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AN APPLICATION OF p-ADIC INTEGRATION TO THE
DYNAMICS OF A BIRATIONAL TRANSFORMATION

PRESERVING A FIBRATION

by Federico Lo Bianco

Abstract. — Let f : X 99K X be a birational transformation of a projective manifold
X whose Kodaira dimension κ(X) is non-negative. We show that if there exist a
dominant rational map π : X 99K B and a birational transformation fB : B 99K B
which preserves a big line bundle L ∈ Pic(B) such that fB ◦ π = π ◦ f , then fB has
finite order.

As a corollary, we show that for projective irreducible symplectic manifolds of type
K3[n] or generalized Kummer, the first dynamical degree characterizes the birational
transformations admitting a Zariski-dense orbit.

Résumé (Une application de l’intégration p-adique à la dynamique d’une transforma-
tion birationnelle préservant une fibration). — Soit f : X 99K X une transformation
birationnelle d’une variété projective lisse X dont la dimension de Kodaira κ(X) est
non-négative. Nous montrons que, s’il existe une application rationnelle dominante
π : X 99K B et une transformation birationnelle fB : B 99K B qui préserve un fibré en
droites “big” L ∈ Pic(B) et telle que fB ◦ π = π ◦ f , alors fB est d’ordre fini.

Comme corollaire, nous montrons que, pour toute variété projective symplectique
irréductible de type K3[n] ou Kummer généralisée, le premier degré dynamique carac-
térise les transformations birationnelles admettant une orbite Zariski-dense.

Texte reçu le 26 octobre 2022, modifié le 5 novembre 2023, accepté le 10 octobre 2024.
Federico Lo Bianco, InterDigital France, 845a Av. des Champs Blancs, 35510 Cesson-
Sévigné (France) • E-mail : federico.lobianco@interdigital.com

Mathematical subject classification (2010). — 11S80, 14D06, 14E05, 14E07, 14F25.
Key words and phrases. — Complex projective geometry, complex dynamics, birational
transformations, fibrations, p-adic integration.

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE 0037-9484/2025/495/$ 5.00
© Société Mathématique de France doi:10.24033/bsmf.2904

http://dx.doi.org/10.24033/bsmf.2904


496 F. LO BIANCO

1. Introduction

Let f : X 99K X be a birational transformation of a complex projective man-
ifold. A natural question when studying the dynamical properties of f is the
existence of an equivariant rational fibration, i.e. of a dominant rational map
with connected fibres π : X 99K B onto a projective manifold and of a birational
transformation fB : B 99K B such that the following diagram commutes:

M M

B B

f

π π

fB

.

The transformation f is called imprimitive (see [5]) if there exists a non-trivial
f -equivariant fibration (i.e. such that 0 < dimB < dimX) and is primitive
otherwise; the study of imprimitive birational transformations should intu-
itively be simpler than of primitive ones, as their dynamics decomposes into
smaller dimensional dynamical systems: the base and the fibres. The goal of
the present paper is to study the action on the base induced by an imprimitive
transformation. When π is (birationally equivalent to) the canonical fibration
of X, some finite index subgroup of Bir(X) acts as the identity on B; this is
a consequence of the finiteness of the pluricanincal representations (see [17]).
Our main result is the following generalization:

Theorem A. — Let X be a complex projective manifold and let f : X 99K X
be a birational transformation. Suppose that there exist a dominant rational
map π : X 99K B onto a projective manifold B and a birational transformation
fB : B 99K B such that fB ◦ π = π ◦ f . Assume that

1. the Kodaira dimension κ(X) of X is non-negative;
2. fB preserves a big line bundle L.

Then fB has finite order.

Following [2], we say that a birational transformation g : Y 99K Y preserves
a line bundle L on Y if there exists a resolution of indeterminacies

Ỹ

Y Y

η
g̃

g

such that η∗L = g̃∗L; when g is an automorphism, or more generally a pseudo-
automorphism (i.e. g and g−1 do not contract any hypersurface), one can
define the pull-back of a line bundle through g and show that L is preserved
by g if and only if g∗L = L. A birational transformation g which preserves a
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TRANSFORMATIONS PRESERVING A FIBRATION 497

line bundle L induces a linear automorphism
g∗ : H0(Y,L)→ H0(Y, L)

defined by g∗(s) := η∗g̃
∗(s); this definition makes sense because by the projec-

tion formula, η∗η∗L = L.

Remark 1.1. — The second assumption of Theorem A is automatically veri-
fied if ±KB is big and g is a pseudo-automorphism; note, however, that if KB

is big, i.e. B is of general type, then the group of birational transformations is
finite, which implies the conclusion of the theorem.

If X is irreducible symplectic and π : X → B is a regular fibration onto a
smooth projective manifold, thenKB is ample, i.e. B is Fano (see [12, Corollary
1.3]).

By the same approach, we also obtain an analogous result concerning groups
of transformations. Recall that the group Aut(X) of automorphisms of X can
be naturally seen as a Zariski-open subset of the Hilbert scheme of subvarieties
of X×X, which endows it with a natural topology; we denote by Aut0(X) the
connected component of the identity of Aut(X) and by Bir(X) the group of
birational transformations of X.

Theorem B. — Let X be a complex projective manifold with κ(X) ≥ 0 and
let G ⊂ Bir(X) be a group of birational transformations of X. Suppose that
there exist a dominant rational map π : X 99K B onto a projective manifold B
which is preserved by G and let π∗G denote the image of the natural morphism
π∗ : G→ Bir(B). Assume that

1. the quotient G/(G ∩Aut0(X)) is finitely generated;
2. all elements of π∗G preserve a big line bundle L.

Then π∗G is finite.

Proof. — The Kodaira–Iitaka fibration associated with some multiple L⊗h of
L is birational onto its image and allows us to identify π∗G with a subgroup of
PGLH0(B,L⊗h) = PGLN+1(C); see §4.2 for details. By Theorem A, π∗G is
torsion.

The connected component Aut0(X) has a natural structure of a connected
algebraic group; therefore, by Chevalley’s structure theorem (see for example
[13, Theorem 8.27]), it is isomorphic to an extension of an abelian variety by
a linear algebraic group. Since κ(X) ≥ 0, linear algebraic groups have trivial
action on X by [17, Theorem 14.1]; this means that Aut0(X) is an abelian
variety.

Let G0 := G∩Aut0(X); note that the topological closure G0 ≤ Aut0(X) still
preserves the fibration π and that the induced action on B preserves L (this is
a consequence of the seesaw theorem, see [14, Corollary 5.6]). In particular, π∗
extends to G0 and, since G0 is compact, so is its image π∗G0.
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498 F. LO BIANCO

Again by Theorem A, π∗G0 is torsion. Compact torsion subgroups of Lie
groups are finite by [10], thus π∗G0 is finite; hence, a fortiori, so is π∗G0.

Let K C G0 denote the kernel of the restriction π∗ : G0 → PGLN+1(C);
since K has finite index in G0, the group G/K is finitely generated. The
homomorphism π∗ factors through a natural homomorphism

φ : G/K → PGLN+1(C),

so that π∗G = φ(G/K).
By [10], a torsion subgroup of a Lie group is virtually abelian; furthermore,

by Schreier’s lemma, a finite index subgroup of a finitely generated group is
finitely generated. Since it is easy to show that an abelian, finitely generated
torsion subgroup of PGLN+1(C) is finite, we obtain that a finite index subgroup
of φ(G/K) is finite. In particular, π∗G = φ(G/K) is finite, which concludes
the proof. �

The following corollary has the advantage of requiring only a numerical
hypothesis on the action of fB , instead of having to compute its action on the
Picard group.

Corollary C. — Let X be a projective manifold and let f : X 99K X be a
birational transformation. Suppose that there exist a dominant rational map
π : X 99K B onto a projective manifold B and a birational transformation
fB : B 99K B such that fB ◦ π = π ◦ f . Assume that

1. the Kodaira dimension κ(X) is non-negative;
2. Pic0(B) = 0;
3. the induced linear maps (fNB )∗ : H∗(B,C) → H∗(B,C) have bounded

norm as N → +∞.
Then fB has finite order.

Remark 1.2. — The second and third assumptions of Corollary C are automat-
ically satisfied if Pic0(X) = 0 and the induced linear maps (fN )∗ : H∗(X,C) →
H∗(X,C) have bounded norm.

Proof. — Since the induced linear maps (fNB )∗ : H∗(B,C)→ H∗(B,C) have a
bounded norm as N → +∞, by Weil’s regularization theorem (see [6, Theo-
rem 3]), up to replacing B by a smooth birational model and fB by an iterate,
we may assume that fB is an automorphism and that fB ∈ Aut0(B). In par-
ticular, fB has trivial action on H∗(B,C) and, thus, since line bundles on B
are uniquely determined by their numerical class, on Pic(B). Therefore, fB is
an automorphism which preserves an ample line bundle, hence by Theorem A,
it has finite order. �
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An almost equivalent formulation in terms of Kodaira–Iitaka fibrations is
the following:

Corollary D. — Let X be a complex projective manifold with non-negative
Kodaira dimension and let f : X 99K X be a birational transformation. If f
preserves a line bundle L, then the induced projective automorphism

f∗ : PH0(X,L)→ PH0(X,L)

has finite order.

As was pointed out to me by Vlad Lazić, such a formulation is linked with
the problem of determining the finiteness of pluri-log-canonical representations,
which in turn plays a role in the problem of abundance conjecture. In this con-
text, one needs to consider the linear action of the group of birational transfor-
mations of a normal scheme X preserving a divisor ∆ on the space of sections
H0(X,m(KX + ∆)) (instead of its projectification, as is done in the present
work). Proving the finiteness of the linear action for allm multiples of a certain
m0 (which is a stronger result than Corollary D), together with the application
of the minimal model programme, allows the abundance conjecture to be re-
duced to the case of log-canonical pairs (see [2, Theorem 5.10] and [3, Theorem
1.4]). See [2, 3] for more details and for positive results in this direction.

Remark 1.3. — Using Theorem B, it is not hard to extend Corollary C
and Corollary D to groups G of birational transformations such that G/(G ∩
Aut0(X)) is finitely generated.

1.1. The case of irreducible symplectic manifolds. — Theorem A is particularly
interesting in the case where X is an irreducible symplectic manifold. A com-
pact Kähler manifold is said to be irreducible symplectic (or hyperkähler) if it
is simply connected and the vector space of holomorphic 2-forms is spanned by
a nowhere degenerate form. Irreducible symplectic manifolds form, together
with Calabi–Yau manifolds and complex tori, one of the three fundamental
classes of compact Kähler manifolds with trivial Chern class.

Example 1.4. — All K3 surfaces are irreducible symplectic; more generally, if
S is aK3 surface, then the Hilbert scheme S[n] of n points on S is an irreducible
symplectic manifold of dimension 2n.

Similarly, if T is a two-dimensional complex torus and if

Σ: T [n+1] → T

denotes the sum morphism, i.e. Σ[p1, . . . , pn+1] :=
∑
i pi ∈ T , then any fibre of

Σ is an irreducible symplectic manifold of dimension 2n, called the generalized
Kummer variety associated to T .
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