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REMARQUES SUR UN THEOREME DE
G. HALASZ ET A. SARKOZY

PAR

MicHEL BALAZARD (*)

RESUME. — FE désigne un ensemble de nombres premiers et 2g(n) le nombre de
facteurs premiers de n appartenant & F, chacun étant compté avec sa multiplicité. On
donne un encadrement uniforme du nombre des entiers n < z vérifiant Qg(n) = k,
étendant un résultat de G. HALASZ et A. SARKOzY.

ABSTRACT. — E stands for a set of prime numbers, and Qg(n) for the number
of prime factors of n lying in E, each counted according to its multiplicity. We give
uniform lower and upper bounds for the number of integers n < z such that Qg(n) = k,
thus extending a result of G. HALAsZ and A. SARKOZY.

1. Introduction et énoncé des résultats

L’un des buts de la théorie probabiliste des nombres est de dégager,
pour des fonctions définies de maniére purement arithmétique, des lois
de répartition simples. Ainsi, il est bien connu que le nombre de facteurs
premiers d’un entier aléatoire suit approximativement une loi de Poisson.
Plus précisément, posons :

Qn) = Z v, nentier > 1.
p|ln

Ainsi, Q(n) est le nombre de facteurs premiers de l’entier n, comptés
avec leurs multiplicités. Soit P, la probabilité uniforme sur l’ensemble des
entiers positifs et < xz. Nous avons :

(1) P, (Qn) = k)
)k—l

k (logl
=10;xF(loglogm) O%ko—galr)! (1+06(@10—g_x-))

(*) Texte regu le 23 juin 1988, révisé le 26 juin 1989
M. BALAZARD, Univ. de Limoges, Département de Mathématiques, 123 av. Albert
Thomas, 87060 Limoges Cedex, France.
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390 M. BALAZARD

uniformément pour z >3 et 1 <k <(2-¢)loglogz (0 < e < 1), avec

F(z) = ﬁl;[(l - %)z(1 - ;)_1.

C’est un résultat dii & L. G. SATHE (cf. [19]). Lorsque ’entier n décrit
Iintervalle [1,z], Q(n) prend toute valeur entiére entre 0 et logz/ log 2.

La fréquence d’apparition des grandes valeurs de Q(n) a été estimée par
J.-L. Nicoras (cf. [12]) :

- z _ 3z
(2) P.(Qn) =k) = C2 Flog oF T O (2 k 1ogb(2_k))
uniformément pour z > 3 et (2+ ¢)loglogz < k < logz/log2 (0 < ¢),
avec

1 1

11 faut noter la différence de comportement entre (1) et (2) : dans (2),

la loi est essentiellement géométrique de raison %
Le souci de généraliser ces résultats a une classe importante de fonctions

additives a conduit différents auteurs & considérer la fonction

p”||In, pEE

ou E est un ensemble quelconque de nombres premiers. Dans ce qui suit,
nous noterons p; < ps < --- la suite des éléments de E, et E(z) =
> p<z, pee(1/p). Le théoréme suivant, di & G. HALAsz et A. SARKOzZY
(cf. [7] et [18]) compare la loi locale de Qg(n), pour 1 < n < z, avec la loi
de Poisson de paramétre E(z) (rappelons que E(z) = loglogz + O(1) si
E est ’ensemble de tous les nombres premiers).

THEOREME A. — Soit 6§ €0,1[. On a :

(3) P, (Qg(n) =k) <, e—E(m)E(ka;)k

pour tout E, tout x > 1 et tout entier naturel k tels que k+1 < (2—8)E(x) ;

E k—1
(4) P, (QE(n) =k) > e_E(x)(_k(ﬁ—)IT
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pour tout E, tout x > 1 et tout entier k tels que 1 < k < (2 — §)E(x),
E(z) > ¢(8), ot c(6) est une constante positive ne dépendant que de 6.

Nous ferons quatre remarques concernant ce théoréme.

1) L’énoncé (4) n’est pas exactement celui donné par A. SARKOZY
dans [18] (il suppose k¥ > 6E(x)) mais il est facile de voir que sa
démonstration donne bien (4).

2) Le décalage d’exposant qu’on observe entre (3) et (4) est inévitable
comme le montrent (1) et, par exemple, [3]. Il est dii au fait qu’on ne peut
pas prévoir l'ordre de grandeur de P,(Q2g(n) = 0) en ne connaissant que
E(x), indépendamment de la distribution des nombres premiers p € E,
p < z : c’est le probléme du petit crible (cf. [5] et [9]).

3) Un aspect important du THEOREME A est son effectivité. Les
constantes impliquées par les notations de Vinogradov <<s et >>5 ne
dépendent que de 6 : en particulier ’entier naturel k¥ et ’ensemble E
peuvent dépendre de z. C’est pourquoi ce théoréme et ses variantes sont
des outils précieux de la théorie analytique des nombres, notamment dans
I’étude fine des diviseurs (cf. Pouvrage récent [8]).

4) Deux formules asymptotiques précisant (3) et (4) ont été établies
par G. HALAsz. La premiere, effective quand k ~ E(z), est 'objet de
larticle [6]. La seconde est citée & la fin du chapitre 21 de [4] et fournit un
équivalent de P,(Qg(n) = k) si 6E(z) < k < (2-6)E(z) et E(z) - +o0
(cf. également [1]).

En ce qui concerne la fréquence d’apparition des grandes valeurs
de Qg(n) (quand 1 < n < z, Qg(n) prend toute valeur entiére entre
0 et logz/logp1) on dispose du résultat suivant, di & K. K. NorTON
(cf. [14, II0)).

THEOREME B. — Pour tout E, tout x > 1 et tout entier naturel k,
on a:

(5)  P:(Qm(n) > k) <,, pr*V1+ E(z)exp((p — 1)E());

pour tout E, tout x > 1 et tout entier naturel k tels que 0 < k <
logz/logp:, on a :

(6) Po(@s(n) > ) > i

K. K. NorTON a, d’autre part, annoncé (cf. [14, IV]).
THEOREME C. — Soit x > 3, (logz)™! < e < 1, et supposons que
E(z) > =2(p1 + 2)loge + c1(p2),

2 _
pE(z) — {mE(@)}"* <k < (1-e)(logz)(logp) ™.
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Alors

(7) co(p2)py  exp{(p1 — 1)E(z) }eP* <
P,(Rg(n) > k) < c3(p2)p; " exp{(p1 — 1)E(z)}

ot chaque c;(p2) est positive et ne dépend que de ps.

Le TutorEME C précise dans une certaine mesure le THEOREME B en
montrant que pour les valeurs de k > p; E(x), la loi P;(Qg(n) > k) est
essentiellement géométrique de raison 1/p;. On retrouve ainsi dans le cas
général la dichotomie observée dans le cas ol E est ’ensemble de tous les
nombres premiers.

On voit donc que notre connaissance du comportement local de Qg
est imparfaite et c’est dans ce contexte que Jean-Louis NICOLAS nous
en a proposé I’étude. Afin d’énoncer le résultat de nos recherches, nous
définissons une certaine classe de lois de probabilité :

Définition. — On appelle loi Poisson—géométrique de parametre A > 0
et de raison r € ]0, 1], le produit de convolution p * g de la loi de Poisson
de parametre A (p, = e *A*/k!, k € N) et de la loi géométrique de
raison 7 (gr, = (1 —7)r*, k €N). On a :

(pr 9)e = (1= 1)e 75 (2)

ot Sp(X) =14 X +---+ X*/k! désigne la k-itme somme partielle de la
série de exp X.

L’ordre de grandeur des quantités Si(X) est bien connu (cf. [15]). On
a en particulier

k
Sk(X) < %{;—'— si k <aX, a fixédans [0,1]
Sp(X) < eX sik>pX, P fixédans]l,+ool.
On a donc :
Ak A
(p*g)e < (1- r)e_AF sik < a;, «a fixé dans [0, 1]

< (1-r)e/m Uk o k> ,8%, B fixé dans |1, +oo].

La loi Poisson-géométrique a donc un double comportement : pour
k < al/r, elle ressemble & une loi de Poisson et pour k > BA/r

N

elle ressemble & une loi géométrique, la transition ayant lieu dans la
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