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CANONICAL HOMOTOPY OPERATORS
FOR THE 8 COMPLEX IN STRICTLY
PSEUDOCONVEX DOMAINS
BY MaTs ANDERSSON, JORGEN BOO AND
JoaQuiM ORTEGA-CERDA (¥)

ABSTRACT. — In a strictly pseudoconvex domain D = {p < 0} in C*, we study
the homotopy operators K, for 0 that are canonical with respect to the metric
(—p)id0 log(1/ — p) and weights (—p)®, o > 0, and their relation to the canonical
homotopy operator K3 for 3, on 8D. We prove that the boundary values of the kernel
of K, in the ball are provided by well-known integral formulas due to Henkin, Skoda
et al. We are able to compute the kernel for K, in the interior of D, by using a
technique for representing forms in D by complex tangential forms on the boundary
of a higher dimensional domain. This is a generalization of a well-known technique for
functions. In the ball we also prove the commutation rule 8/8z¢Ka = Ka4+10/8¢,
which generalizes a well-known fact about the weighted Bergman projections, and use
it to construct homotopy formulas for 80 in the ball.

RESUME. — OPERATEURS D’HOMOTOPIE DANS LES DOMAINES STRICTEMENT
PSEUDO-CONVEXES. — Dans un domaine strictement pseudoconvexe D = {p < 0}
dans C", on étudie les opérateurs d’homotopie K, pour les 0 canoniques pour la
métrique (—p)id9 log(1/ — p) et les poids (—p)*, a > 0 et leur relation avec ’opérateur
canonique d’homotopie K} pour le 9 dans 8D. On démontre que les valeurs au bord
du noyau de K, pour la boule sont donnés par les formules intégrales de Henkin, Skoda
et al. On parvient & calculer le noyau de K & l'intérieur du domaine D en utilisant une
technique pour représenter les formes dans D par des formes tangentielle complexes
au bord d’un domaine dans une dimension plus élevée. Il s’agit 14 d’une généralisation

(*) Texte recu le 12 octobre 1997, accepté le 12 mars 1998.

M. ANDERSSON, Department of Mathematics, Chalmers University of Technology and
the University of Goteborg, S-412 96 Goteborg (Sweden).

Email : matsa@math.chalmers.se.

J. Boo, Department of Physics and Mathematics, Mid-Sweden University, S-851 70
Sundsvall (Sweden). Email : jorgen@fmi.mbh.se.

J. ORTEGA-CERDA, Departament de Matematica Aplicada i Analisi, Gran Via 585,
E-08071 Barcelona (Spain). Email : jortega@cerber.mat.ub.es.

AMS classification : 32A 25, 32F 20, 32C17.

Keywords : 8-complex, strictly pseudoconvex domain, Bergman projection, integral
formula, Bergman metric, canonical homotopy operator.

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE 0037-9484/1998/245/$ 5.00
© Société mathématique de France



246 M. ANDERSSON, J. BOO, J. ORTEGA-CERDA

d’une technique bien connue dans les cas des fonctions. Dans la boule, on prouve aussi
la loi de commutation 8/0z¢ Ko = Ka+10/9¢s, qui généralise un résultat déja connu
des projections de Bergman a poids. On utilise ce fait pour construire des formules
d’homotopie pour le 89 dans la boule.

1. Introduction

Estimates of growth and regularity of solutions to the d-equation in
domains in C™ were obtained by L2?-methods in the 1960’s by Kohn,
Hormander et al. In the 1970’s Henkin, Skoda, and others introduced
formulas for representation of solutions that gave further information
such as LP-estimates, Holder estimates, and so on. These two methods
have been living side by side but the interplay between them is not fully
understood. In this paper we offer a geometrical interpretation of the well-
known Henkin-Skoda solution formula for 0 and its weighted analogues
in strictly pseudoconvex domains. This leads to mutual exchange of
information between the explicit formulas and L?-theory. For instance,
regularity properties of the abstractly defined operators can be derived
from the explicit formulas, and in the other direction, by studying the
adjoint of the 0-operator, we can prove a certain commutation property
of the kernels and derivatives in the case of the ball, which makes it
possible to construct explicit homotopy formulas for 90.

The Henkin-Skoda solution formula provides the L2-minimal solution
for 0 in the ball but it does not coincide as an operator with the Kohn
operator, which is the one that gives the minimal solution when applied
to a O closed form and vanishes on forms that are orthogonal to the kernel
of 0, with respect to the Euclidean L? norm. In [16], Harvey and Polking
found an explicit expression for the Kohn operator, essentially expressed
by rational functions, but anyway not as simple as the Henkin-Skoda
formula. In order to interpret the Henkin-Skoda formula geometrically we
have to introduce norms closely related to the Bergman norm.

Throughout this paper we let D be a smoothly bounded strictly
pseudoconvex domain in C", and p a strictly plurisubharmonic defining
function. For a > 0, let L2 be the space of locally square integrable forms
in D such that

_T'(n+a) ol 512
(11) 112 = grmgrey [ (-oririay

is finite, where |f| is the norm of the form f with respect to the metric
defined by the form

(1.2) Q = (—p)i8d log (_ip)

TOME 126 — 1998 — n~° 2



CANONICAL HOMOTOPY OPERATORS 247

(in the case of the ball Q is just distance to the boundary times the
Bergman metric) and dV = Q™/n!. The volume form dV is equivalent
to (1/ — p) times the Lebesgue measure, and therefore A2 = L2 NO(D) is
the usual Bergman space with weight (—p)*~!. We let K, be the operator
on L? defined so that K, f is the minimal solution to du = f if f is a O-
closed (0, g+ 1)-form in D (the existence of such a solution is well-known,
see Theorem 2.2) and K, f = 0 if f is orthogonal to K, = L2 N Kerd.
If P, is the orthogonal projection of functions in L2 onto A2, the Bergman
projection, then the relation

(1'3) Ka5f+5Kaf: f_Paf,

holds for f in Domd. (It is enough to verify it separately for f € K,
and f € KX N Domd, and both these cases follow immediately from the
definition.)

These operators are natural to study for several reasons. To begin
with, it is well-known that the 0-operator behaves like half a derivative
in the complex tangential directions near the boundary of a strictly
pseudoconvex domain. This is reflected in the standard estimates for 0.
For instance, the well-known Henkin-Skoda estimate, [19] and [21], states
that Ou = f has a solution (f being a d-closed (0, q + 1)-form) such that

a9 [ enue<c [ o2 V5Ifls + 100 fle).

Here, | |g denotes the Euclidean norm of a form, and since —p is
approximately the distance to the boundary, 0p A f determines the
complex tangential part of f near the boundary. It is well-known that
this boundary behaviour of 0 is reflected by the Bergman metric and
therefore by Q as well.

The estimate (1.4) was the first important success for weighted integral
formulas; once they are constructed the estimate follows nicely, as the
very feature of the formulas reflects this difference in normal and complex
tangential part. This suggests that these operators better should be
understood in terms of a metric like  that takes this difference into
account.

One of our main results (Theorem 5.1) is that in the ball case, the
boundary values of the operator due to Henkin and Skoda, and its
weighted analogues, in fact coincide with (the boundary values of) the
canonical operator K,. Expressed in the inner product ( , ), connected
t0 || ||, the kernel for the boundary values of K, has the simple expression

(15) ka(¢,2)
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n—1

r —g— 5. 7. d¢)e
:Z (a+n—q-1) Z-d¢ A (dz- dQ) . 2 c OB.
q=0

P(n+a)  (1—C-2)x14n=q(1 - (. z)at!

In the general strictly pseudoconvex case one cannot hope for completely
explicit formulas for K,. However, it turns out that well-known solution
operators approximately provide the boundary values of K, in much the
same spirit that certain known explicit holomorphic projection operators
approximate the Bergman and the Szego projections in D, as was proved
by Kerzman-Stein, [17], see [4] and [5].

The spaces L2 and operators K, have connections to the boundary
complex. In Section 2 we notice that || f|, tends to | f||s, the L2-norm
of the complex tangential part f|, of f over D, when a — 0. It is also
true that (the boundary values of) K, tend to Kj, the canonical operator
for Op. In the ball case this follows from Section 5, whereas the general
case is treated in [4], [5].

There is another useful connection to the boundary complex that is
exploited in Section 4. It is well-known and used by many authors the
fact that if B

D = {(z,w) € C"*; p(2) + |w|* < 0},

then L2(D) can be identified with the subspace L2(8D) consisting of
functions that are rotation invariant in the last variable, and that further-
more, via this identification, the orthogonal projection onto the Bergman
space A? in D, the Bergman projection, corresponds to the Szegd projec-
tion on dD. We extend this representation to higher order forms, so that
forms in D correspond to certain tangential forms on 0D and so that the
orthogonal projection of forms in L? onto K; corresponds to the ortho-
gonal projection of L2 onto Kj = L N Ker 8, on dD. We also show that
the canonical operator K, can be represented by the complex tangential
boundary values of the corresponding K,_; in D. Since well-known for-
mulas in the ball give the boundary values, we therefore get an effective
procedure to compute the values of K, in the interior. This is the done
in Section 5. The resulting formulas have not previously occurred in the
literature (as far as we know).

A basic ingredient in our proofs is the formula for the formal adjoint 0%,
that is computed in Section 3. It is a first order differential operator with
coefficients that are smooth up to the boundary. It turns out that any
smooth f belongs to the domain Dom 8% of the von Neumann adjoint
of 0, and for a > 1, f € Dom 0% if and only if f,0%f € L2.

It is known since long ago that in the ball

0 of )

a—szaf:Pa+1<6—Cj
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