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PREFACE

The starting point for these lectures is a course given in Paris between
January and March 2014 as part of Chaire Junior of the Fondation Sciences
Mathématiques de Paris. This book is designed for a graduate audience, inter-
ested in inverse problems and partial differential equations, and we have tried
to make it as self-contained as possible.

The analysis of hybrid imaging problems relies on several areas of the theory
of PDE together with tools often used to study inverse problems. The full de-
scription of the models involved, from the theoretical foundations to the most
current developments, would require several volumes and is beyond the scope
of these notes, which we designed of a size commensurate with a twenty hour
lecture course, the original format of the course. The presentation is limited to
simplified settings, so that complete results could be explained entirely. This al-
lows us to provide a proper course, instead of a survey of current research, but
it comes at the price that more advanced results are not presented. We have
tried to give references to some of the major seminal papers in the area in
the hope that the interested reader would then follow these trails to the most
current advances by means of usual bibliographical reference libraries.

The physical model most often encountered in this book is the linear
Maxwell system of equations. It is of foremost importance in the physics of
inverse electromagnetic problems. Compared to the conductivity equation
and the Helmholtz equation, the analysis of Maxwell’s system is much less
developed, and these lectures contain several new results which have been
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established while writing this book. In the chapter discussing regularity prop-
erties, we focus on the Maxwell system of equations in the time harmonic case.
Proofs regarding small volume inhomogeneities are given for Maxwell’s system
as well.

We introduce the inverse source problem from time-dependent boundary
measurements for the wave equation from the classical control theory point
of view, leaving aside many deep results related to the geometric control of
the wave equation or the Radon transform, or recent developments concern-
ing randomised data. Probabilistic methods are not used, random media are
not considered, compressed sensing and other image processing approaches
are not mentioned. All these questions would certainly be perfectly natural in
this course, but would require a different set of authors. For many of these
questions, we refer the reader to the relevant chapters of the Handbook of
Mathematical Methods in Imaging [[192] for detailed introductions and refer-
ences.

The authors have benefited from the support of the EPSRC Science & Inno-
vation Award to the Oxford Centre for Nonlinear PDE (EP/E035027/1), and
also of the ERC Advanced Grant Project MULTIMOD-267184. G. S. Alberti ac-
knowledges support from the ETH Zurich Postdoctoral Fellowship Program as
well as from the Marie Curie Actions for People COFUND Program. Y. Capde-
boscq would like to thank the Fondation Sciences Mathématiques de Paris and
the Laboratoire Jacques-Louis Lions for the remarkable support provided dur-
ing his time spent in Paris in 2013-2014.

The authors would like to thank the anonymous referee. The manuscript
review and the many helpful suggestions it contained have brought us to clarify
and improve the presentation of several chapters.
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CHAPTER 1

INTRODUCTION

The inverse problems we discuss are the non-physical counterparts of physics
based direct problems. A direct problem is a model of the link from cause to
effect, and in this course we shall focus on direct problems modelled by partial
differential equations where the effects of a cause are uniquely observable, that
is, well posed problems in the sense of Hadamard: from an initial or boundary
condition, there exists a unique solution, which depends continuously on the
input data [[109].

Inverse problems correspond to the opposite problem, namely to find the
cause which generated the observed, measured result. Such problems are al-
most necessarily ill-posed (and therefore non physical). As absolute precision
in a measure is impossible, measured data are always (local) averages. A field is
measured on a finite number of sensors, and is therefore only known partially.
One could say that making a measure which is faithful, that is, which when
performed several times will provide the same result, implies filtering small
variations, thus applying a compact operator to the full field. Reconstructing
the cause from measurements thus corresponds to the inversion of a compact
operator, which is necessarily unbounded and thus unstable, except in finite
dimension. Schematically, starting from A, a cause (the parameters of a PDE,
a source term, an initial condition), which is transformed into B, the solution,
by the partial differential equation, and then into C, the measured trace of the
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solution, the inversion from C to B is always unstable, whereas the inversion
of B to A may be stable or unstable depending on the nature of the PDE,
but B — A is often less severely ill posed than C — B.

As a first fundamental example, let us consider the electrical impedance
tomography (EIT) problem, also known as the Calderén problem in the math-
ematics literature.

1.1. The electrical impedance tomography problem

1.1.1. Measurements on the exterior boundary: the Calderén problem. —
Let Q C R? be a Lipschitz connected bounded domain, where d > 2 is the
dimension of the ambient space.

We consider a real-valued conductivity coefficient ¢ € L*(Q), satisfying
(1.1) Al <o(x) <A for almost every x € )
for some constant A > 0.
Definition 1.1. — The Dirichlet to Neumann map is
Ay HY2(0Q) — H™V2(0Q),  (Asg,d) = fﬂstVvdx,

where v € H'(Q) is such that Vo =Yand u € H'(Q) is the weak solution of

{ —div(cVu) =0 in Q,
uU=09 on d().

We need to “prove” this definition, because it apparently depends on the
choice of the test function v. Given vy, ve € H!(Q) with the same trace, namely
U] —v9 € H& (), from the definition of weak solution we have

J 6Vu-V(vy —v9)dx =0,
Q

thus this definition is proper.
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