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Abstract. — The statistical properties of hyperbolic dynamical systems—such
as ergodicity and mixing—can be studied through spectral theory, in par-
ticular via anisotropic Sobolev spaces of distributions. In settings where the
geodesic flow exhibits hyperbolic features, rigidity phenomena in Riemannian
geometry—showing that certain spectral or geometric invariants determine
the underlying geometry—can likewise be addressed using microlocal analysis.
This book offers a comprehensive introduction to microlocal analysis and its
applications to hyperbolic dynamics and Riemannian rigidity. It is intended
for graduate students and researchers seeking to familiarize themselves with
these powerful techniques.

Résumé (Analyse micro-locale en dynamique hyperbolique et en géométrie). — Les
propriétés statistiques des systemes dynamiques hyperboliques, telles que
I’ergodicité et le mélange, peuvent étre étudiées a ’aide de la théorie spec-
trale, en particulier via les espaces de Sobolev anisotropes de distributions.
Dans des contextes ou le flot géodésique présente des caractéristiques hy-
perboliques, les phénomeénes de rigidité en géométrie riemannienne, qui
montrent que certains invariants spectraux ou géométriques déterminent la
géomeétrie sousjacente, peuvent également étre abordés a ’aide de I’analyse
microlocale. Cet ouvrage offre une introduction compléte a ’analyse mi-
crolocale et a ses applications a la dynamique hyperbolique et a la rigidité
riemannienne. Il s’adresse aux étudiants de troisiéme cycle et aux chercheurs
qui souhaitent se familiariser avec ces techniques puissantes.
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“In the East they swore that by three sides
was the decent way across a square.”

T. E. LAWRENCGE, Seven Pillars of Wisdom
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FOREWORD

Iinitiated this book project during the second Covid lockdown in France, in the fall
of 2020, at a time when the world seemed to have come to a halt. Universities, libraries,
and offices were closed, and academic life had largely shifted to virtual platforms. With
only online seminars taking place and travel restrictions in effect, I found myself with
an unexpected amount of uninterrupted time for reflection and writing. My initial goal
was to produce a concise, 100-page survey on geometric inverse problems and microlo-
cal analysis, intended as a reference for researchers and graduate students interested
in these topics. However, I must confess that I largely failed in this task, as the so-called
survey quickly grew out of control and exceeded 300 pages. I then decided to turn it
into book which, if you are reading these lines, is now likely in your hands.

Beyond the unusual circumstances of its inception, this book also owes much to the
series of lectures I delivered on microlocal analysis and hyperbolic dynamics at Sor-
bonne Université for master’s students and at the Collége de France between 2021
and 2023. These lectures provided an opportunity to refine many of the ideas pre-
sented here and to shape their exposition in a way that would be accessible to a broad
mathematical audience. Later, I had the privilege of further developing these topics in
courses and seminars at Northwestern University, the University of Zurich, Fortaleza,
and Montevideo. I am deeply grateful to the institutions and individuals who extended
these invitations. Some of these lectures were recorded and are available online on my
webpage. I will also maintain on the same page a list of errata.

I am grateful to all those who contributed, in one way or another to this book,
whether in informal discussions or by providing me with proofs or exercises. I thank
Louis Beaufort, Jan Bohr, Colin Guillarmou, Hedong Hou, Tristan Humbert, Maxime
Ingremeau, Alessandro Morescalchi, Sebastian Munoz-Thon, Gabriel Paternain, Amie
Wilkinson and Yuhui Zhu for valuable feedback on this manuscript. This book project
was also made possible through the support of the European Research Council (ERC)
under the European Union’s Horizon 2020 research and innovation programme
(Grant agreement no. 101162990—ADG).

I am deeply indebted to my long-time collaborator, Mihajlo Ceki¢, for the fruitful
projects we have worked on together, some of which are presented in the latter part of
this book. He also graciously provided proofs for certain lemmas, for which I am sin-
cerely grateful. I am thankful to Yann Chaubet for contributing a chapter on dynam-
ical zeta functions and for his valuable feedback on earlier drafts. I would also like to
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xxii FOREWORD

acknowledge the anonymous referees, whose meticulous review of the manuscript was
nothing short of remarkable. Their extensive 48-page report (!), filled with detailed
suggestions and constructive criticism, has undoubtedly helped improve the presenta-
tion and clarity of this book. On a more personal note, I owe a profound debt of grat-
itude to Marie, whose unwavering support and encouragement have been invaluable
throughout this long journey—none of this would have been possible without you.

Finally, I dedicate this book to the memory of my father, who passed away during the
final stages of its writing in October 2024. Though he will never hold it in his hands,
I have no doubt he would have been proud. I hope this book stands as a small tribute
to his memory.

Paris, October 2020 — June 2025.
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