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ON COVERINGS OF SIMPLE ABELIAN VARIETIES

by Olivier Debarre

Abstract. — To any finite covering f : Y → X of degree d between smooth complex
projective manifolds, one associates a vector bundle Ef of rank d−1 on X whose total
space contains Y . It is known that Ef is ample when X is a projective space ([9]),
a Grassmannian ([11]), or a Lagrangian Grassmannian ([7]). We show an analogous
result when X is a simple abelian variety and f does not factor through any nontrivial
isogeny X′ → X. This result is obtained by showing that Ef is M -regular in the sense
of Pareschi-Popa, and that any M -regular sheaf is ample.

Résumé (Sur les revêtements des variétés abéliennes simples). — On associe à tout
revêtement fini f : Y → X de degré d entre variétés projectives lisses complexes un
fibré vectoriel Ef de rang d − 1 sur X dont l’espace total contient Y . On sait que
Ef est ample lorsque X est un espace projectif ([9]), une grassmannienne ([11]) ou
une grassmannienne lagrangienne ([7]). Nous montrons un résultat analogue lorsque
X est une variété abélienne simple et que f ne se factorise par aucune isogénie non
triviale X′ → X. Ce résultat est obtenu en montrant que Ef est M -régulier au sens
de Pareschi-Popa, puis que tout faisceau M -régulier est ample.
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Strasbourg Cedex (France). • E-mail : debarre@math.u-strasbg.fr

2000 Mathematics Subject Classification. — 14E20, 14J60, 14K02, 14K05, 14K12.

Key words and phrases. — Abelian variety, vector bundle, ample sheaf, M -regular sheaf,
continuously generated sheaf, Barth-Lefschetz Theorem, Mukai transform.
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1. Introduction

We work over the complex numbers. Let f : Y → X be a finite surjective
morphism of degree d between smooth projective varieties of the same dimen-
sion n. The morphism f is flat, hence the sheaf f∗OY is locally free. We may
define a locally free sheaf Ef of rank d − 1 on X as the dual of the kernel of
the trace map TrY/X : f∗OY → OX , so that

f∗OY = OX ⊕ E∗
f

By duality for a finite flat morphism, we have

f∗ωY/X = OX ⊕ Ef

Our aim is to prove the following statement conjectured in [1].

Theorem 1.1. — Let X be a simple abelian variety, let Y be a smooth con-
nected projective variety, and let f : Y → X be a finite cover. If f does not

factor through any nontrivial isogeny X ′ → X, the vector bundle Ef is ample.

For a more general statement, see Theorem 4.1. See also the remarks at
the end of this article for more comments. Even if X is not simple, the vector
bundle Ef is known to be nef (see [14, Theorem 1.17], [10, Example 6.3.59])
and its restriction to a general complete intersection curve in X to be ample
(see [6, Lemma 2.7]).

The ampleness of Ef has a number of consequences, as explained in [10,
Example 6.3.56]. In our case, one new statement beyond the Fulton-Hansen-
type results already obtained in [1] is the following: under the hypotheses of
the theorem, the induced morphism

Hi(f, C) : Hi(X, C) −→ Hi(Y, C)

is bijective for i ≤ n − d + 1 (see [10, Theorem 7.1.16]).

When moreover d ≤ n, the morphism π1(f) : π1(Y ) → π1(X) is bijective.(1)

In particular, the group H1(Y, Z) is isomorphic to H1(X, Z), hence is torsion-
free, and so is H2(Y, Z) by the universal coefficient theorem.

When d ≤ n− 1, the morphism H2(f, Z) : H2(X, Z) → H2(Y, Z) is injective
with finite cokernel, hence so is Pic(f) : Pic(X) → Pic(Y ). It seems likely that
those two maps are bijective.

The proof is a simple application of the results of [13] about global generation
of sheaves on an abelian variety. More precisely, it is based on the remark that
any M -regular sheaf (§ 3) on an abelian variety is ample (Corollary 3.2).

(1)For algebraic fundamental groups, this is [1, Corollaire 6.2]; for topological fundamental
groups, this is [2, Exercice VIII.5], where the hypothesis d ≤ n is unfortunately missing.
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2. Ample sheaves

To any coherent sheaf F on a scheme X of finite type over C, one associates
the X-scheme

P(F) = Proj
( ⊕

m≥0

SymmF
)

and an invertible sheaf OP(F)(1) on P(F). The sheaf F is said to be ample
if OP(F)(1) is.

Well-known properties of ampleness for locally free sheaves (see for example
[10, Chapter 6]) still hold in this general setting:

a) the sheaf F is ample if and only if, for any coherent sheaf G on X , the
sheaf G ⊗ SymmF is globally generated for all m � 0 (see [8, Theorem 1]);

b) any quotient of an ample sheaf is ample (see [8, Proposition 1]);

c) if π : Y → X is a finite morphism, F is ample if and only if π∗F is (this is
because P(π∗F) = P(F)×X Y and OP(F)(1) pulls back, by a finite morphism,
to OP(π∗F)(1));

d) if X is proper and F is globally generated, F is ample if and only if, for
any curve C in X , the restriction F ⊗ OC has no trivial quotient (Gieseker’s
Lemma).

3. Continuously generated sheaves

Following [13, Definition 2.10], we say that a coherent sheaf F on an ir-
reducible projective variety X is continuously globally generated if, for any
nonempty subset U of Pic0(X), the sum of the twisted evaluation maps

⊕

ξ∈U

H0(X,F ⊗ Pξ) ⊗ P∨

ξ −→ F

is surjective, where, for any element ξ of Pic0(X), we denote by Pξ the corre-
sponding numerically trivial line bundle on X . This property is equivalent
to the existence of a positive integer N such that for (ξ1, . . . , ξN ) general
in Pic0(X)N , the analogous map

(1)

N⊕

i=1

H0(X,F ⊗ Pξi
) ⊗ P∨

ξi
−→ F
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256 DEBARRE (O.)

is surjective. Being a quotient of a direct sum of numerically trivial line bundles,
a continuously globally generated sheaf is nef. Our aim is to show that under
certain circumstances, it is ample.

Proposition 3.1. — A coherent sheaf F on an irreducible projective vari-

ety X is continuously globally generated if and only if there exists a connected

abelian Galois étale cover π : Y → X such that π∗(F⊗Pξ) is globally generated

for all ξ ∈ Pic0(X).

Proof. — Assume F is continuously globally generated and let ξ ∈ Pic0(X).
Since torsion points are dense in Pic0(X)N , the open subset of Pic0(X)N of
points for which the map (1) is surjective and all h0(X,F ⊗ Pξi

) are minimal
contains a point of the type

(
ξ + η1(ξ), . . . , ξ + ηN (ξ)

)

where (η1(ξ), . . . , ηN (ξ)) is torsion, hence contains also Uξ +(η1(ξ), . . . , ηN (ξ)),

where Uξ is a neighborhood of ξ in Pic0(X). Since Pic0(X) is quasi-compact,
it is covered by finitely many such neighborhoods, say Uξ1

, . . . , UξM
.

Let π : Y → X be a connected abelian Galois étale cover such that the
kernel of Pic0(π) : Pic0(X) → Pic0(Y ) contains all ηi(ξj), for i ∈ {1, . . . , N}
and j ∈ {1, . . . , M}. Fix j ∈ {1, . . . , M}; the map

N⊕

i=1

H0(X,F ⊗ Pξ ⊗ Pηi(ξj)) ⊗ π∗P∨

ξ ⊗ π∗P∨

ηi(ξj)
−→ π∗F

is surjective for all ξ ∈ Uξj
. But this map is

N⊕

i=1

H0(X,F ⊗ Pξ ⊗ Pηi(ξj)) ⊗ π∗P∨

ξ −→ π∗F

and since each H0(X,F⊗Pξ⊗Pηi(ξj)) is a vector subspace of H0(Y, π∗(F⊗Pξ)),
the sheaf π∗(F ⊗ Pξ) is globally generated for all ξ ∈ Uξj

, hence for all ξ

in Pic0(X).

For the converse, assume that there exists a connected abelian Galois étale
cover π : Y → X such that the evaluation map

H0
(
Y, π∗(F ⊗ Pξ)

)
⊗OY −→ π∗(F ⊗ Pξ)

is surjective for all ξ ∈ Pic0(X). Since π is finite, the map

H0(X,F ⊗ Pξ ⊗ π∗OY ) ⊗ π∗OY −→ F ⊗ Pξ ⊗ π∗OY

is also surjective. If we let Ker(Pic0(π)) = {η1, . . . , ηN}, we have π∗OY =⊕N
i=1 Pηi

, the map

( N⊕

i=1

H0(X,F ⊗ Pξ ⊗ Pηi
)
)
⊗

( N⊕

i=1

Pηi

)
−→ F ⊗ Pξ ⊗

( N⊕

i=1

Pηi

)
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is surjective, and so is

N⊕

i=1

H0(X,F ⊗ Pξ ⊗ Pηi
) ⊗ P∨

ηi
−→ F ⊗ Pξ.

In other words, the map (1) is surjective for (ξ1, . . . , ξN ) = (ξ +η1, . . . , ξ +ηN ),
for all ξ ∈ Pic0(X). Choosing ξ0 such that h0(X,F ⊗Pξ0+ηi

) takes the general
(minimal) value for each i in {1, . . . , N}, we obtain that the map (1) is still
surjective for (ξ1, . . . , ξN ) in a neighborhood of (ξ0 + η1, . . . , ξ0 + ηN ). This
proves that F is continuously globally generated.

Corollary 3.2. — Let X an irreducible projective variety with a finite map

to an abelian variety. Any continuously globally generated coherent sheaf on X
is ample.

Proof. — Let F be a continuously globally generated coherent sheaf on X . By
Proposition 3.1, there exists a connected abelian Galois étale cover π : Y → X
such that π∗(F ⊗ Pξ) is globally generated for all ξ ∈ Pic0(X).

Let C be a curve in Y . If there is a trivial quotient π∗F C � OC , we

have also surjections π∗(F ⊗ Pξ) C � π∗Pξ C for each ξ ∈ Pic0(X). Since
π∗(F ⊗ Pξ) is globally generated, so is π∗Pξ C. This implies that the compo-

sition Pic0(X) → Pic0(Y ) → Pic0(C) is zero, hence that π(C) is contracted
by any map from X to an abelian variety. This contradicts our hypothesis,
hence π∗F C has no trivial quotient.

By Gieseker’s Lemma, π∗F is ample, and so is F (§ 2).

4. The main theorem

Following [13, Definition 2.1], we say that a coherent sheaf F on an abelian
variety A is M -regular if

codimPic0(A) Supp
(
RiŜ(F)

)
> i

for all i > 0 (RiŜ is the ith Fourier-Mukai functor). This is the case if

codimPic0(A){ξ ∈ Pic0(A) | Hi(A,F ⊗ Pξ) 6= 0} > i

for all i > 0. We refer to [12] and [13] for more details. For our purposes, the
main result of [13] (Proposition 2.13) is that an M -regular coherent sheaf on

an abelian variety is continuously globally generated.

Theorem 4.1. — Let X be a smooth connected projective variety with a finite

map to a simple abelian variety, let Y be a smooth connected projective variety

with a finite surjective map f : Y → X. If f factors through no nontrivial

connected abelian Galois étale covering of X, the vector bundle Ef ⊗ ωX is

ample.
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