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A NOTE ON INTERSECTIONS OF SIMPLICES

by David A. Edwards, Ondřej F.K. Kalenda & Jiří Spurný

Abstract. —We provide a corrected proof of [1, Théorème 9] stating that any metriz-
able infinite-dimensional simplex is affinely homeomorphic to the intersection of a de-
creasing sequence of Bauer simplices.

Résumé (Sur certaines intersections de simplexes). — Nous exposons une démons-
tration rectifiée de [1, Théorème 9], montrant ainsi que tout simplexe de Choquet
métrisable et de dimension infinie se représente comme intersection d’une suite dé-
croissante de simplexes de Bauer.
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1. Introduction

If X is a compact convex subset of a locally convex space over the real
numbers, it is called a Choquet simplex (briefly simplex ) if the dual (A(X))∗

to the space A(X) of all affine continuous functions is a lattice. If, moreover,
the set extX of all extreme points of X is closed, X is termed a Bauer simplex
(see [2] for more information on simplices).

The following theorem can be found as [1, Théorème 9]. By (`1, w∗) we
mean `1 with the topology σ(`1, c0).

Theorem 1.1. — Let X be a metrizable infinite-dimensional simplex. Then
there exists a decreasing sequence (Tn)n∈N of Bauer simplices in (`1, w∗) such
that

⋂∞
n=1 Tn is affinely homeomorphic to X.

Unfortunately, the proof presented in [1] is not entirely correct, since the
inclusion

Sn+1 ∪ Fn+1 ⊂
(
conv(Sn ∪ {en+1})

)
∪ Fn+1

on page 237 of [1] need not hold in general.
The aim of our note is to indicate how to mend the proof of this theorem.
By [3, Theorem 5.2] (see also [2, Theorem 3.22]), for every metrizable

infinite-dimensional simplex X there exists an inverse sequence (Xn, ϕn)n∈N of
(n−1)-dimensional simplices such thatX is affinely homeomorphic to its inverse
limit lim

←
Xn. More precisely, every ϕn : Xn+1 → Xn is an affine continuous

surjection and X is affinely homeomorphic to

(1) {(xn) ∈
∞∏

n=1

Xn : ϕn(xn+1) = xn, n ∈ N}.

Inverse sequences (Xn, ϕn)n∈N and (Yn, ψn)n∈N are called equivalent if there
exist affine homeomorphisms ωn : Xn → Yn such that ωn ◦ ϕn = ψn ◦ ωn+1,
n ∈ N. Clearly, two equivalent inverse sequences have the same inverse limit
up to an affine homeomorphism.

A description of a simplex by an inverse sequence yields a method of repre-
senting X by an infinite matrix A that is constructed inductively as follows.

In the first step, let X1 = {u1
1}.

Assume now that n ∈ N and {un
1 , . . . , u

n
n} is the enumeration of vertices of

Xn chosen in the n–th step.
We choose vertices {un+1

1 , . . . , un+1
n } of Xn+1 such that ϕn(un+1

i ) = un
i ,

i = 1, . . . , n. If un+1
n+1 ∈ Xn+1 is the remaining vertex, let a1,n, . . . , an,n be

positive numbers with
∑n

i=1 ai,n = 1 such that

ϕn(un+1
n+1) =

n∑
i=1

ai,nu
n
i .
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Then

A =

à
a1,1 a1,2 a1,3 . . .

0 a2,2 a2,3 . . .

0 0 a3,3 . . .
...

...
...

. . .

í
is the representing matrix of X.

It is not difficult to see that A is uniquely determined by the inverse sequence
(Xn, ϕn)n∈N.

Conversely, any such matrix describes a unique inverse sequence of simplices
and thus codes a unique metrizable simplex.

We refer the reader to [2], [3], [4] and [5] for detailed information on repre-
senting matrices.

We need the following observation based upon [4, Theorem 4.7].

Proposition 1.2. — Let A be a representing matrix for a simplex X. Then
there exists a matrix B = {bi,n}1≤i≤n

n=1,2,... representing X such that bi,n > 0 for
all 1 ≤ i ≤ n and n = 1, 2, . . . .

Proof. — It follows from [4, Theorem 4.7] that two matrices A and B represent
the same simplex if

∑∞
n=1

∑n
i=1 |ai,n− bi,n| <∞. Thus it is enough to slightly

perturb the coefficients of A to get the required matrix B.

2. Proof of Theorem 1.1

We recall some notation from [1]. Let en, n ∈ N, denote the standard basis
vectors in `1 and let e0 = 0.

For n ∈ N, let En = conv{e0, . . . , en−1} and let Pn : `1 → `1 be the natural
projection on the space spanned by vectors e0, . . . , en−1, precisely

Pn : (x1, x2, . . . ) 7→ (x1, . . . , xn−1, 0, 0, . . . ), (x1, x2, . . . ) ∈ `1.

In particular, P1 maps `1 onto e0.
We state an easy observation needed in the proof of Proposition 2.2.

Lemma 2.1. — Let X be a finite-dimensional simplex in a vector space E

containing 0 and x be a vector not contained in the linear span of X.
Then for any y in the relative interior of X there exists ε > 0 such that

y + εx ∈ conv(X ∪ {x}).
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Proof. — If y is in the relative interior of X and 0 ∈ X, there exists ε ∈ (0, 1)

such that (1− ε)−1y ∈ X. Then

y + εx = (1− ε) y

1− ε
+ εx ∈ conv(X ∪ {x}),

which finishes the proof.

Now we start with the proof of Theorem 1.1. Given a metrizable simplex
X, Proposition 1.2 provides an inverse sequence (Xn, ϕn)n∈N such that X is its
inverse limit and the associated representing matrix A has all entries ai,n > 0

for all n ∈ N and 1 ≤ i ≤ n.

Proposition 2.2. — Let X be a metrizable infinite-dimensional simplex with
a representing matrix A such that ai,n > 0 for all n ∈ N and 1 ≤ i ≤ n.

Let (Xn, ϕn)n∈N be the inverse sequence associated with A.
Then there exist (n− 1)–dimensional simplices Sn ⊂ `1, n ∈ N, such that

(i) Sn ⊂ En, n ∈ N,
(ii) Sn is a face of Sm, n < m,
(iii) PnSm = Sn, n < m,
(iv) Sn+1 ⊂ conv(Sn ∪ {en}), n ∈ N,
(v) the inverse sequences (Xn, ϕn)n∈N and (Sn, Pn)n∈N are equivalent.

Proof. — We construct inductively simplices Sn together with mappings ωn :

Xn → Sn, n ∈ N, observing that the resulting inverse sequence is equivalent to
the original one.

We start the construction by setting S1 = E1 = {e0} and S2 = E2 =

conv{e0, e1}. Let ω1 : X1 → S1 and ω2 : X2 → S2 be the obvious affine
homeomorphisms.

We assume that the construction has been completed up to the n–th stage.
If ωn : Xn → Sn is the affine homeomorphism guaranteed by the inductive
assumption and {un

1 , . . . , u
n
n} are the vertices of Xn, then {ωn(un

1 ), . . . , ωn(un
n)}

are the vertices of Sn.
Let {un+1

1 , . . . , un+1
n } be the vertices of Xn+1 that are mapped by ϕn onto

the vertices {un
1 , . . . , u

n
n} of Xn and let un+1

n+1 be the remaining vertex mapped
onto the point

∑n
i=1 ai,nu

n
i .

Since all numbers a1,n, . . . , an,n are strictly positive, the point

ωn(ϕn(un+1
n+1)) =

n∑
i=1

ai,nωn(un
i )

is contained in the relative interior of Sn. By Lemma 2.1, there exists ε > 0

such that

(2) ωn(ϕn(un+1
n+1)) + εen ∈ conv(Sn ∪ {en}).
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By defining

(3) Sn+1 = conv(Sn ∪ {ωn(ϕn(un+1
n+1)) + εen})

we get an n–simplex with vertices

{ωn(un
1 ), . . . , ωn(un

n), ωn(ϕn(un+1
n+1)) + εen}.

We define ωn+1 : Xn+1 → Sn+1 by conditions

ωn+1(u
n+1
i ) = ωn(ϕn(un+1

i )), i = 1, . . . , n,

ωn+1(u
n+1
n+1) = ωn(ϕn(un+1

n+1)) + εen.

By (2) and (3) and the inductive assumption,

Sn+1 ⊂ conv(Sn ∪ {en}) ⊂ En+1.

Further, Sn is a face of Sn+1, PnSn+1 = Sn and ωn ◦ ϕn = Pn ◦ ωn+1.
Thus conditions (i)–(iv) are satisfied and the mappings ωn, n ∈ N, show

that the sequences (Xn, ϕn) and (Sn, Pn) are equivalent.
This finishes the proof.

The rest of the proof Theorem 1.1 can proceed as in [1]. To clarify what
is going on, we give two more propositions. The proof of Theorem 1.1 follows
immediately from them.

Proposition 2.3. — Let Sn, n ∈ N, be weak* compact convex subsets of `1

satisfying conditions (i), (ii′) and (iii), where (i) and (iii) are conditions from
Proposition 2.2 and

(ii′) Sn ⊂ Sm for n ≤ m.

Then the inverse limit of the inverse sequence (Sn, Pn)n∈N is affinely homeo-
morphic to the closure of

⋃∞
n=1 Sn in the weak* topology.

Proof. — Let Y denote the weak*-closure of
⋃∞

n=1 Sn, and let X be the in-
verse limit lim

←
Sn represented in the form given by the formula (1). An affine

homeomorphism ϕ : Y → X can be defined by the equation

ϕ(y) = (Pn(y))n∈N, y ∈ Y.

To see that ϕ is well defined, note that by (ii′) and (iii) we have Pn(y) ∈ Sn

whenever y ∈
⋃∞

n=1 Sn, and hence, by the weak*-continuity of Pn : `1 → `1,
that Pn(y) ∈ Sn for all y ∈ Y . Moreover, ϕ is clearly affine, continuous and
one-to-one. To see that ϕ is onto, choose any x = (xn)n∈N ∈ X. Let y ∈ RN

have as n-th coordinate yn the n-th coordinate of the vector xn+1. Then
(y1, . . . , yn, 0 . . . ) ∈ Sn for each n ∈ N, therefore y ∈ `1 by (i), and so y ∈ Y .
Moreover, clearly ϕ(y) = x. This completes the proof.

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE



94 D.A. EDWARDS, O. F.K. KALENDA & J. SPURNÝ

Proposition 2.4. — Let (Sn)n∈N be a sequence of simplices in `1 satisfying
conditions (i)–(iv) of Proposition 2.2.

Set
Fn = conv{e0, en, en+1, . . .}, n ∈ N,

where the bar denotes norm-closure, and

Tn = conv(Sn ∪ Fn), n ∈ N.

Then (Tn)n∈N is a decreasing sequence of Bauer simplices in (`1, w∗) whose
intersection is the weak*-closure of

⋃∞
n=1 Sn.

Proof. — It is clear that both Fn and Sn are Bauer simplices in (`1, w∗). Thus
Tn is a Bauer simplex in (`1, w∗) as well. Moreover,

Sn+1 ∪ Fn+1 ⊂ (conv(Sn ∪ {en})) ∪ Fn+1

⊂ conv(Sn ∪ Fn),

and hence Tn+1 ⊂ Tn for n ∈ N.
It remains to prove the final equality.
Set T =

⋂∞
n=1 Tn and denote by Y the weak*-closure of

⋃∞
n=1 Sn. Let n ∈ N

be arbitrary. Then for each m ≥ n we have Sn ⊂ Sm ⊂ Tm. Thus Sn ⊂ T . It
follows that Y ⊂ T .

To see the converse inclusion, take any x ∈ T . For each n ∈ N we have
x ∈ Tn, 0 ∈ Sn, and hence Pn(x) ∈ Sn. But the sequence (Pn(x))n∈N is weak*
convergent to x, so x ∈ Y .

Finally, Theorem 1.1 follows immediately by combining Propositions 1.2,
2.2, 2.3 and 2.4.

Remark 2.5. — We note that it is not essential that we work in the space
(`1, w∗). The norm structure of this space is used only in the definition of Fn,
and can be replaced there by weak*-closure. So, it would be possible (and,
perhaps, more natural) to work in the locally convex space RN equipped with
the pointwise topology. Anyway, we decided to keep the setting from [1].
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