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HOMOCLINIC ORBITS NEAR SADDLE-CENTER
FIXED POINTS OF HAMILTONIAN SYSTEMS WITH
TWO DEGREES OF FREEDOM

by

Patrick Bernard, Clodoaldo Grotta Ragazzo & Pedro A. Santoro Saloméao

To Jacob Palis for his 60" Birthday

Abstract. — We study a class of Hamiltonian systems on a 4 dimensional symplectic
manifold which have a saddle-center fixed point and satisfy the following property: All
the periodic orbits in the center manifold of the fixed point have an orbit homoclinic
to them, although the fixed point itself does not. In addition, we prove that these
systems have a chaotic behavior in the neighborhood of the energy shell of the fixed
point.

Introduction

A fixed point of a Hamiltonian system with two degrees of freedom is called a
Saddle-Center if the linearized vector field has one pair of purely imaginary eigenvalues
and one pair of non zero real eigenvalues. A saddle-center fixed point is surrounded
by a two-dimensional invariant manifold, the center manifold, filled by closed orbits.
A saddle-center fixed point has also a one-dimensional stable manifold and a one-
dimensional unstable manifold; the periodic orbits in the center manifold have two-
dimensional stable and unstable manifolds. If a point belongs to the intersection of
the stable and unstable manifold of the fixed point (resp. of one periodic orbit) then
its orbit is biasymptotic to the fixed point (resp. the periodic orbit). We call such an
orbit homoclinic.

Some consequences of the existence of an orbit homoclinic to the fixed point have
been investigated in [5], [9]. [7], [8]. [11]. [18] (specially section 7.2) and other papers.
It should be noted, however, that the existence of such a homoclinic is exceptional,
in contrast to the case of hyperbolic fixed points. Dimensional considerations show
that orbits homoclinic to the periodic motions of the center manifold are more likely
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to exist. The existence of such homoclinics has been studied in [4], [14] (see also [11],
(9], [10], [7], [12]) by perturbation methods, and in [2] by global methods. In these
papers, orbits homoclinic to periodic orbits sufficiently far away from the fixed point
are found.

In the present work, we study analytic perturbations of an integrable system with
a homoclinic loop. We prove the following interesting behavior : Given any periodic
orbit sufficiently close to the equilibrium in the center manifold, there exists an orbit
homoclinic to it, although in general there does not exist any orbit homoclinic to the
fixed point. This illustrates a question asked in [2].

In addition, topological entropy near the energy shell of the fixed point is obtained
as a consequence of the presence of these homoclinics. More precisely, we prove that
every neighborhood of the energy shell of the fixed point contains an energy shell with
chaotic behavior on it. A similar result for reversible Hamiltonian systems is claimed,
with no proof, in [14] pg 116. Other results in this direction under the hypothesis of
the system being far from integrable can be found in [9], [7], [13].

Our method is semi-global and heavily relies on the low dimension: We first use the
perturbative setting to prove the existence of quasiperiodic invariant tori confining
the system in a neighborhood of the unperturbed homoclinic loop. We then reduce
the problem to an area preservation argument on appropriate Poincaré return maps.
It would of course be very interesting to obtain similar results by global methods
and in higher dimension, in the spirit of [2], and to understand to what extent the
phenomenon described here is general.

This paper emanated from a discussion between the authors after a talk of one of
them at the international conference on dynamical systems dedicated to Jacob Palis.
The authors would like to thank the organizers of that conference, who made that
encounter possible. The first author learned a lot during his numerous conversations
with Michel Herman, and was moved a lot by his sudden death.

1. Notations and results

1.1. Let M be a four-dimensional analytic manifold, endowed with a symplectic form
Q, and let

H:MxI—R,
() — H(w, 1) = Hy(2)
be an analytic one-parameter family of Hamiltonians, where I is some interval con-
taining 0 in its interior. In all this paper, we shall assume that the Hamiltonian
system H,, has a saddle-center fixed point r,, for all 4 € I, and that H,(r,) = 0. It
is by now classical (see [15], [17], [5], [14], [7]), that the system H,, is integrable in
the neighborhood of the saddle-center r,. More precisely, there exist a neighborhood
U of 0 in R* and an analytic mapping ¢ : U x I — M such that ¢, is a symplectic
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embedding for each p, ¢,(0) =r,, and
Hp, © <Z5;1,(Q1»p17 (]27172) = h(117 [27 /’L)ﬂ

where

L =piq, Ir=(p3+d3)/2,
and the function h is analytic (one may have to reduce I'). Furthermore, one can be
reduced via a change in time-scale and a canonical transformation to the case where

01, h(0,0,p) = -1 and 9,h(0,0,u) = w(p) > 0.

The functions Iy and I» are preserved by the flow restricted to the local chart, this
flow is determined by the equations

P = =0, h(I1, Iz, 0)py P2 = =0, h(11, Iz, 1t)q2
G = Oph(ly, Lyp)q1 G2 = Oph(Iy, Iz, p)pa.

It follows that the center manifold of r, has equation I; = 0, its stable manifold has
equation I = 0, p; = 0 and its unstable manifold Io = 0, ¢q; = 0. In the following,
we will call Pg , the periodic orbit of H, at energy F, which in local coordinates is
the circle py = ¢ =0, L = F.

1.2. We shall also suppose that Hy is integrable (namely, its associated Hamiltonian
vector field has an additional real analytic first integral J such that dHy(z) and d.J(x)
are independent for almost every x) and that the vector field associated to Hy has
an orbit homoclinic to ro which connects the branch p; > 0 of the unstable manifold
to the branch ¢; > 0 of the stable manifold. Integrable systems with a saddle-center
and an orbit doubly asymptotic to it have been studied in [9], where it is explained
that there exist two different kinds of homoclinics. For comparison, let us mention
that we are here in case (A) of [9].

1.3. Theorem. — Let us consider an analytic one-parameter family H,, of Hamiltonian
systems satisfying the above hypotheses. There exists a positive number € such that
for all E € 10,¢[ and all p € | —,e[C I, there exists an orbit of H, homoclinic to
the periodic orbit Pg . In fact, there even exist infinitely many geometrically distinct
orbits homoclinic to Pg. .

1.4. Theorem. — Let us fit jp € | — e,e[. For each E € ]0,¢[, either the stable and
unstable manifolds of Pg,, coincide, or the flow of H,, on the energy shell H, = E
has positive topological entropy.

1.5. Theorem. — Let us fix a value of u satisfying the hypothesis of theorem 1.53. As-
sume in addition that the stable and unstable manifolds of the fired point r, do not
coincide. Then there exists a sequence E,, > 0 converging to 0 and such that the stable
and unstable manifolds of Pg, ,, do not coincide. It follows that, for each n, the flow
of H, restricted to the energy surface H, = E,, has positive topological entropy.
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1.6. The main result of the present paper is Theorem 1.3. It is proved in section 3.
Theorem 1.4 may be considered classical. However we include a proof in section 4
because we could not find any reference matching precisely our needs. Theorem 1.5
is a simple but, we believe, interesting consequence. It is proved in section 5. The
main notations and tools that will be used throughout the paper are introduced in
section 2

1.7. Remark. — In order to apply Theorem 1.5, one has to be able to decide whether
there exists an orbit homoclinic to the fixed point. Let us mention a result in that
direction. Under an additional hypothesis of reversibility of the family of Hamiltonian
systems H,, (see [7]) it is possible to prove that the set of values of p for which a
homoclinic orbit to the equilibrium point r, occurs is either a whole interval or it
is countable ([7], section 6). The same result may hold for the non reversible case
considered here but this is an open question.

2. Local sections and invariant curves

We analyze the orbit structure near the homoclinic loop in a rather usual way (see
(5], [9], [14],...), via Poincaré sections. More details in these papers. The existence of
invariant curves was already obtained in [8].

2.1. Let us define the two Poincaré sections given in local coordinates by
21:{(]1 :5} 22:{[)1:(3},

where 4 is a small positive number. Since d;, h = —1, the equation h(ly, 2. pu) = E
can be solved in [ for sufficiently small Io, E and p i.e. there exists an analytic
function v defined in a neighborhood of 0 in R* and such that

Iy, Ir,p)=FE < I, =v(ls, E, ).
As a consequence, for sufficiently small £ and g, the intersection X, (E, i) of ¥; with
the energy shell H,, = E is a graph over the (p2, ¢2)-plane. More precisely, the analytic
mappings o=/ : R? — R* given by
oy M(p2.q2) = 01 (pa.qo. By p) = (v(La(p2. g2). Eop) /0. 6, pa. ga).
o5 " (pay q2) = 02 (P2, qo, B 1) = (6. v(L2(p2,q2), E. 1) /6. p2. ¢2)
are symplectic charts of ¥,(E, ). In the following, we note y = (p2,q2) and take it

as coordinates of ¥, (E, p).

2.2. The intersection between the stable manifold of P, and X, as well as the
intersection between the unstable manifold and o, are the circles Ir(y) = I°(E, 1)
in coordinates, where I°(FE, 1) is the solution of the equation

h(OI(E, ). p) = E <= o(I°(E,p), E.p) = 0.
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