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ON SUMS OF SIXTEEN BIQUADRATES

Jean-Marc Deshouillers, Koichi Kawada, Trevor D. Wooley

Abstract. — By 1939 it was known that 13792 cannot be expressed as a sum of sixteen
biquadrates (folklore), that there exist infinitely many natural numbers which cannot
be written as sums of fifteen biquadrates (Kempner) and that every sufficiently large
integer is a sum of sixteen biquadrates (Davenport).
In this memoir it is shown that every integer larger than 10216 and not divisible by
16 can be represented as a sum of sixteen biquadrates. Combined with a numerical
study by Deshouillers, Hennecart and Landreau, this result implies that every integer
larger than 13792 is a sum of sixteen biquadrates.

Résumé (Sur les Sommes de Seize Bicarrés). — En 1939, on savait que 13792 ne peut
pas être représenté comme somme de seize bicarrés (folklore), qu’il existe une infinité
d’entiers qui ne peuvent pas être écrits comme sommes de quinze bicarrés (Kempner)
et que tout entier assez grand est somme de seize bicarrés (Davenport).
Dans ce mémoire, on montre que tout entier supérieur à 10216 et non divisible par
16 peut s’exprimer comme somme de seize bicarrés. Combiné à une étude numérique
menée par Deshouillers, Hennecart et Landreau, ce résultat implique que tout entier
supérieur à 13792 est somme de seize bicarrés.
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CHAPTER 1

INTRODUCTION

The investigation of sums of biquadrates occupies a distinguished position in ad-
ditive number theory, largely on account of the relative success with which the basic
problems of Waring-type have been addressed. Although progress on such problems
was dominated for the greater part of the 20th century by advances in technology
at the heart of the Hardy-Littlewood method, the older ideas involving the use of
polynomial identities have recently resurfaced in work of Kawada and Wooley [15],
though now interwoven with the analytic machinery of the circle method itself. The
primary goal of this paper is to apply this new circle of ideas to obtain an explicit
analysis of sums of sixteen biquadrates, and, moreover, one suitable for determining
the largest integer not represented in such a manner. A separate paper [12] reports
on computations of Deshouillers, Hennecart and Landreau which complement the
main conclusion of this memoir, and as will shortly become apparent, the union of
these results leads to the following definitive statement concerning sums of sixteen
biquadrates.

Theorem 1. — Every integer exceeding 13792 can be written as a sum of at most 16
biquadrates.

Although we avoid a detailed historical account of the various contributions to
Waring’s problem for biquadrates, our subsequent discussion will be clarified by a
sketchy overview of such matters (we refer the reader to the survey [11] for a more
comprehensive account). For the sake of concision, we refer to a number n as being
a Bs (number) when n can be written as a sum of at most s biquadrates. In accordance
with the familiar notation in Waring’s problem, we then denote by g(4) the least
integer s with the property that every natural number is a Bs, and we denote by G(4)
the least natural number s such that every sufficiently large number is a Bs. The
problem central to this paper has as its origin the assertion made by Waring in 1770
to the effect that g(4) = 19. This conjecture was in large part resolved by Hardy and
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Littlewood [13], who established by means of their newly devised circle method that
G(4) ! 19. Indeed, the work of Hardy and Littlewood shows that one may compute
an explicit constant C with the property that every number exceeding C is a B19.
Although a computational check of the integers of size at most C would determine
whether or not g(4) is equal to 19, the astronomical size of this constant C entirely
precluded any such attempt to resolve this problem. While for other exponents k,
advances in the circle method rapidly wrought an effective determination of the value
of g(k), it was only in the late 1980’s that, with new ideas and substantial effort,
it became possible to reduce the value of C to a size within the grasp of existing
supercomputers. Thus Balasubramanian, Deshouillers and Dress at last announced
a proof of g(4) = 19 in [3], [4]. A complete proof of the result can be found in the
series of papers [7], [8], [9] and [10].

While it has only recently been established that every natural number is a B19,
as Waring had claimed, it has been known for many years that G(4) is less than 19.
Indeed, Davenport [5] had shown by 1939 that G(4) = 16, so that with only finitely
many exceptions, all natural numbers are B16. We recall at this point that the lower
bound G(4) " 16 is immediate from the observation that 31 · 16m is not a B15

for any non-negative integer m. As announced in [11], by combining the work of
Balasubramanian, Deshouillers and Dress with the central idea of the recent memoir
[15] of Kawada and Wooley, it is now possible to determine all numbers that are not
B16. The object of this treatise is the detailed proof of the following result.

Theorem 2. — Every integer exceeding 10216 that is not divisible by 16 can be written
as the sum of 16 biquadrates.

A companion paper of Deshouillers, Hennecart and Landreau [12] shows that all
natural numbers not exceeding 10245 are B16, with the exception of precisely 96
numbers, the largest of which is 13792. In view of the latter conclusion, Theorem 1
follows from Theorem 2 by noting that integers exceeding 10216 divisible by 16 are
harmless. For if N > 10216 and 16|N , then there exist natural numbers m and
n with the property that N = 16mn, and either n > 10216 and 16 ! n, or else
10216/16 < n ! 10216. In the former case, Theorem 2 shows that n is a B16, and in
the latter case the above cited conclusion of Deshouillers, Hennecart and Landreau
[12] shows that n is a B16. Thus, in either case, it is evident that N = (2m)4n is a
B16.

We remark that Deshouillers, Hennecart and Landreau [12] have determined in
addition the 31 numbers that are not B17 (the largest of which is 1248), and also
the 7 numbers that are not B18, these being simply described as the integers 80k − 1
for 1 ! k ! 7. We refer the reader to the aforementioned paper [12] for a complete
list of the exceptional numbers which are not B16, and those which are not B17 (this
information may also be found in the survey [11]).
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CHAPTER 1. INTRODUCTION 3

We next provide a brief overview of our basic strategy, deferring to section 2 a
more detailed discussion of our plan of attack on the proof of Theorem 2. We employ
the Hardy–Littlewood method, aiming to exploit the polynomial identity

x4 + y4 + (x + y)4 = 2(x2 + xy + y2)2 (1.1)

that was the key innovation of Kawada and Wooley [15]. In order to efficiently exploit
the relation (1.1), we introduce the set M, which we define by

M = {m ∈ N : m = x2 + xy + y2 for some x, y ∈ Z with xy(x + y) #= 0 }. (1.2)

In view of (1.1), for each m ∈ M one finds that 2m2 is a sum of 3 biquadrates. Thus
one is led to consider the number, Z(X), of solutions of the equation

2m2
1 + u4

1 + u4
2 = 2m2

2 + u4
3 + u4

4,

with m1, m2 ∈ M∩[1, X1/2] and 1 ! ui ! X1/4 (1 ! i ! 4). By employing a modified
divisor function estimate to determine the number of solutions of the latter equation
with u4

1 +u4
2 #= u4

3 +u4
4, and an immediate counting argument when u4

1 +u4
2 = u4

3 +u4
4,

one derives the efficient upper bound Z(X) % X(log X)ε without any undue effort
(see the proof of Theorem 1 in Kawada and Wooley [15, §2], and also the related
discussion of Lemma 3.4 of [15]).

In order to establish that a given large number N is a B16, the most obvious
strategy suggested by the above discussion is that of considering representations of N
in the form

N = 2m2
1 + 2m2

2 + x4
1 + · · · + x4

10, (1.3)

with m1, m2 ∈ M and xj ∈ N (1 ! j ! 10). It is now apparent that whenever
N admits a representation of the shape (1.3), then N may be written as the sum of
16 biquadrates. Unfortunately, since a biquadrate is congruent to 0 or 1 modulo 16
according to whether it is even or odd, one finds from (1.1) that whenever m ∈ M,
the expression 2m2 is necessarily congruent to 0 or 2 modulo 16. Thus, whereas
an unrestricted sum of three biquadrates is congruent to 0, 1, 2 or 3 modulo 16,
our surrogate 2m2 is restricted to the classes 0 and 2 modulo 16. It follows that
whether or not the integer N is a B16, it fails to possess a representation in the shape
(1.3) whenever N ≡ 15 (mod 16), and thus our initial strategy is doomed to failure.
Nonetheless, by making use of the tools developed within this memoir, the authors
have employed this approach to establish that whenever N " 10156, and N is not
congruent to 0 or 15 modulo 16, then N can be written in the shape (1.3), and hence
is a B16. We omit the details of such an argument in the interest of saving space.

As is apparent from the deliberations of the previous paragraph, one may recover
the missing congruence class 15 modulo 16 by considering instead representations of
N in the form

N = 2m2 + x4
1 + · · · + x4

13, (1.4)

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2005



4 CHAPTER 1. INTRODUCTION

with m ∈ M and xj ∈ N (1 ! j ! 13). By combining the mean value estimate
discussed above with an explicit version of Hua’s inequality provided by Deshouillers
and Dress [9], a careful application of the Hardy-Littlewood method would establish
that whenever N " 10300 and 16 ! N , then N is a B16. Unfortunately, even anticipated
advances in computational technology would seem insufficient to permit the methods
of Deshouillers, Hennecart and Landreau [12] to check that all numbers not exceeding
10300 are B16, with the above-mentioned exceptions. We are therefore forced in our
proof of Theorem 2 to introduce a further new idea.

Motivated by the identity (1.1), and the similar identity

x2 + y2 + (x + y)2 = 2(x2 + xy + y2),

we obtain from the relation

(w + x)4 + (w − x)4 = 2w4 + 12w2x2 + 2x4

the new identity

(w + x)4 + (w − x)4+(w + y)4 + (w − y)4 + (w + x + y)4 + (w − x − y)4

= 4(x2 + xy + y2)2 + 24(x2 + xy + y2)w2 + 6w4

= 4(x2 + xy + y2 + 3w2)2 − 30w4.

(1.5)

The use of (1.1) in the representations (1.3) and (1.4) might reasonably be regarded
as effectively replacing three biquadrates by a square. The use of the identity (1.5),
meanwhile, effectively replaces six biquadrates by a square and a biquadrate, which
in applications amounts to trading five biquadrates for a square. While the latter
exchange is clearly less efficient than the former so far as consequent mean value esti-
mates are concerned (see Lemmata 2.4 and 2.5 below), in compensation one finds that
the six biquadrates on the left hand side of (1.5) may be simultaneously odd. More-
over, despite the relative inefficiency of the identity (1.5) as compared to (1.1), one
may nonetheless recover a mean value estimate associated with only 14 biquadrates
of essentially the same strength as that available from Hua’s inequality for 16 bi-
quadrates (compare Theorem 4 of Deshouillers and Dress [9] with Lemma 2.5 below).
Thus it transpires that the new identity (1.5) is crucial to the success of this paper.

In order to establish that a given large integer N is a B16, therefore, the strategy
which we adopt in this memoir is to consider representations of N in the form

N = 2m2
1 + 4m2

2 + 24m2w
2 + 6w4 + x4

1 + · · · + x4
7,

with m1, m2 ∈ M and w, xj ∈ N (1 ! j ! 7). In view of the identities (1.1) and (1.5),
it follows that whenever N can be written in the latter form, then N is necessarily
a sum of 16 biquadrates. A discussion of the details associated with putting this
strategy into practice may be found in §2 below, wherein an outline of the proof of
Theorem 2 is also provided.

MÉMOIRES DE LA SMF 100



CHAPTER 1. INTRODUCTION 5

Equipped now with the powerful new weapons developed for our attack on sums of
16 biquadrates, it is difficult to resist the temptation to return to the topic of sums of
19 biquadrates. As mentioned earlier, Deshouillers and Dress showed first in [9] that
every number exceeding 10367 is a B19, and subsequently in [10], with heavy use of
powerful computers, that every number up to 10448 is a B19. In an appendix to this
paper we apply our idea based on the use of the identity (1.1) in order to substantially
reduce the computations necessary to establish that g(4) = 19. We show in fact that
every number N exceeding 10146 can be represented in the form

N = 2m2
1 + 2m2

2 + x4
1 + · · · + x4

13,

with m1, m2 ∈ M and xj ∈ N (1 ! j ! 13), whence by (1.1) it follows that every
such N is a B19. The computational verification that every number up to 10147 is a
B19 can be completed even on a modest personal computer within a few minutes.

We finish our opening remarks with a few comments concerning the extent to which
numerical computations underlie the main conclusions of this memoir. While the
contribution of Deshouillers, Hennecart and Landreau [12] to the proof of Theorem 1
is necessarily heavy in its use of powerful computers, we have expended considerable
effort in our proof of Theorem 2 in avoiding serious computations, either explicit,
or implicit in results cited from the literature. Indeed, a moderately energetic reader
equipped only with a hand-held calculator should encounter no difficulties in verifying
the computations involved in this analytic argument. A more cavalier approach to
the use of computational results, and especially those to be found in the literature,
would improve the conclusion of Theorem 2 somewhat. In particular, our Lemma 3.2
below could be replaced by Theorem 5 of Rosser and Schoenfeld [19], our Lemma
3.3 could be replaced by Theorem 5.3 of McCurley [17], and our Lemma 2.3 could
be improved by the use of the numerical estimates for infinite products recorded
on p.295 of Deshouillers [7]. One might also make use of numerical integration to
evaluate the singular integral, rather than using Lemma 4.2 below. Incorporating
such computational refinements into our basic argument, one may show that every
integer exceeding 10196, and not divisible by 16, can be written as the sum of 16
biquadrates, thereby improving the corresponding bound of Theorem 2 by a factor of
1020.

Throughout this paper, we write e(z) for e2πiz. Also, we denote the largest integer
not exceeding x by [x], and we write 'x( for the least integer y with y " x. Also, the
letter p will always be reserved to denote a prime number.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2005





CHAPTER 2

OUTLINE OF THE PROOF OF THEOREM 2

As promised in the introduction, we now outline the proof of Theorem 2 in some
detail. We begin by defining the exponential sums and arc dissections at the heart
of our application of the Hardy-Littlewood method. Here, in order more easily to
exploit previous work on the problem, we make heavy use of the notation of [6] and
[9]. Thus, when P is a natural number and ε ∈ {0, 1}, we define the exponential sum
Sε(α) by

Sε(α) =
∑

P−ε/2<x!2P−ε/2

e((2x + ε)4α). (2.1)

We define the unit interval U by

U = [975P−3, 1 + 975P−3].

Also, when a ∈ Z and q ∈ N, we define the set

M(q, a) = {α ∈ U : |qα − a| ! 975P−3}, (2.2)

and then define the set of major arcs M to be the union of the intervals M(q, a) with
0 ! a ! q ! P 1/2 and (a, q) = 1. Note that the intervals occurring in the latter union
are disjoint whenever P is large enough, and such is certainly the case for P " 100.
Finally, we define the minor arcs m by m = U " M.

We next turn our attention to the important set M defined in (1.2), extending our
earlier notation by writing, for η ∈ {0, 1},

Mη = {m ∈ M : m ≡ η (mod 2) }

and
Mη(X) = Mη ∩ [1, X ].

Notice that whenever m ∈ M0, one necessarily has 4|m, and so it follows that when
m ∈ Mη with η ∈ {0, 1}, then

2m2 ≡ 2η (mod 16). (2.3)
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Also, when m ∈ M0 and ζ ∈ {0, 1}, we find that for any integer w, one has

4m2 + 24m(2w + ζ)2 + 6(2w + ζ)4 ≡ 6ζ (mod 16). (2.4)

Since it is possible, without excessive inconvenience, to restrict all the biquadrates
employed in our representation to be non-zero, we define our generating functions in
such a way as to make this possible. Accordingly, when m ∈ M0, we consider the
unique integers x and y satisfying m = x2 + xy + y2 with x " y and x + y largest
amongst all the latter representations, and then put

W(m) = {|x|, |y|, |x + y| }. (2.5)

On recalling the identity (1.5), we may express the left hand side of (2.4) as a sum of
six biquadrates. When w > 0 and 2w + ζ #∈ W(m), moreover, it is apparent that all
six biquadrates occurring in the latter expression are non-zero. When P is a natural
number, and η, ζ ∈ {0, 1}, we define the exponential sums

Fη(α) =
∑

m∈Mη(P 2)

e(2m2α), (2.6)

and

Dζ(α) =
∑

m∈M0(3P 2/7)

∑

1!w<P/6
2w+ζ #∈W(m)

e((4m2 + 24m(2w + ζ)2 + 6(2w + ζ)4)α). (2.7)

Motivated by the need to satisfy relevant congruence conditions, when N ≡ r
(mod 16) with 1 ! r ! 15, we define the integers η, ζ and t by






η = 0, ζ = 0 and t = r for 1 ! r ! 2,
η = 1, ζ = 0 and t = r − 2 for 3 ! r ! 8,
η = 1, ζ = 1 and t = r − 8 for 9 ! r ! 15.

(2.8)

We note that in any case, our choices for η, ζ and t ensure that

1 ! t ! 7 and N − 2η − 6ζ ≡ t (mod 16). (2.9)

Also, when N is a natural number and ν is a positive real number, we define the
positive numbers P0 = P0(N, ν) and P = P (N, ν) by means of the relations

N = 16νP 4
0 and P = [P0]. (2.10)

Equipped with the above notation, we denote by R(N) = R(N, ν) the number of
representations of the natural number N in the form

N = 2m2
1 + 4m2

2 + 24m2(2w + ζ)2 + 6(2w + ζ)4 +
7−t∑

j=1

(2xj)4 +
t∑

l=1

(2yl + 1)4,

subject to

m1 ∈ Mη(P 2), m2 ∈ M0(3P 2/7), 1 ! w < P/6, 2w + ζ #∈ W(m2),

P < xj ! 2P (1 ! j ! 7 − t) and P ! yl < 2P (1 ! l ! t).

MÉMOIRES DE LA SMF 100
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Thus, in view of the identities (1.1) and (1.5), together with the definitions of the sets
Mη(X) and W(m), it follows that whenever R(N) > 0, then N can be written as a
sum of 16 biquadrates.

Next, when L ⊆ U, we define R(N ; L) = R(N, ν; L) by

R(N ; L) =
∫

L
Fη(α)Dζ(α)S0(α)7−tS1(α)te(−Nα)dα, (2.11)

and observe that by orthogonality, one has

R(N) = R(N ; U) = R(N ; M) + R(N ; m). (2.12)

We emphasise here that the quantities P , R(N ; M) and R(N ; m) should be regarded
as functions of both N and ν. By evaluating R(N ; M) and R(N ; m), we aim to show
that when N " 10216, then there exists a positive number ν with the property that
R(N) > 0. Theorem 2 evidently follows immediately from the latter conclusion.

We estimate the contribution of R(N ; M) by making use of the tools supplied in
[6] and [9]. After preparing some auxiliary estimates for exponential sums in §5,
we estimate the singular series in §6. Combining the latter with an estimate for
the singular integral obtained in §4, we derive in §7 the following lower bound for
R(N ; M).

Lemma 2.1. — Suppose that P " 1050, and write

Mη = card
(
Mη(P 2)

)
and M̃0 = card

(
M0(3P 2/7)

)
. (2.13)

Then there exists a positive real number ν, with ν < 64, such that

R(N ; M) > 0.00021MηM̃0P
4.

In order to deduce a satisfactory lower bound for R(N ; M), we require explicit
lower bounds for Mη and M̃0, and these we establish in §3. We summarise these
bounds in the following lemma.

Lemma 2.2. — When X " 1060, one has

card
(
M0(X)

)
> 0.0508

X√
log X

and card
(
M1(X)

)
> 0.1524

X√
log X

.

We estimate the contribution of R(N ; m) by combining an explicit version of Weyl’s
inequality with certain mean value estimates based on the polynomial identities (1.1)
and (1.5). So far as Weyl’s inequality is concerned, we note that Deshouillers [7] has
made use of an idea of Balasubramanian [2] in order to provide an explicit bound
valid for P " 1080. Since our application demands the use of smaller values of P , in
§8 we modify the argument described in [7] so as to establish the following conclusion.

Lemma 2.3. — Suppose that ε ∈ {0, 1}. Then whenever P " 1030 one has

sup
α∈m

|Sε(α)| ! 77P 0.884(log P )0.25,

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2005



10 CHAPTER 2. OUTLINE OF THE PROOF OF THEOREM 2

and when P " 1053 one has the sharper bound

sup
α∈m

|Sε(α)| ! 16.7P 0.884(log P )0.25.

We turn our attention next to mean value estimates employed on the minor arcs,
and it is at this point that we profit handsomely from the identities (1.1) and (1.5).
By making use of a well-known property of the divisor function, one swiftly deduces
that for each ε, η, ζ, one has upper bounds of the shape

∫ 1

0
|Fη(α)2Sε(α)4|dα ! A1P

4(log P )C1

and ∫ 1

0
|Dζ(α)2Sε(α)2|dα ! A2P

4(log P )C2 ,

for suitable constants Ai, Ci (i = 1, 2). For example, the general methods of van der
Corput, and of Wolke, would be adequate to prove such an inequality. However, such
general methods yield excessively large values of Ci, and in such circumstances the
quality of these bounds becomes completely ineffective for the purpose at hand. We
therefore adopt a strategy modelled on the argument described in Deshouillers and
Dress [8] and [9], deriving an auxiliary upper bound for the divisor function in §9
(see, in particular, the conclusion of Lemma 9.10), bounding the number of solutions
of congruences employed within the argument in §10, and finally establishing the
crucial mean value estimates in §11. Thus we obtain the following two lemmata.

Lemma 2.4. — Suppose that P " 1025 and ε, η ∈ {0, 1}. Then one has
∫ 1

0
|Fη(α)2Sε(α)4|dα < 60MηP

2(log P )4 + 500P 4(log P )3 + 15360P 4(log P )2,

where Mη is defined as in (2.13).

Lemma 2.5. — Suppose that P " 1050 and ζ ∈ {0, 1}. Then one has
∫ 1

0
|Dζ(α)2S1(α)2|dα < 10M̃0P

2(log P )4 + 45P 4(log P )3,

where M̃0 is defined as in (2.13).

Equipped with the previous five lemmata, the proof of Theorem 2 is swiftly over-
whelmed via a straightforward computation, as we now demonstrate. We suppose in
what follows that P " 1053, and begin by observing that as a consequence of Lemma
2.2, one has

Mη >
0.0508P 2

√
2 logP

and M̃0 >
0.0217P 2

√
2 logP

.
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Then Lemmata 2.4 and 2.5 imply respectively that for ε, η ∈ {0, 1}, one has
∫ 1

0
|Fη(α)2Sε(α)4|dα

< M2
η (log P )9/2

(
60P 2

Mη(log P )1/2
+

P 4

M2
η

( 500
(log P )3/2

+
15360

(log P )5/2

))

< M2
η (log P )9/2

( 60
√

2
0.0508

+
1000

0.05082(log P )1/2
+

30720
0.05082(log P )3/2

)

< 45578M2
η(log P )9/2, (2.14)

and also, for ζ ∈ {0, 1},
∫ 1

0
|Dζ(α)2S1(α)2|dα < M̃2

0 (log P )9/2

(
10P 2

M̃0(log P )1/2
+

45P 4

M̃2
0 (log P )3/2

)

< M̃2
0 (log P )9/2

(
10

√
2

0.0217
+

90
0.02172(log P )1/2

)

< 17953M̃2
0 (log P )9/2. (2.15)

Next write S(α) = max{|S0(α)|, |S1(α)|}. Then by Schwarz’s inequality we obtain

|R(N ; m)| !
∫

m
|Fη(α)Dζ(α)S0(α)7−tS1(α)t|dα

!
(

sup
α∈m

S(α)
)4(∫ 1

0
|Fη(α)2Sε(α)4|dα

)1/2

×
(∫ 1

0
|Dζ(α)2S1(α)2|dα

)1/2

,

where ε is 0 or 1 according to whether 1 ! t ! 2 or 3 ! t ! 7. Then by applying
Lemma 2.3 in combination with (2.14) and (2.15), we deduce that

|R(N ; m)| < 16.74
√

45578× 17953MηM̃0P
3.536(log P )5.5.

In view of (2.12), it thus follows from Lemma 2.1 that for a certain positive number ν
with ν < 64, one has

R(N) " R(N ; M) − |R(N ; m)| > 0.00021MηM̃0P
4(1 − E), (2.16)

where
E = 1.0595× 1013P−0.464(log P )5.5. (2.17)

A modest calculation reveals that the expression on the right hand side of (2.17)
is less than 1 whenever P > 7× 1052, and thus we deduce from (2.16) that R(N) > 0
whenever P " 1053. On recalling (2.10) and the hypothesis 0 < ν < 64, we find that
the latter condition on P is satisfied whenever N " N0, where

N0 = 16ν(1053)4 < 1.1 × 10215.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2005



12 CHAPTER 2. OUTLINE OF THE PROOF OF THEOREM 2

Thus we may conclude that whenever N " 10216 and 16 ! N , then N is indeed the
sum of 16 biquadrates. The proof of Theorem 2 therefore follows on establishing
Lemmata 2.1–2.5, this task being our primary concern in §§3-11.
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CHAPTER 3

THE CARDINALITY OF THE SETS Mη(X)

Our goal in this section is the proof of Lemma 2.2, which provides the explicit
control of the distribution of integers of the shape x2 + xy + y2 essential to the
main body of our argument. We begin by establishing some preliminary lemmata
that provide basic information concerning the distribution of prime numbers. In this
context, we remark that sharper versions of our Lemmata 3.1, 3.2 and 3.3 follow
swiftly from the work of McCurley [17] and Rosser and Schoenfeld [19]. However, in
order to avoid dependence on the heavy computations inherent in the latter work, we
seek here to provide self-contained proofs of conclusions sufficient for the applications
at hand.

Let Λ(n) denote the von Mangoldt function, defined to be log p when n is a prime
power pr, and zero otherwise. Also, define

ψ(x) =
∑

n!x

Λ(n).

Our first lemma provides an estimate for ψ(x) via an argument of Chebyshev.

Lemma 3.1. — For x " 41, one has

0.9212x− 5 logx < ψ(x) < 1.1056x + 3(logx)2.

Proof. — Define the function f(t) by

f(t) = [t] − [t/2]− [t/3] − [t/5] + [t/30].

Then one readily verifies that f(t) is equal to 0 or 1 for every real number t, and
further that f(t) = 1 for 1 ! t < 6. Write

Ψ(x) = log([x]!) − log([x/2]!) − log([x/3]!) − log([x/5]!) + log([x/30]!). (3.1)

Then, on recalling the well-known formula
∑

n!x

Λ(n)
[x
n

]
=
∑

n!x

log n = log([x]!) (3.2)
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(see, for example, Theorem 3.12 of Apostol [1]), we deduce that

ψ(x) − ψ(x/6) ! Ψ(x) ! ψ(x). (3.3)

An application of Euler’s summation formula (see, for example, Theorem 3.1 of [1])
reveals that

∑

n!x

log n =
∫ x

1
log t dt +

∫ x

1

t − [t]
t

dt − (x − [x]) log x.

But for x " 1 one has the trivial estimates

0 !
∫ x

1
(t − [t])t−1dt ! log x

and
0 ! (x − [x]) log x ! log x,

and hence we deduce that
∣∣log([x]!) − (x log x − x + 1)

∣∣ ! log x. (3.4)

On writing
c = log(21/231/351/530−1/30), (3.5)

and combining (3.1) and (3.4), we deduce that for x " 30 one has

|Ψ(x) − cx + 1| ! log x + log(x/2) + log(x/3) + log(x/5) + log(x/30)

= 5 log x − 2 log 30. (3.6)

Collecting together (3.3) and (3.6), we obtain the lower bound

ψ(x) " Ψ(x) " cx − 5 logx. (3.7)

On the other hand, the inequalities (3.3) and (3.6) yield also

ψ(x) − ψ(x/6) ! Ψ(x) ! cx + 5 logx − 1 − 2 log 30,

from which one deduces that

ψ(x) !
∑

h"0
x/6h"30

(
ψ(x/6h) − ψ(x/6h+1)

)
+ ψ(30)

< c
∞∑

h=0

x

6h
+
(
1 +

log(x/30)
log 6

)
(5 logx − 1 − 2 log 30) + ψ(30).

A modest computation reveals that ψ(30) < 28.48, and thus a minor calculation
demonstrates that for x " 41 one has

ψ(x) <
6
5
cx +

5
log 6

(log x)2 − log x

log 6
(5 log 5 + 1 + 2 log 30) + 35.5

<
6
5
cx + 3(log x)2. (3.8)

The number c defined by (3.5) satisfies 0.9212 < c < 0.9213, and thus the lemma
follows immediately from (3.7) and (3.8).
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We obtain a bound for the sum of reciprocals of the primes up to X via a familiar
partial summation argument.

Lemma 3.2. — When X " 1025, one has
∑

p!X

1
p

< log log X + 0.281.

Proof. — We begin by estimating the sum

B(x) =
∑

p!x

log p

p
. (3.9)

Observe first that in view of the formulae (3.2) and (3.4), when x " 1025 one has
∑

n!x

Λ(n)
n

" 1
x

∑

n!x

Λ(n)
[x
n

]
" log x − 1 − log x − 1

x

> log x − 1 − 10−23. (3.10)

Similarly, from (3.2), (3.4), and the conclusion of Lemma 3.1, when x " 1025 one has
∑

n!x

Λ(n)
n

! 1
x

(∑

n!x

Λ(n)
[x
n

]
+
∑

n!x

Λ(n)
)

! log x − 1 +
log x + 1

x
+ 1.1056 +

3(log x)2

x
< log x + 0.1056 + 10−21. (3.11)

In order to remove the contribution to the latter sums arising from the higher prime
powers, we note next that

∑

p!√
x

∑

m"2
pm!x

log p

pm
=
∑

p!√
x

log p

p(p − 1)
−
∑

p!√
x

log p

pmp(p − 1)
, (3.12)

where mp = [log x/ log p]. On making use of the trivial bound pmp(p−1) " pmp+1/2 >
x/2, it follows that for x " 1025 one has

0 !
∑

p!√
x

log p

pmp(p − 1)
! 2 log

√
x

x

∑

p!√
x

1 ! log x√
x

< 10−10. (3.13)

Moreover, when x " 1025 one has also

0 !
∑

p>
√

x

log p

p(p − 1)
< 2
∑

n>
√

x

log n

n2
< 2
∫ ∞

√
x−1

log t

t2
dt

= 2
log(

√
x − 1) + 1√
x − 1

< 10−10. (3.14)

We now write
A0 =

∑

p

∑

m"2

log p

pm
=
∑

p

log p

p(p − 1)
,
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and conclude from (3.12), (3.13) and (3.14) that

A0 − 10−9 <
∑

p!√
x

∑

m"2
pm!x

log p

pm
! A0. (3.15)

Finally, defining the function r(x) by means of the relation

B(x) = log x + r(x), (3.16)

we may conclude from (3.9), (3.10), (3.11) and (3.15) that for x " 1025 one has

−A0 − 1.0001 < r(x) < −A0 + 0.1057. (3.17)

By applying a partial summation argument along the lines applied in the proof of
Theorem 7 of Ingham [14, Chapter I], one deduces from (3.16) that

∑

p!X

1
p

= log log X + B0 +
r(X)
log X

−
∫ ∞

X

r(x)
x(log x)2

dx, (3.18)

where
B0 = γ0 +

∑

p

(
log
(
1 − 1

p

)
+

1
p

)
, (3.19)

and γ0 = 0.5772... denotes Euler’s constant. We obtain an upper bound for the infinite
sum in (3.19) by the following simple device. We note first that the Riemann zeta
function ζ(s) satisfies

ζ(2) =
∏

p

(1 − p−2)−1 =
π2

6
. (3.20)

Then on noting that for 0 < t < 1, one has log(1 − t) + t < log(
√

1 − t2), one finds
that

∑

p

(
log
(
1 − 1

p

)
+

1
p

)

<
∑

p!23

(
log
(
1 − 1

p

)
+

1
p
− 1

2
log
(
1 − 1

p2

))
− 1

2
log ζ(2)

< −0.0668− 0.2488 = −0.3156.

We therefore deduce from (3.19) that

B0 < 0.2617. (3.21)

Finally, on recalling (3.17) one finds that for X " 1025 one has
r(X)
log X

−
∫ ∞

X

r(x)
x(log x)2

dx <
−A0 + 0.1057

log X
+
∫ ∞

X

A0 + 1.0001
x(log x)2

dx

=
1.1058
log X

< 0.0193.

The conclusion of the lemma now follows by substituting (3.21) and the latter estimate
into (3.18).
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We next consider the distribution of primes in arithmetic progressions modulo 6.
We define

π1(x) =
∑

p!x
p≡1 (mod 6)

1.

Lemma 3.3. — When x " 1020, one has

π1(x) " 0.3687
x

logx
.

Proof. — We bound π1(x) from below by employing a lower bound for ψ1(x), which
we define by

ψ1(x) =
∑

1!n!x
n≡1 (mod 6)

Λ(n).

Denote by χ1 the non-trivial character modulo 6, and write χ0 for the corresponding
trivial character. Define also ψ(x, χ) for χ = χ0, χ1 by

ψ(x, χ) =
∑

1!n!x

χ(n)Λ(n).

Then by using simple properties of characters, one finds that

2ψ1(x) = ψ(x, χ0) + ψ(x, χ1). (3.22)

We observe that

ψ(x, χ0) ! ψ(x) ! ψ(x, χ0) +
∑

1<2r!x

log 2 +
∑

1<3r!x

log 3

! ψ(x, χ0) + 2 log x,

whence
ψ(x) − 2 log x ! ψ(x, χ0) ! ψ(x). (3.23)

It is useful at this point to derive some simple properties of alternating series
associated with certain character sums. We assume first that f(t) is a function that is
monotone decreasing for t > 0, and satisfies the condition that f(t) = 0 when t exceeds
some real number x with x " 1. Then on noting that −f(6m − 1) + f(6m + 1) ! 0
and f(6m + 1) − f(6m + 5) " 0 for every integer m, one finds that the alternating
series

∑

1!n!x

χ1(n)f(n) = f(1) − f(5) + f(7) − f(11) + f(13) − f(17) + · · ·

satisfies the property that for each natural number n0, one has

f(1) "
∑

1!n!x

χ1(n)f(n) "
6n0−1∑

n=1

χ1(n)f(n). (3.24)
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Suppose next that f(t) is a function that is monotone and non-negative in the range
x ! t ! y. Then one obtains in a similar manner the upper bound

∣∣∣∣∣∣

∑

x<n!y

χ1(n)f(n)

∣∣∣∣∣∣
! max{f(x), f(y)}. (3.25)

Returning now to the main task of bounding ψ1(x) from below, we begin by noting
that

∑

1!n!x

χ1(n) log n =
∑

1!n!x

χ1(n)
∑

m|n

Λ(m)

=
∑

1!d!x

χ1(d)
∑

1!m!x/d

χ1(m)Λ(m),

so that an application of (3.25) with f(t) = log t yields the bound
∣∣∣∣∣∣

∑

1!d!x

χ1(d)ψ(x/d, χ1)

∣∣∣∣∣∣
=

∣∣∣∣∣∣

∑

1!n!x

χ1(n) log n

∣∣∣∣∣∣
! log x. (3.26)

Next applying the first inequality in (3.24) with f(t) = ψ1(x/t), and then recalling
(3.22), we find that

ψ1(x) "
∑

1!n!x

χ1(n)ψ1(x/n)

=
1
2

( ∑

1!n!x

χ1(n)ψ(x/n, χ0) +
∑

1!n!x

χ1(n)ψ(x/n, χ1)
)

.

Estimating the second sum in the latter inequality by means of (3.26), and the first
by applying (3.24) with f(t) = ψ(x/t, χ0) and n0 = 4, we deduce that

ψ1(x) " 1
2

23∑

n=1

χ1(n)ψ(x/n, χ0) −
1
2

log x.

Consequently, it follows from (3.23) and Lemma 3.1 that when x " 1020, one has

ψ1(x) " 1
2

(ψ(x) − ψ(x/5) + ψ(x/7) − ψ(x/11)

+ψ(x/13) − ψ(x/17) + ψ(x/19) − ψ(x/23)) − 9
2

log x

>
x

2

(
0.9212

(
1 +

1
7

+
1
13

+
1
19

)
− 1.1056

(1
5

+
1
11

+
1
17

+
1
23

))

− 6(log x)2 − 15(logx)

> 0.368705x. (3.27)

MÉMOIRES DE LA SMF 100



CHAPTER 3. THE CARDINALITY OF THE SETS Mη(X) 19

In order to establish the desired lower bound for π1(x), we note first that
∑

m"2

∑

pm!x
pm≡1 (mod 6)

log p ! log x
∑

p!√
x

1 !
√

x log x.

It therefore follows from (3.27) that for x " 1020, one has

π1(x) " 1
log x

(
ψ1(x) −

∑

m"2

∑

pm!x
pm≡1 (mod 6)

log p

)

> (0.368705x−
√

x log x)/ log x > 0.3687x/ logx.

This completes the proof of the lemma.

Lemma 3.4. — When X " 1025, one has
∑

p!X
p≡−1 (mod 6)

1
p

<
1
2

log log X − 0.195.

Proof. — Before proceeding to the main part of our argument, we require several
preliminary estimates. Let χ0 and χ1 denote the trivial and non-trivial characters
modulo 6, as in the proof of the previous lemma, and denote by L(s, χ) the Dirichlet
L-function

L(s, χ) =
∞∑

n=1

χ(n)n−s

associated with the character χ. For the sake of concision, it is convenient to write

L = L(1, χ1) =
∞∑

n=1

χ1(n)
n

, and L′ = L′(1, χ1) = −
∞∑

n=1

χ1(n) log n

n
.

Let χ∗ denote the non-trivial character modulo 3, so that χ∗ is the primitive character
which induces χ1. Then it is known that L(1, χ∗) = π/(3

√
3) (see, for example,

Theorems 12.11 and 12.20 of Apostol [1]), from which it follows that

L =
∏

p

(1 − χ1(p)/p)−1 =
(
1 +

1
2

)
L(1, χ∗) =

π

2
√

3
. (3.28)

So far as L′ is concerned, we remark that it is possible to confirm that

L′ =
π

2
√

3
(
3 log Γ(2/3)− 3 logΓ(1/3) + (2/3) log 2 + log π + γ0

)
,

where we use Γ to denote the gamma function, and γ0 again denotes Euler’s constant.
Instead of establishing the latter formula, we note that

L′ =
∞∑

k=1

(
log(6k − 1)

6k − 1
− log(6k + 1)

6k + 1

)
.
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Plainly, one has
∞∑

k=17

(
log(6k − 1)

6k − 1
− log(6k + 1)

6k + 1

)
<

∫ ∞

16

(
log(6t − 1)

6t − 1
− log(6t + 1)

6t + 1

)
dt

=
(log 97)2 − (log 95)2

12
< 0.016,

and a straightforward calculation confirms that
16∑

k=1

(
log(6k − 1)

6k − 1
− log(6k + 1)

6k + 1

)
< 0.109.

Thus one obtains the estimate
0 < L′ < 1/8. (3.29)

We next estimate some partial sums required in our subsequent deliberations. First,
we deduce from the argument leading to (3.24) that for each x " 1, one has

1 "
∑

1!n!x

χ1(n)
n

" 1 − 1
5

=
4
5
.

Thus, in view of (3.28) and (3.25), one deduces that
∣∣∣∣∣∣
L −

∑

1!m!x

χ1(m)
m

∣∣∣∣∣∣
=

∣∣∣∣∣
∑

m>x

χ1(m)
m

∣∣∣∣∣ ! min
{ 1

x
,

π

2
√

3
− 4

5

}
. (3.30)

We also find from (3.25) that
∣∣∣∣∣∣
L′ +

∑

1!m!x

χ1(m) log m

m

∣∣∣∣∣∣
=

∣∣∣∣∣
∑

m>x

χ1(m) log m

m

∣∣∣∣∣ !
log x

x
. (3.31)

Write µ(n) for the Möbius function, and observe next that
∑

1!md!x

χ1(md)µ(d)
md

=
∑

1!n!x

χ1(n)
n

∑

d|n

µ(d) = 1.

Consequently, on making use of (3.30), we deduce that for x " 1010, one has
∣∣∣∣∣∣
L
∑

1!d!x

χ1(d)µ(d)
d

− 1

∣∣∣∣∣∣
=

∣∣∣∣∣∣

∑

1!d!x

χ1(d)µ(d)
d

(
L −

∑

1!m!x/d

χ1(m)
m

)∣∣∣∣∣∣

!
∑

1!d!x/9

1
d

(x

d

)−1
+
( π

2
√

3
− 4

5

) ∑

x/9<d!x

1
d

! 1
9

+ 0.1069
∫ x

x/9−1

dt

t

=
1
9

+ 0.1069 log
( 9x

x − 9

)
< 0.346. (3.32)
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We next recall that

Λ(n) =
∑

md=n

µ(d) log m,

and hence obtain the relation
∑

1!n!x

χ1(n)Λ(n)
n

=
∑

1!d!x/5

χ1(d)µ(d)
d

∑

1!m!x/d

χ1(m) log m

m
,

Here we have observed that the innermost sum in the last expression is zero for
d > x/5. It therefore follows that

∑

1!n!x

χ1(n)Λ(n)
n

+
L′

L
=
∑

1!d!x/5

χ1(d)µ(d)
d




∑

1!m!x/d

χ1(m) log m

m
+ L′





− L′

L



L
∑

1!d!x/5

χ1(d)µ(d)
d

− 1



 . (3.33)

But by (3.31) and (3.4), when x " 1010 one has

∑

1!d!x/5

1
d

∣∣∣∣∣∣

∑

1!m!x/d

χ1(m) log m

m
+ L′

∣∣∣∣∣∣
!
∑

1!d!x/5

log(x/d)
x

! 1
x

(x

5
log x −

(x

5
log
(x

5

)
− x

5
+ 1 − log

(x

5

)))

=
1 + log 5

5
+

log(x/5) − 1
x

< 0.5219. (3.34)

Finally, on recalling (3.28) and (3.29), and substituting (3.32) and (3.34) into (3.33)
we conclude that for x " 5 × 1010, one has

∣∣∣∣∣∣

∑

1!n!x

χ1(n)Λ(n)
n

+
L′

L

∣∣∣∣∣∣
< 0.5219 +

1
8
· 2

√
3

π
0.346 < 0.5696. (3.35)

It is now time to estimate the contribution of the higher powers of primes to the
sum central to this lemma. To this end, we put

A1 =
∑

p

∑

m"2

χ1(pm) log p

pm
=
∑

p

log p

p(p − χ1(p))
,

and note that
∑

p!√
x

∑

m"2
pm!x

χ1(pm) log p

pm
= A1 −

∑

p>
√

x

log p

p(p − χ1(p))
−
∑

p!√
x

χ1(p)mp+1 log p

pmp(p − χ1(p))
,
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where mp = [log x/ log p]. On recalling (3.13) and (3.14), we therefore obtain for
x " 1025 the bound

∣∣∣∣∣
∑

1!n!x

χ1(n)Λ(n)
n

−
∑

p!x

χ1(p) log p

p
− A1

∣∣∣∣∣

=

∣∣∣∣∣
∑

p!√
x

∑

m"2
pm!x

χ1(pm) log p

pm
− A1

∣∣∣∣∣

!
∑

p>
√

x

log p

p(p − 1)
+
∑

p!√
x

log p

pmp(p − 1)
< 10−9. (3.36)

Write cj = −L′/L − A1 + (−1)j · 0.57 for j = 1, 2. Then it follows from (3.35) and
(3.36) that for x " 1025, one has

c1 <
∑

p!x

χ1(p) log p

p
< c2,

Consequently, whenever y > x " 1025, it follows via partial summation that
∑

x<p!y

χ1(p)
p

=
1

log y

∑

p!y

χ1(p) log p

p
− 1

log x

∑

p!x

χ1(p) log p

p

+
∫ y

x

∑

p!t

χ1(p) log p

p
· dt

t(log t)2

<
c2

log y
− c1

log x
+ c2

∫ y

x

dt

t(log t)2
=

c2 − c1

log x
.

We therefore conclude that when x " 1025, one has
∑

p>x

χ1(p)
p

! 1.14
log x

< 0.02. (3.37)

Next we examine the sum

A2 =
∑

p

χ1(p)
p

.

Note first that the formulae (3.20) and (3.28) yield
∑

p"5

log(1 − χ1(p)/p) − 1
2

∑

p"5

log(1 − 1/p2)

= log(1/L) +
1
2

log
(
(1 − 2−2)(1 − 3−2)ζ(2)

)

= log(2/
√

3).

Thus, on writing

F (p) =
χ1(p)

p
+ log

(
1 − χ1(p)

p

)
− 1

2
log
(
1 − 1

p2

)
,
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we arrive at the formula

A2 =
∑

p"5

F (p) − log(2/
√

3). (3.38)

We estimate the sum on the right hand side of (3.38) by appealing to the Taylor
expansion

log(1 − t) = −
∞∑

m=1

tm

m
,

which is valid whenever |t| < 1. Thus, for each prime p with p " 5, we find that

F (p) = −
∞∑

m=2

χ1(p)m

mpm
+

1
2

∞∑

n=1

1
np2n

= −χ1(p)
∑

m"3
m≡1 (mod 2)

1
mpm

.

In particular, when p ≡ 5 (mod 6) it is apparent that F (p) > 0, and when p ≡ 1
(mod 6) one has

F (p) " −1
3

∞∑

l=1

p−1−2l = − 1
3p(p2 − 1)

=
1
6

( 1
p(p + 1)

− 1
p(p − 1)

)
.

Consequently,

∑

p>43

F (p) >
1
6

∑

p>43
p≡1 (mod 6)

( 1
p(p + 1)

− 1
p(p − 1)

)

>
1
6

∑

n"61

( 1
n(n + 1)

− 1
n(n − 1)

)
= − 1

6 · 61 · 60

> −0.0000456, (3.39)

while a direct calculation yields
∑

5!p!43

F (p) > 0.00189. (3.40)

We therefore conclude from (3.38), (3.39) and (3.40) that

A2 > log(
√

3/2) + 0.00189− 0.0000456 > −0.142,

whence by (3.37), whenever x " 1025, one has

∑

p!x

χ1(p)
p

= A2 −
∑

p>x

χ1(p)
p

> −0.162. (3.41)
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We are at last positioned to deliver the conclusion of the lemma. On combining
the conclusion of Lemma 3.2 with (3.41), we find that when x " 1025, one has

∑

p!x
p≡−1 (mod 6)

1
p

=
1
2

( ∑

5!p!x

1
p
−
∑

p!x

χ1(p)
p

)

<
1
2
(
log log x + 0.281 − 1

2
− 1

3
)

+
1
2
(0.162)

<
1
2

log log x − 0.195,

and this completes the proof of the lemma.

At last we are equipped to dispose of the proof of Lemma 2.2.

Proof of Lemma 2.2. — We begin by making the crucial observation, familiar from
the theory of binary quadratic forms, that a natural number n is represented by
x2 + xy + y2, with integers x and y, if and only if n satisfies the condition that
whenever p|n with p ≡ 2 (mod 3), then for some natural number h one has p2h‖n.
Denote by N (X) the set of odd integers up to X that are represented by x2 +xy+y2,
so that N (X) is the union of M1(X) and the set of odd squares up to X . Then in
view of the above comments, every natural number n with n ! X can be uniquely
expressed in the form n = 2klm, where k " 0, l ∈ N (X), and m is a product of
distinct prime numbers congruent to −1 modulo 6. We seek to obtain a lower bound
for a weighted sum over the elements of N (X) by observing that our last remark
ensures that

( ∞∑

k=0

1
2k

)(
∏

p!X
p≡−1 (mod 6)

(
1 +

1
p

)) ∑

m∈N (X)

1
m

>
∑

n!X

1
n

>

∫ X

1

dt

t
= log X. (3.42)

But when 0 < t < 1, one has log(1+ t) < t, and thus Lemma 3.4 shows that whenever
X " 1025,

log
( ∏

p!X
p≡−1 (mod 6)

(
1 +

1
p

))
<

∑

p!X
p≡−1 (mod 6)

1
p

<
1
2

log log X − 0.195.

Consequently, it follows from (3.42) that for X " 1025 one has
∑

m∈N (X)

1
m

>
1
2
e0.195

√
log X > 0.6076

√
log X. (3.43)

We suppose next that X " 1056, and write Y = X13/28. Plainly, one has Y "
1026. In view of our earlier remarks concerning the set of integers represented by the
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quadratic form x2 + xy + y2, it is evident that

M1(X) ⊃ {mp : m ∈ N (Y ), Y < p ! X/m, p ≡ 1 (mod 6) },

whence it follows that

card
(
M1(X)

)
"
∑

m∈N (Y )

(
π1(X/m) − π1(Y )

)
.

Note here that X/m " X15/28 > Y > 1020. Then on applying Lemma 3.3 in combi-
nation with the trivial upper bound π1(Y ) ! 1 + Y/6, we obtain

card
(
M1(X)

)
>
∑

m∈N (Y )

(0.3687X

m log X
− Y

6
− 1
)

" 0.3687X

log X

∑

m∈N (Y )

1
m

− Y 2

6
− Y,

whence, on recalling (3.43), we find that card
(
M1(X)

)
is greater than

(
0.3687

(
0.6076

√
13
28

)
−
√

log X
(1

6
X−1/14 + X−15/28

)) X√
log X

.

We therefore conclude that when X " 1056, one has

card
(
M1(X)

)
> 0.15245X/

√
log X. (3.44)

In order to obtain a satisfactory lower bound for card
(
M0(X)

)
, we have only to

remark that the sets
{4km : m ∈ M1(4−kX)}

are pairwise disjoint for k " 1, and moreover each such set is plainly contained in
M0(X). Furthermore, since 4−6X > 1056 whenever X " 1060, we deduce from (3.44)
that whenever the latter condition holds, one has

card
(
M0(X)

)
"

6∑

k=1

card
(
M1(4−kX)

)

>
0.15245X√

log X

6∑

k=1

4−k > 0.0508
X√
log X

. (3.45)

The conclusion of Lemma 2.2 is immediate from (3.44) and (3.45).
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CHAPTER 4

AN AUXILIARY SINGULAR INTEGRAL

We avoid serious computations in our estimation of the singular integral by ex-
ploiting a probabilistic interpretation to obtain a simple lower bound, along the lines
applied by Deshouillers in §2.1 of [6]. We first prepare an auxiliary lemma, and for
this we require some notation. Write

J(β) =
∫ 2

1
e(βz4)dz, (4.1)

and, when m is a natural number with m " 2, define

Km(ξ) =
∫ ∞

−∞
J(β)me(−ξβ)dβ. (4.2)

It is simple to show that Km(ξ) is absolutely convergent for m " 2 (see, for example,
inequality (4.3) below). We note for future reference that in order to establish the
lower bound for the major arc contribution recorded in Lemma 2.1, it suffices to obtain
a numerical lower bound for K7(ξ) holding uniformly for ξ in a suitable interval.

Lemma 4.1. — Suppose that δ is a positive number, and that ξ and ξ′ are real num-
bers with |ξ − ξ′| ! δ. Then whenever m " 3, one has

|Km(ξ) − Km(ξ′)| ! mδ

8(m − 2)π
.

Proof. — When β is non-zero, it follows by partial integration that

J(β) =
e(16β)
64πiβ

− e(β)
8πiβ

+
3

8πiβ

∫ 2

1
z−4e(βz4)dz,

and thus we obtain the estimate

|J(β)| ! 1
64π|β| +

1
8π|β| +

3
8π|β|

∫ 2

1
z−4dz =

1
4π|β| .

Combining the latter estimate with the trivial bound |J(β)| ! 1, we deduce that

|J(β)| ! min{1, (4π|β|)−1}. (4.3)
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On the other hand, it is apparent that the hypotheses of the lemma imply that

|e(−ξβ) − e(−ξ′β)| = |1 − e((ξ − ξ′)β)|
= 2| sin(π(ξ − ξ′)β)| ! 2πδ|β|.

Thus, on making use of (4.3), we obtain the upper bounds
∣∣∣∣∣

∫

|β|!(4π)−1
J(β)m(e(−ξβ) − e(−ξ′β))dβ

∣∣∣∣∣ ! 4πδ

∫ (4π)−1

0
β dβ =

δ

8π
,

and, when m " 3,
∣∣∣∣∣

∫

|β|"(4π)−1
J(β)m(e(−ξβ) − e(−ξ′β))dβ

∣∣∣∣∣ ! 4πδ

∫ ∞

(4π)−1
β(4πβ)−mdβ

=
δ

4(m − 2)π
.

The conclusion of the lemma is immediate on combining the last two inequalities.

We now make use of the promised probabilistic interpretation.

Lemma 4.2. — Suppose that m " 3. Then there exists a real number ν = ν(m)
satisfying the inequalities

31m

5
−

√
12378m

15
+

1
8

! ν ! 31m

5
+

√
12378m

15
+

1
8
,

with the property that whenever ν − 1
4 ! ξ ! ν, one has

Km(ξ) " 5√
12378m

− m

64(m − 2)π
.

Proof. — Following the method of Deshouillers [6, §2.1], we consider m independent
random variables X1, . . . , Xm that are uniformly distributed on the interval [1, 2]. On
considering Fourier transforms and their inverses, as explained in [6] (see also §2.1 of
[9]), we find that the integral Km(ξ) coincides with the density of the random variable
Zm = X4

1 + · · · + X4
m at ξ. Denote by µ = µ(m) and σ = σ(m), respectively, the

mean and standard deviation of Zm. Then we find that

µ = m

∫ 2

1
X4dX =

31m

5
, (4.4)

and

σ2 = m

(∫ 2

1
X8dX −

(31
5

)2)
=

4126m

225
. (4.5)

By the Bienaymé-Chebyshev theorem, therefore, one has
∫ µ+

√
3σ

µ−
√

3σ
Km(ξ)dξ " 1 −

( 1√
3

)2
=

2
3
,
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whence it follows that there exists a real number ξm, with

µ −
√

3σ ! ξm ! µ +
√

3σ, (4.6)

such that
Km(ξm) " 1

2
√

3σ
· 2
3

=
5√

12378m
.

We may thus conclude from Lemma 4.1 that whenever |ξ − ξm| ! 1/8, one has

Km(ξ) " Km(ξm) − |Km(ξm) − Km(ξ)|

" 5√
12378m

− m

64(m− 2)π
.

On setting ν = ν(m) = ξm +1/8, the conclusion of the lemma is now immediate from
(4.4)-(4.6).

We close this section by extracting from Lemma 4.2 the conclusion relevant to our
discussion in §7 involved in the proof of Lemma 2.1.

Corollary 4.3. — There exists a real number ν, with 23 < ν < 64, satisfying the
property that whenever ξ is a real number with ν − 1/4 ! ξ ! ν, then one has
K7(ξ) " 0.01.

Proof. — The conclusion of the corollary is immediate from Lemma 4.2, on setting
m = 7.

We remark that numerical integration can be applied, with some computational
expense, to establish that K7(ξ) > 0.0345 for 41.5 ! ξ ! 42.5.
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CHAPTER 5

ESTIMATES FOR COMPLETE EXPONENTIAL SUMS

In advance of our discussion of the singular series, we prepare some preliminary
estimates associated with the complete exponential sums

S(q, a) =
q∑

h=1

e
(a

q
h4
)

(5.1)

and

Gε(q, a) =
q∑

h=1

e
(a

q
(2h + ε)4

)
(ε = 0, 1). (5.2)

In this context, we note that for odd q, one has

G0(q, a) = G1(q, a) = S(q, a). (5.3)

In order to describe the known estimates for the above exponential sums, we define
the function c(q) for prime powers q as follows. We write

c(2) = 0, c(22) =
√

2, c(23) =
√

2 +
√

2, c(24) =
√

2 +
√

2 +
√

2,
c(5) = 1.32, c(13) = 1.138, c(17) = 1.269, c(41) = 1.142,

and define c(p) = 1 for the remaining odd primes p. We next define the multiplicative
function κ(q) by taking

κ(24u+v) =

{
1, when u = 0 and 1 ! v ! 4,
2−uc(2v), when u " 1 and 1 ! v ! 4,

(5.4)

and, when p is an odd prime, by defining κ(ph) through the relations

κ(p) =

{
p−1/2, when p ≡ 3 (mod 4),
min{3p−1/2, c(p)p−1/4}, when p ≡ 1 (mod 4),

(5.5)

and

κ(p4u+v) =

{
p−uκ(p), when u " 0 and v = 1,
p−u−1, when u " 0 and 2 ! v ! 4.

(5.6)
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In view of the assumed multiplicative behaviour of κ(q), these relations define κ(q)
for all natural numbers q.

We remark that 3p−1/2 < c(p)p−1/4 if, and only if, one has p " 83. Furthermore,
for each natural number l one has κ(2l) ! 2c(24)2−l/4, and, when p is an odd prime,
one has also κ(pl) ! c(p)p−l/4. We therefore deduce that for each natural number q,
one has

κ(q) ! 2c(24)c(5)c(13)c(17)c(41)q−1/4 < 9q−1/4. (5.7)

Lemma 5.1. — Let p be an odd prime, and suppose that l is a natural number. Then
whenever a ∈ Z satisfies (p, a) = 1, one has

|S(pl, a)| ! plκ(pl).

Proof. — We begin by writing l = 4u + v with u " 0 and 1 ! v ! 4. Then according
to Lemma 4.4 of Vaughan [21], one has

S(p4u+v, a) = p3uS(pv, a), (5.8)

and when 2 ! v ! 4, one has S(pv, a) = pv−1. Thus we find that the conclusion of
the lemma is immediate when 2 ! v ! 4.

We next turn to the cases in which v = 1, noting initially that Lemma 4.3 of
Vaughan [21] establishes the bound |S(p, a)| ! ((p−1, 4)−1)√p. The latter estimate
suffices to establish the lemma whenever p ≡ 3 (mod 4), and also when p ≡ 1 (mod 4)
and p " 83. In the remaining cases we extract the bound |S(p, a)| ! c(p)p3/4 from the
argument of the proof of Lemma 2.2.2 of Deshouillers and Dress [9] (see especially the
inequalities (2.2.7) and (2.2.8)). On recalling (5.8), the proof of the lemma is rapidly
completed.

At this point we owe the reader a comment concerning the computations implicit
in the proof of Lemma 2.2.2 of [9]. The latter makes fundamental use of the work of
Nečaev and Topunov [18], which itself makes extensive use of computers in bounding
complete exponential sums over general quartic polynomials. However, in the present
context we require such bounds only for the quartic polynomials of the shape bx4, and,
moreover, it suffices to consider a set of coefficients b providing a set of representatives
of the cosets modulo fourth powers. In any case, such computations as are implicit in
[18] will be easily dispatched in the present setting by an energetic reader equipped
with a hand-held calculator. The additional work required to establish the estimates
provided in the proof of Lemma 2.2.2 of [9] will be similarly accommodated, since the
primes 5, 13, 17, 29, 37, 41, 53, 61, 73 may be directly examined according to the
above comments.

The conclusion of Lemma 5.1 is readily applied to bound Gε(q, a) via standard
methods, although some attention must be paid to the prime 2.
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Lemma 5.2. — Whenever (q, a) = 1, one has

|G1(q, a)| ! |G0(q, a)| ! qκ(q).

Proof. — The standard theory of complete exponential sums (see, for example, the
proof of Lemma 2.10 of Vaughan [21]) shows that the exponential sum Gε(q, a) has the
quasi-multiplicative property to the effect that, whenever (q1, q2) = 1 and (ai, qi) = 1
(i = 1, 2), then one has

Gε(q1q2, a1q2 + a2q1) = Gε(q1, a1)Gε(q2, a2). (5.9)

Consequently, in view of (5.3) and Lemma 5.1, the conclusion of the lemma will be
established by verifying that whenever a is odd and l " 1, one has

|G1(2l, a)| ! |G0(2l, a)| ! 2lκ(2l). (5.10)

Note first that when ε ∈ {0, 1}, one has

(2h + ε)4 ≡ ε (mod 16), (5.11)

and thus we find that when 1 ! l ! 4, one has

|Gε(2l, a)| = 2l = 2lκ(2l),

thereby confirming (5.10) for 1 ! l ! 4. Suppose next that l " 5 and that a is odd. In
these circumstances, Lemma 4.4 of [21] asserts that S(2l, a) = 23S(2l−4, a), whence

G0(2l, a) = 24S(2l−4, a) = 2S(2l, a). (5.12)

Since G0(2l, a)+G1(2l, a) = 2S(2l, a), it is immediate from (5.12) that whenever l " 5
and a is odd, one has

G1(2l, a) = 0. (5.13)

Meanwhile, on writing l = 4u + v with u " 1 and 1 ! v ! 4, it follows from (5.12)
and Lemma 4.4 of [21] that

G0(2l, a) = 2S(24u+v, a) = 23u+1S(2v, a).

But by (5.11) we have

|S(2v, a)| = 2v−1|1 + e(a2−v)| ! 2v−1|1 + e(2−v)|,

and moreover a simple calculation reveals that for 1 ! v ! 4, one has

|1 + e(2−v)| =
√

2(1 + cos(π21−v)) = c(2v).

Thus we deduce that whenever a is odd and l " 5, one has

|G0(2l, a)| ! 23u+vc(2v) = 2lκ(2l). (5.14)

On combining (5.13) and (5.14), we verify (5.10) for l " 5, and in view of our
earlier discussion, the inequalities (5.10) therefore hold for each l " 1. This completes
the proof of the lemma.
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We next record a couple of simple lemmata of considerable utility. When p is an
odd prime number, define the integer bp by

bp = (p − 1, 4)− 1 =

{
1, when p ≡ 3 (mod 4),
3, when p ≡ 1 (mod 4).

(5.15)

Lemma 5.3. — When p is an odd prime, one has
p−1∑

a=1

|S(p, a)|2 = bpp(p − 1).

Proof. — The sum in question is equal to
p∑

a=1

|S(p, a)|2 − p2 = p
∑

1!x,y!p
x4≡y4 (mod p)

1 − p2. (5.16)

But for any fixed x with 1 ! x < p, there are precisely (p−1, 4) values of y with x4 ≡ y4

(mod p) and 1 ! y ! p. Thus the final sum in (5.16) is equal to 1 + (p− 1, 4)(p− 1),
and the desired conclusion follows immediately from (5.15).

Lemma 5.4. — Let X " 5 be an integer and let σ > 1 be a real number. Then one
has

∑

n"X
n≡X (mod 4)

n−σ <
(X − 4)1−σ

4(σ − 1)
.

Proof. — We merely note that (4z + X)−σ is a decreasing function of z for z " −1,
and hence

∞∑

m=0

(4m + X)−σ <

∫ ∞

−1
(4z + X)−σdz =

(X − 4)1−σ

4(σ − 1)
.

This completes the proof of the lemma.

Next, we consider a sum which plays a role in our evaluation of the major arc
contribution R(N ; M). In this context, we write

V (q) = q−6
q∑

a=1
(a,q)=1

|G0(q, a)|6. (5.17)

Lemma 5.5. — When X " 1025, one has
∑

1!q!X

q1/4V (q) < 1.29 × 106 log X.
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Proof. — In view of the relation (5.9), a routine argument (see, for example, the proof
of Lemma 2.11 of Vaughan [21]) confirms that V (q) is a multiplicative function of q.
It therefore follows that

∑

1!q!X

q1/4V (q) !
∏

p!X

W (p), (5.18)

where we write

W (p) =
∞∑

l=0

pl/4V (pl).

Observe first that in view of Lemma 5.2, one has

pl/4V (pl) ! κ(pl)6p5l/4−1(p − 1). (5.19)

In particular, it follows from (5.4) that

W (2) ! 1 +
4∑

l=1

25l/4−1κ(2l)6 +
∞∑

u=1

4∑

v=1

2
5
4 (4u+v)−1κ(24u+v)6

= 1 +
4∑

l=1

25l/4−1 +
∞∑

u=1

2−u−1
4∑

v=1

25v/4c(2v)6,

and thus a simple computation yields the estimate

W (2) < 28 + 2404
∞∑

u=1

2−u−1 = 1230. (5.20)

We now turn our attention towards the odd primes p. On recalling (5.3) and (5.8),
it follows from Lemma 5.1 that for u " 0, one has

V (p4u+1) = p−6(4u+1)
p4u+1∑

a=1
(a,p)=1

p18u|S(p, a)|6

= p−2u−6
p−1∑

a=1

|S(p, a)|6 ! p−2u−2κ(p)4
p−1∑

a=1

|S(p, a)|2.

Consequently, we deduce from Lemma 5.3 that

p(4u+1)/4V (p4u+1) ! bp(p − 1)p−u−3/4κ(p)4. (5.21)

When u " 0 and 2 ! v ! 4, meanwhile, we deduce from (5.19) and (5.6) that

p(4u+v)/4V (p4u+v) ! (p − 1)p−u+5v/4−7. (5.22)
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On collecting together (5.21) and (5.22), we deduce that

W (p) = 1 +
∞∑

u=0

4∑

v=1

p(4u+v)/4V (p4u+v)

! 1 + (p − 1)
∞∑

u=0

p−u
(
bpp

−3/4κ(p)4 +
4∑

v=2

p5v/4−7
)

= 1 + bpp
1/4κ(p)4 + p−7/2 + p−9/4 + p−1. (5.23)

On recalling (5.5) and (5.15), therefore, a modest computation reveals that

W (3) < 1.586 and W (5) < 3.955. (5.24)

On the other hand, again by (5.5) and (5.15), for p > 5 one has bpp1/4κ(p)4 " p−7/4,
and consequently,

1
2
(bpp

1/4κ(p)4+p−1)2 − (p−7/2 + p−9/4)

" 1
2
(p−7/2 + 2p−11/4 + p−2) − (p−7/2 + p−9/4)

=
1
2
p−2(1 − p−1/2)((1 − p−1/4)2 + p−1) > 0.

In this way, the inequality (5.23) leads to the upper bound

W (p) < 1 + bpp
1/4κ(p)4 + p−1 +

1
2
(bpp

1/4κ(p)4 + p−1)2

< exp(bpp
1/4κ(p)4 + p−1). (5.25)

Again recalling (5.5) and (5.15), applying Lemma 5.4, and making a modest com-
putation, we discover that

∑

p"7
p≡3 (mod 4)

bpp
1/4κ(p)4 <

∑

n"7
n≡3 (mod 4)

n−7/4 < 3−3/4/3 < 0.1463,

and similarly,
∑

p"7
p≡1 (mod 4)

bpp
1/4κ(p)4 = 3

∑

13!p!73
p≡1 (mod 4)

c(p)4p−3/4 + 35
∑

p"89
p≡1 (mod 4)

p−7/4

< 2.8295 + 35(85−3/4/3) < 5.723.

Moreover, when X " 1025 it follows from Lemma 3.2 that
∑

7!p!X

1
p

< log log X + 0.281 − 1
2
− 1

3
− 1

5

< log log X − 0.752.
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We therefore deduce from (5.25) that

∏

7!p!X

W (p) < exp




∑

7!p!X

(bpp
1/4κ(p)4 + p−1)





< exp(0.1463 + 5.723− 0.752) logX

< 167 logX. (5.26)

The proof of the lemma is completed on combining (5.18), (5.20), (5.24) and (5.26).

Finally, we take this occasion to discuss an estimate for the complete exponential
sum

S(q, a, b) =
q∑

r=1

e((ar4 + br)/q). (5.27)

We implicitly require the following result, which was first proved by Thomas in his
thesis (see Theorem 2.1 of [20]).

Lemma 5.6. — Whenever (q, a, b) = 1, one has

|S(q, a, b)| ! 4.5q3/4.

Some comments are in order, before we launch our proof of this lemma. In §7 below,
we require Proposition 2.4 of Deshouillers and Dress [9], but the latter proposition
is in fact deduced from the aforementioned result of Thomas via Proposition 2.2
of [9]. Since the argument of Nečaev and Topunov [18] is employed in the proof
of this result of Thomas by Deshouillers and Dress [9], one finds that the proof of
Proposition 2.4 of [9] ultimately rests, implicitly, on the extensive computations within
the work of Nečaev and Topunov [18]. Our objective here is to substantially reduce
the computational load required to confirm the above bound for S(q, a, b), and hence
to establish Proposition 2.4 of Deshouillers and Dress [9]. To this end, we provide
here a proof of this result of Thomas [20].

Proof of Lemma 5.6. — By the standard theory of complete exponential sums (see,
for example, Lemma 2.10 of Vaughan [21]), one finds easily that whenever (q1, q2) = 1,
then

S(q1q2, a1q2 + a2q1, b1q2 + b2q1) = S(q1, a1, b1)S(q2, a2, b2). (5.28)

Moreover, under the same condition it follows that

(q1q2, a1q2 + a2q1, b1q2 + b2q1) = 1

if and only if (q1, a1, b1) = (q2, a2, b2) = 1. We therefore find that, in order to establish
the conclusion of the lemma, it suffices to consider the sums S(q, a, b) for prime powers
q = ph and integers a and b with p ! (a, b).
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Observe next that whenever h and ν are integers with 1 ! ν ! h/2, one has

a(x + yph−ν)4 + b(x + yph−ν) ≡ ax4 + bx + (4ax3 + b)yph−ν (mod ph).

When p = 2 or 3, moreover, this congruence remains valid under the slightly weaker
constraint 1 ! ν ! (h + 1)/2 and h " 2. Suppose that q = ph with h " 2, and make
the change of variable r = x + yph−ν in (5.27), where 1 ! x ! ph−ν and 1 ! y ! pν .
Then one readily deduces from the above congruence that when 1 ! ν ! h/2, or when
1 ! ν ! (h + 1)/2 in the cases p = 2, 3, one has

S(ph, a, b) = pν
ph−ν∑

x=1
4ax3≡−b (mod pν)

e(p−h(ax4 + bx)). (5.29)

We begin by considering the even prime p = 2. When 1 ! h ! 3, the trivial bound
|S(2h, a, b)| ! 2h suffices for our purposes. When h = 4, we find from (5.11) that

S(24, a, b) =
1∑

ε=0

8∑

r=1

e(2−4(a(2r + ε)4 + b(2r + ε)))

= (1 + e((a + b)/16))
8∑

r=1

e(br/8),

and from this it plainly follows that whenever 2 ! (a, b), one has

|S(24, a, b)| ! |1 + e(1/16)| · 8 =
√

2 +
√

2 +
√

2 · 8. (5.30)

When h " 5, we first apply the formula (5.29) with p = 2 and ν = 3. Note that when
4 ! b, the congruence 4ax3 ≡ −b (mod 8) has no solution, and that when 8|b and 2 ! a,
this congruence holds if and only if 2|x. Therefore it follows immediately that

S(2h, a, b) =

{
0, when h " 5 and 4 ! b,

8S(2h−4, a, b/8), when h " 5, 2 ! a and 8|b.
(5.31)

When h " 5, 2 ! a, 4|b but 8 ! b, we apply (5.29) with p = 2 and ν = [(h+1)/2]. Then
since h − ν " ν − 2 and the congruence ax3 ≡ −b/4 (mod 2ν−2) possesses a unique
solution x modulo 2ν−2 under the current hypotheses, one obtains the estimate

|S(2h, a, b)| ! 2ν(2h−ν/2ν−2) = 2h−[(h+1)/2]+2 !
√

2 · 23h/4. (5.32)

On collecting together the relations (5.30)-(5.32), and noting also the trivial bound
for 1 ! h ! 3, an inductive argument demonstrates that whenever 2 ! (a, b) and h " 1,
one has

|S(2h, a, b)| !
√

2 +
√

2 +
√

2 · 23h/4. (5.33)

We hereafter concentrate on odd primes p. Suppose first that h " 2, p ! a and
p|b. In this case we take ν = 1 in (5.29), and note that the congruence 4ax3 ≡ −b
(mod p) is equivalent to the condition that p|x. When h ! 4, the latter observation
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ensures that the sum on the right hand side of (5.29) is easily evaluated, and thus
one obtains

S(ph, a, b) =

{
ph−1, when 2 ! h ! 4 and ph−1|b,
0, when 3 ! h ! 4, p|b but ph−1 ! b.

(5.34)

When h " 5, meanwhile, we may make the change of variable x = p(z + wph−4) in
(5.29), with 1 ! z ! ph−4 and 1 ! w ! p2. In this way, we deduce that

S(ph, a, b) =

{
p3S(ph−4, a, b/p3), when h " 5 and p3|b,
0, when h " 5, p|b but p3 ! b.

(5.35)

Suppose next that h " 2 and p ! b. Write θ(p, u, v) for the number of solutions of
the congruence 4ax3 ≡ −b (mod pu) with 1 ! x ! pv. Since p ! b, one finds for every
natural number u that θ(p, u, u) ! (pu−1(p − 1), 3), and also that θ(3, u, u − 1) ! 1.
On taking ν = [h/2] when p > 3, and ν = [(h + 1)/2] when p = 3, we therefore derive
from (5.29) the bound

|S(ph, a, b)| ! θ(p, ν, h − ν)pν .

A modicum of computation therefore confirms that when h " 2, one has

|S(3h, a, b)| ! 33h/4, (5.36)

and likewise that when h is even and p > 3,

|S(ph, a, b)| ! (p − 1, 3)ph/2. (5.37)

When p > 3 and h is odd, moreover, one has h = 2ν + 1, and on writing x = z + wpν

in (5.29), one deduces that

|S(ph, a, b)| ! pν
pν∑

z=1
4az3≡−b (mod pν)

∣∣∣∣∣

p∑

w=1

e
(
(6az2w2 + (4az3 + b)wp−ν)p−1

)
∣∣∣∣∣ . (5.38)

Since, by hypothesis, we may suppose that p ! 6b, we find that whenever an integer z
satisfies the congruence appearing in the summation condition on the right hand side
of the last inequality, one necessarily has p ! 6az2. On considering the associated
Gauss sums, we therefore deduce from (5.38) that |S(ph, a, b)| ! θ(p, ν, ν)pν+1/2, and
thus the inequality (5.37) remains valid for p > 3 and odd exponents h exceeding 2.
On recalling the upper bounds (5.36) and (5.37), we thus conclude that when p is
odd, p ! b, p #= 7 and h " 2, or when p = 7, 7 ! b and h " 3, one has the bound

|S(ph, a, b)| ! p3h/4. (5.39)

Before proceeding further, we remark that by a transparent change of variable,
and by considering complex conjugation, one finds that whenever r is an integer with
(q, r) = 1, then

|S(q, a, b)| = |S(q,±ar4, br)|. (5.40)
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Equipped with the relation (5.40), we begin by disposing of the case in which p = 7,
7 ! b and h = 2. Here we appeal to (5.29) with ν = 1 just as before. Since cubic
residues are congruent to 0 or ±1 modulo 7, we find that the congruence condition in
(5.29) ensures that the sum S(49, a, b) vanishes unless 4a ≡ ±b (mod 7). In view of
(5.40), moreover, on noting that the integers ±r4 with 7 ! r represent all the reduced
residue classes modulo 49, it suffices to consider only the cases in which a = 1 and
b ≡ 3 (mod 7) with |b| ! 24. Indeed, a modicum of computation reveals that

max
|b|!24

b≡3 (mod 7)

1√
7

∣∣∣∣∣∣

∑

x∈{1,2,−3}

e
(x4 + bx

49

)
∣∣∣∣∣∣
< 1.035.

It may be worth noting here that the maximum on the left hand side occurs when
b = −18. In any case, it follows from (5.29), combined with the above observations,
that whenever 7 ! b, one has

|S(49, a, b)| < 1.035 · 493/4. (5.41)

It remains only to estimate S(p, a, b) for odd primes p with p ! (a, b). But when p|a
the sum S(p, a, b) vanishes, and when p|b this sum is identical with the Gauss sum
S(p, a) already estimated in the course of the proof of Lemma 5.1. In any case, when
p ! (a, b) and p|ab, it follows that

|S(p, a, b)| ! c(p)p3/4, (5.42)

where c(p) is defined as in the preamble to (5.4) and (5.5) above.
Our subsequent treatment for the case with p ! ab is motivated by the method due

to Mordell (see the proof of Theorem 7.1 of Vaughan [21], for example). We consider
the sums

Υ0 =
p−1∑

a=0

p−1∑

b=0

|S(p, a, b)|4 and Υ1 =
p−1∑

a=1

p−1∑

b=1

|S(p, a, b)|4.

In order to derive a relation between these sums, we begin by applying Cauchy’s
inequality in combination with Lemma 5.3 to obtain the lower bound

p−1∑

a=1

|S(p, a, 0)|4 "
(

p−1∑

a=1

|S(p, a)|2
)2(p−1∑

a=1

1

)−1

" p2(p − 1).

Observing next that S(p, 0, b) is p or 0 according to whether p|b or not, we deduce
that

Υ1 ! Υ0 − p4 − p2(p − 1). (5.43)

On the other hand, it follows from (5.40) that whenever p ! ab, one has

Υ1 " 2(p − 1)|S(p, a, b)|4. (5.44)

MÉMOIRES DE LA SMF 100



CHAPTER 5. ESTIMATES FOR COMPLETE EXPONENTIAL SUMS 41

We thus conclude from (5.43) and (5.44) that whenever p ! ab, one has

|S(p, a, b)| !
(

Υ0 − p4 − p3 + p2

2(p − 1)

)1/4

, (5.45)

and it is this relation that we employ in what follows.
We note next that orthogonality yields the equation

Υ0 = p2Υ2, (5.46)

where we write Υ2 for the number of solutions of the simultaneous congruences

x4 + y4 ≡ z4 + w4 (mod p) and x + y ≡ z + w (mod p),

subject to 1 ! x, y, z, w ! p. Eliminating w from these congruences, one finds that
Υ2 is equal to the number of solutions of the congruence

(x − z)(y − z)((4x + 3y − z)2 + 7y2 − 2yz + 7z2) ≡ 0 (mod p),

subject to 1 ! x, y, z ! p. The number of these solutions with x = z or y = z is
2p2 − p, and thus, on denoting the Legendre symbol modulo p by χp, one obtains the
upper bound

Υ2 ! 2p2 − p +
∑

1!y, z!p
y #=z

(
1 + χp(−7y2 + 2yz − 7z2)

)
. (5.47)

Familiar results for sums of Legendre symbols over quadratic sequences demonstrate
that for each prime p exceeding 3, one has

p∑

y=1

p∑

z=1

χp(−7y2 + 2yz − 7z2) = 0.

Then it follows swiftly from (5.47) that for p > 3, one has

Υ2 ! 3p2 − 2p − χp(−3)(p − 1) ! 3p2 − p − 1. (5.48)

We now collect together (5.45), (5.46) and (5.48) to conclude that whenever p > 3
and p ! ab, one has

|S(p, a, b)| ! p3/4.

But when p = 3 and 3 ! ab, one has

|S(3, a, b)| = |1 + e((a + b)/3) + e((a − b)/3)| = |2 + e(2/3)| =
√

3.

We therefore conclude that the inequality (5.42) is valid whenever p is an odd prime
number with p ! (a, b).

Define now c∗(2) = c(24), c∗(7) = 1.035, and when p is an odd prime number
with p #= 7, define c∗(p) = c(p). Then in view of (5.34), (5.35), (5.39), (5.41) and
the conclusion of the previous paragraph, we deduce via an inductive argument that
whenever p is odd, p ! (a, b) and h " 1, one has

|S(ph, a, b)| ! c∗(p)p3h/4.
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Finally, on recalling (5.28) and (5.33), the proof of the lemma is completed by ob-
serving that

c∗(2)c∗(5)c∗(7)c∗(13)c∗(17)c∗(41) < 4.42.

MÉMOIRES DE LA SMF 100



CHAPTER 6

THE SINGULAR SERIES

In the analysis of the major arc contribution described in the next section, we
encounter a partial sum of the singular series. The object of the present section is to
obtain a uniform lower bound for this partial sum adequate for the aforementioned ap-
plication. We begin by recording an elementary fact concerning fourth power residues
in a form suitable for frequent citation in our later discussion.

Lemma 6.1. — When p is a prime number, define γ = γ(p) by

γ(p) =

{
4, when p = 2,
1, otherwise.

Suppose that s is a natural number, and that φ(x) ∈ Z[x1, . . . , xs]. Let a1, . . . , as be
fixed integers, and write m(a) for the number of solutions of the congruence

x4 ≡ φ(a1, . . . , as) (mod pγ),

with 1 ! x ! pγ and p ! x. When l is a natural number, denote by M(pl; a) the
number of solutions of the congruence

x4 ≡ φ(x1, . . . , xs) (mod pl),

with 1 ! x ! pl, p ! x and

xj ≡ aj (mod pγ), 1 ! xj ! pl (1 ! j ! s). (6.1)

Then whenever l " γ, one has

M(pl; a) = ps(l−γ)m(a).

Proof. — When m(a) is zero, the conclusion of the lemma is trivial, so we suppose
henceforth that m(a) is non-zero. The theory of primitive roots (see, for example,
Chapter 10 of Apostol [1]) shows that when p is an odd prime with p ! n, and
n is a fourth power residue modulo p, then for every l " 1 the congruence x4 ≡ n
(mod pl) has precisely (p−1, 4) solutions distinct modulo pl. When p = 2, meanwhile,
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the condition 2 ! x ensures that x4 ≡ 1 (mod 16), and we see that it is only the
congruence class 1 modulo 16 that is relevant. But when n ≡ 1 (mod 16), it follows
from Theorem 10.11 of Apostol [1], for example, that for every l " 4 the congruence
x4 ≡ n (mod 2l) has precisely 8 solutions distinct modulo 2l. Then in either case one
finds that whenever m(a) > 0, one has m(a) = 8 when p = 2, and m(a) = (p − 1, 4)
when p > 2. The proof of the lemma is therefore completed by noting that the number
of s-tuples x satisfying (6.1) is ps(l−γ).

We are now equipped to establish the desired lower bound for a partial sum of the
singular series.

Lemma 6.2. — Let t be an integer with 1 ! t ! 7, and suppose that n ≡ t (mod 16).
Define A(q, n; t) and S(n, Q; t) by

A(q, n; t) = q−7
q∑

a=1
(a,q)=1

G0(q, a)7−tG1(q, a)te(−an/q),

and

S(n, Q; t) =
∑

q!Q

A(q, n; t).

Then whenever P " 1050, one has

S(n, P 1/2; t) > 1.269 when n ≡ 3 (mod 5),

and

S(n, P 1/2; t) > 5.078 when n #≡ 3 (mod 5).

Proof. — We begin by showing that the truncated singular series S(n, Q; t) is close to
the corresponding infinite sum. On recalling the definition (5.17) of V (q), we deduce
from (5.7) and Lemma 5.2 that

|A(q, n; t)| ! 9q−1/4V (q).

Consequently, whenever Y " P 1/2, it follows via partial summation that
∑

P 1/2<q!Y

|A(q, n; t)| ! 9
∑

P 1/2<q!Y

q−1/4V (q)

= 9Y −1/2
∑

1!q!Y

q1/4V (q) − 9P−1/4
∑

1!q!P 1/2

q1/4V (q)

+
9
2

∫ Y

P 1/2
X−3/2

∑

1!q!X

q1/4V (q) dX.
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On recalling the conclusion of Lemma 5.5, we therefore deduce that whenever P "
1050 one has

∑

P 1/2<q!Y

|A(q, n; t)| < 9 × 1.29 × 106
(
Y −1/2 log Y +

1
2

∫ Y

P 1/2
X−3/2 log XdX

)

< 1.16 × 107
(
P−1/4 log(P 1/2) + 2P−1/4

)

< 3 × 10−4.

We thus deduce that the infinite series S(n; t), defined by

S(n; t) =
∞∑

q=1

A(q, n; t),

converges absolutely, and moreover that whenever P " 1050, one has

|S(n; t) − S(n, P 1/2; t)| < 3 × 10−4. (6.2)

We next express the singular series S(n; t) as an absolutely convergent infinite
product amenable to our subsequent discussion. Denote by M(q, n; t) the number of
solutions of the congruence

7−t∑

j=1

(2xj)4 +
t∑

l=1

(2yl + 1)4 ≡ n (mod q), (6.3)

with 1 ! xj ! q (1 ! j ! 7 − t) and 1 ! yl ! q (1 ! l ! t). The standard theory of
complete exponential sums (see, for example, Lemma 2.12 of Vaughan [21] or §2.3 of
Deshouillers and Dress [9]) shows that

M(q, n; t) = q−1
q∑

a=1

G0(q, a)7−tG1(q, a)te
(
−a

q
n
)

= q6
∑

d|q

A(d, n; t). (6.4)

But M(q, n; t) is plainly a multiplicative function of q, and thus we deduce that
A(q, n; t) is likewise a multiplicative function of q. Consequently, on defining B(p, n; t)
by

B(p, n; t) =
∞∑

l=0

A(pl, n; t),

we may express S(n; t) as
S(n; t) =

∏

p

B(p, n; t). (6.5)

Here we note that the absolute convergence of the latter infinite product is assured
by that of the series

∑
q |A(q, n; t)|.

We must now estimate the local factors B(p, n; t) in the infinite product (6.5).
While for larger p this estimation is essentially routine, we must obtain estimates for
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smaller p of some precision, and this entails some moderately painful computation.
We first consider the factor B(2, n; t). Since we are assuming that n ≡ t (mod 16),
we deduce from (5.11) that when q = 16 the congruence (6.3) holds for every choice
of x and y, whence we find that M(24, n; t) = 228. On recalling (5.13) and (6.4),
therefore, we arrive at the relation

B(2, n; t) =
4∑

l=0

A(2l, n; t) = 2−24M(24, n; t) = 16. (6.6)

In order to estimate B(p, n; t) for odd primes p, we work with the number of
solutions of an auxiliary congruence. Denote by M1(q, n) the number of solutions of
the congruence

x4
1 + x4

2 + · · · + x4
7 ≡ n (mod q),

with 1 ! xj ! q (1 ! j ! 7), and let M∗
1 (q, n) denote the corresponding number

of solutions subject to the additional condition that (xj , q) = 1 for some j. Then,
on combining a trivial estimate with the conclusion of Lemma 6.1, one finds that for
l " 1 and every odd prime p, one has

M1(pl, n) " M∗
1 (pl, n) = p6(l−1)M∗

1 (p, n). (6.7)

But it is evident that when q is odd, one has M(q, n; t) = M1(q, n) for any t with
1 ! t ! 7, and thus we conclude from (6.4) and (6.7) that for odd primes p, one has

B(p, n; t) = lim
l→∞

p−6lM(pl, n; t) = lim
l→∞

p−6lM1(pl, n) " p−6M∗
1 (p, n). (6.8)

For each fixed value of p, it is possible to compute M∗
1 (p, n) for each value of n

modulo p in order to determine the minimal value of B(p, n; t). We begin by noting
that when p = 3 or 5, one has

x4 ≡
{

0 (mod p), when p|x,
1 (mod p), when p ! x,

whence it is easily verified that

M∗
1 (p, n) =

∑

1!s!7
s≡n (mod p)

(
7
s

)
(p − 1)s.

By examining this formula for each value of n with 0 ! n < p, one swiftly verifies
that

min
n

M∗
1 (3, n) = M∗

1 (3, 1) = 702,

min
n

M∗
1 (5, n) = M∗

1 (5, 3) = 2240,

and moreover that

min
n#≡3 (mod 5)

M∗
1 (5, n) = M∗

1 (5, 4) = 8960.
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On recalling (6.8), we therefore deduce that

B(3, n; t) " 26
27

, B(5, n; t) " 448
3125

, (6.9)

and when n #≡ 3 (mod 5), we find that

B(5, n; t) " 1792
3125

. (6.10)

We next calculate the values M∗
1 (13, n) for 0 ! n ! 12. Observe first that the

number ρ(m) of solutions of the congruence h4 ≡ m (mod 13), with 0 ! h < 13,
satisfies

ρ(m) =






4, when m ≡ 1, 3, 9 (mod 13),
1, when m ≡ 0 (mod 13),
0, otherwise.

Thus, on introducing the polynomial

f0(x) = x + x3 + x9,

we obtain the polynomial congruence

(1 + 4f0(x))7 ≡
12∑

n=0

M1(13, n)xn (mod x13 − 1). (6.11)

In order more easily to compute the left hand side of (6.11), we introduce the auxiliary
polynomials

f1(x) = x2 + x5 + x6, f2(x) = x4 + x10 + x12, f3(x) = x7 + x8 + x11,

and observe that the following relations hold modulo x13 − 1:

f0(x)2 ≡ f1(x) + 2f2(x), f0(x)f1(x) ≡ f0(x) + f1(x) + f3(x),

f0(x)f2(x) ≡ f1(x) + f3(x) + 3, f0(x)f3(x) ≡ f0(x) + f2(x) + f3(x).
(6.12)

We infer that for m " 0, there are integers aj(m) (0 ! j ! 4) for which

f0(x)m ≡ a0(m)f0(x) + a1(m)f1(x) + a2(m)f2(x) + a3(m)f3(x) + a4(m)

modulo x13 − 1. Furthermore, in view of (6.12), one has the relation

f0(x)m+1 ≡ a0(m)(f1(x) + 2f2(x)) + a1(m)(f0(x) + f1(x) + f3(x))

+ a2(m)(f1(x) + f3(x) + 3) + a3(m)(f0(x) + f2(x) + f3(x))

+ a4(m)f0(x)

modulo x13 − 1, and from this we obtain for m " 0 the recurrence relations

a0(m + 1) = a1(m) + a3(m) + a4(m), a1(m + 1) = a0(m) + a1(m) + a2(m),

a2(m + 1) = 2a0(m) + a3(m), a3(m + 1) = a1(m) + a2(m) + a3(m),

a4(m + 1) = 3a2(m).
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Since a4(0) = 1 and aj(0) = 0 for 0 ! j ! 3, one may apply the latter formulae
to calculate the values of aj(m) successively for m = 1, . . . , 7. The following table
displays the values of aj(m) thus obtained for 0 ! m ! 7 and 0 ! j ! 4.

m 0 1 2 3 4 5 6 7
a0(m) 0 1 0 1 12 10 51 217
a1(m) 0 0 1 3 4 21 61 147
a2(m) 0 0 2 0 5 30 35 168
a3(m) 0 0 0 3 6 15 66 162
a4(m) 1 0 0 6 0 15 90 105

We calculate the value of M1(13, n) for 0 ! n ! 12 by means of (6.11) and the
relation

(1 + 4f0(x))7 =
7∑

m=0

(
7
m

)
4mf0(x)m.

In view of our expansion of f0(x)m in terms of the aj(m), we deduce that

12∑

n=0

M1(13, n)xn ≡ b0f0(x) + b1f1(x) + b2f2(x) + b3f3(x) + b4 (mod x13 − 1),

where for 0 ! j ! 4 we write

bj =
7∑

m=0

(
7
m

)
4maj(m).

We remark that since the left and right hand sides of the last congruence have degree
at most 12, then they are in fact equal. We note also that M∗

1 (13, n) is equal to
M1(13, n) − 1 when 13|n, and otherwise is equal to M1(13, n). Thus, on making use
of the table of coefficients aj(m) presented above, we deduce that

min
n

M∗
1 (13, n) = min{ min

0!j!3
bj, b4 − 1} = b2 = 4 446 624.

We consequently conclude from (6.8) that

B(13, n; t) " 13−6 × 4 446 624 > 0.9212. (6.13)

We obtain a lower bound for B(17, n; t) in a similar manner. We write

g0(x) = x + x4 + x13 + x16, g1(x) = x2 + x8 + x9 + x15,

g2(x) = x3 + x5 + x12 + x14, g3(x) = x6 + x7 + x10 + x11,

and observe that modulo x17 − 1, one has

(1 + 4g0(x))7 ≡
16∑

n=0

M1(17, n)xn, (6.14)
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and

g0(x)2 ≡ g1(x) + 2g2(x) + 4, g0(x)g1(x) ≡ g0(x) + g1(x) + g2(x) + g3(x),

g0(x)g2(x) ≡ 2g0(x) + g1(x) + g3(x), g0(x)g3(x) ≡ g1(x) + g2(x) + 2g3(x).

We thus infer on this occasion that for m " 0, there are integers cj(m) (0 ! j ! 4)
for which

g0(x)m ≡ c0(m)g0(x) + c1(m)g1(x) + c2(m)g2(x) + c3(m)g3(x) + c4(m),

modulo x17 − 1, and as before we obtain for m " 0 the recurrence relations

c0(m + 1) = c1(m) + 2c2(m) + c4(m), c1(m + 1) = c0(m) + c1(m) + c2(m) + c3(m),

c2(m + 1) = 2c0(m) + c1(m) + c3(m), c3(m + 1) = c1(m) + c2(m) + 2c3(m),

c4(m + 1) = 4c0(m).

Since c4(0) = 1 and cj(0) = 0 for 0 ! j ! 3, one may apply the latter formulae
to calculate the values of cj(m) successively for m = 1, . . . , 7. The following table
displays the values of cj(m) thus obtained for 0 ! m ! 7 and 0 ! j ! 4.

m 0 1 2 3 4 5 6 7
c0(m) 0 1 0 9 5 100 147 1281
c1(m) 0 0 1 3 16 55 251 924
c2(m) 0 0 2 1 24 36 315 756
c3(m) 0 0 0 3 10 60 211 988
c4(m) 1 0 4 0 36 20 400 588

We calculate the value of M1(17, n) for 0 ! n ! 16 by means of (6.14) and the
relation

(1 + 4g0(x))7 =
7∑

m=0

(
7
m

)
4mg0(x)m.

By employing our expansions for g0(x)m in terms of the cj(m), we deduce that
16∑

n=0

M1(17, n)xn ≡ d0g0(x) + d1g1(x) + d2g2(x) + d3g3(x) + d4 (mod x17 − 1),

where for 0 ! j ! 4 we write

dj =
7∑

m=0

(
7
m

)
4mcj(m).

We note again that M∗
1 (17, n) is equal to M1(17, n) − 1 when 17|n, and otherwise is

equal to M1(17, n). Thus, on making use of the table of coefficients cj(m) presented
above, we deduce that

min
n

M∗
1 (17, n) = min{ min

0!j!3
dj , d4 − 1} = d4 − 1 = 21 856 576.
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In this way, we conclude from (6.8) that

B(17, n; t) " 17−6 × 21 856 576 > 0.9055. (6.15)

For the remaining primes p, we apply the lower bound

M∗
1 (p, n) " M1(p, n) − 1, (6.16)

in combination with the formula

M1(p, n) = p−1
p∑

a=1

S(p, a)7e(−an/p).

On applying Lemmata 5.1 and 5.3 to the latter sum, we obtain

M1(p, n) " p6 − p4κ(p)5
p−1∑

a=1

|S(p, a)|2

= p6 − bpp
5(p − 1)κ(p)5,

whence by (6.8) and (6.16), we deduce that

B(p, n; t) " 1 − bp(1 − p−1)κ(p)5 − p−6. (6.17)

When p ≡ 3 (mod 4), we obtain from (6.17) the lower bound

B(p, n; t) " 1 − (1 − p−1)p−5/2 − p−6

" 1 − p−5/2 +
1
2
p−5 > exp(−p−5/2).

Thus, as a consequence of Lemma 5.4, we conclude that
∏

p"7
p≡3 (mod 4)

B(p, n; t) > exp
(
−

∑

p"7
p≡3 (mod 4)

p−5/2

)

" exp(−3−3/2/6) > 0.9684. (6.18)

When p ≡ 1 (mod 4) and p " 89, we find from (6.17) that

B(p, n; t) " 1 − 36p−5/2(1 − p−1) − p−6 " 1 − 36p−5/2 +
1
2
312p−5

> exp(−729p−5/2).

In this case, again by Lemma 5.4, we obtain
∏

p"89
p≡1 (mod 4)

B(p, n; t) > exp
(
−729

∑

p"89
p≡1 (mod 4)

p−5/2

)

> exp(−729× 85−3/2/6) > 0.8563. (6.19)

Meanwhile, on recalling the definition (5.5) of κ(p), we find from (6.17) that

B(p, n; t) " 1 − 3c(p)5p−5/4(1 − p−1) − p−6,
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and thus a modest computation reveals that
∏

29!p!73
p≡1 (mod 4)

B(p, n; t) > 0.8310. (6.20)

Finally, on collecting together (6.6), (6.9), (6.13), (6.15), (6.18), (6.19) and (6.20),
and recalling also (6.5), we obtain

S(n; t) =
∏

p

B(p, n; t) > 1.2696.

When n #≡ 3 (mod 5), moreover, we may substitute (6.10) for the second lower bound
of (6.9) in the above calculation, thereby obtaining the stronger lower bound

S(n; t) > 4 × 1.2696 = 5.0784.

The conclusion of Lemma 6.2 is now immediate on recalling (6.2).
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CHAPTER 7

THE MAJOR ARC CONTRIBUTION

The aim of this section is to evaluate the integral R(N ; M) defined in §2, and
thereby to establish Lemma 2.1. We begin by recording an estimate associated with
the major arc approximations to the generating functions underlying our methods.
Recall the notation of §2, noting especially (2.10), and recall the definition (5.2) of
Gε(q, a). We define I(β) = I(β; N) by

I(β; N) =
∫ 4P0

2P0

e(βz4)dz,

and when ε ∈ {0, 1}, we define also

Tε(q, a, β) = (2q)−1Gε(q, a)I(β).

Lemma 7.1. — Let α be a real number, and suppose that a ∈ Z and q ∈ N satisfy the
conditions 1 ! a ! q ! P 1/2, (q, a) = 1 and |qα − a| ! 975P−3. Write β = α − a/q.
Then whenever ε ∈ {0, 1}, one has

|Sε(α) − Tε(q, a, β)| ! 3 × 106q1/4P 1/2.

Proof. — The desired conclusion is immediate from Proposition 2.4 of Deshouillers
and Dress [9], but refer to our comment following the statement of our Lemma 5.6
above.

Equipped with the above estimate, it is essentially routine to exploit our earlier
work to derive the auxiliary major arc estimate recorded in the following lemma. We
first require some additional notation. Recalling the notation introduced in §2, when
1 ! t ! 7 we define Φ(n; t) by

Φ(n; t) =
∫

M
S0(α)7−tS1(α)te(−nα)dα.
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Lemma 7.2. — There exists a real number ν, with 23 < ν < 64, for which the fol-
lowing conclusion holds. Suppose that 1 ! t ! 7, and that n is an integer with

N − 4P 4 ! n ! N and n ≡ t (mod 16).

Then whenever P " 1050, one has

Φ(n; t) > 0.000789P 3 when n ≡ 3 (mod 5),

and
Φ(n; t) > 0.00316P 3 when n #≡ 3 (mod 5).

Proof. — Throughout this proof, it is convenient to abbreviate Tε(q, a, β) as Tε. Also,
when α = β + a/q, we write

Uε = Sε(α) − Tε and U = 3 × 106q1/4P 1/2.

Our first objective is then to compare Φ(n; t) with the approximation Φ1(n; t), which
we define by

Φ1(n; t) =
∑

q!P 1/2

q∑

a=1
(a,q)=1

∫

|β|!975(qP 3)−1
T 7−t

0 T t
1e(−(a/q + β)n)dβ. (7.1)

Suppose that a, q and β satisfy 1 ! a ! q ! P 1/2, (a, q) = 1 and |β| ! 975(qP 3)−1,
and write α = a/q+β. Then according to Lemma 7.1, one has |Uε| ! U for ε ∈ {0, 1}.
Also, by Lemma 5.2 one has |T1| ! |T0|. Thus we find that

∣∣S0(α)7−tS1(α)t − T 7−t
0 T t

1

∣∣ =
∣∣∣
7−t∑

i=0

t∑

j=0
i+j"1

(
7 − t

i

)(
t

j

)
T 7−t−i

0 T t−j
1 U i

0U
j
1

∣∣∣

!
7−t∑

i=0

t∑

j=0
i+j"1

(
7 − t

i

)(
t

j

)
|T0|7−i−jU i+j

= (|T0| + U)7 − |T0|7 ! 127(|T0|6U + U7). (7.2)

Next, on writing

Φ1,1 =
∑

q!P 1/2

q∑

a=1
(a,q)=1

∫ ∞

0
|T0|6Udβ

and

Φ1,2 =
975
P 3

∑

q!P 1/2

U7,

we deduce from (7.1) and (7.2) that

|Φ(n; t) − Φ1(n; t)| ! 254(Φ1,1 + Φ1,2). (7.3)
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Recalling the definition (5.17) of V (q), we see that

Φ1,1 = 3 × 106 × 2−6P 1/2
∑

q!P 1/2

q1/4V (q)
∫ ∞

0
|I(β)|6dβ.

Thus, whenever P " 1050 it follows from Lemma 5.5 that

Φ1,1 < 3.03 × 1010P 1/2 log P

∫ ∞

0
|I(β)|6dβ. (7.4)

In order to evaluate the integral in (7.4), we observe that by making a change of
variable in (4.1), we have

I(β) = 2P0J(16P 4
0 β), (7.5)

We therefore deduce from (4.3) that

|I(β)| ! min{2P0, (32πP 3
0 |β|)−1}, (7.6)

whence we conclude that
∫ ∞

0
|I(β)|6dβ !

∫ (64πP 4
0 )−1

0
(2P0)6dβ +

∫ ∞

(64πP 4
0 )−1

(32πP 3
0 β)−6dβ

=
P 2

0

π
+

P 2
0

5π
=

6P 2
0

5π
.

On substituting the latter estimate into (7.4) and recalling (2.10), we find that when-
ever P " 1050, one has

Φ1,1 < 1.16 × 1010P 5/2 log P. (7.7)

Meanwhile, one obtains with little effort the estimate

Φ1,2 ! 975 × 37 × 1042P 1/2
∑

q!P 1/2

q7/4

< 2.2 × 1048P 15/8. (7.8)

Consequently, on substituting (7.7) and (7.8) into (7.3), we conclude that whenever
P " 1050, one has

|Φ(n; t) − Φ1(n; t)| ! 254P 3(1.16 × 1010P−1/2 log P + 2.2 × 1048P−9/8)

< 3.2 × 10−6P 3. (7.9)

Our next step in the estimation of Φ(n; t) is to complete the integral in (7.1) to
infinity. We therefore put

Φ2(n; t) =
∑

q!P 1/2

q∑

a=1
(a,q)=1

∫ ∞

−∞
T 7−t

0 T t
1e(−(a/q + β)n)dβ, (7.10)
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and seek to bound |Φ1(n; t)−Φ2(n; t)|. By (7.6) and the trivial bound |Gε(q, a)| ! q,
we obtain the upper bound

|Φ1(n; t) − Φ2(n; t)| ! 2
∑

q!P 1/2

q

∫ ∞

975(qP 3)−1
2−7|I(β)|7dβ

! 2−6
∑

q!P 1/2

q

∫ ∞

P−7/2
(P 3β)−7dβ

! 2−6(P 1/2)2 × 1
6

< P.

Consequently, on substituting this estimate into (7.9), we deduce that

|Φ(n; t) − Φ2(n; t)| < 3.3 × 10−6P 3. (7.11)

We next observe that by (7.5) one has
∫ ∞

−∞
I(β)7e(−nβ)dβ = (2P0)7

∫ ∞

−∞
J(16P 4

0 β)7e(−nβ)dβ,

whence, on recalling (4.2) and making a change of variables, we deduce that
∫ ∞

−∞
I(β)7e(−nβ)dβ = 8P 3

0 K7

(
n/(16P 4

0 )
)
.

On recalling the notation introduced in the statement of Lemma 6.2, we therefore
deduce from (7.10) that

Φ2(n; t) = S(n, P 1/2; t)K7

(
n/(16P 4

0 )
)
P 3

0 /16.

By hypothesis, we have N − 4P 4 ! n ! N , and thus it follows from (2.10) that
ν − 1/4 ! n/(16P 4

0 ) ! ν. We therefore deduce from Corollary 4.3 that there exists a
real number ν, with 23 < ν < 64, satisfying the property that K7(n/(16P 4

0 )) " 0.01.
We fix this value of ν for the remainder of our argument. The truncated singular
series may be bounded from below by reference to Lemma 6.2, and so we conclude
that whenever P " 1050, one has

Φ2(n; t) > (5.078 × 0.01/16)P 3 > 0.003173P 3 when n #≡ 3 (mod 5),

and

Φ2(n; t) > (1.269 × 0.01/16)P 3 > 0.000793P 3 when n ≡ 3 (mod 5).

The proof of the lemma is therefore completed by combining the latter estimates with
(7.11).

We are now at last equipped to complete the proof of Lemma 2.1 by summing
Φ(n; t) over a suitable set of integers n.
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Proof of Lemma 2.1. — On recalling the definition (2.11) of R(N ; M), it is evident
that

R(N ; M) =
∑

m1∈Mη(P 2)

∑

m2∈M0(3P 2/7)

∑

1!w<P/6
2w+ζ #∈W(m2)

Φ(φ(N ; m1, m2, w); t), (7.12)

where we write

φ(N ; m1, m2, w) = N − 2m2
1 − 4m2

2 − 24m2(2w + ζ)2 − 6(2w + ζ)4. (7.13)

When m1, m2 and w satisfy the conditions imposed by the summations in (7.12), one
has

N " φ(N ; m1, m2, w) " N −
(
2 + 4

(3
7

)2
+ 24
(3

7

)(1
3

)2
+ 6
(1

3

)4)
P 4

> N − 4P 4.

Furthermore, in view of the conditions (2.3), (2.4) and (2.9), one has

φ(N ; m1, m2, w) ≡ t (mod 16).

It follows that for each choice of m1, m2 and w in the summations of (7.12), the
integer n = φ(N ; m1, m2, w) satisfies the hypotheses of Lemma 7.2, and thus we are
able to employ the latter lemma to obtain a lower bound for Φ(φ(N ; m1, m2, w); t).

Observe next that for each fixed pair of integers, m1 and m2, there exists an
integer b = b(m1, m2) such that φ(N ; m1, m2, w) #≡ 3 (mod 5) whenever w ≡ b
(mod 5). In order to verify this assertion, we note from (7.13) that the residue class of
φ(N ; m1, m2, w) modulo 5 may be shifted by an appropriate choice of w provided only
that the polynomial 24m2ξ2 − 6ξ4 takes at least two distinct values modulo 5. But
since for 5 ! ξ one has ξ2 ≡ ±1 (mod 5) and ξ4 ≡ 1 (mod 5), we find that the latter
polynomial assumes the values 0, ±m2 − 1 modulo 5, whence our earlier assertion is
immediate.

We now collect together the conclusions of the previous two paragraphs, deducing
from Lemma 7.2 that there exists a real number ν with 23 < ν < 64, such that

R(N ; M) >
∑

m1∈Mη(P 2)

∑

m2∈M0(3P 2/7)

(Σ1 + Σ2), (7.14)

where

Σ1 =
∑

1!w<P/6
2w+ζ #∈W(m2)
w≡b (mod 5)

0.00316P 3 and Σ2 =
∑

1!w<P/6
2w+ζ #∈W(m2)
w #≡b (mod 5)

0.000789P 3.

On noting that by (2.5) one has card
(
W(m2)

)
! 3, we find that

Σ1 + Σ2 " P 3
(
0.00316

( P

30
− 4
)

+ 0.000789
(P

6
− P

30
− 5
))

.
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Then on recalling the notation introduced in (2.13), it follows from (7.14) that for
P " 1050, one has

R(N ; M) > 0.00021MηM̃0P
4,

and thus the proof of Lemma 2.1 is complete.
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CHAPTER 8

AN EXPLICIT VERSION OF WEYL’S INEQUALITY

In this section we describe the modifications to the argument of Deshouillers [7]
required to establish the explicit version of Weyl’s inequality recorded in Lemma 2.3
above. The idea of trading a small loss in the exponent of P in Weyl’s bound for the
benefit of a small constant, and smaller logarithmic factor, is due to Balasubramanian
[2]. For the application at hand, the details of such an argument have been worked
out in detail for P " 1080 by Deshouillers [7]. We now modify the latter treatment
so as to extend the validity of this estimate to the range P " 1030, and also so as to
avoid oppressive computations. We begin with an auxiliary lemma. Throughout this
section, for the sake of concision we write β = 0.036 and γ = 0.072.

Lemma 8.1. — Define the multiplicative function f by

f(n) = nβ
∏

p|n

(1 − p−2β)1/2.

Then for P " 1030, one has
∞∑

n=1

1
f(n)2

(
∑

l|n
l!P

n/l!P

f(l)

)2

! 295900P 1−2β log P,

and ∑

1!n!P

1
f(n)

! 42.2P 1−β.

Proof. — We follow the argument of the proof of Proposition 1 of Deshouillers [7],
but now replace some infinite product evaluations by ones accessible to a hand-held
calculator. We first observe that when σ > 1, one has

ζ(σ) !
20∑

n=1

n−σ +
∫ ∞

20
x−σdx =

20∑

n=1

n−σ +
201−σ

σ − 1
.
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Thus modest calculations reveal that

ζ(1 + γ) < 14.50, ζ(1 + 2γ) < 7.55, ζ(1 + 3γ) < 5.24,

ζ(1 + 4γ) < 4.09, ζ(1 + 5γ) < 3.39.

Next we observe that for 0 < x < 3/4, one has

1
1 − x

= 1 + x + x2 + x3 +
x4

1 − x
< 1 + x + x2 + x3 + 4x4, (8.1)

and furthermore, for 0 < x < 1 one may derive the upper bound
√

1 − x < 1 − 1
2
x − 1

8
x2 − 1

16
x3 − 5

128
x4 − 7

256
x5, (8.2)

whence for 0 < x < 3/4 one obtains

1√
1 − x

< 1 +
1
2
x +

3
8
x2 +

5
16

x3 +
35
128

x4 +
63
256

x5

1 − x

< 1 +
1
2
x +

3
8
x2 +

5
16

x3 +
35
128

x4 + x5. (8.3)

It is useful at this point to recall some of the notation of the proof of Proposition
1 of Deshouillers [7]. We therefore define

G(p) = 1 +
1

p1+γ(1 − p−γ)
, λ(p) =

1
G(p)(1 − p−γ)1/2

− 1,

L(p) = 1 + λ(p)/p, V (p) = 1 +
1
p

(
1

(1 − p−γ)1/2
− 1
)

.

We define also
K =

∏

p

(
1 +

1
p

max{λ(p)pγ − 1, 0}
)
.

On observing that for p " 59, it follows from (8.1) that

G(p) < 1 + p−1−γ(1 + p−γ + p−2γ + p−3γ + 4p−4γ)

< (1 − p−1−5γ)−4
4∏

j=1

(1 − p−1−jγ)−1,

we deduce from the previously calculated values of ζ(σ) that

∏

p

G(p) <
( ∏

p!53

G(p)
)( ∏

p"59

(1 − p−1−5γ)−4
4∏

j=1

(1 − p−1−jγ)−1
)

=
( ∏

p!53

G(p)(1 − p−1−5γ)4
4∏

j=1

(1 − p−1−jγ)
)

×
(
ζ(1 + 5γ)4

4∏

j=1

ζ(1 + jγ)
)

< 17456. (8.4)
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Similarly, one finds that for p " 59, as a consequence of (8.3) one has

V (p) < 1 +
1
2
p−1−γ +

3
8
p−1−2γ +

5
16

p−1−3γ +
35
128

p−1−4γ + p−1−5γ

<
5∏

j=1

(1 − p−1−jγ)−ej ,

where we write e1 = 1/2, e2 = 3/8, e3 = 5/16, e4 = 35/128 and e5 = 1. We therefore
deduce that

∏

p

V (p) <
( ∏

p!53

V (p)
5∏

j=1

(1 − p−1−jγ)ej

)( 5∏

j=1

ζ(1 + jγ)ej

)
< 40.6. (8.5)

Since for each prime p one has L(p) < V (p), it follows that
∏

p>3

L(p) <
( ∏

5!p!53

L(p)
)( ∏

p"59

V (p)
)
,

and thus one deduces similarly that
∏

p>3

L(p) < 3.95. (8.6)

In order to evaluate K, we put g(x) = ((1 − x)−1/2 − 1)/x, and observe that
g(x) is monotone increasing for 0 < x < 1. Also one has λ(p)pγ < g(p−γ), and a
modest calculation reveals that g(800−γ) < 1 < g(799−γ). Finally, we observe that
the number of primes in the interval [100, 200) is 21, and the number in [200, 800) is
93. Drawing these observations together, we find that

K !
∏

p<100

(
1 +

1
p

max{λ(p)pγ − 1, 0}
) ∏

100<p<800

(
1 +

1
p
(g(p−γ) − 1)

)

!
(
1 +

g(101−γ) − 1
101

)21(
1 +

g(211−γ) − 1
211

)93

×
∏

p!97

(
1 +

1
p

max{λ(p)pγ − 1, 0}
)

! 1.111
∏

17!p!97

(
1 +

1
p
(λ(p)pγ − 1)

)
< 1.19. (8.7)

Having eliminated the burdensome computations of [7] with the above discussion,
we now complete the proof of the lemma along the same lines as the argument of
the proof of Proposition 1 of Deshouillers [7]. We begin by observing that the upper
bound for S provided in the second display of p.296 of [7] yields

∞∑

n=1

1
f(n)2

(
∑

l|n
l!P

n/l!P

f(l)

)2

! 2P 1−γ

1 − γ

(∏

p

G(p)
)
T, (8.8)
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where T is an expression bounded in the third display of p.297 of [7] in the form

T ! 1
G(2)

U(2, 1, 1) + Λ(2)U(2, 2, 1) + Λ(2)U(2, 1, 2)

+ U(1, 1, 1) + Λ(2)U(1, 2, 1) + Λ(2)U(1, 1, 2). (8.9)

In this latter expression, the number Λ(2) is given by

Λ(2) = (1 − 2−γ)−1/2/G(2), (8.10)

and when ε, η1, η2 ∈ {1, 2}, the argument on p.297 of [7] establishes the bound

U(ε, η1, η2) !
∑

1!r!P
r≡ε (mod 2)

(
W1(r) + W2(r) + W3(r) + W4(r)

)
, (8.11)

in which

W1(r) =
P

4(1 − β)r

∏

p>3

L(p)2, (8.12)

W2(r) =
K

2(1 − β)(1 − 2β)

(∏

p>3

L(p)
)(P

r

)1−2β
, (8.13)

W3(r) =
K

2(1 − 3β)(1 − 2β)

(∏

p>3

L(p)
)(P

r

)1−2β
, (8.14)

W4(r) =
K2

(1 − 3β)(1 − 4β)

(P

r

)1−4β
. (8.15)

To these estimates we add the bounds
∑

1!r!P
r≡ε (mod 2)

1
r

!
(
1 +

1
2
− log 2

2

)
+

1
2

log P, (8.16)

and
∑

1!r!P
r≡ε (mod 2)

r−δ ! 1 +
P 1−δ

2(1 − δ)
! 7P 1−δ, (8.17)

valid for 0 < δ ! 1− 2β and P " 1030, which follow from the discussion at the top of
p.298 of [7].

On substituting (8.16) and (8.17) into (8.12)-(8.15), we deduce from (8.6) and (8.7)
that whenever P " 1030, one has

∑

1!r!P
r≡ε (mod 2)

Wi(r) < CiP log P (1 ! i ! 4),

where C1 = 2.0908, C2 = 0.2663, C3 = 0.2878, C4 = 0.1880. Thus one deduces from
(8.11) the estimate

U(ε, η1, η2) ! 2.833P log P.
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On substituting this estimate into (8.9) together with (8.10), we therefore deduce that

T ! 7.865P log P,

whence by (8.4) and (8.8),
∞∑

n=1

1
f(n)2

(
∑

l|n
l!P

n/l!P

f(l)

)2

! 295900P log P.

This completes the proof of the first assertion of the lemma.
In order to establish the final assertion of the lemma, we apply Lemma 1 of [7]

with a = β, b = 0, h = k = 1 and ρ(p) = (1 − p−γ)−1/2 − 1. Thus we deduce that
∑

1!n!P

1
f(n)

! P 1−β

1 − β

∏

p

V (p),

whence the desired conclusion follows immediately from (8.5).

We now establish Lemma 2.3. Suppose that α ∈ m. By Dirichlet’s theorem on
diophantine approximation, we can find a ∈ Z and q ∈ N with (a, q) = 1, 1 !
q ! P 3/975 and |qα − a| ! 975P−3. Then it follows from the definition of m that
necessarily q > P 1/2. We divide our argument into two cases according to the relative
sizes of q and P . In order to facilitate this discussion we define the parameter τ(P )
by

τ(P ) =

{
1/2, when 1030 ! P < 1053,
2 × 106, when P " 1053.

Suppose first that P 1/2 < q ! τ(P )P . We apply the argument of the proof of
Proposition 5.1 of Deshouillers and Dress [9], but now extend the range of validity
down to P " 1030. Recalling the notation introduced at the start of §7, we find from
equation (2.4.2) of [9] that for ε ∈ {0, 1}, one has

|Sε(α) − (2q)−1Gε(q, a)I(β)| ! 2.7 × 106q1/4P 1/2 + 61q3/4(log q + 1), (8.18)

valid for any positive number P . By combining the bound (5.7) with the conclusion
of Lemma 5.2, we obtain the estimate

|Gε(q, a)| ! 9q3/4. (8.19)

Thus, on making use of the trivial bound |I(β)| ! 2P0 ! 2P + 2, we conclude from
(8.16) and (8.17) that when P " 1030 and P 1/2 < q ! τ(P )P , one has

|Sε(α)| ! 9(P + 1)q−1/4 + 2.7 × 106q1/4P 1/2 + 61q3/4(log q + 1)

! κ1(P )P 0.884(log P )0.25, (8.20)

where

κ1(P ) =

{
77, when 1030 ! P < 1053,
14, when P " 1053.
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Suppose next that τ(P )P < q ! P 3/975. Here we note first that the argument of
the proof of Proposition 2 of [7] yields the estimate

∑

1!n!P 3/27

min
{

P,
1

2‖384nα‖

}
!
( P 3

27q′
+ 1
)(

28000P + q′ log(2q′)
)
,

where we write q′ = q/(384, q). On noting that the maximum of the latter expression
for q ∈ [τ(P )P, P 3/975] is achieved at one of the end points of this interval, we deduce
that ∑

1!n!P 3/27

min
{

P,
1

2‖384nα‖

}
! A(P )P 3 log P, (8.21)

where

A(P ) =

{
11530, when 1030 ! P < 1053,
0.1123, when P " 1053.

Finally, we work through the argument of §3 of [7], though now replacing use of
Propositions 1 and 2 in the latter by the conclusion of Lemma 8.1 above, and (8.21),
respectively. In this way one bounds an exponential sum essentially equal to Sε(α)
in terms of auxiliary sums Ti(α) (1 ! i ! 5), the definitions of which we suppress in
the interest of saving space.

First one finds that

T5(α) !
(P 3

27

)0.072 ∑

1!n!P 3/27

min
{

P,
1

2‖384nα‖

}

! 0.7888A(P )P 3.216 log P.

Next,

T4(α) ! P
∑

1!n!P 2/4

f(n)2 + 2T5(α)

! P (P 2/4)1.072 + 1.5776A(P )P 3.216 log P,

whence for P " 1030 one has

T4(α) ! 1.5781A(P )P 3.216 log P.

At the next stage we obtain

|T3(α)|2 !
( ∞∑

n=1

1
f(n)2

(
∑

l|n
l!P

n/l!P

f(l)

)2)
T4(α),

whence

|T3(α)| !
(
295900P 1.928 log P

)1/2(1.5781A(P )P 3.216 log P
)1/2

! 683.4A(P )1/2P 2.572 log P.
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Then we arrive at the estimate

T2(α) ! P
P∑

h1=1

f(h1) + 2T3(α)

! P (P 1.036) + 1366.8A(P )1/2P 2.572 log P,

so that for P " 1030 one obtains

T2(α) ! 1367A(P )1/2P 2.572 log P.

Next we have

|T1(α)|2 !
( P∑

h1=1

1
f(n)

)
T2(α)

! (42.2P 0.964)(1367A(P )1/2P 2.572 log P ),

whence
|T1(α)| ! 240.2A(P )1/4P 1.768(log P )1/2.

Finally, we have ∣∣∣∣∣

2P∑

x=P+1

e(α(2x + ε)4)

∣∣∣∣∣

2

! P + 2T1(α),

whence for P " 1030 we obtain
∣∣∣∣∣

2P∑

x=P+1

e(α(2x + ε)4)

∣∣∣∣∣ ! 21.92A(P )1/8P 0.884(log P )1/4.

On recalling the definition of A(P ), and accounting for the endpoints in the sum-
mation of (2.1) by a trivial estimate, we deduce that in this second case in which
τ(P )P < q ! P 3/975, one has

|Sε(α)| ! κ2(P )P 0.884(log P )0.25,

where

κ2(P ) =

{
70.6, when 1030 ! P < 1053,
16.68, when P " 1053.

The conclusion of Lemma 2.3 therefore follows on combining the latter estimate with
(8.20) above.
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CHAPTER 9

AN AUXILIARY BOUND FOR
THE DIVISOR FUNCTION

The final ingredients in our proof of Theorem 2 are the mean value estimates
recorded in Lemmata 2.4 and 2.5, and indeed it is these estimates that provide the cru-
cial additional power required to establish a conclusion with only sixteen biquadrates.
In order to transform the ideas of Kawada and Wooley [15] into technology appropri-
ate to the present application, one must provide strong explicit estimates for certain
averages of the divisor function evaluated on biquadratic polynomials. Here we follow
the trail laid down by Deshouillers and Dress [8], and developed by Landreau in his
thesis [16]. Write τ(n) for the number of divisors of n. Then we seek an upper bound
for τ(n) of the shape

τ(n) ! C
∑

d|n
d!n1/4

g(d), (9.1)

for some appropriate multiplicative function g and constant C. In discussing this
topic, we must draw a balance between the objectives of keeping our exposition rea-
sonably short, and at the same time achieving a relatively strong bound for the func-
tion g. Motivated by such considerations, we define the multiplicative function g for
prime powers pl by taking

g(pl) =






3, when l = 1, 2,

27, when l = 7, 9, 11,
9, otherwise.

(9.2)

With the function g defined in this way, we establish the validity of the upper bound
(9.1) with C = 8. We remark that the latter value of C is best possible, for when n
is the product of three distinct primes of almost the same size, the inequality (9.1)
evidently cannot hold with C < 8. However, with a little further effort, one can show
that, with the exception of such special integers n, the upper bound (9.1) is indeed
valid with a suitable constant C < 8.
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In order to facilitate our analysis, we introduce some slightly unconventional vector
notation. We note, in particular, that in any vector that appears in our discussion
below, we implicitly assume that every component is a non-negative integer. When
k is a natural number, we define the integer xa corresponding to the vectors x =
(x1, . . . , xk) and a = (a1, . . . , ak) by

xa =
k∏

j=1

x
aj

j . (9.3)

When b = (b1, . . . , bk), we define also

τ̃ (b) =
k∏

j=1

(bj + 1),

and, when p is a prime number, we define also

g̃(b) =
k∏

j=1

g(pbj ).

We use the notation b ! a as shorthand for the condition that a = (a1, . . . , ak),
b = (b1, . . . , bk) and 0 ! bj ! aj for 1 ! j ! k, and then define

S(a; x) = {b ! a ; x4b ! xa }, G(a; x) =
∑

b∈S(a;x)

g̃(b),

C(a; x) = τ̃ (a)/G(a; x), C(a) = sup
x∈Nk

C(a; x).

Finally, it is convenient to write V =
⋃

k∈N Nk and V1 =
⋃

k∈N{1, 2, 4, 6, 10}k.
Some preliminary observations are in order concerning the notation recorded in the

previous paragraph. First, since the zero vector is plainly contained in S(a; x), one
finds that for every choice of a and x one has G(a; x) " 1, whence

C(a) ! τ̃ (a). (9.4)

We observe also that the assertion (9.1) may be translated into a related statement
concerning the function C(a). Indeed, it is this observation that motivates our choice
of notation. When n = 1, of course, the inequality (9.1) is trivial whenever C " 1,
and thus the desired relation is not at issue. Suppose then that n > 1, and let
n =
∏k

j=1 p
aj

j be the canonical prime factorisation of n. We put a = (a1, . . . , ak) and
p = (p1, . . . , pk), and note that τ(n) = τ̃ (a) and

∑

d|n
d!n1/4

g(d) = G(a; p).

Consequently, the inequality (9.1) is valid with

C = sup
a∈V

C(a), (9.5)
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provided that this supremum exists. As we have already pointed out implicitly in our
opening remarks, one has C(a) = 8 when a = (1, 1, 1). In order to establish (9.1)
with C = 8, therefore, it suffices to show that for all a ∈ V , one has C(a) ! 8.

As our first step towards the goal announced in the previous paragraph, we show
that

sup
a∈V

C(a) = sup
b∈V1

C(b). (9.6)

This simplification is achieved as a consequence of Lemmata 9.1, 9.2 and 9.3 below.
It is useful at this point to introduce a convention that simplifies our discussion of the
vectors which play a central role in our argument. Hereafter, when a = (a1, . . . , ak)
and a′ = (a′

1, . . . , a
′
k′), we abbreviate the vector (a1, . . . , ak, a′

1, . . . , a
′
k′) to (a, a′).

Furthermore, where confusion is easily avoided, when f is a function of a vector
variable x, we abbreviate f((a, a′)) simply to f(a, a′). We extend such conventions
to write (a, a) in place of (a1, . . . , ak, a), and f(a, a) in place of f((a, a)). Also, on
occasion, we write a for (a), and f(a) for f((a)).

Lemma 9.1. — For any a1, a2 ∈ V , one has

C(a1, a2) ! C(a1)C(a2).

Proof. — Suppose that ai ∈ Nki for i = 1, 2. Then in view of (9.3), whenever
xi ∈ Nki (i = 1, 2), one has

(x1, x2)(a1,a2) = xa1
1 xa2

2 .

But it is apparent from our definitions that whenever bi ∈ S(ai; xi) (i = 1, 2), then
one has

(b1, b2) ∈ S((a1, a2); (x1, x2)),

and hence
G((a1, a2); (x1, x2)) "

∑

b1∈S(a1;x1)

∑

b2∈S(a2;x2)

g̃(b1, b2).

But
g̃(b1, b2) = g̃(b1)g̃(b2) and τ̃ (a1, a2) = τ̃(a1)τ̃ (a2), (9.7)

and thus we deduce that

G((a1, a2); (x1, x2)) " G(a1; x1)G(a2; x2),

and
C((a1, a2); (x1, x2)) ! C(a1; x1)C(a2; x2).

The conclusion of the lemma is immediate from the latter inequality.

Lemma 9.2. — Whenever a is an integer with a " 12, one has C(a) ! 1.
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Proof. — Suppose that a is an integer with a " 12, and write a = 4m + r with
0 ! r ! 3. In particular, one has m " 3. But plainly, for every natural number x
one has that (0), (1), . . . , (m) ∈ S(a; x), and further, when j " 3 one has g̃(j) " 9.
Thus we deduce that

G(a; x) "
m∑

j=0

g̃(j) " 1 + 3 + 3 + 9(m − 2)

" 4m + 4 " a + 1 = τ̃(a).

We therefore conclude that for every natural number x, one has C(a; x) ! 1, and the
conclusion of the lemma follows immediately.

Before announcing the next lemma, we extend our conventions concerning vector
notation by introducing the empty vector z, by which we mean the vector having no
components. Plainly, for every vector a one has (a, z) = (z, a) = a.

Lemma 9.3. — Suppose that a is a vector in V ∪{z}. Then the following inequalities
hold:

C(a, 3) ! C(a, 1, 1), C(a, 5) ! C(a, 1, 2),

C(a, 7) ! C(a, 1, 1, 1), C(a, 8) ! C(a, 2, 2),

C(a, 9) ! C(a, 1, 4), C(a, 11) ! C(a, 1, 1, 2).

Proof. — For ease of exposition in the discussion that follows, we restrict our proof
to vectors a in V . However, an inspection of our argument will reveal that it applies
equally well when a is empty. Suppose then that k ∈ N and a ∈ Nk, and consider
arbitrary vectors x ∈ Nk and x ∈ N.

We begin by examining the simplest case, which concerns the inequality C(a, 3) !
C(a, 1, 1), since this sets the scene for the remaining cases. Define the map φ3 :
{0, 1, 2, 3}→ {0, 1}2 by taking

φ3(0) = (0, 0), φ3(1) = (1, 0), φ3(2) = (0, 1), φ3(3) = (1, 1).

On recalling our notation (9.3), we see that whenever b ∈ {0, 1, 2, 3}, one has

xb = (x, x2)φ3(b). (9.8)

Next, we define the map φ̃3 for (b, b) ∈ S((a, 3); (x, x)) by taking

φ̃3(b, b) = (b, φ3(b)).

In view of the relation (9.8), and the observation that φ3 plainly provides a bi-
jection from {0, 1, 2, 3} to {0, 1}2, one readily confirms that φ̃3 is a bijection from
S((a, 3); (x, x)) to S((a, 1, 1); (x, x, x2)). Furthermore, on recalling (9.2), one finds

MÉMOIRES DE LA SMF 100



CHAPTER 9. AN AUXILIARY BOUND FOR THE DIVISOR FUNCTION 71

that for each b ∈ {0, 1, 2, 3}, one has g̃(b) = g̃(φ3(b)), whence also g̃(b, b) = g̃(φ̃3(b, b))
for (b, b) ∈ S((a, 3); (x, x)). We therefore deduce that

G((a, 3); (x, x)) =
∑

(b,b)∈S((a,3);(x,x))

g̃(φ̃3(b, b))

=
∑

c∈S((a,1,1);(x,x,x2))

g̃(c)

= G((a, 1, 1); (x, x, x2)).

But the definition of τ̃ reveals that τ̃(a, 3) = 4τ̃(a) = τ̃ (a, 1, 1), and thus it follows
that

C((a, 3); (x, x)) = C((a, 1, 1); (x, x, x2)).
We therefore conclude that

C(a, 3) = sup
(x,x)∈Nk+1

C((a, 1, 1); (x, x, x2))

! sup
y∈Nk+2

C((a, 1, 1); y) = C(a, 1, 1),

and this establishes the desired inequality in the first case.
We establish the remaining inequalities recorded in the statement of the lemma

by a similar argument. We begin by defining analogues of the map φ3 appropriate
to each case. For a = 5, 7, 8, 9, define the map φa by means of the entries in the
following tables.

b 0 1 2 3 4 5
φ5(b) (0, 0) (1, 0) (0, 1) (1, 1) (0, 2) (1, 2)

b 0 1 2 3 4 5 6 7
φ7(b) (0, 0, 0) (1, 0, 0) (0, 1, 0) (1, 1, 0) (0, 0, 1) (1, 0, 1) (0, 1, 1) (1, 1, 1)

b 0 1 2 3 4 5 6 7 8
φ8(b) (0, 0) (1, 0) (2, 0) (0, 1) (1, 1) (2, 1) (0, 2) (1, 2) (2, 2)

b 0 1 2 3 4 5 6 7 8 9
φ9(b) (0, 0) (1, 0) (0, 1) (1, 1) (0, 2) (1, 2) (0, 3) (1, 3) (0, 4) (1, 4)

Also, define the map φ11 by taking

φ11(b) =

{
φ7(b), for 0 ! b ! 7,

φ7(b − 4) + (0, 0, 1), for 8 ! b ! 11.

Next put
x5 = x9 = (x, x2), x7 = x11 = (x, x2, x4), x8 = (x, x3).

Then one may verify that whenever a ∈ {5, 7, 8, 9, 11} and 0 ! b ! a, then one has

xb = xφa(b)
a and g̃(b) " g̃(φa(b)).
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For the sake of brevity, we now write aa = φa(a) and

Sa = S((a, a); (x, x)), S′
a = S((a, aa); (x, xa)),

and we define the map φ̃a for (b, b) ∈ Sa by taking

φ̃a(b, b) = (b, φa(b)).

Then one may confirm that for each a ∈ {5, 7, 8, 9, 11}, the map φ̃a provides a bijection
from Sa to S′

a. Thus we deduce that

G((a, a); (x, x)) "
∑

(b,b)∈Sa

g̃(φ̃a(b, b)) =
∑

b′∈S′
a

g̃(b′)

= G((a, aa); (x, xa)).

But τ̃(a, a) = τ̃ (a, aa) for a ∈ {5, 7, 8, 9, 11}, and so it follows that

C((a, a); (x, x)) ! C((a, aa); (x, xa)).

Consequently, just as in the first case considered in this proof, one deduces that
C(a, a) ! C(a, aa) for a ∈ {5, 7, 8, 9, 11}. This completes the proof of the lemma.

We are now equipped to confirm the relation (9.6). Observe first that the value of
C(a) is independent of the order of the components of a. If all of the components
of a exceed 11, then it follows from Lemmata 9.1 and 9.2 that C(a) ! 1 ! C(1),
whence such vectors play no role in determining the supremum on the left hand side
of (9.6). Next, again by Lemmata 9.1 and 9.2, one may delete any exponent exceeding
11 from a without increasing the value of C(a). By Lemmata 9.1 and 9.3, moreover,
any component of a lying in the set {3, 5, 7, 8, 9, 11} may be replaced by a vector
from the set {(1, 1), (1, 2), (1, 1, 1), (2, 2), (1, 4), (1, 1, 2)}, again without increasing
the value of C(a). We therefore conclude that whenever a ∈ V , there exists a vector
b ∈ V1 with the property that C(a) ! C(b), whence the desired conclusion (9.6)
follows immediately.

Our second step towards the evaluation of the supremum defined in (9.5) involves
removing from consideration all vectors a with the property that none of their com-
ponents are equal to 1. To this end, we introduce the sets

V2 =
⋃

k∈N
{2, 4, 6, 10}k and V ′

2 = V2 ∪ {z}.

Also, when a ∈ V2, we define the function f(a) by

f(a) =
1
2

∑

b!a/2

min{g̃(b), g̃(a/2 − b)},

and we define the function F (a) for a ∈ V ′
2 by

F (a) =

{
τ̃ (a)/f(a), when a ∈ V2,

2, when a = z.
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The next lemma presents the relation between F (a) and C(a) crucial to the success
of this next phase of our argument.

Lemma 9.4. — Whenever a ∈ V2, one has C(a) ! F (a).

Proof. — Suppose that a is a k-dimensional vector in V2. Then for any x ∈ Nk, and
for any vector b with b ! a/2, one has

xa =
(
xb · xa/2−b

)2 "
(
min{xb, xa/2−b}

)4
.

We therefore deduce that either b ∈ S(a; x), or a/2− b ∈ S(a; x). For each vector b
with b ! a/2, define the function φ(b) by taking φ(b) = b or φ(b) = a/2− b, in such
a manner that φ(b) ∈ S(a; x). We note that whenever φ(b) = φ(b′), then necessarily
b = b′ or b = a/2− b′. In particular, as we consider the vectors φ(b) as b varies over
all vectors with b ! a/2, one finds that each value φ(b) appears at most twice. We
therefore deduce that

G(a; x) " 1
2

∑

b!a/2

g̃(φ(b))

" 1
2

∑

b!a/2

min{g̃(b), g̃(a/2 − b)} = f(a),

whence C(a; x) ! F (a) for every vector x ∈ Nk. The conclusion of the lemma follows
at once.

The next lemma permits substantial simplifications to be made in this phase of our
argument.

Lemma 9.5. — Whenever a, a′ ∈ V ′
2 , one has

F (a, a′) ! 1
2
F (a)F (a′).

Proof. — If either a or a′ is empty, then the conclusion of the lemma is immediate
from our convention that F (z) = 2. Suppose then that neither a nor a′ is empty.
Given vectors b and b′, it is evident that (b, b′) ! (a, a′)/2 if and only if b ! a/2 and
b′ ! a′/2. We therefore obtain

f(a, a′) =
1
2

∑

b!a/2

∑

b′!a′/2

min{g̃(b)g̃(b′), g̃(a/2 − b)g̃(a′/2 − b′) }

" 1
2

∑

b!a/2

∑

b′!a′/2

min{g̃(b), g̃(a/2 − b)}min{g̃(b′), g̃(a′/2 − b′)}

= 2f(a)f(a′),

and the desired conclusion follows from (9.7) and the definition of the function F .

Lemma 9.6. — Suppose that a ∈ V ′
2 , and denote by s the number of components of

a that are equal to 2. The following upper bounds hold.
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(i) When s = 0, one has F (a) ! 2.
(ii) When s is even, one has F (a) ! 9/4.
(iii) In any case, one has F (a) ! 3.

Proof. — By the definitions of the functions f and F , one finds that

f(4) = 5/2, f(6) = 4, f(10) = 7,

and hence
F (4) = 2, F (6) = 7/4 < 2, F (10) = 11/7 < 2. (9.9)

When s = 0, therefore, repeated application of Lemma 9.5 in combination with the
bounds (9.9) demonstrates that F (a) ! 2, the latter conclusion being trivial when
a = z.

Suppose next that a ∈ V ′
2 and that s is positive. By repeated application of Lemma

9.5 in concert with (9.9), we may delete any components of a that are not equal to 2
without increasing the value of F (a). We may consequently suppose without loss of
generality that a = 2s, where we write 2s for the s-dimensional vector (2, 2, . . . , 2).
But f(2s) may be computed explicitly via an elementary combinatorial argument.
Indeed, it is an easy exercise to confirm that when s = 2m − 1 with m ∈ N, one has

f(2s) =
m−1∑

j=0

(
2m − 1

j

)
3j ,

and that when s = 2m with m ∈ N, then

f(2s) =
1
2

(
2m

m

)
3m +

m−1∑

j=0

(
2m

j

)
3j.

In order to simplify our discussion of the numbers F (2s), we note next that since
F (2s) = 3s/f(2s), we have for each natural number m the identities

F (22m+1)−1 − F (22m−1)−1 = 3−2m−1 +
m−1∑

j=0

((
2m + 1
j + 1

)
− 3
(

2m − 1
j

))
3j−2m,

and

F (22m+2)−1 − F (22m)−1 = 3−2m−2 +
m−1∑

j=0

((
2m + 2
j + 1

)
− 3
(

2m

j

))
3j−2m−1

+
1
2

((
2m + 2
m + 1

)
− 3
(

2m

m

))
3−m−1.

But whenever 0 ! j ! s/2, one has
(

s + 2
j + 1

)(
s

j

)−1

=
4(s + 2)(s + 1)

(s + 2)2 − (2j − s)2
" 3,

and thus we recognise that both of the sequences {F (22m−1)} and {F (22m)} are
monotone decreasing with m. In particular, one has F (2s) ! F (21) = 3 when s is
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odd, and F (2s) ! F (22) = 9/4 when s is even. This establishes parts (ii) and (iii) of
the lemma, and thereby completes its proof.

The second phase of our argument is now complete. Lemma 9.6 shows that F (a)!3
for every a ∈ V ′

2 , whence it follows from Lemma 9.4 that C(a) ! 3 for every a ∈ V2.
Since C(1, 1, 1) = 8, it follows that the elements of V2 play no role in determining the
supremum appearing in (9.5). It remains only to investigate the vectors a ∈ V1 having
one or more components equal to 1. This phase of our argument is the most difficult
yet, and requires a third triumvirate of lemmata. We begin with some additional
notation of somewhat peculiar flavour. When a is a k-dimensional vector in V , we
refer to a set A = {a1, a2, a3, a4} of four vectors in

(
N ∪ {0}

)k as a decomposition
of a, when the four vectors in A are pairwise distinct and

a1 + a2 + a3 + a4 = a. (9.10)

When g̃(aj) " l for 1 ! j ! 4, we describe such a decomposition A as an l-decom-
position of a. Finally, we describe a set A as a (ν, µ)-set of l-decompositions of a,
when A consists of ν l-decompositions of a and for every b ∈

(
N ∪ {0}

)k, one has

card{A ∈ A : b ∈ A } ! µ. (9.11)

Lemma 9.7. — Suppose that a ∈ V , and that there exists a (ν, µ)-set of l-decom-
positions of a. Then whenever a′ ∈ V ′

2 , one has

C(a, a′) ! τ̃(a)
'2ν/µ(lF (a′).

Proof. — Suppose that a ∈ V is a k-dimensional vector, and let A be a (ν, µ)-set of
l-decompositions of a. When A = {a1, . . . , a4} ∈ A and x ∈ Nk, it follows from the
definition (9.10) of a decomposition that

xa1 · xa2 · xa3 · xa4 = xa,

whence x4aj ! xa for some aj ∈ A. We therefore deduce that aj ∈ S(a; x) for some
aj ∈ A. We note here that since A ∈ A is an l-decomposition, then g̃(aj) " l. Since
A is a (ν, µ)-set of l-decompositions, we obtain ν vectors aj ∈ S(a; x) on considering
each of the ν l-decompositions A of a. In view of (9.11), it follows from the pigeon-hole
principle that at least 'ν/µ( of the latter vectors are pairwise distinct. Henceforth,
we denote this set of 'ν/µ( distinct vectors in S(a; x) by 〈A; x〉.

Equipped with the preliminary observations of the previous paragraph, the proof
of the lemma is rapidly completed in the case that a′ = z. On considering the
contribution to G(a; x) arising from the vectors in 〈A; x〉, we find that

G(a; x) "
∑

c∈〈A;x〉

g̃(c) " 'ν/µ(l.

But for any real number z, one plainly has

2'z( " '2z(. (9.12)
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Thus we conclude that for any x ∈ Nk, one has

C(a; x) ! 2τ̃(a)
'2ν/µ(l =

τ̃ (a)
'2ν/µ(lF (z).

The conclusion of the lemma is therefore immediate when a′ = z.
Suppose next that a′ is a k′-dimensional vector in V2. Let A ={a1, . . . , a4} be an

l-decomposition of a belonging to A, and let b be a vector with b ! a′/2. We observe
that for any permutation σ of the set {1, 2, 3, 4}, the set of vectors

{
(aσ(1), b), (aσ(2), b), (aσ(3), a

′/2 − b), (aσ(4), a
′/2 − b)

}

forms an L(b)-decomposition of (a, a′), where

L(b) = l · min{g̃(b), g̃(a′/2 − b)}. (9.13)

We denote by A(b) the set of such L(b)-decompositions of (a, a′) as σ runs over the
permutations of {1, 2, 3, 4}. Our argument divides naturally according to whether or
not b = a′/2 − b, and we simplify our account by defining parameters ν̃ = ν̃(b) and
µ̃ = µ̃(b) by

(ν̃, µ̃) =

{
(6, 3), when 4b #= a′,

(1, 1), when 4b = a′.

It then follows that A(b) is a (ν̃, µ̃)-set of L(b)-decompositions of (a, a′). Moreover,
if we denote by A(b) the union of the sets A(b) for A ∈ A, we see that A(b) is a
(νν̃, µµ̃)-set of L(b)-decompositions of (a, a′).

We now imitate the argument applied earlier in the case where a′ = z, construct-
ing for each vector b with b ! a′/2, and each x ∈ Nk+k′

, a set 〈A(b), x〉. As in
our previous discussion, this set 〈A(b), x〉 consists of 'ν̃ν/(µ̃µ)( distinct vectors in
S((a, a′); x), each of which is picked up from an L(b)-decomposition in A(b). We
therefore obtain the lower bound

∑

c∈〈A(b),x〉

g̃(c) " 'ν̃ν/(µ̃µ)(L(b). (9.14)

In order to assess the total contribution to G((a, a′); x) arising from vectors of this
type, we put

I =
⋃

b!a′/2

〈A(b), x〉,

and note that I ⊆ S((a, a′); x). Then on observing that 〈A(b), x〉 and 〈A(b′), x〉 are
disjoint unless b′ = b or b′ = a′/2 − b, we find that

G((a, a′); x) "
∑

c∈I

g̃(c) "
∑

b!a′/2

1
δ(b)

∑

c∈〈A(b),x〉

g̃(c), (9.15)

where

δ(b) =

{
2, when 4b #= a′,

1, when 4b = a′.
(9.16)
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The latter relation ensures that δ(b) = ν̃/µ̃ for every vector b, so that on collecting
together (9.13)-(9.15), and making use again of (9.12), we deduce that

G((a, a′); x) " 1
2

∑

b!a′/2

'2ν/µ(l min
{
g̃(b), g̃(a′/2 − b)

}

= l'2ν/µ(f(a′).

On recalling (9.7), we therefore conclude that for every x ∈ Nk+k′
, one has

C((a, a′); x) ! τ̃ (a, a′)
l'2ν/µ(f(a′)

=
τ̃(a)

l'2ν/µ(F (a′).

The conclusion of the lemma now follows immediately whenever a′ ∈ V2.

We also require a variant of the previous lemma that can, however, be established
with a similar argument.

Lemma 9.8. — Suppose that a ∈ V , and that for each j with 1 ! j ! J , there exists
an lj-decomposition of a, say Aj . Suppose also that the Aj , for 1 ! j ! J , are
pairwise disjoint. Then whenever a′ ∈ V ′

2 , one has

C(a, a′) ! 1
2
τ̃ (a)
( J∑

j=1

lj
)−1

F (a′).

Proof. — Suppose that a ∈ V is a k-dimensional vector. As in the opening discussion
of the proof of the previous lemma, for each x ∈ Nk, and for each index j with
1 ! j ! J , one may choose a vector cj from Aj with cj ∈ S(a; x). Since the Aj are
pairwise disjoint, the vectors cj are automatically pairwise distinct for 1 ! j ! J .
Also, since each Aj is an lj-decomposition, one has g̃(cj) " lj (1 ! j ! J). We
therefore deduce that for each x ∈ Nk,

G(a; x) "
J∑

j=1

g̃(cj) "
J∑

j=1

lj,

and the conclusion of the lemma swiftly follows when a′=z, on recalling that F (z)=2.
Suppose next that a′ is a k′-dimensional vector in V2. Adopting the notation of the

proof of Lemma 9.7, and imitating the argument leading to the bound (9.14), for every
vector b with b ! a′/2, and for each Aj with 1 ! j ! J , we construct a set Aj(b).
In the present situation, the latter object is a (ν̃, µ̃)-set of Lj(b)-decompositions of
(a, a′), where

Lj(b) = lj · min{g̃(b), g̃(a′/2 − b)}.

Given a vector x ∈ Nk+k′
, we next construct a set 〈Aj(b); x〉, every member of which

is chosen from an Lj(b)-decomposition in Aj(b), and belongs to S((a, a′); x). As
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before, the cardinality of 〈Aj(b); x〉 is at least ν̃/µ̃ = δ(b). Note also that 〈Aj(b); x〉
and 〈Aj(b′); x〉 are disjoint unless b′ = b or b′ = a′/2 − b. On writing

Ij =
⋃

b!a′/2

〈Aj(b); x〉,

we therefore deduce that
∑

c∈Ij

g̃(c) "
∑

b!a′/2

1
δ(b)

∑

c∈〈Aj(b);x〉

g̃(c) "
∑

b!a′/2

1
δ(b)

⌈ ν̃
µ̃

⌉
Lj(b)

=
∑

b!a′/2

lj min{g̃(b), g̃(a′/2 − b)} = 2ljf(a′).

But Ij ⊆ S((a, a′); x) for 1 ! j ! J , and moreover Ij and Ij′ are disjoint whenever
j #= j′. Thus we arrive at the lower bound

G((a, a′); x) "
J∑

j=1

∑

c∈Ij

g̃(c) " 2f(a′)
J∑

j=1

lj ,

whence for every x ∈ Nk+k′
, we derive the upper bound

C((a, a′); x) ! τ̃ (a, a′)
2f(a′)

∑J
j=1 lj

=
1
2
τ̃(a)
( J∑

j=1

lj
)−1

F (a′).

The desired conclusion now follows immediately for each a′ ∈ V2.

Our careful preparations now complete, we at last launch our assault on the eval-
uation of C(a). We must nonetheless exhibit some fortitude if we are to successfully
storm the citadel.

Lemma 9.9. — Whenever a ∈ V1, one has C(a) ! 8.

Proof. — Our argument splits into cases according to the number of components of
the vector in question that are equal to 1 or 2. Given a vector b (possibly empty), we
denote by t(b) the number of components of b equal to 1, and by s(b) the number of
components equal to 2. Consider a fixed vector a ∈ V1, and recall throughout that
we may permute the components of a with impunity, whenever we are so-inclined.

(i) Suppose that t(a) = 0. In this situation one has a ∈ V2, and as we have already
discussed, the conclusion of the lemma is then immediate from Lemmata 9.4 and 9.6.

(ii) Suppose that t(a) = 1. When a = (1), the trivial bound (9.4) yields C(1) ! 2,
which suffices for our purpose. When a = (1, a′) with a′ ∈ V2, on the other hand,
one may apply Lemmata 9.1, 9.4 and 9.6 (iii) in concert with our previous estimate
to deduce that

C(a) ! C(1)C(a′) ! 2 × 3 = 6.

(iii) Suppose that t(a) = 2. We now subdivide our argument according to the value
of s(a).
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When s(a) = 0, we may suppose that a takes the shape a = (1, 1, a′) with a′ ∈ V ′
2

and s(a′) = 0. The trivial bound (9.4) now yields C(1, 1) ! 4. Meanwhile, when
a′ ∈ V2 satisfies s(a′) = 0, one finds that Lemmata 9.1, 9.4 and 9.6(i) lead from the
last bound to the estimate

C(1, 1, a′) ! C(1, 1)C(a′) ! 4 × 2 = 8.

Suppose next that s(a) = 1. When a = (1, 1, 2), we observe that for each x ∈ N3,
one has

xa = x(1,0,0)x(0,1,0)x(0,0,1)x(0,0,1).

It follows that the set S(a; x) contains (0, 0, 0) together with one at least of (1, 0, 0),
(0, 1, 0) and (0, 0, 1). We therefore obtain G(a; x) " 1+3 = 4, whence for each x ∈ N3

we have C(a; x) ! 12/4 = 3. The bound C(1, 1, 2) ! 3 follows immediately. When
a = (1, 1, 2, a′) with a′ ∈ V2, meanwhile, our hypothesis that s(a) = 1 implies that
s(a′) = 0. In this case we may combine the conclusion just obtained with Lemmata
9.1, 9.4 and 9.6 (i) to deduce that

C(a) ! C(1, 1, 2)C(a′) ! 3 × 2 = 6.

Finally, suppose that s(a) " 2. In this case we may suppose that a = (1, 1, 2, 2, a′)
with a′ ∈ V ′

2 . Putting

A1 = {(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 2, 0), (0, 0, 0, 2)},
A2 = {(1, 0, 1, 0), (0, 1, 0, 1), (0, 0, 1, 0), (0, 0, 0, 1)},
A3 = {(1, 0, 0, 1), (0, 1, 1, 0), (0, 0, 1, 1), (0, 0, 0, 0)},

one may verify that A1 and A2 are 3-decompositions of (1, 1, 2, 2), whilst A3 is a
1-decomposition of (1, 1, 2, 2). Noting also that A1, A2 and A3 are pairwise disjoint,
we conclude from Lemmata 9.6 (iii) and 9.8 that

C(a) = C(1, 1, 2, 2, a′) ! τ̃ (1, 1, 2, 2)
3 + 3 + 1

· F (a′)
2

! 36
7

· 3
2

=
54
7

.

Collecting together the above estimates, we find that C(a) ! 8 whenever t(a) = 2.
(iv) Suppose that t(a) = 3. Again we subdivide our argument according to the

value of s(a).
When s(a) = 0, we may suppose that a = (1, 1, 1, a′) with a′ ∈ V ′

2 and s(a′) = 0.
Since the set

{(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1)}

provides a 1-decomposition of (1, 1, 1), Lemmata 9.6 (i) and 9.8 yield

C(a) = C(1, 1, 1, a′) ! τ̃ (1, 1, 1)
1

· F (a′)
2

! 8.
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Suppose next that s(a) is odd. In this case we may suppose that a = (1, 1, 1, 2, a′)
with a′ ∈ V ′

2 and s(a′) even. On observing that the two disjoint sets

{(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 2)},
{(1, 1, 0, 0), (0, 0, 1, 1), (0, 0, 0, 1), (0, 0, 0, 0)}

are, respectively, 3- and 1-decompositions of (1, 1, 1, 2), we deduce from Lemmata 9.6
(ii) and 9.8 that

C(a) ! τ̃ (1, 1, 1, 2)
3 + 1

· F (a′)
2

! 24
4

· 9/4
2

=
27
4

.

Finally, suppose that s(a) is a positive even number. We may now suppose that
a = (1, 1, 1, 2, 2, a′) with a′ ∈ V ′

2 and s(a′) even. In this situation, we note that the
four disjoint sets

{(1, 0, 0, 0, 0), (0, 1, 0, 0, 0), (0, 0, 1, 1, 1), (0, 0, 0, 1, 1)},
{(1, 0, 0, 1, 0), (0, 1, 0, 1, 0), (0, 0, 1, 0, 1), (0, 0, 0, 0, 1)},
{(1, 0, 0, 0, 1), (0, 1, 0, 0, 1), (0, 0, 1, 1, 0), (0, 0, 0, 1, 0)},
{(1, 1, 0, 0, 0), (0, 0, 1, 0, 0), (0, 0, 0, 2, 0), (0, 0, 0, 0, 2)}

are 3-decompositions of (1, 1, 1, 2, 2). Thus we find that Lemmata 9.6 (ii) and 9.8 in
this case yield the estimate

C(a) ! τ̃ (1, 1, 1, 2, 2)
3 + 3 + 3 + 3

· F (a′)
2

! 72
12

· 9/4
2

=
27
4

.

Collecting together the above estimates, we find that C(a) ! 8 whenever t(a) = 3.
(v) Suppose that t(a) = 4m with m " 1. In order to simplify our argument, we

now introduce the notation of writing 1t for the t-dimensional vector (1, 1, . . . , 1).
Thus, in the situation presently under consideration, we may write a = (14m, a′)
with a′ ∈ V ′

2 .
We consider the set A4m of all the 3m-decompositions of 14m. Notice that whenever

A = {a1, . . . , a4} is a 3m-decomposition of 14m, then aj ∈ {0, 1}4m and t(aj) " m
for 1 ! j ! 4, and furthermore a1 + · · · + a4 = 14m. Plainly, therefore, one must
have t(aj) = m for 1 ! j ! 4, and an elementary combinatorial argument leads to
the conclusion that A4m is a (ν4m, µ4m)-set of 3m-decompositions of 14m, where

ν4m =
(4m)!

4!(m!)4
and µ4m =

(3m)!
3!(m!)3

.

Consequently, Lemmata 9.6 (iii) and 9.7 yield the bound

C(a) = C(14m, a′) ! τ̃ (14m)
2ν4m/µ4m

· F (a′)
3m

! 24m+131−m

(
4m

m

)−1

.

But when m " 1, one has
(4m+4

m+1

)
= 4ω(m)

(4m
m

)
, where

ω(m) =
(4m + 1)(4m + 2)(4m + 3)
(3m + 1)(3m + 2)(3m + 3)

.
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On noting that ω(1) = 7/4 and ω(m + 1) " ω(m) for m " 1, we deduce that for
m " 1, one has (

4m

m

)
" 4 · 7m−1, (9.17)

whence

C(a) ! 24m+131−m(4 · 7m−1)−1 = 8 ·
(16

21

)m−1
! 8.

(vi) Suppose that t(a) = 4m + 1 with m " 1. We may now write a = (14m+1, a′)
with a′ ∈ V ′

2 . Following the argument of the previous case, we consider the set A4m+1

of all the 3m-decompositions of 14m+1. When A ∈ A4m+1, we may now suppose that

A = {a1, . . . , a4}, aj ∈ {0, 1}4m+1 (1 ! j ! 4),

t(aj) = m (1 ! j ! 3), t(a4) = m + 1, a1 + · · · + a4 = 14m+1.

An elementary combinatorial argument in this instance therefore shows that A4m+1

is a (ν4m+1, µ4m+1)-set of 3m-decompositions of 14m+1, where

ν4m+1 =
(4m + 1)!

3!(m!)3(m + 1)!

and

µ4m+1 = max
{

(3m)!
3!(m!)3

,
(3m + 1)!

2!(m!)2(m + 1)!

}
=

(3m + 1)!
2(m!)2(m + 1)!

.

In the present situation, Lemmata 9.6 (iii) and 9.7 provide the bound

C(a) ! τ̃(14m+1)
'2ν4m+1/µ4m+1(

· F (a′)
3m

! 24m+131−m
⌈2
3

(
4m + 1

m

)⌉−1
. (9.18)

When m = 1, the latter estimate yields C(a) ! 25/'10/3( = 8. For m " 2, mean-
while, the lower bound (9.17) shows that

(
4m + 1

m

)
=
(

4m

m

)
4m + 1
3m + 1

" 4 · 7m−1 · 9
7

= 36 · 7m−2.

Consequently, we conclude from (9.18) that for m " 2, one has

C(a) ! 24m32−m

(
4m + 1

m

)−1

! 64
9

(16
21

)m−2
! 64

9
.

Thus we find that whenever t(a) = 4m + 1 with m " 1, then one has C(a) ! 8.
(vii) Suppose that t(a) = 4m + 2 with m " 1. We now write a = (14m+2, a′) with

a′ ∈ V ′
2 . Denote by A4m+2 the set of all the 3m-decompositions A = {a1, . . . , a4} of

14m+2 such that t(aj) = m for j = 1 and 2, and t(aj) = m + 1 for j = 3 and 4. An
elementary combinatorial argument confirms that A4m+2 is a (ν4m+2, µ4m+2)-set of
3m-decompositions of 14m+2, where

ν4m+2 =
(4m + 2)!

(2!m!(m + 1)!)2
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and

µ4m+2 = max
{

(3m + 1)!
2!(m!)2(m + 1)!

,
(3m + 2)!

2!m!((m + 1)!)2

}
=

(3m + 2)!
2!m!((m + 1)!)2

.

We therefore deduce from Lemmata 9.6 (iii) and 9.7 that

C(a) ! τ̃ (14m+2)
2ν4m+2/µ4m+2

· F (a′)
3m

! 24m+231−m

(
4m + 2

m

)−1

.

For m " 2, the lower bound (9.17) implies that
(

4m + 2
m

)
=
(

4m

m

)
(4m + 2)(4m + 1)
(3m + 2)(3m + 1)

" 4 · 7m−1 10 · 9
8 · 7 = 45 · 7m−2,

whence

C(a) ! 24m+231−m(45 · 7m−2)−1 =
210

3 · 45

(16
21

)m−2
! 1024

135
.

Thus we conclude that whenever t(a) = 4m + 2 with m " 2, then one has C(a) < 8.
When m = 1, or equivalently, when t(a) = 6, we must be more explicit in our

analysis. Observe now that A6 is a (45, 15)-set of 3-decompositions of 16. When
s(a′) is even, we deduce from Lemmata 9.6 (ii) and 9.7 that

C(a) = C(16, a
′) ! 26

2 · 45/15
· 9/4

3
= 8.

When s(a′) is odd, on the other hand, we may write a = (16, 2, a′′), where a′′ ∈ V ′
2

and s(a′′) is even. For each decomposition A = (a1, . . . , a4) ∈ A6, one has t(a1) =
t(a2) = 1 and t(a3) = t(a4) = 2, and so we find that the set

{(a1, 1), (a2, 1), (a3, 0), (a4, 0)}

provides a 9-decomposition of (16, 2). By taking the collection of all such sets for
A ∈ A6, we obtain a (45, 15)-set of 9-decompositions of (16, 2). Consequently, by
Lemmata 9.6 (ii) and 9.7, we obtain

C(a) = C(16, 2, a′′) ! 26 · 3
2 · 45/15

· 9/4
9

= 8.

We have therefore shown that C(a) ! 8 when t(a) = 6, and this completes our
treatment of case (vii).

(viii) Suppose that t(a) = 4m + 3 with m " 1. In this case we apply an argument
closely resembling that of case (vii). Put a = (14m+3, a′) with a′ ∈ V ′

2 , and denote
by A4m+3 the set of all the 3m-decompositions A = {a1, . . . , a4} of 14m+3 such that
t(a1) = m and t(aj) = m + 1 for 2 ! j ! 4. An elementary combinatorial argument
again confirms that A4m+3 is a (ν4m+3, µ4m+3)-set of 3m-decompositions of 14m+3,
where

ν4m+3 =
(4m + 3)!

3!m!((m + 1)!)3
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and

µ4m+3 = max
{

(3m + 2)!
2!m!((m + 1)!)2

,
(3m + 3)!

3!((m + 1)!)3

}
=

(3m + 3)!
3!((m + 1)!)3

.

We therefore deduce from Lemmata 9.6 (iii) and 9.7 that

C(a) ! τ̃ (14m+3)
2ν4m+3/µ4m+3

· F (a′)
3m

! 24m+231−m

(
4m + 3

m

)−1

. (9.19)

The inequality (9.17) now implies that
(

4m + 3
m

)
=

1
4

(
4(m + 1)
m + 1

)
" 7m,

and so we find from (9.19) that for m " 2, one has

C(a) ! 12
(16

21

)m
! 1024

147
.

When m = 1 we have t(a) = 7, and must again proceed more carefully. In this
case A7 is a (105, 15)-set of 3-decompositions of 17. When s(a′) is even, it follows
from Lemmata 9.6 (ii) and 9.7 that

C(a) = C(17, a
′) ! 27

2 · 105/15
· 9/4

3
=

48
7

.

When s(a′) is odd, meanwhile, we write a = (17, 2, a′′), where a′′ ∈ V ′
2 and s(a′′) is

even. For each decomposition A = (a1, . . . , a4) ∈ A7, one has t(a1) = 1 and t(aj) = 2
(2 ! j ! 4), and so we find that the set

{(a1, 2), (a2, 0), (a3, 0), (a4, 0)}

provides a 9-decomposition of (17, 2). Collecting such decompositions for A ∈ A7, we
obtain a (105, 15)-set of 9-decompositions of (17, 2). Thus, by Lemmata 9.6 (ii) and
9.7, we may conclude that

C(a) = C(17, 2, a′′) ! 27 · 3
2 · 105/15

· 9/4
9

=
48
7

.

We have therefore shown that C(a) < 8 when t(a) = 7, and this completes our
analysis of case (viii).

We conclude by noting that the discussions of cases (i) through (viii) above demon-
strate that C(a) ! 8 whenever a ∈ V1, and so this completes the proof of the
lemma.

This completes the third phase of our argument, so that in view of the discussion in
the preamble to Lemma 9.7, and that in the paragraph containing (9.5), the desired
conclusion (9.1) is now available with C = 8. We summarise the deliberations of this
section in the form of a lemma.
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Lemma 9.10. — Denote the number of divisors of n by τ(n), and let g be the multi-
plicative function defined by means of (9.2). Then for every natural number n one
has

τ(n) ! 8
∑

d|n
d!n1/4

g(d).
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CHAPTER 10

AN INVESTIGATION OF CERTAIN CONGRUENCES

Our next goal is to establish the mean value estimates recorded in Lemmata 2.4
and 2.5. Before embarking on this mission in §11, we require some estimates asso-
ciated with the number of solutions of certain congruences, and these we prepare in
the current section. Our first lemma concerns the number ρ(d) of solutions of the
congruence

x4
1 + x4

2 ≡ x4
3 + x4

4 (mod d), (10.1)
with 1 ! xj ! d (1 ! j ! 4).

Lemma 10.1. — The function ρ(d) satisfies the following properties.
(i) One has

ρ(2v) =

{
8, when v = 1,

3 · 24v−3, when 2 ! v ! 4.

Further, when u " 0 and 1 ! v ! 4, one has

ρ(24u+v) = 5u · 212u+3v + 212uρ(2v).

(ii) One has ρ(3) = 33 and ρ(5) = 321. Also, defining κ(p) and bp as in (5.5) and
(5.15) respectively, for each odd prime p one has the relation

p3 ! ρ(p) ! p3 + bpκ(p)2p2(p − 1).

Finally, when p is an odd prime, u " 0 and 1 ! v ! 4, one has

ρ(p4u+v) = (u + 1)p3(4u+v−1)(ρ(p) − 1) + p12u+4v−4.

Proof. — We begin by disposing of the simplest cases of the lemma with minimal
effort. Of course, one instantaneously verifies that ρ(2) = 8. Next, we define σq(m) to
be the number of solutions of the congruence x4 +y4 ≡ m (mod q) with 1 ! x, y ! q,
and we observe that

ρ(q) =
q∑

m=1

σq(m)2.
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Suppose for the moment that q is one of 3, 4, 5, 8 or 16. Then one has x4 ≡ 1 (mod q)
whenever (x, q) = 1, and otherwise x4 ≡ 0 (mod q). We therefore find that σq(m) is
zero unless m is one of 0, 1 or 2, and thus an elementary computation reveals that

ρ(p) = 12 +
(

2
1

)2

(p − 1)2 + (p − 1)4 (p = 3, 5),

ρ(2v) = 24v−4 +
(

2
1

)2

24v−4 + 24v−4 (v = 2, 3, 4).

The initial conclusions of parts (i) and (ii) of the lemma now follow immediately.
Suppose next that p is an odd prime, and recall the definition (5.1) of the expo-

nential sum S(q, a). By orthogonality, one has

ρ(p) = p−1
p∑

a=1

|S(p, a)|4 = p3 + p−1
p−1∑

a=1

|S(p, a)|4.

On recalling Lemmata 5.1 and 5.3, we find that

0 ! p−1
p−1∑

a=1

|S(p, a)|4 ! pκ(p)2
p−1∑

a=1

|S(p, a)|2 = bpκ(p)2p2(p − 1),

whence the second conclusion of part (ii) of the lemma follows.
We next turn our attention to the final conclusions of parts (i) and (ii) of the

lemma. When d is a natural number, denote by ρ∗(d) the number of solutions x of
the congruence (10.1) counted by ρ(d) with (xj , d) = 1 for some j. Then defining
γ = γ(p) as in the statement of Lemma 6.1, we find from the latter lemma that when
l " γ,

ρ∗(pl) = p3(l−γ)ρ∗(pγ). (10.2)

We therefore deduce from the definitions of ρ(d) and ρ∗(d) that for l " 4,

ρ(pl) = ρ∗(pl) + (p3)4ρ(pl−4) = p3(l−γ)ρ∗(pγ) + p12ρ(pl−4). (10.3)

A u-fold application of this formula demonstrates that for u " 0 and 1 ! v ! 4, one
has

ρ(p4u+v) = up3(4u+v−γ)ρ∗(pγ) + p12uρ(pv). (10.4)

In the case p = 2, we see that ρ(24) − ρ∗(24) is equal to the number of quadruples
(x1, . . . , x4) with each xj even and satisfying 1 ! xj ! 16. Thus it follows from (10.4)
that when u " 0 and 1 ! v ! 4,

ρ(24u+v) = u · 23(4u+v−4)(ρ(24) − (23)4) + 212uρ(2v),

whence the final conclusion of part (i) of the lemma follows from the first conclusion
of that part. When p is odd, meanwhile, we deduce from (10.2) that when 1 ! v ! 4,

ρ(pv) = ρ∗(pv) + p4(v−1) = p3(v−1)ρ∗(p) + p4(v−1). (10.5)
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An application of the relation (10.4) yields the conclusion that for u " 0 and 1 ! v ! 4,
one has

ρ(p4u+v) = (u + 1)p3(4u+v−1)ρ∗(p) + p12u+4v−4,

and the final conclusion of part (ii) of the lemma follows from the observation that
ρ∗(p) = ρ(p) − 1.

We next establish a variant of the previous lemma relevant to the number, r(d) =
r(d; ε), of solutions of the congruence

1
2
(
(2x1 + ε)4 + (2x2 + ε)4 − (2x3 + ε)4 − (2x4 + ε)4

)
≡ 0 (mod d), (10.6)

with 1 ! xj ! d (1 ! j ! 4).

Lemma 10.2. — Suppose that ε ∈ {0, 1}. Then the following conclusions hold.

(i) When d is odd, one has r(d) = ρ(d).
(ii) When 1 ! l ! 3, one has r(2l) = 24l, and for u " 0 and 1 ! v ! 4,

r(24u+v+3) ! 5u · 23(4u+v+4) + 212(u+1)ρ(2v).

Proof. — We begin by noting that when d is odd, a change of variables confirms that
r(d) = ρ(d), thereby establishing part (i) of the lemma. Observe next that when
d = 2l with l ! 3, it follows from (5.11) that the congruence (10.6) is automatically
satisfied for every choice of x. In particular, one has r(2l) = 24l for 1 ! l ! 3.
Suppose then that l " 4. When ε = 0, we see at once that r(2l; 0) = 212ρ(2l−3). On
writing l − 3 = 4u + v with u " 0 and 1 ! v ! 4, we therefore deduce from Lemma
10.1 (i) that

r(24u+v+3; 0) = 212
(
5u · 212u+3v + 212uρ(2v)

)
,

and so the desired conclusion follows for ε = 0. When ε = 1, in the meantime, we
may observe that r(2l; 1) is equal to r′(2l+1), where we take r′(2m) to be the number
of solutions of the congruence

y4
1 + y4

2 ≡ y4
3 + y4

4 (mod 2m),

with 1 ! yj ! 2m and yj odd for 1 ! j ! 4. It is a consequence of Lemma 6.1 that
r′(2m) = 23(m−4)r′(24) for m " 4, so that the trivial conclusion r′(24) = (23)4 leads
to the relation

r(2l; 1) = r′(2l+1) = 23(l−3)+12 (l " 4).

On writing l − 3 = 4u + v as above, and noting that Lemma 10.1 (i) provides the
lower bound ρ(2v) " 23v for 1 ! v ! 4, we arrive at the upper bound

r(24u+v+3; 1) = 23(4u+v)+12 ! 212(u+1)ρ(2v).

The desired conclusion therefore follows also for ε = 1, and this completes the proof
of the lemma.
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Finally, we require an analogue of Lemma 10.1 in which the congruence (10.1) is
replaced by a new congruence stemming from the use of the identity (1.5). In this
context, let s(d) = s(d; ζ) denote the number of solutions of the congruence

1
4
(
30(2x1 + ζ)4 − 30(2x2 + ζ)4 + (2y1 + 1)4 − (2y2 + 1)4

)
≡ 0 (mod d),

with 1 ! xj , yj ! d (j = 1, 2).

Lemma 10.3. — Suppose that ζ ∈ {0, 1}. Then the following conclusions hold.

(i) When d is a natural number with (d, 30) = 1, one has d3 ! s(d) ! ρ(d).
(ii) When p = 3 or 5, one has s(p) = p2(p2 − 2p + 2), and when l " 1 one has

s(pl) < 3
2ρ(pl).

(iii) One has

s(2l) =

{
24l, when l = 1, 2,
23l+2, when l " 3.

Proof. — We observe first that when d is odd, a change of variables demonstrates
that s(d) is equal to the number of solutions of the congruence

30(x4
1 − x4

2) ≡ y4
1 − y4

2 (mod d), (10.7)

with 1 ! xj , yj ! d (j = 1, 2). On recalling (5.1), we thus deduce by orthogonality
that

s(d) = d−1
d∑

a=1

|S(d, 30a)S(d, a)|2.

On the one hand, the contribution of the term a = d in this last sum suffices to
confirm the lower bound s(d) " d3. On the other hand, since orthogonality provides
the relation

ρ(d) = d−1
d∑

a=1

|S(d, a)|4,

it follows from Cauchy’s inequality together with a change of variable that when
(d, 30) = 1, one has

s(d) !
(

d−1
d∑

a=1

|S(d, 30a)|4
)1/2(

d−1
d∑

a=1

|S(d, a)|4
)1/2

= d−1
d∑

a=1

|S(d, a)|4 = ρ(d).

This completes the proof of part (i) of the lemma.
We next turn to part (ii) of the lemma, and suppose for the moment that p = 3 or 5.

For j = 1, 2, 3 and l " 0, let sj(pl) denote the number of solutions of the congruence
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(10.7) with d = pl, 1 ! xi, yi ! pl (i = 1, 2), subject to the list of conditions Cj ,
where Cj is given as follows:

C1 : p ! y1 or p ! y2,

C2 : p|y1, p|y2 and p ! x1 or p ! x2,

C3 : p|x1, p|x2, p|y1, p|y2.

Then we have
s(pl) = s1(pl) + s2(pl) + s3(pl). (10.8)

Further, one has the instant relation

s3(pl) =

{
p4(l−1), when 1 ! l ! 4,
p12s(pl−4), when l " 5.

(10.9)

We estimate s1(pl) and s2(pl) as follows. Observing that when d = p, the con-
gruence (10.7) simplifies to y4

1 ≡ y4
2 (mod p), we find that s1(p) = p2(p − 1)2. Thus,

appealing to Lemma 6.1, we deduce that when l " 1 one has

s1(pl) = p3(l−1)s1(p) = p3l−1(p − 1)2. (10.10)

Next, when l " 0, we denote by s′2(pl) the number of solutions of the congruence

30p−1(x4
1 − x4

2) ≡ p3(y4
1 − y4

2) (mod pl),

with 1 ! xi, yi ! pl and p ! xi (i = 1, 2). Plainly, one has s′2(p) = p2(p − 1)2, and so
it follows from Lemma 6.1 that when l " 1, one has

s′2(p
l) = p3l−1(p − 1)2.

We therefore deduce that when l " 2,

s2(pl) = p2s′2(p
l−1) = p3l−2(p − 1)2, (10.11)

while the relation
s2(p) = p2 − 1 (10.12)

is immediate from the definition of s2(p).
On collecting together (10.8)-(10.12), we obtain

s(p) = p2(p − 1)2 + (p2 − 1) + 1 = p2(p2 − 2p + 2), (10.13)

which confirms the first claim of part (ii) of the lemma, and one also obtains the
relations

s(pl) = p3l−2(p + 1)(p − 1)2 +

{
p4(l−1), when 2 ! l ! 4,
p12s(pl−4), when l " 5.

(10.14)

In order to establish the remaining conclusion of part (ii) of the lemma, we note
initially that by Lemma 10.1 (ii) and (10.13), one has s(p) < 3

2ρ(p) for p = 3, 5.
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Also, recalling the definition of ρ∗(d) from the proof of Lemma 10.1, and noting that
ρ∗(p) = ρ(p) − 1, one finds from Lemma 10.1 (ii) that for p = 3 and 5 one has

p(p + 1)(p − 1)2 =
3
2
ρ∗(p). (10.15)

On recalling (10.5), we now conclude from (10.14) and (10.15) that for 2 ! l ! 4, one
has

s(pl) =
3
2
p3(l−1)ρ∗(p) + p4(l−1) <

3
2
ρ(pl).

When l " 5, meanwhile, we may make use of (10.3) with γ = 1 in combination with
(10.14) and (10.15) to deduce that whenever s(pl−4) < 3

2ρ(pl−4), then one has

s(pl) =
3
2
p3(l−1)ρ∗(p) + p12s(pl−4)

<
3
2
(
p3(l−1)ρ∗(p) + p12ρ(pl−4)

)
=

3
2
ρ(pl).

The final conclusion of part (ii) of the lemma consequently follows by induction on l,
with our previous conclusions providing the basis of the induction.

It now remains only to establish part (iii) of the lemma. The desired conclusion
for l = 1 and 2 is immediate from (5.11). In order to handle the cases with l " 3, we
introduce the function s′(2m), which we define to be the number of solutions of the
congruence

30x4
1 − 30x4

2 + y4
1 − y4

2 ≡ 0 (mod 2m),

with 1 ! xj , yj ! 2m, xj ≡ ζ (mod 2) and yj ≡ 1 (mod 2) (j = 1, 2). A moment’s
reflection yields the relation s(2l) = 2−4s′(2l+2). Moreover, the solutions x, y counted
by s′(2m) satisfy the property that y1 is odd, whence by Lemma 6.1 one has

s′(2m) = 23(m−4)s′(24) (m " 4).

In view of (5.11), we have s′(24) = (23)4, and thus we deduce that whenever l " 3,
one has

s(2l) = 2−4s′(2l+2) = 2−4+3(l−2)+12 = 23l+2.

This completes the proof of part (iii) of the lemma, and completes our discussion of
Lemma 10.3.

The final three lemmata of this section provide weighted sums of the functions
r(d) and s(d) occurring in Lemmata 10.2 and 10.3, together with our surrogate for
the divisor function, g(d), that was central to the discussion of the previous section.
We begin with a technical lemma that simplifies our subsequent detailed investigations
specific to the functions r(d) and s(d).

Lemma 10.4. — Let λ(d) be a multiplicative function satisfying the condition that
λ(d) " 0 for all natural numbers d, and also satisfying the property that for every
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prime p, one has λ(p) " p3. Suppose that X is a real number with X " 1, and that k
is a real number with 0 ! k ! 3. Then one has

∑

1!d!X

g(d)λ(d)
dk

! X4−k
∏

p!X

(
1 − 1

p
+

LogpX∑

l=1

g(pl)λ(pl)
p4l

)
,

where we write LogpX for [(log X)/(log p)].

Proof. — Let D denote the set of squarefull numbers, by which we mean the set of
natural numbers n with the property that whenever p is a prime number with p|n,
then necessarily p2|n. Every natural number d may be written uniquely in the shape
d = d1d2, where d1 is squarefree, d2 is squarefull, and (d1, d2) = 1. On writing also S
for the set of squarefree numbers, we see that

∑

d!X

g(d)λ(d)
dk

=
∑

d2!X
d2∈D

g(d2)λ(d2)
dk
2

∑

d1!X/d2
(d1,d2)=1

d1∈S

g(d1)λ(d1)
dk
1

. (10.16)

We analyse the inner sum of the right hand side of (10.16) first. When q is square-
free, define the function θ(q) by

θ(q) =
∏

p|q

(λ(p)p−3 − 1).

Note that in view of the hypothesis on λ(p) imposed in the statement of the lemma,
one has θ(q) " 0 for every q. Plainly, for each prime p one has λ(p) = p3(1 + θ(p)),
and hence we deduce from the multiplicative property of λ(d) that for squarefree d1,
one has

λ(d1) = d3
1

∏

p|d1

(1 + θ(p)) = d3
1

∑

qh=d1

θ(q).

Consequently, the innermost sum on the right hand side of (10.16) may be written in
the form

∑

d1!X/d2
(d1,d2)=1

d1∈S

g(d1)λ(d1)
dk
1

=
∑

q!X/d2
(q,d2)=1

q∈S

g(q)θ(q)q3−k
∑

h!X/(qd2)
(h,qd2)=1

h∈S

g(h)h3−k. (10.17)

We next tackle the innermost sum on the right hand side of (10.17). Since g(p) =
3 = 1+τ(p), where τ(n) again denotes the divisor function, we have for each squarefree
number h the relation

g(h) =
∏

p|h

(1 + τ(p)) =
∑

mn=h

τ(m).

Thus we deduce that
∑

h!X/(qd2)
(h,qd2)=1

h∈S

g(h)h3−k =
∑

m!X/(qd2)
(m,qd2)=1

m∈S

τ(m)m3−k
∑

n!X/(qmd2)
(n,qmd2)=1

n∈S

n3−k.
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But for 0 ! k ! 3, the innermost sum in the last expression is plainly at most
(X/(qmd2))4−k, and hence one obtains the estimate

∑

h!X/(qd2)
(h,qd2)=1

h∈S

g(h)h3−k !
(

X

d2q

)4−k ∑

m!X/(qd2)
(m,qd2)=1

m∈S

τ(m)
m

!
(

X

d2q

)4−k ∏

p!X/d2
p!qd2

(1 + 2/p). (10.18)

We now substitute from (10.18) into (10.17) to deduce that
∑

d1!X/d2
(d1,d2)=1

d1∈S

g(d1)λ(d1)
dk
1

!
(

X

d2

)4−k ∏

p!X/d2
p!d2

(
1 +

2
p

) ∑

q!X/d2
(q,d2)=1

q∈S

g(q)θ(q)
q

∏

p|q

(
1 +

2
p

)−1

!
(

X

d2

)4−k ∏

p!X/d2
p!d2

(
1 +

2
p

) ∏

,!X/d2
,!d2

(
1 +

g(5)θ(5)
5

(
1 +

2
5

)−1
)

,

where 5 implicitly denotes a prime number. On writing

θ1(p) = 1 +
2
p

+
g(p)θ(p)

p
= 1 − 1

p
+

g(p)λ(p)
p4

, (10.19)

we may conclude that
∑

d1!X/d2
(d1,d2)=1

d1∈S

g(d1)λ(d1)
dk
1

!
(X

d2

)4−k ∏

p!X/d2
p!d2

θ1(p). (10.20)

Finally, we substitute from (10.20) into (10.16) to obtain
∑

d!X

g(d)λ(d)
dk

! X4−k

( ∏

p!X

θ1(p)
) ∑

d2!X
d2∈D

g(d2)λ(d2)
d4
2

∏

,|d2

θ1(5)−1

! X4−k

( ∏

p!X

θ1(p)
) ∏

,!X

(
1 +

Log#X∑

l=2

g(5l)λ(5l)
54l

θ1(5)−1

)

= X4−k
∏

p!X

(
θ1(p) +

LogpX∑

l=2

g(pl)λ(pl)
p4l

)
.

The desired conclusion now follows immediately from (10.19).
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The moment has arrived to extract the estimates critical to our proofs, in the
next section, of Lemmata 2.4 and 2.5. We begin with a lemma that provides the key
ingredient in our proof of the former lemma.

Lemma 10.5. — Suppose that X " 1025 and ε ∈ {0, 1}. Then
∑

d!X

g(d)r(d; ε)d−4 < 125(logX)3,

and, whenever 0 ! k ! 3, one has also
∑

d!X

g(d)r(d; ε)d−k < 256X4−k(log X)2.

Proof. — Let ε ∈ {0, 1}, and write r(d) = r(d; ε). Putting

H(p) =
∞∑

l=1

g(pl)r(pl)p−4l, (10.21)

it follows from the multiplicative properties of g(d) and r(d) that
∑

d!X

g(d)r(d)d−4 !
∏

p!X

(1 + H(p)). (10.22)

We explicitly compute upper bounds for the factors 1 + H(p), for each prime p, and
from these bounds the first conclusion of the lemma will follow directly.

We begin with the even prime. By the definition (9.2) of g(d), we have

1 + H(2) = 1 + 3 + 3 + 9 + 9
∞∑

u=0

4∑

v=1

r(24u+v+3)
24(4u+v+3)

+ 18
∑

l∈{7,9,11}

r(2l)
24l

.

Thus, on making use of Lemmata 10.1 (i) and 10.2 (ii), we find that

1 + H(2) ! 16 + 18 · 133
256

+ 9
∞∑

u=0

4∑

v=1

(
5u · 2−4u−v + 2−4u−4vρ(2v)

)
. (10.23)

Using the formulae
∞∑

m=0

zm =
1

1 − z
and

∞∑

m=1

mzm−1 =
1

(1 − z)2
, (10.24)

which are valid for |z| < 1, one finds that
∞∑

u=0

u2−4u =
16
225

,
∞∑

u=0

2−4u =
16
15

.

Also, we have
4∑

v=1

2−v =
15
16

,
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and on making use of Lemma 10.1 once again, we obtain

4∑

v=1

2−4vρ(2v) = 2−4 · 23 +
4∑

v=2

3 · 2−3 =
13
8

.

Consequently, the upper bound (10.23) becomes

1 + H(2) ! 16 +
1197
128

+ 9
(

5 · 16
225

· 15
16

+
16
15

· 13
8

)

=
28129
640

. (10.25)

We next turn our attention to the odd primes p. On making use of Lemmata 10.1
(ii) and 10.2 (i) together with the upper bound g(pl) ! 27, valid for l " 9, we obtain

∞∑

l=9

g(pl)r(pl)
p4l

! 27
∞∑

u=2

4∑

v=1

p−4(4u+v)
(
(u + 1)p12u+3v−3(ρ(p) − 1) + p12u+4v−4

)
,

whence by (10.24) we deduce that
∞∑

l=9

g(pl)r(pl)
p4l

! 27
(

ρ(p) − 1
p3

)(
3 − 2p−4

p4(p4 − 1)(p − 1)

)
+

108
p8(p4 − 1)

. (10.26)

Furthermore, on making use of the definition of g(pl) together with Lemmata 10.1
(ii) and 10.2 (i), we obtain

8∑

l=1

g(pl)r(pl)
p4l

=
(

ρ(p) − 1
p3

)(
3
p

+
3
p2

+
9
p3

+
9
p4

+
18
p5

+
18
p6

+
54
p7

+
18
p8

)

+
24
p4

+
54
p8

. (10.27)

On substituting (10.26) and (10.27) into (10.21), and making use of the explicit values
for ρ(3) and ρ(5) provided in Lemma 10.1 (ii), we therefore deduce that

H(3) < 2.57 and H(5) < 2.123. (10.28)

For primes p of intermediate size, we note that Lemma 10.1 (ii) supplies the bound

ρ(p) − 1
p3

< 1 + bpκ(p)2.

On combining (10.21), (10.26) and (10.27), we thus obtain for p " 7 the upper bound

H(p) < (1 + bpκ(p)2)(3p−1 + 3p−2 + 10.73p−3) + 24.03p−4. (10.29)
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Applying this bound in combination with (5.5) and (5.15), a direct computation
reveals that ∏

7!p!79
p≡3 (mod 4)

(1 + H(p)) < 4.35, (10.30)

and ∏

13!p!73
p≡1 (mod 4)

(1 + H(p)) < 3.88. (10.31)

When p is a prime with p " 83, it follows from (5.5) and (5.15) that bpκ(p)2 = b3
p/p,

and thus we derive from (10.29) the upper bound

1 + H(p) < 1 + 3p−1 + (3.038b3
p + 3.133)p−2

< exp
(
3p−1 + (3.038b3

p + 3.133)p−2
)
. (10.32)

Thus we have
∏

83!p!X

(1 + H(p)) < exp

(
3
∑

83!p!X

1
p

+ 6.171
∑

p"83
p≡3 (mod 4)

1
p2

+ 85.16
∑

p"89
p≡1 (mod 4)

1
p2

)
. (10.33)

But as a trivial consequence of Lemma 5.4, one has
∑

p"83
p≡3 (mod 4)

1
p2

<
1

4 · 79
=

1
316

and
∑

p"89
p≡1 (mod 4)

1
p2

<
1

4 · 85
=

1
340

. (10.34)

Also, on applying Lemma 3.2 together with a direct computation, one finds that for
X " 1025, one has

∑

83!p!X

1
p

< log log X + 0.281−
∑

p!79

1
p

< log log X − 1.488. (10.35)

On collecting together (10.30), (10.31) and (10.33)–(10.35), we arrive at the upper
bound

∏

7!p!X

(1 + H(p)) < 4.35 · 3.88 · exp
(
−1.488 · 3 +

6.171
316

+
85.16
340

)
(log X)3

< 0.2547(logX)3. (10.36)

On recalling (10.25) and (10.28), we deduce from (10.36) that
∏

p!X

(1 + H(p)) <
28129
640

(1 + 2.57)(1 + 2.123) · 0.2547(logX)3

< (5 log X)3,

and hence the first conclusion of the lemma follows from (10.22).
We now consider the final assertion of the lemma. Observe first that by Lemma

10.2 (ii) one has r(2) > 23, and similarly, by Lemmata 10.2 (i) and 10.1 (ii), one has
r(p) " p3 for every odd prime p. Since r(d) " 0 for all natural numbers d, we find
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that the hypotheses necessary for the application of Lemma 10.4 are satisfied with
λ(d) = r(d). On recalling (10.21), we deduce that the final conclusion of the lemma
follows from the proposition that for X " 1025, one has

∏

p!X

(
1 − 1

p
+ H(p)

)
< (16 log X)2. (10.37)

Fortunately, much of the work required to establish (10.37) has already been com-
pleted earlier in this proof. Observe first that, as in the argument leading from (10.29)
to (10.30) and (10.31), a direct computation demonstrates that

∏

7!p!79
p≡3 (mod 4)

(
1 − 1

p
+ H(p)

)
< 2.985, (10.38)

and ∏

13!p!73
p≡1 (mod 4)

(
1 − 1

p
+ H(p)

)
< 3.120. (10.39)

Also, as in the argument leading to (10.32), we obtain for p " 83 the inequality

1 − 1
p

+ H(p) < 1 +
2
p

+ (3.038b3
p + 3.133)p−2

< exp
(

2
p

+ (3.038b3
p + 3.133)p−2

)
.

Then by (10.34), (10.35), (10.38) and (10.39), we deduce that for X " 1025,
∏

7!p!X

(
1 − 1

p
+ H(p)

)

< 2.985 · 3.120 exp
(

2(log log X−1.488) +
6.171
316

+
85.16
340

)

< 0.6222(logX)2. (10.40)

Hence, by (10.25) and (10.28), we may finally conclude that
∏

p!X

(
1 − 1

p
+ H(p)

)

<

(
28129
640

− 1
2

)(
1− 1

3
+2.57

)(
1− 1

5
+2.123

)
·0.6222(logX)2

< 256(logX)2,

and this confirms the estimate (10.37), thereby completing the proof of the final
conclusion of the lemma.

Our final lemma in this section provides an analogue of Lemma 10.5 in which s(d; ζ)
is substituted for r(d; ε). This lemma provides the crucial ingredient in our proof of
Lemma 2.5.
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Lemma 10.6. — Suppose that X " 1025 and ζ ∈ {0, 1}. Then
∑

d!X

g(d)s(d; ζ)d−4 < 86.7(logX)3,

and, whenever 0 ! k ! 3, one has also
∑

d!X

g(d)s(d; ζ)d−k < 183X4−k(log X)2.

Proof. — Let ζ ∈ {0, 1}, and write s(d) = s(d; ζ). Putting

H ′(p) =
∞∑

l=1

g(pl)s(pl)p−4l, (10.41)

it follows from the multiplicative properties of g(d) and s(d) that
∑

d!X

g(d)s(d)d−4 !
∏

p!X

(1 + H ′(p)). (10.42)

The similarity between the formulae (10.21) and (10.41), and likewise between the
inequalities (10.22) and (10.42), is suggestive of a strategy for proving Lemma 10.6
similar to that applied in the proof of Lemma 10.5. Fortunately, we may be economical
in our account by recycling the estimates contained in the latter proof.

First, by Lemma 10.3 (iii) and the definition (9.2) of g(d), we have

1 + H ′(2) = 1 + 3 + 3 + 9
∞∑

l=3

23l+2 · 2−4l + 18
∑

l∈{7,9,11}

23l+2 · 2−4l

= 7 + 9 +
18 · 21
512

=
4285
256

. (10.43)

For odd primes p, we begin by noting that when p " 7, it follows from Lemmata
10.2 (i) and 10.3 (i), together with a comparison of (10.21) and (10.41), that one has
H ′(p) ! H(p). When p = 3 or 5, meanwhile, one finds in a similar manner from
Lemmata 10.2 (i) and 10.3 (ii) that H ′(p) < 3

2H(p). We therefore infer from (10.28),
(10.36), (10.40) and (10.43) that whenever X " 1025, one has

∏

p!X

(1 + H ′(p))

! 4285
256

(
1 +

3
2
· 2.57

)(
1 +

3
2
· 2.123

) ∏

7!p!X

(1 + H(p))

< 86.7(logX)3, (10.44)

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2005



98 CHAPTER 10. AN INVESTIGATION OF CERTAIN CONGRUENCES

and also
∏

p!X

(
1 − 1

p
+ H ′(p)

)
!
(

4285
256

− 1
2

)(
1 − 1

3
+

3
2
· 2.57

)

×
(

1 − 1
5

+
3
2
· 2.123

) ∏

7!p!X

(
1 − 1

p
+ H(p)

)

< 183(logX)2. (10.45)

The first conclusion of the lemma is now immediate from (10.42) and (10.44). As
for the second conclusion of the lemma, one finds that Lemma 10.3 confirms that
s(p) " p3 for every prime p, and also s(d) " 0 for all natural numbers d. Hence
we may apply Lemma 10.4 to obtain the desired conclusion without more ado from
(10.45). This completes the proof of the lemma.
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CHAPTER 11

MEAN VALUE ESTIMATES

The smell of victory now lies heavy in the air, so we pause no longer before wielding
Lemma 10.5 to establish Lemma 2.4.

Proof of Lemma 2.4. — We convert the mean value central to Lemma 2.4 into a di-
visor sum to which the methods of §10 apply. When ε ∈ {0, 1}, define the polynomial
ψ(x; ε) by

ψ(x; ε) =
1
2
(
(2x1 + ε)4 + (2x2 + ε)4 − (2x3 + ε)4 − (2x4 + ε)4

)
,

and note that ψ(x; ε) is a polynomial in x1, . . . , x4 with integral coefficients. By
orthogonality, the mean value

∫ 1

0
|Fη(α)2Sε(α)4|dα

is then equal to the number of solutions of the equation

m2
1 − m2

2 = ψ(x; ε), (11.1)

with

m1, m2 ∈ Mη(P 2) and 2P < 2xj + ε ! 4P (1 ! j ! 4). (11.2)

We denote by V0 the number of solutions m, x of (11.1) subject to (11.2) that satisfy
the additional condition ψ(x; ε) = 0, and we denote by V1 the corresponding number
of solutions with ψ(x; ε) #= 0. Thus we have

∫ 1

0
|Fη(α)2Sε(α)4|dα = V0 + V1. (11.3)

In order to estimate V0, we observe that whenever ε ∈ {0, 1} and P " 1025, the
upper bound (3.3.14) of Deshouillers and Dress [9] supplies the estimate

∫ 1

0
|Sε(α)|4dα ! 60P 2(log P )4. (11.4)
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Some comments are in order at this point concerning the validity of the estimate
(11.4), since Deshouillers and Dress claim such an upper bound only for P " 1080.
However, an inspection of the proof of Theorem 3 of [9] reveals that the latter hypoth-
esis is employed in the proof of (3.3.14) of [9] only in the application of Proposition 3.1
of that paper. Moreover, the latter proposition requires the hypothesis P " 1080 only
in the application of the relation (3.18) of Rosser and Schoenfeld [19] to estimate the
right hand side of (3.1.24) of [9]. But on substituting our Lemma 3.2 for this result of
Rosser and Schoenfeld, one obtains the same conclusion as that required in [9]. Thus,
in the notation employed in [9], one finds that when X " 1025,

A(X) ! 40X2 exp



4
∑

5!p!X

1
p

+ 1





! 40X2 exp(4 log log X − 1.209) < 12X2(log X)4,

and this last bound matches that found on the bottom of p.135 of [9]. Returning to
the estimation of V0, we find that on considering the underlying diophantine equation,
one has

V0 = Mη

∫ 1

0
|Sε(α)|4dα ! 60MηP

2(log P )4. (11.5)

We turn now to the solutions m, x of (11.1) counted by V1. Here we note that
the definition of Mη(P 2), together with the constraint on ψ(x; ε) imposed by (11.1),
implies that |ψ(x; ε)| ! P 4. Furthermore, it is evident that m1 − m2 has the same
sign as ψ, and further that |m1 − m2| ! m1 + m2. We therefore deduce that for a
fixed choice of x with ψ(x; ε) #= 0, the number of pairs (m1, m2) satisfying (11.1) with
mi ∈ Mη(P 2) (i = 1, 2) does not exceed 1

2τ(|ψ(x; ε)|). Consequently, one has

V1 ! 1
2

∑

x
1!|ψ(x;ε)|!P 4

τ(|ψ(x; ε)|),

where the sum is over integral 4-tuples x with 2P < 2xj + ε ! 4P (1 ! j ! 4). On
applying Lemma 9.10, we find that

V1 ! 4
∑

x
1!|ψ(x;ε)|!P 4

∑

d|ψ(x;ε)

d!|ψ(x;ε)|1/4

g(d)

! 4
∑

d!P

g(d)
∑

x
ψ(x;ε)≡0 (mod d)

1.

But plainly,
∑

x
ψ(x;ε)≡0 (mod d)

1 =
∑

1!a1,...,a4!d
ψ(a;ε)≡0 (mod d)

∑

x
x≡a (mod d)

1

! r(d; ε)(P/d + 1)4,
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where r(d; ε) is defined as in the preamble to Lemma 10.2. We therefore deduce that

V1 ! 4
4∑

k=0

(
4
k

)
P k
∑

d!P

g(d)r(d; ε)
dk

,

whence by Lemma 10.5, we conclude that whenever P " 1025,

V1 < 4P 4

(
(5 log P )3 +

3∑

k=0

(
4
k

)
(16 logP )2

)

= 500P 4(log P )3 + 15360P 4(log P )2. (11.6)

The conclusion of Lemma 2.4 follows on substituting (11.5) and (11.6) into (11.3).

The argument required to establish Lemma 2.5 is modelled after that above, though
one encounters some mild complications.

Proof of Lemma 2.5. — On recalling (2.1) and (2.7), one finds by orthogonality that
the integral ∫ 1

0
|Dζ(α)2S1(α)2|dα

is bounded above by the number of solutions of the equation

4m2
1 + 24m1(2x1 + ζ)2 + 6(2x1 + ζ)4 + (2y1 + 1)4

= 4m2
2 + 24m2(2x2 + ζ)2 + 6(2x2 + ζ)4 + (2y2 + 1)4, (11.7)

with

m1, m2 ∈ M0(3P 2/7), 1 ! x1, x2 < P/6, P ! y1, y2 < 2P. (11.8)

On putting

φ(x, y; ζ) =
1
4
(
30((2x1 + ζ)4 − (2x2 + ζ)4) − ((2y1 + 1)4 − (2y2 + 1)4)

)
,

we may rewrite the equation (11.7) as

(m1 + 3(2x1 + ζ)2)2 − (m2 + 3(2x2 + ζ)2)2 = φ(x, y; ζ). (11.9)

Notice here that φ(x, y; ζ) is a polynomial in x and y with integral coefficients. We
denote by W0 the number of solutions m, x, y of (11.9) subject to (11.8) that satisfy
the additional condition that φ(x, y; ζ) = 0, and we denote by W1 the corresponding
number of solutions with φ(x, y; ζ) #= 0. Thus we find that

∫ 1

0
|Dζ(α)2S1(α)2|dα = W0 + W1. (11.10)

We begin by examining W0, noting that for each fixed choice of x and y satisfying
φ(x, y; ζ) = 0 and (11.8), it follows from (11.8) and (11.9) that the variables m1 and
m2 satisfy

m1 = m2 + 3(2x2 + ζ)2 − 3(2x1 + ζ)2.
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On recalling (2.13), we find that there are M̃0 such choices available for m1 and m2,
whence

W0 ! M̃0

∫ 1

0
|S̃ζ(30α)2S1(α)2|dα, (11.11)

where we write

S̃ζ(α) =
∑

1!x<P/6

e((2x + ζ)4α).

We claim that whenever ζ ∈ {0, 1} and P " 1026, then one has
∫ 1

0
|S̃ζ(30α)|4dα ! 60(P/6)2

(
log(P/6)

)4
. (11.12)

In order to confirm this upper bound, we first observe that a change of variables yields
∫ 1

0
|S̃ζ(30α)|4dα =

∫ 1

0
|S̃ζ(α)|4dα,

and that by orthogonality, the latter integral can be seen to count the number of solu-
tions of the same diophantine equation as that underlying the left hand side of (11.4),
save that the variables now lie in the interval [1, P/6) as opposed to (P−ε/2, 2P−ε/2].
On examining equation (3.1.2) of Deshouillers and Dress [9], however, we find that
the upper bound for A(X) concluding p.135 of [9] holds when the implicit interval
(X, 2X ] of [9] is replaced by [1, X), and thus our earlier discussion pertaining to (11.4)
remains valid in the current situation. The desired conclusion (11.12) therefore holds
whenever P/6 " 1025. Finally, on combining (11.4), (11.11) and (11.12) via Schwarz’s
inequality, we conclude that

W0 ! M̃0

(∫ 1

0
|S̃ζ(30α)|4dα

)1/2(∫ 1

0
|S1(α)|4dα

)1/2

! 10M̃0P
2(log P )4. (11.13)

Next we turn to W1. Let W2 be the number of solutions of the equation

n2
1 − n2

2 = φ(x, y; ζ), (11.14)

with x and y satisfying the conditions recorded in (11.8), and with 1 ! n1, n2 ! P 2

and φ(x, y; ζ) #= 0. When m and x satisfy (11.8), one has

1 ! mj + 3(2xj + ζ)2 < P 2 (j = 1, 2),

and so it is apparent that

W1 ! W2. (11.15)

Let n, x, y be a solution of (11.14) counted by W2. Then it follows that |φ(x, y; ζ)| !
P 4. Furthermore, on following the argument of the proof of Lemma 2.4 above, we
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find that the number of pairs (n1, n2) satisfying (11.14) with 1 ! ni ! P 2 (i = 1, 2)
does not exceed 1

2τ(|φ(x, y; ζ)|). We thus deduce that

W2 ! 1
2

∑

x, y
1!|φ(x,y;ζ)|!P 4

τ(|φ(x, y; ζ)|),

where the sum is over integral 4-tuples (x, y) with 1 ! xj < P/6 and P ! yj < 2P
(j = 1, 2). On applying Lemma 9.10, we obtain

W2 ! 4
∑

x, y
1!|φ(x,y;ζ)|!P 4

∑

d|φ(x,y;ζ)

d!|φ(x,y;ζ)|1/4

g(d)

! 4
∑

d!P

g(d)
∑

x, y
φ(x,y;ζ)≡0 (mod d)

1.

But
∑

x, y
φ(x,y;ζ)≡0 (mod d)

1 =
∑

1!a1,a2!d
1!b1,b2!d

φ(a,b;ζ)≡0 (mod d)

∑

x, y
x≡a (mod d)
y≡b (mod d)

1

! s(d; ζ)
(

P

6d
+ 1
)2(P

d
+ 1
)2

,

where s(d; ζ) is defined as in the preamble to Lemma 10.3. We therefore find that

W2 ! 4
(

1
36

Σ4 +
7
18

Σ3 +
61
36

Σ2 +
7
3
Σ1 + Σ0

)
,

where
Σk =

∑

d!P

g(d)s(d; ζ)d−k (0 ! k ! 4).

Consequently, on making use of Lemma 10.6, we conclude that whenever P " 1050,
one has

W2 ! 4
(

86.7
36

+
(

7
18

+
61
36

+
7
3

+ 1
)

183
log P

)
P 4(log P )3

< 44.1P 4(log P )3. (11.16)

The conclusion of the lemma follows on substituting (11.13) and (11.16) into (11.15)
and (11.10).
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CHAPTER 12

APPENDIX: SUMS OF NINETEEN BIQUADRATES

In this section we describe our proof that g(4) = 19, which is to say that every
natural number is a sum of at most nineteen biquadrates. The programme of Bal-
asubramanian, Deshouillers and Dress for proving that g(4) = 19, based on Hua’s
inequality, sought to establish that every integer exceeding 10367 is a sum of nineteen
biquadrates. By virtue of the tools prepared in previous sections, we are now able to
reduce the above limit 10367 substantially, thereby easing the computational burden
of showing that g(4) = 19.

Theorem 3. — Every integer exceeding 10146 can be written as the sum of nineteen
biquadrates.

Proof. — According to Lemma 4.2, we may take a real number ν with

53 < ν < 107.5, (12.1)

such that whenever ν − 1/4 ! ξ ! ν, one has

K13(ξ) > 0.0065865. (12.2)

Fixing such a real number ν, we consider a large natural number N , and define the
positive numbers P0 and P by means of the relations (2.10). Further, when N ≡ r
(mod 16) with 1 ! r ! 16, we define the integers η and t by

{
η = 0 and t = r, for 1 ! r ! 4,

η = 1 and t = r − 4, for 5 ! r ! 16.

We note that in all circumstances, our choices for η and t ensure that

1 ! t ! 12 and N − 4η ≡ t (mod 16). (12.3)
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With the above conventions in hand, we denote by R′(N) the number of representa-
tions of N in the form

N = 2m2
1 + 2m2

2 +
13−t∑

j=1

(2xj)4 +
t∑

l=1

(2yl + 1)4,

subject to

m1, m2 ∈ Mη(P 2), P < xj ! 2P (1 ! j ! 13 − t), P ! yl < 2P (1 ! l ! t).

Thus, in view of the identity (1.1), together with the definition of the sets Mη(X)
from §2, it follows that whenever R′(N) > 0, then N can be written as a sum of
nineteen biquadrates.

We next recall the definitions of Sε(α), Fη(α), U, M and m (see, especially, equa-
tions (2.1), (2.2) and (2.6)). Also, when L ⊆ U, we define R′(N ; L) by

R′(N ; L) =
∫

L
Fη(α)2S0(α)13−tS1(α)te(−Nα)dα,

so that
R′(N) = R′(N ; U) = R′(N ; M) + R′(N ; m). (12.4)

One may estimate R′(N ; M) in a straightforward manner by following the treat-
ment that we applied in the proof of Lemma 2.1. We first estimate the integral

Φ′(n; t) =
∫

M
S0(α)13−tS1(α)te(−nα)dα

for natural numbers n with N − 4P 4 ! n ! N and n ≡ t (mod 16). Recalling the
notation adopted in the proof of Lemma 7.2, we write

Φ′
1(n; t) =

∑

q!P 1/2

q∑

a=1
(a,q)=1

∫

|β|!975(qP 3)−1
T 13−t

0 T t
1e(−(a/q + β)n)dβ,

Φ′
1,1 =

∑

q!P 1/2

q∑

a=1
(a,q)=1

∫ ∞

0
|T0|12Udβ, Φ′

1,2 =
975
P 3

∑

q!P 1/2

U13.

Then, on imitating the derivation of the estimate (7.3), we find that

|Φ′(n; t) − Φ′
1(n; t)| ! 214(Φ′

1,1 + Φ′
1,2). (12.5)

In order to estimate Φ′
1,1, we define

V ′(q) =
q∑

a=1
(a,q)=1

|q−1G0(q, a)|12 and W ′(p) =
∞∑

l=0

pl/4V ′(pl),

and observe that V ′(q) is multiplicative. From (7.6) it follows that
∫ ∞

0
|I(β)|12dβ ! 3

11π
(2P0)8,
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and thus one obtains the upper bound

Φ′
1,1 ! 3

11π
(2P0)8 × 3 × 106 × 2−12P 1/2

∑

q!P 1/2

q1/4V ′(q)

< 16278P 8.5
0

∏

p

W ′(p). (12.6)

An application of Lemma 5.2 demonstrates, via a direct computation, that

W ′(2) ! 1 +
4∑

l=1

25l/4−1 +
∞∑

u=1

4∑

v=1

25(4u+v)/4−1κ(24u+v)12

= 1 +
4∑

l=1

25l/4−1 +
∞∑

u=1

2−7u−1
4∑

v=1

25v/4c(2v)12

< 522. (12.7)

For odd primes p, one deduces from (5.3), (5.8) and Lemmata 5.2 and 5.3 that for
u " 0, one has

V ′(p4u+1) = p−8u−12
p−1∑

a=1

|S(p, a)|12

! p−8u−12(pκ(p))10
p−1∑

a=1

|S(p, a)|2

= bpp
−8u−1(p − 1)κ(p)10.

Also, for u " 0 and 2 ! v ! 4, it follows from Lemma 5.2 together with (5.6) that

V ′(p4u+v) ! p−8u+v−13(p − 1).

Consequently, we obtain

W ′(p) ! 1 + (p − 1)
∞∑

u=0

(
bpp

−7u−3/4κ(p)10 +
4∑

v=2

p−7u+5v/4−13
)

= 1 +
p − 1

1 − p−7

(
bpκ(p)10p−3/4 + p−13(p5/2 + p15/4 + p5)

)

< 1 + bpκ(p)10p1/4 + 3p−7.

A direct computation now reveals that

W ′(3) < 1.00679 and
∏

p!73
p≡1 (mod 4)

W ′(p) < 2.513.

Similarly, on recalling Lemma 5.4, one finds that
∏

p"7
p≡3 (mod 4)

W ′(p) < exp

(
∑

p"7
p≡3 (mod 4)

(p−19/4 + 3p−7)

)
< 1.00126
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and

∏

p"89
p≡1 (mod 4)

W ′(p) < exp

(
∑

p"89
p≡1 (mod 4)

(311p−19/4 + 3p−7)

)
< 1.00069.

Combining these estimates with the upper bounds (12.6) and (12.7), we conclude that

Φ′
1,1 < 2.155 × 107P 8.5

0 . (12.8)

Turning next to the estimation of Φ′
1,2, we find by a simple calculation that

Φ′
1,2 = 975 × 313 × 1078P 7/2

∑

q!P 1/2

q13/4

! 975 × 313 × 1078P 45/8. (12.9)

Thus it follows from (12.5), (12.8) and (12.9) that whenever P " 1035, one has

|Φ′(n; t) − Φ′
1(n; t)| < 1.2 × 10−6P 9. (12.10)

We next define

Φ′
2(n; t) =

∑

q!P 1/2

q∑

a=1
(a,q)=1

∫ ∞

−∞
T 13−t

0 T t
1e(−(a/q + β)n)dβ.

By (7.6) and the trivial bound |Gε(q, a)| ! q, one easily obtains the estimate

|Φ′
1(n; t) − Φ′

2(n; t)| !
∑

q!P 1/2

q∑

a=1

2
∫ ∞

975(qP 3)−1
2−13|I(β)|13dβ

< P 4. (12.11)

Meanwhile, on writing

A′(q, n; t) = q−13
q∑

a=1
(a,q)=1

G0(q, a)13−tG1(q, a)te(−an/q)

and
S′(n, Q; t) =

∑

q!Q

A′(q, n; t),

a suitable change of variables leads from (7.5) and (4.2) to the conclusion

Φ′
2(n; t) = S′(n, P 1/2; t)K13(n/(16P 4

0 ))P 9
0 /16. (12.12)

By Lemma 5.2 together with (5.7), one has the bound

|A′(q, n; t)| ! q−12(qκ(q))13 < 913q−9/4,

and this assures the absolute convergence of the infinite series S′(n; t) defined by

S′(n; t) =
∞∑

q=1

A′(q, n; t).
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Furthermore, when P " 1035, we obtain the estimate

|S′(n; t) − S′(n, P 1/2; t)| ! 913

∫ ∞

P 1/2−1
z−9/4dz < 10−8. (12.13)

A lower bound for S′(n; t) can be established by the methods described in §6. We
define

B′(p, n; t) =
∞∑

l=0

A′(pl, n; t),

and note that S′(n; t) may be written as the infinite product

S′(n; t) =
∏

p

B′(p, n; t).

One may estimate B′(p, n; t) by considering the number of solutions of an associated
congruence. Thus, arguing as in the derivation of (6.6) above, it is swiftly confirmed
that when n ≡ t (mod 16), one has

B′(2, n; t) =
4∑

l=0

A′(2l, n; t) = 16. (12.14)

Also, the argument leading to (6.9) shows that for p = 3 and 5,

B′(p, n; t) " p−12 min
0!r!p−1

{
∑

1!s!13
s≡r (mod p)

(
13
s

)
(p − 1)s

}
,

from which one derives the lower bounds

B′(3, n; t) " 728
729

and B′(5, n; t) " 1211776
1953125

. (12.15)

Moreover, by following the argument of the proof of (6.17), one deduces from Lemmata
5.2 and 5.3 that for odd primes p, one has

B′(p, n; t) " 1 − bp(1 − p−1)κ(p)11 − p−12.

Using the last inequality, a modicum of computation confirms that
∏

13!p!73
p≡1 (mod 4)

B′(p, n; t) > 0.9732, (12.16)

and, with the aid of Lemma 5.4, one obtains the additional lower bounds
∏

p"7
p≡3 (mod 4)

B′(p, n; t) >
∏

p"7
p≡3 (mod 4)

exp(−p−11/2) > 0.9996, (12.17)

and
∏

p"89
p≡1 (mod 4)

B′(p, n; t) >
∏

p"89
p≡1 (mod 4)

exp(−312p−11/2) > 0.9999. (12.18)
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Therefore, on combining (12.14)–(12.18), we deduce that when n ≡ t (mod 16), one
has

S′(n; t) =
∏

p

B′(p, n; t) > 9.6427. (12.19)

Our forces are now poised for victory in this first substantial phase of our argument.
Collecting together (12.2), (12.10)–(12.13), (12.19), and recalling (2.10), we conclude
at this point that when

N − 4P 4 ! n ! N, n ≡ t (mod 16) and P " 1035,

one has

Φ′(n; t) " (9.6427− 10−8) × 0.0065865P 9
0/16 − P 4 − 1.2 × 10−6P 9

> 0.003968P 9. (12.20)

The lower bound (12.20) provides a major arc estimate for an auxiliary problem
involving only 13 biquadrates. We now apply this bound to obtain a lower bound for
the major arc contribution R′(N ; M) relevant to the problem central to this section.
Observe that

R′(N ; M) =
∑

m1,m2∈Mη(P 2)

Φ′(N − 2m2
1 − 2m2

2; t).

When m1, m2 ∈ Mη(P 2), it follows from (2.3) and (12.3) that

N − 2m2
1 − 2m2

2 ≡ t (mod 16),

and it is also apparent that

N − 4P 2 ! N − 2m2
1 − 2m2

2 ! N.

Hence, on recalling the notation introduced in (2.13), we deduce from (12.20) that
whenever P " 1035, one has

R′(N ; M) > 0.003968M2
ηP 9. (12.21)

It remains for us to estimate the minor arc contribution R′(N ; m). On writing

S(α) = max{|S0(α)|, |S1(α)|},

we find that

R′(N ; m) !
(
sup
α∈m

S(α)
)9
∫ 1

0
|Fη(α)2Sε(α)4|dα,

where ε is 0 or 1 according to whether 1 ! t ! 3 or 4 ! t ! 12. Following the argument
leading to (2.14), but assuming now that P " 1035, we deduce from Lemmata 2.2 and
2.4 that ∫ 1

0
|Fη(α)2Sε(α)4|dα < 61290M2

η (log P )9/2.

Thus, on applying also Lemma 2.3, we conclude that for P " 1035 one has

|R′(N ; m)| < 779 × 61290M2
ηP 7.956(log P )6.75. (12.22)
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We return at last to (12.4), now combining (12.21) and (12.22) to deduce that for
P " 1035 one has

R′(N) " R′(N ; M) − |R′(N ; m)| > 0.003968M2
ηP 9(1 − E′),

where
E′ = 1.47 × 1024P−1.044(log P )6.75.

A modest calculation reveals that E′ < 1 whenever P " 3.28 × 1035, and also, by
(2.10) and (12.1), this condition on P is satisfied whenever N " N1, where

N1 = 16ν(3.28× 1035 + 1)4 < 2 × 10145.

We therefore conclude that R′(N) > 0 whenever N " 2 × 10145, and this suffices to
establish the theorem.

Equipped with the conclusion of Theorem 3, all that remains to confirm that g(4) =
19 is to check that every natural number not exceeding 10146 is a B19 (the reader
may wish to recall our convention concerning the notation Bs described following
the statement of Theorem 1). Although such a check is executed in the work of
Deshouillers and Dress [10], we nonetheless present an account here in order to more
clearly describe the extent to which heavy computations are required to establish that
g(4) = 19. It transpires that the conclusions recorded in the next lemma are sufficient
for our purposes, and one may check all of the conclusions of this lemma within a
couple of hours on even a modest personal computer.

To facilitate our subsequent discussion, we define the set R(q; a) for integers q
and a by

R(q; a) = {m ∈ Z : m " 0, m ≡ a (mod q)},
and, for ε = 0 or 1, we define the set Qε by

Qε = {m ∈ Z : m " 0, m ≡ ε (mod 2), 5 ! m}.

Thus we have
Qε = R(2; ε) " R(5; 0),

and it follows, in particular, that whenever m ∈ Qε for ε = 0, 1, one has

m4 ∈ R(16; ε) and m4 ∈ R(5; 1). (12.23)

Lemma 12.1. — One has the following conclusions:
(i) Every natural number not exceeding 13792 is a B19, and every integer in the

interval [13793, 50000] is a B16;
(ii) Let A denote the set of B2 numbers in R(80; 17) ∩ [0, 6004] defined by

A = {a4 + b4 : a ∈ Q0, b ∈ Q1} ∩ [0, 6004],

and suppose that A = {a1, a2, · · · }, where a1 < a2 < · · · . Then one has a1 = 17,
a53401 = 129598530097, and moreover aj+1 − aj ! 40587360 for 1 ! j ! 53400;

(iii) Every integer in [1143331, 704 + 714] ∩R(80; 51) is a B6.
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Proof. — The authors confirmed this lemma by using the software package Mathe-
matica on a standard computer with 32MB of RAM and CPU speed 150MHz. Making
use of unsophisticated programs, parts (i) and (ii) of the lemma were verified within
twenty minutes, and two minutes, respectively. Part (iii) of the lemma is the most
difficult to verify, and for this we proceed as follows.

Let B denote the set of B5 numbers in [0, 704] that are of the form b4
1 + · · · + b4

5,
with b1, b2, b3 ∈ Q0 and b4, b5 ∈ Q1. Note that B ⊂ R(80; 50), and put

C = [0, 704] ∩
(
R(80; 50) " B

)
.

A simple computer program may be used to determine all of the elements of C, and
indeed the machine applied by the authors required fifty minutes to complete this
task (we remark that card(C) = 19687).

Next, when D is a finite subset of Q1, we define

C(D) =
⋂

d∈D
{c + d4 : c ∈ C}

and

I(D) =
(⋂

d∈D
[d4, 704 + d4]

)
∩R(80; 51).

Whenever m ∈ I(D) and d ∈ D ⊂ Q1, it follows from (12.23) that the integer m− d4

belongs to the set [0, 704] ∩R(80; 50). Consequently, one finds that if m ∈ I(D) and
m #∈ C(D), then for some b ∈ B and d ∈ D one has m − d4 = b, whence m = b + d4 is
a B6. We next define the sets

D1 = [1, 31] ∩Q1, D2 = [37, 49] ∩Q1, D3 = [59, 71] ∩Q1,

D4 = [63, 77] ∩Q1, D5 = [67, 79] ∩Q1, D6 = [71, 81] ∩Q1.

A straightforward computational check confirms that C(D1) = {1143251}, and also
that C(Dj) is empty for each j with 2 ! j ! 6. This task expended only a few minutes
work on the computer employed by the authors. Accordingly, we recognise that if

m ∈
6⋃

j=1

I(Dj) = [314, 704 + 714] ∩R(80; 51)

and m > 1143251, then m is a B6. This completes our account of part (iii) of the
lemma.

Our commitment of computational time at this point amounts to less than 90
minutes. We next employ Lemma 12.1 within the ascent arguments of Deshouillers
and Dress [10], though we incorporate several minor modifications. We begin by
extracting the following conclusion from Lemma 12.1 (ii) and (iii).

Lemma 12.2. — Every integer in [1143348, 1.2964× 1011] ∩R(80; 68) is a B8.
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Proof. — Recalling the integers aj introduced in the statement of Lemma 12.1 (ii),
it follows from Lemma 12.1 (iii) that for each index j, every integer in

[1143331 + aj , 704 + 714 + aj ] ∩R(80; 68)

is a B8. But from Lemma 12.1 (ii), one finds that whenever 1 ! j ! 53400, one has

704 + 714 + aj " 704 + 714 − 40587360 + aj+1 > 1143331 + aj+1,

whence
53401⋃

j=1

[1143331 + aj , 704 + 714 + aj ] = [1143348, 704 + 714 + a53401].

The lemma follows immediately on noting that 704+714+a53401 > 1.2964×1011.

Other ascent procedures are based on a simple fact that we record as the following
lemma.

Lemma 12.3. — Let h be a natural number, and let x and y be real numbers with
y " 2h4. Suppose that H is a set of non-negative integers satisfying the property that
amongst any h consecutive non-negative integers, at least one belongs to H. Then
whenever

n ∈ [x + (h − 1)4, x + h4 + (y/(4h))4/3],
there exists an integer m ∈ H such that n − m4 ∈ [x, x + y].

Proof. — Put yh = (y/(4h))1/3, and write H ∩ [0, yh] = {h0, h1, · · · , hk} with h0 <
h1 < · · · < hk. By assumption, we have

0 ! h0 ! h − 1 and yh − h ! hk ! yh, (12.24)

and, moreover, whenever 1 ! j ! k, one has

(n − h4
j−1) − (n − h4

j) = h4
j − h4

j−1 ! h4
j − (hj − h)4 ! 4hh3

j ! 4hy3
h = y.

Thus, if n− h4
0 " x and n− h4

k ! x + y, then there is an index j with 0 ! j ! k such
that n − h4

j ∈ [x, x + y]. But by (12.24) we have h4
0 ! (h − 1)4, and provided that

yh " 2h/3, or equivalently y " (32/27)h4, one has

y + h4
k " y + (yh − h)4 = y4

h + 6h2y2
h − 4h3yh + h4 " y4

h + h4.

We therefore see that

[x + h4
0, x + y + h4

k] ⊃ [x + (h − 1)4, x + h4 + y4
h],

and the conclusion of the lemma now follows.

Lemma 12.4. — Let x and y be real numbers satisfying x " 0 and y " 20000, let k
and l be integers, and let s be an integer exceeding 1. Then the following conclusions
hold.

(i) Suppose that every integer in [x, x + y] is a Bs. Then every integer in [x, x +
(y/4)4/3] is a Bs+1.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2005



114 CHAPTER 12. APPENDIX: SUMS OF NINETEEN BIQUADRATES

(ii) Suppose that every integer in [x, x + y]∩R(16; k) is a Bs. Then every integer
in

[x + 1, x + 1 + (y/8)4/3] ∩
(
R(16; k) ∪R(16; k + 1)

)

is a Bs+1.
(iii) Suppose that every integer in [x, x+y]∩R(16; k)∩R(5; l) is a Bs. Then every

integer in

[x + 81, x + 81 + (y/16)4/3] ∩
(
R(16; k) ∪R(16; k + 1)

)
∩R(5; l + 1)

is a Bs+1.
(iv) Under the same hypotheses as in case (iii), every integer in

[x + 6561, x + 6561 + (y/40)4/3] ∩
(
R(16; k) ∪R(16; k + 1)

)

∩
(
R(5; l) ∪R(5; l + 1)

)

is a Bs+1.

Proof. — By applying Lemma 12.3 with H = R(1; 0) and h = 1, we find that
whenever n ∈ [x, x + (y/4)4/3], there exists a non-negative integer m for which
n − m4 ∈ [x, x + y]. The conclusion of part (i) follows immediately.

Next, by applying Lemma 12.3 with H = R(2; ε) and h = 2, and recalling (5.11),
we see that whenever

n ∈ [x + 1, x + 1 + (y/8)4/3] ∩R(16; k + ε)

with ε = 0 or 1, there exists m ∈ R(2; ε) such that

n − m4 ∈ [x, x + y] ∩R(16; k).

This establishes part (ii) of the lemma.
By applying Lemma 12.3 with H = Qε and h = 4, meanwhile, and recalling (12.23),

we deduce that whenever

n ∈ [x + 81, x + 81 + (y/16)4/3] ∩R(16; k + ε) ∩R(5; l + 1),

with ε = 0 or 1, there exists m ∈ Qε such that

n − m4 ∈ [x, x + y] ∩R(16; k) ∩R(5; l).

Part (iii) of the lemma follows immediately.
Finally, we consider part (iv) of the lemma, and assume the hypotheses of case

(iii). On noting that the conclusion of part (iv) is contained, in part, in case (iii) of
the lemma, we see that it suffices to show that whenever

n ∈ [x + 6561, x + 6561 + (y/40)4/3] ∩R(16; k + ε) ∩R(5, l),

with ε = 0 or 1, then n is a Bs+1. But for such an integer n, on applying Lemma 12.3
with H = R(2; ε) ∩R(5; 0) and h = 10, and observing that m4 ∈ R(16; ε) ∩R(5; 0)
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whenever m ∈ R(2; ε)∩R(5; 0), we deduce that there exists an integer m ∈ R(2; ε)∩
R(5; 0) such that

n − m4 ∈ [x, x + y] ∩R(16; ε) ∩R(5; l).
The conclusion of part (iv) now follows.

We require one further ascent method that is a variant of the “U -type ascent” of
Deshouillers and Dress [10]. This ascent gear makes fundamental use of the conclusion
of the following lemma.

Lemma 12.5. — Let n ∈ R(16; 1), and write

T = {r ∈ Z : r ≡ k (mod 16) for some k with 4 ! k ! 12}. (12.25)

Then any set of five consecutive odd integers contains an element m satisfying the
property that (n − m4)/16 ∈ T .

Proof. — Observe first that whenever a and b are integers satisfying a − b ≡ ±7
(mod 16), then either a or b belongs to T . Next define the polynomial fn(l) by

fn(l) = (n − (2l + 1)4)/16

= −l4 − 2l3 − 1
2 l(3l + 1) + 1

16 (n − 1).

Then the conclusion of the lemma follows on proving that for any set L of five con-
secutive integers, there exists an l ∈ L such that fn(l) ∈ T . But on observing that

fn(a + 2) − fn(a) ≡ 8a3 + 12a2 + 2a− 7 (mod 16),

one readily verifies that

when u ≡ 0 (mod 4), one has fn(2u + 2) − fn(2u) ≡ −7 (mod 16), (12.26)

when u ≡ 1 (mod 4), one has fn(2u) − fn(2u − 2) ≡ −7 (mod 16), (12.27)

when u ≡ 2 (mod 4), one has fn(2u + 3) − fn(2u + 1) ≡ 7 (mod 16), (12.28)

when u ≡ 3 (mod 4), one has fn(2u + 1) − fn(2u − 1) ≡ 7 (mod 16). (12.29)

Similarly, on noting that

fn(a + 1) − fn(a) ≡ 12a3 + 4a2 + 3a + 11 (mod 16),

one sees that

when u ≡ 2 (mod 8), one has fn(2u + 1) − fn(2u) ≡ 7 (mod 16), (12.30)

when u ≡ 6 (mod 8), one has fn(2u − 1) − fn(2u − 2) ≡ −7 (mod 16), (12.31)

when u ≡ 1 (mod 8), one has fn(2u + 3) − fn(2u + 2) ≡ 7 (mod 16), (12.32)

when u ≡ 5 (mod 8), one has fn(2u + 1) − fn(2u) ≡ −7 (mod 16). (12.33)

When L is a set of five consecutive integers, it takes the shape {2u − 2, 2u − 1,
. . . , 2u+2}, or else {2u− 1, 2u, . . . , 2u+3}. Thus, in view of the opening observation
of this proof, the required conclusion follows in the former case from (12.26), (12.27)
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and (12.29)–(12.31), and in the latter case from (12.26), (12.28), (12.29), (12.32) and
(12.33). In any case, therefore, the proof of the lemma is complete.

Lemma 12.6. — Let x and y be real numbers with x " 0 and y " 20000, and let T
be the set defined in (12.25). Suppose that every integer in the set [x, x + y] ∩ T is a
Bs. Then every integer in

[16x + 6561, 16x + 6561 + (2y/5)4/3] ∩R(16; 1)

is a Bs+1.

Proof. — When

n ∈ [16x + 6561, 16x + 6561 + (2y/5)4/3] ∩R(16; 1),

we denote by Hn the set of all positive odd integers m satisfying the property that
(n − m4)/16 ∈ T . Then by virtue of Lemma 12.5, we may apply Lemma 12.3 with
H = Hn and h = 10 to infer that there exists an m ∈ Hn satisfying n − m4 ∈
[16x, 16(x + y)]. Fixing any such choice of m, and writing n′ = (n − m4)/16, we
therefore find that n′ ∈ [x, x+ y]∩ T . But then n′ is a Bs, by assumption, and so we
may conclude that n = m4 + 24n′ is a Bs+1.

Having equipped ourselves with the necessary ascent tools, we are able to derive
a result concerning the representation of small integers that, in combination with
Theorem 3, suffices to complete the proof of the desired conclusion that g(4) = 19.

Theorem 4. — Every natural number not exceeding 10147 is a B19.

Proof. — When h is a natural number, we define φh(y) = (y/(4h))4/3. Also, for a
function φ(y), we adopt the convention of writing φ1(y) = φ(y), and define φj(y) for
j " 2 by putting φj(y) = φ(φj−1(y)). Finally, it is convenient to write

x0 = 1143348 and y0 = 6004.

We observe first that Lemma 12.2 asserts that every integer in

[x0, x0 + y0] ∩R(16; 4) ∩R(5; 3)

is a B8. Starting from this observation, we apply Lemma 12.4 (iii) four times in
succession, and then we apply Lemma 12.4 (iv) four times in succession. In this way
we find that every integer in

[x0 + 4(81 + 6561), x0 + 4(81 + 6561) + φ4
10(φ

4
4(y0))] ∩ T

is a B16, where T is the set defined in (12.25). It therefore follows via three successive
applications of Lemma 12.4 (ii) that every integer in

[
x0 + 26571, x0 + 26571 + φ3

2

(
φ4

10(φ
4
4(y0))

)]
∩
(

15⋃

k=4

R(16; k)

)
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is a B19. Meanwhile, one may deduce from Lemma 12.6 that every integer in
[
16x0 + 431649, 16x0 + 431649 + φ10

(
16φ4

10(φ
4
4(y0))

)]
∩R(16; 1)

is a B17, whence by applying Lemma 12.4 (ii) twice, we find that every integer in

[
16x0 + 431651, 16x0 + 431651 + φ2

2

(
φ10

(
16φ4

10(φ
4
4(y0))

))]
∩
(

3⋃

k=1

R(16; k)

)

is a B19. Since a modicum of computation provides the estimates

φ3
2

(
φ4

10(φ
4
4(y0))

)
> 2 × 10147, φ2

2

(
φ10

(
16φ4

10(φ
4
4(y0))

))
> 3 × 10148,

and 16x0 + 431651 < 2 × 107, we may conclude thus far that every integer in the set
[2 × 107, 10147] " R(16; 0) is a B19.

On the other hand, since φ3
1(50000 − 13793) > 3 × 107, we find from the second

conclusion of Lemma 12.1 (i), via three applications of Lemma 12.4 (i), that every
integer in [13793, 3×107] is a B19. Combining this conclusion with that of the previous
paragraph and the first assertion of Lemma 12.1 (i), we at last conclude that every
integer in [1, 10147] " R(16; 0) is a B19. But if n is a B19, then so is 16νn for each
natural number ν. Then every integer in [1, 10147] is a B19, and this completes the
proof of the theorem.
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