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REMARQUES SUR UN THÉORÈME DE
G. HALÀSZ ET A. SÀRKÔZY

PAR

MICHEL BALAZARD (*)

RÉSUMÉ. — E désigne un ensemble de nombres premiers et ÎÎ£;(n) le nombre de
facteurs premiers de n appartenant à E, chacun étant compté avec sa multiplicité. On
donne un encadrement uniforme du nombre des entiers n < x vérifiant f2£;(n) = fc,
étendant un résultat de G. HALÀSZ et A. SÀRKÔZY.

ABSTRACT. — E stands for a set of prime numbers, and î^(n) for thé number
of prime factors of n lying in E, each counted according to its multiplicity. We give
uniform lower and upper bounds for thé number ofintegers n < x such that îî^(n) = k,
thus extending a resuit of G. HALÀSZ and A. SÀRKÔZY.

1. Introduction et énoncé des résultats
L'un des buts de la théorie probabiliste des nombres est de dégager,

pour des fonctions définies de manière purement arithmétique, des lois
de répartition simples. Ainsi, il est bien connu que le nombre de facteurs
premiers d'un entier aléatoire suit approximativement une loi de Poisson.
Plus précisément, posons :

Çl(n) = V^ ;/, n entier > 1.
p-\\n

Ainsi, n(n) est le nombre de facteurs premiers de l'entier n, comptés
avec leurs multiplicités. Soit P^ la probabilité uniforme sur l'ensemble des
entiers positifs et < x. Nous avons :
(1) P^{n)=k)

_ 1 / k \ (loglog.z:)^"1 / / 1__\\
"logï UoglogJ (k-l)\ V + 'UoglogJJ

(*) Texte reçu le 23 juin 1988, révisé le 26 juin 1989
M. BALAZARD, Univ. de Limoges, Département de Mathématiques, 123 av. Albert
Thomas, 87060 Limoges Cedex, France.
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uniformément pour x > 3 et 1 < fc < (2 - e) log log :r (0 < e < 1), avec

^r^nHn-p-
C'est un résultat dû à L. G. SATHE (c/. [19]). Lorsque l'entier n décrit

l'intervalle [l,:z-], fî(n) prend toute valeur entière entre 0 et log ;r/log 2.
La fréquence d'apparition des grandes valeurs de îî(n) a été estimée par
J.-L. NICOLAS (c/. [12]) :

(2) P, (Q(n) = k) = C^ log ̂  + 0, (2-^ log^ (^) )

uniformément pour x > 3 et (2 + e) log log x < k < log x / log 2 (0 < e),
avec

^-^n^+^y) ^ b=b( . )e ]o , i [ .

Il faut noter la différence de comportement entre (1) et (2) : dans (2),
la loi est essentiellement géométrique de raison -

Le souci de généraliser ces résultats à une classe importante de fonctions
additives a conduit différents auteurs à considérer la fonction

^EW= ^ ^
p^^pçE

où E est un ensemble quelconque de nombres premiers. Dans ce qui suit,
nous noterons j?i < p^ < • • • la suite des éléments de E, et E(x) =
iLp^x.pçE^/P)' ^e théorème suivant, dû à G. HALÂSZ et A. SÂRKÔZY
(c/. [7] et [18]) compare la loi locale de f^(n), pour 1 < n < x, avec la loi
de Poisson de paramètre E(x) (rappelons que E(x) = log log a; + 0(1) si
E est l'ensemble de tous les nombres premiers).

THÉORÈME A. — Soit 6 e ]0,1[. On a :

(3) p^n)=k)<<^-EWE{^

pour tout E, tout x > 1 et tout entier naturel k tels que Â;+l < (2-ë)E(x) ;

(4) P,(^(n)-^^)»^-^)^——
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pour tout E, tout x > 1 et tout entier k tels que 1 < k < (2 - ë)E(x),
E(x) > c(S), où c(6) est une constante positive ne dépendant que de 6.

Nous ferons quatre remarques concernant ce théorème.
1) L'énoncé (4) n'est pas exactement celui donné par A. SÂRKÔZY

dans [18] (il suppose k > SE(x)) mais il est facile de voir que sa
démonstration donne bien (4).

2) Le décalage d'exposant qu'on observe entre (3) et (4) est inévitable
comme le montrent (1) et, par exemple, [3]. Il est dû au fait qu'on ne peut
pas prévoir l'ordre de grandeur de Px(!ÎE{n) = 0) en ne connaissant que
E(x\ indépendamment de la distribution des nombres premiers p ç. E,
p< x : c'est le problème du petit crible (c/. [5] et [9]).

3) Un aspect important du THÉORÈME A est son effectivité. Les
constantes impliquées par les notations de Vinogradov «<ç et »^ ne
dépendent que de 6 : en particulier l'entier naturel k et l'ensemble E
peuvent dépendre de x. C'est pourquoi ce théorème et ses variantes sont
des outils précieux de la théorie analytique des nombres, notamment dans
l'étude fine des diviseurs (cf. l'ouvrage récent [8]).

4) Deux formules asymptotiques précisant (3) et (4) ont été établies
par G. HALÂSZ. La première, effective quand k ~ E(x), est l'objet de
l'article [6]. La seconde est citée à la fin du chapitre 21 de [4] et fournit un
équivalent de P^E(n} = k) si 6E(x) < k < (2 - 6)E(x) et E(x) -^ +00
(cf. également [1]).

En ce qui concerne la fréquence d'apparition des grandes valeurs
de Q.E(n) (quand 1 < n < x, fl,E(n) prend toute valeur entière entre
0 et logrc/log^i) on dispose du résultat suivant, dû à K. K. NORTON
(cf. [14, III]).

THÉORÈME B. — Pour tout E, tout x > 1 et tout entier naturel k,
on a :

(5) P^E(n) > k) «^ p^^l-}-E(x)exp((p, - l)E(rc));

pour tout E, tout x > 1 et tout entier naturel k tels que 0 < k <
log.r/logj?i, on a :

(6) P.(^(^)>A;)>^.

K. K. NORTON a, d'autre part, annoncé (cf. [14, IV]).

THÉORÈME C. — Soit x >3, (log.r)"1 < e < 1, et supposons que

^)>-2(pi+2)log£+ci(p2),
p,E(x) - {piE^)}172 < k < (1 -e)(\ogx)(\ogp,)-1.
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Alors

(7) C2fe0^1 exp{(pi - l)^)}^ <
Px(^E(n) > k) ̂  C3(p2)pr'exp{(pi - l)E(x)}

où chaque Ci(p^) est positive et ne dépend que de p^.

Le THÉORÈME C précise dans une certaine mesure le THÉORÈME B en
montrant que pour les valeurs de k > p^EÇx), la loi Pa;(îî^(n) > À;) est
essentiellement géométrique de raison 1/pi. On retrouve ainsi dans le cas
général la dichotomie observée dans le cas où E est l'ensemble de tous les
nombres premiers.

On voit donc que notre connaissance du comportement local de ^IE
est imparfaite et c'est dans ce contexte que Jean-Louis NICOLAS nous
en a proposé l'étude. Afin d'énoncer le résultat de nos recherches, nous
définissons une certaine classe de lois de probabilité :

Définition. — On appelle loi Poisson-géométrique de paramètre A > 0
et de raison r ç. ]0,1[, le produit de convolution p * g de la loi de Poisson
de paramètre A (pk = e'^A^/Â;!, k ç. N) et de la loi géométrique de
raison r (^ = (1 — r)?^, k e N). On a :

(^*^=(l-r)e-V^(^)

où Sk(X) = 1 + X + • • • -h Xk / k \ désigne la ÂMème somme partielle de la
série de expX.

L'ordre de grandeur des quantités Sk(X) est bien connu (cf. [15]). On
a en particulier

vk
S^X) x — si k < aX, a fixé dans [0,1[

Ki •

Sk(X) x ex si k > (SX, f3 fixé dans ]1, +00 [.

On a donc :
^k ^

(?* 9)k >< (1 — ^"^Tf si fc < a-, a fixé dans [0,1[/ci y

^ (1 - r^1/7'-1^ si k > ̂ A , f3 fixé dans ]1, +oo[.r

La loi Poisson-géométrique a donc un double comportement : pour
k <, aA/r, elle ressemble à une loi de Poisson et pour k > /3\/r
elle ressemble à une loi géométrique, la transition ayant lieu dans la
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