microscopic model. — We introduce the microscopic distribution of par-
ticles f = f(t,z,v) which at time t are located at  and have velocity v [6, 5]. The
kinetic equation we will consider states

Orf +v0,f = %(1[0,74 — f) with u(t,z) = /f(tﬂav) dv.

If w < 0 we abuse the notation [0, u] to denote [u, 0].

That equation expresses some balance between the free transport (left-hand side)
and some collision process (right-hand side). Note that we consider here only the
global effect of collisions leading to some relaxation towards local thermodynamic
equilibrium, which is similar to the BGK model of the Boltzmann equation for perfect
gases.

We therefore expect that

— in the fast relaxation limit ¢ — 0 local thermodynamic equilibrium should be

reached almost everywhere f(t,2,v) = 1 u(t,2)(v) with u solution to the Hopf
equation;

— in the vicinity of macroscopic discontinuities the effect of the transport is non

negligible : the microscopic density should remain smooth with a spatial deriva-
tive of order O(e~1/2).

An explicit integral representation of the solution is obtained using Duhamel’s formula.
Separating between the linear part and the nonlinear kernel, the kinetic equation
may be rewritten

1 1
Orf +v0if + Ef = Zl[o,u]o
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The friction term leads to some exponential decay. Remarking that the characteristics
of the free transport are given by X (¢, z,v) = z+tv and V (¢, z,v) = v, and integrating
with respect to time, we get

ol

t
1 s
ft, x4+ vt,v)es = fo(z,v) +/ (E]—[O,u(t,ervs)]ee) ds
0

or equivalently

_t t 1 _ (t—s)
ft,z,v) = fo(x —vt,v)e” " +/ (El[O,u(t,z—v(t—s))]e ‘ ) ds.
0

For fixed €, the strategy to solve the kinetic equation is therefore
— to define a mapping T which at any microscopic distribution g associates the
microscopic distribution f = T'(g) defined by the previous formula with macro-
scopic field u = [ g dv;
— to prove that this mapping T is a contraction in some suitable norm, namely the
integral norm L°(Ly; ,);
— to conclude by Picard’s theorem that there exists a unique fixed point for this
mapping T, i.e., a unique strong solution to the kinetic equation.
Note that, if we further assume that fo € L*(R,; x R,) (defined and bounded
almost everywhere), the integral representation combined with the trivial bound
1jp,,) <1 gives the maximum principle

1/ )]l < ™%l folloo + (1 — €7 ).

Some important features of the kinetic model can be deduced from the integral repre-
sentation

Monotonicity. — Let fo, fo be two integrable functions such that fo < fo almost
everywhere. Denote by f and f the solutions of the kinetic equation with
respective initial data fy and fy. Then f < f.

Finite speed of propagation. — Assume that fo € L' N L>°(R, x R,) and that it
is compactly supported, i.e., fo(x,v) = 0 whenever |z|? + |v|> > R2. Then f(t)
is compactly supported in v, and thus compactly supported in z.

Kinetic entropy functionals. — For any h : (z,v) + [z — 1jp k1|, one has

at/h(f,v)dv—kam/h(f,v)vdv§0

which is similar to Boltzmann’s H theorem for the Boltzmann equation for
perfect gases. It expresses some irreversibility of the dynamics, and is thus
related to the second principle of thermodynamics.

The fast relazation limit of this kinetic equation is actually described by weak solutions
to the Hopf equation, supplemented with the entropy condition (1.5).
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