
SOCIÉTÉ MATHÉMATIQUE DE FRANCE
Publié avec le concours du CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE

ASTÉRISQUE384

2016

QUANTIZATIONS
OF CONICAL SYMPLECTIC RESOLUTIONS

Quantizations
of conical symplectic resolutions I:

local and global structure
Tom Braden & Nicholas Proudfoot & Ben Webster



Astérisque
384, 2016, p. 1–73

QUANTIZATIONS
OF CONICAL SYMPLECTIC RESOLUTIONS I:

LOCAL AND GLOBAL STRUCTURE

by

Tom Braden, Nicholas Proudfoot & Ben Webster

Abstract. — We re-examine some topics in representation theory of Lie algebras and
Springer theory in a more general context, viewing the universal enveloping algebra
as an example of the section ring of a quantization of a conical symplectic resolution.
While some modification from this classical context is necessary, many familiar fea-
tures survive. These include a version of the Beilinson-Bernstein localization theorem,
a theory of Harish-Chandra bimodules and their relationship to convolution operators
on cohomology, and a discrete group action on the derived category of representations,
generalizing the braid group action on category O via twisting functors.

Our primary goal is to apply these results to other quantized symplectic resolu-
tions, including quiver varieties and hypertoric varieties. This provides a new context
for known results about Lie algebras, Cherednik algebras, finite W-algebras, and hy-
pertoric enveloping algebras, while also pointing to the study of new algebras arising
from more general resolutions.

Résumé (Quantifications des résolutions symplectiques coniques I: structure locale et globale)
Nous réexaminons certains sujets dans la théorie de la représentation de algèbres

de Lie et théorie de Springer dans un contexte plus général, voyant l’algèbre en-
veloppante comme un exemple d’un anneau des sections d’un quantification d’une
résolution symplectique conique. Alors que modification de ce contexte classique est
nécessaire, beaucoup caractéristiques familiers survivons. Ceux-ci incluent une ver-
sion de la théorème de localisation de Beilinson-Bernstein, une théorie de bimodules
de Harish-Chandra et leur relation aux opérateurs de convolution sur cohomologie,
et une action d’une groupe discrète sur la catégorie dérivée de représentations, en
généralisant l’action de la groupe de tresses sur la catégorie O par foncteurs de twist.

Notre principal objectif est d’appliquer ces résultats à d’autres résolutions sym-
plectiques quantifiées, y compris les variétés carquois et variétés hypertorique. Cela
fournit un nouveau contexte pour les résultats connus sur algèbres de Lie, algèbres
de Cherednik, algèbres W finies, et algèbres enveloppantes hypertoriques, tout en
pointant à l’étude de nouvelles algèbres découlant des résolutions plus générales.

T.B. has been supported by NSA grants H98230-08-1-0097 and H98230-11-1-0180. N.P. has been
supported by NSF grant DMS-0950383. B.W. has been supported by NSA grant H98230-10-1-0199.
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2 T. BRADEN, N. PROUDFOOT & B. WEBSTER

1. Introduction

The dazzling success of algebraic geometry. . . has so much reorientated
the field that one particular protagonist has suggested, no doubt with
much justification, that enveloping algebras should now be relegated to
a subdivision of the theory of rings of differential operators.

Anthony Joseph, On the classification of primitive ideals in the
enveloping algebra of a semisimple Lie algebra [33]

In this paper, we argue against the relegation suggested above, in favor of a dif-
ferent geometric context. While viewing universal enveloping algebras as differential
operators is unquestionably a powerful technique, the differential operators on flag va-
rieties are odd men out in the world of differential operators as a whole. For example,
the only known examples of projective varieties that are D-affine are homogeneous
spaces for semi-simple complex Lie groups, and it is conjectured that no other exam-
ples exist. On the other hand, in this paper we consider a world where this special case
is very much at home: quantizations of symplectic resolutions of affine singularities.

Differential operators on a smooth projective variety X form a deformation quan-
tization of the cotangent bundle T ∗X. If X is a homogeneous space for a semi-simple
complex Lie group G, its cotangent bundle is a resolution of the closure of a nilpotent
orbit in g∗ (or an affine variety finite over this one). If X is the flag variety, this is
known as the Springer resolution. This is yet another sense in which these spaces are
misfits; homogeneous spaces for semi-simple complex Lie groups are conjecturally the
only examples of projective varieties whose cotangent bundles resolve affine singular-
ities. For most projective varieties X, T ∗X does not have enough global functions.

There are, however, many other examples of symplectic algebraic varieties that
resolve affine cones. While the Springer resolution is the most famous, other examples
include the minimal resolution of a Kleinian singularity, the Hilbert scheme of points
on such a resolution, Nakajima quiver varieties, and hypertoric varieties. One can
study deformation quantizations of these varieties, and many of them have the same
affinity property enjoyed by the Springer resolution. This paper is a study of these
deformation quantizations and their representation theory.

Several examples have been studied extensively by other authors. Universal
enveloping algebras have been considered from an enormous number of angles for
decades, and other examples such as spherical Cherednik algebras and finite W-al-
gebras have been active fields of research for many years. The hypertoric case has
recently been studied by Bellamy and Kuwabara [11] and by the authors of this
paper, jointly with Licata [16]. On the other hand, very few works attempt to view
all these examples in a single coherent theory. Kashiwara and Rouquier began to
develop such a theory [42], and our paper might be regarded as a continuation of
their work. A recent preprint of McGerty and Nevins [46] addresses similar issues,
with results that are complementary to ours.

In Section 2, we discuss the algebraic geometry of conical symplectic resolutions;
this is essentially all material already in the literature, but we collect it here for the
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QUANTIZATIONS OF CONICAL SYMPLECTIC RESOLUTIONS I 3

convenience of the reader. Particularly important for us are deformations which appear
in the work of Kaledin and Verbitsky; these show that any symplectic resolution flatly
deforms to a smooth affine variety, which is key to many properties of its quantization.
One ingredient we will use systematically is the conical structure: a choice of C∗-action
which makes the base into a cone and acts with positive weight on the symplectic form.

In Section 3, we discuss equivariant quantizations of a conical symplectic resolution
M, which are classified by H2(M;C) [13, 45]. We prove some basic results about the
ring A of S-invariant global sections, a filtered algebra whose associated graded is
isomorphic to C[M]. We also study the behavior of quantizations under (quantum)
Hamiltonian reduction, proving a quantum version of the Duistermaat-Heckman the-
orem (Proposition 3.16).

In Section 4 we introduce the appropriate category D -mod of modules over a
quantization D, which one may regard as the quantum analogue of the category
of coherent sheaves (in particular, there is a finiteness assumption built into the
definition). In the case where M is a cotangent bundle, we show that this category is
equivalent to the category of finitely generated twisted D-modules on the base, where
the twist is determined by the period of the quantization. The rest of the section
is dedicated to the study of the sections and localization functors that relate the
category of modules over a quantization to the category of modules over the section
ring A. We establish in Theorem 4.17 that these functors induce derived equivalences
for generic periods.

Theorem A. — Let M be a conical symplectic resolution, and fix two classes η, λ ∈
H2(M;C) such that η is the Chern class of an ample line bundle, or the strict trans-
form of an ample line bundle on any other conical symplectic resolution of M0. For
all but finitely many complex numbers k, the quantization of M with period λ + kη

is derived affine; that is, the derived functors of global sections and localization are
inverse equivalences.

In order to obtain an equivalence of abelian (rather than derived) categories that
works for all (rather than only generic) periods, we replace the section ring A with a
Z-algebra, which mimics in a non-commutative setting the homogeneous coordinate
ring of a projective variety. Given a quantized symplectic resolution along with a
very ample line bundle, we construct a Z-algebra Z and prove the following result
(Theorem 5.8).

Theorem B. — Let M be a conical symplectic resolution, let L be a very ample line
bundle on M, and let Z be the associated Z-algebra. Then the category D -mod is
equivalent to the category of finitely generated modules over Z modulo the subcategory
of bounded modules.

Theorem B has three nice consequences. First, we use it to prove the following
abelian analogue of Theorem A (Corollary 5.17).
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4 T. BRADEN, N. PROUDFOOT & B. WEBSTER

Corollary B.1. — Let M be a conical symplectic resolution, and fix two classes η, λ ∈
H2(M;C) such that η is the Chern class of an ample line bundle. For all but finitely
many positive integers k, the quantization of M with period λ+ kη is affine; that is,
the (abelian) functors of global sections and localization are inverse equivalences.

Next, we prove a version of Serre’s GAGA theorem [63]. More precisely, we consider
the analytic quantization Dan with the same period as D, define the appropriate
module category Dan -mod, and prove that it is equivalent to D -mod (Theorem 5.22).
The existing literature is fairly evenly divided between working in the algebraic and
analytic categories, and this corollary is an indispensable tool that allows us to import
previous results from both sides.

Corollary B.2. — IfM is a conical symplectic resolution, then the analytification func-
tor from D -mod to Dan -mod is an equivalence of categories.

Finally, we use Theorem B to prove a categorical version of Kirwan surjectivity,
relating the category of equivariant modules on a quantization to the category of
modules on the Hamiltonian reduction. We consider a restriction functor defined
by Kashiwara and Rouquier, and we use our Z-algebra formalism to construct left
and right adjoints, thus proving that the restriction functor is essentially surjective
(Theorem 5.31). In particular, this result establishes that our category D -mod is the
same as the analogous category considered by McGerty and Nevins (Remark 5.32).
For a precise statement of the hypotheses of the following result, see the beginning of
Section 5.5.

Corollary B.3. — If M is obtained via symplectic reduction from an action of a re-
ductive group G on X, then every object of D -mod extends to a twisted G-equivariant
module over a quantization of X.

LetM0 := SpecC[M] be the cone resolved byM, and consider the Steinberg variety
Z := M ×M0 M. The cohomology H2 dimM

Z (M ×M) with supports in Z, which by
Poincaré duality can be identified with the Borel-Moore homology group HBM

2 dimM(Z),
has a natural algebra structure via convolution [22, §2.7]. Furthermore, if L ⊂ M is
a Lagrangian subscheme that is equal to the preimage of its image in L0 ⊂M0, then
the convolution algebra acts on HdimM

L (M). In the special case whereM = T ∗(G/B)

and L is the conormal variety to the Schubert stratification of G/B, the convolution
algebra is isomorphic to the group algebra of the Weyl group, and HdimM

L (M) is
isomorphic to the regular representation. More generally, there is a natural algebra
homomorphism from the group algebra C[W ] of the Namikawa Weyl group of M to
the convolution algebra H2 dimM

Z (M×M).
Section 6 is devoted to categorifying the picture described in the paragraph above.

The convolution algebra is replaced by the monoidal category of Harish-Chandra
bimodules, which comes in both an algebraic and a geometric version. The module
HdimM
L (M) is replaced by a subcategory CL ⊂ D -mod (respectively CL0 ⊂ A -mod)

which is a module category for the category of geometric (respectively algebraic)
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QUANTIZATIONS OF CONICAL SYMPLECTIC RESOLUTIONS I 5

Harish-Chandra bimodules. Following Kashiwara and Schapira [43], we define the
characteristic cycle of a geometric Harish-Chandra bimodule, which lies in Z, and the
characteristic cycle of an object of CL, which lies in L. Using the machinery developed
in [43], we prove that these cycles are compatible with convolution.

Theorem C. — The characteristic cycle map intertwines convolution of geometric
Harish-Chandra bimodules with convolution in the Borel-Moore homology of the Stein-
berg variety (Proposition 6.15); it also intertwines the action of Harish-Chandra bi-
modules on CL with the action of H2 dimM

Z (M×M) on HdimM
L (M) (Proposition 6.16).

There is particularly nice collection of algebraic Harish-Chandra bimodules which
appear naturally from changing the period of the quantization. Let Aλ be the section
ring of the quantization with period λ ∈ H2(M;C). Derived tensor products with
these special bimodules give derived equivalences between the derived categories of
modules over Aλ for various different λ. These equivalences are far from being unique;
instead, they induce a large group of autoequivalences of D(Aλ -mod) for each fixed
λ, called twisting functors. There is a hyperplane arrangement in H2(M;R) whose
chambers are the Mori chambers of M; let E ⊂ H2(M;C) be the complement of the
complexification of this arrangement. The NamikawaWeyl groupW acts onH2(M;C)

preserving E.

Theorem D. — There is a weak action of π1(E/W, [λ]) on D(Aλ -mod) by twisting
functors (Theorem 6.35); this action preserves the subcategory D(CL0) (Remark 6.37).
The subgroup π1(E, λ) preserves the characteristic cycle of a module, thus W ∼=
π1(E/W, [λ])/π1(E, λ) acts on HdimM

L (M) (Proposition 6.39). This action agrees
with the action induced by the natural map from C[W ] to the convolution algebra
(Remark 6.40).

In the case where M is the Springer resolution for G, the space E is the com-
plement of the complexified Coxeter arrangement, W is the classical Weyl group,
and π1(E/W ) is the generalized braid group. If L ⊂ M is taken to be the conormal
variety to the Schubert stratification and the period of the quantization is regular,
then CL0 is equivalent to a regular block of category O (Example 6.12). In this case,
the action of the generalized braid group coincides with Arkhipov’s twisting action
(Proposition 6.38), which categorifies the regular representation of W .

Acknowledgments: The authors would like to thank Roman Bezrukavnikov, Dmitry
Kaledin, Ivan Losev, and especially Anthony Licata for useful conversations. Addi-
tional thanks are due to Kevin McGerty and Thomas Nevins for bringing their work
to the authors’ attention. We are very grateful to the anonymous referee for many
insightful comments and suggestions. Finally, the authors are grateful to the Math-
ematisches Forschungsinstitut Oberwolfach for its hospitality and excellent working
conditions during the initial stages of work on this paper.
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6 T. BRADEN, N. PROUDFOOT & B. WEBSTER

2. Conical symplectic resolutions

Let M be a smooth, symplectic, complex algebraic variety. By this we mean that
M is equipped with a closed, nondegenerate, algebraic 2-form ω. Suppose further
that M is equipped with an action of the multiplicative group S := C× such that
s∗ω = snω for some integer n ≥ 1. We also assume that S acts on the coordinate ring
C[M] with only non-negative weights, and that the trivial weight space C[M]S is 1-
dimensional, consisting only of the constant functions. Geometrically, this means that
the affinizationM0 := SpecC[M] is a cone, and the S-action contractsM0 to the cone
point o ∈M0. Finally, we assume that the canonical map ν : M→M0 is a projective
resolution of singularities. (That is, it must be projective and an isomorphism over the
smooth locus of M0.) We will refer to this collection of data as a conical symplectic
resolution of weight n.

Examples of conical symplectic resolutions include the following:
– M is a crepant resolution ofM0 = C2/Γ, where Γ is a finite subgroup of SL(2;C).

The action of S is induced by the inverse of the diagonal action on C2, and n = 2.
– M is the Hilbert scheme of a fixed number of points on the crepant resolution

of C2/Γ, and M0 is the symmetric variety of unordered collections of points on
the singular space. Once again, S acts by the inverse diagonal action on C2, and
n = 2.

– M = T ∗(G/P ) for a reductive algebraic group G and a parabolic subgroup P ,
andM0 is the affinization of this variety. (IfG = SL(r;C), thenM0 is isomorphic
to the closure of a nilpotent orbit in the Lie algebra of G.) The action of S is
the inverse scaling action on the cotangent fibers, and n = 1.

– M is a hypertoric variety associated to a simple, unimodular, hyperplane ar-
rangement in a rational vector space [14, 59], and M0 is the hypertoric vari-
ety associated to the centralization of this arrangement. If the arrangement is
coloop-free, then it possible to define an S-action with n = 1 [30]; it is always
possible to define an action with n = 2 [11, 16].

– M and M0 are Nakajima quiver varieties [49, 50]. If the quiver is acyclic, then
there is a natural action with n = 1 [49, §5]; it is always possible to define an
action with n = 2 [51, §2.7].

– M0 is a transverse slice to one Schubert variety Grµ in an affine Grassmannian
inside another Grλ. When λ is a sum of minuscule coweights, this variety has
a natural conical symplectic resolution constructed from a convolution variety;
in most other cases, it seems to possess no such resolution. This example is
discussed in greater generality in [39].

Remark 2.1. — The fifth class of examples overlaps significantly with each of the first
four. The first two examples are special cases of quiver varieties, where the underlying
graph of the quiver is the extended Dynkin diagram corresponding to Γ. When the
group G of the third example is SL(r;C), then T ∗(G/P ) is a quiver variety. Finally,
a hypertoric variety associated to a cographical arrangement is a quiver variety.
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QUANTIZATIONS OF CONICAL SYMPLECTIC RESOLUTIONS I 7

Example 2.2. — Almost all of the examples above arise as symplectic quotients of
vector spaces. This applies to the first, second, fourth, and fifth classes of examples, as
well as the third class when G = SL(r;C). More precisely, let G be a reductive algebraic
group and V a faithful linear representation of G. Then G acts on the cotangent bundle
T ∗V ∼= V × V ∗ with moment map

µ : V × V ∗ → g∗

given by the formula µ(z, w)(x) := w(x ·z) for all x ∈ g, z ∈ V , and w ∈ V ∗. Choose a
character θ of G, and let M be the associated GIT quotient of µ−1(0). If G acts freely
on the semistable locus of T ∗V , then M is symplectic and smooth. Its affinization
M0 is a normal affine variety, and the map ν : M→M0 is automatically projective;
if it is furthermore birational, then it is a symplectic resolution of singularities. We
also have a natural map from M0 to the the categorical quotient of µ−1(0) with no
stability condition imposed, which is not always an isomorphism, but will be in many
interesting cases. The variety M inherits a conical action of S of weight 2 from the
inverse scaling action on V × V ∗. If V has no G-invariant functions, then we may
take S to act only on V ∗ and obtain a conical action of weight 1.

Remark 2.3. — All of these examples admit complete hyperkähler metrics, and in fact
we know of no examples that do not admit complete hyperkähler metrics. (Such exam-
ples do exist if we drop the hypothesis that M is projective over M0; these examples
will appear in subsequent work by the second author and Arbo.) The unit circle in S
acts by hyperkähler isometries, but is Hamiltonian only with respect to the real sym-
plectic form. Our assumptions about the S-weights of C[M] translate to the statement
that the real moment map for the circle action is proper and bounded below.

Proposition 2.4. — For all i > 0, Hi(M;SM) = 0, where S is the structure sheaf (1)

of M.

Proof. — This follows from the Grauert-Riemenschneider theorem; see, for example,
[37, 2.1].

Proposition 2.5. — All odd cohomology groups of M vanish, and for all non-negative
integers p we have H2p(M;C) = Hp,p(M;C). In particular, the class of the symplectic
form, which lies in H2,0(M;C), is trivial.

Proof. — The analogous result with M replaced by a fiber of ν is proven in [36,
1.9], thus it suffices to prove that ν−1(0) is homotopy equivalent to M. To see this,
let Φ: M0 → R be a real algebraic function which takes non-negative values and which
is S-equivariant for an action of the form z · t = |z|k · t of S on R, where k is some
positive integer. Such a function can be found of the form Φ =

∑r
i=1 |fi|di , where fi

are homogeneous generators of C[M], with the grading induced by the action of S.

(1) Throughout this paper we will use the symbol S for the structure sheaf of a variety. We avoid the
usual symbol O because this symbol will needed for the analogue of BGG category O in the sequel
to this paper [17].

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2016



8 T. BRADEN, N. PROUDFOOT & B. WEBSTER

The argument from [24, 1.6] shows that the inclusions ν−1(0) ↪→ (Φ ◦ ν)−1[0, t] ↪→M
induce isomorphisms of homotopy groups, and so are homotopy equivalences.

Remark 2.6. — The subvariety ν−1(0) ⊂M is often called the core or compact core,
see for example [5, §4] or [58, §2.2]. If M is the cotangent bundle of a projective
variety X, then the core of M is simply the zero section. If M is a crepant resolution
of C2/Γ, then the core of M is a union of projective lines in the shape of the Dynkin
diagram for Γ. IfM is the Hilbert scheme of points on such a resolution, then the core
of M consists of configurations supported on the core of the resolution. If M is the
hypertoric variety associated to a real hyperplane arrangement, then the core of M is
a union of toric varieties corresponding to the bounded chambers of the arrangement
[14, 6.5].

2.1. Deformations. — We next collect some results of Namikawa and Kaledin on
deformations of conical symplectic resolutions. The following proposition is due to
Namikawa (see Lemma 12, Proposition 13, and Lemma 22 of [52]).

Proposition 2.7 (Namikawa). — The variety M has a universal Poisson deformation
π : M → H2(M;C) which is flat. The variety M admits an action of S extending the
action on M ∼= π−1(0), and π is S-equivariant with respect to the weight −n action
on H2(M;C).

Remark 2.8. — A formal version of this result appears in the work of Kaledin and
Verbitsky [38]; the work of Kaledin on twistor families contains a very similar result,
but not quite in the form we need.

Example 2.9. — Suppose thatM arises from the quotient construction of Example 2.2.
Let χ(g) denote the vector space of characters g→ C, and consider the Kirwan map
K : χ(g)→ H2(M;C) that takes an integral character to the Euler class of the induced
line bundle on M. If the Kirwan map is an isomorphism (this is known when M is
a hypertoric variety, and conjectured in all cases), then M is isomorphic to the GIT
quotient of µ−1((g∗)G), with the map to H2(M;C) ∼= χ(g) ∼= (g∗)G given by µ.

Given any class η ∈ H2(M;C), let Mη := M ×H2(M;C) A1, where A1 maps
to H2(M;C) via the linear map that takes 1 to η. Of particular interest is the case
where η is the Euler class of a line bundle L on M. In this case, the following result
follows from the work of Kaledin [34, 1.4-1.6].

Proposition 2.10 (Kaledin). — There exists a unique S-equivariant Poisson line bundle
L on Mη extending the bundle L onM such that the Poisson action of the coordinate
function t ∈ C[A1] on the space of sections of L is the identity.

Remark 2.11. — Kaledin refers to the pair (Mη,L ) as a twistor family. The second
half of the proposition can be stated more geometrically as the condition that the
complement L × of the zero section in the total space of L (the relative spectrum of
the algebra sheaf

⊕
m∈Z Lm) carries a symplectic structure coinducing the Poisson
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QUANTIZATIONS OF CONICAL SYMPLECTIC RESOLUTIONS I 9

structure on Mη such that the Hamiltonian vector field {t,−} is the infinitesimal
rotation of the fibers. In particular, M is the symplectic reduction of L × by this
Hamiltonian vector field.

Kaledin also tells us that Mη is symplectic over A1, and he computes the class of
the relative symplectic form as follows [34, 1.7].

Proposition 2.12 (Kaledin). — The Poisson structure on Mη is nondegenerate
over A1, and the relative symplectic form ωMη ∈ Ω2(Mη/A1) satisfies

[ωMη ] = tη ∈ H2
DR(Mη/A1) ∼= H2(M;C)[t].

Remark 2.13. — Proposition 2.12 may be easily extended to say that M has a non-
degenerate Poisson structure over H2(M;C) with relative symplectic form

[ωM ] = I ∈ H2
DR(M /H2(M;C)),

where we identify the latter cohomology group with the space of polynomial maps from
H2(M;C) to itself, and I is the identity map.

Note that the S-action may be used to identify all of the nonzero fibers ofMη with
a single symplectic variety Mη(∞) := (Mη rM) / S. The following result of Kaledin
[35, 2.5] will be crucial to our proof of Proposition 5.16.

Proposition 2.14 (Kaledin). — If L is ample, then Mη(∞) is affine.

2.2. The Weyl group. — Next, we put some results of Namikawa [53] into a form which
is convenient for our purposes. Let {Σj} be the codimension 2 connected components
of the smooth part of the singular locus of M0. At any point σj ∈ Σj , there exists
a normal slice to Σj at σj which is isomorphic to a Kleinian singularity, thus the
preimage ν−1(σj) ⊂ M is a union of projective lines in the shape of a simply-laced
finite-type Dynkin diagram Dj . The monodromy representation of the fundamental
group π1(Σj) defines an action on Dj by diagram automorphisms. Let Wj be the
centralizer of π1(Σj) in the Coxeter group associated to Dj , and let W :=

∏
Wj .

We will call W the Weyl group of M (see Remark 2.15 for motivation). Namikawa
constructs an action of W on H2(M;R); he proves that the natural restriction map

(1) H2(M;R)→
⊕
j

H2
(
ν−1(σj);R

)π1(Σj)

is W -equivariant and that W acts trivially on the kernel [53, 1.1]. (2)

Remark 2.15. — Let G be the reductive algebraic group associated to a simply-laced
finite-type Dynkin diagram D, and let B be a Borel subgroup. If M = T ∗(G/B), then
M0 is isomorphic to the nilpotent cone in g := Lie(G). The singular locus of M0 is
irreducible, and its smooth locus is called the subregular nilpotent orbit. The normal

(2) This statement is equivalent to Namikawa’s statement that the map ι, which he defines in the
proof of his theorem, is an isomorphism.
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10 T. BRADEN, N. PROUDFOOT & B. WEBSTER

slice to the subregular orbit is isomorphic to the Kleinian singularity associated to D
and W is isomorphic to the Weyl group of G. The action of W on H2(M;C) is
isomorphic to the action on the dual of a Cartan subalgebra of g and the restriction
map (1) is an isomorphism.

Let N := SpecC[M ]. (3) Then the map π : M → H2(M;C) factors canonically
through N . Namikawa [54, 53, 55] proves that the action of W on H2(M;C) lifts to
a symplectic action on N , and that the quotient map N /W → H2(M;C)/W is the
universal Poisson deformation of the central fiber M0.

Remark 2.16. — The quotient H2(M;C)/W is itself a vector space, which may be
identified by a theorem of Namikawa [53, 1.1] with the Poisson cohomology group
HP 2(M0;C) as defined in [52, §2].

2.3. Birational geometry. — Let P := Pic(M) be the Picard group of M. Proposi-
tion 2.5 tells us that

PR := P ⊗Z R ∼= H2(M;R);

in particular, P has finite rank. A class η ∈ P is called movable if the associated line
bundle is globally generated away from a codimension 2 subvariety of M. Let Mov ⊂
PR be the movable cone (the convex hull of the images of movable classes), and let Mov

be its closure.

Proposition 2.17. — The cone Mov ⊂ PR is a fundamental domain for W .

Proof. — Consider the restriction map (1). Since W acts trivially on the kernel,
any fundamental domain for the action on the target pulls back to a fundamental
domain for the action on the source. The spaceH2

(
ν−1(σj);R

)π1(Σj) may be identified
Wj-equivariantly with the real part of the dual of the Cartan subalgebra of the Lie
algebra determined by the Dynkin diagram Dj . The standard fundamental domain is
the positive Weyl chamber, which may be characterized as the set of classes that are
non-negative on the fundamental classes of the components of ν−1(σi).

We have thus reduced the proposition to showing that a class η ∈ P is movable if
and only if η ·E ≥ 0 for every curve E ⊂M such that E is a component of ν−1(σj) for
some j. Suppose first that η ·E < 0 for some such curve E. Since E ∼= P1, this implies
that every section of the line bundle associated to η vanishes on E, and therefore
on the component of ν−1(Σj) containing E. Since this component has codimension 1
inM, η cannot be movable. On the other hand, suppose that η ·E ≥ 0 for every such
curve. This implies that the associated line bundle is globally generated over ν−1(Σj)

for every j. It is obviously globally generated over the preimage of the smooth locus
of M0, since M0 is affine. It is therefore globally generated over an open set whose
complement has codimension 2, thus η is movable.

(3) It would be natural to use the notation M0 rather than N , but unfortunately that notation has
already been used in the previous section to mean something else.
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We will wish to consider not just a single conical symplectic resolution, but rather
a collection of varieties M1, . . . ,M`, all conical symplectic resolution of the same
cone M0; for any two of these, there is a birational map fij : Mi 99K Mj , given by
composing the resolution of M0 by Mi with the inverse of the resolution by Mj .

Proposition 2.18. — EachMi contains an open subvariety Ui with codim(Mi \ Ui) ≥ 2

such that fij induces an isomorphism Ui ∼= Uj for all j, and thus a canonical isomor-
phism between Picard groups of the different resolutions.

Proof. — Since the spaces in question are symplectic and therefore Calabi-Yau, there
exist open subsets U ji ⊂Mi and U ij ⊂Mj with complements of codimension ≥ 2 such
that fij induces an isomorphism from U ji to U ij ; see, for example [44, 4.2]. Briefly,
one can take any resolution Q → M0 (no longer symplectic!) which factors through
Mi andMj and pull out all irreducible components of the canonical divisor of Q; the
remainder of Q maps isomorphically to subsets of Mi and Mj with complements of
codimension ≥ 2; there is a canonical largest such set, so we can take U ji to be that
one. We then let Ui :=

⋂`
j=1 U

j
i .

Note that any class η ∈ P which is movable forMi is also movable forMj , thus we
have a well-defined movable cone Mov ⊂ PR. The following result of Namikawa [55]
can be roughly summarized by the statement that M is a relative Mori dream space
over M0 [2, 2.4].

Theorem 2.19 (Namikawa). — There are finitely many isomorphism classes of coni-
cal symplectic resolutions of M0. Furthermore, there exists a finite collection H of
hyperplanes in PR, preserved by the action of W , with the following properties:

– For each conical symplectic resolution M, the ample cone of M is a chamber
of H (and different resolutions have different ample cones).

– The union of the closures of these ample cones is equal to Mov.
– The union

⋃
H∈ H HC ⊂ PC ∼= H2(M;C) is precisely equal to the locus over

which the map M → N fails to be an isomorphism. Equivalently, it is the locus
over which the fibers are not affine.

Remark 2.20. — Note that, by Proposition 2.17 and Theorem 2.19, the chambers of H
are in bijection with the set of pairs (M, w), whereM is a conical symplectic resolution
of M0 and w is an element of W . This bijection sends the pair (M, w) to the w
translate of the ample cone of M.

Remark 2.21. — If M is a quotient as in Example 2.2 and the Kirwan map of Ex-
ample 2.9 is an isomorphism in degree 2, then the chambers of H are exactly the top
dimensional cones in the GIT fan in χ(G)R ∼= PR.
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3. Quantizations

Throughout the remainder of the paper, we will always use S to denote a scheme
of finite type over C and X to denote a smooth finite type S-scheme, projective
over an affine scheme (4) X0, equipped with a symplectic form ωX ∈ Ω2(X/S). After
Section 3.1, we will also assume throughout that X and S carry compatible actions
of S such that:

– The function algebra C[X] has no elements of negative S-weight.
– The symplectic form satisfies s∗ωX = snωX for some positive integer n. Equiva-

lently, the induced Poisson bracket {−,−} on SX is homogeneous of weight −n.
– We have H1(X;SX)S ∼= H2(X;SX)S = 0.
The cases that will be of primary interest to us arise in connection with a conical

symplectic resolution M:
– X =M and S is a point
– X = Mη and S = A1

– X = M and S = H2(M;C).
Here Mη is the twistor deformation and M is the universal deformation, as in Sec-
tion 2.1. We’ll use these notations consistently throughout the paper. Each of these
examples satisfies our assumptions for X; the only assumption which needs expla-
nation is the cohomology vanishing, which holds for all three as a consequence of
Grauert-Riemenschneider.

3.1. The period map. — A quantization of X consists of
– sheaf Q of flat π−1SS [[h]]-algebras on X, complete in the h-adic topology
– an isomorphism from Q/h Q to the structure sheaf SX of X

satisfying the condition that, if f and g are functions over some open set and f̃ and g̃
are lifts to Q, the image in SX ∼= Q/h Q ∼= h Q/h2 Q of the element [f̃ , g̃] ∈ h Q is equal
to the Poisson bracket {f, g}. Note that while we have assumed that X is smooth
over S and that the base field is C, the notion of a quantization makes sense for any
Poisson variety.

If H1(X;SX) ∼= H2(X;SX) = 0 then, Bezrukavnikov and Kaledin [13, 1.8] show
that the set of quantizations of X is in natural bijection via the period map with the
vector space (5)

[ωX] + h ·H2
DR(X/S;C)[[h]].

More concretely, by Propositions 2.5 and 2.12 and Remark 2.13,
– the period map for M takes values in h ·H2(M;C)[[h]]

– the period map for Mη takes values in tη + h ·H2(M;C)[t][[h]]

– the period map for M takes values in I + h ·
(
H2(M;C)⊗ C[H2(M;C)]

)
[[h]].

(4) In [34], Kaledin uses the terminology “algebraically convex,” but in other papers this term allows
the map to only be proper; we emphasize that projectivity is essential.
(5) Following the conventions of [13], we will mean here the h-adic completion ofH2

DR(X/S;C)⊗C[[h]].
This applies whenever we use the notation V [[h]] for some vector space V .
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The (unique) quantization with period [ωX] is called the canonical quantization of X.
Let Q be a quantization of Mη. There is an obvious way to recover a quantization

of M from Q: if we divide by the ideal sheaf of π−1(0), we obtain a sheaf supported
on π−1(0) ∼=M, and this sheaf is clearly a quantization. However, this is not the only
quotient of Q which is supported on π−1(0). Fix an element P (h) ∈ h · C[[h]]. The
map from C[t] to C[[h]] taking t to P (h) induces a map from ∆ := SpecC[[h]] to A1

sending the closed point to 0, and therefore a section σP of the projection A1×∆→ ∆

which sends the closed point of ∆ to 0. Dividing Q by the ideal sheaf in SA1 [[h]] of the
image of σP also gives a quantization ofM. Following Bezrukavnikov and Kaledin, we
denote this quantization by σ∗PQ. Note that the first construction in this paragraph
corresponds to the choice P = 0.

More generally, for any quantization Q of X/S, let σ : ∆→ ∆× S be any section
of the projection ∆× S → ∆. If ∗ is the unique closed point of ∆ and σ(∗) = (∗, s),
then we may define σ∗Q to be the quotient of Q by the ideal sheaf of this section,
thought of as a sheaf on π−1(s).

Let QR be the quantization of X with period given by R(h) ∈ H2
DR(X/S;C)[[h]].

If X = Mη, we can think of this as a two variable function R(t, h) ∈ tη + h ·
H2(M;C)[t][[h]]. The following proposition is an easy modification of [13, 6.4]; it
follows immediately from the naturality of periods under pullback.

Proposition 3.1 (Bezrukavnikov and Kaledin). — The period of the quantization
σ∗QR is σ∗R(h) ∈ H2(π−1(s);C)[[h]]. In particular, if X = Mη and S = A1, then
σ∗PQR has period R(P (h), h) ∈ h ·H2(M;C)[[h]].

Let us collect one more fact about quantizations which will be important for us. If
Q is a quantization of X/S, we let Qop be the opposite algebra of Q, thought of as a
C[[h]]-algebra with the action twisted by the automorphism h 7→ −h; this convention
is necessary to assure that Qop again quantizes the same Poisson structure.

Proposition 3.2. — If P (h) ∈ [ωX] + h ·H2
DR(X/S;C)[[h]] is the period of Q, then the

period of Qop is P (−h).

Proof. — A proof of this fact is given in the proof of [45, 2.3.2], but the result is not
stated as a theorem. As defined in [13, 4.1], the period map is the localization of a uni-
versal class c ∈ H2((AutD,DerD), hC[[h]]) in the cohomology of the Harish-Chandra
pair (AutD,DerD), where D is the Weyl algebra. The existence of a particular anti-
automorphism sending h 7→ −h and c(h) 7→ c(−h) given in [45] shows that the period
transforms the same way.

Remark 3.3. — In this remark, contrary to our usage elsewhere, we will not assume a
priori that the symbolsM and X denote smooth varieties. Not every symplectic variety
(in the sense of Beauville [7]) admits a symplectic resolution; for example, closures
of non-Richardson nilpotent orbits do not [26]. On the other hand, every symplectic
variety has a crepant partial resolution M which is terminal and Q-factorial; this
is again a symplectic variety, since it is dominated by some resolution of M0. The
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fact that this variety is Q-factorial means that it cannot be resolved further without
introducing discrepancy: a crepant partial resolution ofM would have to be isomorphic
to M in codimension 1 so their group of Weil divisors would be the same; thus an
ample line bundle on the resolution would have to correspond to a Weil divisor on M,
some power of which is a Cartier divisor, showing that the resolution is in fact M.

While the theory of periods we have discussed thus far cannot be directly applied
to M, it can be applied to the smooth locus M̊. More generally, let X/S be a convex
symplectic (not necessarily smooth) variety with terminal singularities [52, §1], and X̊
its smooth locus. As noted by Namikawa in the proof of [52, Lemma 12], H1(X̊;SX̊) =

H2(X̊;SX̊) = 0, so X̊ satisfies our running assumptions. By [13, 1.8], the quantizations
of X̊ are in bijection with [ωX] + h ·H2

DR(X̊/S;C)[[h]]. Let i : X̊→ X be the inclusion
map.

Proposition 3.4. — If Q̊ is a quantization of X̊, then i∗ Q̊ is a quantization of X. If Q
is a quantization of X, then i−1 Q is a quantization of X̊. These two operations induce
inverse bijections between isomorphism classes of quantizations of X̊ and X.

Proof. — The fact that i∗ Q̊ is a quantization follows from normality of symplectic
varieties; the fact that i−1 Q is a quantization is trivial, as is the isomorphism i−1i∗ Q̊ ∼=
Q̊. In the other direction, the natural map i∗i

−1 Q → Q is an isomorphism mod h,
and thus is an isomorphism by Nakayama’s lemma.

In most sections of this paper (with the exception of Section 6.2), we could allow
our conical symplectic resolutions to be terminal and Q-factorial rather than smooth.
For ease of exposition, however, we will continue to assume smoothness.

3.2. S-structures. — From this point forward, we will assume that X and S carry
compatible actions of S such that:

– The function algebra C[X] has no elements of negative S-weight.
– The symplectic form satisfies s∗ωX = snωX for some positive integer n. Equiv-

alently, the induced Poisson bracket {−,−} on SX is homogeneous of weight
−n.

– We have H1(X;SX)S ∼= H2(X;SX)S = 0.
In this section we define the notion of an S-structure on a quantization of X/S, and
we consider the question of which quantizations carry S-structures.

Let a : S× X→ X be the action map, let p : S× X→ X be the projection onto X,
and let e : S×X→ S be the projection onto S. If Q is a quantization of (X, ωX), then
the naive pullback a∗ Q := a−1 Q ⊗C[[h]] e

−1SS[[h]] is a quantization of X × S over S
with the relative symplectic form a∗ωX = znp∗ωX, where z is the coordinate function
on S. Since forms are contravariant and bivectors covariant, the corresponding Poisson
brackets are related by {−,−}a = z−n{−,−}p. As long as the Poisson bracket on X
is nontrivial, the sheaves a∗ Q and p∗ Q are quantizations of different Poisson brackets
on X× S, thus they are never isomorphic.
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This difference between the two Poisson brackets can be resolved by twisting the
action of h. More precisely, let a∗tw Q := a−1 Q ⊗C[[h]] e

−1SS[[h]], where this time the
action of C[[h]] on e−1SS[[h]] is given by sending h to znh. Put differently, a∗tw Q
and a∗ Q are isomorphic as sheaves of vector spaces, but the endomorphism given by
multiplication by h in a∗tw Q corresponds to the endomorphism given by multiplication
by z−nh in a∗ Q. Then a∗tw Q is a quantization of the Poisson bracket zn{−,−}a =

{−,−}p, that is, corresponding to the relative symplectic form p∗ωX.
An S-structure on Q is an isomorphism a∗tw Q ∼= p∗ Q as (idS×π)−1SS×S [[h]]-alge-

bras, satisfying the natural cocycle condition. That is, the above isomorphism induces
an isomorphism s∗ Q ∼= Q for every s ∈ S, and we require that for any three elements
of S with s · s′ · s′′ = 1, the composition of the three isomorphisms is the identity. In
[45], this is called a “grading” on the quantization. We will often refer to a quantization
endowed with an S-structure as an S-equivariant quantization.

As a general principle, quantizations have S-structures whenever their period does
not obstruct this possibility. More precisely, Losev [45, 2.3.3] proves the following
result. (6)

Proposition 3.5 (Losev). — A quantization of X admits an S-structure if and only if
its period lies in the vector space [ωX]+h·H2

DR(X/S;C) ⊂ [ωX]+h·H2
DR(X/S;C)[[h]],

in which case its S-structure is unique.

As noted in [13, §6.1], as long as we have the assumptions H1(X;SX)S =

H2(X;SX)S = 0, the variety X is S-equivariantly admissible. Even if there are vectors
of non-zero weight in H1(X;SX) or H2(X;SX), we can still apply the theory of [13]
to S-equivariant quantizations; in particular, every period in [ωX] + h ·H2

DR(X/S;C)

has a corresponding unique S-equivariant quantization.

3.3. The section ring. — Let Q be an S-equivariant quantization of X. Define

D(0) := Q[h
1/n], D := Q[h

−1/n], and D(m) := h
−m/n D(0) ⊂ D for all m ∈ Z.

We will frequently abuse notation by referring to D as a quantization of X.
Let A := ΓS( D) be the ring of S-invariant sections of D. This ring inherits a

Z-filtration
· · · ⊂ A(−1) ⊂ A(0) ⊂ A(1) ⊂ · · · ⊂ A

given by putting
A(m) := ΓS

(
D(m)

)
.

The associated graded of A may be canonically identified with C[X] as a Z-graded
ring via the maps

A(m) = ΓS
(
D(m)

) ·hm/n−→ Γ
(
D(0)

)
� Γ

(
D(0)/D(−1)

) ∼= Γ(SX) = C[X].

(6) Losev assumes that n = 2, but his proof works for arbitrary n.
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Many of the examples of conical symplectic resolutions we gave at the beginning
of Section 2 admit quantizations for which the ring A is of independent interest. (In
all of these examples S is a point.)

– Let Γ ⊂ SL2(C) be a finite subgroup. Any quantization of the Hilbert scheme
of m points on a crepant resolution of C2/Γ has its invariant section ring A
isomorphic to a spherical symplectic reflection algebra for the wreath product
Sm o Γ, with parameters corresponding to the period of the quantization [25,
1.4.4], [28, 1.4].

– Let G be a reductive Lie group and B ⊂ G a Borel subgroup. Then each
quantization of T ∗(G/B) has its invariant section ring A isomorphic to a central
quotient of the universal enveloping algebra U(g). All central quotients arise this
way, and two quantizations give the same central quotient if their periods are
related by the action of the Weyl group [9, Lemma 3].

– Any quantization of a resolution of a Slodowy slice to a nilpotent orbit in g has
its invariant section ring A isomorphic to a central quotient of a finite W-algebra.
Again, all central quotients arise this way, and two quantizations give the same
central quotient if their periods are related by the action of the Weyl group [57,
6.4].

– Any quantization of a hypertoric variety has its invariant section ring A isomor-
phic to a central quotient of the hypertoric enveloping algebra. Once more, all
central quotients arise this way, and two quantizations give isomorphic central
quotients if their periods are related by the action of the Weyl group [11, §5],
[16, 5.9].

– In [39], it is conjectured that the algebra arising from the slices in the affine
Grassmannian can be described as a quotient of a shifted Yangian, a variant of
the usual Yangian of Drinfeld.

Consider the universal Poisson deformation π : M → H2(M;C) of M. Let D be
the canonical quantization of M , and let A := ΓS(D) be its invariant section algebra.
The π−1SH2(M;C)-structure on D induces a map

c : C[H2(M;C)]→ Γ(M ; D)

which is S-equivariant for the weight n action on C[H2(M;C)]. In particular, if x ∈
H2(M;C)∗ is a linear function on H2(M;C), we have that h−1c(x) ∈ A .

Let λ ∈ H2(M;C) be the period of D. By Proposition 3.1, D = σ∗hλD , and this
induces a restriction map from A to A.

Proposition 3.6. — The map from A to A is surjective with kernel generated
by h−1c(x)− λ(x) for all x ∈ H2(M;C)∗.

Proof. — Let Cλ be the evaluation module at λ of C[H2(M;C)]. The sheaf D can be
rewritten as the cohomology of the tensor product of D with the Koszul resolution
of Cλ. Thus, the sheaf cohomology of D is the hypercohomology of this complex.
Filtering this complex by degrees in the Koszul resolution, we obtain the spectral
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sequence
ToriC[H2(M;C)](H

j(D)S,Cλ)⇒ Hj−i( D)S

converging to the cohomology of D. Since D has trivial higher cohomology, this spec-
tral sequence collapses immediately, and we obtain the desired isomorphism.

Lemma 3.7. — Let X be a smooth symplectic variety over a smooth base S.
Let i : U ↪→ X be an open inclusion, and let d be the codimension of the comple-
ment of U .

– If d ≥ 2, then for any quantization Q of X, the restriction i∗ Q to U is a quan-
tization of U with Γ(U ; i∗ Q) ∼= Γ(X; Q).

– If d ≥ 3, then for any quantization Q′ of U , the pushforward i∗ Q
′ is a quanti-

zation of X with Γ(U ; Q′) ∼= Γ(X; i∗ Q
′).

Proof. — Let j : X \U → X be the inclusion. As usual for complementary closed and
open embeddings, we have an exact triangle j∗j!SX → SX → i∗i

∗SX → j∗j
!SX[1].

The induced long exact sequence takes the form of a short exact sequence

0→ SX → i∗SU → j∗R1j!SX → 0

along with isomorphisms Rki∗SU ∼= j∗Rk+1j!(SX) for all k > 0. The local cohomology
sheaf Rkj!SX vanishes for all k < d, so we may conclude that i∗SU ∼= SX if d ≥ 2,
and R1i∗SU = 0 if d ≥ 3.

Assume that d ≥ 2, and consider a quantization Q on X. It is clear that i∗ Q is a
quantization of U , so we need only show that the sections are unchanged. For each
m ≥ 0, the natural map Q/hm Q → i∗i

∗( Q/hm Q) is an isomorphism; this follows from
induction and the five-lemma applied to the diagram:

h Q/hm Q Q/hm Q SX

i∗i
∗(h Q/hm Q) i∗i

∗( Q/hm Q) i∗i
∗(SX).

Since U is open, i∗i∗ commutes with projective limits, so we have an isomorphism
i∗i
∗ Q ∼= Q. The isomorphism of sections of Q and i∗ Q now follows by the functoriality

of push-forward.
Now assume that d ≥ 3, and let Q′ be a quantization on U . The flatness of i∗ Q

′ is
automatic, so we need only show that i∗ Q

′/i∗(h Q′) ∼= SX. The short exact sequence

h Q′/hm Q′ → Q′/hm Q′ → SU
similarly shows inductively that R1i∗( Q′/hm Q′) = 0 for all m. An argument as in [42,
2.12], using the Mittag-Leffler condition, shows that thus R1i∗ Q

′ = 0.
Consider the long exact sequence

0→ i∗(h Q′)→ i∗ Q
′ → SX → R1i∗(h Q′)→ · · · .
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Since R1i∗(h Q′) ∼= R1i∗ Q
′ = 0, we get an isomorphism i∗ Q

′/i∗(h Q′) ∼= SX, and so
the C[[h]]-module i∗ Q

′ is a quantization.

Now we turn to the case of a conical symplectic resolutionM. In this case, the ring
A depends only on the cone M0, and not on the choice of resolution.

More precisely, let M and M′ be two conical symplectic resolutions of the same
affine cone. By Proposition 2.18, the groups H2(M;C) and H2(M′;C) are canonically
isomorphic. Let D and D′ be quantizations of M and M′ with the same period, and
D and D ′ the corresponding quantizations of the universal quantizations M and M ′.

Proposition 3.8. — There is a canonical isomorphism between the section rings A :=

ΓS(M ; D) and A ′ := ΓS(M ′; D ′).

Proof. — We have a canonical rational map M 99KM ′. This induces an isomorphism
between the fiber over a generic point in H2(M;C) ∼= H2(M′;C), and gives a pair of
crepant resolutions of each fiber. Thus, applying Proposition 2.18 to each fiber, we
find that the exceptional locus of this map is codimension 2 in each fiber. Combining
this with the fact that the generic fiber avoids the exceptional locus, we see that it
has codimension 3. Let U ⊂M , U ′ ⊂M ′ be the complements to the exceptional loci,
so that M 99KM ′ induces an isomorphism U ∼= U ′.

Let i : U → M and i′ : U ′ → M ′ be the inclusions of these sets. By Lemma 3.7,
D ′′ := i′∗i

∗D is a quantization of M ′ with section ring

ΓS(M ′; D ′′) ∼= ΓS(U ; D) ∼= ΓS(M ; i∗D) ∼= A .

Since (i′)∗D ′′ ∼= i∗D and (i′)∗D ′ have the same period (by definition), the quantiza-
tions D ′ and D ′′ must also have the same period and thus are isomorphic. Thus, we
have that A ∼= ΓS(M ′; D ′′) ∼= ΓS(M ′; D ′) ∼= A ′.

Propositions 3.6 and 3.8 have the following corollary.

Corollary 3.9. — There is a canonical isomorphism between the section rings A :=

ΓS(M; D) and A′ := ΓS(M′; D′).

We may now use Proposition 3.6 to show that the ring A does not change when the
period of D changes by an element of the Weyl group; this unifies the isomorphisms
mentioned in three of the four examples above. For any λ ∈ H2(M;C), let Aλ be the
invariant section algebra of the quantization with period λ.

Proposition 3.10. — For any λ ∈ H2(M;C) and w ∈ W , we have an isomorphism
Aλ ∼= Aw·λ. Furthermore, these isomorphisms may be chosen to be compatible with
multiplication in the Weyl group.

Proof. — As in Section 2.1, let N := SpecC[M ] be the affinization of the universal
deformation of M, and let M̊ ⊂ M be the locus on which the map to N is a local
isomorphism. Since this map is a crepant resolution of singularities, it induces an
isomorphism from M̊ to the smooth locus of N . Thus, M̊ inherits a W -action from
N and the canonical quantization D of M restricted to M̊ is also W -equivariant.

ASTÉRISQUE 384



QUANTIZATIONS OF CONICAL SYMPLECTIC RESOLUTIONS I 19

Note that A := ΓS(M ; D) is isomorphic to ΓS(M̊ ; D) by Lemma 3.7, since the
codimension of the complement of M̊ is at least 2. Thus A carries a naturalW -action.
The proposition now follows from Proposition 3.6 and theW -equivariance of h−1c.

3.4. Quantum Hamiltonian reduction. — Let Q be a S-equivariant quantization of X.
Let G be a connected reductive algebraic group over C, and assume that X is equipped
with a G-action commuting with the action of S. We will assume that the action of G
is Hamiltonian with moment map µ : X → g∗, and that µ is S-equivariant with
respect to the weight n scalar action on g∗. A Hamiltonian G-action on the pair
(X, Q) consists of

– an action of G on X as above
– a G-equivariant structure on Q so that the algebra map Q → SX is equivariant
– a G-equivariant filtered (7) C[S]-algebra homomorphism
η : U(g)→ ΓS( Q[h−1]) ⊂ A

such that for all x ∈ g, the adjoint action of η(x) on Q agrees with the action of x
induced by the G-structure on Q. The map η is called a quantized moment map
because the associated graded

gr η : C[g∗] ∼= grU(g) −→ grA ∼= C[X]

induces a G × S-equivariant classical moment map µ : X → g∗, where S acts on g∗

with weight −n. We note that for any x ∈ g, we will have

η(x) ∈ ΓS(h−1 Q) ⊂ ΓS( D(n)) = A(n) ⊂ A.
The following proposition says that the condition of admitting a quantized moment
map is no stronger than the condition of admitting a classical moment map. Recall
that we use χ(g) to denote the vector space of characters g→ C.

Proposition 3.11. — For any S-equivariant quantization Q of X, the pair (X, Q) admits
a Hamiltonian G-action that induces µ in the manner described above and the set of
quantized moment maps is a torsor for χ(g)⊗ C[X]S×G.

Proof. — Since h has S-weight n > 0, the lack of functions on X of negative S-weight
shows that ΓS(X; Q) is a commutative algebra, canonically isomorphic to the S-in-
variants C[X]S. Furthermore, we have a natural Lie algebra structure on ΓS(X;h−1 Q)

induced by the bracket since sections of Q commute modulo h. We have a short exact
sequence of Lie algebras

0→ ΓS(X; Q)→ ΓS(X;h−1 Q)→ C[X]n → 0,

where the Lie bracket on C[X]n is the Poisson bracket. The moment map µ induces
a map of Lie algebras µ∗ : g → C[X]n, and we may assume that the action of G
is effective, so that g is a Lie sub-algebra of C[X]n. Since the G-action on C[X]S is
locally finite (as is always true for affine algebraic group actions on varieties), any
linear map g → ΓS(X;h−1 Q) lifting µ∗ generates a finite-dimensional Lie subalgebra

(7) We filter U(g) so that the associated graded C[g∗] has g sitting in degree n.
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g̃ ⊂ ΓS(X;h−1 Q). Local finiteness again implies that the inner action of g̃ on Q
integrates to an action of an affine algebraic group G̃. Note that the induced action
of G̃ on the quotient Q/h Q factors though a surjection G̃→ G induced by the algebra
map g̃ → g with unipotent kernel. Since G is reductive and the kernel is unipotent,
the homomorphism of algebraic groups G̃→ G splits, and we obtain a G action on Q
with corresponding lift g→ ΓS(X;h−1 Q), which thus gives a quantized moment map.
Thus, together these give a quantum Hamiltonian G-structure, as defined above.

By the general theory of Levi complements, the set of lifts of g to ΓS(X;h−1 Q) is
a torsor over H1(g,C[X]S) ∼= χ(g)⊗ C[X]S×G.

Assume that (X, Q) carries a Hamiltonian G-action with quantized moment map
η : U(g) → A and associated classical moment map µ : X → g∗. Fix a G-equivariant
ample line bundle L on X, and let U ⊂ X be the associated semistable locus. We will
assume through the end of the section that the action of G on U is free; in particular,
semistability and stability coincide.

Let Xred := (µ−1(0)∩U)/G with its induced relative symplectic form and S-action,
and let ψ : µ−1(0) ∩ U → Xred be the natural projection. We’ll further assume that
the natural map C[µ−1(0)]G → C[Xred] is an isomorphism.

Let DU and QU denote the restrictions of D and Q to U, and for any ξ ∈ χ(g), let

Rξ := QU
/

QU · 〈hη(x)− hξ(x) | x ∈ g〉,

Eξ(0) := DU(0)
/

DU(−n) · 〈η(x)− ξ(x) | x ∈ g〉,

Eξ := DU
/

DU · 〈η(x)− ξ(x) | x ∈ g〉.

These are all sheaves on U with support µ−1(0) ∩ U, which we use to define sheaves
of algebras on Xred as follows:

Qred := ψ∗ End QU( Rξ)op,

Dred(0) := ψ∗ End D(0)U( Eξ(0))op,

Dred := ψ∗ End DU( Eξ)op.

Kashiwara and Rouquier [42, 2.8(i)] show that the first sheaf is an S-equivariant
quantization of Xred of weight n, and the second and third are related to the first
in the usual way. Kashiwara and Rouquier work in the classical topology, but their
argument works equally well in the Zariski topology.

Remark 3.12. — Kashiwara and Rouquier also take the fixed points of G. Since we
have assumed that G is connected, this is redundant; the pushforward is automatically
invariant under g. Of course, a reader interested in quotients by disconnected groups
can apply our results to the connected component of the identity, and then consider
the residual action of the component group.
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We observe that this geometric operation of symplectic reduction is closely related
to an algebraic one. Let Yξ := A

/
A · 〈η(x) − ξ(x) | x ∈ g〉, where as before we

let A = ΓS( D).

Proposition 3.13. — If Ared = ΓS( Dred), then Ared
∼= EndA(Yξ).

Proof. — Restriction gives a natural map A→ ΓS( DU), which induces a map

AG → ΓS(U; End DU( Eξ)op) ∼= Ared.

This map kills any G-invariant element of the left ideal generated by η(x) − ξ(x)

for x ∈ g and thus induces a map Y Gξ ∼= EndA(Yξ)→ Ared. We wish to show that this
map is an isomorphism.

By Nakayama, it’s enough to check this after passing to associated graded. The
associated graded of AG is C[X]G (since G is reductive), and the map C[X]G →
gr(Ared) ⊂ C[Xred] is the obvious quotient map. The associated graded of Y Gξ is a
quotient of C[X]G/(µ∗(g)) ∼= C[µ−1(0)]G, so we have maps

C[µ−1(0)]G � gr(Y Gξ )→ gr(Ared) ↪→ C[Xred].

The composition of these maps is a isomorphism. Since the first map is a surjection
and the last is an injection, each of the intermediate steps is an isomorphism.

Next we describe the period of Qred in terms of the parameter ξ; this will prove to
be an important technical tool that is needed for the proofs of Proposition 4.4 and
Lemma 4.15. For simplicity, we assume that X is symplectic over SpecC (rather than
over an arbitrary base) and C[X]S×G = C, that Q is the canonical quantization of X,
and that Xred satisfies our running assumptions on X.

The following general result about opposites and quantum Hamiltonian reduction
will be used to prove Lemma 3.15, and may also be of independent interest.

Lemma 3.14. — Let A be an algebra with an action of a connected reductive affine
algebraic group G with noncommutative moment map η : U(g) → A. Then we have
natural isomorphisms

(2) EndA(A/Aη(g))op ∼= EndAop(A/η(g)A) ∼= EndAop(Aop/Aopη(g)).

That is, the left and right quantum Hamiltonian reductions are opposite to each other.

Proof. — We can freely replace G with a finite cover, and thus assume that G is a
product of simple groups. Since reducing by G1×G2 can be done in stages as reduction
by G1 and then by G2, we can reduce to the case where G is simple.

Right (resp. left) multiplication define homomorphisms

EndA(A/Aη(g))op ∼= (A/Aη(g))G ←− AG −→ (A/η(g)A)G ∼= EndAop(A/η(g)A).

Since G is reductive, the functor of invariants is exact and these maps are surjective,
so we need only show their kernels agree. The kernel K1 of the left map is AG∩Aη(g)

and the kernel K2 of the right map is AG ∩ η(g)A. If G is abelian then

AG ∩ η(g)A = η(g)AG = AGη(g) = AG ∩Aη(g),
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so we can assume that G is non-abelian.
Thus, assume that a =

∑
i yiη(xi) is an element of K1, where xi ranges over a

basis of g. We can replace yi with its projection to the isotypic component of A corre-
sponding to the adjoint representation g ∼= g∗ (since any other simple tensored with
g has no invariants). In this case, invariance shows that there is an equivariant map
π : g→ A sending π(xi) = yi where xi is the dual basis to xi under the Killing form.
Thus we have a =

∑
i η(xi)yi + xi · yi =

∑
i η(xi)yi + π([xi, x

i]) by the equivariance
of π. Since

∑
i[xi, x

i] is invariant under the adjoint action, it is trivial, and we have
that a =

∑
i η(xi)yi ∈ K2. Applying a symmetric argument, we see that K1 = K2,

so the first equality of (2) follows immediately. The second is just the equivalence of
categories between right A-modules and left Aop-modules.

A quantized moment map η : U(g) → A is called balanced if, when ξ = 0, Qred is
the canonical quantization of Xred.

Lemma 3.15. — The canonical quantization of the variety X admits a balanced quan-
tized moment map.

Proof. — By Proposition 3.11, the set of quantized moment maps is a torsor for χ(g).
Since Q is the canonical quantization, we know that Q ∼= Qop, and any choice of such
an isomorphism (that is, any algebra anti-automorphism φ of Q) sends a quantized
moment map to minus a quantized moment map. Thus, −φ preserves the set of
quantized moment maps, and is an anti-automorphism of χ(g)-torsors, so it fixes a
unique point.

Recall that

Qred = ψ∗ End QU

(
QU
/

QU · 〈hη(x)− hξ(x) | x ∈ g〉
)op

.

By Lemma 3.14, the opposite ring of Qred is obtained as the analogous reduction of
the opposite ring of Q:

Qop
red
∼= ψ∗ End QU

(
Qop
U

/
Qop
U · 〈−hη(x) + hξ(x) | x ∈ g〉

)op

.

Twisting the action of Q by the action of φ, this sheaf is also isomorphic to

ψ∗ End QU

(
QU
/

QU · 〈−hφ(η(x)) + hξ(x) | x ∈ g〉
)op

.

Thus, if we choose η to be the fixed point of −φ and take ξ = 0, the quantization Qred

is isomorphic to its own opposite, and therefore to the canonical quantization.

The following proposition is implicit in the principal results of [45], but does not
seem to be explicitly stated in the generality that we need. Our proof is similar to the
proof of [45, 5.3.1].

Proposition 3.16. — If X is canonically quantized, η is a balanced quantized moment
map, and ξ ∈ χ(g) is arbitrary, then the period of Qred is equal to [ωred] + hK(ξ),
where K : χ(g)→ H2(Xred;C) is the Kirwan map.
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Proof. — Consider the inclusion χ(g) ∼= (g∗)G ⊂ g∗, and let P :=
(
U∩µ−1(χ(g))

)
/G,

which is equipped with a natural map γ : P→ χ(g). Since G acts freely on U, γ is a
submersion and P is a flat deformation of Xred = γ−1(0), symplectic over the base
χ(g). The quantization

Q̂red
∼= γ∗ End

(
QU
/

QU · 〈hη(x) | x ∈ [g, g]〉
)
G

of P is self opposite, and thus canonical, so its period is equal to the class of the
relative symplectic form ωP ∈ Ω2(P/χ(g)). The quotient

Qred = Q̂red/ Q̂red · 〈hη(x)− hξ(x) | x ∈ g/[g, g]〉,

which is supported on Xred, can be thought of as the pullback of Q̂red by the map
s : ∆→ ∆×χ(g) which is the identity on ∆ and has the property that s∗x = h · ξ(x)

for any element x ∈ g/[g, g] ∼= χ(g)∗. By Proposition 3.1, this quantization of Xred

has period s∗[ωP]. The usual Duistermaat-Heckman theorem implies that s∗[ωP] =

[ωred] + hK(ξ).

4. Modules over quantizations

Let Q be an S-equivariant quantization of X, and consider the sheaves D and
D(m) defined in the beginning of Section 3.3. An h-adically complete module over Q
(respectively D(0)) is called coherent if it is locally a quotient of a sheaf which is
free of finite rank. By Nakayama’s lemma, this is equivalent to the property that one
obtains a coherent sheaf by setting h (respectively h1/n) to zero.

Remark 4.1. — Some other sources on modules over deformation quantizations con-
tain an a priori stronger notion of “coherent” as in defined in [43, §1.1]. However,
since X (and thus D) is Noetherian, [43, 1.2.5] shows that this notion coincides with
the one we have given above. In general, we simplify many issues around finiteness by
assuming that the modules we consider are coherent. Removing this condition would
complicate matters substantially.

A S-equivariant D-module is a D-module equipped with an S-structure in the sense
of Section 3.2, compatible with the S-structure on D. More precisely, it is a D-module
N along with an isomorphism a∗tw N ∼= p∗ N satisfying the natural cocycle condition,
such that the following diagram commutes.

a∗tw D ⊗ a∗tw N a∗tw N

p∗ D ⊗ p∗ N p∗ N .

∼= ∼=

An S-equivariant D-module N is called good if it admits a coherent S-equivariant
D(0)-lattice N (0). Let D -Mod be the category of arbitrary S-equivariant modules
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over D, and let D -mod ⊂ D -Mod be the full subcategory consisting of good modules.
Note that the choice of lattice is not part of the data of an object of D -mod. The
reason for this is that we want an abelian category, which would fail if we worked with
lattices: the quotient of a lattice by a sublattice is only a lattice after killing torsion.

Many of our important results require considering derived categories; unfortunately,
there seems to be no single choice of finiteness condition on derived categories which
will suit us once and for all. In order to define the cohomology of sheaves of D-modules,
it is most convenient to work in unbounded derived category D( D -Mod) of arbitrary
D-modules (in order to use Čech resolutions), but in most cases of interest to us, we
can restrict to the bounded derived category Db( D -mod) of good D-modules.

Remark 4.2. — Note that if C is an abelian category and C0 an abelian subcategory
closed under taking subobjects, we can consider both the derived category Db( C0) and
the category Db

C0
( C) of bounded complexes in C with cohomology in C0. There is an

obvious functor Db( C0)→ Db
C0

( C) which is sometimes an equivalence and sometimes
not. If C0 has enough projectives which remain projective in C , then every complex
in Db

C0
( C) can be replaced by a quasi-isomorphic projective resolution in C0, which

shows that this functor is an equivalence. In particular, this argument carries through
when C is the category of all modules over some ring, and C0 is the subcategory of
finitely generated modules.

If C is the category of quasi-coherent sheaves on a projective (over affine) scheme
and C0 is the subcategory of coherent sheaves, then this functor is still an equivalence,
even though coherent sheaves do not have enough projectives; this follows from con-
sidering the corresponding modules over the projective coordinate ring. Similarly, we
will show that D -mod admits an analogous description (Theorem 5.8), which implies
that Db( D -mod) is equivalent to Db

D -mod( D -Mod) (Corollary 5.11).

Remark 4.3. — If X = M is a conical symplectic resolution, there are heuristic rea-
sons to treat D -mod as an algebraic version of the Fukaya category ofM twisted by the
B-field defined by e2πiλ ∈ H2(M;C×), where hλ is the period of D. The firmest justifi-
cation at moment lies in the physical theory of A-branes, which the Fukaya category is
an attempt to formalize. Kapustin and Witten [40] suggest that on a hyperkähler man-
ifold, there are objects in an enlargement of the Fukaya category which correspond not
just to Lagrangian submanifolds, but higher dimensional coisotropic submanifolds. In
particular, there is an object in this category supported on all ofM called the canonical
coisotropic brane. Following the prescription of Kapustin and Witten further shows
that D is isomorphic to the sheaf of endomorphisms of this object. Nadler and Za-
slow [48] prove a related result in which M is replaced by the cotangent bundle of an
arbitrary real analytic manifold.

4.1. Cotangent bundles. — Let us consider the special case of quantizations of X =

T ∗X for some smooth projective variety X, where S acts by inverse scaling of the
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cotangent fibers (8). Quantizations of cotangent bundles have been considered many
times before in different contexts, but for the sake of completeness, we wish to show
in detail how it fits in our schema. We will assume that H1(X) = 0 and H2(X) ∼=
H1,1(X); in particular

Hi(X;SX)S ∼= Hi(X;SX) ∼= Hi,0(X) = 0 for i = 1, 2

and H2(X) ∼= Pic(X)⊗ C.
A Picard Lie algebroid P on X is an extension in the abelian category of Lie

algebroids of the tangent sheaf T X , with its tautological Lie algebroid structure, by
the structure sheaf SX , with the trivial Lie algebroid structure. Such an extension in
the category of coherent sheaves is classified by

Ext1( T X ,SX) ∼= H1(X; T ∗X) ∼= H1,1(X;C) ∼= H2(X;C).

Since we have that H0(X;
∧2 T ∗X) = 0, there is a unique Picard Lie algebroid Pλ

on X for each λ ∈ H2(X;C).
Let Uλ be the universal enveloping algebra of Pλ modulo the ideal that identifies

the constant function 1 ∈ SX with the unit of the algebra. If λ is the image of the
Euler class of a line bundle L on X, then Uλ is isomorphic to the sheaf of differential
operators on L. More generally, Uλ is referred to as the sheaf of λ-twisted differential
operators on X. A coherent sheaf of Uλ-modules is called a λ-twisted D-module on X.
The sheaf Uλ has an order filtration, and any coherent sheaf of Uλ-modules admits
a compatible filtration.

However, Uλ is a sheaf on X, and we wish to find one on T ∗X. This requires the
technique of microlocalization (see, for example, [41, 4] for more detailed discussion
of this technique). The associated graded of Uλ with respect to the order filtration is
isomorphic to SymSX T X ; put differently, if

Rλ :=
{∑

uih
i ∈ Uλ[h]

∣∣∣ ui has order ≤ i}
is the Rees algebra of the order filtration on λ, then Rλ/hRλ ∼= SymSX T X . Given
an open subset U ⊂ T ∗X, we obtain a multiplicative subset SU ⊂ SymSX T X(π(U))

consisting of functions on π−1(π(U)) which are invertible on U .
We can give a non-commutative version of this construction using an associated

multiplicative system in Rλ(π(U)). Let

S′U =
{
r ∈ Rλ(π(U))

∣∣ ∃m such that r ∈ hmRλ with h−mr ∈ SU
}
.

This is a multiplicative system because SymSX T X is a sheaf of domains. Furthermore,
since [r,Rλ] ⊂ hRλ, the operation of bracket with any algebra element is topologically
nilpotent (the successive powers converge to 0 in the h-adic topology). Thus, in any
quotient Rλ/hmRλ, the reduction of this set S′U satisfies the Ore condition, and we can
define the localization of Rλ by S′U as the inverse limit Rλ(U) := lim←−(Rλ/h

mRλ)S′U .

(8) This variety may not satisfy the property of being projective over an affine variety X0, but we
will not use that assumption in this section.
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This defines an S-equivariant sheaf of rings Rλ on Spec
(

SymSX T X
) ∼= T ∗X = X,

which is free over C[[h]] and satisfies R/hR ∼= ST∗X , and is therefore a quantization
of X.

Proposition 4.4. — The period of Rλ is h(λ−$/2), where $ = c1(T ∗X) ∈ H2(X;C) ∼=
H2(X;C) is the canonical class.

Proof. — We begin by choosing line bundles L1, . . . , Lk on X and complex numbers
ζ1, . . . , ζk such that λ =

∑k
i=1 ζic1( Li). Let Y be the total space of

⊕
Li and let T :=

(C×)k act on Y by scaling the fibers of the individual lines. Let S act on T ∗Y via the
inverse scaling action on the fibers, and let R̃ be the T × S-equivariant quantization
of T ∗Y obtained by microlocalizing the sheaf of (untwisted) differential operators
on Y . The action of T on (T ∗Y, R̃) admits a quantized moment map

ϕ : U(t)→ ΓS( R̃) ∼= Γ(Y,DY )

given on t by the equation

(3) ϕ(a1, . . . , ak) =

k∑
i=1

aiti
∂

∂ti
,

where ti is any coordinate on the fiber of Li (the operator ti ∂∂ti is independent of
this choice). If we take ζ := (ζ1, . . . , ζk) ∈ Ck ∼= χ(t), then symplectic reduction
of (T ∗Y, R̃) at the parameter ζ yields the pair (X, Rλ), as noted by Beilinson and
Bernstein in [10, §2.5].

First, consider the special case where k = 1 and L1 = ω−1
X , the anti-canonical

bundle ofX. Then Y is Calabi-Yau and R̃ is the canonical quantization, and so we can
apply Proposition 3.16. In order to do this, we must find a quantized moment map with
self-opposite reduction. By [10, §2.5], the reduction by ϕ at the parameter ξ ∈ C ∼= χ(t)

is isomorphic to the sheaf of differential operators on X twisted by −ξ$ ∈ H2(X;C),
and this sheaf is self-opposite when ξ = −1/2. This implies that

η(a) := a
(
t1

∂

∂t1
+

1

2

)
is a canonical quantized moment map. By Proposition 3.16, the reduction by η at the
parameter ξ has period equal to −hξ$, and is isomorphic to the sheaf of differential
operators twisted by (−ξ+ 1/2)$, confirming the result for multiples of the canonical
class.

Now, assume that L1 = ω−1
X , which we can always arrange. If σ : T ∗Y → T ∗Y/G

is the projection, then σ∗ R̃T is an S-equivariant quantization of the relative Poisson
scheme T ∗Y/G → t∗, and thus has period [ωT∗Y/G] + hε for some ε ∈ H2(X;C). If
s : ∆ → ∆ × t∗ is the section corresponding to ζ1 = −1/2 and ζi = 0 for i > 1, then
we arrive at the conclusion that s∗σ∗ R̃T ∼= R−$/2, which already know has period 0.
Thus, we must have s∗([ωT∗Y/G] + hε) = h($/2 + ε) = 0, so ε = −$/2.
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For arbitrary ζi, we have a section sζ : ∆→ ∆× t∗, and

s∗ζ([ωT∗Y/G]− h$/2) = h
( n∑
i=1

ζic1( Li)− $/2
)

= h(λ− $/2).

Thus Rλ has the desired period.

There is a natural S-equivariant map p−1 Uλ → Rλ[h−1], where p : X → X is
the projection and S acts trivially on p−1 Uλ. For any λ-twisted D-module N on X,
the microlocalization of N is defined to be the Rλ[h−1]-module Rλ[h−1] ⊗p−1 Uλ
N . Proposition 4.5, which is well-known to the experts, may be regarded as a non-
commutative version of the equivalence between coherent sheaves on X and sheaves
of coherent SymSX T X -modules on X.

Proposition 4.5. — Microlocalization defines an equivalence of categories from the cat-
egory of finitely generated λ-twisted D-modules on X to Rλ[h−1] -mod.

Proof. — The adjoint equivalence is J 7→ (p∗ J )S; we need only check this on the alge-
bras themselves. It is clear that the microlocalization of Uλ is Rλ[h−1]. On the other
hand, we have a map Uλ → (p∗ Rλ[h−1])S which is injective, and whose surjectivity
is easily verified by passing to the associated graded.

Remark 4.6. — While the cotangent bundles of smooth projective varieties provide
a large supply of conical symplectic varieties, these varieties very rarely are conical
symplectic resolutions. In general they do not have enough global functions to be res-
olutions of their affinizations. For example, consider the case of a curve:

– If X = P1, T ∗X is a resolution of a singular quadric.
– If X is elliptic, T ∗X ∼= X ×A1, so the affinization of T ∗X is isomorphic to A1.
– If X has genus greater than 1, then T ∗X is a line bundle of positive degree, and
thus has no nonconstant global functions.

Example 4.7. — One class of projective varieties whose cotangent bundles are conical
symplectic resolutions are varieties of the form X = G/P , where G is a reductive
algebraic group and P ⊂ G is a parabolic subgroup. Philosophically, the reason is that
X has a lot of vector fields (induced by the action of g), therefore its cotangent bundle
has a lot of functions. It is conjectured (see for example [36, 1.3]) that these are the
only such projective varieties.

If P is a Borel subgroup, then T ∗X is the Springer resolution of the nilpotent cone
in g. More generally, the moment map µ : T ∗X → g∗ ∼= g is always generically finite,
and its image is the closure ŌP = G·p⊥ of the Richardson orbit OP associated with P .
If G = SL(r;C), or if OP is simply-connected, then µ is generically one to one, and
T ∗X is a symplectic resolution of ŌP [31, 1.3]. In other cases, it is still a symplectic
resolution of its affinization, but this affinization may be a finite cover of ŌP .
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4.2. Localization. — We return to considering a general X/S satisfying the assump-
tions of Section 3. We fix a quantization D of X, and we let A := ΓS( D) be its section
algebra. Let A -Mod be the category of arbitrary A-modules, and let A -mod be the
full subcategory of finitely generated modules. As in the case of D-modules, we will be
interested in the unbounded derived category D(A -Mod) and the bounded derived
category Db(A -mod); by Remark 4.2, Db(A -mod) is equivalent to the full subcat-
egory of D(A -Mod) consisting of objects whose cohomology is both bounded and
finitely generated.

We have a functor
ΓS : D -mod→ A -mod

given by taking S-invariant global sections. The left adjoint functor

Loc: A -mod→ D -mod

is defined by putting Loc(N) := D ⊗A N , with the S-action induced from the action
on D. To see that Loc(N) is indeed an object of D -mod, let Q ⊂ N be a finite
generating set and define a filtration of N by putting N(m) := A(m) · Q. We define
the Rees algebra R(A) to be the h-adic completion of

A(0)[[h
1/n]] + h

1/nA(1)[[h
1/n]] + h

2/nA(2)[[h
1/n]] + · · · ⊂ A[[h

1/n]]

and the Rees module R(N) to be the h-adic completion of

N(0)[[h
1/n]] + h

1/nN(1)[[h
1/n]] + h

2/nN(2)[[h
1/n]] + · · · ⊂ N [[h

1/n]].

Note that R(N) is a module over R(A) ∼= Γ( D(0)), and D(0)⊗R(A)R(N) is a coherent
lattice in Loc(N).

Remark 4.8. — If N is an object of A -mod, we have shown that Loc(N) always ad-
mits a coherent lattice, but the construction of that lattice depends on a choice of
filtration of N . Conversely, any coherent lattice N (0) for an object N of D -mod

induces a filtration of N := ΓS( N ) by putting N(m) := ΓS
(
h−m/n N (0)[h1/n]

)
.

If ΓS and Loc are biadjoint equivalences of categories, we will say that localization
holds for D or that localization holds at λ, where [ωX] + hλ is the period of D.
Localization is known to hold for certain parameters in many special cases, including
quantizations of the Hilbert scheme of points in the plane [42, 4.9], the cotangent
bundle of G/P [9], resolutions of Slodowy slices [27, 3.3.6] & [23, 7.4], and hypertoric
varieties [11, 5.8]. We conjecture that any conical symplectic resolution M admits
many quantizations for which localization holds.

Conjecture 4.9. — Let Λ ⊂ H2(M;C) be the set of periods of quantizations for which
localization holds. There exists

– a finite list of effective classes x1, . . . , xr ∈ H2(M;Z)

– a finite list of rational numbers ai ∈ Q
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such that Λ = H2(M;C) r
r⋃
i=1

Di, where

Di :=
{
λ ∈ H2(M;C)

∣∣ 〈xi, λ〉 − ai ∈ Z≤0}.

Remark 4.10. — The classes x1, . . . , xr should exactly correspond to the effective
curve classes in “generic non-affine deformations” of M in the sense of [18, 1.15].
These classes play an important role in the formula for quantum cohomology of the
Springer resolution [18, 1.1], and conjecturally of any conical symplectic resolution.

Though we cannot prove Conjecture 4.9, we will establish asymptotic results both
in the derived (Theorem 4.17) and abelian (Corollary 5.17) settings.

4.3. Derived localization. — In this section, we continue the assumptions of Sec-
tion 4.2. We next wish to consider the derived functors RΓS and LLoc relating the
triangulated categories D(A -Mod) and D( D -Mod). Note that these derived functors
are well-defined by [65, Th. A]. First, let us establish certain homological properties
of these functors.

Lemma 4.11. — For any good S-equivariant module N , the module RkΓ(X; N (0)) is
finitely generated over R(A) and the map

RkΓ(X; N (0))→ lim←−RkΓ(X; N (0)/N (−nm))

is an isomorphism for all k.

Proof. — Let

Gk(m) := RkΓ(X; N (−nm)) and Gk(m|p) := RkΓ(X; N (−nm)/N (−np))

for p ≥ m. We claim that the cohomology Gk(0) is a finitely generated S-equivariant
R(A)-module. To see this, note that the cohomology long exact sequence of

0→ N (−n)→ N (0)→ N (0)/N (−n)→ 0

gives an injective map Gk(0)/hGk(0) ↪→ Gk(0|1) = RkΓ(X; N (0)/N (−n)). The lat-
ter is the cohomology of a coherent sheaf, and thus finitely generated over C[X].
Let P be a submodule of Gk(0) generated by representatives of a finite generating set
of Gk(0)/hGk(0), so we have Gk(0) = P +hGk(0). Then given any x ∈ Gk(0), we can
inductively find pi ∈ P , i = 0, 1, 2, . . . , so that x −

∑N
j=0 h

jpj lies in hN+1Gk(0).
Since R(A) is complete in the h-adic topology, we can take the limit to obtain
p ∈ P such that x − p lies in

⋂∞
i=0 h

iGk(m). But this intersection is zero, since⋂∞
i=0 h

i N (−nm) = 0, and so Gk(0) = P . Thus Gk(0) is finitely generated as desired.
Thus, Gk(0) is a quotient of a finite rank free module R(A)⊕n by a submodule K.

Consider the short exact sequence of projective systems

0→ K/(K ∩ hmR(A)⊕n)→ (R(A)/hmR(A))⊕n → Gk(0)/hmGk(0)→ 0.
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Since the kernel satisfies Mittag-Leffler, we obtain an isomorphism

Gk(0) ∼= R(A)⊕n/K

∼=
(

lim←−(R(A)/hmR(A))⊕n
)
/
(

lim←−K/(K ∩ h
mR(A)⊕n)

)
∼= lim←−G

k(0)/hmGk(0).

Note that the long exact sequence associated to the short exact sequence of projective
systems hmGk(0) → Gk(0) → Gk(0)/hmGk(0) further shows that the first derived
functor of lim←− vanishes on the left hand system:

lim←−
1 hmGk(0) ∼=

(
lim←−G

k(0)/hmGk(0)
)
/Gk(0) = 0.

All higher derived functors vanish, since this holds for any projective system over Z≥0

in the category of modules over a ring. Now, we consider the long exact sequence

(4) · · · → Gk−1(0|m)→ Gk(m)→ Gk(0)→ Gk(0|m)→ Gk+1(m)→ · · · .
This breaks into a series of short exact sequences

0→ Tor1(C[h]/(hm), Gk(m))→ Gk(m)→ Gk(0)→ Gk(0)/hmGk(0)→ 0.

The submodule of all h-torsion elements in Gk(0) is finitely generated, so it is killed
by hM for some M . For m > M , the group Tor1(C[h]/(hm), Gk(m)) stabilizes,
and the induced map in the projective system is multiplication by h. This projec-
tive system satisfies the property that the image of Tor1(C[h]/(hm+M ), Gk(M +m))

in Tor1(C[h]/(hm), Gk(m)) is trivial, so the projective system has

lim←−Tor1(C[h]/(hm), Gk(m)) ∼= lim←−
1 Tor1(C[h]/(hm), Gk(m)) = 0

by Mittag-Leffler again. The short exact sequence

0→ Tor1(C[h]/(hm), Gk(m))→ Gk(m)→ hmGk(0)→ 0

shows that lim←−G
k(m) = lim←−

1Gk(m) = 0 as well.
Since Gk(0|m) is the extension of two projective systems with higher derived limits

vanishing, the higher projective limits of Gk(0|m) vanish as well. The long exact
sequence (4) thus remains exact when we take the projective limit, since the higher
derived functors of all its terms vanish. Therefore, we obtain the desired isomorphism
Gk(0) ∼= lim←−G

k(0|m).

Proposition 4.12. — The functor RΓS induces a functor Db( D -mod)→ Db(A -mod).

Proof. — Since any complex of A-modules with cohomology that is finitely generated
and bounded is quasi-isomorphic to a bounded complex, we need only prove that RΓS
applied to any good D-module N has finitely generated cohomology in finitely many
degrees. By Lemma 4.11, the cohomology is finitely generated, and we need only
check that Gk(0|m) (using the notation of the lemma) is only non-zero in finitely
many degrees. Since N (0)/N (−nm) is just an iterated extension of N (0)/N (−1) it
suffices to show the same for Hi(X; N (0)/N (−1)). Since X is projective over X0, this
group is finitely generated over C[X] and can only be non-zero if 0 ≤ i ≤ dimX.
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If the functors RΓS and LLoc induce biadjoint equivalences Db( D -mod) ∼=
Db(A -mod), we say that derived localization holds for D or that derived localization
holds at λ, where [ωX] + hλ is the period of D. The following result of Kaledin
[35, §3.1] gives a sufficient condition for derived localization to hold. Let Dop be
the opposite ring of D, and let Aop be its section algebra. Consider the sheaf of
algebras D�̂C((h)) Dop on X×X, which has section algebra A⊗Aop. Let Ddiag be the
D�̂C((h)) Dop-module obtained by pushing D forward along the diagonal inclusion
from X to X×X, and let Adiag be the algebra A, regarded as a module over A⊗Aop.

Theorem 4.13 (Kaledin). — Suppose that the higher cohomology groups of D vanish. (9)

Then derived localization holds if and only if the natural map LLoc(Adiag) → Ddiag

is a quasi-isomorphism.

Remark 4.14. — Kaledin uses the bounded above derived categories D−( D -mod) and
D−(A -mod); however, this equivalent to the claim that the equivalence holds on
bounded derived categories, by the argument of [35, 1.2].

We will use Kaledin’s result to prove Theorem A from the introduction. To do this,
we first need to establish a technical result. As usual, we letM be a conical symplectic
resolution. Let D be any S-equivariant quantization of its twistor deformation Mη,
and let t be the coordinate on A1. Let N be a D-module supported on a Lagrangian
subvariety of M ⊂ Mη for η ∈ H2(M;Z) (in the sense that its pullback to the
complement of this Lagrangian is zero).

Lemma 4.15. — There exists a nonzero polynomial q(x) ∈ C[x] such that q(h−1t) ∈
Aη acts by zero on N .

Proof. — Let L be the twistor line bundle on Mη, i.e., the line bundle satisfying the
statement of Proposition 2.10, and let u : Tot(L ×) → Mη be the projection. Then
the total space Tot(L ×) is symplectic, and the fiberwise C∗-action is Hamiltonian
with moment map t, where t is the coordinate on A1, and the map u coinduces the
Poisson structure on Mη.

Since the quantization D is S-equivariant, its period will be of the form [ωMη ] +

hλ = tη + hλ for some λ ∈ H2(Mη;C). Let U be the quantization of Tot(L ×) with
period u∗λ. As noted by Bezrukavnikov and Kaledin [13, 6.2], the algebra U carries
a C∗-equivariant structure for the fiberwise action, commuting with the S-equivariant
structure. By Proposition 3.11, U has a quantized moment map for the C∗-action;
choose one, and let τ ∈ ΓS(U [h−1/n]) be the image of the generator y of Lie(C∗). By
the definition of a non-commutative moment map, y − τ commutes with the action
of any C∗-invariant section of U on any C∗-equivariant module over this algebra.

As noted in the proof of Proposition 3.16, the invariant pushforward (u∗U [h−1/n])C
∗

is the quantization of Mη with period hλ+tη, and is therefore isomorphic to our given

(9) By Proposition 2.4, this condition is satisfied by any conical symplectic resolution.
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quantization D . Thus, we have an equivalence between good S-equivariant D-modules
and S×C∗-equivariant U [h−1/n]-modules, induced by the adjoint functors u∗ and uC

∗

∗ .
Recall that we are given a D-module N on Mη supported on a Lagrangian subvari-

ety ofM. Thus, u∗ N is supported on the preimage of Supp( N ) which is Lagrangian.
By a finiteness theorem of Kashiwara and Schapira [43, 7.1.10], the self Ext-sheaf
of (u∗ N )an is perverse, and in particular, its endomorphism algebra commuting with
S is finite dimensional over C. By Theorem 5.22, the same holds for u∗ N . (10) As
with any element of any finite dimensional algebra over C, the endomorphism y − τ
has a minimal polynomial q(x) such that q(y − τ) = 0. Since the structure map
π−1S1

A → D is given by t 7→ hτ , we thus have that the action of τ = h−1t on the
reduction N = (u∗u

∗ N )C
∗
satisfies the same polynomial equation.

Remark 4.16. — Lemma 4.15 almost certainly holds for general η ∈ H2(M;C) rather
than just classes in the image of integral cohomology; however the proof uses the line
bundle L in a very strong way. Proving the general case will require understanding
the theory of twistor deformations of line bundles over gerbes.

Theorem 4.17. — Fix a class η ∈ H2(M;Z) such that Mη(∞) is affine. (11) Derived
localization holds at λ+ kη for all but finitely many k ∈ C.

Proof. — Let Dk be the quantization with period h(λ + kη). By Theorem 4.13, we
need to show that the map LLoc((Ak)diag)→ ( Dk)diag is an isomorphism for all but
finitely many k; let Pk denote the cone of this map. Let D be the quantization of Mη

with period tη+hλ, and let σk : ∆→ A1×∆ be the map associated to the polynomial
hk as in Section 3.1. Proposition 3.1 tells us that σ∗kD ∼= Dk, which implies that the
morphism LLoc((Ak)diag) → ( Dk)diag on M ×M is the pullback of the morphism
φ : LLoc(Adiag) → Ddiag on Mη ×A1 Mη. It follows that Pk ∼= σ∗kP where P is the
cone of φ.

We now apply Lemma 4.15 to the symplectic resolutionM×M, with sheaf N = P
and cohomology class (η, η). The associated twistor deformation is Mη ×A1 Mη. The
sheaf we will apply it to is H j(P). This is supported on the preimage of 0 ∈ A1, since
all fibers over non-zero points of A1 are affine varieties, where obviously the map of
interest is an isomorphism. If we localize R(Adiag) to a sheaf on M0 ×M0, the result
is supported on the diagonal. In fact, its classical limit is the structure sheaf of the
diagonal ∆M0 . Thus, its localization is supported the preimage of the diagonal, that
is, on the Steinberg varietyM×M0

M ⊂M×M. Since ( Dk)diag is also supported on
diagonal ∆M, the sheaf P is also supported on the Steinberg. Since any symplectic
resolution is semi-small, the Steinberg variety is isotropic. That means that either the
Steinberg is Lagrangian or P = 0, so the hypotheses of Lemma 4.15 are satisfied.

(10) One can also use the theory of Euler classes from [43], which we will discuss later in Section 6.2,
to show that such a module has finite length, imitating the usual proof for D-modules [32, 3.1.2(ii)].
We thank the referee for this observation.
(11) See Proposition 2.14 and the preceding paragraph for a discussion of Mη(∞).
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If k is not a root of the polynomial p provided by the lemma, then h−1t − k acts
invertibly on H j(P), so the specialization of this sheaf at k is trivial, and so we have
σ∗k H j(P) = 0. Thus, for any integer m, we can find a polynomial (the product of
those for each individual homological degree) where H j( Pk) is trivial for j ≥ −m.

By [35, 3.3], Pk is trivial if and only if it it has trivial homology in degrees above −`
where ` is the global dimension of Dk�̂C((h)) Dop

k -mod (which is finite since the same
is true for SM×M). By the argument above, this happens at all k other than the roots
of a polynomial with complex coefficients, and thus for all but finitely many k.

5. Z-algebras

A Z-algebra is an algebraic structure that mimics the homogeneous coordinate
ring of a projective variety in a noncommutative setting. More precisely, it is an
N× N-graded vector space

Z =
⊕

k≥m≥0

kZm

with a product that satisfies the condition kZ` · `Zm ⊂ kZm for all k ≥ ` ≥ m and
kZ` · `′Zm = 0 if ` 6= `′. While Z itself will usually not have a unit, each algebra kZk
is required to be unital; we will also always assume that kZk is Noetherian, that kZm
is finitely generated as a left kZk-module and as a right mZm-module, and that there
exists a natural number r such that Z is generated as an algebra by those kZm with
k −m ≤ r. A left module over the Z-algebra Z is an N-graded vector space

N =
⊕
m≥0

mN

with an action of Z such that kZm · mN ⊂ kN for all k ≥ m and kZm · m′N = 0 if
m 6= m′. It is called bounded if mN = 0 for m� 0.

Remark 5.1. — Some authors also discuss torsion modules, which are those isomor-
phic to a direct limit of bounded modules. We will only be interested in finitely gener-
ated Z-modules, and in this setting the conditions of being bounded and being torsion
are equivalent.

We also assume that S is affine. Our goal is to define a Z-algebra whose localized
module category is equivalent to D -mod.

5.1. Quantizations of line bundles. — In this section, we continue the assumptions
given above, though projectivity of X and the affinity of S are not needed in this
subsection. In addition to modules over quantizations, we will also need to consider
bimodules over pairs of quantizations. Let Q and Q′ be S-equivariant quantizations.
A Q′- Q bimodule is a sheaf of modules over the sheaf Q′ ⊗C[[h]] Qop of algebras on X.
Such a bimodule is called coherent if it is a quotient of a bimodule which is locally
free of finite rank. The most important examples will be quantizations of line bundles.
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Let L be an S-equivariant line bundle on X and let η ∈ H2
DR(X/S;C) be the image

of the Euler class of L. Fix an S-equivariant quantization Q0 with period [ωX] + hλ,
and for any integer k, let Qk be the quantization with period [ωX] + h(λ+ kη).

Proposition 5.2. — For every pair of integers k and m, there exists a coherent S-equiv-
ariant Qk- Qm bimodule k Tm with an isomorphism (12)

k Tm/(h · k Tm) ∼= Lk−m. This
bimodule is unique up to canonical isomorphism, and tensor product with k Tm defines
an equivalence of categories from Qm -mod to Qk -mod.

Proof. — By the usual sheaf theory, the locally free S-equivariant modules of rank
1 over Qk are in bijection with H1

S (X; Q×k ). We have a surjective map of sheaves of
groups Q×k −→ S×X . The kernel of this map is 1 + h Qk. As a sheaf of groups, this
possesses a filtration by the subgroups 1+hn Qk, with successive quotients isomorphic
to the structure sheaf SX considered as a sheaf of abelian groups, since

(1 + hna)(1 + hnb) ≡ 1 + hn(a+ b) (mod hn+1).

Since SX has vanishing higher cohomology, an argument as in [42, 2.12] shows the
inverse limit 1+h Qk has vanishing higher cohomology as well. By the Hochschild-Serre
spectral sequence, its higher equivariant cohomology also vanishes. In particular, we
have an induced isomorphism

H1
S (X; Q×k ) ∼= H1

S (X;S×X).

The line bundle Lk−m is classified by an element [ Lk−m] of H1
S (X;S×X), and we define

k Tm to be the locally free rank 1 left Qk-module given by the corresponding element
[k Tm] of H1

S (X; Q×k ). The structure maps of k Tm/(h·k Tm) as a SX-module are just the
reduction mod h of the structure maps of k Tm, which tells us that k Tm/(h · k Tm) ∼=
Lk−m.

Now consider the sheaf of π−1SS [[h]]-algebras Q′ = End Qk

(
k Tm

)op. This sheaf
is an S-equivariant quantization of X, and it is obtained from Qk by twisting the
transition functions by the 1-cocycle representing k Tm. We want to show that this
quantization is isomorphic to Qm. In order to show this, it suffices to calculate the
period of Q′ and see that it agrees with that of Qm.

If we can show this in the case where S is a point, then it will imply that these peri-
ods agree after pullback to every single point in S. Any two sections of H2

DR(X/S;C)

that agree after pullback to every point in S are the same. Thus we can assume that
S = SpecC. Since Q′ is S-equivariant, its period must be of the form [ωX] + hλ′ by
Proposition 3.5. By definition, the period is the obstruction to lifting the torsor cor-
responding to Q′ to G in the notation of Bezrukavnikov and Kaledin [13, (3.2)]. The
class λ′ is determined by the reduction Q′/h3 Q′, since the obstruction to lifting this
to G3 is [ωX] + hλ′ ∈ H2

DR(X/S;C)⊗ C[h]/(h3).

(12) This is an isomorphism of SX-SX bimodules, where the two actions of SX on Lk−m are the
same.
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As shown in the proof of [13, 1.8], the set of quantizations of a given symplectic
structure up to second order is a torsor over H1

DR(X;H) where H is, in the language
of [13], the localization Loc( Ms,H) of the module H of Hamiltonian vector fields on
the formal disk for the Harish-Chandra torsor.

It is helpful to think about the classical rather than Zariski topology in order
to understand this action. As we discuss in Section 5.4, associated to Q, there is a
quantization of the structure sheaf of the complex manifold Man, which we denote
Qan, and analytic versions of all the sheaves we have considered. Since the higher
pushforwards Rnπ∗SX or Rnπ∗San

Xan vanish, we have an isomorphisms of groups

H1
DR(X;H) ∼= H2

DR(X;C) H1
DR(X;Han) ∼= H2

DR(Xan;C)

via the boundary map δ for the short exact sequence of sheaves

0→ SX −→ J∞SX
H−→ H→ 0,

(or its counterpart in the classical topology). By a classical result of Grothendieck,
algebraic and analytic de Rham cohomology of the structure sheaf agree, so the same
holds for H1

DR(X;H) ∼= H1
DR(Xan;Han).

The classical topology has the advantage that the de Rham cohomology of San
X and

Han agree with the usual sheaf cohomology of their flat sections, which are locally
constant functions and Hamiltonian vector fields H an respectively; thus we can think
of an element of H1

DR(Xan;Han) ∼= H1( H an) as a 1-cocycle in Hamiltonian vector
fields. In the torsor action, a 1-cocycle acts on a first order quantization Qan/h3 Qan

by twisting it via the action of Han on Qan/h3 Qan by X · a = a+h2X(ā) where X(ā)

denotes the usual action of a vector field on the function ā, which is the image of a
in Qan/h Qan ∼= San

X . Note that this does not change the underlying Poisson bracket.
The period mod h2 changes by the image under the boundary map hδ. Note that the
period map is normalized so that the nth order describes the (n + 1)st order of the
quantization; for example, the 0th order part, the symplectic form, describes the 1st
order part of the quantization.

Now, we have a map of abelian groups β : ( Qan
k )× → Han uniquely determined

by a−1qa = q+h2β(a)(q̄), which thus matches actions on Qan
k /h

3 Qan
k . Thus, when we

twist by a 1-cocycle in ( Qan
k )×, this is the same as twisting by its image under β. That

is, the period mod h2 of End Qan
k

(
k Tm

an)op is [ωX] + h(λ+ kη+ δ ◦ β∗([ Lk−m])) where
β∗ is the induced map H1( Q×k ) → H1(( Qan

k )×) → H1( H an) ∼= H1
DR(H) induced by

the map β : ( Qan
k )× → H an.

Now, we calculate that

aqa−1 = q − a−1[a, q] ≡ q − h2{log ā, q} (mod h3)

so β(a) = −H(log ā) = −H(ā)/a. Thus, we wish to understand the map induced on
the composition δ ◦ β in first cohomology. Consider the diagram of sheaves in the
analytic topology (we leave off superscripts to avoid clutter) with short exact rows,
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along with the relevant piece of the associated long exact sequences:

Q×k

ZX SX S×X

π−1SS SX H

exp

H

−1 −1 −H ◦ log

H1(X; Q×k )

H1(X;S×X) H2(X;Z)

H1(X;H) H2(X;π−1SS).

c1

δ

−1−H ◦ log

This shows that

δ ◦ β([ Lk−m]) = −c1( Lk−m) = (m− k)η,

so by our previous calculation End Qk

(
k Tm

)op and Qm have identical periods and thus
are isomorphic as π−1SS [[h]]-algebras.

Also, we wish to show that on k Tm/(h · k Tm), the quotient Qm/h Qm ∼= SX acts by
the usual module structure on Lk−m. This is a local question, so we may assume that
the line bundle L is trivial, in which case, Qk ∼= k Tm ∼= Qm with the left and right
actions just being left and right multiplication, which both coincide with the usual
SX-action after killing h.

Of course, k Tm ⊗ Qm m T k is a quantization of Lk−m ⊗SM Lm−k ∼= SM, so by
uniqueness, k Tm ⊗ Qm m T k ∼= Qk, and tensor product is indeed an equivalence.

Remark 5.3. — In the next proposition and later in Section 6 we will want to vary
the periods of the quantizations in more than one-dimensional families, so we will
use an alternate notation and label the quantizations and bimodules by elements
of H2

DR(X/S;C) instead of integers. In other words, the quantization Qk will be writ-
ten Qλ+kη and the bimodule denoted 1 T 0 in the notation of Proposition 5.2 will be
written λ+η T λ.

We conclude this section by studying quantizations of line bundles in the context
of Hamiltonian reduction. Let (X, Q) be a quantization with a Hamiltonian action of
a complex algebraic group G. For any ξ ∈ χ(G), let Lξ be the line bundle on Xred

descending from the trivial bundle on X with G-structure given by ξ. Fix a quantized
moment map η for the action of G on and a pair of elements ξ, ξ′ ∈ χ(g), and
let Qred = QK(ξ) and Q′red = QK(ξ′) be the corresponding reductions. Consider the
Q′red- Qred bimodule

ξ′ Sξ := ψ∗( Hom QU( Rξ′ , Rξ)).

Proposition 5.4. — If ξ′−ξ does not integrate to a character of G, then ξ′ Sξ is trivial.
If it does, then it is isomorphic to the quantization K(ξ′) T K(ξ) of Lξ′−ξ.
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Proof. — First, note that the sheaf Rξ inherits a left g-module structure via the action
of left multiplication by η(x) − ξ(x); furthermore Rξ/hRξ ∼= SU∩µ−1(χ(g)), with the
induced g-action coinciding with the natural one on SU∩µ−1(χ(g)). In particular, it
integrates to the group G.

The sheaf End( Rξ)op is naturally isomorphic to the g-invariant subsheaf of Rξ via
the map that takes an endomorphism over any open set to the image of 1̄ ∈ Rξ(U) .
Similarly, a map Rξ′ → Rξ must take 1̄ ∈ Rξ′(U) to a section r killed by η(x)−ξ′(x),
that is, one on which the g-action is of the form

x · r = (η(x)− ξ(x))r = (ξ′(x)− ξ(x))r.

Since this action must integrate to an action of the group G, there can be no such
maps if ξ′−ξ does not integrate. If it does, then the pushforward ξ′ Sξ is a quantization
of the line bundle Lξ′−ξ and thus isomorphic to K(ξ′) T K(ξ).

5.2. The quantum homogeneous coordinate ring of X. — Fix an S-equivariant quan-
tization Q of X with period [ωX] + hλ ∈ H2

DR(X/S;C)[[h]] and an S-equivariant line
bundle L on X that is very ample relative to the affinization of X. To these data we
will associate a Z-algebra Z = Z(X, Q, L). Let η ∈ H2

DR(X/S;C) be the Euler class
of L, let Qk be the quantization with period [ωX] + h(λ + kη), let D := Q[h−1/n]

and Dk := Qk[h−1/n], and let k Tm be the Qk- Qm bimodule that quantizes the line
bundle Lk−m.

Definition 5.5. — Let k T ′m := k T m[h−1/n] be the Dk-Dm bimodule associated to the
Qk- Qm bimodule k T m.

Definition 5.6. — Let kZm := ΓS(k T ′m) with products induced by the canonical iso-
morphisms k T ′` ⊗ D` ` T

′
m
∼= k T ′m. We call Z the quantum homogeneous coordinate

ring of X.

We filter the sheaf k T ′m by setting k T ′m(0) = k T m[h1/n] and k T ′m(`) =

h /̀nk T ′m(0), and give kZm the induced filtration; it is compatible with the mul-
tiplication, so it makes Z into a filtered Z-algebra.

Note that the associated graded of kZm is isomorphic to Γ(X; Lk−m), and for any
Z-module N with a compatible filtration, the associated graded of N is a module over
the Z-algebra ⊕

k≥m≥0

Γ(X; Lk−m).

We will use without comment the obvious equivalence between modules over this Z-al-
gebra and graded modules over the section ring R( L) :=

⊕
k≥0 Γ(X; Lk). A filtration

of N is called good if its associated graded is a finitely generated module over R( L).
Then N has a good filtration if and only if it is finitely generated over Z.

Let Z-mod be the category of finitely generated modules over Z, and letZ-modbd be
the full subcategory of Z-mod consisting of bounded modules. We define the functors

ΓZ
S : D -mod→ Z-mod and LocZ : Z-mod→ D -mod
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by putting

ΓZ
S ( N ) :=

⊕
k≥0

ΓS
(
k T ′0 ⊗ D N

)
and LocZ(N) :=

⊕
k≥0

0 T ′k

⊗Z N.
Lemma 5.7. — If N is finitely generated over Z, then LocZ(N) is finitely generated
over D.

Proof. — There is some integer K such that
⊕K

k=0Nk generates N . Thus LocZ(N) is
a quotient of

⊕K
k=0 0 T ′k⊗kZkNk. Since the latter module is clearly finitely generated,

the former is as well.

A coherent lattice N (0) in N induces a filtration on ΓZ
S ( N ), which is good because

we have an injection

gr ΓZ
S ( N ) ↪→

⊕
m≥0

Γ(X; N ⊗ L⊗m),

where we put N := N (0)/N (−1). The cokernel of this map is bounded, since if m�
0, thenH1(X; N ⊗ L⊗m) = 0, and consequently, gr ΓS

(
m T ′0⊗ D N

) ∼= Γ(X; N ⊗ L⊗m).
This shows, in particular, that

(5) Loc(gr ΓZ
S ( N )) ∼= N ,

where Loc is the usual functor sending a graded module over R( L) to a coherent
sheaf on X by the localization theorem for sheaves on a projective (over affine) variety.
Conversely, a good filtration on a Z-module N induces a lattice in LocZ(N), which is
coherent because we have

(6) Loc
(

grN
) ∼= LocZ(N).

The functor LocZ is left-adjoint to ΓZ
S .

Let ιN : N → ΓZ
S

(
LocZ(N)

)
and ε N : LocZ

(
ΓZ
S ( N )

)
→ N be the unit and co-unit

of the adjunction. The following theorem justifies our name for Z.

Theorem 5.8. — The co-unit ε N is always an isomorphism and the unit ιN is an
isomorphism in sufficiently high degree. Furthermore, LocZ kills all bounded mod-
ules, thus ΓZ

S and LocZ are biadjoint equivalences between D -mod and the quotient
of Z-mod byZ-modbd.

Remark 5.9. — We note that this theorem is quite close in flavor to several others
in the theory of Z-algebras, such as [67, 11.1.1], but these typically assume finiteness
hypotheses that are too strong for our situation.

Remark 5.10. — If we dropped the assumption that S is affine, we would expect to be
able to prove a theorem similar to Theorem 5.8 in which the Z-algebra is replaced by
a sheaf of Z-algebras over S.
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Proof of Theorem 5.8. — Combining Equations (5) and (6), we have that the induced
map

ε N : LocZ(ΓZ
S ( N ))→ Loc(gr ΓZ

S ( N )) ∼= N

is an isomorphism. By Nakayama’s lemma, ε N is an isomorphism as well. Similarly,
the map

gr(ιN ) : N → LocZ(ΓZ
S ( N ))

is an isomorphism in high degree, thus the same is true for ιN . If N is bounded, then
LocZ(N) ∼= Loc

(
grN

)
is the zero sheaf, thus LocZ(N) = 0, as well.

Corollary 5.11. — The functor Db( D -mod)→ Db
D -mod( D -Mod) is fully faithful.

Proof. — Let N be a good D-module, and let N := ΓZ
S ( N ). Since N is finitely

generated, there is some m such that the evaluation map pZm ⊗C mN → pN is
surjective for all p ≥ m. Localizing, this shows we have a surjective map 0 T m ⊗C

mN → N . Taking a classical limit (possibly after increasingm), we obtain a surjection
L−m ⊗C mN → N /hN ; thus we have described the quantization of the familiar
construction of such a map in algebraic geometry. Applying this inductively, we can
resolve N as a complex of locally free sheaves over D, each step given by sums of 0 T mi
with m0 < m1 < m2 < · · · .

By taking m0 sufficiently large, we can assure that for any fixed good M, we
have Hi(M; Lmj ⊗SM M/hM) = 0 for all i > 0, j ≥ 0. Thus, we also have
ExtiD(0 T mj , M) = 0 for all i > 0, j ≥ 0. It follows that we can use this resolution to
compute Ext( N , M) in either Db( D -mod) or Db

D -mod( D -Mod) and we see that the
results are canonically isomorphic.

5.3. Z-algebras and abelian localization. — First, we discuss some basic results that
hold whenever X/S satisfies our running assumptions for this section. We call a bi-
module between two rings Morita if it induces a Morita equivalence between the two
rings. We call a Z-algebra Z Morita if for all k ≥ m ≥ 0 the kZk-mZm-bimodule kZm
is Morita and the natural map

(7) kZk−1 ⊗ k−1Zk−2 ⊗ · · · ⊗ m+1Zm → kZm

is an isomorphism. In the terminology of [29, §5.4], this means that Z is isomorphic
to the Morita Z-algebra attached to the bimodules m+1Zm.

Definition 5.12. — For any natural number p, let Z[p] be the Z-algebra defined by
putting kZ[p]m := k+pZm+p. For any Z-module N , we define a Z[p]-module N [p]

by N [p]k = Np+k.

It is clear that Z[p] is isomorphic to the Z-algebra Z(X, Qp, L).

Proposition 5.13. — The Z-algebra Z constructed in Section 5 is Morita if and only
if, for all k ≥ 0, localization holds for Dk.
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Proof. — Consider the functor γ(M) =
⊕

k kZ0 ⊗AM from finitely generated mod-
ules over A = 0Z0 to Z-mod /Z-modbd. Let β denote the adjoint to this functor;
one description of β is that β({jN}) = 0Zj ⊗Aj jN for j � 0. There is a nat-
ural transformation β(ΓZ

S ( M)) → ΓS( M), induced by the natural transformation
Loc(M) → LocZ({kZ0 ⊗A M}). The latter natural transformation has inverse given
by the multiplication map of sections 0 T ′k ⊗Ak kZ0 → D0, tensored with M over A.
Thus the former natural transformation is an isomorphism as well.

In particular, if we assume that Z is Morita then Gordon and Stafford [29, §5.5]
show that γ and β are equivalences. Thus combining this result with Theorem 5.8, we
see that ΓS = β ◦ ΓZ

S is the composition of two equivalences, and thus an equivalence
itself and localization holds for D. Furthermore, if Z is Morita, then Z[k] is Morita
for all k ≥ 0, so localization holds for Dk for all k ≥ 0.

Conversely, suppose that localization holds for Dk for all k ≥ 0. We have a natural
isomorphism of functors

k+1Zk ⊗− ∼= ΓS(k+1 T ′k ⊗ Loc(−))

from Ak -mod to Ak+1 -mod. Since the right hand side is an equivalence, so is the left
hand side; this proves that the bimodule k+1Zk is Morita for all k ≥ 0. Similarly, this
implies that

k+1Zk ⊗ kZm ∼= ΓS

(
k+1 T ′k ⊗ Loc(kZm)

)
∼= ΓS(k+1 T ′m) ∼= k+1Zm.

By induction, this implies that the map (7) is an isomorphism. Thus, Z is Morita.

For the remainder of the subsection, we consider the case of a conical symplectic
resolution M. As in Proposition 2.10, let π : Mη → A1 be the twistor family of M
with Nη the affinization of Mη, and let L be the line bundle on Mη extending L.
Let Qk be the S-equivariant quantization of Mη with period [ωMη

] + h(λ+ kη).
Lemma 4.15 has an algebraic counterpart. Assume N is a A -module such that:
1. N ∼= Hi(Mη; N )S for any sheaf N satisfying the hypotheses of Lemma 4.15.
2. The preimage π−1(S) of the support S of the coherent sheaf grN on Nη is

contained in a Lagrangian subvariety of M.

Lemma 5.14. — There exists a nonzero polynomial q(x) ∈ C[x] such that q(h−1t) ∈ A
acts by zero on N .

Proof. — If N ∼= Hi(Mη; N )S, then the minimal polynomial q of N provides the
desired polynomial. If hypothesis (2) holds, then Loc(N) is supported on π−1(S), so
Lemma 4.15 applies to Loc(N). Since the map N ↪→ ΓS(Loc(N)) is injective, the
polynomial q such that q(h−1t) kills Loc(N) applies equally to N .

One particularly important application is to the product M ×M, and its twistor
deformation Mη ×A1 Mη. The completed outer tensor product Qk�̂S[A1]Q

op
` is a

quantization of this product, with S-invariant section algebra Ak ⊗C[h−1t] A
op
` . Mod-

ules over this section algebra are just Ak -A`-bimodules with the left and right actions
of h−1t coinciding. An important example of such a bimodule is kZ` := ΓS(kT`[h

−1/n])
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or a tensor product of such bimodules. These have the further special property that
gr(kZ`) is supported on the diagonal in Nη ×A1 Nη; the same is thus true of any
tensor product of these modules.

The preimage of the diagonal under π × π is just Mη ×Nη Mη, so its intersection
with the preimage of any a ∈ A1 is Lagrangian (by the semi-small property). Thus,
we have that:

Lemma 5.15. — Let B be a filtered Ak -Am-bimodule which is a subquotient of a ten-
sor product of filtered bimodules of the form k′Zm′ , and whose support lies in M×M
(i.e., whose classical limit grB is killed by t). Then there exists a nonzero polynomial
qB(x) ∈ C[x] such that qB(h−1t) acts by zero on B.

Proposition 5.16. — There is a positive integer p such that Z[p] is Morita.

Proof. — The statement that Z[p] is Morita can be broken down into 3 smaller state-
ments:
(a) There exists p such that the bimodule kZk−1 is Morita for all k ≥ p.
(b) There exists p such that the map (7) is surjective for all k > m ≥ p.
(c) There exists p such that the map (7) is injective for all k > m ≥ p.
We first prove (a). The bimodule kZk−1 is Morita if and only if the maps

(8) kZk−1 ⊗Ak−1 k−1Zk → Ak

and

(9) k−1Zk ⊗Ak kZk−1 → Ak−1

are both isomorphisms. Let 0T−1 be the Q0-Q−1 bimodule quantizing L , and
let −1T0 be the Q-1 −Q0 bimodule quantizing L −1. Using notation similar to that
of Proposition 3.1, we have

k T k−1
∼= σ∗k

(
0T−1

)
:= 0T−1

/
(t− kh) · 0T−1|M

k−1 T k ∼= σ∗k
(
−1T0

)
:= −1T0

/
(t− hk) · −1T0|M,

which induces maps

(10) σ∗k
(

0Z−1

)
:= 0Z−1

/
(t− kh) · 0Z−1 → kZk−1

(11) σ∗k
(
−1Z0

)
:= −1Z0

/
(t− kh) · −1Z0 → k−1Zk.

Consider the short exact sequence

0 −→ 0T−1
t−kh−→ 0T−1 −→ k T k−1 −→ 0.

Adjoining h−1/n and taking sections, we obtain a long exact sequence

0 −→ 0Z−1
t−kh−→ 0Z−1 −→ kZk−1 −→ H1(Mη; kTk−1[h

−1/n]) −→ · · · .

This tells us that the map (10) is injective, with cokernel equal to the submodule
of H1(Mη; kTk−1[h−1/n]) annihilated by t − kh. Note that the associated graded of
the bimodule H1(Mη; kTk−1[h−1/n]) is supported over 0 ∈ A1, since all other fibers
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of π are affine (Proposition 2.14). By Lemma 5.14, there exists a nonzero polynomial
f(x) such that f(h−1t) acts by zero on H1(Mη; kTk−1[h−1/n]). If t − kh fails to act
injectively on H1(Mη; kTk−1[h−1/n]), then so does h−1t− k, which implies that k is a
root of f(x). Since there are only finitely many roots, there exists a p such that t−kh
acts injectively for all k ≥ p, and therefore the map (10) is an isomorphism. The same
argument with k and k − 1 reversed applies to the map (11).

Now, consider the tensor product map

(12) 0Z−1 ⊗A−1 −1Z0 → A0.

Let K be the kernel and E be the cokernel of this map, which are bimodules over A0.
Over non-zero elements of A1, the fibers are affine, so this map is an isomorphism.
Thus grK and grE are killed by t, and Lemma 5.15 applies. Thus, there are minimal
polynomials for h−1t acting on these modules given by qK and qE .

The usual spectral sequence for tensor product shows that the cokernel of the map
(8) is σ∗kE = E

/
(h− tk) ·E, and the kernel of this map is an extension of R1σ∗k(E) ∼=

Tor1
k(C, E) and σ∗k(K). Possibly increasing the p introduced earlier, we can assume

that for k ≥ p, the element h−1t− k acts invertibly on E and K. Thus, we have

σ∗k(E) = σ∗k(K) = R1σ∗k(E) = 0.

This shows that (8) is an isomorphism. A completely symmetric argument shows that
after increasing p again, we may also conclude that the map (9) is an isomorphism,
and so (a) is established.

We next prove (b). Fix an integer r such that R( L) is generated in degrees less
than or equal to r; it follows that Z is generated by kZm for k−m ≤ r. For k and m
such that k −m ≤ r, we can proceed exactly as in the proof of (a) to find a p such
that the map (7) is a surjection whenever m ≥ p. For the rest of the cases, we can
induct on the quantity k −m − r. Our inductive hypothesis tells us that the image
of the map (7) contains the image of the multiplication map kZq ⊗Aq qZm for all
k > q > m. Thus, the associated graded of the image of (7) contains all elements
of R( L) of degree k −m which can be written as a sum of products of lower degree
elements. Since elements of degree r ≤ k − m generate R( L), this implies that the
map (7) is indeed surjective, and (b) is proved.

Finally, we use (a) to prove (c). Choose p such that the map j+1Zj ⊗ jZj+1 →
j+1Zj+1 is an isomorphism for all j ≥ p. Now let k > m ≥ p be given, and consider
the maps

kZk−1 ⊗ k−1Zk−2 ⊗ · · · ⊗ m+1Zm ⊗ mZm+1 ⊗ · · · ⊗ k−2Zk−1 ⊗ k−1Zk

(13) ↓

kZm ⊗ mZm+1 ⊗ · · · ⊗ k−2Zk−1 ⊗ k−1Zk

(14) ↓

kZk = Ak.
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By our choice of p, the composition of the maps (13) and (14) is an isomorphism. It
follows that (13) is injective. Since the map (13) is the tensor product of the map (7)
with the Morita bimodule mZm+1 ⊗ · · · ⊗ k−2Zk−1 ⊗ k−1Zk, the map (7) must also
be injective.

Propositions 5.13 and 5.16 immediately yield the following corollary.

Corollary 5.17. — There is an integer p such that localization holds for Dk for all
k ≥ p.

Remark 5.18. — Corollary 5.17 is precisely the first statement of Corollary B.1 from
the introduction for very ample line bundles. If η is only ample, then there exists a
positive integer r such that rη is very ample, and we obtain Corollary B.1 by applying
Corollary 5.17 with λ′ = λ+ jη and η′ = rη for j = 0, 1, . . . , r − 1.

It is still desirable to have a non-asymptotic result; that is, a necessary and sufficient
condition for localization to hold for D itself in terms of Z-algebras. Let Z(p) be the
Z-algebra defined by kZ

(p)
m
∼= kpZmp with the obvious product structure. It is clear

that Z(p) is isomorphic to the Z-algebra Z(M, Q, Lp).

Lemma 5.19. — For all p, the restriction functor

Z-mod /Z-modbd → Z(p)-mod /Z(p)-modbd

is an equivalence of categories.

Proof. — By Theorem 5.8, both the source and the target are equivalent to D -mod,
and it is easy to check that these equivalences are compatible with the restriction
functor.

Proposition 5.20. — Localization holds for D if and only if Z(p) is Morita for some p.

Proof. — If Z(p) is Morita, then the functor ΓS : D -mod→ A -mod factors as

D -mod→ Z-mod /Z-modbd → Z(p)-mod /Z(p)-modbd → A -mod,

where the first functor is the equivalence of Theorem 5.8, the second is the equivalence
of Lemma 5.19, and the last is the equivalence of [29, §5.5]. Thus localization holds
for D.

Conversely, assume that localization holds for D. By Theorem 5.16, there is an
integer p such that Z[p] is Morita, which easily implies that Z(p)[1] is Morita. We need
to extend this to show that Z(p) is Morita, which involves showing that the bimodule
pZ0 is Morita and the multiplication map 2pZp⊗ pZ0 → 2pZ0 is an isomorphism. The
fact that pZ0 is Morita follows from the natural isomorphism of functors

pZ0 ⊗− ∼= ΓS
(
p T ′0 ⊗ Loc(−)

)
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along with the fact that localization holds for both D and Dp. Similarly, the fact that
the multiplication map is an isomorphism follows from the natural isomorphism of
functors

2pZp ⊗− ∼= ΓS
(

2p T ′p ⊗ Loc(−)
)

applied to the module pZ0.

Remark 5.21. — The “if” direction of Proposition 5.20 is very close in content to
[42, 2.10] (though they do not use the language of Z-algebras) and our proof draws
heavily on theirs. We note, however, that Proposition 5.16 and Corollary 5.17 have
no analogues in [42].

5.4. Comparison of the analytic and algebraic categories. — We keep our running as-
sumptions from the start of Section 5, and assume for simplicity that S is smooth
and that C[X]S = C. Up until this point we have worked exclusively in the algebraic
category, quantizing the sheaf of regular functions in the Zariski topology. On the
other hand, some other important papers have considered quantizations of the func-
tions on an analytic variety, for example [42, 43]. We will need to apply some results
from these papers below, so we must prove a comparison theorem relating quanti-
zations and their module categories for the nondegenerate Poisson scheme X and its
analytification Xan.

First, we note that every quantization Q in the Zariski topology introduces a cor-
responding quantization Qan of the structure sheaf in the analytic category. To see
this, we can consider the jet bundle J∞ Q, which is a pro-vector bundle on X with flat
connection whose sheaf of flat sections is Q, as explained in [13, 1.4]. The correspond-
ing sheaf of analytic sections (J∞ Q)an again has a flat connection, and we let Qan

be its sheaf of flat sections. We have a map α−1 Q → Qan where α : Xan → X is the
identity on points. If Q is S-equivariant, so is Qan.

As in the Zariski topology, we let Dan := Qan[h−1/n]. Similarly, for any D-module
M , we let Man := α−1M ⊗α−1 D Dan. As in [42], we call an S-equivariant Dan-module
good if it admits a coherent S-equivariant Qan|U -lattice on every relatively compact
open subset of X. If M is a good D-module, Man is a good Dan-module.

Theorem 5.22. — The functor (−)an : D -mod→ Dan -mod is an equivalence of cate-
gories.

Proof. — In essence, the proof is simply to observe that a version Theorem 5.8 holds in
the analytic topology. More precisely, we define the quantum homogeneous coordinate
ring Zan exactly as we defined Z. There is a canonical map from Z to Zan, and we
claim that it is an isomorphism.

In bidegree (0, 0), this map is the map from ΓS( D) to ΓS( Dan). To see that this is an
isomorphism, it is enough to show that the associated graded map Γ(SM)→ Γ(San

M)fin

is an isomorphism, where (−)fin denotes the subalgebra of S-locally finite vectors. Since
all S-weights on C[M] are positive, any S-weight vector in Γ(San

M) can be interpreted
as a section of a line bundle on the projectivization of X0 for the S action; by the
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classic GAGA theorem of Serre [63], this is in fact algebraic, and thus arises from an
algebraic function on X0. The argument in arbitrary bidegree follows from a similar
analysis of sections of line bundles.

Now that we know that Z and Zan are isomorphic, we have a functor from Dan -mod

to D -mod given by the composition

Dan -mod
(ΓZ

S)
an

−→ Zan -mod ∼= Z-mod
LocZ−→ D -mod .

This functor splits (−)an and is exact (since the cohomology of a sufficiently high
twist with L vanishes), so to check that it gives an equivalence, we need only check
that it kills no module K . Thus, we need only show that for any good S-equivariant
D-module, we must have that ΓZ

S is not 0. Since L is ample, K/hK ⊗ Lk has non-
zero sections for k � 0 unless K/hK = 0; then Nakayama’s lemma tells us that
k T ′0

an⊗ D0
K has non-zero sections as well unless K = 0. This completes the proof.

Remark 5.23. — Hou-Yi Chen [21] proves a version of Theorem 5.22 in the more
general context of DQ-algebroids, but subject to the hypothesis that X is projective
over a point (which is never the case for a conical symplectic resolution of positive
dimension). Chen uses a more direct reduction to Serre’s classic GAGA theorem than
we do; it is possible that his techniques could be adapted to our setting, as well.

Remark 5.24. — It might worry the reader that we used some analytic techniques in
the proof of Proposition 5.2, used that result in the proof of Theorem 5.8, and then
used that in the proof of Theorem 5.22; at first glance, this looks as though it may be
circular. In fact, in the proof of Proposition 5.2, we use only the comparison theorem
between algebraic and analytic de Rham cohomology; nothing in the vein of GAGA.

Similarly, it might worry the reader that we use Theorem 5.22 in the proof of
Lemma 4.15 earlier in the paper, but Lemma 4.15 is only used in the proof of the
localization results, Theorem 4.17 and Proposition 5.16, which are not used in this
section.

5.5. Twisted modules and the Kirwan functor. — In this section, we return to the as-
sumptions of Section 3.4, while keeping those introduced at the start of 5. That is we
additionally assume that we have a Hamiltonian action of a connected reductive alge-
braic group G on (X, Q) such that C[X]G×S with quantized moment map η : U(g)→ A,
which induces a flat commutative moment map X→ g∗. We fix a G-equivariant am-
ple line bundle L on X and we let U be its semistable locus. We assume that the G
action on U is free and, and if Xred is the reduced space (with Lred its induced ample
line bundle), that we have an induced isomorphism C[µ−1(0)]G = C[Xred], and more
generally an isomorphism Γ(µ−1(0); Lk)G = Γ(Xred, L

k).
Fix an element ξ ∈ χ(g). We’ll let Dred be the quantization of Xred defined by reduc-

tion by η− ξ (as defined in Section 3.4). We call a G-equivariant object N of D -mod

(respectively DU -mod) ξ-twisted if, for all x ∈ g, the action of x on N induced by
the G-structure coincides with left multiplication by the element η(x) − ξ(x) ∈ A.
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Let D -modξ (respectively DU -modξ) denote the full subcategory of ξ-twisted objects
of D -mod (respectively DU -mod). Kashiwara and Rouquier [42, 2.8(ii)] prove that
DU -modξ is equivalent to Dred -mod via the functor that takes N to ψ∗ Hom( Eξ, N ),
where Eξ is the sheaf defined in Section 3.4.

Define the functor κ : D -mod→ Dred -mod by putting

κ( N ) := ψ∗ Hom( Eξ, N U)

for all N in D -mod. We call κ the Kirwan functor in analogy with the Kirwan map
in (equivariant) cohomology. Our main result in this section will be Theorem 5.31,
which says that the Kirwan functor is essentially surjective. To prove this theorem,
we introduce all of the analogous constructions in the context of Z-algebras.

In Section 5, we defined a Z-algebra Z = Z(X, D, L) and functor ΓZ
S : D -mod →

Z -mod. We may also define the Z-algebra Zred = Z(Xred, Dred, Lred), with its own
sections functor ΓZ

S,red : Dred -mod→ Zred -mod.
By assumption, we have a ring homomorphism

η : U(g) −→ A = ΓS( D) ∼= 0Z0.

Moreover, for all m ≥ 0, there is a unique homomorphism

ηm : U(g) −→ ΓS( Dm) ∼= mZm

such that η0 = η and for all x ∈ g, the action of x on L induced by the G-structure
coincides with that induced by the adjoint action, via ηm+1 and ηm, on the Dm+1-Dm
bimodule m+1 T m that quantizes L. By Proposition 3.13, we can describe Ared as an
algebraic reduction of A, and similarly, we have a map jZk → Γ(U; j T k), which
induces a map

iYj := iZj

/
iZj · 〈ηj(x)− ξ(x) | x ∈ g〉 → Γ(U; j T k ⊗ Eξ).

Lemma 5.25. — The induced map iYj
G → i(Zred)j is an isomorphism.

Proof. — The proof is essentially the same as Proposition 3.13. The associated graded
map Γ(µ−1(0); Li−j)G → Γ(Xred, L

i−j
red ) is an isomorphism by assumption, so this

implies the same for the map under consideration.

We say that a G-equivariant Z-module N =
⊕

m mN is ξ-twisted if, for all x ∈ g,
the action of x on mN induced by the G-structure coincides with left multiplication by
the element ηm(x)− ξ(x) ∈ mZm. We denote the category of such modules Z-modξ.

Lemma 5.25 tells us that Y is a naturally a Z − Zred bimodule. We define the
Z-Kirwan functor

κZ := HomZ(Y,−) : Z-mod→ Zred -mod

along with its left adjoint

κZ! := Y ⊗Zred
− : Zred -mod→ Z-mod .
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Remark 5.26. — Every Z-module N has a largest submodule Nξ on which ηj(x)−ξ(x)

acts locally finitely and on which the g-action integrates to a G-action. The G-action
makes Nξ a ξ-twisted equivariant module in a canonical way. Because of the ξ-twisted
condition, the G-invariant part of Nξ is already a module over Zred in the obvious
way, and we have a canonical isomorphism κZ(N) ∼= NG

ξ .

Proposition 5.27. — The functors κZ and κZ! both preserve boundedness and thus in-
duce functors

κZ : Z-mod /Z-modbd → Zred -mod /Zred -modbd

and

κZ! : Zred -mod /Zred -modbd → Z-mod /Z-modbd .

Proof. — The functor κZ obviously sends bounded modules to bounded modules.
To see that κZ! preserves boundedness, find integers N and M such that all of the
higher cohomology groups of LN and LMred vanish. Then for any non-negative integers
i, j, k with i ≥ j + N ≥ k + N + M the associated graded of the multiplication map
iYj ⊗ j(Zred)k → iYk. is

Γ(µ−1(0); Li−j)G ⊗ Γ(Xred; Lj−kred )→ Γ(µ−1(0); Li−k)G.

Since
⊕

n Γ(µ−1(0); Ln)G is a finitely generated module over
⊕

n Γ(Xred; Lnred), there
is some N ′ such that

⊕
N≤n≤N ′ Γ(µ−1(0); Ln)G generates

⊕
N≤n Γ(µ−1(0); Ln)G.

That is, if we fix i and k such that i − k ≥ N , then Γ(X; Li−k)G is spanned by the
images of the maps

Γ(µ−1(0); Li−j)G ⊗ Γ(Xred; Lj−kred )→ Γ(µ−1(0); Li−k)G

for all j such that N ≤ i− j ≤ N ′.
We may as well assume that N ′ ≥ M + N . Thus, since a map whose associated

graded is surjective is itself surjective, we see that the map⊕
j≥i−N ′

iYj ⊗ j(Zred)k → iYk

is surjective for all k ≤ i −N ′. If M is a Zred-module, it follows that if i ≥ N ′ then
κZ! (M)i is spanned by the images of iYj⊗Mj for j ≥ i−N ′. Then ifMp = 0 for p ≥ P ,
we have κZ! (M)i = 0 whenever i > P +N ′.

This shows that both κZ and κZ! preserve bounded modules and thus induce functors
on the quotient categories.
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Proposition 5.28. — The following diagram commutes.

D -mod Z-mod /Z-modbd

Dred -mod Zred -mod /Zred -modbd

ΓZ
S

κ

ΓZ
S,red

κZ

(Note that the horizontal arrows are equivalences by Theorem 5.8.)

Proof. — Fix an object N of D -mod. First, note that we can assume that N = N ξ,
that is, that N has an G-equivariant structure agreeing with that induced by η − ξ.
This is because passing to the largest submodule that has such a structure doesn’t
change κ or κZ.

With this assumption, we have a restriction map

κZ
(
ΓZ
S ( N )

)
=
(
ΓZ
S (X; N )

)
G −→

(
ΓZ
S (U; N )

)
G ∼= ΓZ

S,red

(
κ( N )

)
where ΓZ

S (X;−) = ΓZ
S , and ΓZ

S (U;−) denotes the same functor defined using the set U
of stable points. As in the proof of Theorem 5.8, let N̄ := N (0)/N (−1).

For each m ∈ Z, the restriction from X to U gives the following long exact sequence
in local cohomology.

H0
X\U

(
N̄ ⊗ Lm

)
G −→ Γ

(
X; N̄ ⊗ Lm

)
G −→ Γ

(
U; N̄ ⊗ Lm

)
G

−→ H1
X\U

(
N̄ ⊗ Lm

)
G −→ · · · .

The space

(15)
⊕
m≥0

H0
X\U

(
N̄ ⊗ Lm

)
of sections of twists of N̄ which are supported on X \ U is finitely generated over the
ring

(16)
⊕
m≥0

Γ (X \ U; Lm)

of sections of powers of the restriction of L to X\U. Since G is reductive, the invariant
part of (15) is finitely generated over the invariant part of (16). The invariant part
of (16) is a single copy of C, since any invariant section of Lm for m > 0 vanishes on
all unstable points. Thus H0

X\U
(
N̄ ⊗ Lm

)
G vanishes for m� 0.

The module H1
X\U

(
N̄ ⊗ Lm

)
is not in general finitely generated as a module over

the invariant section ring. On the other hand, the module
⊕

m≥0 Γ
(
U; N̄ ⊗ Lm

)
G

is the sections of the twists of a coherent sheaf on the quotient U/G, which is pro-
jective over an affine variety, and thus finitely generated over the invariant section
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ring
⊕

m≥0 Γ (U; Lm)G. In particular, its image in
⊕

m≥0H
1
X\U

(
N̄ ⊗ Lm

)
G under

the boundary map is finitely generated over the same ring.
Since any positive degree invariant section of L vanishes on X\U, its action on local

cohomology is locally nilpotent; this implies that there is some integer k such that all
invariants of degree ≥ k act trivially on the image of

⊕
m≥0 Γ

(
U; N̄ ⊗ Lm

)
G under

the boundary map. This in turn implies that the image is trivial for m sufficiently
large. Note that we used the fact that the image is finitely generated in both of these
steps.

It follows that the restriction map(
Γ(X; N̄ ⊗ Lm)

)
G −→

(
Γ(U; N̄ ⊗ Lm)

)
G

is an isomorphism for m� 0. We next observe that(
Γ(X; N̄ ⊗ Lm)

)
G ∼= gr

(
ΓZ
S (X;m T ′0 ⊗ D N )

)
G ∼= gr

(
ΓZ
S (X; N )[m]

)
G

and similarly (
Γ(U; N̄ ⊗ Lm)

)
G ∼= gr

(
ΓZ
S (U; N )[m]

)
G,

where [m] denotes a shift as in Definition 5.12. Since maps that induce isomorphism
on associated graded are isomorphisms, we may conclude that the restriction map(

ΓZ
S (X; N )[m]

)
G −→

(
ΓZ
S (U; N )[m]

)
G

is an isomorphism for m� 0. This is equivalent to the statement that the kernel and
cokernel of the map (

ΓZ
S (X; N )

)
G −→

(
ΓZ
S (U; N )

)
G

are bounded, as desired.

Lemma 5.29. — The Kirwan functor κ has a left adjoint κ! such that κ ◦ κ! is iso-
morphic to the identity functor on Dred -mod.

Proof. — By Theorem 5.28, we may work instead with the Z-Kirwan functor κZ and
its left adjoint κZ! . Let iY

′
j ⊂ iYj be the sum of all non-trivial G-isotypic components.

Since G is reductive, iYj is isomorphic to iY ′j ⊕ iY Gj . There is a natural map from iY
G
j

to i(Zred)j whose associated graded is the map Γ(µ−1(0); Li−j)G → Γ(Xred; Li−jred ).
This map is an isomorphism when i − j is sufficiently large, which implies that the
same is true of the map iY

G
j to i(Zred)j . Thus, modulo bounded modules, we have

Y ∼= Y ′ ⊕ Zred as a right module over Zred. Then for any Zred-module N , we have

κZ ◦ κZ! (N) = κZ(Y ⊗Zred
N) ∼= (Y ⊗Zred

N)G ∼= Zred ⊗Zred
N ∼= N,

modulo bounded modules.

Remark 5.30. — One can use similar principles to construct a right adjoint as well
as a left to κ. One considers the Zred − Z bimodule

iWj := iZj

/
〈ηj(x)− ξ(x) | x ∈ g〉 · iZj .

The obvious guess for the right adjoint based on general nonsense is HomZred
(W,−);

however, we need to exercise care here since W is not finitely generated as a left
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module. On the other hand, it is (as a left module) the direct sum W =
⊕

χ∈ĜW
χ

of its isotypic components Wχ according to the natural G action, and each isotypic
component is finitely generated even after taking the associated graded by a classical
theorem of Hilbert. We should emphasize that here Ĝ is the set of all finite dimensional
representations, not just 1-dimensional ones.

A replacement for HomZred
(W,−) =

∏
χ∈Ĝ HomZred

(Wχ,−) with better finiteness
properties is the direct sum κ∗(−) =

⊕
χ∈Ĝ HomZred

(Wχ,−) which we can consider as
the subspace of HomZred

(W,−) which kills all but finitely many isotypic components.
This is closed under the action of Z acting on the right since the G-action on Z is
locally finite.

It is still not obvious that κ∗ takes finitely generated modules to finitely generated
modules. When X is the cotangent bundle to a smooth affine G-variety, this is proved
in a recent preprint by McGerty and Nevins [47, 6.1(3)].

The following theorem, which is an immediate consequence of Lemma 5.29, may
be regarded as a categorical, quantum version of Kirwan surjectivity.

Theorem 5.31. — The Kirwan functor κ is essentially surjective.

Proof. — For any object of Dred -mod, we can apply the left adjoint from Lemma 5.29
to obtain a witness to essential surjectivity.

Remark 5.32. — McGerty and Nevins [46] always work with symplectic quotients of
affine schemes, and the category of quantizations that they consider is by definition
the essential image of the Kirwan functor. Thus Theorem 5.31 establishes that their
module category is the same as ours.

6. Convolution and twisting

Throughout Section 6, we’ll only consider conical symplectic resolutions M.
Let ν : M → M0 be the resolution map with Steinberg variety Z := M ×M0 M.
Consider the three different projections pij : M×M×M→M×M as well as the two
projections pi : M ×M → M. The cohomology H2 dimM

Z (M ×M;C) with supports
in Z has a convolution product given by the formula

α ? β := (p13)∗(p
∗
12α · p∗23β),

making it into a semisimple algebra [22, 8.9.8]. For any closed subvariety L ⊂M with
the property that L = ν−1(ν(L)), there is a degree-preserving action of this algebra
on the cohomology H∗L(M;C) given by the formula

α ? γ := (p2)∗(α · p∗1γ).

Example 6.1. — When M is the cotangent bundle of the flag variety, H2 dimM
Z (M ×

M;C) is isomorphic to the group ring of the Weyl group [22, 3.4.1], and H∗(M;C) is
isomorphic to the regular representation.
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In this section, we explain how to categorify this action. In Section 6.1, we define
the category of Harish-Chandra bimodules over a pair of quantizations. There is both
an algebraic and a geometric version of this definition, and they are related by the
localization and invariant section functors. In Section 6.2, we show that a (geometric)
Harish-Chandra bimodule has a characteristic cycle in H2 dimM

Z (M×M;C), and ten-
sor products of bimodules categorify convolution product of cycles. Furthermore, an
object N of Db( D -mod) has a characteristic cycle in HdimM

L (M;C) for any L ⊂M
containing Supp N , and we show that the tensor product action of bimodules on
modules categorifies the convolution action. In Section 6.3 we define a particularly
nice collection of (algebraic) Harish-Chandra bimodules, which we use in Section 6.4
to study a certain collection of auto-equivalences of Db(A -mod) related to twisting
functors on BGG category O.

6.1. Harish-Chandra bimodules. — Recall that, for any λ ∈ H2(M;C), we let Aλ :=

ΓS( Dλ) be the section ring of the quantization of M with period λ. Recall from
Proposition 3.6 that we can write this ring for each λ as a quotient of the sections
A of a canonical quantization of the universal deformation M . Let H be a finitely
generated Aλ′-Aλ bimodule. Recall that grAλ ∼= grAλ′ ∼= C[M], thus for any filtration
H(0) ⊂ H(1) ⊂ . . . ⊂ H which is compatible with the filtrations on Aλ and Aλ′ , the
C[M]⊗C[M]-module grH may be interpreted as an S-equivariant sheaf onM0×M0

∼=
Spec

(
C[M]⊗ C[M]

)
.

When n is greater than 1, we will be interested in a thickened associated graded
grnH := R(H)/hR(H). This is a module over R(Aλ⊗Aop

λ′ )/hR(Aλ⊗Aop
λ′ )
∼= C[M0]⊗

C[M0] ⊗ C[h1/n]/(h), and thus over C[M0] ⊗ C[M0]. The module grnH is an n-fold
self-extension of grH, but this can be a non-split extension, so grnH contains more
information.

Definition 6.2. — We say that H is Harish-Chandra if it is finitely generated and it
admits a filtration such that grnH is scheme-theoretically supported on the diagonal.
Equivalently, we require that if aλ ∈ Aλ(k) and aλ′ ∈ Aλ′(k) are specializations of the
same element a ∈ A , then for all h ∈ H(m), we have aλ · h− h · aλ′ ∈ H(k+m−n).

Let λ′HCa
λ be the category of Harish-Chandra bimodules, and let Db

HC(Aλ′ -mod-Aλ)
be the full subcategory of Db(Aλ′ -mod-Aλ) consisting of objects H whose cohomol-
ogy Hi(H) is Harish-Chandra.

Proposition 6.3. — If Aλ′ has finite global dimension, H1 ∈ Db
HC(Aλ′ -mod-Aλ), and

H2 ∈ Db
HC(Aλ′′ -mod-Aλ′), then H2

L
⊗H1 ∈ Db

HC(Aλ′′ -mod-Aλ).

Proof. — Consider the Rees modules R(H1), R(H2) associated to some good filtra-
tion. These modules have locally free resolutions over R(Aλ′⊗Aop

λ ) and R(Aλ′′⊗Aop
λ′ )

such that, if f is congruent to f ′ modulo h, then f ′ ⊗ 1− 1⊗ f acts trivially on the
cohomology of R(Hi) modulo h. By a standard result of homological algebra, there
exists a homotopy pi on the resolution of R(Hi) such that f ′ ⊗ 1− 1⊗ f + ∂pi + pi∂

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2016



52 T. BRADEN, N. PROUDFOOT & B. WEBSTER

acts trivially modulo h on the complex itself. Then p2 ⊗ 1 + 1 ⊗ p1 is a homotopy
that plays the same role for f ′′ ⊗ 1 − 1 ⊗ f acting on the tensor product of these
complexes. This shows that f ′′ ⊗ 1 − 1 ⊗ f acts by 0 modulo h on the cohomology

of R(H2)
L
⊗R(H1), so H2

L
⊗H1 ∈ Db

HC(Aλ′′ -mod-Aλ).

We can view Aλ′ ⊗ Aop
λ as the ring of S-invariant sections of a sheaf Dλ′�̂Dop

λ

on M×M; we must complete the naive tensor product in the h-adic topology in or-
der to satisfy the hypotheses of a quantization. As a quantization, Dλ′�̂Dop

λ has period
(λ′,−λ). By a Dλ′ -Dλ bimodule, we mean an S-equivariant sheaf of Dλ′�̂Dop

λ -mod-
ules on M ×M. We let Db( Dλ′ -mod- Dλ) be the bounded derived category of good
Dλ′�̂Dop

λ -modules.

Definition 6.4. — For any λ, λ′ ∈ H2(M;C), let λ′HCg
λ be the category of good

Dλ′-Dλ bimodules H with “thick classical limits” that are scheme-theoretically sup-
ported on the Steinberg Z ⊂M×M. More precisely, if Q is the canonical quantization
of M , we require H to admit a lattice H (0) such that for all sections f̃ of Q, H (0)

is invariant under h−1(f̃λ′ ⊗ 1− 1⊗ f̃λ), where f̃λ′ and f̃λ are the specializations of f̃
at λ′ and λ, respectively. As in the algebraic setting, we define Db

HC( Dλ′ -mod- Dλ) to
be the full subcategory of Db( Dλ′ -mod- Dλ) consisting of objects H whose cohomology
H( H ) lies in λ′HCg

λ.

Considering these bimodules as modules over the quantization Dλ′,−λ of M×M,
we can apply the (derived) localization and sections functors as in previous sections.

Theorem 6.5. — For every λ, λ′, we have

RΓS(Db
HC( Dλ′ -mod- Dλ)) ⊂ Db

HC(Aλ′ -mod-Aλ).

If Aλ and Aλ′ have finite global dimension (13), then LLoc(Db
HC(Aλ′ -mod-Aλ)) ⊂

Db
HC( Dλ′ -mod- Dλ).

Proof. — Let H be an object in λ′HCg
λ, and let H (0) ⊂ H be a lattice satisfying

the required condition. For every m, we have a long exact sequence showing that
Hp(M; H (0)/H (−mn)) is a extension of a submodule ofHp(M; H (0)/H (−(m−1)n))

and quotient of

Hp(M; H (−(m− 1)n)/H (−mn)) ∼= Hp(M; H (0)/H (−n)).

Thus, Hp(M; H (0)/H (−mn)) has an m step filtration compatible with H (0) ⊃
H (−n) ⊃ · · · such that elements of Aλ′ ⊗ Aop

λ of the form f̃λ′ ⊗ 1 − 1 ⊗ f̃λ act
trivially on the associated graded. Since Hp(M; H (0)) = lim←−H

p(M; H (0)/H (−mn))

by Lemma 4.11, we have an induced filtration on this group such that f̃λ′ ⊗1−1⊗ f̃λ
acts trivially modulo h. This shows that the cohomology of RΓS( H ) is Harish-Chandra
as well.

(13) The finite global dimension hypothesis is truly necessary. If Aλ does not have finite global
dimension, the derived localization LLoc(Aλ) as a bimodule may not be bounded and thus not
in DbHC(Dλ -mod- Dλ).
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Now letH be an object of λ′HCa
λ and put H := LLoc(H). A filtration ofH induces

a lattice in Hp( H ). For any f̃ ∈ Γ(M; D(0)), we have that

(f̃λ′ ⊗ 1− 1⊗ f̃λ) ·R(H) ⊂ h ·R(H);

thus, on any projective resolution, the map induced by (f̃λ′ ⊗ 1 − 1 ⊗ f̃λ) is null-
homotopic mod h; this implies that our lattice inHp( H ) has the required property.

Corollary 6.6. — If derived localization holds at λ′ and −λ, then LLoc and RΓS are
inverse equivalences between Db

HC(Aλ′ -mod-Aλ) and Db
HC( Dλ′ -mod- Dλ). If local-

ization holds at λ′ and −λ, then Loc and ΓS are inverse equivalences between λ′HCa
λ

and λ′HCg
λ.

Consider the convolution product defined by the formula

(17) H 1 ? H 2 := (p13)∗(p
−1
12 H 1

L
⊗p−1

2 Dλ′
p−1

23 H 2),

where pij is one of the three projections from M×M×M to M×M.

Proposition 6.7. — If M ∈ Db( Dλ′′�̂Dop
λ′ -mod) and N ∈ Db( Dλ′�̂Dop

λ -mod), then
we have M ? N ∈ Db( Dλ′′�̂Dop

λ -mod). If furthermore M ∈ Db
HC( Dλ′′ -mod- Dλ′),

and N ∈ Db
HC( Dλ′ -mod- Dλ), then M ? N ∈ Db

HC( Dλ′′ -mod- Dλ).

Proof. — The modules M(0) and N (0) have finite resolutions

· · · →M
(1)
1 �̂M

(2)
1 →M

(1)
0 �̂M

(2)
0 → M(0)

and · · · → N
(1)
1 �̂N

(2)
1 → N

(1)
0 �̂N

(2)
0 → N (0)

with M
(1)
j (resp. M (2)

j , N
(1)
j , N

(2)
j ) locally free over Qλ′′ (resp. Qop

λ′ , Qλ′ , Q
op
λ ), since

the same is true of coherent sheaves over SM×M. Thus, we can apply convolution to
these modules by taking the naive tensor product over p−1

2 Dλ′ :

M ? N (0) := M
(1)
• �̂H•

(
M;M

(2)
• ⊗ Dλ′ N

(1)
•
)
�̂N (2)

• ,

where the middle term is considered as a complex of vector spaces, which is of finite
length since M is finite dimensional. This shows that M ? N is a bounded length
complex.

The argument that M ? N lies in λ′′HCg
λ if M, N are Harish-Chandra is exactly

as in Proposition 6.3. The action of fλ ⊗ 1 − 1 ⊗ fλ′ on any resolution of M(0) is
homotopic to 0 modulo h for a global function f , as is the action of fλ′ ⊗ 1− 1⊗ fλ′′
on any resolution of N (0). Thus, tensoring these homotopies gives one for fλ ⊗ 1 −
1 ⊗ fλ′′ on M ? N (0). This function thus kills the cohomology of the classical limit
M ? N (0)/h · M ? N (0).

Proposition 6.8. — Suppose that derived localization holds for λ, λ′,−λ′, and −λ′′.
The derived sections functor RΓS intertwines the convolution of bimodules with derived
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tensor product. That is, given Harish-Chandra bimodules H 1 ∈ Db
HC( Dλ′ -mod- Dλ)

and H 2 ∈ Db
HC( Dλ′′ -mod- Dλ′), we have an isomorphism

RΓS( H 1 ? H 2) ∼= RΓS( H 1)
L
⊗ RΓS( H 2).

In particular, if λ = λ′ = λ′′ and derived localization holds for ±λ, then the derived
localization and sections functors are inverse equivalences of tensor categories.

Proof. — The complex of modules RΓS( H 1) has a free resolution over

Aλ′′ ⊗ (Aλ′)
op = ΓS( Dλ′′�̂Dop

λ′ )

of the form

(18) · · · → Aλ′′ ⊗ U1 ⊗Aλ′ → Aλ′′ ⊗ U0 ⊗Aλ′ → · · · ,

and similarly RΓS( H 2) has a free resolution over Aλ′ ⊗Aop
λ = ΓS( Dλ′�̂Dop

λ )

(19) · · · → Aλ′ ⊗ V1 ⊗Aλ → Aλ′ ⊗ V0 ⊗Aλ → · · · .

Since derived localization holds, the sheaves H 1 and H 2 have resolutions

· · · → Dλ′′ ⊗ U1 ⊗ Dλ′ → Dλ′′ ⊗ U0 ⊗ Dλ′ → · · ·

· · · → Dλ′ ⊗ V1 ⊗ Dλ → Dλ′ ⊗ V0 ⊗ Dλ → · · · .
Thus, the convolution H 1 ? H 2 is given by the complex

(20) · · · →
⊕

i+j=k+1

Dλ′′⊗Ui⊗Aλ′⊗Vj⊗ Dλ →
⊕
i+j=k

Dλ′′⊗Ui⊗Aλ′⊗Vj⊗ Dλ → · · · .

The sections of (20) is the complex

(21) · · · →
⊕

i+j=k+1

Aλ′′⊗Ui⊗Aλ′⊗Vj⊗Aλ →
⊕
i+j=k

Aλ′′⊗Ui⊗Aλ′⊗Vj⊗Aλ → · · · .

This is also the tensor product of the complexes (18) and (19), so this shows that the
convolutions and tensor products agree.

Following Căldăraru and Willerton [19], we define a 2-category Quag where
– objects are elements of H2(M;C),
– 1-morphisms from λ to λ′ are objects of Db

HC( Dλ′ -mod- Dλ) with composition
given by ?, and

– 2-morphisms are the usual morphisms in Db
HC( Dλ′ -mod- Dλ).

Similarly, we can define a 2-category Quaa whose objects are those λ for which Aλ
has finite global dimension (we should consider only these because of Proposition 6.3)
and whose 1-morphisms are objects of Db

HC(Aλ′ -mod-Aλ), with composition given
by derived tensor product.

Let Cat denote the 2-category of all categories, and consider the functors

F g : Quag → Cat and F a : Quaa → Cat
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taking λ to Db( Dλ -mod) and Db(Aλ -mod), respectively. On 1-morphisms, F g takes
an object H to the functor given by convolution with H , defined exactly as in Equa-
tion (17). Similarly, F a takes an object H to the functor given by tensor product
with H.

Let L0 ⊂M0 be an S-equivariant closed subscheme, and let L ⊂M be its scheme-
theoretic preimage. We would like to use L0 and L to define subcategories of A -mod

and D -mod in a way that is analogous to the definitions of algebraic and geometric
Harish-Chandra bimodules (Definitions 6.2 and 6.4). In fact, those definitions will
specialize to these when M is replaced by M×M and L0 is the diagonal subscheme
of M0 ×M0.

Definition 6.9. — Let CL0

λ be the full subcategory of Aλ -mod consisting of modules
N admitting a filtration with thickened associated graded grnN scheme-theoretically
supported on L0. Equivalently, we require that if the symbol of aλ ∈ Aλ(k) vanishes
on L0, then aλ · N(m) ⊂ N(k + m − n). Let Db

L0
(Aλ -mod) be the full subcategory

of Db(Aλ -mod) consisting of objects with cohomology in CL0

λ .

Definition 6.10. — Let CLλ be the full subcategory of Dλ -mod consisting of modules
N that have thick classical limits that are scheme-theoretically supported on L. More
precisely, we require a lattice N (0) such that for any section f̃ of Q whose reduc-
tion modulo h lies in the ideal sheaf of L, N (0) is preserved by the action of h−1f̃ .
Let Db

L( Dλ -mod) be the full subcategory of Db( Dλ -mod) consisting of objects with
cohomology in CLλ .

Proposition 6.7, along with an easy extension of the proof of Proposition 6.3, show
that we have functors

F gL : Quag → Cat and F aL : Quaa → Cat

taking λ to Db
L( Dλ -mod) and Db

L0
(Aλ -mod), respectively.

Example 6.11. — Suppose that L0 ⊂M is the unique S-fixed point; then L = ν−1(0)

is the core of M (Remark 2.6), possibly with a non-reduced scheme structure. If the
weight n of the symplectic form is equal to 1, then L is Lagrangian, and CL0

λ is the
category of finite-dimensional Aλ-modules. When n is greater than 1, the core may
be too small, in which case CL0

λ will be zero. For example, if M is the Hilbert scheme
of points on C2 and S acts by scaling C2 (with n = 2), then the core is the punctual
Hilbert scheme, which has dimension one less than half the dimension of M.

Example 6.12. — Suppose that M is equipped with a Hamiltonian action of T := C×
that commutes with the action of S and has finite fixed point set MT, and consider
the Lagrangian subvariety

L0 :=
{
p ∈M0

∣∣∣ lim
t→0

t · p exists
}
.
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In this case, CL0

λ is the category of finitely generated Aλ-modules that are locally finite
for the action of A+

λ , where A
+
λ is the subring of Aλ consisting of elements with non-

negative T-weight. This is an analogue of a block of BGG category O, and will be the
primary object of study in our forthcoming paper [17] with Licata.

To explain the connection with BGG category O, take M = T ∗(G/B) and let ρ ∈
H2(M;C) be half of the Euler class of the canonical bundle. Then the ring Aλ+ρ is a
central quotient of U(g), and CLλ+ρ is the category of finitely generated, U(b)-locally
finite U(g)-modules with same central character as the Verma module Vλ with highest
weight λ, where H2(M;C) is identified with the dual Cartan h∗ via the Chern class
map. When λ is a regular integral weight, this category is equivalent in a non-obvious
way to the block Oλ of BGG category O by [64, Th. 1].

6.2. Characteristic cycles. — Let D be a quantization ofM, and let N ∈ Db( D -mod)

be an object of the bounded derived category. We have isomorphisms

Hom•D( N , N ) ∼= Hom•D( N , D)
L
⊗ D N ∼= D∆

L
⊗ D�̂ Dop

(
N �̂Hom•D( N , D)

)
,

and evaluation defines a canonical map to the Hochschild homology

HH ( D) := D∆

L
⊗ D�̂ Dop D∆.

All this is completely general, and holds in both the Zariski and the classical topology.
In the classical topology, we also have an isomorphism HH ( Dan) ∼= CM∆

[dimM]((h))

by [43, 6.3.1]. (This is a local calculation, so it suffices to check for the Weyl algebra,
where it follows from a Koszul resolution.)

We define the characteristic cycle

CC( N ) ∈ H0( HH ( Dan)) ∼= HdimM
(
M;C((h))

)
to be the image of id ∈ H0( Hom•D( N an, N an)) along this map. More generally, if N is
supported on a subvariety j : L ↪→M, then we may consider the identity map of N an

to be a section of j! Hom•D( N an, N an). Applying our map then gives us a class in

CC( N ) ∈ H0(j! HH ( Dan)) ∼= HdimM
L

(
M;C((h))

)
.

Our abuse of notation is justified by the fact that this class is functorial for in-
clusions of subvarieties. If we replace the conical symplectic resolution M with the
product M ×M, then this construction associates to a Harish-Chandra bimodule
H ∈ Db

HC( Dλ′ -mod- Dλ) a class CC( H ) ∈ H2 dimM
Z

(
M×M;C((h))

)
.

Kashiwara and Schapira [43, 7.3.5] show that the characteristic cycle of a holonomic
D-module (that is, one with Lagrangian support) may be computed in terms of its
classical limit.

Proposition 6.13 (Kashiwara and Schapira). — If N ∈ D -mod is supported on a La-
grangian subvariety L with components {Li}, then for any D(0)-lattice N (0) ⊂ N ,

CC( N ) =
∑
i

rkLi
(
N (0)/N (−1)

)
· [Li] ∈ HdimM

L (M;C) ⊂ HdimM
L

(
M;C((h))

)
,
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where rkLi denotes the rank at the generic point of Li.

We can also take characteristic cycles in families for modules over quantizations
of twistor deformations. For η ∈ H2(M;C), let Mη → A1 be the twistor deformation
defined in Section 2.1 with quantization D extending D. Let N be a good D-module,
and consider the image of the identity via the natural morphisms

(22) Hom•D(N ,N ) ∼= Hom•D(N ,D)
L
⊗D N ∼= D∆

L
⊗

D�̂A1Dop

(
N �̂A1 Hom•D(N ,D)

)
→ Dan

∆ ⊗Dan�̂A1Dan,op Dan
∆
∼= π−1SA1 [dimM]((h)).

This defines a class in relative cohomology CC(N ) ∈ HdimM
L (Mη/A1;C((h))) for any

Lagrangian L ⊃ Supp(N ). If we let L =M ∩L , then we have a natural restriction
map

HdimM
L (Mη/A1;C((h)))→ HdimM

L

(
M;C((h))

)
given by dividing by the coordinate t on A1. We also have a natural functor of restric-

tion from D -mod→ D -mod given by N |M = N
L
⊗C[t] C. The following lemma says

that these operations are compatible.

Lemma 6.14. — If N is a good D-module, then CC(N |M) = CC(N )|M.

Proof. — Consider the complex (22) of π−1SA1 modules, and take the derived tensor
product with C over C[t]. We claim that we obtain corresponding sequence for N |M.
That is, we obtain

(23) Hom•D(N |M,N |M) ∼= Hom•D(N |M, D)
L
⊗ D N |M

∼= D∆

L
⊗ D�̂ Dop

(
N |M�̂Hom•D(N |M, D)

)
→ Dan

∆ ⊗ Dan�̂ Dan,op Dan
∆
∼= CM[dimM]((h)).

It suffices to prove this for N locally free. In this case, Hom•(N ,D) is concentrated
in degree 0 and is itself locally free, so the statement is clear.

Thus CC(N )|M can be obtained as the image of the identity under the map (23).
By definition CC(N |M) is the image of the identity under (23), so we are done.

Consider the category K(Z) with objects H2(M;C) and morphisms H2 dimM
Z

(
M×

M;C
)
between any two objects, with composition given by the convolution struc-

ture defined at the beginning of this section. We also have a category K(HCg) with
objects H2(M;C) and morphisms K(λ′HCg

λ) from λ to λ′, with composition given
by convolution; this is simply the decategorification of the 2-category defined in the
previous section.

Proposition 6.15. — The characteristic cycle map defines a functor K(HCg)→ K(Z).
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Proof. — The fact that the characteristic cycle of a morphism in K(HCg) is an
element of H2 dimM

Z (M ×M;C) rather than H2 dimM
Z

(
M ×M;C((h))

)
follows from

Proposition 6.13. Since the map Z ×M Z → Z is proper, the rest of the proposition
follows from [43, 6.5.4] and the fact that the functor (−)an is monoidal and preserves
Hom-spaces.

Now fix a subvariety L0 ⊂M0, and let L ⊂M be its scheme-theoretic preimage as
in Section 6.1. We assume for convenience that L is Lagrangian. Consider the functor

GL : K(HCg)→ Ab

taking:

– The class λ to K( CLλ ), the Grothendieck group of objects in CLλ with finitely
generated cohomology concentrated in finitely many degrees. Note that by its
definition, CLλ may not be a Serre subcategory, in which case we consider the
subgroup of the Grothendieck group of all holonomic D-modules generated by
the objects in CLλ .

– The class [ H ] ∈ K(λ′HCg
λ) to the convolution operator

[ H ] ?− : K( CLλ )→ K( CLλ′)

defined by the formula

[ N ] ? α := (p13)∗(p
∗
12[ N ] · p∗23α).

We also have a functor
HL : K(HCg)→ Ab

taking every object λ to HdimM
L (M;C), where the map on morphisms is defined by

the convolution action of H2 dimM
Z (M×M;C) on HdimM

L (M;C).

Proposition 6.16. — The characteristic cycle map

CC: K( CLλ )→ HdimM
L (M;C)

defines a natural transformation from GL to HL.
That is, for all H ∈ Db

HC( Dλ′ -mod- Dλ) and N ∈ Db( CLλ ),

CC( H ) ? CC( N ) = CC( H ? N ).

Proof. — Since the map Z ×M Z → L is proper, this follows immediately from [43,
6.5.4].

Thus, these bimodules provide a natural categorification of the convolution algebra
of a symplectic singularity, and at least certain of its natural convolution modules. Of
course, the characteristic cycle maps need not be isomorphisms, but in many contexts,
they are.
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Example 6.17. — In the case where M = T ∗(G/B), the category λHCg
λ is equivalent

to the category of regular twisted D-modules on G/B×G/B for the twist (λ+ρ,−λ+ρ)

which are smooth on diagonal G-orbits; as long as λ + ρ is integral, this is the same
as the category of perverse sheaves smooth along the same stratification. The fact that
these categorify the symmetric group (and thus, implicitly, that CC is an isomorphism
in this case) goes back at least as far as [66]. This perspective is Koszul dual to the
usual categorification of the Weyl group by projective functors [8, 5.16].

Example 6.18. — In the case where M is a hypertoric variety, the map from
K(λHCg

λ) to H2 dimM
Z (M × M;C) is surjective by [16, 7.11], which allows us to

conclude that every irreducible representation of the convolution algebra remains
irreducible over K(HCg). The dimensions of these representations are computed in
[60] to be h-numbers of various matroids.

Example 6.19. — In the case of Nakajima quiver varieties, it is more natural to con-
sider all quiver varieties associated to a highest weight µ jointly, and thus define a
2-subcategory Qua(µ) of modules over the exterior products of quantizations of quiver
varieties associated to λ and possibly different dimension vectors.

However, even with different dimension vectors, we still have a notion of “diagonal”
in the product of two quiver varieties with the same highest weight. The affinization of
a quiver variety is the moduli space of semi-simple representations of the pre-projective
algebra of a given dimension, and we say a pair of such representations lies in the
stable diagonal if they become isomorphic after the addition of trivial representations.
We can define a 2-categories HCg(µ) by replacing the diagonal and its vanishing
ideal with that of the stable diagonal. The third author [68, Theorem A] relates this
construction to works by Cautis and Lauda [20] and Nakajima [50].

Proposition 6.20 (Webster). — There is a 2-functor from the version of the 2-quantum
group U defined by Cautis and Lauda to HCg(µ) with the property that the induced
map of K-groups is exactly the geometric construction of U(g) defined by Nakajima.

6.3. Twisting bimodules. — For the rest of this paper, we will assume that the Picard
group of M is torsion-free, so that a line bundle is determined by its Euler class
in H2(M;C). This assumption is not strictly necessary, but it greatly simplifies the
notation (see Remark 6.22).

Consider the universal Poisson deformation M of M. Let L be a line bundle
on M , let L be its restriction toM, and let γ ∈ H2(M;Z) ∼= H2(M ;Z) be the Euler
class of L or L. Let γT0 be the quantization of L constructed in Proposition 5.2,
and let γT ′0 := γT0[h−1/n]. This is a right D-module and a left module over Dγ , the
quantization with period I +hγ. (14) Then ΓS(M ; γT ′0 ) is a family over H2(M;C) via
the right action of A = ΓS(M ; D).

(14) We note that all quantizations of M are isomorphic as sheaves of algebras, but they are not
isomorphic as sheaves of π−1SH2(M;C)-algebras.
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Recall the map c : C[H2(M;C)] → Γ(M ; D) from Section 3.3, and the fact that
h−1c(x) ∈ A for all x ∈ H2(M;C)∗. Also recall that, by Proposition 3.6, the special-
ization of A at h−1c(x) = λ(x) for all x ∈ H2(M;C)∗ is isomorphic to Aλ.

Definition 6.21. — Let λ+γTλ denote the Aλ+γ-Aλ bimodule that we obtain by spe-
cializing ΓS(M ; γT ′0 ) at h−1c(x) = λ(x) for all x ∈ H2(M;C)∗.

Remark 6.22. — The purpose of the assumption at the beginning of this section was
to ensure that the bimodule λ+γTλ is actually determined by λ and γ; without the
assumption, the bimodule would depend on an additional choice of a line bundle with
Euler class γ.

Proposition 6.23. — The bimodule λ+γTλ is Harish-Chandra.

Proof. — By definition, λ+γTλ is a specialization of ΓS(M ; γT ′0 ). It carries a natural
filtration, where λ+γTλ(m) is the same specialization of ΓS(M ;h−m/nγT0[h1/n]). We
claim that the associated graded module with respect to this filtration is scheme-
theoretically supported on the diagonal.

To see this, consider a function f ∈ C[M] of S-weight `. We can choose a lift
f̃ ∈ ΓS(D(`)) so that its image in gr ΓS(D) ∼= C[M ] restricts to f on M. Let Dγ

be the quantization of M with period γ; since gr ΓS(Dγ) ∼= gr ΓS(D), we can
choose a lift f̃γ ∈ ΓS(Dγ(`)) of f similarly. To show that f ⊗ 1 − 1 ⊗ f annihilates
grn(λ+γTλ), it is sufficient to show that f̃γ ⊗ 1 − 1 ⊗ f̃ takes ΓS(M ;h−m/nγT0[h1/n])

to ΓS(M ;h1−`+m/n
γT0[h1/n]). This follows from the fact that γT0 is the quantization

of a line bundle on M , so the left action of f̃γ and the right action of f̃ agree
modulo h.

The following two propositions are bimodule analogues of Corollary 3.9 and Propo-
sition 3.10. Since their proofs are essentially identical, we omit them.

Proposition 6.24. — Let M and M′ be two conical symplectic resolutions of the same
cone. Fix elements λ, γ ∈ H2(M;C) ∼= H2(M′;C), where γ is the Euler class of a line
bundle onM or its strict transform onM′. The isomorphism of rings in Corollary 3.9
induces an isomorphism of bimodules λ+γTλ ∼= λ+γT

′
λ.

Proposition 6.25. — For any λ, γ ∈ H2(M;C) ∼= H2(M′;C), where γ is the Euler
class of a line bundle on M, and any w ∈ W , the isomorphisms of Proposition 3.10
induce isomorphisms of bimodules λ+γTλ ∼= w·(λ+γ)Tw·λ.

We would like to have an analogue of Proposition 3.6, as well, though an extra
hypothesis is needed. The following proposition gives a natural map from λ+γTλ
to ΓS(M; λ+γ T ′λ), and gives a sufficient (though not necessary) condition for it to be
an isomorphism. (Note that it is always injective.)

Proposition 6.26. — There is a natural map from the bimodule λ+γTλ to ΓS(M; λ+γ T ′λ). If
H1(M; λ+γ T ′λ) = 0, then this map is an isomorphism.
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Proof. — The pullback of γT ′0 along the map ∆ → H2(M;C) × ∆ given by h 7→
(hλ, h) is a quantization of L. By the uniqueness of the quantized line bundles con-
structed in Proposition 5.2, this pullback is isomorphic to λ+γ T ′λ. Since λ+γTλ is
obtained from γT ′0 by first taking sections and then specializing, this defines the
required map.

Now suppose that H1(M; λ+γ T ′λ) = 0. To prove that our map is surjective,
we factor the pullback into two steps. Choose ν ∈ H2(M;C) with Mν(∞) affine.
Let λ+γT ′λ

(ν) be the bimodule on Mν obtained by pulling γT ′0 back along the map
A1 ×∆→ H2(M;C)×∆ taking (t, h) to (tν + hλ, h). Thus λ+γ T ′λ is obtained from
this sheaf by pulling back further by the map ∆ → A1 × ∆ given by h 7→ (0, h).
Let λ+γOλ := ΓS(Mν ; λ+γT ′λ

(ν)
). To show that our map is surjective, it will suffice

to show that
1. the map from ΓS(M ; γT ′0 ) to λ+γOλ is surjective, and
2. the map from λ+γOλ to ΓS(M; λ+γ T ′λ) is surjective.
Consider the variety N := SpecC[M ] from Section 2.2, along with the related

variety Nν := SpecC[Mν ] ⊂ N . Let N sm and N sm
ν be their smooth loci; since

the affinization maps for M and Mν are isomorphisms over the smooth loci, we may
regard N sm as a subvariety of M and N sm

ν as a subvariety of Mν .
Let γS ′0 be the sheaf on N obtained from γT ′0 by first restricting it to N sm and

then pushing it forward to N ; since the complement of N sm in M has codimension
at least 2, we have

ΓS(M ; γT
′

0 ) ∼= ΓS(N ; γS
′
0).

Similarly, we define a sheaf λ+γS ′λ
(ν) on Nν obtained from λ+γT ′λ

(ν) by first restrict-
ing it to N sm

ν and then pushing it forward to Nν , and we have

λ+γOλ ∼= ΓS(Nν ; λ+γS
′
λ

(ν)
).

To see that the map from ΓS(M ; γT ′0 ) to λ+γOλ is surjective, it suffices to check that
the associated graded is surjective. When we pass to the associated graded, we obtain
a map between spaces of sections of two coherent sheaves on N , namely the classical
limits γS ′0 and λ+γS ′λ

(ν). By definition, the restriction of λ+γS ′λ
(ν) to N sm

ν is a
quotient of the restriction of γS ′0 to N sm. Since the singular locus has codimension
3 on both N and Nν , the induced map between pushforward sheaves is surjective,
and since N is affine, the same is true of the sections.

We now turn to the second surjectivity statement. Consider the exact sequence

0 −→ λ+γT
′
λ

(ν) h−1t−→ λ+γT
′
λ

(ν) −→ λ+γ T ′λ −→ 0

of sheaves on Mν and its associated long exact sequence

0 −→ λ+γOλ
h−1t−−−→ λ+γOλ −→ ΓS(M; λ+γ T ′λ) −→ H1(Mν ; λ+γT

′
λ

(ν)
)S

h−1t−−−→ H1(Mν ; λ+γT
′
λ

(ν)
)S −→ H1(M; λ+γ T ′λ)S −→ · · · .
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The surjectivity statement that we need is equivalent (by exactness) to injectivity of
the action of h−1t on H1(Mν ; λ+γT ′λ

(ν)
)S.

Since the generic fiber of Mν is affine, H1(Mν ; λ+γT ′λ
(ν)

)S is supported on the
fiber over 0. This bimodule is Harish-Chandra, so its localization has Lagrangian
support in M ×M. Applying Lemma 4.15, we see that h−1t satisfies a polynomial
equation on H1(Mν ; λ+γT ′λ

(ν)
)S, so the bimodule is the sum of finitely many gen-

eralized eigenspaces for h−1t and h−1t acts with finite length. In particular, if 0 is
a root of this minimal polynomial, the map h−1t is not surjective (since its stable
image is a proper summand), and thus H1(M; λ+γ T λ) is not 0. This is impossible by
assumption, so 0 cannot be a root. Thus, h−1t does act invertibly, so the desired map
is surjective.

The following proposition says that derived tensor product with a twisting bimod-
ule does not change the characteristic cycle of the localization. Let N be an object

of Db(Aλ -mod), so that LLoc(λ+γTλ
L
⊗N) is an object of Db( Dλ+γ -mod).

Proposition 6.27. — Assume derived localization holds at λ and λ+ γ. Then we have
that

CC(LLoc(N)) = CC(LLoc(λ+γTλ
L
⊗N)).

Proof. — As in the proof of Proposition 6.26, choose ν ∈ H2(M;C) such that Mν(∞)

is affine, and consider the sheaf λ+γT ′λ
(ν). At any point p of A1, the derived functor

of base change to the fiber π−1(pν) over p sends λ+γT ′λ
(ν) to the derived localization

LLoc(λ+γOλ/(t− p)) as a module over a quantization of Mν ×Mν , since the module
λ+γOλ is flat over A1.

If p is not 0, then the fiber is affine, and LLoc(λ+γOλ/(t− p)) is a line bundle on
the diagonal in π−1(pν)× π−1(pν). In particular, the class CC(λ+γT ′λ

(ν)
) thus must

be the class of the diagonal over every non-zero point in A1. By Lemma 6.14, we thus
have that

CC(LLoc(λ+γTλ)) = CC(λ+γT
′
λ

(ν)|π−1(0)) = [M∆].

By Proposition 6.15, the characteristic cycle map intertwines derived tensor product
with convolution. Since convolution with the diagonal is trivial, this implies the desired
equality.

We conclude this section by computing these bimodules explicitly in the case where
M is a symplectic quotient of a vector space, as in Example 2.2. Let G be a connected
reductive algebraic group acting on a vector space V with flat moment map µ :

T ∗V → g∗; let M be the symplectic quotient of T ∗V at a generic character θ of G,
and suppose that the Kirwan map K : χ(g)→ H2(M;C) is an isomorphism. Let AT∗V
be the section ring of the unique quantization of T ∗V ; this is isomorphic to the ring
of differential operators on V . Fix a quantized moment map η : U(g)→ AT∗V and an
element ξ ∈ χ(g), and let Dξ be the associated quantization of M (Section 3.4) with
section ring A = ΓS( D). By Proposition 3.13, we have A ∼= EndAT∗V (Yξ).
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Fix a second character ξ′ such that ξ′ − ξ integrates to a character of G, and
consider the A′-A bimodule

(24) Hom(Yξ′ , Yξ) ∼=
(
AT∗V

/
AT∗V · 〈η(x)− ξ(x) | x ∈ g〉

)ξ′−ξ
.

By Proposition 5.4, we have a natural map from Hom(Yξ′ , Yξ) to K(ξ′)TK(ξ). This map
is always injective but it need not be an isomorphism; the restriction to the semistable
locus can cause new sections to appear.

Lemma 6.28. — If ξ′ = ξ + mθ for m � 0, then the map from Hom(Yξ′ , Yξ)

to K(ξ′)TK(ξ) is an isomorphism.

Proof. — The associated graded of this map is the natural map from C[µ−1(0)]mθ
to Γ(M, Lmθ), where the subscript in the source indicated the S-weight space. This
map is an isomorphism for sufficiently large m, thus so is our original map.

Remark 6.29. — We note that, by Corollary 3.9 and Proposition 6.24, the source and
target of the map in Lemma 6.28 (along with the map itself) are independent of the
choice of conical symplectic resolution. Thus Lemma 6.28 simply says that our map
is an isomorphism when ξ and ξ′ are sufficiently far apart in any generic direction.

6.4. Twisting functors. — By Theorem 2.19, the set I of isomorphism classes of conical
symplectic resolutions of M0 is finite. For each i ∈ I, let Mi be a representative
resolution. By Remark 2.20, the chambers of the hyperplane arrangement H are in
canonical bijection with I×W , whereW is the Weyl group from Section 2.2. For each
pair (i, w), let Πi,w ⊂ PR be the set of parameters λ in the corresponding chamber
of H with the additional property that localization holds at wλ on Mi and derived
localization holds at w′λ and −w′λ on Mi′ for all pairs (i′, w′). Let

Π :=
⋃
I×W

Πi,w ⊂ PR.

Lemma 6.30. — If wη is an ample class on Mi, then for any λ, the class λ+ kη lies
in Πi,w for all but finitely many k ∈ Z≥0.

Proof. — Recall from Remark 2.20 that the chamber of H indexed by (i, w) is equal
to the w translate of the ample cone ofMi. Since wη is ample onMi, so is w(λ+ kη)

when k is sufficiently large. The fact that localization holds at w(λ+ kη) for large k
follows from Corollary 5.17, and Theorem 4.17 shows the required derived localization
statements. The fact that there are only finitely many elements of I shows that only
finitely many k need to be removed.

Let Aλ be the invariant section ring of the quantization with period λ. (Note that,
by Corollary 3.9, the ring Aλ does not depend on the choice of resolution ofM0.) For
any pair of elements λ, λ′ ∈ H2(M;C) that differ by an integral class, let

(25) Φλ
′,λ : D(Aλ -Mod)→ D(Aλ′ -Mod)
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be the functor obtained by derived tensor product with the bimodule λ′Tλ. For any
λ ∈ Π and w ∈W , let

(26) Φλw : D(Awλ -Mod)→ D(Aλ -Mod)

be the equivalence obtained from the isomorphism of Proposition 3.10. Note that
the compatibility in the statement of Proposition 3.10 implies that the composition
Φwλw−1 ◦ Φλw is naturally isomorphic to the identity functor.

Proposition 6.31. — Suppose that λ′ ∈ Πi,w. Then the functor Φλ
′,λ is naturally iso-

morphic to the composition

D(Aλ -Mod)
Φλw

−−−−−→ D(Awλ -Mod)
LLoci
−−−−−→ D( Dwλ -Mod)

wλ′ T
′
wλ⊗−

−−−−−−−−→ D( Dwλ′ -Mod)
RΓS,i

−−−−−→ D(Awλ′ -Mod)
Φwλ

′
w−1

−−−−−→ D(Aλ′ -Mod),

where the subscript i on RΓS and LLoc refers to the fact that we are using the reso-
lution Mi.

Proof. — Since λ′ ∈ Πi,w, localization holds at wλ′, which implies that the higher
cohomology of wλ′ T

′
wλ is trivial. Then Proposition 6.26 tells us that wλ′Twλ ∼=

RΓS,i(wλ′ T
′
wλ), and therefore that wλ′ T

′
wλ
∼= LLoci(wλ′Twλ). The proposition fol-

lows immediately using Proposition 6.25.

Corollary 6.32. — For all λ ∈ Π the functor Φλ
′,λ induces a functor Db(Aλ -mod)→

Db(Aλ′ -mod). If λ′ ∈ Π as well, then this functor is an equivalence.

Proof. — The functor LLoci induces an equivalenceDb(Awλ -mod)→ Db( Dwλ -mod)

as discussed in Remark 4.14. The functor wλ′T
′
wλ⊗− is an equivalence of abelian cate-

gories with inverse wλT
′
wλ′⊗− by the uniqueness part of Proposition 5.2. The functor

RΓS,i induces a functor Db( Dwλ′ -mod)→ Db(Awλ′ -mod) by Proposition 4.12, which
is also an equivalence if λ′ ∈ Π.

Corollary 6.33. — If λ and λ′ lie in the same chamber of H , then Φλ,λ
′ ◦ Φλ

′,λ is
naturally isomorphic to the identity functor.

Proof. — This follows similarly from Propositions 5.2 and 6.31.

Fixing a particular λ ∈ Π, we define twisting functors to be the group of endofunc-
tors of D(Aλ -Mod) (or of the full subcategory Db(Aλ -mod)) obtained by composing
functors of the form (25) and (26) and their inverses, and we define pure twisting
functors to be the subgroup obtained using only functors of the form (25) and their
inverses. Note that Corollary 6.33 implies that any such composition that never leaves
the chamber in which λ lives is trivial. However, when one crosses a wall and then
crosses back, one can and does obtain something nontrivial (see Proposition 6.38 for
the case of the Springer resolution).
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For Lemma 6.34 we adopt the notational convention, introduced in Section 4.3,
whereby we fix η ∈ H2(M;Z) and λ ∈ H2(M;C) and use k in a subscript or super-
script in place of λ+ kη.

Lemma 6.34. — Suppose that wη is very ample onMi. Then for any natural numbers
k` > k`−1 > · · · > k1 ≥ k0, there is a natural isomorphism of functors

Φk`,k0 ' Φk`,k`−1 ◦ · · · ◦ Φk1,k0 .

Proof. — Let L be the line bundle on Mi with Euler class η. For any k′ > k, the
higher cohomology of Lk

′−k vanishes. Therefore the higher cohomology of k′ T
′
k van-

ishes as well. By the same argument that we used in the proof of Proposition 6.31,
Proposition 6.26 tells us that

k`Tk0
∼= RΓS(k` T k0

) ∼= RΓS(k` T k`−1
⊗ Dk`−1

· · · ⊗ Dk1
k1

T k0
)

∼= RΓS(k` T k`−1
)
L
⊗Ak`−1

· · ·
L
⊗Ak1

RΓS(k1
T k0

) ∼= k`Tk`−1

L
⊗Ak`−1

· · ·
L
⊗Ak1

k1
Tk0

as desired. Since Φk`,k0 = k`Tk0

L
⊗Ak0

−, the isomorphism follows.

Let
E := H2(M;C) r

⋃
H∈ H

HC

be the complement of the complexification of H . The main theorem of this section
says that the fundamental group of E/W acts on our category by twisting functors.

Theorem 6.35. — For any λ ∈ Π, there is a natural homomorphism from π1(E/W, [λ])

to the group of twisting functors on D(Aλ -Mod). The subgroup π1(E, λ) maps to the
group of pure twisting functors.

Proof. — For each element (i, w) ∈ I ×W , choose an integral class ηi,w such that
wηi,w is ample onMi. By Lemma 6.30, we may choose a natural number ki,w such that
λi,w := λ + ki,wηi,w lies in Πi,w. The Deligne groupoid of H is the full sub-groupoid
of the fundamental groupoid of E with objects {λi,w | (i, w) ∈ I ×W}. Note that
different choices would lead to a canonically isomorphic groupoid; the only important
thing is that we have chosen one representative of each chamber.

The Deligne quiver of a real hyperplane arrangement is the quiver with nodes in-
dexed by chambers and arrows in both directions between any two adjacent chambers.
Paris [56] proves that the Deligne groupoid is isomorphic to the quotient of the fun-
damental groupoid of the Deligne quiver obtained by identifying any pair of positive
paths of minimal length between the same two nodes. (15) Thus, to construct an action
of the Deligne groupoid, it is sufficient to first define an action of the Deligne quiver
and then check Paris’s relations.

(15) A path can travel forward or backward along arrows; a positive path is one that always travels
forward.
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Recall that the chambers of H are in bijection with I×W . We begin by associating
the category D(Aλi,w-Mod) to the node indexed by (i, w). If the chambers indexed
by (i, w) and (j, v) are adjacent, then we assign the functor Φλj,v,λi,w to the corre-
sponding arrow in the Deligne quiver. We now need to check the relations. Salvetti
defines a CW complex which is a W -equivariant homotopy model for the space E. As
described in [61, pp. 611-2], the 1-skeleton of this complex is the Deligne quiver, and
so the attaching maps of the 2-cells completely describe the relations in the funda-
mental groupoid. There is one 2-cell for each pair of a codimension 2 face F and an
adjacent chamber C, and the attaching map identifies the two minimal positive paths
from C to its opposite across F . Thus, we need only check that composition along
these paths gives the same functors.

Suppose we are given two such chambers, labeled by (i, w) and (i′, w′). Let H be
a generic cooriented hyperplane that contains F and bisects both chambers. Figure 1
illustrates a 2-dimensional slice transverse to F , so that F appears as a point and H
appears as a line, which in the picture we draw as dotted.

Choose elements µ and ν of Πi,w that differ from λi,w by an integral class, with µ on
the positive side and ν on the negative side of H. Choose µ′ and ν′ in Πi′,w′ similarly.
Let µ = µ1, µ2, . . . , µn = µ′ be colinear integral representatives of all the chambers on
the positive side of H, and let ν = ν1, . . . , ν` = ν′ be colinear representatives of all the
chambers on the negative side of H. We may arrange these classes such that for all
k, µk−µk+1 and νk− νk+1 both lie in the chamber indexed by (i, w). Put differently,
we may assume that wµk − wµk+1 and wνk − wνk+1 are both ample on Mi. All of
this is illustrated in Figure 1.

µ2

µ

ν

ν2

µ′

ν′
µ`−1

ν`−1

. . .

. . .

Figure 1. A 2-dimensional slice.
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By Corollary 6.33, we may reduce the theorem to checking that the functors

Φλi′,w′ , µ
′
◦Φµ

′, µ`−1◦· · ·◦Φµ2,µ◦Φµ,λi,w and Φλi′,w′ , ν
′
◦Φν

′, ν`−1◦· · ·◦Φν2,ν◦Φν,λi,w

from D(Aλi,w -Mod) to D(Aλi′,w′ -Mod) are naturally isomorphic. By Corollary 6.33
and Lemma 6.34, both are equivalent to Φλi′,w′ ,λi,w .

We have now established that the Deligne groupoid acts on the derived categories
D(Aλi,w -Mod) for all (i, w) ∈ I ×W . Specializing to a single parameter, we conclude
that π1(E, λ) acts on D(Aλ -Mod) via pure twisting functors. Furthermore, by Propo-
sition 3.10, we have an action of W on the categories D(Aλi,w -Mod) via the functors
Φλw. The uniqueness of the quantizations of line bundles (Proposition 5.2) shows that

Φλw ◦ Φλ,λ
′ ∼= Φwλ,wλ

′
◦ Φλ

′

w ,

so this action is compatible with the action of W on the Deligne groupoid D, consid-
ered as a subgroupoid of the fundamental groupoid. This shows that the semi-direct
product DoW acts on the categories D(Aλi,w -Mod). The automorphisms of a point
λ in the semi-direct product are isomorphic to π1(E/W, [λ]).

Remark 6.36. — We have already remarked that D -mod (and therefore A -mod, when
localization holds) may be thought of as a twisted algebraic version of the Fukaya cate-
gory ofM (Remark 4.3). In this interpretation, we expect the action in Conjecture 6.35
to be given by parallel transport in the universal deformation, along the lines of the
construction in [62] for Slodowy slices of type A.

Remark 6.37. — As in Section 6.1, we may replace D(Aλ -Mod) in the statement of
Theorem 6.35 with Db

L0
(Aλ -mod) (see Definition 6.9) for any S-equivariant L0 ⊂

M0, or with the bounded derived category Db(CL0

λ ). These categories are related by a
realization functor Db(CL0

λ )→ Db
L0

(Aλ -mod), which may or may not be fully faithful.

If M is a hypertoric variety and L is as in Example 6.12, we obtain the twisting
functors studied in [15, §6] and [16, 8.4]. To see this, we need to apply Lemma 6.28
and Remark 6.29, because the functors in [16, 8.4] are defined using the bimodules in
Equation (24).

Recall that BGG category O is the subcategory of finitely generated U(g)-modules
on which b acts locally finitely, and h acts semi-simply. Let Oλ for a weight λ be the
Serre subcategory where the center of U(g) acts with the same generalized character
as on the Verma module with highest weight λ. If M = T ∗(G/B) and L is as in
Example 6.12, then for any regular integral weight λ, the category CLλ+ρ is equivalent
to Oλ by Soergel’s functor. As discussed above, this means that we have a realization
functor Rλ : Db( Oλ) ∼= Db(CLλ+ρ) → DL(Aλ+ρ -mod), which is not obviously fully
faithful. These functors obviously commute with the translation equivalences between
CLλ+ρ and CLλ′+ρ where λ, λ′ are both dominant and integral; thus the functor Rλ is
either fully faithful for all dominant integral λ or for none. The result [17, 5.13] shows
that it must be fully faithful for all λ in an open subset U ⊂ H2(G/B), so it must be
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an fully faithful for all dominant λ. Thus, we can consider Db(CLλ+ρ) as a subcategory
of DL(Aλ+ρ -mod) ⊂ Db(A -mod) in this case.

The following result says that this equivalence identifies the functors we call twist-
ing functors with Arkhipov’s twisting functors [3, 1]. More precisely, Arkhipov defines
a collection of derived auto-equivalences {Tw | w ∈ W} of the category Oλ satisfying
the relation Tw ◦ Tw′ ∼= Tww′ whenever the length of ww′ is equal to the sum of the
lengths of w and w′, which means that these functors generate an action of the gener-
alized braid group. In this case the discriminantal arrangement is equal to the Coxeter
arrangement for W , so the fundamental group π1(E/W, [λ]) is also isomorphic to the
generalized braid group.

Proposition 6.38. — Suppose that M = T ∗(G/B) and let L be as in Example 6.12.
If λ ∈ H2(M;C) is regular, integral, and dominant, then Soergel’s equivalence from
the block Oλ of BGG category O to the category CLλ+ρ intertwines Arhkipov’s twisting
action on Db( O) with the twisting action on Db(CLλ+ρ) ⊂ D(A -Mod) from Theo-
rem 6.35.

Proof. — We begin by showing that Arkhipov’s twisting functors are uniquely char-
acterized by the following two properties:

– Tw strongly commutes with projective functors [1, Lemma 2.1]. That is, for any
projective functor F , there is an isomorphism Tw ◦ F ∼= F ◦ Tw, and these iso-
morphisms are compatible with natural transformations of projective functors.

– For all w ∈ W , TwVλ ∼= Vw·λ, where Vλ is the Verma module with highest
weight λ.

Indeed, let {T ′w | w ∈ W} be any other collection of functors satisfying these con-
ditions. By [12, 3.3(iib)], for any irreducible projective object of Oλ, there is a pro-
jective functor taking Vλ to that object. Since Oλ has enough projectives, for any
object N of Oλ, there is a complex FN of projective functors taking Vλ to N . Fur-
thermore, projective functors may be regarded as modules over g×g [6], and we have
Homg(N,N

′) ∼= Homg×g(FN , FN ′). We therefore have

T ′wN
∼= T ′wFNVλ

∼= FNT
′
wVλ

∼= FNVw·λ ∼= FNTwVλ ∼= TwFNVλ ∼= TwN,

and the strong commutativity condition ensures that this induces an isomorphism of
functors.

Since λ is dominant, Soergel’s equivalence between Oλ and C L
λ+ρ is given by com-

posing the functors
(27)

1
λH

∞
λOλ C L

λ+ρ

(−)◦ ⊗ Vλ lim←−i(−⊗ V
i
λ)

Homfin
C (Vλ,−)◦ lim−→i

Homfin
C (V iλ,−)

where
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– 1
λH

∞
λ denotes the category of Harish-Chandra bimodules (in the usual sense)

for U(g) with generalized central character λ for both the left and right actions,
with the center acting on the left semi-simply,

– Homfin
C (Vλ, N) is the Harish-Chandra bimodule of U(g)∆-locally finite C-linear

maps Vλ → N ,
– (−)◦ denotes the functor on U(g)-U(g) bimodules which switches the left and

right actions, twisting by the antipode of U(g),
– V iλ denotes the length i thickened Verma module V iλ := U(g)⊗U(b) (U(h)/miλ),

where mλ is the kernel of the action of U(h) on the λ-weight space.

Thus, we need only show that our twisting functors on Db(CLλ+ρ), transported
to Db( Oλ) via Soergel’s equivalence, satisfy these two conditions.

For any element w ∈ W , let Rwλ := Φλ+ρ
w (w(λ+ρ)Tλ+ρ), where w(λ+ρ)Tλ+ρ is re-

garded as a left Aw(λ+ρ)-module. Consider the twisting functor

Sw := Ψλ+ρ
w ◦ Φw(λ+ρ),λ+ρ ∼= Rwλ

L
⊗−.

Under the bi-adjoint equivalences of C L
λ+ρ with 1

λH
∞
λ described in Equation (27)

of Example 6.12, this functor is intertwined with Rwλ
L
⊗ −, now regarded as a func-

tor on Harish-Chandra bimodules, since tensor product on the left commutes with
lim←−(−⊗ V iλ). On the other hand, the equivalence to Oλ, described in the same equa-
tion, involves exchanging the left and right actions. Thus, any projective functor
F ∼= F

(
U(g)

)
⊗U(g) − is intertwined with −⊗U(g) F (U(g))◦ : 1

λH
∞
λ → 1

λH
∞
λ , which

obviously commutes with Rwλ ⊗−.
Checking the second condition is an easy geometric calculation. Since λ is dom-

inant and regular, localization holds at λ [9]. The localization of Vλ is an object
of Dλ+ρ -mod, which we may regard as a twisted D-module by Proposition 4.5. Con-
cretely, it is the restriction of the line bundle Lλ to the open Bruhat cell, where only
the action of g depends on λ. Tensoring with w(λ+ρ) T ′λ+ρ takes us to the restriction
of Lw·λ to that cell. The sections of that restriction are exactly the Verma module
Vw·λ, since it is generated by a unique U -invariant section of weight w · λ (here U is
the nilpotent radical of B), and the dimension of weight spaces matches the character
of the Verma module.

We end by analyzing the twisting action of Theorem 6.35 on the level of the
Grothendieck group. Assume λ ∈ Π. Every twisting functor Φ: Db(Aλ -mod) →
Db(Aλ -mod) is induced by derived tensor product with an algebraic Harish-Chandra
bimodule KΦ; by Proposition 6.8, this implies that the corresponding functor
LLoc ◦Φ ◦ RΓS : Db( Dλ -mod) → Db( Dλ -mod) is induced by convolution with a
geometric Harish-Chandra bimodule FΦ ∈ λHCg

λ. By Proposition 6.15, the effect
of Φ on characteristic cycles is given by convolution with the characteristic cycle
CC(FΦ). Thus we obtain an algebra homomorphism

α : C[π1(E/W, [λ])]→ H2 dimM
Z (M×M;C).
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Proposition 6.39. — The subalgebra C[π1(E, λ)] ⊂ C[π1(E/W, [λ])] is contained in the
kernel of α, thus we obtain an induced homomorphism

ᾱ : C[W ]→ H2 dimM
Z (M×M;C).

Proof. — By Proposition 6.27, pure twisting functors preserve characteristic cycles.
Since the subalgebra C[π1(E, λ)] ⊂ C[π1(E/W, [λ])] acts by pure twisting functors,
the result follows.

Remark 6.40. — The map ᾱ also has a direct geometric construction, which precisely
matches the one given by Chriss and Ginzburg [22, 3.4.1] for M = T ∗G/B. Applying
the argument of the proof of Proposition 6.27 to an impure twisting functor shows that
the class corresponding to w is a specialization of the graph of the map w : π−1(ν)→
π−1(w · ν).
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