The Shimura Subgroup of $J_0(N)$

San Ling* and Joseph Oesterlé[†]

SUMMARY. — To the natural morphism $X_1(N) \to X_0(N)$ of modular curves corresponds, by Picard functoriality, a morphism $J_0(N) \to J_1(N)$ between their Jacobian varieties. Its kernel $\Sigma(N)$, called the Shimura subgroup of $J_0(N)$, is finite. We determine the group structure of $\Sigma(N)$ together with the action of Galois and the action of the Hecke algebra. This extends previous results obtained by B. Mazur and K. Ribet.

Let $N \geq 1$ be an integer and let $\Gamma_0(N)$ be the subgroup of $SL_2(\mathbf{Z})$ consisting of the matrices $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbf{Z})$ such that N divides c. It acts on the Poincaré half-plane $\mathcal{H} = \{ \tau \in \mathbf{C} | \text{ Im } \tau > 0 \}$ and on $\overline{\mathcal{H}} = \mathcal{H} \cup \mathbf{P}^1(\mathbf{Q})$ by

$$\left(\left(\begin{array}{cc} a & b \\ c & d \end{array} \right), \quad \tau \right) \mapsto \frac{a\tau + b}{c\tau + d}.$$

The quotient $X_0(N) = \Gamma_0(N) \setminus \overline{\mathcal{H}}$ has a natural structure of compact connected Riemann surface.

One defines in a similar way a Riemann surface $X_1(N) = \Gamma_1(N) \backslash \overline{\mathcal{H}}$, where $\Gamma_1(N)$ is the subgroup of $\Gamma_0(N)$ consisting of the matrices $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ such that $a \equiv d \equiv 1 \mod N$. Let $u: X_1(N) \to X_0(N)$ be the holomorphic map deduced from the identity on $\overline{\mathcal{H}}$ by passing to the quotients.

^{*}This research was financially supported by the National University of Singapore Overseas Graduate Scholarship. The author wishes to thank Ken Ribet for helpful discussion.

[†]This work was completed while the author was a visiting professor at the Miller Institute for Basic Research in Science in Berkeley.

Let $J_0(N)$ and $J_1(N)$ be the Jacobian varieties of $X_0(N)$ and $X_1(N)$, viewed as the connected components of 0 in the corresponding Picard varieties. Let

$$u^*: J_0(N) \longrightarrow J_1(N)$$

be the morphism of abelian varieties deduced from u by Picard functoriality. Its kernel, called the *Shimura subgroup* of $J_0(N)$, is a finite group; we denote it by $\Sigma(N)$.

In this paper, we give a complete description of $\Sigma(N)$: group structure, exponent, order, action of Galois, of Atkin-Lehner involutions and of Hecke operators (including those associated to the primes dividing N), behaviour under degeneracy maps, etc. This extends previous results obtained by B. Mazur ([3], II, 11) and K. Ribet ([5]). Our proofs are of complex analytic nature and would apply in situations where $\Gamma_0(N)$ and $\Gamma_1(N)$ are replaced by discrete subgroups of $SL_2(\mathbf{R})$ of finite covolume, even when the corresponding Riemann surfaces have no modular interpretation.

Let U be the group of complex numbers of modulus 1. We define in §1 a canonical injective group homomorphism

$$\psi: J_0(N) \longrightarrow \operatorname{Hom}(\Gamma_0(N), \mathbf{U}).$$
 (1)

Throughout the paper, we identify the group $\Gamma_0(N)/\Gamma_1(N)$ with $(\mathbf{Z}/N\mathbf{Z})^{\times}$ by

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \Gamma_1(N) \mapsto d + N\mathbf{Z}.$$

We show that an element x of $J_0(N)$ belongs to the Shimura subgroup $\Sigma(N)$ if and only if the kernel of $\psi(x)$ contains $\Gamma_1(N)$. Therefore, we deduce from ψ a canonical injective homomorphism

$$\psi': \Sigma(N) \longrightarrow \operatorname{Hom}((\mathbf{Z}/N\mathbf{Z})^{\times}, \mathbf{U}).$$
 (2)

We determine its image in $\S 2$ and obtain:

THEOREM 1 .— The Shimura subgroup $\Sigma(N)$ of $J_0(N)$ is canonically isomorphic to the group of homomorphisms $g: (\mathbf{Z}/N\mathbf{Z})^{\times} \to \mathbf{U}$ such that g(d) = 1 if d = -1, $d^2 + 1 = 0$, $d^2 + d + 1 = 0$ or $(d-1)^2 = 0$.

By using thm. 1, we compute in $\S 3$ the order and the exponent of the group $\Sigma(N)$:

COROLLARY 1 .— Let $\phi(N)$ denote the number of elements of $(\mathbf{Z}/N\mathbf{Z})^{\times}$ and:

- (i) let m be the largest integer such that m^2 divides N;
- (ii) let k be the number of prime divisors of N distinct from 2 and 3;
- (iii) let m_2 be equal to 2 if -1 is a square mod N (i.e., if 4 $\not N$) and each prime factor $p \neq 2$ of N is congruent to 1 mod 4), and let m_2 be equal to 1 otherwise:
- (iv) let m_3 be equal to 3 if $X^2 + X + 1$ has a root mod N (i.e., if 9 N) and each prime factor $p \neq 3$ of N is congruent to 1 mod 3), and let m_3 be equal to 1 otherwise.

Then we have

$$\operatorname{Card}(\Sigma(N)) = \begin{cases} \phi(N)/(2mm_2^k m_3^k) & \text{if } N \ge 5\\ 1 & \text{if } N \le 4. \end{cases}$$

EXAMPLE.— If N is of the form p^n , with p a prime number and n > 1, then $\Sigma(N)$ is a cyclic group (thm. 1). If $p \neq 2$, its order is the product of $p^{n-1-[n/2]}$ and the numerator of $\frac{p-1}{12}$; if p=2, its order is $2^{\max(0,n-2-[n/2])}$.

COROLLARY 2. — Let $N = \prod p^{r_p}$ be the prime power decomposition of N and:

- (i) let r'_p be equal to $r_p 1 [r_p/2]$ if $p \neq 2$; (ii) let r'_2 be equal to $\max(0, r_2 2 [r_2/2])$; (iii) let e_0 be equal to $\lim_{p|N} ((p-1)p^{r'_p})$;
- (iv) let m_1 be equal to 2 if N is the product of 1, 2 or 4 by a power of an odd prime, and let m_1 be equal to 1 otherwise;
 - (v) let m_2 and m_3 be as in cor. 1.

Then the exponent of the group $\Sigma(N)$ (i.e., the smallest integer e such that $e\Sigma(N)=0$) is given by

$$e = \begin{cases} e_0/(m_1 m_2 m_3) & \text{if } N \ge 5\\ 1 & \text{if } N \le 4. \end{cases}$$

COROLLARY 3. — The only integers N for which the order of $\Sigma(N)$ is 1 are 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 16, 18, 25, 36, 49, 50 and 169.

In fact, for all these values of N except 36, 49, 50 and 169, the genus of the Riemann surface $X_0(N)$ is 0 and we therefore have $J_0(N) = 0$.

COROLLARY 4.— When N approaches infinity, the exponent and a fortiori the order of $\Sigma(N)$ go to infinity.

The Riemann surface $X_0(N)$ is the group of complex points of a modular curve $X_0(N)_{\mathbf{Q}}$ defined over \mathbf{Q} . Therefore, $J_0(N)$ is naturally defined over \mathbf{Q} and the Galois group $\operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q})$, where $\overline{\mathbf{Q}}$ is the algebraic closure of \mathbf{Q} in \mathbf{C} , acts on the group of torsion points of $J_0(N)$. It acts, in particular, on the Shimura subgroup $\Sigma(N)$. We determine this action in §4, and obtain:

THEOREM 2.— Let e be the exponent of the group $\Sigma(N)$ (see cor. 2 of thm. 1). The smallest common field of definition of the points of $\Sigma(N)$ is the cyclotomic field $\mathbf{Q}(\mu_e)$. The Galois group $\mathrm{Gal}(\mathbf{Q}(\mu_e)/\mathbf{Q})$ acts on $\Sigma(N)$ via the cyclotomic character $\mathrm{Gal}(\mathbf{Q}(\mu_e)/\mathbf{Q}) \to (\mathbf{Z}/e\mathbf{Z})^{\times}$.

COROLLARY 1 .— A point x of $\Sigma(N)$ is rational over \mathbf{Q} if and only if we have 2x = 0. The number of those points is $2^{\operatorname{Card}(P) + \epsilon}$, where P is the set of odd primes dividing N and ϵ is given by

$$\epsilon = \begin{cases} -1 & \text{if } 4 \not\mid N \text{ and there exists } p \in P, \ p \not\equiv 1 \bmod 8; \\ -1 & \text{if } 4 \mid N, 8 \not\mid N \text{ and there exists } p \in P, \ p \not\equiv 1 \bmod 4; \\ 1 & \text{if } 32 \mid N; \\ 0 & \text{otherwise.} \end{cases}$$

Corollary 2 .— The only integers N for which all points of $\Sigma(N)$ are rational over ${\bf Q}$ are:

- (i) those for which $\Sigma(N)$ is of order 1, listed in cor. 3 of thm. 1;
- (ii) the integers 20, 21, 24, 32, 48, 64, 72, 100, 144 and 147, for which $\Sigma(N)$ is of order 2;
- (iii) the integers 96, 192, 288 and 576, for which $\Sigma(N)$ is isomorphic to $(\mathbf{Z}/2\mathbf{Z})^2$.

To each divisor N_1 of N, such that N_1 is prime to N/N_1 , is associated an $Atkin-Lehner\ involution\ w_{N_1}$ of $X_0(N)$: for the definition, see §5. The involutions $w_{N_1}^*$ and $(w_{N_1})_*$ of $J_0(N)$ deduced by Picard and Albanese functorialities respectively coincide. The behaviour of the Shimura subgroup of $J_0(N)$ under these maps is studied in §5. We obtain:

Theorem 3 .— The Shimura subgroup $\Sigma(N)$ of $J_0(N)$ is stable under $w_{N_1}^*$. Moreover, we have the commutative diagram

$$\Sigma(N) \xrightarrow{\psi'} \operatorname{Hom}((\mathbf{Z}/N\mathbf{Z})^{\times}, \mathbf{U})
\alpha \downarrow \qquad {}^{t}\alpha' \downarrow \qquad (3)
\Sigma(N) \xrightarrow{\psi'} \operatorname{Hom}((\mathbf{Z}/N\mathbf{Z})^{\times}, \mathbf{U}),$$

where α is the map induced by $w_{N_1}^*$, ψ' is the canonical injection (2), and ${}^t\alpha'$ is the transpose of the involution $\alpha': (\mathbf{Z}/N\mathbf{Z})^{\times} \to (\mathbf{Z}/N\mathbf{Z})^{\times}$ which coincides with $t \mapsto t^{-1}$ modulo N_1 and with the identity modulo N/N_1 .

The following particular case of thm. 3 was previously obtained by K. Ribet ([5], lemma 1):

COROLLARY .— The involution w_N^* acts on the Shimura subgroup $\Sigma(N)$ by multiplication by -1.

Let M be a divisor of N. For each divisor D of N/M, we have a holomorphic degeneracy map $v_D: X_0(N) \to X_0(M)$. It is the map deduced from the transformation $\tau \mapsto D\tau$ of $\overline{\mathcal{H}}$ by passing to the quotients; a modular definition of v_D is given in §6. By Picard and Albanese functorialities respectively, we get morphisms of abelian varieties

$$v_D^*: J_0(M) \longrightarrow J_0(N),$$

$$(v_D)_*: J_0(N) \longrightarrow J_0(M),$$
(4)

the latter being the dual of the former. The behaviour of the Shimura subgroups under these maps is studied in §6. We obtain:

Theorem 4 .— We have $v_D^*(\Sigma(M)) \subseteq \Sigma(N)$. Moreover, we have the commutative diagram

$$\begin{array}{ccc} \Sigma(M) & \longrightarrow & \operatorname{Hom}((\mathbf{Z}/M\mathbf{Z})^{\times}, \mathbf{U}) \\ \beta \downarrow & & {}^{t}\beta' \downarrow & \\ \Sigma(N) & \longrightarrow & \operatorname{Hom}((\mathbf{Z}/N\mathbf{Z})^{\times}, \mathbf{U}), \end{array}$$
 (5)

where β is the map induced by v_D^* , the horizontal arrows represent the canonical injections (2), and ${}^t\beta'$ is the transpose of the canonical surjection $\beta': (\mathbf{Z}/N\mathbf{Z})^{\times} \to (\mathbf{Z}/M\mathbf{Z})^{\times}$.

THEOREM 5 .— We have $(v_D)_*(\Sigma(N)) \subseteq \Sigma(M)$. Moreover, we have the commutative diagram

$$\begin{array}{ccc} \Sigma(N) & \longrightarrow & \operatorname{Hom}((\mathbf{Z}/N\mathbf{Z})^{\times}, \mathbf{U}) \\ \delta \downarrow & & {}^{t}\delta' \downarrow & \\ \Sigma(M) & \longrightarrow & \operatorname{Hom}((\mathbf{Z}/M\mathbf{Z})^{\times}, \mathbf{U}), \end{array}$$
(6)

where δ is the map induced by $(v_D)_*$, the horizontal arrows represent the canonical injections (2), and ${}^t\delta'$ is the transpose of the homomorphism