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ON THE NUMBER OF POINTS
OF NILPOTENT QUIVER VARIETIES
OVER FINITE FIELDS

BY TristaAN BOZEC, OLiviER SCHIFFMANN
AND ERric VASSEROT

ABSTRACT. — We give a closed expression for the number of points over finite fields of the Lusztig
nilpotent variety associated to any quiver, in terms of Kac’s A-polynomials. When the quiver has
1-loops or oriented cycles, there are several possible variants of the Lusztig nilpotent variety, and we
provide formulas for the point count of each. This involves nilpotent versions of the Kac A-polynomial,
which we introduce and for which we give a closed formula similar to Hua’s formula for the usual Kac
A-polynomial. Finally we compute the number of points over a finite field of the various strata of the
Lusztig nilpotent variety involved in the geometric realization of the crystal graph.

RisuME. — Nous donnons une formule close exprimant le nombre de Fg4-points des variétés
nilpotentes de Lusztig associées a un carquois quelconque en termes des A-polynomes de Kac.
Lorsque le carquois possede des 1-cycles ou des cycles orientés, il existe plusieurs variantes des
variétés nilpotentes de Lusztig ; nous fournissons des formules pour le nombre de F; points dans tous
les cas. Ceci fait intervenir des variantes nilpotentes des polynomes de Kac que nous définissons et pour
lesquels nous donnons une formule similaire a la formule de Hua pour les polynomes de Kac usuels.
Enfin, nous calculons également les nombres de [F-points des diverses strates de la variété nilpotente
de Lusztig impliquées dans la réalisation géométrique des graphes de cristaux. Nous en déduisons une
démonstration de ’analogue, pour un carquois arbitraire, de la conjecture de Kac liant caractere des
algebres de Kac-Moody et terme constant des A-polynomes.

0. Introduction

The interplay between the geometry of moduli spaces of representations of quivers and
the representation theory of quantum groups has led to numerous constructions and results
of fundamental importance for both areas. One of the central objects in the theory is the
Lusztig nilpotent variety introduced in [22], which is a closed substack A, of the cotangent
stack T*Rep  (Q) of the stack of representations of dimension d of a quiver Q. When Q has
no 1-cycle the stack A, is Lagrangian and, as shown by Lusztig (resp. Kashiwara-Saito), its
irreducible components are in one to one bijection with the weight d piece of the canonical
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basis (resp. crystal graph) of Uq+ (go), where go is the Kac-Moody Lie algebra associated
to Q. The stack A, is singular, and although it can be inductively built by sequences of
(stratified) affine fibrations, see [19], its geometry remains mysterious. The link mentioned
above with canonical or crystal bases shows that, for quivers without 1-cycles, the generating
series for top Borel-Moore homology groups of A, is given by

0.1 Y dim(Hiop(Ag. Q) z¢ =) dim(U T (go)ld]) z* = [T (1 -z%)~moelel,
d d

aceAt

A natural problem is to extend the formula (0.1) to the whole cohomology of A, and to
understand its significance from the point of view of representation theory. One first step in
this program is worked out in this paper together with its companion [35]. The aim of the
present paper is to carry out the essential step in the computation of the cohomology of A, :
we determine the number of points of A, over finite fields of large enough characteristic. The
answer, given in the form of generating series, is expressed in terms of the Kac polynomials A4
attached to the quiver Q. We refer the reader to Theorem 1.4 for details. In [35] it is proven
that A, is cohomologically pure, and hence that its Poincaré polynomial coincides with its
counting polynomial. In addition, the (whole) cohomology of A, is related there to the Lie
algebras introduced by Maulik and Okounkov in [24].

Our strategy to compute the number of points of A,4(FF,) is the following : we relate the
number of points of A4(F,) to the number of points of certain Lagrangian Nakajima quiver
varieties £(d, n)(IF,). Using some purity result for these Nakajima quiver varieties together
with a Poincaré duality argument we express the counting polynomial of £(d, n) in terms of
the Poincaré polynomial of the symplectic Nakajima quiver variety 9t(d, n). Finally, we use
Hausel’s computation of the Poincaré polynomials of 9t(d, n) in terms of Kac polynomials,
see [12].

We note that the generating series for the top homology groups of A4 can be extracted
from our formula, and involves only the constant terms of Kac polynomials : combining this
with (0.1) one recovers a proof of Kac’s conjecture (first proved in [12]) relating the multiplic-
ities of root spaces in Kac-Moody algebras to the constant term of Kac polynomials.

In the context of [24] it is essential to allow for arbitrary quivers Q, such as for instance
the quiver with one vertex and g loops. Note that there is no Kac-Moody algebra associated
to a quiver which does carry 1-cycles. In [1], [2] the first author introduced a quantum
group Uy (go) attached to an arbitrary quiver Q which coincides with the usual quantized
Kac-Moody algebra for a quiver with no 1-cycles and, he generalized to this context several
fundamental constructions and results, in particular the theory of canonical and crystal
bases, and an analogue of (0.1). In the presence of 1-cycles, Lusztig’s nilpotent variety is not
Lagrangian anymore and one has to consider instead a larger subvariety A! defined by some
‘semi-nilpotency’ condition. In addition, when the quiver Q contains some oriented cycle
we consider yet a third subvariety A° defined by some weak form of semi-nilpotency. The
varieties A?, A! are Lagrangian, contain A and are in some sense more natural than A from a
geometric perspective. We carry out in parallel the computation of the number of points over
finite fields for each of the A®, A! and A. This leads us to introduce two variants A° and A of
the Kac polynomials, respectively counting nilpotent and 1-cycle nilpotent indecomposable
representations, see Section 1.4 for more details, for which we prove the existence and give
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an explicit formula similar to Hua’s formula. As an application, we provide a proof of an
extension of Kac’s conjecture on the multiplicities of Kac-Moody Lie algebras to the setting
of arbitrary quivers.

To finish, let us briefly describe the contents of this paper : the main actors are introduced
and our main theorem is stated in Section 1, where several examples are explicitly worked out.
Section 2 deals with the existence of nilpotent Kac polynomials A°, A!, and provides explicit
formulas for these in the spirit of Hua’s formula for the usual Kac polynomial. In Section 3
we study several subvarieties £°(v, w), £(v,w), £' (v, w) of the symplectic Nakajima quiver
variety 90t(v, w), respectively corresponding to the Lusztig nilpotent varieties A°, A' and A.
More precisely, we establish some purity results and compute the counting polynomials of
these subvarieties by combining a Poincaré duality argument (based on Byalinicki-Birula
decompositions) with Hausel’s computation of the Betti numbers of 2t(v, w). In Section 4
we relate the counting polynomials of Ay, A2, Al to the counting polynomials of £(v, w),
£0(v,w), £1(v,w) and prove our main theorem. Section 5 contains an observation about
the counting polynomials of certain natural strata in Lusztig nilpotent varieties arising in
the geometric realization of crystal graphs. Finally, in the appendix we recall the definition
of the quantum group associated in [2] to an arbitrary quiver, give a character formula for it,
and use our main theorem to prove an extension of Kac’s conjecture in that context.

1. Statement of the result

1.1. Lusztig nilpotent quiver varieties

Let Q = (1, Q) be a finite (U quiver, with vertex set I and edge set H. For h € Q we will
denote by /', A" the initial and terminal vertex of 4. Note that we allow 1-loops, i.e., edges &
satisfying A’ = h”. Setv-v' =}, v;v]. We denote by

(v,vy =v-v — Z Vi Vg
heQ
the Euler form on Z/, and by (e, ) its symmetrized version such that (v, V') = (v, V) +(v/, V).
We will call imaginary (resp. real) a vertex which carries a 1-loop (resp. which doesn’t carry
an 1-loop) and write I = '™ Li I™ for the associated partition of 7.

Let O* = (I, %) be the opposite quiver, in which the direction of every arrow is inverted.
Let 0 = (I, Q) with Q = Q LIQ* be the doubled quiver, obtained from Q by replacing each
arrow h by a pair of arrows (&, h*) going in opposite directions.

Fix a field k. For each dimension vector v. € N’ we fix an /-graded k-vector space
V =P, Vi of graded dimension v and we set

Ey = @ Hom(Vy. Vi), Ef = @ Hom(Viy. Vi), Ey = @ Hom (Vi Vo).
heQ heQ* heQ

Elements of E,, E; and E, will be denoted by x = (xp,), x* = (xp+) and X = (x, x*).

By a flag of I-graded vector spaces in V' we mean a finite increasing flag of 7-graded
subspaces ({0} = L® C L' C --- C LS = V). We'll say that (L') is a restricted flag
of I-graded vector spaces if for all / the vector space L! /L'~ is concentrated on one vertex.

(M Locally finite quiver would do as well.
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