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Abstract. — This volume offers a progressive and comprehensive introduction to p-adic
Hodge theory. It starts with Tate’s works on p-adic divisible groups and the coho-
mology of p-adic varieties, which constitutes the main concrete motivations for the
development of p-adic Hodge theory. It then moves smoothly to the construction of
Fontaine’s p-adic period rings and their apparition in several comparison theorems
between various p-adic cohomologies. Applications and generalizations of these the-
orems are subsequently discussed. Finally, Scholze’s modern vision on p-adic Hodge
theory, based on the theory of perfectoids, is presented.

Résumé (Une promenade dans la théorie de Hodge p-adique : des fondements aux
développements récents). — Ce volume propose une introduction progressive a la
théorie de Hodge p-adique. En guise d’introduction, le lecteur est invité a décou-
vrir les travaux de Tate sur les groupes p-divisibles et la cohomologie des variétés
p-adiques qui contiennent en essence les prémisses de la théorie de Hodge p-adique.
A la suite de cette initiation, la lectrice est guidée naturellement vers la définition
des anneaux de Fontaine de périodes p-adiques et leur apparition dans certains
théorémes de comparaison entre diverses cohomologies p-adiques. Des applications et
des généralisation de ces théorémes sont discutées par la suite. Le volume se conclut
par une exposition de la vision moderne de la théorie de Hodge p-adique, qui est dte
& Scholze et est fondée sur la notion de perfectoides.
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INTRODUCTION

Xavier Caruso

This volume is dedicated to Jean-Marc Fontaine
who passed away in January 2019.

Since the introduction of algebraic methods in topology by Poincaré at the end of
the 19th century, the cohomology of manifolds has been intensively studied by many
authors in many different directions. Among them, an important case of interest is
that of complex algebraic varieties, whose cohomology has a very rich structure. For
these manifolds, we have at our disposal (at least) two differential cohomological
theories: the singular cohomology, which is purely topological (it makes sense for
any topological space), and the de Rham cohomology, which has a analytic flavor
since it is defined using differential forms. In 1931, de Rham proved a spectacular
and quite unexpected (through very classical nowadays) theorem, stating that these
two cohomologies are actually the same. Precisely, whenever X is a complex smooth
manifold, we have a canonical isomorphism:

sing(X, C) =~ Hig (X).

sing
Soon after that, Hodge observed that, when X is a projective algebraic complex vari-
ety M, the decomposition of any smooth differential form as a sum of a holomorphic

and an antiholomorphic ones induces a canonical splitting of the de Rham cohomology
of X:
Hip(X) = @ H™(X)
a+b=r

on which the complex conjugacy acts by swapping H**(X) and H*%(X). Moreover,
the components H%?(X) have a strong geometrical interpretation in terms of Dol-
beault cohomology. Throughout the 20th century, Hodge decomposition has become
a fundamental tool in complex geometry. For example, viewed as a varying flag in a
complex vector space (namely HJp(X) ~ HZ . (X,C)), it provides efficient methods

sing

(1) Or, more generally, when X is complex, compact and carries a Kihler form.
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for classifying complex algebraic varieties and, consequently, helping in solving moduli
problems.

Another important breakthrough of the 20th century is the emergence of geometric
approaches for attacking arithmetical questions. The notion of algebraic scheme, in-
troduced by Grothendieck in the 1950’s, leads to a uniform language in which all usual
geometric constructions—including cohomology—extend to arbitrary base rings, and
especially to the field of rational numbers Q which has, of course, a strong arithmeti-
cal taste. It is well known that the field of reals numbers R is obtained from Q by
completion. It turns out that QQ carries other absolute values, which are as least as
relevant as the standard absolute value regarding arithmetics. These absolute values
are indexed by the prime numbers p and are called the p-adic absolute values. By
completion, they lead to the fields of p-adic numbers, denoted by Q,, which then
appear as a natural arithmetical analog of R. For these reasons, mathematicians start
to seek for an analog of Hodge decomposition theorem in the p-adic setting.

Before going further, we would like to underline that, although Q, and R share
some similarities, they also differ in several points. Actually, the main differences are of
algebraic nature. Indeed, contrary to R, the unit ball is @, carries a structure of ring.
It is called the ring of p-adic integers and is usually denoted by Z,. The spectrum
of Z, consists of two points: one special point, which is closed and corresponds to
the unique maximal ideal pZ, and one generic point, which is open and dense and
corresponds to the ideal {0}. Spec Z, is sometimes represented as follows:

Spec Q,
(generic point)

Spec(Z/pZ)
-- (closed point)

On this drawing, we clearly see that the generic point, which is canonically isomorphic
to Spec Q,, is not quite the analog of the point, but rather of the punctured unit disk.
For this reason, it is sometimes relevant to consider p-adic varieties as the analogs
of families of varieties (indexed by the “parameter” p) and it turns out that p-adic
Hodge theory shares many similarities with relative Hodge theory whose aim is to
study variations of Hodge structure by means of differential techniques (as Gauss-
Manin connection).

The second difference between QQ, and R we would like to stress concerns Galois
theory: whereas R admits only one algebraic extension, namely C, the algebraic closure
Q, of Q, has infinite degree over Q, and contains many interesting subfields. In other
words, while the absolute Galois group of R is dramatically simple (it consists of
two elements: the identity and the conjugacy), the absolute Galois group of Q, is
much more intricated, reflecting partially the incredible richness of Gal(Q/Q). Making
apparent the action of Gal(Q,/Q,) is something of prime importance in p-adic Hodge
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theory, at which point that p-adic Hodge theory provides nowadays the most powerful
tools for studying Galois representations.

In the p-adic setting, the singular cohomology is no longer relevant since basi-
cally the topology on Q, is quite different from that on standard simplexes. Since
Grothendieck, we know that it has to be replaced by the algebraic étale ¢-adic coho-
mology where £ is an auxiliary prime number. This cohomology group will be denoted
by Hgt(X@p, Q¢) where X is the variery over Q, we are considering. It is important to
mention that H{ (Xg ,Qe) comes equipped with an action of Gal(Q,/Q,). De Rham
cohomology admits an algebraic analog in the p-adic setting as well; we shall denote
it by Hjp (X) in what follows. It is a vector space over Q, equipped with the so-called
de Rham filtration Fil'H’ (X). If X were a complex variety, the filtration would be
given by the formula:

FilHR(X)= € H*'(X)

a+b=r
a<i

showing that it is closely related to the Hodge decomposition. However, in the p-adic
case, we can prove that the de Rham filtration is not split in general.

Let us now assume that X is a projective smooth variety over Q,. The p-adic
étale cohomology of X and its de Rham cohomology are then finite dimensional
Qp-vector spaces with the same dimension ®. Inspired by the complex case, one raises
the following question—sometimes referred to as Grothendieck’s mysterious functor
problem—which can be considered as the starting point of p-adic Hodge theory.

Is there a canonical way to compare Hg (Xg,,Qp) and Hig(X) (equipped with
their additional structures), and to go back and forth between them?

The first significant result towards Grothendieck’s question is due of Tate and appears
in his seminal paper on p-divisible groups published in 1966; it states that, when A is a
smooth abelian scheme over Spec Z,, we have a Gal(Q,/Qp)-equivariant isomorphism:

(1) (CP ®Qp H;t(A@pa Qp) =~ ((Cp QK Hl(A) OA)) @ ((CP(_]') K HO(Aa QA/K))

where C,, denotes the completion of Q, and C,(—1) is its twist by the inverse of the
cyclotomic character. The right hand side of (1) is not quite the de Rham cohomology
of A, but is nevertheless related to it since it is isomorphic to its graded module with
respect to the de Rham filtration.

After this result, Grothendieck’s question has been investigated by Fontaine for
several decades. After several partial results (including an extension of Tate’s theo-
rem to all abelian varieties over ), Fontaine managed, in the 1990’s, to introduce the
ingredients that will eventually allow for a complete answer to Grothendieck’s ques-
tion. Precisely, Fontaine constructed a large field Bggr, the so-called field of p-adic
periods and, together with Jannsen, he formulated the (Cyr)-conjecture, stating that
there should exist a canonical isomorphism (compatible with all additional structures)

(2 This can be proved by reduction to the complex case after the choice of a field embedding Q, — C.
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between the étale cohomology and the de Rham cohomology after extending scalars
to BdR7 i.e.,

(2) Bar ®q, Hi(Xq,, Qp) = Bar ®q, Hir(X)

for all nonnegative integer r and all proper smooth variety X over Q. Let us underline
that this isomorphism could be thought of as a p-adic analog of the classical Hodge
decomposition theorem since, beyond relating two different types of cohomologies, it
shows that the cohomology of X is endowed with remarkable additional structures,
which are a filtration and a Galois action preserving it.

Besides, Fontaine noticed that the situation should be even richer when X admits
a nice prolongation ¢ to Spec Z, (that is, following our analogy, to the “unpunc-
tured” unit disk), i.e., when we assume that the degeneracy of X at the special point
of Spec Z;, remains under control. The simplest situation occurs when the prolonga-
tion ¢¥ remains smooth, i.e., when there is no degeneracy. This is the so-called case
of good reduction. Another case of interest occurs when the special fiber of &l is a
normal crossing divisor. This is the so-called case of semi-stable reduction. In both
cases, one can relate the de Rham cohomology of X with a suitable cohomology of
the special fiber of ¢X. Since the latter is defined over (Z/pZ), one derives a Frobenius
action on Hjp (X). Moreover, in the case of semi-stable reduction, Hj, (X) comes also
equipped with a monodromy action reflecting, roughly speaking, how the cohomology
is changed when one turns around the singularity. Fontaine suggested that, in the
case of good reduction (resp. semi-stable reduction), the isomorphism (2) could be
strengthened and incorporate all the additional structures we have at our disposal.
Precisely, Fontaine defined two subrings B.,ys and By of Bgr and conjectured that:

when X has good reduction: Berys ®q, Hgt(X@p, Qp) = Berys ®q, Hir(X)
when X has semi-stable reduction: Byt ®q, Hg (Xg, Qp) = Bst ®q, Hig(X)

these isomorphisms being compatible with all structures: Galois action, filtration,
Frobenius action and monodromy action in the semi-stable case. Fontaine also ob-
served that, using all these additional structures, the refined isomorphisms above
could be used to go back and forth between H¢ (Xq ,Qp) and Hjg(X), providing
then a complete satisfying answer to Grothendieck’s mysterious functor problem.

After consequent works of many authors, Fontaine’s conjectures have been proved,
and important consequences have been derived. Typically, they allow for a powerful
description of the Galois action on the étale cohomology, from which interesting in-
formation can be derived (as description of Serre’s weights, ramification bounds, etc.)
A beautiful illustration of the type of results one may reach with these techniques is
a theorem of Fontaine asserting that there is no smooth abelian scheme over Spec Z.
Nowadays, Fontaine’s developments have become crucial for many applications in
Arithmetic Geometry and Number Theory, including deformation spaces of Galois
representation, modularity lifting theorems, Langlands correspondence, etc.
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