The Shimura Subgroup of Jy(N)

San Ling* and Joseph Oesterléf

SUMMARY. — To the natural morphism X{(N) — Xo(N) of modular
curves corresponds, by Picard functoriality, a morphism Jo(N) — J1(N)
between their Jacobian varieties. Its kernel ¥(N), called the Shimura sub-
group of Jo(IN), is finite. We determine the group structure of ©(N) together
with the action of Galois and the action of the Hecke algebra. This extends
previous results obtained by B. Mazur and K. Ribet.

Let N > 1 be an integer and let I'g(N) be the subgroup of SLy(Z)

Z ) € SLy(Z) such that N divides c. It acts

on the Poincaré half-plane H = {r € C| Im7 > 0} and on H = HUP(Q)

by
a b - - at + 0
c d )’ cr+d’

The quotient Xo(IN) = Iy(N)\H has a natural structure of compact con-
nected Riemann surface.

One defines in a similar way a Riemann surface X;(N) = I'(NV)\H,
b
d
such that ¢ =d =1 mod N. Let u : X;(IN) — Xo(N) be the holomorphic
map deduced from the identity on H by passing to the quotients.

. . a
consisting of the matrices ( c

where I'1 (V) is the subgroup of I'¢(V) consisting of the matrices
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Let Jo(N) and J1(IN) be the Jacobian varieties of Xo(/N) and X;(N),
viewed as the connected components of 0 in the corresponding Picard vari-
eties. Let

u* : Jo(N) —> Ji(N)

be the morphism of abelian varieties deduced from u by Picard functoriality.
Its kernel, called the Shimura subgroup of Jo(IV), is a finite group; we denote
it by Z(N).

In this paper, we give a complete description of £(IV): group structure,
exponent, order, action of Galois, of Atkin-Lehner involutions and of Hecke
operators (including those associated to the primes dividing V), behaviour
under degeneracy maps, etc. This extends previous results obtained by
B. Mazur ([3], II, 11) and K. Ribet ([5]). Our proofs are of complex an-
alytic nature and would apply in situations where I'¢(V) and I'y(/V) are
replaced by discrete subgroups of SL;(R) of finite covolume, even when the
corresponding Riemann surfaces have no modular interpretation.

Let U be the group of complex numbers of modulus 1. We define in §1
a canonical injective group homomorphism

¥ 1 Jo(N) — Hom(T'y(N), U). (1)

Throughout the paper, we identify the group I'o(N)/T(N) with (Z/NZ)*
by

d

We show that an element z of Jo(/V) belongs to the Shimura subgroup (V)
if and only if the kernel of ¥(x) contains I'y (V). Therefore, we deduce from
¥ a canonical injective homomorphism

(‘; b )FI(N)»—»d-l-NZ.

Y' : E(N) — Hom((Z/NZ)*,U). (2)
We determine its image in §2 and obtain:

THEOREM 1 .— The Shimura subgroup (N) of Jo(N) s canonically iso-
morphic to the group of homomorphisms g : (Z/NZ)* — U such that
g(d)=14d=-1,d>+1=0,d*+d+1=0or (d—1)*=0.

By using thm. 1, we compute in §3 the order and the exponent of the group
Z(N):
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COROLLARY 1 .— Let ¢(N) denote the number of elements of (Z/NZ)*
and:

(1) let m be the largest integer such that m? divides N;

(i) let k be the number of prime divisors of N distinct from 2 and 3;

(4iz) let my be equal to 2 if —1 is a square mod N (i.e., if 4 [N and each
prime factor p # 2 of N 1is congruent to 1 mod 4), and let my be equal to 1
otherunse;

(iv) let m3 be equal to 3 of X?> + X +1 has a root mod N (i.e., if9 JN
and each prime factor p # 3 of N is congruent to 1 mod 3), and let ms be
equal to 1 otherwise.

Then we have

cm«mN»:{?NV@mm%m ini

EXAMPLE.— If N is of the form p™, with p a prime number and n > 1,
then (V) is a cyclic group (thm. 1). If p # 2, its order is the product of

p"~1-I"/2] and the numerator of ”—1—2—1; if p = 2, its order is 2max(0,n=2=[n/2])

COROLLARY 2 .— Let N =[] p"™ be the prime power decomposition of N
and:

(i) let v, be equal to r, — 1 — [rp/2] if p # 2;

(#2) let 5 be equal to max(0,ry — 2 — [ry/2]);

(13) let eq be equal to lclrg’l((p —1)p™);

P

(iv) let m, be equal to 2 if N is the product of 1,2 or 4 by a power of an
odd prime, and let m, be equal to 1 otherwise;

(v) let my and ms be as in cor. 1.

Then the exponent of the group X(N) (v.e., the smallest integer e such
that eS(N) = 0) is given by

e = eo/(mimams) if N >5
! if N < 4.

COROLLARY 3 .— The only integers N for which the order of ¥(N) is 1
are 1, 2, 3, 4,5,6, 7,8, 9, 10, 12, 13, 16, 18, 25, 36, 49, 50 and 169.

In fact, for all these values of N except 36, 49, 50 and 169, the genus of
the Riemann surface Xo(/V) is 0 and we therefore have Jo(N) = 0.
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COROLLARY 4 .— When N approaches infinity, the exponent and a fortior:
the order of £(N) go to infinity.

The Riemann surface X, (V) is the group of complex points of a modular
curve Xo(/V)q defined over Q. Therefore, Jo(/V) is naturally defined over
Q and the Galois group Gal(Q/Q), where Q is the algebraic closure of Q
in C, acts on the group of torsion points of Jo(/V). It acts, in particular, on
the Shimura subgroup (V). We determine this action in §4, and obtain:

THEOREM 2 .— Let e be the exponent of the group L(N) (see cor. 2 of
thm. 1). The smallest common field of definition of the points of L(N) s
the cyclotomic field Q(p.). The Galois group Gal(Q(u.)/Q) acts on Z(N)
via the cyclotomic character Gal(Q(u.)/Q) — (Z/eZ)*.

COROLLARY 1 .— A point x of Z(N) is rational over Q if and only if we
have 2z = 0. The number of those points is 2624 (P)+< yhere P is the set of
odd primes dividing N and € is given by

—1 if4 JN and there erists p € P, p Z 1 mod 8;
—1 if 4|N, 8 [N and there exists p € P, p # 1 mod 4;

€ =

1 if 32|N;
0 otherwise.
COROLLARY 2 .— The only integers N for which all points of Z(N) are

rational over Q are:

(i) those for which £(N) is of order 1, listed in cor. 3 of thm. 1;

(it) the integers 20,21, 24, 32, 48,64, 72,100, 144 and 147, for which X(N)
s of order 2;

(i) the integers 96,192,288 and 576, for which (N) is isomorphic to
(Z/2Z)2.

To each divisor N; of N, such that /V; is prime to N/Ny, is associated
an Atkin-Lehner involution wy, of Xo(/N): for the definition, see §5. The
involutions wy, * and (wpy, )« of Jo(IN) deduced by Picard and Albanese func-
torialities respectively coincide. The behaviour of the Shimura subgroup of
Jo(IV) under these maps is studied in §5. We obtain:

THEOREM 3 .— The Shimura subgroup (N) of Jo(N) is stable under
wp,*. Moreover, we have the commutative diagram
S(N) X Hom((Z/NZ)*,U)
ol o | (3)
S(N) X Hom((Z/NZ)*,U),
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where « is the map induced by wy,*, ¥’ is the canonical injection (2), and ‘o’
is the transpose of the involution o’ : (Z/NZ)* — (Z/NZ)* which coincides
with t — t~' modulo N, and with the identity modulo N/Nj.

The following particular case of thm. 3 was previously obtained by IK. Ribet
([5], lemma 1):

COROLLARY .— The involution wn* acts on the Shimura subgroup 3(N)
by multiplication by —1.

Let M be a divisor of N. For each divisor D of N/M, we have a holo-
morphic degeneracy map vp : Xo(N) — Xo(M). It is the map deduced
from the transformation 7 — D7 of H by passing to the quotients; a mod-
ular definition of vp is given in §6. By Picard and Albanese functorialities
respectively, we get morphisms of abelian varieties

vp* 1 Jo(M) — Jo(N),
(4)
('UD),. M Jo(N) —_— J()(]\l),

the latter being the dual of the former. The behaviour of the Shimura
subgroups under these maps is studied in §6. We obtain:

THEOREM 4 .— We have vp*(3(M)) C E(N). Moreover, we have the
commutative diagram

S(M) — Hom((Z/MZ)*,U)
gl Bl (5)
$(N) — Hom((Z/NZ)*,U),

where (3 is the map induced by vp*, the horizontal arrows represent the
canonical injections (2), and *(' is the transpose of the canonical surjection

B : (Z/NZ)* — (Z/MZ)*.

THEOREM 5 .— We have (vp).(E2(N)) C (M). Moreover, we have the
commutative diagram
2(N) — Hom((Z/NZ)*,U)
o1 ) (6)
Y(M) — Hom((Z/MZ)*,U),

where 6 is the map induced by (vp)., the horizontal arrows represent the
canonical injections (2), and 6’ 1s the transpose of the homomorphism

175



