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PROJECTIONS FROM A VON NEUMANN ALGEBRA
ONTO A SUBALGEBRA
BY

GILLES PISIER (*)

RESUME. — Cet article est principalement consacré a la question suivante :
soient M, N deux algebres de Von Neumann avec M C N. S’il existe une projection
complétement bornée P : N — M, existe-t-il automatiquement une projection
contractante P : N — M7 Nous donnons une réponse affirmative sous la seule
restriction que M soit semi-finie. La méthode consiste a identifier isométriquement
P’espace d’interpolation complexe (Ag, A1)y associé au couple (Ag, A1) défini comme
suit : Ag (resp. A1) est 'espace de Banach des n-uples z = (z1,...,zn) d’éléments

. B 1/2 1/2
de M muni de la norme ||z]|4, = || S @7zi||})> (resp. lzlla, = | 3] wsat||)?)

ABSTRACT. — This paper is mainly devoted to the following question : let M, N
be Von Neumann algebras with M C N. If there is a completely bounded projection

P : N — M, is there automatically a contractive projection P : N — M ? We give
an affirmative answer with the only restriction that M is assumed semi-finite. The
main point is the isometric identification of the complex interpolation space (Ao, A1)e
associated to the couple (Ag, A1) defined as follows : Ay (resp. Aj) is the Banach

space of all n-tuples z = (z1,...,zn) of elements in M equipped with the norm
1/2 1/2
llzllag = I Yo wfailly® (resp. llela, = IS @it ll3f)-
Introduction

This paper is mainly devoted to the following question. Let M, N be
von Neumann algebras with M C N ; if there is a completely bounded
(c.b. in short) projection P : N — M, is there automatically a contractive
projection P:N—M?

We give an affirmative answer with the only restriction that M is
assumed semi-finite. At the time of this writing, the case when the
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140 G. PISIER

subalgebra M is a type III factor seems unclear, although this might be
not too hard to deduce from our results using crossed product techniques
from the Tomita-Takesaki theory with which we are not familiar (see the
final remark).

If N = B(H), a positive answer (without any restriction on M) was
given in [P1], [P2] (and independently in [CS]). I am grateful to Eberhard
KircHBERG for mentioning to me that a more general statement might
be true. It should be mentioned that the above question seems open if
«completely bounded » is replaced by «bounded» in the assumption on
the projection P. For more results in this direction, see [P3] and [HP2].
We should recall that, by a classical result of Tomryama [T], every norm
one projection P from N onto M necessarily is a conditional expectation
and in particular is completely positive. In the second part of the paper we
give an interpolation theorem which generalizes a result in [P1], as follows.
Let N be a von Neumann algebra equipped with a normal semi-finite
faithful trace . Let us denote by L,(¢) the noncommutative L,-space
associated to (N, ) in the usual way. Fix n > 1. Let us denote by Ag
(resp. A;) the space N™ equipped with the norms

@1 zallao = | (Cizr)
(z1y- .. zn)|la, = H(Zx ;vz)l/QH

We prove in section 2 that the complex interpolation space (Ao, A1)e
is the space N™ equipped with the norm

T1y.., & = L,,R
(@ w)lle = HZ B(Ly())

where we have denoted by L, (resp. Rz) the operator of left (resp.
right) multiplication by z on L,(¢), and where p = 6~*. Note that the
case § = 0 corresponds to Lo, () identified with N and 6 = 1 corresponds
to Li(p) identified with N, in the usual way. Again in the particular
case N = B(H) this result was proved in [P1].

We refer to [Tal] for background on von Neumann algebras and to [Pa]
for complete boundedness.

We will use several times the following elementary fact.

LEMMA 0.1. — Let M C N be von Neumann algebras. Let (p;)ics be
a directed net of projections in M such that, for all x in M, p;xp; tends
to z in the o(M, M,) topology. Assume that for each i there is a norm
one projection P; : N — p;Mp;. Then there is a norm one projection P
from N onto M.

ToME 123 — 1995 — ~° 1
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Proof. — Let U be a nontrivial ultrafilter refining the net. For any z
in N, we define
P(z) = lim P;(p.zp;)

where the limit is in the o(M,M,) sense. Then P(x) € M and
IP(z)|| < |lz||. Moreover, for any = in M we have

P;(pip;) = pixp;.

Hence P(z) = x for all  in M, and we conclude that P is a projection
from N to M. []

1. Projections
The main result of this section is the following.

THEOREM 1.1. — Let M C N C B(H) be von Neumann algebras with
M semi-finite. If there is a completely bounded (c.b. in short) projection
P: N — M, then there is a norm one projection P : N — M.

Actually, we use less than complete boundedness, we only need to
assume that there is a constant C' such that for all z1,...,z, in N we

have
< CQHZZE;k:l}i

“ZP(Q"Z’)P(%)* < 02“2 Tz}

The proof is given at the end of this section.

|3 Play P

)

(1.1)

NotaTionN. — Let ¢ be a normal faithful semi-finite trace on a
von Neumann algebra N. We denote by La(¢) the usual associated Hilbert
space. For any a in N, we denote by L, (resp. R,) the operator of left
(resp. right) multiplication by a in La(p), i.e. we set for all z in Lo(p)

L,z =ax, R,z = zxa.
The key lemma in the proof of THEOREM 1.1 is the next statement.

LEMMA 1.2. — Let N be a semi-finite von Neumann algebra with
a normal faithful semi-finite trace ¢ as above. Consider a finite set
T1,...,Tn in N and assume

n
1.2 H L. Ry
(1.2) 2, LoBe; B(La (%))

then there is a decomposition r; = a; + b; with a; € N, b; € N such that

SET (0 I

<1
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142 G. PISIER

More generally, the main idea of this paper seems to be the identifica-
tion of the expression )
1/2

n
T1y...,2 = L, R~
el = |7 e |,

with the norm of a simple interpolation space obtained by the complex
interpolation method. See section 2 for further details.

CoRrROLLARY 1.3. — Let N be as in Lemma 1.2 and let M be a
finite von Neumann algebra equipped with a normalized finite trace T.
Let P: N — M be any linear map satisfying (1.1). Then for all finite
sequences x1,...,Ty in N we have

n

S (P(e)P(z:)?) = 3 r(P(x:)" P()) < 02“2 Ly, Re:
1

1 1

Proof. — Assume || EinRz; < 1. Let a;,b; be as in LEMMA 1.2. Let
us denote ||z[2 = (7(z*x))'/? for all x in M. Then we have

(XIPa}” < {Zlrp@lz} *+ {Tleez)”

< [ e Pas) 7y 1> PP
<C [

LEMMA 1.4.. — Let N be as in Lemma 1.2 and let M C N be a finite
von Neumann subalgebra. Assume that there is a projection P : N — M
satisfying (1.1). Then for all nonzero projection p in the center of M and
for all unitary operators uy, ..., u, in M we have

n
1.4 n=” Lyu R ” .
44 ZI: P g e

Proof.—Fix p as in LEMMA 1.4. By [Tal, p. 311 ] there is a finite trace 7
on M with 7(p) # 0. By CoroLLARY 1.3 applied to the normalized trace
x — 7(p)~17(x) on pMp = pM we have

n= Z ”pulug < CzllZLPuiR(Pui)* “
1

To replace C? by 1 in this inequality, we use the same trick as HAAGERUP
in [H1]. Let

B(La(¢))

1/2

B(La2(p))

T, = Z Lo Ripus- -
1
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