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HOMOCLINIC ORBITS NEAR SADDLE-CENTER 
FIXED POINTS OF HAMILTONIAN SYSTEMS WITH 

TWO DEGREES OF FREEDOM 

by 

Patrick Bernard, Clodoaldo Grotta Ragazzo & Pedro A. Santoro Salom$o 

To Jacob Palis for his 60th Birthday 
Abstract. — We study a class of Hamiltonian systems on a 4 dimensional symplectic 
manifold which have a saddle-center fixed point and satisfy the following property: All 
the periodic orbits in the center manifold of the fixed point have an orbit homoclinic 
to them, although the fixed point itself does not. In addition, we prove that these 
systems have a chaotic behavior in the neighborhood of the energy shell of the fixed 
point. 

Introduction 
A fixed point of a Hamiltonian system with two degrees of freedom is called a 

Saddle-Center if the linearized vector field has one pair of purely imaginary eigenvalues 
and one pair of non zero real eigenvalues. A saddle-center fixed point is surrounded 
by a two-dimensional invariant manifold, the center manifold, filled by closed orbits. 
A saddle-center fixed point has also a one-dimensional stable manifold and a one-
dimensional unstable manifold; the periodic orbits in the center manifold have two-
dimensional stable and unstable manifolds. If a point belongs to the intersection of 
the stable and unstable manifold of the fixed point (resp. of one periodic orbit) then 
its orbit is biasymptotic to the fixed point (resp. the periodic orbit). We call such an 
orbit homoclinic. 

Some consequences of the existence of an orbit homoclinic to the fixed point have 
been investigated in [5], [9], [7], [8], [11], [18] (specially section 7.2) and other papers. 
It should be noted, however, that the existence of such a homoclinic is exceptional, 
in contrast to the case of hyperbolic fixed points. Dimensional considerations show 
that orbits homoclinic to the periodic motions of the center manifold are more likely 
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to exist. The existence of such homoclinics has been studied in [4], [14] (see also [11], 
[9], [10], [7], [12]) by perturbation methods, and in [2] by global methods. In these 
papers, orbits homoclinic to periodic orbits sufficiently far away from the fixed point 
are found. 

In the present work, we study analytic perturbations of an integrable system with 
a homoclinic loop. We prove the following interesting behavior : Given any periodic 
orbit sufficiently close to the equilibrium in the center manifold, there exists an orbit 
homoclinic to it, although in general there does not exist any orbit homoclinic to the 
fixed point. This illustrates a question asked in [2]. 

In addition, topological entropy near the energy shell of the fixed point is obtained 
as a consequence of the presence of these homoclinics. More precisely, we prove that 
every neighborhood of the energy shell of the fixed point contains an energy shell with 
chaotic behavior on it. A similar result for reversible Hamiltonian systems is claimed, 
with no proof, in [14] pg 116. Other results in this direction under the hypothesis of 
the system being far from integrable can be found in [9], [7], [13]. 

Our method is semi-global and heavily relies on the low dimension: We first use the 
perturbative setting to prove the existence of quasiperiodic invariant tori confining 
the system in a neighborhood of the unperturbed homoclinic loop. We then reduce 
the problem to an area preservation argument on appropriate Poincaré return maps. 
It would of course be very interesting to obtain similar results by global methods 
and in higher dimension, in the spirit of [2], and to understand to what extent the 
phenomenon described here is general. 

This paper emanated from a discussion between the authors after a talk of one of 
them at the international conference on dynamical systems dedicated to Jacob Palis. 
The authors would like to thank the organizers of that conference, who made that 
encounter possible. The first author learned a lot during his numerous conversations 
with Michel Herman, and was moved a lot by his sudden death. 

1. N o t a t i o n s and resul t s 

1.1. Let M be a four-dimensional analytic manifold, endowed with a symplectic form 
and let 

H : M x I —> R, 
<k<k<k<k< klwkw wkw,w wk 

be an analytic one-parameter family of Hamiltonians, where I is some interval con­
taining 0 in its interior. In all this paper, we shall assume that the Hamiltonian 
system Hu has a saddle-center fixed point r ; i for all /i G /, and that H^(r^) = 0. It 
is by now classical (see [15], [17], [5], [14], [7]), that the system Ha is integrable in 
the neighborhood of the saddle-center ra. More precisely, there exist a neighborhood 
U of 0 in R 4 and an analytic mapping ah : U x I —» M such that ah^ is a symplectic 
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embedding for each /i, (/>M(0) = rM, and 

HtÀo^fl(q1,p1,q2,p2) = /i(/i,/2,/i), 

where 
h=Piqi, I2 = (p22-Tq22)/2, 

and the function /i is analytic (one may have to reduce /) . Furthermore, one can be 
reduced via a change in time-scale and a canonical transformation to the case where 

a7lft(0,0,/i) = - 1 and <9/2/i(0,0,/i) = cj(/i) > 0. 

The functions I\ and I2 are preserved by the flow restricted to the local chart, this 
flow is determined by the equations 

Pi = -di^hihitiPi P'2ssss= -di2h(h,I2,ii)q2 

qi= dhh(IiJ2^)qidd dd di2h(IiJ2,fJ>)p2-

It follows that the center manifold of rM has equation I\ = 0, its stable manifold has 
equation I2 = 0, p\ = 0 and its unstable manifold I2 = 0, q\ = 0. In the following, 
we will call PE,\± the periodic orbit of at energy E, which in local coordinates is 
the circle p\ = q\ = 0, I2 = E. 

1.2. We shall also suppose that HQ is integrable (namely, its associated Hamiltonian 
vector field has an additional real analytic first integral J such that dHo(x) and dJ(x) 
are independent for almost every x) and that the vector field associated to HQ has 
an orbit homoclinic to rn which connects the branch p\ > 0 of the unstable manifold 
to the branch q\ > 0 of the stable manifold. Integrable systems with a saddle-center 
and an orbit doubly asymptotic to it have been studied in [9], where it is explained 
that there exist two different kinds of homoclinics. For comparison, let us mention 
that we are here in case (A) of [9]. 

1.3. Theorem. — Let us consider an analytic one-parameter family H(1 of Hamiltonian 
systems satisfying the above hypotheses. There exists a positive number e such that 
for all E G ]0,s[ and all \i G ] — £,s[c I, there exists an orbit of homoclinic to 
the periodic orbit PE.^L- In fact, there even exist infinitely many geometrically distinct 
orbits homoclinic to PE4I-

1.4. Theorem. — Let us fix \i G ] — e,e[. For each E G }0,s[, either the stable and 
unstable manifolds of PE^I coincide, or the flow of on the energy shell — E 
has positive topological entropy. 

1.5. Theorem. — Let us fix a value of /1 satisfying the hypothesis of theorem 1.3. As­
sume in addition that the stable and unstable manifolds of the fixed point rfl do not 
coincide. Then there exists a sequence EN > 0 converging to 0 and such that the stable 
and unstable manifolds of PEu4L do not coincide. It follows that, for each n, the flow 
of Hfj restricted to the energy surface — EN has positive topological entropy. 
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1.6. The main result of the present paper is Theorem 1.3. It is proved in section 3. 
Theorem 1.4 may be considered classical. However we include a proof in section 4 
because we could not find any reference matching precisely our needs. Theorem 1.5 
is a simple but, we believe, interesting consequence. It is proved in section 5. The 
main notations and tools that will be used throughout the paper are introduced in 
section 2 

7.7. Remark. — In order to apply Theorem 1.5, one has to be able to decide whether 
there exists an orbit homoclinic to the fixed point. Let us mention a result in that 
direction. Under an additional hypothesis of reversibility of the family of Hamiltonian 
systems (see [7]) it is possible to prove that the set of values of \i for which a 
homoclinic orbit to the equilibrium point rfl occurs is either a whole interval or it 
is countable ([7], section 6). The same result may hold for the non reversible case 
considered here but this is an open question. 

2. Local sections and invariant curves 

We analyze the orbit structure near the homoclinic loop in a rather usual way (see 
[5], [9], [14],...), via Poincaré sections. More details in these papers. The existence of 
invariant curves was already obtained in [8]. 

2.1. Let us define the two Poincaré sections given in local coordinates by 

Si = {qi = £}, S2 = {pi = £}, 

where ô is a small positive number. Since di1h = —1, the equation h(Ii,l2,p>) = E 
can be solved in I\ for sufficiently small I2, E and /1 i.e. there exists an analytic 
function v defined in a neighborhood of 0 in R3 and such that 

h(I\, J2, p) = E I\ = v(l2,E, n). 

As a consequence, for sufficiently small E and \i, the intersection Ey;(£\/i) of E7; with 
the energy shell — E is a graph over the (p2, g2)-plane. More precisely, the analytic 
mappings af41 : R2 —> R4 given by 

0-f ,/A(P2,<?2) = <7I(P2,22,#,A0 = (v(l2(p2,q2),E,fl)/Ô, (5, p2, 

°24L{P2,(l2) = V2(V2,q2,E,ll) = (<5, v(l2(p2,q2),E,v)lo', V2, Ç2) 

are symplectic charts of Ey(i?,/x). In the following, we note y = (^2,^2) and take it 
as coordinates of Ey(i?,/i). 

2.2. The intersection between the stable manifold of PE,^ and Si, as well as the 
intersection between the unstable manifold and E2, are the circles h(y) = Ic{E,/i) 
in coordinates, where Ic{E,n) is the solution of the equation 

/i(0, Ie(E, p),p) = E ^ i<r(£,/x),£,/i) = 0. 
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