ASTERISQUE

SEMINAIRE BOURBAKI
VOLUME 2006,/2007
EXPOSES 967-981

(974) Algebraization of codimension one Webs

Jorge Vitorio PEREIRA

SOCIETE MATHEMATIQUE DE FRANCE

Publié avec le concours du CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE



Séminaire BOURBAKI Mars 2007
59¢ année, 2006-2007, n° 974, p. 243 a 268

ALGEBRAIZATION OF CODIMENSION ONE WEBS
[after Trépreau, Hénaut, Pirio, Robert, ...]

by Jorge Vitorio PEREIRA

Jean-Marie Trépreau, extending previous results by Bol and Chern-Griffiths,
proved recently that codimension one webs with sufficiently many abelian relations
are after a change of coordinates projectively dual to algebraic curves when the
ambient dimension is at least three.

In sharp contrast, Luc Pirio and Gilles Robert, confirming a guess of Alain Hénaut,
independently established that a certain planar 9-web is exceptional in the sense that
it admits the maximal number of abelian relations and is non-algebraizable. After
that a number of exceptional planar k-webs, for every k > 5, have been found by
Pirio and others.

I will briefly review the subject history, sketch Trépreau’s proof, describe some of
the “new” exceptional webs and discuss related recent works.

Disclaimer. — This text does not pretend to survey all the literature on web geometry
but to provide a bird’s-eye view over the results related to codimension one webs and
their abelian relations. For instance I do not touch the interface between web geometry
and loops, quasi-groups, Poisson structures, singular holomorphic foliations, complex
dynamics, singularity theory, ...For more information on these subjects the reader
should consult [6, 2, 27] and references there within.

Acknowledgements. — There are a number of works containing introductions to web
geometry that I have freely used while writing this text. Here I recognize the influence
of [4, 15, 30] and specially [40], which was my main source of historical references.
I have also profited from discussions with C. Favre, H. Movasati, L. Pirio, F. Russo
and P. Sad.
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244 J. V. PEREIRA

1. INTRODUCTION

A germ of regular codimension one k-web W = F1 K --- X F on (C™,0) is a
collection of k germs of smooth codimension one holomorphic foliations subjected to
the condition that for any number m of these foliations, m < n, the corresponding
tangent spaces at the origin have intersection of codimension m. Two webs W and
W' are equivalent if there exists a germ of bihomolorphic map sending the foliations
defining W to the ones defining W’. Similar definitions can be made for webs of
arbitrary (and even mixed) codimensions. Although most of the magic can be (and
has already been) spelled in the &3 -category throughout I will restrict myself to the
holomorphic category.

1.1. The origins

According to the first lines of [6] web geometry had its birth at the beaches of Italy
in the years of 1926-27 when Blaschke and Thomsen realized that the configuration
of three foliations of the plane has local invariants, see Figure 1.

FI1GURE 1. Following the leaves of foliations one obtains germs of diffeomorphisms in one
variable whose equivalence class is a local invariant of the web. The web is called hexagonal
if all the possible germs are the identity.

A more easily computable invariant was later introduced by Blaschke and Dubour-
dieu. If W = 1 X F9 X F3 is a planar web and the foliations &; are defined by
1-forms w; satisfying w1 + ws + w3 = 0 then a simple computation shows that there
exists an unique 1-form -~ such that dw; = v A w; for i = 1,2,3. Albeit the 1-form
does depend on the choice of the w; its differential dv is intrinsically attached to W,
and is the so called curvature k(W) of W.

Some early emblematic results of the theory developed by Blaschke and his collab-
orators are collected in the theorem below.
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(974) ALGEBRAIZATION OF CODIMENSION ONE WEBS 245

THEOREM 1.1. — If W= J1 K T X T3 is a 3-web on (C%,0) then are equivalent:

. W is hexzagonal;
the 2-form k(W) vanishes identically;
there exists closed 1-forms n; defining &;, i = 1,2,3, such that ny +n2+n3 = 0;

=W N =

. W is equivalent to the web defined by the level sets of the functions x,y and
x—y.

Most of the results discussed in this text can be naively understood as attempts to
generalize Theorem 1.1 to the broader context of arbitrary codimension one k-webs.

1.2. Abelian relations

The condition (3) in Theorem 1.1 suggests the definition of the space of abelian
relations @(W) for an arbitrary k-web W = &1 K --- K Fi. If the foliations &; are
induced by integrable 1-forms w; then

k

i=1

If u; : (C*,0) — (C,0) are local submersions defining the foliations &; then, after
integration, the abelian relations can be read as functional equations of the form
¥ 1 gi(u;) = 0 for some germs of holomorphic functions g; : (C,0) — (C,0).

Clearly @(W) is a vector space and its dimension is commonly called the rank
of W, denoted by rk(W). It is a theorem of Bol that the rank of a planar k-web is
bounded from above by 1(k — 1)(k — 2). This bound was later generalized by Chern
in his thesis (under the direction of Blaschke) for codimension one k-webs on C™ and
reads as

(1) rk(W) < w(n,k) = max(0,k — j(n—1) - 1).

j=1

A k-web W on (C™,0) is of mazimal rank if tk(W) = w(n, k). The integer 7(n, k)
is the well-known Castelnuovo’s bound for the arithmetic genus of irreducible and
non-degenerated degree k curves in P™.

To establish these bounds first notice that &%(W) admits a natural filtration

W)= (W) 2 G (W)2 - 2 & (W) 2,

where

1 n k
@ (W) = ker {ﬁ(‘W) . <1th2£(2(1€«€2)0)) }

with m being the maximal ideal of C{z1,...,z,}.
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246 J. V. PEREIRA

If the submersions u; defining &; have linear term ¢;, then
@ (W)

@ (W)

Since the right-hand side is controlled by the inequality, cf. [49, Lemme 2.1],

(2) di <k—dim(C 4"+ +Co4)

k—dim (C- 4™+ 4+ C- ") <max(0,k— (j+1)(n—1) — 1)

the bound (1) follows at once. Note that this bound is attained if, and only if, the
partial bounds (2) are also attained. In particular,

@ (W)
@ (W)

It will be clear at the end of the next section that the appearance of Castelnuovo’s

(3) dim G(W) = w(n, k) = dim =2k —3n+1.

bounds in web geometry is far from being a coincidence.

1.3. Algebraizable webs and Abel’s Theorem

If C is a non-degenerated® reduced degree k algebraic curve on P" then for every
generic hyperplane Hy a germ of codimension one k-web W ¢ is canonically defined on
(IP’V”, H,) by projective duality. This is the web induced by the levels of the holomorphic

maps p; : (P?, Hy) — C characterized by
H-C=pi(H)+p2(H)+ -+ pr(H)

for every H sufficiently close to Hy.

a0

FIGURE 2. On the left W is pictured for a reduced cubic curve C formed by a line and a
conic. On the right W¢ is drawn for a rational quartic C.

(1) Throughout the term non-degenerated will be used in a stronger sense than usual in order to
ensure that the dual web is smooth. It means that any collection of points in the intersection of
C with a generic hyperplane, but not spanning the hyperplane, is formed by linearly independent
points.

ASTERISQUE 317



(974) ALGEBRAIZATION OF CODIMENSION ONE WEBS 247

Abel’s addition Theorem says that for every py € C and every holomorphic(®
1-form w € H°(C,w¢) the sum

p1(H) p2(H) pr (H)
/ w—l—/ w+-~-—|—/ w
Po Po Po

does not depend of H. One can reformulate this statement as

k
Zp;‘wzo.
i=1

It follows that the 1-forms on C' can be interpreted as abelian relations of W ¢. In par-
ticular dim @(W¢) > h°(C,wc) and if C is an extremal curve — a non-degenerated
reduced curve attaining Castelnuovo’s bound — then % has maximal rank.

The key question dealt with in the works reviewed here is the characterization of
the algebraizable codimension one webs. These are the webs equivalent to W for a
suitable projective curve C.

1.4. A converse to Abel’s Theorem

The ubiquitous tool for the algebraization of k-webs is the following theorem.

THEOREM 1.2. — Let Cy,...,Cy be germs of curves on P™ all of them intersecting
transversely a given hyperplane Hy and write p;(H) = H N C; for a hyperplane H
sufficiently close to Hy. Let also w; be germs of non-identically zero 1-forms on the
curves C; and assume that the trace

k
D _piwi
i=1

vanishes identically. Then there exist a degree k reduced curve C C P™ and a holo-
morphic 1-form w on C such that C; C C' and w|c, = w; for all i ranging from 1
to k.

Theorem 1.2 in the case of plane quartics was obtained by Lie in his investigations
concerning double translation surfaces, cf. Figure 3. The general case follows from
Darboux proof (following ideas of Poincaré) of Lie’s Theorem. The result has been
generalized to germs of arbitrary varieties carrying holomorphic forms of the maximum
degree by Griffiths, cf. [24]. More recently Henkin and Henkin-Passare generalized
the result even further by showing, in particular, that the rationality of the trace is
sufficient to ensure the algebraicity of the data, see [34] and references therein.

(@) If C is singular then the holomorphicity of w means that it is an 1-form of first kind with respect
H H H
to system of hyperplanes, i.e., the expression (fpl( ) w + fm( ) 4.4 fpk( )w), seen as a
Po Po Po

holomorphic function of H € P", has no singularities. It turns out that the holomorphic 1-forms on
C are precisely the sections of the dualizing sheaf w¢.
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FIGURE 3. A double translation surface is a surface S C R3 that admits two independent
parameterizations of the form (z,y) — f(z) + g(y). S carries a natural 4-web W. The lines
tangent to leaves of W cut the hyperplane at infinity along 4 germs of curves. Lie’s Theorem
says that these 4 curves are contained in a degree 4 algebraic curve. This result was later
generalized [50] to arbitrary double translation hypersurfaces.

The relevance of Theorem 1.2 to our subject is evident once one translates it —
as Blaschke-Howe (n = 2) and Bol (n > 3) did — to the dual projective space. We
recall that a linear web is a web whose leaves are pieces of hyperplanes.

THEOREM 1.3. — A linear k-web W on (C™,0) carrying an abelian relation that is
not an abelian relation of any subweb extends to a global (but singular) web We on
P

With Theorem 1.3 at hand the algebraization of 2n-webs on (C™,0) with n +1
abelian relations follows from a beautiful argument of Blaschke — inspired in
Poincaré’s works on double translation surfaces — that goes as follows.

1.5. A first algebraization result

If W is a k-web on (C™,0) of maximal rank r then — mimicking the construction
of the canonical map for algebraic curves — one defines, for i = 1,...,k, the maps
Z;:(C",0) — P!
z = i)l (2)]
with {(n3,...,m)},_, , being a basis for (W). Although the 7;’s are 1-forms
the maps Z;’s are well-defined since, for a fixed 7, any two of these forms differ by
the multiplication of a meromorphic function constant along the leaves of &;. It is an

immediate consequence that the image of each Z; is a germ of curve. Note that the
equivalence class under Aut(lP") of these germs is an analytic invariant of W.
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Since W has maximal rank then dim A°(W)/ @' (W) = k —n. Therefore the points

Zy(x), ..., Z,(x) span a projective space PF—"—1 c Pr—1,
One can thus define the Poincaré map % : (C*,0) — Gy_,_1(P""!) by setting
P(x) = Span(Zi(x),. .., Zx(x)). It is a simple matter to prove that & is an immersion.

If £ = 2n then the Poincaré map takes values in G,,_1(P") = P". The image of the
leaf through z of the foliation ¥; lies on the hyperplane of P determined by Z;(z).
Thus &, W is a linear web and its algebraicity follows from Theorem 1.3. O

1.6. Bol’s Algebraization Theorem and further developments

Most of the material so far exposed can be found in [6]. This outstanding volume
summarizes most of the works of the Blaschke School written during the period 1927-
1938. One of its deepest result is Bol’s Hauptsatz fiir Flichengewebe (main theorem
for webs by surfaces) presented in §32-35 and originally published in [7]. It says that
for k # 5, every codimension one k-web on (C3,0) of mazimal rank is algebraizable.

For k < 4 the result is an easy exercise and the case k = 6 has just been treated in
§1.5. Every 5-web on (C3,0) of the form W(x,y,z,z+y+ 2, f(z)+g(y) +h(2))® has
maximal rank but for almost every choice of the functions f, g, h it is not algebraizable,
see for instance [4, 49|.

In the remaining cases, kK > 2n + 1, Bol’s proof explores an analogy between the
equations satisfied by the defining 1-forms of maximal rank webs and geodesics on
semi-riemannian manifolds. Latter in [15] Chern and Griffiths attempted to generalize
Bol’s result to arbitrary dimensions. Their strategy consisted in defining a path geom-
etry in which the leaves of the web turn out to be totally geodesic hypersurfaces. The
linearization follows from the flatness of such path geometry. Unfortunately there was
a gap in the proof, cf. [17], that forced the authors to include an ad-hoc hypothesis
on the web to ensure its algebraization.

2. ALGEBRAIZATION OF CODIMENSION ONE WEBS
ON (C",0), n >3

The purpose of this section is to sketch Trépreau’s Algebraization Theorem stated
below. An immediate corollary is the algebraization of maximal rank k-webs on di-
mension at least three for £ > 2n. One has just to combine Trépreau’s result with
the displayed equation (3). In particular the ad-hoc hypothesis in Chern-Griffiths
Theorem is not necessary.

@) W(u1,...,u) is the k-web induced by the levels of the functions w1, ..., ug.
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THEOREM 2.1 ([49]). — Letn >3 and k > 2n ork < n+ 1. If W is a k-web on
(C™,0) satisfying

@ (w)
a*(w)

dim =2k—3n+1

then W is algebraizable.

Like Bol’s Theorem the result is true for k < n + 1 and false for n +1 < k < 2n
thanks to fairly elementary reasons.

Trépreau pointed out [49] that the general strategy has a high order of contact
with Bol’s proof and that [6, §35.3] suggests that the result should hold true for webs
by surfaces on (C3,0).

It has also to be remarked that Theorem 2.1 does not completely characterize the
algebraizable webs on (C™,0),n > 3. In contrast with the planar case — where all the
algebraic webs have maximal rank — the algebraic webs on higher dimensions satisfy-
ing the hypothesis of Theorem 2.1 are dual to rather special curves. One distinguished
feature of these curves is that they are contained in surfaces of minimal degree. For
instance, in the simplest case where the curve is an union of lines through a certain
point x € P™ the dual web satisfies the hypothesis if, and only if, the corresponding
points in P(T,P™) lie on a rational normal curve of degree n — 1.

Since Trépreau’s argument is fairly detailed and self-contained I will avoid the
technicalities to focus on the general lines of the proof.

2.1. A field of rational normal curves on PT*(C",0)

When k = 2n the hypothesis of Theorem 2.1 implies that % has maximal rank.
The argument presented in §1.5 suffices to prove the theorem in this particular case.
Until the end of the proof it will be assumed that & > 2n + 1.

LEMMA 2.2. — [f W =91 K...KT} is a k-web on (C*,0), n > 2 and k > 2n+1
such that dim G° (W) G (W) = 2k — 3n + 1 then there exists a basis wo, . ..,wn_1
of the O-module Q%Cn,o) such that the defining submersions ui,...,ur of W satisfy
duy = kg, Ez;é(Ga)“wu for suitable functions kq, 60, : (C™,0) — C.

Geometrically speaking the lemma says that for every z € (C",0) the points on
PT¥(C™,0) determined by T,%1,...,T:F lie on a degree (n — 1) rational normal
curve C(z) parameterized as [s : ¢] — [Z;L_ol s"*itiwi} . The basis wp, ...,wp—1 as in
the statement of Lemma 2.2 is called an adapted basis for W.

The details are in [49, Lemme 3.1] or [15, p. 61-62]. Here I will just remark that

once one realizes that
@’ (W)

o a (W)
a*(w)

di =2k—3n+1 = dim =k—-2n+1
a@*(w)
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and that the latter equality implies that the space of quadrics on PT%(C"™,0) contain-
ing T,%1, ..., T, has codimension (2n — 1) then the proof of the lemma follows
immediately from the Lemma of Castelnuovo: If k > 2(n — 1) + 3 points in general
position on P"~1 impose just 2(n — 1) + 1 conditions on the space of quadrics then
these points belong to a rational normal curve of degree (n —1).

2.2. Rational normal curves on P2k—3n

Let W be a k-web on (C™,0) satisfying the hypothesis of Lemma 2.2. Fix local
submersions u1,...,u; : (C",0) — (C,0) defining W and (n},...,n), A = 1,...,
2k — 3n + 1, elements in @(W) with classes generating @°(W)/ @ (W).

If 22 (z) = (27(x),. .., 2 (z)) are vector functions for which
(@) = 22 (@) - (dus (@), ..., dug(z))”

then the maps Z; : (C*,0) — P2k=37 __ patural variant of the maps under the same
label defined in §1.5 — can be explicitly written as the projectivization of the maps

Z;i: (C"0) — C2h—3ntl (i=1,...,k)
¢ = (2(2), 2 (@), 27 (@),
For a fixed z € (C",0), like in §1.5, the span of Z;(z),..., Zx(z) has dimension
k —n — 1. It will be denoted by Pk="~1(z).

Using the notation of Lemma 2.2 one can introduce the map

Z,:(C"0)xC — C=ntd
d

(z,t) — Y [ J]¢t-06;) | ki(2)Z;(=)

i=1 \ j#i

and its projectivization Z, : (C",0) x P! — P?*=3"_ Expanding the entries of Z,(z,t)
as polynomials on ¢ one verifies that these have degree (k — n — 1). Thus the points
Zi(x), ..., Zk(x) lie on a unique degree (k — n — 1) rational normal curve C(x) con-
tained in P*~"~1(z), see [49, Lemme 4.3].

It can also be shown that the Poincaré map x — P*~"~!(z) is an immersion.
Moreover, if x and z’ are distinct points then P*~"~1(z) and P*~"~1(z’) intersect
along a projective space P"~2(z, z’). Since any number of distinct points on a degree
(n—1) rational normal curve contained in P"~! are in general position it follows that
the curves C(z) and C(z’) intersect in at most (n — 1) points, cf. [49, Lemme 4.2].
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2.3. The rational normal curves C(z) define an algebraic surface S C P2¢—3"

The main novelty of Trépreau’s argument is his elementary proof that, when n > 3,

Z.: (C",0) x P! — P?*=3"  hag rank two for every (z,t) € (C",0) x P’

Besides ingenuity the key ingredient is [49, Lemme 3.2] stated below. It is deduced
from a careful analysis of second order differential conditions imposed by the maxi-
mality of the dimension of Z°(W)/ @ (W).

LEMMA 2.3. — If we write a 1-form a as o = Y (o) ,w,, and use the same hypothesis
and notations of Lemma 2.2 then for every u € {0,...,n—2} there exist holomorphic
functions myo, ..., mym—1) satisfying (d(ka%))u - (dka)u_H = kg ZK;I mux(0a).
Moreover, if n > 3 then 04(d84), — (d04) u+1 = S50 nux(0a)> for suitable functions

Tp0y -y Mun-

Only in the proof of this lemma the hypothesis on the dimension of the ambient
space is used. In particular the algebraization of maximal rank planar webs for which
the conclusion of the lemma holds will also follow.

For every z € (C",0) the map t — Z,(x,t) is an isomorphism from P! to C(z).
Combining this with the fact that Z, has rank two everywhere it follows that the
image of Z, is a smooth analytic open surface Sy C P?—37,

If z and 2’ are distinct points laying on the same leaf of (n — 1) foliations defining
W then C(z) and C(a’) will intersect in exactly n — 1 points. This is sufficient to
ensure that the curve C(0) has self-intersection (in the surface Sp) equal to n — 1.

To prove that Sy is an open subset of an (eventually singular) algebraic surface
S C P2k=3" consider the subset X of Mory_,,_1 (P!, P?¥=37)®) consisting of morphisms
¢ with image contained in Sy and ¢(0 : 1) = z. It follows that X is algebraic — just
expand f;(¢(t : 1)) for every defining equations f; of Sy in a suitable neighborhood of
z¢. To conclude one has just to notice that the Zariski closure of the natural projection
to P2k=37 — the evaluation morphism — sends X to an algebraic surface S of P2k—3"
containing Sp.

2.4. The curves C(z) belong to a linear system of projective dimension n

The proof presented in [49] is based on a classical Theorem of Enriques [20] con-
cerning the linearity of families of divisors. For a modern proof and generalizations of
Enriques Theorem, see [18, Theorem 5.10]. Here an alternative approach, following
[17, p. 82], is presented.

() This is just the set of morphisms from P! to P™ of degree k — n — 1 which can be naturally
identified with a Zariski open subset of P ((Ck_n_l[s,t]zk*?’”Jrl).
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Since Sy C S is smooth we can replace S by one of its desingularizations in such
a way that Sy will still be an open subset. Moreover being the curves C(z) pairwise
homologous in Sy the same will hold true for their strict transforms. Summarizing,
for all that matters, we can assume that S is itself a smooth surface.

Because S is covered by rational curves of positive self-intersection it is a ratio-
nal surface. Therefore H(S, )s) = 0 and homologous curves are linearly equivalent.
Consequently if we set C' = C(0) then all the curves C(z) belong to PH°(S, O5(C)).

The exact sequence 0 — Og — Og5(C) — No — 0 immediately implies that
h'(S, 0s(C)) =1+h%(C,Ng) = 1+ h°(P", Op: (C?)) = n + 1.
Consequently dim PH?(S, O5(C)) = n.

2.5. The algebraization map

The map z +— C(z) takes values on the projective space P* = PH?(S, Os(C)). It
is a holomorphic map and the leaf through = of one of the defining foliations &; is
mapped to the hyperplane contained in PH?(S, §)5(C)) corresponding to the divisors
through Z;(z) € S.

The common intersection of the hyperplanes corresponding to the leaves of W
through 0 reduces to the point corresponding to C. Otherwise there would be an
element in PHY(S, O5(C)) intersecting C' in at least n points contradicting C? = n—1.
Therefore the map is an immersion and the image of 9 is a linear web. Trépreau’s
Algebraization Theorem follows from Theorem 1.3. U

3. EXCEPTIONAL PLANAR WEBS I: THE HISTORY

The webs of maximal rank that are not algebraizable are usually called exceptional
webs. Trépreau’s Theorem says that on dimension n > 3 there are no exceptional
codimension one k-webs for k& > 2n. The next three sections, including this one,
discuss the planar case. On the first I will draw the general plot of the quest for
exceptional webs on (C2,0) — as I have learned from [40, Chapitre 8] and references
therein. The second will survey the methods to prove that a given web is exceptional
while the third will be completely devoted to examples.

3.1. Blaschke’s approach to the algebraization of planar 5-webs

In the five pages paper [5] the proof that all 5-webs on (C2, 0) of maximal rank are
algebraizable is sketched. Although wrong Blaschke’s paper turned out to be a rather
influential piece of mathematics. For instance, the starting point of Bol’s proof of the
Hauptsatz fiir Fliachengewebe can be found there.

SOCIETE MATHEMATIQUE DE FRANCE 2015



254 J. V. PEREIRA

For a 5-web of maximal rank Blaschke defines a variation of the Poincaré map —
the Poincaré-Blaschke map — as follows

PB:(C20) — Gyu(P°) =P5
r = Spal’l(Zl({L‘),...,Z5(CC),Z1/(.CC),...,Z5/(.T)),

where Z; is defined as in §1.5 and Z;' makes sense since the image of the map Z;
has dimension one. The fact that the spanned projective subspace has dimension 4
follows from a reasoning similar to the one presented in §1.5.

The main mistake in loc. cit. is Satz 2 that, combined with a result of Darboux,
implies that the image of 9B is contained in a Veronese surface. If this is the case
then it is indeed true that the 5-web is algebraizable. For a detailed proof of the latter
statement, see [40, Proposition 8.4.6].

3.2. Bol’s counter-example and Blaschke-Segre surfaces on P?

Blaschke’s mistake was pointed out by Bol in [8]. There he provided a counterex-
ample by proving that the 5-web @5 had rank 6, see Figure 4. Besides 5 linearly
independent obvious abelian relations coming from the hexagonal 3-subwebs he found
another one of the form Z?:l (M + 110%) dt; = 0, where t; = %, ty = %y*l,

t
t3 = %7 t4 = lziy and t5 = e(1-2)

y(1-y)
tion of this expression leads to Abel’s functional equation

are rational functions defining Bs. The integra-

5
> Lis(t;) + Liz(1— t;) = 0,
=1

n
for Euler’s dilogarithm Liy(2) = Z 2—2
n>1

Bol studies the image of the Poincaré-Blaschke map for B5 and shows that it is a
germ of (transcendental) surface with the remarkable property: it is non-degenerated
and has five families of curves such that the tangent spaces of S along each of these
curves lie on a hyperplane of P5 that depends just on the curve. To make the further
reference easier let us adopt the (non-standard) terminology Blaschke-Segre surfaces
to describe the surfaces with this property. The choice of terminology follows from
the fact that the tangents of the curves in the five families must coincide with Segre’s
principal directions of S. We recall that at a point p € S (S non-degenerated and not
contained in a Veronese surface) these are the five directions (multiplicities taken into
account) determined by the tangent cones of the intersection of S with one of the five
hyperplanes that intersects S in a tacnode (or worst singularity) at p.

The relation between exceptional 5-webs and Blaschke-Segre surfaces was noticed

by Bol. In his own words: “Im tbrigen sieht man, dafi die Bestimmung von allen
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FIGURE 4. Bol’s Exceptional 5-web Bs is the web induced by four pencils of lines with base
points in general position and a pencil of conics through these four base points. It is the
unique non-linearizable web for which all its 3-subwebs are hexagonal. For almost 70 years
it remained the only known example of non-algebraizable 5-web of maximal rank.

Fiinfgeweben hochsten Ranges hinauslauft auf die Angabe aller Fliachen mit Segreschen
Kurvenscharen, und umgekehrt; (...)”, in [8, pp. 392-393]

The beautiful underlying geometry of the Blaschke-Segre surfaces caught the eyes
of some Italian geometers including Bompiani, Buzano and Terracini. In the first
lines of [9] it is remarked that the exceptional 5-webs give rise to Blaschke-Segre
surfaces echoing the above quote by Bol. Buzano and Terracini pursued the task
of determining/classifying other germs of Blaschke-Segre surfaces in [48, 10]. Their
approach was mainly analytic and quickly led to the study of certain non-linear system
of PDEs. They were able to classify, under rather strong geometric assumptions on the
families of curves, some classes of Blaschke-Segre surfaces. At the end they obtained
a small number of previously unknown examples. Apparently, the determination of
the rank of the naturally associated 5-webs was not pursued at that time, cf. [6, page
261].

Buzano pointed out that two of his Blaschke-Segre surfaces induced quite remark-
able 5-webs: both are of the form W(z,y,z + y,z — v, f(z,y)) and, moreover, the
3-subwebs W(z,y, f(z,y)) and W(z + y,z — y, f(z,y)) are hexagonal. The complete
classification of 5-webs with these properties is carried out in [11]. Nevertheless he
did not wonder whether the obtained 5-webs come from Blaschke-Segre surfaces or if
they are of maximal rank.

After the 1940’s the study of webs of maximal rank seemed to be forgotten until the
late seventies when Chern and Griffiths — apparently motivated by Griffiths’ project
aiming at the understanding of rational equivalence of cycles in algebraic varieties —
pursued the task of extending Bol’s Theorem for dimensions greater than three, cf.
§1.6.
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In a number of different opportunities Chern emphasized that a better under-
standing of the exceptional planar 5-webs, or more generally of the exceptional webs,
should be pursued. For instance, after a quick browsing of the papers by Chern on
web geometry and Blaschke’s work one collects the following quotes (see also [12,
Unsolved Problems], [14, Problem 6]):

— “At this low-dimensional level an important unsolved problem is whether there
are other 5-webs of rank 6, besides algebraic ones and Bol’s example.”, [13].

— “In general, the determination of all webs of maximum rank will remain a fun-
damental problem in web geometry and the non-algebraic ones, if there are any,
will be most interesting.”, [14].

— “(...) we cannot refrain from mentioning what we consider to be the funda-
mental problem on the subject, which is to determine the mazximum rank non-
linearizable webs. The strong conditions must imply that there are not many. It
may not be unreasonable to compare the situation with the exceptional simple
Lie groups.”, [17].

Chern’s insistence can be easily justified. The exceptional planar webs are, in a
certain sense, generalizations of algebraic plane curves and a better understanding of
these objects is highly desirable.

The questions of Chern had to wait around 20 years to receive a first answer.
In [30], Hénaut recognizes that 9-web induced by the rational functions figuring in
Spence-Kummer 9-terms functional equation for the trilogarithm as a good candidate
for exceptionality. In 2002, Pirio and Robert independently settled that this 9-web is
indeed exceptional.

In [25] Griffiths suggests that exceptionality is in strict relation with the poly-
logarithms. In particular he asks if all the exceptional webs are somehow related to
functional equations for polylogarithms.

In view of all these questions, it was a surprise when Pirio showed that
W(x,y,x + y,© — y,x> + y?) is an exceptional 5-web and its space of abelian
relations is generated by the elementary polynomial identities (cf. [41] and also [40])

(2% +9?) = 2>+ 0 = z—y—(z—vy)
62 +9°)? = dat+ 4yt +(@+y)i+@—y*t 0 (z—y)* + (z +y)? — 222 — 2°
10(z2 +y%)3 = 82048+ (2 +y)°l—-(z-y)°® 0 = z4+y—(z+y).

In loc. cit. other exceptional webs are determined, e.g. W(z,y,z+vy,x —y, zy) and
W(z,y,z+vy,x—y,x>+y> zy). In section §5 most of the exceptional webs found by
Pirio, Robert and others are described.
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Fi1GUureE 5. Three of the new examples of exceptional webs found by Pirio. The 6-web in
the middle is the superposition of the other two 5-webs.

4. EXCEPTIONAL PLANAR WEBS II: THE METHODS

To put in evidence the exceptionality of a k-web on (C2,0) one has to check that
the web is non-linearizable and that it has maximal rank. Here I will briefly survey
some of the methods to deal with both problems.

4.1. Linearization conditions for planar webs

If W= K KTy is a k-web on (C2,0) and the foliations &; are induced by
vector fields X; = a% + pi(z, y)a% then there exists an unique polynomial

Poy(z,y,p) = li(z,9)p" " + la(z,y)p" 2 + - + (2, y)
in C{z,y}[p] of degree at most (k — 1) such that X,;(p;) = %’: + p; %‘;j =
Pyy(z,y,pi(z,y)) for every i € {1,...,k}.
One can verify that the leaves of the web W can be presented as the graphs of the

solutions of y” = Py, (z,y,y’) . In [28] (see also [6, §29]) it is proven that a k-web W
is linearizable if, and only if, there exists a local change of the coordinates (z,y) that

simultaneously linearizes all the solutions of the second order differential equation
above. A classical result of Liouville says that this is the case if, and only if, (a)
deg, Pyy < 3; and (b) the coefficients (Ix,lx—1,lk—2,lx—3) satisfy a certain (explicit)
system of differential equations, cf. [28] for details.

Notice that all the computations involved can be explicitly carried out. Moreover,
if the web is given in implicit form F(z,y,y’) then the polynomial ¢, can also be
explicitly computed from the coefficients of F, see [45, Chapitre 2].

For our purposes, a particularly useful consequence of this criterium is the following
corollary [28], [6, p. 247): If W is a k-web on (C?%,0) with k > 4 then, modulo projective
transformations, ‘W admits at most one linearization.
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As a side remark we mention a related result due to Nakai [38, Theorem 2.1.3]: if
We and W are two algebraic webs associated to irreducible curves on P™ of degree
at least n + 2 then every orientation preserving homeomorphisms of P* conjugating
We and W is an automorphism of P™. An amusing corollary is in Nakai’s own words:
“the complex structure of a line bundle L — C' on a Riemann surface is determined
by the topological structure of a net of effective divisors determining L.”

There are other criteria for linearizability of d-webs, d > 4, cf. [3]. Concerning
the linearization of planar 3-webs there is Gronwall’s conjecture: a non-algebraizable
3-web on (C2,0) admits at most one linearization. Bol proved that the number of
linearizations is at most 16. In [26] an approach suggested by Akivis to obtain rela-
tive differential invariants characterizing the linearization of 3-webs is followed. The
authors succeeded in reducing Bol’s bound to 15. Similar results have been recently
reobtained in [23].

4.2. Detecting the maximality of the rank

The methods to check the maximality of the rank can be naturally divided into
two types. The ones of the first type — Methods 1, 2 and 3 below — aim at the
determination of the space of abelian relations. Methods 4, 5 and 6 do not determine
the abelian relations explicitly but in turn characterize the webs of maximal rank by
the vanishing of certain algebraic functions on the data (and their derivatives) defining
it. These characterizations can be interpreted as generalizations of the equivalence (2)
<= (3) in Theorem 1.1.

4.2.1. Method 1: differential elimination (Abel’s method). — If a k-web W =
W(uy,...,ux) is defined by germs of submersions u; : (C%,0) — (C,0) then
the determination of @(W) is equivalent to finding the germs of functions
fis--5 fx 1 (C,0) — (C,0) satisfying

filur) + fa(uz) + -+ - + fr(ug) = 0.

Abel, in his first published paper — Méthode générale pour trouver des fonctions
d’une seule quantité variable lorsqu’une propriété de ces fonctions est exprimée par
une équation entre deuzx variables [1] — furnished an algorithmic solution to it. The
key idea consists in eliminating the dependence in the functions us, ..., u; by means
of successive differentiations in order to obtain a linear differential equation of the
form

FOur) + comr () £ (ua) + -+ + coun) fr(ur) = 0

satisfied by the f;. The coefficients ¢; are expressed as rational functions of

U1, Usg, ..., u; and their derivatives. After solving this linear differential equation

ASTERISQUE 317



(974) ALGEBRAIZATION OF CODIMENSION ONE WEBS 259

and the similar ones for fs,..., fi the determination of the abelian relations reduces
to plain linear algebra.

Abel’s method has been revisited by Pirio — cf. [40, Chapitre 2|, [42] — and after
implementing it he was able to determine the rank of a number of planar webs includ-
ing the ones induced by the Blaschke-Segre surfaces found by Buzano and Terracini.
They all turned out to be exceptional.

Notice that the computations involved tend to be rather lengthy and this, perhaps,
explains why the use of such method to determine new exceptional webs had to wait
until 2002.

4.2.2. Method 2: polylogarithmic functional relations. — Another approach to deter-
mine some of the abelian relations of a given particular web was proposed by Robert
in [47]. Instead of looking for all possible abelian relations he aims at the ones involv-
ing polylogarithms. He uses a variant of a criterium due to Zagier [51] that reduces
the problem to linear algebra. In contrast with Abel’s method this one has a nar-
rower scope but tends to be more efficient since it bypasses the solution of differential
equations.

More precisely, if uy,...,u; € C(x,y) are rational functions on C? and U C C? is
a suitably chosen open subset then the existence of abelian relations of the form

k k r—1
Z AiLiy (ug) + Z Z P (log u;)Lip—i(u;) =0,
i=1 i=1 =1

with P; ; € Clz,y] and \; € C, is equivalent to the symmetry of the tensor
k ®k—1
duy; duy
i (( Uz> ® Ui ) .
-1 Uy 1-— Uy

in ®QI(U), cf. [47, Théoréme 1.3].
C

7

4.2.3. Method 38: Abelian relations in the presence of automorphisms. — Let
W=9,XK-.-K Iy denote a k-web in (C?,0) which admits an infinitesimal auto-
morphism X, regular and transverse to the foliations &; in a neighborhood of the
origin.

Clearly the Lie derivative of Lx acts on @(W) and an analysis of such action
allows one to infer that the abelian relations of W can be written in the form, cf. [36,
Proposition 3.1],

Py (uq) N duy -+ Py (ug) N duy = 0
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where Py, ..., P, are polynomials of degree less than or equal to the size of the i-th
Jordan block of Lx : G(W) O, \; are the eigenvalues and u; = [ ﬁk)

The rank of the web WX x obtained from W by superposing the foliation induced
by X is related to the rank of W [36, Theorem 1] by the formula

] tk(WR T x) = k(W) + (k- 1). \

In particular, W is of maximal rank if, and only if, W X & x is also of maximal rank.
Once one realizes that the Lie derivative Lx induces linear operators on &(W) and
G(W K T x) then the proof of this result boils down to linear algebra.

4.2.4. Method 4: Pantazi’s Method. — In [39], Pantazi explains a method to deter-
mine the rank of a k-web defined by k holomorphic 1-forms w, . ..,wy. He introduced
N = (k—1)(k —2)/2 expressions — algebraically and explicitly constructed from the
coefficients of the w; and their derivatives — which are identically zero if, and only
if, the web is of maximal rank.

Building on Pantazi’s method Mihiileanu obtains in [37] a necessary condition for
the maximality of the rank: the sum of the curvatures of all 3-subwebs of W must

vanish.

4.2.5. Method 5: the implicit approach (Hénaut’s Method [32]). — If W is a regular
k-web defined on (C?,0) by an implicit differential equation f(z,y,y’) of degree k on
y' then the contact 1-form dy — pdx on (C2,0) x C defines a foliation &4, on the
surface S cut out by f(z,y,p) such that m,J = W, with 7 : § — (C2,0) being the
natural projection.

On this implicit framework the abelian relations of %W can be interpreted as 1-forms
n= (bg,pd*?’ + -4 bd) . % € w85 which are closed. It follows that there exists

op
a linear system of differential equations /q, with space of solutions isomorphic to
G(W). The system Mq, is completely determined by f.

Using Cartan-Spencer theory, Hénaut builds a rank N = (k —1)(k — 2)/2 vector
bundle E contained in the jet bundle Jk,g(@kﬂ) and a holomorphic connection
V:E — E® Q! such that the local system of solutions of V is naturally isomorphic
to Mqy. It follows that W has maximal rank if, and only if, the curvature form of V
is identically zero.

Although not explicit in principle, this construction has been untangled by Ripoll,
who implemented in a symbolic computation system the curvature matrix determi-
nation for 3, 4 and 5-webs, cf. [45].

An interpretation for the induced connection (det E,det V) is provided by [45,
Théoréme 5.2] when k < 6 and in [33, p. 281],[46] for arbitrary k. After multiplying
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f by a suitable unit there exists a connection isomorphism

(det E,det V) ~ ® Ly, ® Vi

where (L, V) are (suitably chosen) connections of all 3-subwebs of W. As a corollary
they reobtain Mih&ileanu necessary condition for the rank maximality.

An extensive study of the connection V and its invariants remains to be done. For
a number of interesting questions and perspectives, see [33]. Here I will just point out
that due to their complementary nature it would be interesting to clarify the relation
between Pantazi’s and Hénaut’s method.

4.2.6. Method 6: Goldberg-Lychagin’s Method. — A variant of the previous two
methods has been proposed in [22]. The equations imposing the maximality of the
rank are expressed in terms of relative differential invariants of the web.

5. EXCEPTIONAL PLANAR WEBS III: THE EXAMPLES

In this section, I will briefly describe new exceptional webs that have come to
light since 2002. The list below is not extensive. To the best of my knowledge all the
other new examples available in the literature can be found in [40] and [36]. The
non-linearizability of all the examples below can be inferred from the fact they are
non-linear webs but contain a linear k-subweb with k& > 4, see §4.1.

5.1. Polylogarithmics webs

If Lizg(z) =Y %5 2 is the trilogarithm then the Spence-Kummer functional equation
for it is

9Lis(z) + 2Lis(y) — LZS( )+2L13(1 )+2L (M)

y(1—x)
z(l — - z(1—y)?
— Lig (zy) + 2Li3 <_((11_;:U))> + 2Li3 (_y(ll—yat)) — Lig (M)
= 2Liy (1) — log(y)?log (=) + T log(w) + + og(w)”.
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The naturally associated 9-web, after the change (z,y) — (HT“”, 1+Ty), is

Bs
Wy = W x 71+m7w’y,§71+x’y(1+$)7(l—i—w)(l—i-y),x(l—i—ac)
l+y" gy y 1+y z(l+y) zy y(1+y)

Bs

Br

W g was recognized as a good candidate for exceptionality in [30]. It was later
shown to be exceptional by two different methods. Robert apparently developed
method 2 for this purpose and Pirio used Abel’s method. The subweb Bs is clearly
an isomorphic copy of Bol’s 5-web. The subwebs B¢ and B; (see displayed equation)
are also exceptional. Notice that Bs C Bs C Br C W s

Due to the rich automorphism group of W g one can easily recognize other subwebs
isomorphic to Bs, Bs and B contained in W . Besides these there are one excep-
tional 5-subweb ([40, Théoréme 7.2.5]) and one exceptional 6-subweb ([40, Théoréme
7.2.5], [47, §3.2]) of W g that are non-isomorphic to Bs and Bg respectively.

Robert has also determined an exceptional 8-web %Bg containing %, but not iso-
morphic to any 8-subweb of W g . It is obtained from %7 by adding the pencil of lines

gz:}, [47, Théoréeme 3.1].

I

F1GURE 6. The configuration in the left naturally induces W s while the one in the middle
induces a 1-parameter family of exceptional webs.

W g admits a description analogous to Bol’s 5-web. If one considers the configu-
ration of six points on P? schematically represented in the left of Figure 6 then W g
is formed by the six pencils of lines through the points and three pencils of conics
through any four of the six points that are in general position. If one considers exactly
the same construction using the other two configurations of five points represented in
Figure 6 then the configuration in the middle induces a 1-parameter family of 8-webs
while the one in the right induces a 2-parameters family of 10-webs. The first turns
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out to be a family of exceptional 8-webs, cf. [40, Théoréme 7.3.1]. The second remains
a good candidate for a family of exceptional 10-webs since all the members satisfy
Mihaileanu necessary condition for the rank maximality.

All the other possible configurations of five points on P? induce exceptional webs.
On the other hand, see [40, p. 182], the web associated to a generic configuration of
6 points on P? does not satisfy Mihiileanu condition and therefore is not exceptional.

Webs naturally associated to Kummer’s equations for the tetralogarithm and the
pentalogarithm have also been studied in [40, Chapitre 7]. They do not satisfy Mi-
haileanu condition and therefore are not exceptional. Nevertheless they do contain

some previously unknown exceptional 5 and 6-subwebs.

5.2. Quasi-parallel webs

In [41] a number of 5-webs on (CZ2,0) have been determined with the help of
Abel’s method. They are all of the form W(z,y,z + y,x — y,u(z,y)) for some germ
of holomorphic function u(z,y) = v(z) + w(y).

Later in [43] the classification of the 5-webs of this particular form was pursued.
At the end they obtained that all 5-webs on (C2,0) of the form W[v(z) + w(y)] =
W(z,y,z+y,z —y,v(z) + w(y)) are equivalent to one of the following

(a)  Wlog(sin(z)sin(y))] (b) Wa? -y’ (6) Wa?+y?]
(d) Wflog(tanh(z)tanh(y))] (e) Wlexp(z)+ exp(y)]
(fe Wlog(snk(z)snk(y))]
with sng being the Jacobi’s elliptic functions of module k£ € C\ {—1,0,1}. The webs

(a), (b), (¢), (d) and (e) can all be interpreted as limits of the webs (f)x under suitable
renormalizations.

The abelian relations are either polynomial ones or follow from well-known identi-
ties involving theta functions and classical functions.

Notice that all 3-webs of the form W(z,y,v(z)+w(y)) are hexagonal. In the course
of the classification it is proved that the maximality of the rank of W(v(z) + w(y)]
implies that the 3-subweb W(z + y,z — y,v(z) + w(y)) is hexagonal. Coincidentally
this reduces the problem to the one considered in [11].

5.3. Webs admitting infinitesimal automorphisms

Method 3 implies that every reduced degree k curve C' C P? left invariant by a
C*-action induces, on the dual projective plane, an exceptional (k 4+ 1)-web formed
by the superposition of W¢ and the orbits of the dual C*-action [36].
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If one considers the curves cut out by polynomials of the form
Lk/2]
H (zy — Niz?) ., A # A €CF
i=1
then it follows that for every k > 5 there exists a family of dimension at least |k/2|—1
of pairwise non-equivalent exceptional global k-webs on P2.

6. WEBS OF ARBITRARY CODIMENSION

There are a number of works dealing with webs of arbitrary codimension and their
abelian relations. In the next few lines I will try to briefly review some of the most
recent advances. Although, even more than in the previous paragraphs, I do not aim
at completeness and, probably, a number of important omissions are made.

A k-web W = F1K- - -KT}, of codimension 7 on (C™, 0) is a collection of & foliations
of codimension r such that the tangent spaces Ty F 1, . .., To Sk are in general position,
i.e., the intersection of any number m of these subspaces has the minimal possible
dimension while the union has the maximal possible dimension.

For every non-negative integer £ < r one can define the space of degree ¢ abelian
relations of W in terms of closed ¢-forms vanishing along the leaves of the defining
foliations.

If V is a reduced non-degenerated® subvariety of P"*"~! of degree k and dimen-
sion r and II is a generic (n — 1)-plan then, analogously to the case of curves, V'
induces a k-web Wy on (G, _1(P**t"~1), ), where G,,_1(P"*"~1) is the Grassma-
nian of (n — 1) planes on P*"*"~!. Using a natural affine chart around II one sees that
(Gp—q (P™F7=1),II) 2 (C"",0) and that Wy is equivalent to a k-web of codimension
r on (C™,0) with linear leaves. The k-webs of codimension r on (C™",0) are denoted
by Wg(n,r).

In [16] bounds for the dimension of the space of degree r abelian relations for
webs Wy(n,r) are obtained. These bounds are attained by webs Wy where V is an
extremal subvariety of P"T"~! in the sense that the dimension of H%(V,wy ) is maxi-
mal among the non-degenerated varieties of same degree and codimension. Recently
Hénaut provided sharp bounds for the ¢-rank of webs Wy (n,r) for every £ < r, cf.
[31].

In view of the algebraization results for codimension one webs one is naturally led
to wonder if the Wy (n,r) of maximal rank are algebraizable when k is sufficiently

() In a similar sense to the one used for curves, cf. §1.3.
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large. Algebraization results for the W, (2, r) of maximal r-rank have been obtained by
[21] (r = 2) and [29] (every r > 2). For £ < r or r > 2 and n > 3, the characterization
of the Wy(n,r) of maximal ¢-rank seems to be open.

The study of webs which have codimension not dividing the dimension of the
ambient space also leads to beautiful geometry. A prototypal result in this direction
is Blaschke-Walberer Theorem [6, §35-36] for 3-webs by curves on (C3, 0) of maximum
1-rank (proven by Blaschke to be 5). It says that these 3-webs can be obtained from
cubic hypersurfaces on P* by means of an algebraic correspondence.

Concerning webs by curves there are also some interesting results by Damiano. He
provided a bound for the (n — 1)-rank of a web by curves on (C™,0) [19, Proposition
2.4], found generalizations of Bol’s exceptional web $B5 to non-linearizable (n+3)-webs
by curves on C™ of maximum (n — 1)-rank [19, Theorem 5.5] and linked the abelian
relations of these webs to the Gabrielov-Gelfand-Losik work on the first Pontrjagin
class of a manifold, cf. [35].

I cannot find a better way to close this survey than recalling a few more words of
Chern [12] about web geometry:

(...) the subject is a wide generalization of the geometry of projective algebraic
varieties. Just as intrinsic algebraic varieties are generalized to Kdhler manifolds

and complex manifolds, such a generalization to web geometry seems justifiable.
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