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The boundary values of generalized Dirichlet series

and a problem of Chebyshev

J. KACZOROWSKI*

1. Introduction and statement of results

In 1853 Chebyshev asserted in a letter to M. Fuss that there are more
primes p = 3 (mod 4) than p = 1 (mod 4). S. Knapowski and P. Turan in
their well-known series of papers on comparative prime number theory [5]
write, after quoting Littlewood’s result that =(z,4,1) — w(z, 4,3) changes sign
infinitely many times as £ — 0o, the following lines : one feels that Chebyshev’s
vague formulation could also be interpreted so as

(1.1) lim N(Y)/Y =0,

Y—oo

where N(Y') denotes the number of integers m <Y with the property

(1.2) n(m,4,1) > w(m,4,3)

(cf. also [6], page 26). They support this conjecture by referring to Shanks
(7], who found that (1.2) is not fulfilled for m < 26860, is then fulfilled for
m = 26861 and m = 26862, and is again false for 26863 < m < 616768. They

also ask the following general question ([5], Problem 7).
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For fixed positive integers a, b and q such that (a,q) = (b,q) = 1,a # b
(mod g), what is the asymptotical behaviour of N, (YY) for Y — oo, where
Nop(Y) denotes the number of integers m <Y with

n(m,g,a) > m(m,q,b) ?

Our aim is to prove a general result concerning boundary values of Dirich-
let series and to show its relevance to Chebyshev’s problem. As a corollary we
obtain the following theorem.

THEOREM 1. Suppose a and q are positive integers satisfying (a,q) = 1,
a #1 (mod q) and let the Generalized Riemann Hypothesis (G.R.H.) be true
for Dirichlet L-series (mod q). Then there exist two constants 0 < ¢; < ¢z < 1
such that the inequalities

aY <N, (Y) < Y
hold for all sufficiently large Y .

This shows that the Knapowski-Turan conjecture (1.1) is false at least
when we accept the G.R.H.

The basic tool used in the proof of Theorem 1 is a result concerning
generalized Dirichlet series which seems to be of an independent interest. For
the sake of brevity, let A denote the set of all functions

(o o]
(1.3) F(z) = Zaneiw"’, z=z+1iy, y>0

n=1

satisfying the following conditions:
1. 0 <w; < wg < ... are real numbers.
2.a,€C,n=1,23,...
3. There exists a non-negative integer B such that

o0
(1.4) Z |an|w; B < oo.

n=2

4. There exists a non-negative number Ly such that for every z, |z| > Lo,
the limit
P(z) = lim ReF 3
(z) Jim Re (= + iy)

exists and represents a locally bounded function of z € R\ [— Ly, Lo].
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Moreover, let
a(F) = inf Re F(z + 1y), B(F) = sup Re F(z + iy).
v ¥>0
z€R z€R
It was proved in [4] that if F € A and a(F) < u < B(F) then there exists a

positive number ! = [(u, F') such that

(1.5) inf P(z) < u < sup P(z)
z€l z€l
for every interval I C R\ [—Lo, Lo] of length > I.
This result is of importance to the prime number theory being a substitute
for Ingham’s method [1], [2]. Now we impose somewhat stronger conditions
on F and we estimate the measure of the set of z satisfying (1.5).

THEOREM 2. Let F € A and suppose that
1
(1.6) 1P| = sup / P(z + t)|2 dz < oo.
|t|>Lo+1J0O

Then for every real number u satisfying a(F) < u < B(F) there exist positive
constants | = l(u, F') and dy = d,(u, F) such that

(1.7) Hz eI : P(z)>u}|>d;
and
(1.8) {zel: P(x)<u}|>dy

for every interval I C R\ [—Lg,Lo] of length > | (where |A| denotes the
Lebesgue measure of a set A C R).

We apply this theorem to the function

)= _9e-2/2 1 x(a) — x(b)) K(z,x'
Fa,b( ) 2 ¢(Q) y (go:d q)(X( ) X(b))K( aX)

2 - T 1
) ) (;Od q)(x(a) - x(b)) m(3,x),

(1.9)

where ¢ > 2, 0< a,b < q, (a,q9) = (b,g) = 1, a Z b (mod q) are integers, K
denotes the K-function as introduced in [3]:

K(z,x)=) e, z=z+iy, y>0
¥>0
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(the summation being taken over all non-trivial L(s, x') zeros p with positive
imaginary parts v); x' is the primitive Dirichlet character induced by x, and
m(3,x) is the multiplicity of a zero of L(s,x) at s = 3 (weput m(3,x) =0
when L(s,x) # 0). We obtain the following corollaries.

COROLLARY 1. Suppose the G.R.H. is true for Dirichlet L-functions
(mod q). Then for every real number u satisfying a(Fop) < u < B(Fap)
there exist positive constants co = co(u,q) and do = do(u,q) such that

(1.10) I{T <t<cT : yY(t,q,a) —Y(t,q,b) > u\/Z}‘ > doT
and

(1.11) I{T <t<cT : ¢(t,q,a) —¥(tq,b) < u\/f}l >doT
for sufficiently large T'.

COROLLARY 2. Suppose the G.R.H. is true for Dirichlet L-functions
(mod g) and let (a,q) = 1, a Z 1 (mod q). Then for every positive u there
exist ¢; = ¢1(u,q) > 0 and d; = dy(u,q) > 0 such that

(112) #{Y <m<aY :¢¥(m,q,a) —P(m,q,1) > uy/m} > d,Y,
(1.13) #{Y <m <Y : ¢(m,q,a) —¢(m,g,1) < —uy/m} > d,Y,

(1.14)
#{Y <m <Y : n(m,q,a) — n(m,q,1) > uv/m/(logm)} > d.Y,

and
(1.15)

#{Y <m <Y : n(m,q,a) — n(m,q,1) < —uy/m/(logm)} > d,Y,
for all sufficiently large Y.

Let us remark that our Theorem 1 follows at once from Corollary 2; it is
sufficient therefore to prove this corollary only.
Applying Theorem 2 to the function
e =2l Y X@K(Y)
x (mod q)
9 -
%@ Y. x(@m(3,%)
X (mod g)

(z=:c+iy, y>0, (a’Q)=l)

230



