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Introduction 

There are many different types of algebra: associative, associative and commutative, 
Lie, Poisson, etc., etc. Each comes with an appropriate notion of a module and thus 
with an associated theory of representations. Moreover, as is becoming more and more 
important in a variety of fields, including algebraic topology, algebraic geometry, dif­
ferential geometry, and string theory, it is very often necessary to deal with "algebras 
up to homotopy" and with "partial algebras". The associated theories of modules have 
not yet been developed in the published literature, but these notions too are becoming 
increasingly important. We shall study various aspects of the theory of such generalized 
algebras and modules in this paper. We shall also develop some related algebra in the 
classical context of modules over DGA's. While much of our motivation comes from the 
theory of mixed Tate motives in algebraic geometry, there are pre-existing and potential 
applications in all of the other fields mentioned above. 

The development of abstract frameworks in which to study such algebras has a long 
history. It now seems to be widely accepted that, for most purposes, the most convenient 
setting is that given by operads and their actions [46]. While the notion was first 
written up in a purely topological framework, due in large part to the resistance of 
topologists to abstract nonsense at that period, it was already understood by 1971 
that the basic definitions apply equally well in any underlying symmetric monoidal (= 
tensor) category [35]. In fact, certain chain level concepts, the PROP's and PACT's of 
Adams and MacLane [42], were important precursors of operads. Prom a topological 
point of view, the switch from algebraic to topological PROP's, which was made by 
Boardman and Vogt [11], was a major step forwards. Perhaps for this reason, a chain 
level algebraic version of the definition of an operad did not appear in print until the 
1987 paper of Hinich and Schechtman [31]. Applications of such algebraic operads and 
their actions have appeared in a variety of contexts in other recent papers, for example 
[27, 28, 29, 32, 34, 33, 59]. 
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In the algebraic setting, an operad ^ consists of suitably related chain complexes 
^(j) with actions by the symmetric groups Ej. An action of ^ on a chain complex A 
is specified by suitably related E7-equivariant chain maps 

E (j) ® Aj -> A, 

where Aj is the j-fold tensor power of A. The C(j) are thought of as parameter 
complexes for j-ary operations. When the differentials on the ^(j) are zero, we think 
of ^ as purely algebraic, and it then determines an appropriate class of (differential) 
algebras. When the differentials on the ^(j) are non-zero, ^ determines a class of 
(differential) algebras "up to homotopy", where the homotopies are determined by the 
homological properties of the ̂ (j). For example, we say that ^ is an EQQ operad if each 
^{j) is Ej-free and acyclic, and we then say that A is an EQQ algebra. An Eoo algebra 
A has a product for each degree zero cycle of ^(2). Each such product is unital, 
associative, and commutative up to all possible coherence homotopies, and all such 
products are homotopic. There is a long history in topology and category theory that 
makes precise what these "coherence homotopies" are. However, since the homotopies 
are all encoded in the operad action, there is no need to be explicit. There is a class 
of operads that is related to Lie algebras as E^ operads are related to commutative 
algebras, and there is a concomitant notion of a "strong homotopy Lie algebra". In fact, 
any type of algebra that is defined in terms of suitable identities admits an analogous 
"strong homotopy" generalization expressed in terms of actions by appropriate operads. 

We shall give an exposition of the basic theory of operads and their algebras and 
modules in Part I. While we shall give many examples, the deeper aspects of the theory 
that are geared towards particular applications will be left to later Parts. In view of 
its importance to string theory and other areas of current interest, we shall illustrate 
ideas by describing the relationship between the little n-cubes operads of iterated loop 
space theory on the one hand and n-Lie algebras and n-braid algebras on the other. 
An operad § of topological spaces gives rise to an operad C#(<?) of chain complexes by 
passage to singular chains. On passage to homology with field coefficients, there results 
a purely algebraic operad i?*(<f). There is a particular operad of topological spaces, 
denoted En that acts naturally on n-fold loop spaces. For n > 2, the algebras defined 
by if*(^n; Q) are exactly the (n — l)-braid algebras. Even before doing any calculation, 
one sees from a purely homotopical theorem of [46] that, for any path connected space 
X, #*(finEnX;Q) is the free #*(<sfn;Q)-algebra generated by H*{X]Q). This allows 
a topological proof, based on the Serre spectral sequence, of the algebraic fact that 
the free n-braid algebra generated by a graded vector space V is the free commutative 
algebra generated by the free n-Lie algebra generated by V. Actually, the results just 
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summarized are the easy characteristic zero case of Cohen's much deeper calculations 
in arbitrary characteristic [15, 16], now over twenty years old. 

Operads and their actions are specified in terms of maps that are defined on tensor 
products of chain complexes. In practice, one often encounters structures that behave 
much like algebras and modules, except that the relevant maps are only defined on 
suitable submodules of tensor products. For geometric intuition, think of intersection 
products that are only defined between elements that are in general position. Such 
partial algebras have been used in topology since the 1970's, for example in [48] and in 
unpublished work of Boardman and Segal. In Part II, we shall generalize the notions 
of algebras over operads and of modules over algebras over operads to the context of 
partially defined structures. Such partially defined structures are awkward to study 
algebraically, and it is important to know when they can be replaced by suitably equiv­
alent globally defined structures. We shall show in favorable cases that partial algebras 
can be replaced by quasi-isomorphic genuine algebras over operads, and similarly for 
modules. When A: is a field of characteristic zero, we shall show further that algebras 
and modules can be replaced by quasi-isomorphic commutative algebras and modules 
and, similarly, that strong homotopy Lie algebras and modules can be replaced by 
quasi-isomorphic genuine Lie algebras and modules. The arguments work equally well 
for other kinds of algebras. 

One of the main features of the definition of an operad is that an operad determines 
an associated monad that has precisely the same algebras. This interpretation is vital 
to the use of operads in topology. The proofs of the results of Part II are based on this 
feature. The key tool is the categorical "two-sided monadic bar construction" that was 
introduced in the same paper that first introduced operads [46]. This construction has 
also been used to prove topological analogs of many of the present algebraic results, 
along with various other results that are suggestive of further algebraic analogs [47, 
49, 26, 52]. In particular, the proofs in Part II are exactly analogous to a topological 
comparison between Segal's T-spaces [58] and spaces with operad actions that is given 
in [26]. 

While these results can be expected to have other applications, the motivation came 
from algebraic geometry. For a variety X, Bloch [7] defined the Chow complex 3{X). 
This is a simplicial abelian group whose homology groups are the Chow groups of 
X. It has a partially defined intersection product, and we show in Part II that it 
gives rise to a quasi-isomorphic algebra, denoted JY{X). After tensoring with the 
rationals, we obtain a commutative differential graded algebra (DGA) <AQ(X) that is 
quasi-isomorphic to JY{X) <S> Q. The construction of these algebras answers questions 
of Deligne [20] that were the starting point of the present work. His motivation was 
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