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STRICHARTZ ESTIMATES FOR SCHRODINGER
EQUATIONS WITH VARIABLE COEFFICIENTS

Luc Robbiano, Claude Zuily

Abstract. — We prove the (local in time) Strichartz estimates (for the full range of
parameters given by the scaling unless the end point) for asymptotically flat and non
trapping perturbations of the flat Laplacian in R™, n > 2. The main point of the
proof, namely the dispersion estimate, is obtained in constructing a parametrix. The
main tool for this construction is the use of the FBI transform.

Résumé (Inégalités de Strichartz pour I’équation de Schrodinger a coefficients va-
riables)

On démontre les inégalités de Strichartz (locales en temps) pour l'ensemble des
indices donnés par l'invariance d’échelle (sauf le point final) pour des perturbations
asymptotiquement plates et non captantes du laplacien usuel de R™, n > 2. Le point
principal de la preuve, & savoir I’estimation de dispersion, est obtenu en construisant
une paramétrixe. L’outil principal de cette construction est la théorie de la transfor-
mation de FBI construite par Sjostrand.
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CHAPTER 1

INTRODUCTION AND STATEMENT OF THE RESULT

The purpose of this work is to provide a proof of the full (local in time) Strichartz
estimates for the Schrédinger operator related to a non trapping asymptotically flat
perturbation of the usual Laplacian in R™.

Let o be in ]0,1[. We introduce a space of symbols which decay like (z)~1-7°
where (z) = (1 4 |z|?)*/2. More precisely we set

(1.0.1)
o) n n e CO( n
BUO:{GEC (R )ZVQEN ,HCa>OZ |8 a(m)|<W,VxER }
Let P be a second order differential operator,
" . " 10
(1.02) P= Y D;j(¢™(z) Dx) + > (D;bj(x) +bj(x) D) + V(z), D; = G0z,

Jk=1 j=1
with principal symbol p(z, ) = E?,k:l g% (2) € & (Here giF = gM).
We shall make the following assumptions.
(i)  The coefficients g7%, b;, V are real valued, 1 < j < k < n.
(1.0.3) (i)  There exists og > 0 such that ¢g/* — ik € Boy, bj € By,
Here §;1, is the Kronecker symbol.
(iii) V € L*=(R"™).
(1.0.4)  There exists v > 0 such that for every (z,¢) in R™ x R”, p(z, &) > v |¢[%

Then P has a self-adjoint extension with domain H?(R").
Now we associate to the symbol p the bicharacteristic flow given by the following
equations for j =1,...,n,
. op
xj(t) = % ((E(t), f(t))a LEJ(O) =Zj,
J
. ap
fj(t) = T oz, (z(1), £(1)), 5](0) =¢-
Ty
We shall denote by (z(t, z,£),£(t, x,£)) the solution, whenever it exists, of the system
(1.0.5). In fact it is an easy consequence of (1.0.3) and (1.0.4) that this flow exists for

(1.0.5)
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all £ in R. Indeed by (1.0.4) we have
v[EM)? < p(x(t), £(1t)) = pla, ),
and it follows from (1.0.4) that
n
250 <2 197 (@) & ()] < C )| < C v/ pla, ),

k=1
Our last assumption will be the following.
(1.0.6) For all (z,&) in T*R"™ \ {0} we have . ligl |x(t, z,&)| = +o0.

This means that the flow is not trapped backward nor forward. Now let us denote by
e~ P the solution of the following initial value problem

. Ou
(1.0.7) igy ~Pu=0
u(0, ) = uo.

Then the main result of this work is the following.

THEOREM 1.0.1. — Assume that the operator P satisfies the conditions (1.0.8),
(1.0.4), (1.0.6). Let T >0 and (q,7) be a couple of real numbers such that ¢ > 2 and
% = 5 — . Then there exists a positive constant C' such that

(1.0.8) He_itp’u,oHLq([,T,T]’Lr(]Rﬂ)) < C ||UOHL2(]R7L),

for all ug in L*(R™).

Such estimates are known in the literature under the name of Strichartz estimates.
They have been proved for the flat Laplacian by Strichartz [Str] when p = ¢ = %
and extended to the full range of (p,q) given by the scaling by Ginibre-Velo [GV]
and Yajima [Y]. The limit case ¢ = 2 (the end point) when n > 3 is due to Keel-Tao
[KT]. These estimates have been a key tool in the study of non linear equations. Very
recently several works appeared showing a new interest for such estimates in the case
of variable coefficients. Staffilani-Tataru [ST] proved Theorem 1.0.1 under conditions
(1.0.4) and (1.0.6) for compactly supported perturbations of the flat Laplacian. In [B]
Burq gave an alternative proof of this result using the work of Burg-Gérard-Tzvetkov
[BGT]. In the same work Burq announced without proof that if you accept to replace
in the right hand side of (1.0.8) the L? norm by an H¢ norm, for any small € > 0,
then you can weaken the decay hypotheses on the coefficients of P in the sense that
you may replace in the definition (1.0.1) of B,, the power |a| + 1+ o¢ by |a| + oo.
We have also to mention a recent work of Hassell-Tao-Wunsch [HTW1] who proved
in dimension n = 3 a weaker form of our result corresponding to the case where
q = 4, r = 3, under conditions similar to ours. Still more recently these three authors
announced the same result as ours under hypotheses on the coefficients similar to ours
(see [HTWZ2]).
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It is also worthwhile to mention the work of Burq-Gérard-Tzvetkov who investigate
the Strichartz estimates on compact Riemannian manifolds. In that case they show
that such estimates hold with the L? norm replaced by the H'/¢ norm. In the same
paper these authors show that the same result holds on R™ when the coefficients of
their Laplacian (and its derivatives) are merely bounded. Let us note also that these
estimates concern also the wave equation and many works have been devoted to this
case. However we would like to emphasize that, due to the finite speed of propagation,
the extension to the variable coefficients case appear to be much less technical (see
[SS]).

Let us now give some ideas on the proof. It is by now well known that a proof
of the Strichartz estimates can be done using a dispersion result, duality arguments
and the Hardy-Littlewood-Sobolev lemma. This has been formulated as an abstract
result in the paper [KT] as follows. Assume that for every ¢t € R we have an operator
U (t) which maps L?(R") to L?(R") and satisfies,

1) [1U®) fllee@ny < C || fllL2@ny, Yt € R, C independent of ¢,
(ii) 1U(s)U )" gllLoeny < Clt =572 lgllLrqn), t# s,

then the Strichartz estimates (1.0.5) hold for U(t). It is not difficult to see that the
serious estimate to be proved is (ii). In the case when U (t) = e*2¢ (the flat Laplacian)
this estimate is obtained by the explicit formula giving the solution in term of the
data ug. In the variable coefficients case such a formula is of course out of hope and
the better we can have is a parametrix. However due to strong technical difficulties
(which we try to explain below) which seem to be serious we are not able to write
a parametrix for e~“F so we have to explain what we do instead. First of all let
¢o € C3°(R™) be such that pg(z) =1 if |z| < 2 and supp o C [—1,1]. With a large
R > 0 we write
e P ug(z) = goo(%) e P ug(x) + (1 - 900(}%)) e P uo(x) = v+ w.

It is not difficult to see that the Strichartz estimates for v will be ensured by the result
of Staffilani-Tataru [ST] while the same estimate for w leads to consider an operator
which is a small perturbation of the Laplacian (see Chapter 2).

Now it is not a surprise that microlocal analysis is strongly needed in our proof.
So let & € R™, |[€y| = 1 be a fixed direction. Let xg € C*(R), xo(s) = 11if s < %,
Xo(s) =0if s > 1,0 < xo < 1 and let us set x4(x) = Xo(—x~§0/61), x—(x) =
xo(z - &/61), 01 > 0. We set Uy(t) = x4e ™, U_(t) = x_e P, Now since
X+(z) + x—(z) > 1 for all  in R™ then Strichartz estimates separately for Uy (t) and
U_(t) will give the result. It is therefore sufficient to prove the estimate (ii) above
for Uy (s) (Uy(t)* = x4 €’ . (and for U_(s)(U_(t))*). In our proof we shall
construct a parametrix for these operators.

SOCIETE MATHEMATIQUE DE FRANCE 2005



4 CHAPTER 1. INTRODUCTION AND STATEMENT OF THE RESULT

Our construction relies heavily on the theory of FBI transform (see Sjostrand [Sj]
and Melin-Sjostrand [MS]) viewed as a Fourier integral operator with complex phase.
One of the reason of our choice is that in our former works on the analytic smoothing
effect [RZ2] we have already done similar constructions (but only near the outgoing
points: see below). Let us explain very roughly the main ideas. The standard FBI
transform is given by
(1.0.9) Tu(o, A) = cp )\3"/4/ e y—az)ag—3ly—as "+ 3ol v(y) dy

n

where o = (az, a¢) € R” x R™ and ¢, is a positive constant.
Let us note that the phase can be written iApg where ¢o(y, @) = £ (y— (o +iae))?
Then T maps L?(R") into the space L?(R?", e Mael? da). The adjoint T of T is given

by a similar formula (see (6.1.2)) and we have,
(1.0.10) T*T is the identity operator on L*(R™).

We embed the transform 7" into a continuous family of FBI transform

Tov(a, A :/\3"/4/ 0w a0y o) v(y) dy with
(L.0.11) pv(a, A) (0, y,a)v(y) dy

0(0,y,a) = %(y — (ag + iag))Q, a(0,y,a) = c,.

Let us set U(0,t,a,\) = Tp[K+(t) uo)(cx,\), where K4 (t) = x+ e~ ®F y+. Then it is
shown that if ¢ satisfies the eikonal equation,
d¢ d¢
1.0.12 {— ( 7—” y Ly ) = U,
(1.0.12) ag—l—pxax 0,z,a) =0
and if the symbol a satisfies appropriate transport equations then U is a solution of
the following equation

(%—[Z—F)\%—Z)(G,t,a,/\) ~0.

It follows that essentially we have, U(0,t,a, A) = V(0 — A\t,a, A). In particular this
shows that U(0,t, a, \) = U(=At, 0, a, \). Written in terms of the transformations Ty
this reads
T[K+(t)uol(e, \) = T-xe[xZ o) (e, A).

Applying T* to both members and using (1.0.10) we obtain

K+ (t) uo(x) = T*{T-xe[xZ uol (-, M) }(t, 2).
Thus we have expressed the solution in terms of the data through a Fourier integral
operator with complex phase.

This short discussion shows that as usual the main point of the proof is to solve
the eikonal and transport equations. Let us point out the main difficulties which
occur in solving these equations. They are of three types: the bad behavior of the
flow from incoming points and for large time, the global (in 6,z) character of all
our constructions and the mixing of C*° coefficients and complex variables (coming
from the non real character of our phase). Let us discuss each of them. First of all

MEMOIRES DE LA SMF 101/102



CHAPTER 1. INTRODUCTION AND STATEMENT OF THE RESULT 5

whatever the method you use to solve an eikonal equation (symplectic geometry or
another one) a precise description of the flow of the symbol p is needed. Let us recall
(see (1.0.5)) that our flow (x(t, z, ), &(t, x, £)), issued from the point (x, &) € T*R™\0,
is defined for all t € R. In the case of the flat Laplacian we have £(¢,2,&) = £ and
x(t,z, &) = x + 2t€. Let now (z,§) € T*R™ \ {0} and assume that z - £ > 0. Then
it is easy to see that |z(t,z,£)|? > |z|> + 4t2|¢]? for t > 0 so that |z(t, z, )| becomes
larger and larger while z(t, z,£) may vanish for a large ¢ < 0. Such a point is called
“outgoing for ¢ > 0” and “incoming for ¢ < 0”. In the case of a perturbed Laplacian
this distinction between the directions is very important. Indeed although the flow
from outgoing points for ¢ > 0 is very well described for ¢ > 0 and has very similar
properties to the flat case, it has a bad behavior for ¢ < 0 in what concerns its
derivatives with respect to (z,£). For instance %(t, x, &) does not behave at all as
2t 6 ;. This is of great importance and causes some trouble in the proof. However
still when ¢ < 0, the flow behaves correctly as long as the point (x(t,z,€),&(¢, z,£))
is outgoing for t > 0. Roughly speaking that is the reason why we are not able to
construct a parametrix for e~*¥ while it is possible for the operator x+ e~ x4. The
Chapter 3 is entirely devoted to a careful study of the flow. Let us now describe our
method of resolution of the eikonal equation. The classical method uses the ideas
of symplectic geometry. Roughly speaking the manifold constructed from the flow
is a Lagrangian manifold on which the symbol 7 4 p(z, ) is constant. If it projects
(globally) and clearly on the basis then it is a graph of some function ¢ which is the
desired phase. However this general method leads immediately to a difficulty in our
case. Indeed since we want that for § = 0 the phase ¢ coincides with the phase ¢q of
the FBI transform (see (1.0.9)) which is non real, we should take, in solving the flow,
data which are non real, so the flow itself would be non real; but our symbol has merely
C® coefficients. To circumvent this difficulty a method has been proposed by Melin-
Sjostrand [MS] which uses the almost analytic machinery. Another method, different
in spirit, that the one described above and known under the name of “Lagrangian
ideals”, has been introduced by Hérmander [H]. Here the initial data in the flow are
kept real. Let us set u;j(z,&) =§; — %‘%(m,{) =& — 0% —i(z; — o). Then obviously
we have {uj,ur} = 0 if j # k (where {, } denotes the Poisson bracket). Now let us
set v;(0,x,8) = uj(x(—0,2,8),(—0,2,8)), j =1,...,n. Then for every 0 in R the
Poisson bracket of v; and vy, still vanishes if j # k. Thus the ideal generated by the
v;’s is closed under the Poisson bracket. The main step in Hérmander’s method is to
show that this ideal is generated by functions of the form &; — ®;(6,z, ). This will
imply that one can find a function ¢ = (6, x, @) such that g—;(ﬁ, z,a) = ®;(0,z, )
and it turns out that ¢ is the desired phase. To achieve its main step, Hérmander
uses a precise version of the Malgrange preparation theorem which is discussed in [H],
tome 1. This is the way we chose to use in our case. It occupies all Chapter 4 of the
paper. The proof is made separately for outgoing and incoming points. Since the v;’s
are defined by mean of the backward flow, in both cases we encounter the difficulty
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6 CHAPTER 1. INTRODUCTION AND STATEMENT OF THE RESULT

caused by the bad behavior of the flow from incoming points. As it can be seen many
technical difficulties arise in the procedure.

The next step in the proof is the resolution of the transport equations. Here also
the cases of outgoing and incoming points have to be separated. We have also to
be careful since these are first order equations with non real C*° coefficients. The
first case is easier. Indeed due to the good behavior of the flow and the decay of the
perturbation one can cut the Taylor expansion of the coefficients of the vector field to
some order and thus reduce ourselves to the case of polynomial coefficients. Then by
classical holomorphic methods one can solve the equations modulo flat terms which
will be enough for our purpose. In the second case there is no more such an asymptotic
and the situation is much more intricate. So we use the classical idea which consists in
straightening the vector field. This forces us to enter in the almost analytic machinery
of Melin-Sjostrand [MS] (see Chapter 5). Of course all the constructions made above
are done microlocally and in a neighborhood of the bicharacteristic. Therefore to
define the general FBI transform Tj (see (1.0.11)) as well as to pass from the standard
T to T_»; we have to insert many microlocal cut-off. Of course we have to check at

each microlocalization that the remainder leads to an acceptable error. This is the
—itP

goal of Chapter 6. At this stage of the proof the operator Ki(t) = y+e X+ i
written as

K (t)uo(e) = [ bslt, ) un(v) dy
where

beltiag) = [ NI a0, 2, ,0) do

Thus the dispersion estimate would follow from the bound
s (t..9)| <
for 0 < Jt| < T.

Here we have two regimes according to the fact that |At| > 1 or || < 1. In the
first case on the support of a(At, z,y, &) we could be very far from the critical point
of F'. Fortunately the phase F' has enough convexity to produce the desired bound
of k+. In the second regime we are close to the critical point of F' so we expect a
stationary phase method to work. However since the phase F' is non real and since the
determinant of its Hessian in o degenerates in some direction when |[A\t| — 0 we cannot
apply the standard results as they appear in [H]. Instead, after a careful study of
the phase F' we use merely an integration by part method with an appropriate vector
field to conclude. This is done in Chapter 7. The rest of this part is devoted, using
the Littlewood-Paley theory, to the end of the proof of our main Theorem.

Finally an Appendix gathers the proofs of some technical results used in the paper.

Acknowledgments. — We would like to thank Nicolas Burq for useful discussions at
an earlier stage of the work.
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CHAPTER 2

PRELIMINARIES AND REDUCTION TO THE CASE OF
A SMALL PERTURBATION OF THE LAPLACIAN

2.1. Preliminaries

We begin by recalling several earlier results which will be used in the sequel.
The first result concerns the case of compactly supported perturbations of the
Laplacian.

THEOREM 2.1.1 (Staffilani-Tataru [ST]). — Let P be defined by (1.0.2). Assume
that P satisfies (1.0.4), (1.0.6) and

(2.1.1) for jk=1,...,n, ¢F — jk, bj,V are compactly supported.
Then the Strichartz estimates (1.0.8) hold.

The second result which we recall is the extension to the variable coefficients case
by Doi [D] of the Kato smoothing effect. Let us introduce the following space. We
set for s, in R

s n . s/2 2 n
HiR") ={ueS : (2)" (I - A)*?ue L*R")}
with its standard norm.

THEOREM 2.1.2 (Dot [D]). — Let P be defined by (1.0.2) and assume it satisfies the
conditions (1.0.3), (1.0.4), (1.0.6). Then for all T > 0 and all ¢ > § one can find a
constant C > 0 such that,

(2.1.2) ”e_itP UOHLz([—T,T],Hl_/f(R")) <C HUJOHLZ(R")a
for all ug in L*(R™).
We shall also use the following result.

LEMMA 2.1.3 (Keel-Tao [KT]). — Let (X, dx) be a measure space, H a Hilbert space
and T > 0. Suppose that for each time t € [-T,T] we have an operator U(t) : H —
L2(X) which satisfies the following estimates.
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(1) There exists Cy = 0 such that for allt € [-T,T] and all f € H,

1U@) fllLzx) < Cill fllm-
(ii) There exists Ca > 0 such that for all t,s € [-T,T], t # s and all g € L*(X),

IO ()" gllzex) < Calt = 5172 glliix)-

Let (q,7) be a couple of real numbers such that ¢ = 2, r < 400 and % =g —=. Then
there exists C > 0 such that for all f in H

NU@) fllpa—r1),07x)) < Cllflla-

This result will be used in the sequel with H = L?(R"), X = R".
Finally let’s recall the following technical lemma.

LEMMA 2.1.4 (Christ-Kiselev [CK]). — Let X, Y be two Banach spaces and K (t, s)
be a continuous function taking its values in B(X,Y), the space of bounded linear
mappings from X toY. Let —oco < a < b < +00 and set

b
SH(t) = / K (t,s) f(s) ds

t
W) = [ Kt 5) ds.
Let 1 < p < q< +4oo. Then if we can find a constant C' > 0 such that

1S fllLa(ap),y) < CllfllLeicap),x)
it follows that

272;73) . 2C
IW FllLa(ap),y) < T o0 1l r((a,0),)-

Using these results we shall see that Theorem 1.0.1 will be a consequence of the
following Theorem.

THEOREM 2.1.5. — Let us set Ay = szzl o (gjk 0 ) and assume that the con-

905 (9" Bax
ditions (1.0.3), (1.0.4), (1.0.6) are satisfied by Ay. Let T > 0 and (g,r) be a couple

of real numbers such that ¢ > 2 and % = 5 — . Then there exists a positive constant

2
C such that

He'LtA

for all ug in L*(R™).

! uOHL‘I([—T,T],LT(]R")) < Clluoll 2z

Let us show how Theorem 2.1.5 implies Theorem 1.0.1.
Let us set I = [0,7]. (The case I = [-T,0] is symmetric). Using (1.0.2) we can
write

(213) i@tu—i—Agu = —(zn:(Dj b])—H/) u—2 zn:biju = F=F + F.

j=1 j=1

MEMOIRES DE LA SMF 101/102
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It follows from Duhamel formula that
t
(2.1.4) e P yuy = etPa g 4 / et=98 [F(s,-)] ds.
0
Using Theorem 2.1.5 we obtain

(2.1.5) €% wol gz, o grmyy < € lloll 2

Let us set now
T

(2.1.6) Sf(t) = / ei(t—s)Ag [f(S, )] ds.
0

Since Sf(t) = eitAs fOT e~"8a [f(s,-)] ds we can use Theorem 2.1.5 to write

T
IS5Ollr.rey <C| [ e s,

L2(R™)
T A
< C/O le=*% [f (s, -)]||L2(Rn) ds
T
s C/ £ (s M2nyds = C || fllpr,2@ny).-
0
Using Lemma 2.1.4 with p =1, ¢ > 2, Y = L"(R"), X = L*(R") we deduce that

t
H/ ¢l B[y (s, )] s
0

where F1 = —(327_,(D;b;)+V)u. Since 37, |D; b;|+|V| is bounded (by condition
(1.0.3)) we have

< O Fillpyr,c2eny)

La(I,Lm(R™))

T
||F1||L1(I,L2(]R")) < C /0 ||u(s, ')||L2(]Rn) ds < Cl T ||U()||L2.
Therefore we have
t
(2.1.7) | / €= 85 [Fy (s, )] ds|| < C(T) Juo | 2.
0

Let us look to the term corresponding to F» in (2.1.3), (2.1.4). Let us fix 0 =
% + %00. Then by Theorem 2.1.2 the operator et 4

L2(1, Hi/f (R™)). Its adjoint is defined by
(" ug, f)) = (uo, U* f) L2 kn)

where (( ,)) denotes the duality between L2(I, Hi/f) and L3(I, Hg_l/Q). It satisfies
the estimate

9 is continuous from L?(R") to

HU*fHLQ(]R”) <C ||f||L2(I,H;1/2(]R”))'

A straightforward computation shows that

U () = / 1929 [f(s, )] ds.

SOCIETE MATHEMATIQUE DE FRANCE 2005
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Using Theorem 2.1.5 for A, we see that the operator S introduced in (2.1.6) satisfies
the estimate

||Sf(t)||Lq(I,LT(]R")) <C ||f||L2(I,H;1/2(]R"))'

Using Lemma 2.1.4 withp=2,¢>2, Y =L"(R"), X = H;l/z(R") we see that

t
i(t—s) A
(2.1.8) H/O i) 8 [y (s, )] | ot ey S OBl agr 72y
where Fp = =237 | b; Dju. If we set, with A =377 | 5972?,
n
(2.1.9) A= (2)7 (I =AY by Di(1 = A)V* (2)°
j=1
then we can write
T
2 _ —a 1/4 2
(2.1.10) ||F2||L2(LH;1/2(R")) = 4/0 ||A<x) (I —A)Y u(S,-)HLz(Rn)ds.
Let us consider the metric on the cotangent space
_de® g
(@)~ ()

It is a Hormander’s metric and we have (z)° € OpS((z)?,G), (I — A)~'/* ¢
OpS((&)’l/Q, G), bj € OpS((z)~27,@G), D; € Op S({£),G). It follows that the oper-
ator A introduced in (2.1.9) belongs to Op S(1, G) and therefore is L? continuous. It
follows then from (2.1.8), (2.1.10) that

. T
i(t—s) A . < [ 32
H/o ‘ 1Bl )] ds‘ La(I,L7(R")) ¢ /0 ot s gy 45

Using Theorem 2.1.2 for P we deduce that

1/2

< ||u0||L2(]Rn).

(2.1.11) H /Ot =) B [y (5, )] ds’

Gathering the informations given by (2.1.4), (2.1.5), (2.1.7) and (2.1.11) we obtain
the conclusion of Theorem 1.0.1. So we are left with the proof of Theorem 2.1.5.

La(I,L™(R™))

2.2. Reduction to a small perturbation

The purpose of this Section is to show that, using the result of 2.1 one can reduce
the proof of Theorem 2.1.5 to the case of a small perturbation of the flat Laplacian.
Let ¢ be in C§°(R™). We write e 29uy = u and

(2.2.1) u=pu+(l-—plu=v+w.
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(i) Estimate of v. — Since v = pu it follows from (1.0.7) that (i0;+Ay) v = [Ag, @] u.
Let @1 € C§°(R™) be such ¢1 = 1 on the support of ¢ then setting A = Z?Zl %22
one can write '

(2.2.2) (10 +Ag)v= (10 + A+ p1(Ag — A)p1)v = [Ag, 0] u

and ¢1(Agy — A) is a compactly supported perturbation of the flat Laplacian. Let us
set P =—A —¢i1(Ay — A) p1. We have, from (2.2.2)

- L -
(2.2.3) v = e itP SOU0+/ e~ i(t—s)P [f(s,")] ds
0

where f = [Ag, o] u.
It follows from Theorem 2.1.1 that

(2.2.4) He_itp<pU'OHLG([—T,T],LT(]R")) < Clluoll L2 @n)-

To estimate the second term in the right-hand side of (2.2.3) we shall use Lemma 2.1.4
witha=-T,b=T,Y = L"(R"), p=2, X = H-Y?(R"). For this one first remark
that if U = e~ ®F then Theorem 2.1.2 shows that U is continuous from L?(R"™) to
L([-T,T), H/*(R™)). Then it is easy to see that U* : L2([-T,T), Hs “/*(R")) —

loc

L?(R"™) is continuous and is given by U* f(z) = fOT e*“ﬁ[f(s, )] ds. It follows that

| / " e P (s, ) ds|

Then, using again Theorem 2.1.1 and the above continuity of U* we get

= ||UU*f||Lq([—T,T],Lr(Rn))~

Le([-T,T7,L" (R™))

U U fllLa-rm,07@ny) < CNU fll2@ny < O | fllp2er ), m-1/2 7))

since f = [Ay, ¢] u has compact support in x.
Now we use Lemma 2.1.4 to deduce that

| [ ists. s

since f(s,-) has compact support in  and ¢ > 2.
Moreover since [Ay, ¢] is first order we have, using again Theorem 2.1.2,

< C"fl2qemmy 172 @)
<"1l

La([=T,T],L"(R™))

I flL2ery,m-172@®ny) < CllYullp2r w2 @ny) < C lluollL2@ny

where ¢ € C§°(R™), ¢ = 1 on the support of . This gives the estimate of the
second term in the right hand side of (2.2.3) which, together with (2.2.4) shows that
v satisfies the Strichartz estimate.

(ii) Estimate of w. — We shall take the function ¢, introduced above, of the following
form. Let R > 0 (which will be chosen large enough) and ¢o € C§°(R™) such that
po(x) = 1if 2| < 2, supp o C [2,2]. We shall take p(z) = pr(z) = ¢o(z/R).

Let ¢y € Cg°(R™) be such that $o(z) = 1 if |z| < 3, supp o C [—1,1] and let us
set Br(e) = Po(%).
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Let w = (1 — ¢gr)u be the second term in the right hand side of (2.2.1). Since
1 —@gr =1 on the support of 1 — ¢r we have according to (1.0.2)

8i [(1 — @r) bjk %D w=—[Ag,pr|u

Zj

(2.2.5) (10, + Ag)w = (iat +A+ Y
Gk=1

where b, = gk — Ojk-
Now if we denote by f one of the coefficients b;;, we claim that we have

N _ 1 Cq n
(2.2.6) 0911 — @r) fl(x)] < Rool? (el Vo eR"™

Using (1.0.1) and denoting by A the left hand side of (2.2.6) we see that
o 1 x
— a _ B =\ (2 a—0

A4S <1_ (%))< 'a‘+1+"0+ Z le (fz)‘m

Now, on the support of 1 — $(z/R) we have (z) > [z| > 2 R so the first term is
bounded by

!, 1
Ro0/2 <x>|a\+1+%‘)
On the support of 9°3(%), with 8 # 0, we have 1 R < |z| < R so (z) < V2R if
R > 1. Therefore the second term is bounded by

1 ,, 1 1 cl

oo O Cop e S Roorz o

Roo 052 <x>\6| 2 +lal—|Bl+14+00 T~ Roo <x>|a\+1+ g
o

It follows from (2.2.6) that we can work in the rest of the paper with a non negative
self adjoint operator P such that

P=—-A+¢eQ, where Q = Zlﬁ\@ aj DA,
(2.2.7) ¢ is a small constant and |Dg af(z)| < Co/(z)/*1+1+70/2 va € N7,
uniformly for z € R™ with C, independent of ¢.

Since the estimates on the coefficients are uniform in € we shall write ag instead of
aj. The principal symbol p of P will be written as

p(e,€) = |6 +eq(2,€), ql@,&) = Zbﬂc ) &5 &

7,k=1

and we shall take € so small that
9 11, 5
— < < — .
SIER <l ) < 15 el

Finally without loss of generality we shall take og instead of % in (2.2.7).
We assume that P satisfies the condition (1.0.3) and (1.0.6). Let T' > 0.
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THEOREM 2.2.1. — Let (q,7) be such ¢ > 2 and % =

then there exists C' > 0 such that

VI3

— =. If € is small enough

|‘€7itP ’UOHLQ([—T,TLLT(RR)) < C HUOHLQ(]R")
for all vy € L*(R™).

Let us assume that we have proved this result. Then we can applied it to the

operator occurring in (2.2.5) with R large enough. We have,
t

w= et (1~ pp)ug + / 9P fr(s, )] ds.
0

It follows from Theorem 2.2.1 that
(2.2.8) ||6_itP (1 - (pR) UOHLQ([,T’T]’LT(]RN,)) <C ||u0||L2(]Rn)
and the same argument as used in the estimate of v, namely the use of Theorem
2.2.1,and Lemma 2.1.4 shows that
< C(R)||UO||L2(R71).

t
2.2.9 H/ e Ht=s)P S, ds‘ <
( ) 0 Fr(s, )] La([-T,T],L"(R™))

Then using (2.2.8) we see that the second term w in the right hand side of (2.2.1)
satisfies the Strichartz estimate which completes the proof of Theorem 2.1.5.

Our goal now is to prove Theorem 2.2.1. The first step is to make a careful study
of the flow.
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CHAPTER 3

STUDY OF THE FLOW

3.1. Preliminaries

Let p(fE, g) = |£|2 + 8(](%, g)v Q(xv E) = Z?,k:l bjk(x) gj gk Where,
(3.1.1) there exists o9 > 0 such that for every ¢ € N one can find Ay > 0
o such that >7,_, D ke 05 bjr ()] < A /()10 for all z in R™.
We introduce the equations of the bicharacteristic flow issued from a point (z,€)
in T*R™ ~. {0}. They are given for j = 1,...,n, by
: Ip
J

: ap
g](t) = _T (x(t)7§(t))a §](O) = §j7
Zj
and we denote by (x(t,z,§),£(t, z,€)) the solution of (3.1.2) whenever it exists (or
(x(t),£&(t)) for short if no confusion is possible).
Let us remark that when p(z, &) = |£]? then

x(t,z, &) = o+ 2t
313 ltemd ot

In general case assuming ¢ so small that € Ay < 5 we see that % [¢]? < p(z,£) <
1L |¢2. Tt follows that

(3.1.2)

2,3, O < plalt), €0)) = pla,€) < 10 1€,
so that

(3.1.4) £, 2, &) < 218.

Using the first equation of (3.1.2) we see then, that the solution of (3.1.2) exists for
all £ in R and is a C*° function with respect to (z, ). Moreover we have the following
lemma.
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LEMMA 3.1.1. — For all t in R we have

J)(t,l‘,f) 'f(t,$,§) = $'€+2tp($7§) —l—f(t,l‘,f)

where
|f(t,z,€)] < 4e Ay |€)? ‘/ 71” < de Ay [t €%
Proof. — We have by (3.1.2)
Loty - e) = e(t) - 22 (@(t), £0)) — e t) - 2L (a(t), (1))
dt o€ ’ Ox ’ '

Using Euler’s identity we obtain

dp

£(t) - 8_5 (@(1),£(t)) = 2p(x(t), (1)) = 2p(x, ).

We set f(t,z,§) = —¢ fo (x(s),£&(s)) ds. Now since

0q Ay
= <x<s>,§<s>>\ < Gy P

it follows from (3.1.4) that

I

ol < acanlel] [ ] < e il

We shall use later on the result given by the following lemma.
For t € R and (z,&) € T*R™ ~\ {0} let us set,

(3.1.5) p(t @, &) = (x(t,x,8),8(t, 2, §)).
LEMMA 3.1.2. — We have the following identities for j,k =1,...n,
8$j fk
5 (2.6 = ~5¢ (~tplt.2,6)
9 _ 0%
fo (07, = 5 (<t p(t.2,€)
S (€)= S2E (—hplt,2.).
Proof. — For j =1,...,n we have
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Differentiating both sides with respect to z; and &; we obtain

Zg (~t:plt52,)) O
zn:g— tpta:f)
Z
Z

L=

ta:f Jrzag
t;z, &) +Zag
t;a,€) +Z§
(t:2,€) +Za§]

where 4, is the Kronecker symbol.

) . (8xj/8xk)(t;
Mo = ((3€j/3wk)(t;

then the above relations can be written

—t; p(t; ,5))

tptwé)

If we set

(3.1.6)

where I, denotes the n x n identity matrix.

15 pl05,6)) oot

0
Oy,

E

7 7§))

’ ’g))

&

(=tip(t;2,8)) 2= 6

p) (0;/0&) (t: p))
p) (0&;/0)(t; p)

M(—t; p(t; 2,)) - M(t; 2, ) = (In 0)

0 I,

Let us introduce for s € R the following matrix.

(0505 i)
A(s; p) = <_t((‘)€j/8xk) (s;p)

We claim that for s € R and p € T*R" we have

(3.1.7)

(3.1.8)

where Iy, is the 2n x 2n identity matrix.
Indeed let us set A(s;p) - M(s;p) =

~ 8§g 8.13[

Cix — 6t T
J ; (85] (%ck
L 854 89@

Cj ktn Z (@ 8_@ -

=1 J

(3.1.9) " O o,

Ciin _ el e
ek Z:I (8xj Oz,
"~ Oxe 08

Citnktn Z (8_% 06,

Let us remark that Cjipn kyn = Ci,j.

—t (8x]/8§k) (S
H(0m; ) Ox) (s;

A(s;p) M(s;p) = I2n

(Cozﬁ)lga,ﬁan- We have for j,k=1...

C(3.6) = 0
(t2,6) =0
- (62,6) =0
(;2,8) = 0j

;P))
p )

17
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18 CHAPTER 3. STUDY OF THE FLOW

Now we recall that for every s € R the map (z, &) — p(s;z, ) is symplectic which
means that

(3.1.10) Zd &(s52,6)) Nd(ze(s;x,§)) = dej Adz;.
=1 j=1
Writing u(s) = u(s; x, &) for short we have
" ag ag
Zdée )) Ad(we(s 1(2 : a;()dfﬂ>

Az(g— )day + gfé( )dgk))

n
k=1

It follows that

- 8§ 33: 8{ oz
3 — (0 ox o€ oz
E(RGEeme- axi<>a—5<s>>>dgm+

L (06, | Oxy 9 | Oy )
— d&; N dEy.
S (X (56 0 5 ) 5 5 ) ) do e
Using (3.1.9) and (3.1.10) we see easily that
Cik =0k Cjiktn =Cliink =0, Cjinktn =Ckj = k.

This proves (3.1.8).
It follows from (3.1.6) and (3.1.8) that

(3.1.11) M(t;z, &) = A(=t; p(t; 2, €))
which by (3.1.7) proves the Lemma 3.1.2. O

3.2. The flow for short time
Here is a description of the flow for short time.

PROPOSITION 3.2.1. — Let us set
(b ,€) = o(t,2,€) — (o + 2t€)
{ C(t,x, ) =&(t,2,8) — ¢
Let T > 0. Then for all A, B in N™ one can find Cy g > 0 such that
{(i) 0708 Z(t,x,6)] < Capelt|
(ii) 10,95 0f Z(t,2,6)| < Cape
if Z=nr or(, foral|t| <T and all (z,§) € T*R™ with |£] < 3
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Proof. — See Appendix, Paragraph A.2. O

We introduce now the following definition which distinguish microlocally the points
in the cotangent bundle.

DEFINITION 3.2.2. — Let
Sy ={(z,6) e T"R*" {0} 12 & > — () [¢]}
S_={(z,§ e T"R" {0} : - £ < 1 (2) [¢]}.
Then S, (resp. S_) is called the set of outgoing points for ¢ > 0 (resp. ¢ < 0).
Of course the constant % in the above definition is unimportant and could be

replaced by any fixed small constant. The reason for this definition is the following.
If (x,€) € S then, for t > 0
1
Lt |z + 2662 > 2 () + £ [¢]).
Since x 4 2t£ will be an approximation of z(t; x, £), then Sy, will be the set of points
(x,&) for which the projection of the bicharacteristic goes to +00 when t — +o00 in
staying away from the origin.

3.3. The forward flow from points in S and backward from S_

Our goal is to obtain for these points a nice global representation of the flow
together with precise estimates of its derivatives with respect to x and &.

PRrROPOSITION 3.3.1. — There exists €9 > 0 depending on the constants Ay, A1 in
(3.1.1) such that for € in ]0,eo[ the solution of (5.1.2) with (x,&) in Sy (resp. S_)
and % < €] < 2 can be written for allt >0 (resp. t <0)
r(t;x, &) =x+2tE(tx, &) + z2(L; o,
s (12,6 = & + 20 E(t:2,6) + 2(t:2,6)
§tsa,8) =&+ (L 2,€)
with

2102 2-10°
(3:32) [7(t2,8)] <

e max(Ag, A1), |tz )] <

3 max(AO,Al),
where AgAy are the constants arising in (3.1.1) and j =1,...,n.
Moreover for allt > 0 (resp. t < 0) we have
11+ |zt 2, 6))?
3.3.3 - < —— < 40.
( ) 3 1+ |x|? +¢2
Proof. — Let

9.102 2102
e max(Ap, A1), |(;(t)] <

I= {T>O:|zj(t)| < ¢ max(Ao, A)

0o

forj=1,...,nand allt € [O,T]}.
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20 CHAPTER 3. STUDY OF THE FLOW

Then [ is an interval which is non empty by the local Cauchy-Lipschitz Theorem. Let
T* =supl. If T* = 400 we are done. Otherwise let T' < T™. Since % < €] €2 we
have for ¢ € [0,T], 3 < [£(t)] < 3 if e max(Ay, A1) is small enough. Indeed we have

(1= Ag)l¢]* < pla,€) = p(x(t), £(1)) < (14 & Ao)[E(1)]?
(1= Ao)lE(t)* < p(x(t), (1)) = p(=, &) < (1+ ¢ Ag)[€[*.
Now, for ¢ in [0, 7] we have
L+ |z@)> = (@) + 42 |62 + 42 | + |2()]? + 4tz - E+ 4tz - ((t)
1) (2)
+2-2(t) + 87 & C(t) +4t & - 2(t) + 4L (1) - 2(t) .
(3) () (5) (6)

Since (z,€) € S} we have for ¢ >0, (1) > —1 (()? + t?|£|?). Now, by the definition
of I we have on [0, 7] if € max(Ag, 4;1) is small enough.

/

(2)| € C1(n)t|x| e max(Ag, A1) < 1072 (|Jt:|2 + t2)

|
(3)] < Ca(n) x| e max(Ag, A1) < 1072 (z)?
|(4)] < C3(n) t? € max(Ag, A;) < 1072 ¢
1(5)] < Cya(n)te max(Ag, A1) <1072 (1 +t7)
|(6)] < Cs(n) t(e max(Ag, A1))? <1072 (1 + t2).
It follows that
@0 > (@) + ) = 4107 + ) > 2 ({2 + 1),

The same computation shows that (z())? < 40((z)? + t?). It follows that on [0, 7]
we have

1 1
3.3.4 — (1 +t) < —= (@) + tHY2 < (2(t)) < T((2)? +2)12
(3.3.4) \/6( ) \/§(< ) ) (x(t)) < 7({) )
Now it follows from (3.1.2) that (z(¢),((t)) satisfy the equations

55(t) = — gg ((t), (1)) + 22 2L (a(t), (1))

8xj
Gt = — % (x(t). £(t))

(3.3.5)

with 2;(0) = ¢;(0) = 0.
We deduce from (3.1.1), (3.3.4) and the bounds % < |¢(t)| < 3 that

3
dq 3 Ay 3(v6)1Ho0 A 12 Ag
_2 < < <
8§j ((E(t), f(t))‘ = <x(t)>1+ao = (1 + t)l-i—ao = (1 + t)l-i—ao ’
dq 94,  _ 9O V3A 604

i, OS] < G < (e < T
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(since we may assume that 1+ o9 < 3 and (v6)'77 < 4). It follows from (3.3.5)
that

. 132¢ : 60e
25(t)] < EDE) max(Ao, A1), [¢;(t)] < REDE) max (Ao, A1)
Therefore we have on [0, 7]
132 60
|z ()] < o e max(Ap, A1), [¢(#)] < v e max(Ag, A1).

Since z(t) and ((¢) exist for all ¢ > 0 and are smooth we still have the above estimates
on [0,7*]. By continuity it will exist 7 > 0 such that |z;(¢)] < & 10 € max(Ag, A1)
and |¢;(t)] < % € max(Ag, A1) on [0,T* + n]. This contradicts the maximality of
T* and proves that T* = +oc. O

Now we estimate the derivatives of the flow with respect to (z,£).

PROPOSITION 3.3.2. — With the notations of Proposition 3.3.1, for every integer k
one can find a positive constant My such that for all (A,B) € N® x N™ such that
|Al+ |B| <k, allt >0 (resp. t <0) and (z,§) in Sy (resp. S—) we have,

A 9B € My
‘895 8& Z(t,l‘,f)‘ < ma
A AB EMk
|0; ¢ C(t,2,8)| < (@) +Al oo
Proof. — See Appendix A.3. O
COROLLARY 3.3.3. — Keeping the notations of Proposition 3.3.1 we have, for all
>0 (resp. £ <0) and all (z,£) € Sy (resp. S—)
825]‘ ox;
(¢ = 2t4, t & =4, t
S (12,6 = 265+ O, G2 (1:2,6) = b+ O(e(0)
9,

(t,x,&): jk+0(€)7 af;j

96, 8—k(t,x,£):0(6), Jk=1,...,n

where ;i is the Kronecker symbol and O(e) means “bounded by C' e where C is inde-
pendent of (x,€)”. In particular we have

%(t,x,f)—zia 2,€) = (1—2it) 6, + OEW), jk=1,....n
k

(3.3.6) 5

3.4. Precisions on the flow in the general case

The results obtained above allow us to give a rough form of the flow through any
point in T*R™ ~\ {0} for ¢t € R.

PROPOSITION 3.4.1. — Let (z,€) € T*R"™ \ {0} with |¢| < 2. Then,
(i) the function s — (x(s,x,&))~(1+90) belongs to L'(R),
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(i) fort e R we have,

{x(t,x,@ = o+ 2t& +r(t,a, ),
f(tﬂ x}é’) = g + C(t7x7£))

where |r(t,z, )| < Ce(t), |((t,x,&)| < Ce with C independent of (z,§).

Before going into the proof let us note that in general we do not have good estimates
on the derivatives of r with respect to (x, &) (in the spirit of those given in Proposition
3.3.1 for instance). In particular we do not have a good control of % (t,z,£). This
occurs for instance for points (z, £) such that |z| is very large and the bicharacteristic
crosses back a neighborhood of the origin. That’s why we used the term rough for
this description.

Proof of Proposition 3.4.1. — If |z - £| < —4(z) |¢| then Proposition 3.3.1 gives the
claimed description of the flow for ¢ > 0 and ¢t < 0. If z - £ < —1(z) [¢| the same
Proposition applies for ¢ < 0 so we are left with the case ¢ > 0. (The case z - & >
—1(z) |¢] is symmetric). It follows from Lemma 3.1.1 that, if £ A; is small enough,
we have lim;_ o x(t) - £(t) = +o0o. Since z - £ < 0 one can find t* > 0 such that
x(t*,x, &) - &(t*, x,&) = 0. If we set * = z(t*,x,§) £ = £(t*, x,&) then, according to
Definition 3.2.2, we have (z*,£*) € S+ NS_ so we can use Proposition 3.3.1 for t € R.
Now we have by the flow property for ¢ > 0,

x(t,z, &) = x(t —t*,z",&).

Using Proposition 3.3.1 we deduce the following lower bound

* * * 1 *
(3.4.1) ((t,z,8)) = (x(t —t",2",)) > 7 (t—1t").

This proves the part (i) in Proposition 3.4.1. To prove part (ii) we use the formulas
(3.1.2) for the flow. Then we see that for ¢t > 0,

€t 0,6) = &+ Colt 1,6, Golt1,€) ——a/o Zab” ())& (5) & (5) ds

Then using (3.1.1), (3.4.1), (3.1.4) and the fact that |£| < 2 we see that [(¢(¢,z, )| <
C' e, where C depends only on Aj;.
On the other hand we have

ij(t,x, &) = 265 +2¢(t, 2, €) +2€ijk (t,x,€)) E(t, ,€).

k=1

Integrating between 0 and ¢ and using the above estimates we obtain the claimed
description of z(¢,z,£). O
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3.5. The flow from points in (S NS_)°
We study now, more carefully the flow from points (x, &) € T*R™ \ {0}, such that,
1
(3.5.1) |- &] > co (x) |€] and§<|§|<2

Even if, as we said before, we do not have a nice representation of the flow for all ¢ in
R we shall see that such a representation is available for limited values of ¢.
Since the description is symmetric, we shall assume that

(3.5.2) z-& < —co () €]
Then (z,£) € S— and Proposition 3.3.1 give a good description of the flow for ¢ < 0.

DEFINITION 3.5.1. — Let (z, ) satisfying 3.5.2. We set
1= {200 a(t,0,6) - €(t,2,6) < {alt,7,0) et 7,6)]}
In other words I is the set of ¢ > 0 such that (xz(t,x,€),&(¢t, z,£)) belongs to S_.
The main result of this Section is the following description of the flow on 7.
PROPOSITION 3.5.2. — Let (z,€) satisfying 3.5.2. Then for t in I, we have

x(t,x, &) = o+ 2t — z(—t,x(t, x,£),&(¢, 2, ),
E(thvg) = E - C(_t’ J)(t, $,€),§(t, J),f)),

where z and ¢ have been defined in Proposition 3.3.1. Moreover for j,k=1,...,n we
have,

0x; 0

L (t2,€) = 3 + O(e) %” (t,2,€) = 20650+ O(e (1))

k

0&; 8

O (t2,6) = 35 + Ol (t.2.€) = O)

3"

where ;1 is the Kronecker symbol and (’)( ) means “bounded by CA” with C inde-
pendent of (x,€). In particular we have

S (b €) =i G2 (1. €) = (1= 2i0) B+ O(e(0).

Proof. — As said before, for t € I the point p(t,z,&) = (z(t,z,£),£(t, x,€)) belongs
to S_. Therefore we can apply Proposition 3.3.1 for 8 < 0. We get
(0, p(t, ,8)) = x(t,2,§) +20£(0, p(t, z,8)) + 2(0, p(t, 2, €))
§(0,p(t,2,8)) = &(t, 2, €) +C(0, p(t, 2, €)).
Taking § = —t with ¢t > 0 we obtain
x=ux(t,z,§) — 2t& + z(—t, p(t, x,§)),
§=E&(t,x,8) + (=t p(t,2,8)) -
This proves the first part of Proposition 3.5.2. To prove the claim on the derivatives
we use Lemma 3.1.2 and Corollary 3.3.3. O

f
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24 CHAPTER 3. STUDY OF THE FLOW

REMARK 3.5.3. — Since the points (z, {) satisfying 3.5.2 belong to S_, Propositions
3.3.1 and 3.5.2 provide a description of the flow on (—o0,0) U I.
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CHAPTER 4

THE PHASE EQUATION

The goal of this section is to solve approximatively the phase equation

0 0

55 P 5 =0, 9(0,2,0) = polx, ),
(see Theorem 4.1.2). In the case of the flat Laplacian this problem can be solved
exactly and we have
(x — aw)ag + 5l — au|* + 5]ag|?

14 2i0

In the general case the classical method using the symplectic geometry leads to a
major difficulty. Indeed the symbol p has C* coefficients but since ¢ has to be non

o0, z,0) =

real we must deal with a non real flow. Instead we use here a method introduced by
Hormander [H] called method of "Lagrangian ideals” which keeps real the data of the
flow. It is briefly described in the Introduction (section 1).

The main result of this section is Theorem 4.1.2 whose proof is fairly long and
could be skipped in a first lecture. One of the reasons for the length of the proof is
that we have to consider separately the cases of outgoing and incoming points and
then to match them. Moreover in the case of incoming points the flow behaves badly
for large time which leads to serious difficulties.

4.1. Statement of the result

Let p(z,€) = |¢]? +eq(x,€), q(z,€) = szzl bjk(x) & & where the coefficients bjy,
satisfy the condition (3.1.1).

In this Section a = (g, ce) will be a fixed point in T*R™ such that %
Let us recall that (z(¢,«),&(t,«)) denotes the flow of p starting for ¢
point a.

We introduce now several sets.

< Jagl < 2.
= 0 at the

DEFINITION 4.1.1. — Let § > 0, ¢g > 0, ¢; > 0 be small constants (chosen later on).
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i) If |ag - | < co {ag) |ae] we set,

(
(4.1.1) Qs ={(6,2) e RxR": [z — z(0,a)| <5(0)}.
(i) If oy - e > co () || we set,
(4.1.2) Qs ={(0,2) eRxR": |z —z(0,0)] <5(0), -ag>—c1(w)]|ael}.

(ill) If g - ae < —cp () |tg| we set,
(4.1.3) Qs ={(0,2) eRxR": [z — (0, )| <6(0), z- e <er(a)|oel}

Let us give some explanations on this Definition.

Taking ¢y and ¢; small with respect to % we see from Definition 3.2.2 that the case
(i) corresponds to points (o, ce) which are outgoing for 6 > 0 and 8 < 0. Then Qs
is simply a conic neighborhood of the projection of the bicharacteristic. In the case
(ii) the point (o ce) is outgoing for 8 > 0 and €25 can be written as follows.

(4.1.4)
Qs = {(6,2) € (0,+00) x R" : |z — z(6, )|
|J" - 33(9, Oé)l
Indeed if |z — (0, )] < 6(6) and @ > 0 we have by Proposition 3.4.1, z - a¢ =
(z —2(0, ) - e + g - o + 20 |ae|* + O(e (9)). Since |ae| > & and we are in case (ii)
we deduce that = - ag > co (o) |ag| + 50 — C(e 4+ 6)(#) = 0 if £ 4 4 is small enough.
Therefore when 6 > 0 the condition x - ae > —c1 (x) |ag| is automatically satisfied.

0)} U{(0,2) € (—00,0) x R" ;

<6
<0(f) and x - ag = —c1 (@) |ael}.

In the case (iii) we have the same discussion changing 6 > 0 to 6 < 0.
The purpose of this Section is to prove the following result.

THEOREM 4.1.2. — There exist § > 0, ¢o > 0, ¢1 > 0 such that for any o € T*R"
with % < |ag| < 2 one can find a function ¢ = p(0,x,a) on Qs which is C* and
satisfies the following.

. 1 1

() @(0,2,0) = (z = a2) - g + 5 o = aul* + % lag|* + g(a, @)

where |g(z,a)| < Cn | — ag| for all N € N.

(ii) For any N € N there exists Cy > 0 such that
x—z(0,a)| )N

%(9"”’0‘)“’(%%(Q’x’“))‘<CN<| )

for all (0, x) in Qs.
Moreover for (8,x) in Qs we have
(iii) ‘g—‘;’ 0,2,0) — ag‘ < C(e +V0).

1]z —=z0,a)? 1 9
i b St ¥4 I <
s Ty T alul’] <O+ Vo)

(v) 102 @(8,x,a)| < Cya, for every A in N~ {0}
where C, Cn and Cy are independent of (0, x, ).

|z — (0, )|

(iv) ‘Im (0, 2,0) 0)?
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4.2. THE PREPARATION THEOREM 27

The proof of this result is based on the theory of Lagrangian ideals of L. Hérmander
([H], vol 4, chap. XXV). It will require several steps. The first one is a slight extension
of Theorem 7.5.4 in [H], vol. 1 to the case of higher dimensions.

4.2. The preparation theorem

The aim of this Section is to prove the following result.

LEMMA 4.2.1. — Let g € S(R?) and z € C™. Then there exist functions q;(&, 2, g),
j=1,...,n, r(z,g9) which are C* with respect to £ and z, which depend linearly on

g such that
n

(4.2.1) Z (&,2,9)(& +z) +7(2,9)

g6 0l <Cor Y [107atn)ldn
(422) [vI< e +|B]+4n

02r(29)| <Cp Y [ 107 g(m)ldn.

[71<18]+3n

Proof. — We proceed by induction on the dimension n. If n = 1 this follows from

Theorem 7.5.4 of [H]. Let n > 2 and let us set &’ = (&1,...,&,—1). For fixed ¢’ € R*7!
we apply Theorem 7.5.4 of [H] to the function &, — g(¢',&,). We get

(4.2.3) 9(§'&n) = a(&n, 2n, 9(€7, ) (En + 20) + (2, 9(£', ).

Let us set Qn(&,2n,9) = q(&n, 2n,g(€',-)) and 7(2,,&,g9) = r(2n,9(¢,-)). Since r
is linear in g we have 9g 7(zn, &', 9) = (25, 9¢ g(¢',-)) and the estimates (4.2.2) for
n = 1 show that & — 7(z,,&,g) is in S(R""1). Therefore we can apply, by the
induction, the Lemma to the function & — (2, &', g) and to 2’ = (z1,...,2n—1). We
obtain the existence of ¢;, j = 1,...,n—1 and R satisfying the estimates (4.2.2) such
that

n—1

?(znv 5,7 g) = Z Qj(glv Z/a ?(Zna ) g)(fj + Zj) + R(Z/, ?(znv 'y g))
j=1
Using (4.2.3) we obtain therefore

g(g) = Qn(gv Zn;g)(fn + Zn) + Z Qj(fla Z,a F(Zn, 79))(£j + Zj) + R(zlvﬁrv(’zna ag))

j=1
If we set
(4.2.4) {Qj(& z,9) = quﬁ’,Z’f(Zm vg), j=1,...,n—1
r(z,9) = R(Z',7(zn, ", 9))
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28 CHAPTER 4. THE PHASE EQUATION

we obtain (4.2.1) at the level n. Moreover (); and r are linear in g since g;, R are
linear in 7(zy, -, g) and 7 is linear in g. Let us look to the estimate (4.2.2) for r. We
have

85,/ O r(z,9) = 85,/ R(2,00" 7 (2n,",9))
S0,
g <C S [0y 0% € o) de'
v I<IB’ \+3(n )
Now |8g,/ 0P (2, &, g) = 0% (20, 0F A g(f', -)) and from the case n =1 we have

102" 1(20, 02 9(€, N <O S /\ag; 02 9 €,60)| .
"Yﬂ‘<5n+3
It follows that
(4.2.5) 07 7(2, 9)| < > > /\8”,' 0" g(¢',&n)| e’ d&.
[V <8’ [4+3(n—1) |yn|<Brn+3

The proof of the estimates for the qjs is the same. O

REMARK 4.2.2. — Let us set z = a + ib and let us write r7(z,9) = r(a,b,g) and
q;(& 2,9) = q;(§,a,b,g). If we take in (4.2.1) b =0, £ = —a we obtain

(4.2.6) r(a,0,9) = g(—a).

If we differentiate (4.2.1) with respect to by and then take z = a € R", £ = —a, we
get

or
P (
Finally if we differentiate (4.2.1) with respect to & and then take z = a € R", { = —
we obtain

(4.2.7) a,0,9) = —iqp(—a,a,0,9), k=1,...,n

99
9

We introduce now the following notations which will be used in the next sections.

(4.2.8) (—a) = qi(—a,a,0,), £=1,...,n.

NOTATION 4.2.3. — Let a = (ag, o¢) € T*R™ \ 0. We introduce

i 1
QD()(LL‘,CV) = ({E - az)Oég + % (1' - Oég;)2 + 5 ch,
(4.2.9) Do ; ‘ 4
Uj(l‘,f,a)zfj ax (.23 Oé) Ej_af_l(xj_ajz)'
J

Let p(z,€) = [£]? + e q(z,€) ; we denote by H, its hamiltonian and we introduce the
pull-back by the backward flow of the functlon u;. We set

vj(0; %, &, a) = uj(exp(=0 Hp)(,£))
=& (—0;x f)—ag—z( (=05 2,8) — al),
where (z,€) is close to (z(6; a), (0, «)).

(4.2.10)
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4.3. THE CASE OF OUTGOING POINTS 29

In the flat case we find
ozé —i(x; — a;)}
1+ 2¢0

We split the proof of Theorem 4.1.2 according to the different values of a described
in Definition 4.1.1.

v; = (1+ 2i0) [gj -

4.3. The case of outgoing points

Let us set

1
(4.3.1) S={aeR: 3 <agl €2, |og - ael < co(aa) |agl}

We shall use the following notations

Q5 ={(6.y) e R x R" : [y <5(6)}
sgnf =1 (resp. —1) if 6 >0 (resp. 6 <0).
Let now xo € C§°(R™), x1 € C§°(R) be such that,

(4.3.2)

Xo(t) =1 if |[t] <1, xo(t) =0 if [¢| >2 and 0 < xo < 1,
x1(0)=11if 8] <1, x1(#) =0 if |f| >2 and 0 < x1 < 1.
Then we can state the following result.
THEOREM 4.3.1. — There exist small positive constants py, 0 such that if we set for

aceS, 0eR, yeR”" nelR™, j=1,...,n,

B 1 ‘ n 1sgné
9301 = xo (o) vi (6 y-+2(6, 00, a6+ (=1 (0) [ 5 +5 g™ v] +€(6,0).)
there exist smooth functions a; = a;(0,y,a), bj =b;(0,y, ) defined on Qs such that,
with a = (a;)j=1,....n, b= (bj)j=1,....n we have for n in R"™ and (0,y) € Qs,

(1) 9]'(77) = Z %(77, a,b, gj)(nk + ak(ev Y, 0&) +i bk(ea Y, Oé))

k=1
where the q;.s have been introduced in Lemma 4.2.1.

Moreover in the set Qs we have

s |y K(9) |y
< — < L
(i) |a(8,y,a)| < 10 ok |b(9,y,a) + a6 y| <V5 )’
0
where K(0) = Grmit—amy v (0) <K () <(6).

On the other hand we have, uniformly with respect to (0,y) € Qs and o € S,

o Ca n

(i) |05 a(8,y. )| + 10 b0, )| < 7. A €N
Moreover for j=1,...,n, k=1,...,n,

. . k(O .

(iv) |gs(7.a.b,9;) — (1 +210) <(T>)6jk\ <C(+d), if o] <6

where k(0) = (0) x1(0) + 1 — x1(6).
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30 CHAPTER 4. THE PHASE EQUATION

Let us make some comments about the above Theorem. First of all we have skipped
for convenience the dependence of g; with respect to (8, y,a) which are considered
here as parameters. The main object to be considered is v;(0, z,&). Since x has to be
close to z(6, ) we have set x = y + 2(, ). For small [f] (x1 = 1) £ has to be close
to £(0, &) that’s why we have set £ = n+ £(0, ). For large || we have y; = 0. In

this region for technical reasons we need to renormalize the variable i and to isolate
1sgn6

n

_ + —

) 2 (0)
the two regimes |f| small and || large have to be matched. This is the reason for
introducing x;.

the first term of a. This is the reason for the expression y. Finally

Proof. — According to Definition 3.2.2 we have § C S N'S_. Moreover
(4.3.3) B(aycg) ={aeT"*"R": la—a|<c} TSt NS-_.

We start with the following Lemma.

LEMMA 4.3.2. — There exists a small positive constant po such that for all (0,y)
with 0 € R, |y| < po (0) and all n in R™ such that |n| < 2pg there exists a unique
8 =pB(0,y,a,n) in B(a,cy) such that

z(0,8) =y + (0, )
n o, 1 sgn@

(4.3.4)

y] + €00, ).

Moreover we have

o= aw t [L= g (L= a(O)] = T a0 (O)E) +1-(0)
(4.3.5) +2(0,a) — (6, 8)
e = ac-+ 7 Da(8)(6) + (1= (0)] + 5~ sy

+¢(0,a) = ¢(6,0)

where z and ¢ have been introduced in Proposition 3.3.1 and

. . lyl
(i) [B—al< (In|+<>)

(i) @(0 v <C
(4.3.6)

3] 35] 1+ 2i6
\(8—5 ~i5,5).5.0.m) - —a (0a0)+ (1 —xa0) &
<Ce

(iv) |05 0, B(6,y,c.n)| < Cape, if |A|+|B|>2
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Proof. — The system (4.3.4) with 8 € B(a, ¢g) C S+NS_ is equivalent by Proposition
3.3.1 to the following
Ba +20€(0,8) + 2(0,8) =y + o +20£(6, ) + 2(0, )
(4.3.7) 1—x1(0
Be +C(0,8) = x1 () n + <+>1()

Using again (4.3.4) the left hand side of the first line of (4.3.7) can be written

1
[n+ 3 sgnfy| + ae + (0, ).

1 —xa@)n+ 120 o))y + 206060, 0) + 20.5).

20

{6)

Finally (4.3.7) is equivalent to

5x—0zz+[1—%(1—%(9))}y—%n(m(@)w(;ﬂL)l—X(lg(i;;

+z(0,a) — 2(0,

(4.3.8) 5 01 4 (1 — vy o L@
= ae+ o )6 + 0 - xa@)]+ 5 1 oy

+¢(0, @) = <(6, ).

Writing this system 5, = ®,(8) B¢ = P¢(6) and setting ®(8) = (D(5), Pe(8)) we
are going to solve it using the fixed point theorem in B(a, ¢g).

(i) ® maps B(a, ¢p) in itself.

We have 0 < 1— 20 < o1 1611 (6) <2, xa(6)(8) + 1 - xa(8) < v/, Iyl < o (6),
[l < 2 po, |2|4+¢] < C e by Proposition 3.3.2. It follows that |®(5)—a| < 20 po+Ce <
co if po and e are small enough.

(i) Let 8,3 be in B(aycg). Then t 8+ (1 —¢) 8’ € B(a,cp) C S NS— for all ¢ in
(0,1). It follows that

[2(8) — ()| < 12(0,8) — 2(0, B)| + [¢(6,8) — (0, 8)| < Ce|B - B

by Proposition 3.3.2. Here C' depends only on the constants Ay, A; in (3.1.1). Taking
e so small that C'e < 1 we see that we can apply the fixed point theorem in B(a, ¢g).
This proves the existence of 3 satisfying (4.3.4) and (4.3.5) by (4.3.8). Now (i) in
(4.3.6) follows from (4.3.5) taking € small enough since |Z(0, o) —Z(0, 5)| < Ce |a—pf|
if Z = z or ¢. The claim (ii) is obtained by differentiating the equations (4.3.5) with
respect to 7 and using Proposition 3.3.2. Then (iii) follows easily from (4.3.5) and
(ii). Finally (iv) is obtained by an induction on |A| + |B|. O

From now on we fix the constant po occurring in Lemma 4.3.2.

Now for j =1,...,nlet g; be the function introduced in the statement of Theorem
4.3.1. Then, according to Lemma 4.3.2 and (4.2.10) we have for |y| < po (f) and
neR,

(439) gj (77) = XO(%) [62 (0a Y, «, 77) - ag - Z(ﬂ;{c (0a Y, «, 77) - ai)},
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since f(—0,x(6,0),£(6,0)) = By for f = x and £. It follows from Lemma 4.2.1 that
the existence of a;, b; in Theorem 4.3.1 will be proved if we can solve the equations

(4.3.10) r(a,b,g;(-)) =0, j=1,...,n

Let us now take (6,y) € (s, that is 6 € R, |y| < & (f) where 0 < § < 1 po is to be
chosen. We look for a solution (a,b) of the system (4.3.10) in the set

B I 10y ly|
(4.3.11) E_{(mb)ER . .|?9|>< o b+11+492 ‘\f }
where K (6) = o)+ (1-—a®) V5 (0) < K(0) < (0).

We shall first give equivalent equations to (4.3.10) in the set E. We write,

r(a,b, g;) = r(a,0,g;) +Zab (a,0,g;) bk+ZH (0, y, a,a,b) by b,

p,q=1
where
. 1 24

4.3.12 H = 1—-t) =&—— i(- .
(1.312) o manat) = [ (01— 50 (0 tbhgy ()
It follows from (4.2.6), (4.2.7) and (4.2.8) that

—~ g,
(4.3.13)  r(a,b,9;(-)) = g;(— Za— —a) by, —l—ZH (0,y,a,a,b) b, by.

k= p,q=1
Now if (a,b) € E we have |a| < <TJ> < 126 < po. Therefore xo( — a/po) = 1,

x6( — a/mo) = 0. Then by (4.3.9) and (4.3.5) we obtain,

(4314) g5(-0) = 5 = w0y, — T aO0) +1- ()
. 6]
+60:0) = 40.0) - (1= @) v,
- T O6) + 1= (0] - i((6.0) = 5 (6.0)
8gj - 1+ 260
(4315) G2 (=a) = =22 ba(8)(6) + (1= (9)

- aCJ (97 B(Qa Y, «, _a))g—i (97 Y, «, —G,)

0
+1055(0,00,,0,-0) - 5 O.3.0,-0)

where 0 = (05, 0¢) and 8 = (B, fe).
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On the other hand we deduce from (4.3.12) and (4.2.2) that

(4.3.16) |8(’?1’b) 85 ng(ﬂ,y,a,a,bﬂ < Cap Z /|8,7 5‘5 g;(n)] dn.
Il <I Al +3n+2

Using (4.3.6) and (4.3.9) we obtain
(4317) |8(Aa,b) ayB H]Zq(aﬂyvavaa b)‘ < C%B(IU‘O)

It follows from (4.3.13), (4.3.14), (4.3.15) that (4.3.10) is equivalent to

a; 2i6 1 1—X1(9)
—@[X1(9)<9>+1—X1(9>]—@aj[X1(9)<9>+1—X1(9)]+5Tsgn9yj
—i1 = g (1= 0)) 157+ G6.0) = G6.8) = iz6.) — 5(6.)
—i—lteiie'[xl(9)<9>+1—xl(9)]bj+Ff(9,y7a7a)-b+iF2j(97y,a,a)-b

+ HI(0,y,0,a,b)b-b+i HI(0,y,0,a,b)b-b =0,
where
ﬂ = ﬂ(aayvav _a’)v
. k]
1(0,y,a,a) =02(0,8) - — (0,y,, —a),
(43.18) F(0,y,a,a) (0,0) 3 0,y )

; 9]
Fg(ﬁ,y,a,a) = agj(gvﬂ) : 8_77 (Qayvav _a)v

H = (Hj,) = H] +iHj.

Taking the real and the imaginary parts we are led to the system

aj — 20b; = K(f))[% %@ sgnfy; + ¢ (0, a) — (0, 8) + Fi b+H{b-b}

0 . .
200;+b; = K(0)[ = (1= G (1= 2(6) 15 = (5(6,0) = 5(6.8) + F b+ 1] b-1]
where K (0) = —X1(9)<9><J0r>1*>(1(9)'

Inverting this system we are led to solve

K(0) (1 1-xai(9)

sgnf — 29(1 _ o —X1(9))>) vs

REREFTZACANO) SARO A
(4.3.19) + Zi(0.a) — Z)(0,8) + Fib+ Hib-b=: ®(a,b)
K(0 . , . . .
= )y Z4(0.0) ~ Z3(0.0) + FL b+ Hib-b = ¥}(a,b)
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where
- K(9
20,) = 1 (G(6,) ~ 26 5,(6,)
; ING
Z400,) =~ (200, + 5 (6. )
(4.3.20) ; K(6) . ; ; K(6) ; ;
F3:1+492(F1+29F2)a F4:1+492(_29F1+F2)
, K(0) . , . K(0) , .
3= T age (HI+20Hy), Hi= =~ (F20HY + Hy).

Let us set & = (&7, ®3) (see (4.3.19)) and & = (®7);=1,...n. We have shown that
our initial system (4.3.10) is equivalent in E to the equation ®(a,b) = (a,b). We are
going to show that this equation has a unique solution in F by using the fixed point
theorem.

(i) ®(F) C E.

We have 26| (1 101) < 1/(6), 2 2 x1(0) < 8/(6) and by (4.3.20), (4.3.18), (4.3.6)
we see that |FJ| + |F]| < C'e. Moreover we deduce from (4.3.17) and (4.3.20) that
|H| + |H]| < C(uo). Finally in E we have |b| < % < 26. It follows then from
(4.3.19) that

19 |yl , |yl
5 1+492+Ce|a B+ C" e+ Cuo) d -

®1(a,)] < 0 0

Now using (4.3.6) (i) we see that when (a,b) belongs to E' we have

| lyl
18(0,y, @, —a) — a < 10(|a| + @) <110 .

Therefore

19 10
|®1(a,b)| < (7 + 11006+C'6+C(u0)5) ol < 101y|

© = ()"

if £ and 4 are small enough.
By the same estimates we obtain,

K(0
Po(a,b) + 1+(422 y| < Ce|B—al +Ce% +C(u0)6%;

so if £ and § are small enough we can bound the right hand side by v/§ |y|/(6). This

shows that ® maps E to E.
(ii) ® is a contraction.
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Let now (a1, b1), (az,b2) be two points in E. Then

n

|(I)(a17 bl) a2; b2 Z ‘ 0 Y, &, _al)) - Zg(aa 6(97:’/3 Q, _a2)) |
s M)
n 4 )
+ZZ{|F gyaaal) bl—Fg(9;y7a7a2)'b2|
j=1¢=3

(2)
+| Hg(gvyaaaalvbl) bl : bl - Hg(eayvava27b2) b2 : b2| }
(3)

Using (4.3.20) and Proposition 3.3.2 we can write

(1) < CelB0,y,a,—ar) = B(6,y, o, —az)|.

Then (4.3.6) gives (1) < C'ela; — as|.

To handle the therm (2) we use (4.3.18), (4.3.20), (4.3.6) and Proposition 3.3.2.
We obtain

(2) < Ce(lar — ag| + |b1 — ba).
Finally using (4.3.17), (4.3.18), (4.3.20) and the fact that in E we have |b| < Ll <25
we see easily that
(3) < C(e+0)(Jar — ag| +[br — bal).
It follows then that
[®(a1,b1) — D(az,b2)| < C(e+6)(Jar — bi| + |az — ba|)

where C' is an absolute constant depending only on the dimension and a finite number
of A; appearing in (3.1.1). Thus we can take € and § so small that C (¢ + J) < 1.
Therefore we can apply the fixed point theorem to solve (4.3.19) which is equivalent
0 (4.3.10). This proves the claims (i) and (ii) in Theorem 4.3.1.
Let us now prove the point (iii). We state a Lemma.

LEMMA 4.3.3. — There exists Cy > 0 such that for every A € N™ there exist Cy = 0
C'y > 0 such that with B defined in Lemma 4.3.2,

Ca
a)  [0:'[8(6,y, . —a(8,y, )] < Co|0; a(6,y, )| + A
b) [0 a(8,y, )| + [0 (8, y, )| < C/(O) A, for all (6,y) in Os.

Proof. — We shall use an induction on |A|, starting with the formulas (4.3.19). But
before we need some intermediate results. We introduce the following space of func-

tions.
Let f = f(6,y,«) be a function from Qs x R2" to C. We shall say that f € Gy if
we can write

(4321) f(eayva) = G(@,ﬁ(é),y,a,—a(ﬁ,y,a)))
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where G : RT x R3* — C is smooth in X and satisfies

(4.3.22) sup 0% G(6,X)] < Cye, VyeN"

RE XR27
For example Proposition 3.3.2 shows that the functions
(0a Y, a) = Zj (0a 6(97 Y, a, _a’(gv Y, Oé))
(and ;) belong to G4 if & € S1. (Here we have the sign + iff « € S; and — if o € S_).

Then we have the following claim.

Cramm 1. — Forallv e N", [v| 21, j=1,...,n we have

(4.3.23) o Bl(0,y,a,n) = GL(0, B(6,y,a,m))

wher¢ GJ, has all derivatives uniformly bounded on RT x R*". The same is true for
oy ﬁg.

Proof of the claim. — We proceed by induction on |v| beginning with |v| = 1. Let

us set k(6) = (0) x1(0) + 1 — x1(6). Then 1 < /4:(9) < /5 since |] < 2 on supp ;. It
follows from (4.3.5) that for fixed k in {1,2,...,n} we have

o3I 20 0z B,
(0, y,0,m) = —— k(6) 5; =3 (6, 8(6, y, z (6, y,
o (O3 0m) = = 7 K(6) O~ H(a (6.5(0.9,0m) 5 = (6:,0m)
(‘mg
+ e (0.50.y.00) 5- 0,y 00))
05 kO) 5 S~ (9 9"
a—nk (97ya Q, 77) <0> jk z; ( 9 ﬁ(a Y, o, )) a— (97ya a, 77)
a¢; a5¢
+ 85[ (gvﬂ(eﬂyvavn)) 87’] 9 y7a 77 )
Let us set
X1
| ] E1 92 0% 0% 0%
< _ 98 - B¢ _ A | 91 06 T Oy O,
oome T om A R NSRS R o
Xn Or1 06 Ory 06y
M1 _205119
M, k(6) 01k
) —20 6,1
Mn 5nk

Then the above equation imply that
U(gv Y, a, 77) = F(Q) - M(@, 6(07 Y, «, 77)) U(@, Y, a, 77)
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Now by Proposition 3.3.2 the entries of the matrix M are O(e). It follows that the
matrix I + M is invertible. Therefore we obtain

U0, y,a,n) = (I +M(0,5(0,y,a,m)”" F(0).

This proves the case |v| = 1.
Assume now that our claim is proved for |v| < N — 1. Then

Oy 310, y, . m) = GL(0,5(0,y, a, m)).
Then for k=1,...,n

’ ~ 9G] o8,
a dy 310, y, v, m) =Z 00,9, 0,m)) 5= (0,9, ,m)

yet M

2n . Y

e o

+ Z aX ( 6(0 yvan))a—nk(gvyaaan)'
L=n+1
Using (4.3.23) with |v| = 1 we obtain the claim up to the order |v| = N. O

CONSEQUENCE 4.3.4. — With the notations of (4.3.18), (4.3.20) and (4.3.21) The
Junctions (0,y,a) — Z](0,6(0,y, o, —a(0,y,)), £ =1,2, Fg, p = 3,4 belong to G4.

Let us now go back to the proof of Lemma 4.3.3. We begin by the case |A| = 1.
For convenience we shall set

(4.3.24) fly) = B0y, o, —a(0, y, ).
It follows from (4.3.5) that
)= (1= {5 0= x0)) s 40 522 =3 (2 050 GE W
- %9, 1) 2 )
R - ST > (o050 G0
- 58 6.5) % ).

It follows from Proposition 3.3.2 that,

i 0] < g5+ g @]+l )

where C depends only on the constants Ag, A; appearing in (3.1.1). Therefore taking
e so small that C'e < 1 we obtain the point a) in Lemma 4.3.3 for |A| = 1. Let us
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prove the point b). First of all we deduce from a) and the Consequence 4.3.4 that

0 (7 - T
(4.3.25) ayk 12000, TW)l, £=1,2, Ok [(F7], p=3.4

1 da
are bounded by Ce(-—= + |z— (0,y,a)]).
” Qw'wﬁy)D
Now we claim that for p = 3,4,
da

o 60| < O[22

Indeed the left hand side of (4.3.26) can be written
OH) da OH) ob OH)
da 8yk ob 8yk g
Now using (4.3.20), (4.3.18) and (4.3.17) we see that (1) and (2) can be bounded by

the right hand side of (4.3.26). To handle the term (3) we use (4.3.16) with A = 0,
|B| = 1. We obtain

(4.3.26) (Q,y,a)‘ n ‘aa—i (G,y,a)‘ + <T}>)

=1+ @) +6)

el<c Y [lg-omm|d

Iy <Bn+2
Now we use (4.3.9) and (4.3.23). We obtain
0 95n) = 3 [xo (- m] (92 = 18D O.007) = (o i)
+ > oy [XO(% n)} G20, 8(0,y,,m))

I [<I]
where Gf'y, satisfy (4.3.22). Since by (4.3.5) we have
ap C
0 —.
3y Oveon)| < 75
We obtain c
3)| < —
G < 5

which proves (4.3.26).
Now we use (4.3.19), (4.3.25), (4.3.26) and the fact that |b] < ‘T 26. We obtain
with a; = a;(6,y, @), b; = b;(6,y, @),
Oa; 0b; 12 0b
] —<—+Ca—:+5< +‘ =)
yi!  1oye! = (0) +0) oy | 1oy,
Taking € and § small enough we obtain the point b) in Lemma 4.3.3 when |A| = 1.
Assume now that a) and b) in Lemma 4.3.3 are true when |A| < N and let |A4| =
N + 1. It follows from the induction that
Cgr
B
(4.3.27) 10,1800, y, 0, —a(0, y, @))]| < oLk

if [B|<N
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CoamM 1. — If|[A|=N+12>2

(4.3.28) 10,150, y, 0. ~a(0,y, 0)]| < Co |0, a(0,y,0)| + <§;ﬁ-

Indeed, according to (4.3.5) we have, setting for short f(y) = (0, y, a, —a(0,y, o))
and k(0) = (¢) x1(0) + 1 — x1(0),

Foly) = aw+ (1— % 1 —xa(0) v+ % K(6) a(6,y.0) + 2(6, @) — =(8, F(4)
felw) =+ 5 (1= xa0) %Ly~ S al6..0) + C(0,0) (0. ),

Differentiating both side A times with respect to y we obtain since |A| > 2

10 F()| <510 a(0, y, )| + 107 [2(0, FW)]| + 10, O, F W)
We use now the Faa di Bruno formula (see Appendix A.1). Let Z be z or ¢ then

1= Y { 5 1) R+ 5 0.50) 0 ) }+ @)

Jj=1

(€0)

where (2) is a finite sum of terms of the form

@% 2)(0, F ) [T (0% £()"
j=1
where X = (z,€), 2 < [v| < |A|, [¢;] > 1, |k;| > 1 and

S

dki=v, DIkl = A
j=1

Jj=1

The term (1) can be bounded by Coed;' f(y)| (where Cy depends on Ag, A; in

(3.1.1)). Since |v| > 2 it is easy to see that |{;| < |A| —1. We can therefore use
(4.3.27) and Proposition 3.3.2 to write
C
<Cye H A

V k] < O
Thus (4.3.28) is proved which 1mphes the part a) of Lemma 4.3.3 when |A] = N + 1.

CrLamM 2. — If F € Gy (see (4.8.21)) and |A] = N + 1 we have

c
(4.3.29) 0 F (0.9, @)| < £(Co10;' a(6,y,0)| + <9>ﬁ4\>'

Let us set for convenience as in (4.3.24),

f(y) = ﬂ(aa Y, a, —a(@, Y, a))
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We know by assumption that F(0,y,«a) = G(0, f(y)) where G satisfies (4.3.22). By
the Faa di Bruno formula we have

(4.3.30) 0 F0..0)= 3" 2 0, 1) ) $) +(2

i=1

(1)
where (2) is a finite sum of terms of the form

S

0% G, F ) T (05 rw)™

j=1

where 2 < |v] < |A|, 14;] > 1, |k;| 21,1 < s < |A] and
S S

(4.3.31) Doki=v D Ikl = A

j=1 j=1
Now by the Claim 1 we have

Ca
A

(4.3.32) (1) < g(co 102 (6, y, )| + W>

On the other hand in the term (2) it is easy to see that |¢;| < |A| — 1. Indeed if we
had a jo such that |¢;,| = |A| it would follow from (4.3.31) that jo =1, s = 1 and
|k1] =1 ; but then |k1| = 1 = |v| which is in contradiction with |v| > 2. Therefore we
can use (4.3.27), (4.3.31) to write,

CAEH (7 1\@ )" - C“Eﬁ'

Then (4.3.29) follows from (4.3.30) and (4.3.32).
Cram 3. — If|[A|=N+1,5j=1,...,n, { = 3,4 we have,

. Ca
(4333) |07 (H} (0.9.0a.))] < Co(107 a(®.v. )] + 10,68, y. )]) + 755y
where H} is defined in (4.3.20), (4.3.18), (4.8.13).

The proof is exactly the same as in the Claim 2. We use the Faa di Bruno formula,
the estimates on a, b given by the induction, the estimate (4.3.16) to obtain (4.3.33).
We are ready now to prove the part b) of Lemma 4.3.3 when |A4| = N + 1.

We use the equations (4.3.19), (4.3.20) which we differentiate |A| times with respect
to y. Since Zg (0, 0) and F,g belong to G+ we use the Claim 2 to estimate them ; the
term Hj Jb-bis handled by (4.3.33), the Leibniz formula and the induction hypothesis.
Finally we obtain since |b| < 2 ‘y‘ < 26,

Ca
DS

Taking £ and § small enough we obtain the part b) of Lemma 4.3.3. O

10} ;| < (e +6) Co(10;' al + 10, b)) +
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So far we have proved the points (i), (ii), (iii) in Theorem 4.3.1.
Let us prove (iv). It follows from (4.2.1), (4.3.6) and (4.3.9) that

g gy,
a avba ‘ ‘_ 77b7"<c
‘87” (., 5,95| + | 7, (:2:0,95)
where C' is an absolute constant.
Since |n| < 4, |a|] < %‘;" <1094, |b] < 2 % < 20 we can write
(4334) |Qk (777 a, bv g]) - Qk(_a’v a,0, g])| < C'o.
Now (4.2.8) gives gix(—a,a,0,g;) = % (—a). Tt follows then from (4.3.15), (4.3.6)
and Proposition 3.3.2 that
A
‘Qk(_a,a,o,gj) - (1 + 219) o\ 6316‘ <Ce

which combined with (4.3.34) gives the point (iv).
Finally (v) follows easily from (4.2.2), (4.3.9) and (4.3.6). This ends the proof of
Theorem 4.3.1. O

COROLLARY 4.3.5. — Let us set k(0) = (0) x1(0) + (1 — x1(0)) and for j=1,...,n,

n—3(1-xi(0)) (sgnb)y
to k(0)

) vj (H,y +z(0, a), / + §(9,a),a).

gi(n) = Xo( o)

Then we can write
(4.3.35) g(n) = > @(n,a,b, ﬁj)(m - % (1= x1(0)) (sgn 0)y + (dc + i be) (0, v, a))
=1
where

o 1 m=50-xi(0) ey @ b
4@ 5.9;) = 3755 ‘”( %(0) " %(0) k:(é))’gj>

and qg, ag, by satisfy

() (0, ,0) < 10v5 2 [56,y,0) + —OL_y) < vB5 1YL,

6’ [+ 462 )
.. ~ ~ C n
(i) 103400, 1,0)] + 105100, 0)] < A, A€
e o (142i6 _
) [70..5.37) ~ S ol < Ce40) i ol <0,

() 104, ) 08 Guln,@,b,55)| < Cluo) if 1A+ Bl > 1, ol < o, 1< 4L < m
uniformly with respect to (0,y) € Qs and a € S.
Proof. — We have
k(6)

(sgnb)y] = W%L

X+ 1)+ 210 ! —<§>1<9>

R 0 (sgn)y.

N =
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So let us set in the statement of Theorem 4.3.1 7 = k() n+4 (1—x1(6)) (sgn6) y ; then
we obtain the decomposition of g; in Corollary 4.3.5 with a, = k(0) ay, gg = k(0) be
and the estimates on gy, ay, Eg follow easily from the correspondent one for qs, ag, by
stated in Theorem 4.3.1. O

Lagrangian ideals and the phase equation. — We pursue here the proof of Theorem
4.1.2. Let us set

In— 3 (1—x1(0)) (sgn ) y|
2 50 < 6}.

We introduce now a space of families (f(-, &))qes of functions on O.

(4.3.36) O = {(9,y,n) € RxR"xR" : |y < & (6),

DEFINITION 4.3.6. — We say that (f(-,a))aes belongs to H if

(i) Forall « in S, (0,y,n) — f(0,y,n, a) belongs to C*°(0O).
(ii) For every A, B in N™ there exists Cap > 0 independent of « such that

sup |8{/4 8,73 f0,y,m, )] < Cap, for all a € S.
(6,y,me0

REMARK 4.3.7
1) H is closed under multiplication and derivation with respect to (y, 7).
2) If we set, with notation (4.2.10)

7(0,9,m,0) = 0560, +2(0,0), 75 +€0,0),0)
then (f(-, &))aes belongs to H. This follows from (4.3.6).

DEFINITION 4.3.8. — Let ' = (F (-, ))aes. We say that F' € J if we can write

F(97ya777a) = ij(97yan7a) Uj (979 + .13(9,0&), % +€(9,0&),0&)
=1
for all (6,y,m,a) in O x S with (f(,@))acs € H.
EXAMPLE 4.3.9. — Let us set F' = (F (-, a))qes where
1 o
F(@.y.ma) =m =5 (1= x1(6) (sgn6) yr + (@ +ib)(0,y,0), ke {l.2,....n}.
Then F € J.

This follows from Corollary 4.3.5. Indeed the matrix (ge(n, @, b, gi))j.e is invertible
if € + 4 is small enough and according to the estimate (v) if we set (dg;) = (q(---))~*
then (d;x (-, @))acs belongs to H so our claim follows from Remark 4.3.7.

Now if F' = (F(-,a))acs, G = (G(-,@))aes we set

" (OF 9G _9F 9G
(4.3.37) Fer= (X (a—nj " By 8—7”)(-7@))&65-

j=1

Then we have the following result.
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LEMMA 4.3.10. — J is closed under the Poisson bracket (4.3.37).

Proof. — Recall (see (4.2.10)) that v;(0, z,&, o) = uj o x—g(x,§) where uj(z,{, o) =
& — ozé —i(z; —ad) and x_g(2,&) = (z(—0;2,8), £(—0;2,€)) is the symplectic map
defined by the flow. Since {u;,u;} = 0 we have, denoting by { , } the Poisson bracket
in (x,€), {vj, v} = {uj o x—6,ur 0 x—0} = {u;,ur} o x—¢ = 0. It follows that, in the
coordinates (y,7),

{0iOry +20:0), 5+ 605 0), valB + 2(68:0), 5 + €800} =0

Let F = (E] fi vj("a))aes’ G= (> vk("a))aes two elements of 7. Then if
{ , } is the Poisson bracket in (y,7n), we have,

{ijvj, ngvk}
j k
=> (ij{%‘ﬂk}) ety (Z{fjvgk}%) ety (Z{fjﬂ)k}gk) ;.
ko ko FR

Since f;, g, v; belong to H it follows from Remark 4.3.7 (i) and Definition 4.3.8 that
{F,G} e J. O

Here is an important lemma which is a generalization to our context of Lemma
7.5.10 of [H].

According to Corollary 4.3.5, we shall set
(4.3.38)

1 ~ ~
1/)19(‘973/, a) = 5 (1 - Xl(g)) (Sgng) Y — (a’k(gvya Oé) + Zbk(aa Y, a))v k= ]-a sy T
LEMMA 4.3.11. — Let R = (R(",&))aes € J where R(0,y,«) is independent of 7.

Then for every N € N one can find Cny > 0 such that for every (0,y) in Qs (see
(4.3.2)) and o in S we have

|R(0,y,0)] < Cn [Im (8, y, )|V,

Proof. — We are going to show by induction on N € N* that we can write for (0, y, o)
in Q5 x S,

(43.39)  RO,y,0)= > hy(@y0)n—v)+ > wy(0,y,m,0)(n— ),

0<lyl<N [v|=N

where (hy (-, @))acs and (wy (-, @))aecs belong to H.
For N =1 the first sum in (4.3.39) is empty and by assumption we have

=+ £(050)))

R(@,y,a) = ij(aayvna Oé) Uy (gvy + x(é);a), <9>
j=1
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n—3 (1=x1(9)) (sgn 6) vy =1

where (f;(-,a))aecx. Now we use Corollary 4.3.5. Since XO( 70 1o

if (0,y,m) € O we can write

R(ea Y, Oé) = Z ’I"k(e, Y,1, a)(nk - wk(97 Y, Oé))
k=1

where
0 Y Y, 1, & ij 0 y Y, 1, & qk(nvaagvgj)

Now it follows from Corollary 4.3.5 and Remark 4.3.7 that (r4 (-, @))aes belongs to
‘H. Therefore (4.3.39) holds when N = 1. Assume now that (4.3.39) is true at the
level N. Then apply Lemma 4.2.1 to the function

n—351=x1(0) (sgn)y
1o k(6)
with z = —¢(0,y, «). It follows then that

97(97y5777a) = XO( ) w’y(eay7naa)) |'Y| =

(4340) 9’7(97 Y,1, Oé) = Z %(777 a, b7 g’)’)(nk - wk(ea Y, Oé)) + T(Cl, b7 g’y)
k=1

For the g5 and r we have the estimates (4.2.2). If we set

h’Y(97 Y, Oé) = r(a(97 Y Oé), b(ea Y, Oé), g’y(ea Y,y Oé))
Wy (0,y,m,0) = qj(n,a(0,y, ), b(0,y, ), g4(6,y, -, a)).

We deduce from (4.2.2) and Corollary 4.3.5 that (hy(-,®))aes and (wy;(-, @))acs
belong to H. Then using (4.3.39) at the level N and (4.3.40), (4.3.41) we obtain
(4.3.39) at the level N+1. Let us take now in (4.3.39) n = Re (0, y, a)+s Im (0, y, o)
where s € [0,1]. We obtain
(4.3.42)

[R(0,y,0) = > hy(6,y,0)(Imep(6,y,0))7 (s — )| < Cn | Tmep(6,y, )|V

0<|v|<N

(4.3.41)

where C'y is independent of (6,y,«) € Qs x S.

Using an interpolation formula we deduce that the coefficients of the polynomial
in (s — ) in the left hand side of (4.3.42) satisfy the same estimate which proves that
R has the claimed bound. O

COROLLARY 4.3.12. — For every N € N there exists a constant C > 0 such that

‘(% _ Z_Zf)(e,y,a)\ < Oy [Tmy(8,y, )Y

for every (6,y) in Qs and a in S.
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Proof. — According to (4.3.38) and Example 4.3.9 we have n, — ¥ (0,y,a) € J. It
n

follows from Lemma 4.3.10 that
_ _ (9% _ 9% e
ng(eayva) T (8yk 8yj )(G,y,a) - {77] 1/)]77% wk}(gvyaa)

defines an element of 7. Since R;; does not depend on 1 we can apply Lemma 4.3.11
and the conclusion follows. O

So far we have worked in the coordinates (y,n). Let us go back to the original
coordinates (z, &) and let us summarize the results already obtained.

We set ¢ =y + 2(6,0a), & = TZ> +&(0,a). Then (0,z) € Qs (see (4.3.1)). Let us
recall that,

v (0,2, ) = &(=6,z,8) — of —i(x;(—0,2,8) — al),

(see (4.2.10)).

Now let us introduce
(4.3.43) Pp(0,z,a) = & (6, )

N 1 (sgnd)(1 — x1(0))(z — (0, ) — (ar + igk)(H, x—x(0,a),a)
(0)

where ay, by, have been introduced in Corollary 4.3.5. Then we have,

THEOREM 4.3.13. — We can write
(1) &k — Pw(0,2,0) =Y dL(6,2,& ) v; (6,2, q)
=1

where di are smooth functions defined for (8,x) € Qs and

1 x —x(0, a) ]
€= €(00) = 5 (1= xa(0) (sgm0) = <
Moreover we have in this set,
(i) 10/ 0.0 €.0)| < b AN,

(111) |q)k(9axaa) - a§| < C(€ + 6)’

() [ y(0,,0) - D 00)) gy B0

) Cal)A i A< 1
(v) 185! k(6,2 0)] < {CA O 141 i Al =2
(Vi) @x(0,2(0, @), a) = (6, ).

(vii) ‘(% — %)(G,x,a)‘ < % (W)N’ VN eN

where the constants Cu, Co, Cn are independent of (0, x,&, «).
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Proof. — Tt follows from Corollary 4.3.5 that when

1 x—x(0,a) 4]
€ —¢(0,0) - B (sgnd) (1 —x1(0)) T‘ < @
then
9 x ga chk 9 €T ga gk _(bk(eaxaa))
with

1 ~ T~
e (0.2.6,0) = (0) qi ((0)(€ = €(6..0)) = 5 (sen0) (1 = x1(6)) (& — 2(0, 0)). 0,5,
where g, is defined in Corollary 4.3.5 (i). By (v) of the same result we have,
(4.3.44) |cje(0,2,8) — (1+2i0) 6] < C(e+6)(0).

It follows then that the matrix (c;) is uniformly invertible. Let us set (di(@, x,€)) =
(cjr(0,2,€))~t. Then we obtain (i) in Theorem 4.3.13. The estimate (ii) follows then
from Corollary 4.3.5 (v) and (4.3.44).

Let us now prove the claimed properties of ®. First of all since {(0, ) = ag+0O(e),
W 8, |a|+[br| < C 8. We deduce easily from (4.3.43) that |® (0, z, £)— ag| <
C (g + §). On the other hand it follows from (4.3.43) and Corollary 4.3.5 (i)
xr — 20, @)

1 ~
_bk(eax_x(eaa)aa): 14402

{6)
where |R| < |z — (0, )| /(0)?.

The point (v) in Theorem 4.3.13 follows easily from (4.3.43) and Corollary 4.3.5
(ii) ; the point (vi) is obvious since @ (6,0, @) = bg(6, 0, ) = 0. Finally for the point
(vii) we remark that according to (4.3.38) and (4.3.43) we have

0®; 0% 1 (0¢; Oy
(1) = (8—:% - 8—%)(9,95,@) =% (8—% - 8—%)(9,x — 2(0,a), ).

Using Corollary 4.3.12 and the point (iv) we obtain

C C N
(W] < 7 Mm@,z = 2(6,0), )Y = 5 (0| 1m @(0,2,)])
Cn [l —x(0,a)|\N

We need now to introduce the definition of Lagrangian ideals in the coordinates
(z,8).
Let (F(,a))aes a family of functlons F(0,z,¢, «) defined for (6,z) in Qs and

[ 9,a>—%(sgn9)%?‘”| < 5/(6

DEFINITION 4.3.14. — We shall say that the family (F(-,a))acs belongs to J(,.¢) if
a
(4345) (<9> F(@, Y+ QC(Q, a), <9> + 5(0; Oé)a a))OLES eJ

where J has been introduced in Definition 4.3.8.
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For example, (& — ®;(0,2,@))acs € J(,¢)- As a consequence of Lemma 4.3.11 we
have the following result.

LEMMA 4.3.15. — Let (R(-,a)aes be in J(5¢) and assume that R is independent of £
then for every N € N there exists Cy > 0 such that,

C x—x(0,a
G (=g

We can now pursue the proof of the existence of a phase as described in Theorem
4.1.2.

(4.3.46) |R(0, z, )| <

LEMMA 4.3.16. — With ® defined in (4.3.43) we have

8p 0Py, - 0Py, 8p
(~ 55 @O~ G5 @) 2, P 5 CX3) I

Proof. — We know from (4.3.43), (4.3.38) and Example 4.3.9, with £ = % +£(6,a)
that,

& — Pk (0,2,0) = W@k — Y0,z — (0, @), a))

:%Z (0,2 —2(0,a), ()(€ — £(0, ), a) v (0, 2,€, )
where (fir(-,0))acs = ((a(n — 3 (sgn0)(1 = x1(0)) ¥,@,b, 9;) " aes € H (see Defi-
nition 4.3.6).

Recall now that v; (0, z, §, o) = ujox—g¢(x, &) where u;(X,E) = =; —ag—z(Xj—a;)
(see (IV.2.9)). Let us set

—6(2,§) = (X,B) = z(0,X,E) =z, {0, X,E)=¢

It follows that

(4.347) &:(0,X,2) — @1(0,2(0, X, E), a)
1

Let us set
M(97XaEa ) (0 J,‘(e 7E) —.13(9,0&), <9> (5(97)(55) —§(9,Oz)))7
p(0, X,E) = (x(0,X,5), £(0, X, F)),
p(0, ) = (x(0, ), £(0, ).
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Now we differentiate (4.3.47) with respect to 6 using the equation of the flow given
n (3.1.2). We obtain

- 8<I>k _ 8<I>k 8p
—ga, (P10 X.E) = 55 (0.2(6, X, 5), ) ]Zl o, (026 X.5)0)- 5

Z |: f]k (QaXa‘—‘a )) + % agék ( (Q,X,E,Oé))
=1

(p(0, X, Z))

1 Op dp Ofjk _
) Z (5 (016.%.2)) = 52 (p(6.0))) F2 (M1(6. X. 5. )

Op 8p

5r (0(0.X.2) =2 (p.0)) |
Ofjr
One

T {i (& (8, X,5) = &(8,a)) — (0) (

(M(G),X,E,a))H ui (X, E)

We can now go back to the coordinates (x, &) = p(6, X, Z) and then to (y,7n) where
y=z—z(0,a), {—£0,a) = (72’). We obtain

_ [am Z g‘ij gg} (6.9+2(6.0), o )

= Z |:<;T fjk(97ya777a) + % %(97:(},77704)

L g~ (9 " Op Ot
g 2 (G e 2(0.0), s +60.0)) = 2 (p(0.00) S (0.1.m.0)

"0 ) 2 af;
+3 (e {a—i (y-+2(6,0) g +€0,0) — 5= <p<e,a>>}) a{,j <9,w,a>]

0,y +2(0,), % +£(9,a)) =: Z G;(0,y,n,a)v; (9,y +z(0, o) % +£(9,a)).
j=1

According to Definition 4.3.14 the Lemma will be proved if we show that
((8) Gj(8,y,m,c))acs belongs to H that is all the derivatives with respect to
(y,m) are uniformly bounded When ly| < 6(F) and ‘7] — 2sgnf(l —x1(0)y| <6
Recall that (fjr) = ((ge(n — % sgn6(1 — x1(0))y,a, b, g;))~1). Using (4 3.5) we see
that 85 € 'H. Then dlfferentlatlng (4.3.19) with respect to 6 we see that 2 5 g e H.
It follows from (4.3.9) that %%7 € H. Then we deduce from the estimates (4.2.2) that
880 [qk (n— l sgnd(1 — x1(0)) y,&,g, gj)] belongs to H and we deduce from Corollary
4.3.5 (iii) that 8 5 [(ax(n — 5 sgnb(1 — x1(0)) y. a, b, 9;))"*] € H. Thus (af“‘) € H.

Since fjk, aga , %f;f , %f belong to H and since H is closed under multlphcatlon it

remains to prove that the functions h(0,y,n, ) = 8_@ (y + z(0,a), 7% Wy T £(0,a)) o

<
~
~~
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(9) L (y+z(0,a), 4 Gl +£(0, @) belong to H. Since - o +&0(0, ) has all its deriva-
tives in 7 uniformly bounded, we are led to prove that if g/*(z) are the coefficients of
p(z,€) then 94 g7%(y + (6, )) for A € N* and (0) 92 ¢'F(y + z(0,)) for B € N",
|B] > 1 are uniformly bounded when |y| < 6 (f). This is obvious if A = 0 and if
|B| = 1 condition (3.1.1) shows that
CB . CB

(y +2(0,a))lBHH1Fo0 = (2(0, §))IBl+1+e0

Cg
S (6Y1BI+1Ho0

since f € S C S NS_ (see (3.3.3)). O

107 9" (y + 2(0, )| <

COROLLARY 4.3.17. — With ® defined in (4.3.43) we have for k=1,...,n

(—@(J? D0, x,a))— 8 0,z,0) Zaq)k

op
B (z,9(0,2,0)))

€ J(z.e)-

a€S

Proof. — First of all we show that

(1) = (22 (2, 0(0,2,0)) ~ 2 (2,6) € Ty

8l‘k Tk ac
Denoting by ¢%/ the coefficients of p we can write
agij agzg agij
9z D)% 5 (@)&& = 5 (@) (B = &) & = 5 = (2) Bilg = )
(a) (b)
To see that this belongs to J(, ¢) we use (4.3.45). In the coordinates (y,7n) we have

dg¥
8l‘k

)@ = =52 (-4 (6. 00) (7 + €56.0)) 0~ 0.3 ).

Slnce n — ¥i(0,y,a) € J (see Example 4.3.9 and (4.3.38)) and (% +&(0,0)) -
d;ck (y + (0, ) belongs to H we have (a) € J(z.¢)-
A similar argument shows that (b) belongs to J(z.¢)-
We show now that
0Py,

(2):(8—% (9,x,a)[§—g (z, ®(0, 2, ) — gg( S)DQESG%,&»

The coefficients of p can be written g/ (x) = §;; + ¢;;(x). It follows that
(2) = (2@(935@)(@-(“:@ — & +ZC€ (@0, 2,0) — @))).
Bz i\ T, J J

Now %% = <é> '315’“ € H and cjo(y+x(6, ) € H. Tt follows that (2) € J(5,¢) and the
Corollary follows from Lemma 4.3.16. O
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COROLLARY 4.3.18. — For every N € N there exists Cny > 0 such that

0] P
- ;—i (2,90, 0)) — 20 (02,0 ~ 275 (0,,0) g_;g (. (60,1, 0))]
Cn (lx—x(0,a)|\N
< — (/2
O] ( (0) )
Proof. — This follows from Lemma 4.3.15 and Corollary 4.3.17 since the left hand
side does not depend of &. O

PROPOSITION 4.3.19. — Let a € S (see (4.3.1)). Let us set for (0,z) € Qs,

1
(4.3.48) ¢(8,x, ) :/0 (x—x(8,0))- @0, sz+(1—s) z(8, ), @) ds—i—f)p(a)—l—zii a2

Then we have

. 1 1
() ¢(0,2,0) = (¥ = az) - ae + 5 (2= ax)* + o |agl* + Oz — aa|Y).
For every N € N there exists Cy > 0 such that

(ii) % 0,z,a) — @(H,x,a)‘ < CN(W)N.
(i) g—‘g (0,2,0) + (2, % 0,2,0))| < CN(WW

uniformly with respect to (0,x) € Qs and o € S.
Moreover, uniformly with respect to (0, x,a) € Qs x S, we have

() |92 (0,2,0) ~ ae| < O (c + V).

(v) [02 (0,2, 0)| < Ca, VA EN".
1|z—2z00,0)? 1
5T gl <cer VD

x—z(0,a)?
(vi) | Im (0, z, ) — #

Proof. — If we can prove that for j =1,...,n,
D,;(0,sz+ (1 —9)ay,a)= ozg +is(z; —ad) + OV |z — a. V)

then (i) will follow according to (4.3.48). By (4.3.43), Corollary 4.3.5 and Theorem
4.3.1 we have

®,;(0,z,a) = ozé —(a; +1 Ej)(O,x —Qg,q) = ozé — (ar +ib)(0, 2 — g, ).

Now Example 4.3.9 (for § = 0) shows that n; + a;(0,y, ) + i b;(0,y, a) belongs to
the ideal J introduced in Definition 4.3.8. On the other hand, since by (4.2.10) for
0=0g;(n) = XO(% n)(n; —iy;) it follows that n; — i y; belongs also to J. Thus the
difference a;(0,y, o) +1b;(0,y, a) + i y; belongs also to J and does not depend on 7.
It follows from Lemma 4.3.11 that for all N € N,
a;(0,y, @) = O(| Im (0, y, a)|")
b;(0,y, @) +y; = O(| Tm (0, y, a) V).
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Now (4.3.38) and Theorem 4.3.1 (ii) show that |Im;(0,y, a)| = |b;(0,y,a)| < C|y|.
Thus for all N € N,

a;(0,y,0) = O(lyY),  b;(0,y, ) = —y; + O(ly|™).
It follows that for all N € N,
®;(0,y, ) = ag +i(z —ad) + 0|z — az|V)

which proves our claim.
Let us prove (ii). We have, by (4.3.48),

Op _ [, sx —s)xz(h,a),a)ds . lsx—x a))-
5 O.0) = [ 000+ (1= 5)s 0.0 )ds 3 [ oon —mu(0.)
-%(sm—l—(l—s)m(@,a),a)ds

Now we use Theorem 4.3.13 (vii) and the fact that | — z(6, )| < ¢ (d). We deduce
that

8(,0 1 " 8(I>j
e 0, z,a) — /0 [‘I)j +s ;(mk — x50, ) a—xk} O,sz+(1—5)z(0,a),a)ds

< oy (2=l

where Cy is independent of (6, x, «).
It follows that

g—;’; 0,z, ) _/0 ®;(0,sx+ (1—s)z(f,a),a)ds
| —a:(@,oz)|)N.

{6)

Integrating by parts in the second integral above, we obtain (ii). As a consequence of

_/015%[@j(975x+(1—s)x(@,a),a)] ds‘ SC’N(

(ii) we have the estimate

(4.3.49) ‘p(x,‘b(@,x,a)) —p(ﬂc, ¢ (9,3:,04))‘ < CN(

¢ |x—a:(9,oz)|)N.

(0)
Let us prove (iii). We deduce from (4.3.48) that

(4.3.50) % 0,z,0) =(1)+(2)+(3)+ (4)
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where

__Z/O 5(0,0) Dr(0, 52 + (1 — 8) 2(0, @), @) ds
k=1
:Z/ (xk—xk(f),a))%(ﬁ,sx—f—(l—s)x(@,a),a)ds

" 0Dy,
Z/ xp — xk(0, ) ga— O,sx+(1—s)z(0,0),a)(l —s)z;(0,a)ds
(4) = p(a).
Let us consider the term (2). We use Corollary 4.3.18 to get

9=3 [ 0,00 52 (4 0-3) 20,0, 00,30 01-3) 50,0, )

k
_Z%(97sx+(1 —s)z(6,a),a) g—?j(sx—i—(l —s)z(0, o),
D, sz + (1 —3)z(0,a), oz))} ds
| —x(0, )|\ N
+0(( 0 ) )
Now, by Theorem 4.3.13, (vii),

08, 0D,
(4.3.51) }(a—x] —a—m)(e,sx—i—(l—s)x(&a),a)‘ < Cn

and sV < 1. Therefore,

sN |z — 2(0, )|V

o O~

bd
(2) = —/O o [p(s:v +(1—-s5)z(0,a),®@,sx+ (1 —3) a:(@,oz),oz))} ds
|z —2(0, )|V
+0( ar ).
Therefore we obtain

(4.3.52) \(2) +p(z, ®(0, z,0)) — p(x(6, ), (0, 2(0, @), a))‘ <Cy (7“ — 26, 0)| )N,

(6)

Let us consider the term (3). Using again (4.3.51) we get
d z —xz(60,a0)|N
Z/ s)i;(6, ) ds(q)j(f),sx-i-(1—s)x(9,a),a))+0(%).

Integrating by part we obtain

n

(3) = —2(0,a) - (0, 2(0, ), ) + Z/o z;(0,a) ®;(0,sx+ (1 —s)x(0, o), a)ds.

j=1
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Comparing with the term (1) we obtain,

(1) + (3) + #(6, @) B(8, 2(6, @), )| < CN(W)N.
Now by Theorem 4.3.13 (vi) and the Euler relation we have,
(6.0) - 9(0,2(6.0). ) = €(6.0) T2 (s(6.0). (6. )
= 2p(x(0, a),£(0, ) = 2p(a).

It follows that
|J) — 33(9,04)|>N

() '
Since in (4.3.52) we have p(z(6, a), ®(0, 2(0, o), ) = p(z(0, ), (0, ) = p(a), we
deduce from (4.3.50), (4.3.52) and (4.3.53) that

(4.3.53) (1) + (3) + 2p(e)| < CN(

— (0 N

(4.3.54) 92 (9,2, 0) + p(z, (0, 2, a))‘ < CN<M) .

06 (6)
Therefore (iii) follows from (4.3.54) and (4.3.49).
Finally (iv), (v), (vi) follow easily from Theorem 4.3.13. O
REMARK 4.3.20. — Assume that o is such that
1
(4.3.55) 3 Clog] €2 and  ay - ae < oo (ag) |og]

(so a € S_ instead of a € §). Then Theorem 4.3.1, Corollary 4.3.5 and Proposition
4.3.19 are true for 6 < 0.

By the same way if 3 < |og| < 2 and a, - ¢ > —co (o) |ag| (which imply that
a € §4) the above results hold for 6 > 0.

4.4. The case of incoming points

We are going to prove Theorem 4.1.2 when

1
lag - el > co (o) |ag] and = <ag| <2

2
Since the problem is entirely symmetric we can without loss of generality assume that
1
(4.4.1) 3 Slag| €2, ag-ae < —co () |ag|.

It follows from Definition 4.1.1 and the discussion after, that
Qs ={(0.y) ERXR":0<0, |y <5(O)}U{(0,y) ERXR":0>0, |yl <3(h)
and (y—i—a:(@,oz))ag <a <y+.13(9,0¢)> |Oé§|}
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Let now xo € C§°(R™), x1 € C*(R"™) be such that,
xo(t) =1 if [t <1, xo(t)=0 if [¢t/>2 and 0< xo <1,
x1(0)=1 if 6>— x1(0)=0 if 6< -2 and 0< x1 <1

/

For j =1,...,n we introduce

1 sgnd

2 0) "
+£(0,0), @),
where 110 is a small constant to be chosen, (6,y) € Qs, a satisfies (4.4.1) and v; has
been introduced in (4.2.9).

(4.4.2) g;(n) = XO(i n) 030,y +2(6,0),1x1(6) + (1= x1(0)) [% +

~

REMARK 4.4.1

(i) According to Remark 4.3.20 since (4.4.1) implies (4.3.55) the phase has been
already constructed when (6, z) belongs to the first part of ﬁ,; where 6 < 0. Therefore
we are left with the case 8 > 0

(ii) If o satisfies (4.4.1) and (6, y) € Qs, 6 > 0, then the point (y+z(6, o), n+£(6, @)
belongs to S_. Indeed recall that 3 < || < 2 implies + < 1 |ae| < |n+£(0, )] <
2 |ae] if |n] < 2po and o, e are small enough. Therefore setting = = (6, &) we can
write

z-(n+&00,a)) =z (ag +n+ (0, @) < e (@) |ag] + || (po + €)

< 2ei(x) [n + €00, a)| + 4(po +¢) (x) [n +£(6, )
_1
S1

(@) [n +£(0,0)|

if ¢1, po, € are small enough.
Our first step will be the proof of the following result.

THEOREM 4.4.2. — There exist small positive constants pg,d and C* functions a =
a(0,y,a), by = bp(0,y,a), k = 1,...,n, defined on Qs with 6 > 0 such that, with
a = (ar), b = (bg) we have for n € R™,

n

(1) g;(m) = ar(n,a,b,9;)(mk + ax(0,y, ) + i br(6,y,))
k=1
where the q;, s have been introduced in Lemma 4.2.1.

Moreover we have for (0,y) € Qs,0>0andk=1,2,...
20
(i) \akw,y, >+ - \ < V3 inf(L,ly),

1—|—4¢92 | |
y
(iii) If we set

a(0,y,a) = a(0,y,a) +

’n)

and E(G,y,a) = (0) (b(@,y,a) + Y )

by
14462 144062
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then for every A € N, |A| > 1 one can find Ca = 0 such that with x = y + z(0, «),
0 >0,

N _ c 1 [Al+1 6
10;}a(0,y, )| + 19, b(8, y, )| < CA{<J:> (W + W) + (@)

(iv) |qk(77,a b,g;) — (1+2i0) G| < Cle + V) () if Inl < V6.
( ) |8(a b) Yn Qk(n7a/7b7gj)| < CB,’Y <9>; Zf Bec Nn7 Y S Nn7 1 < k g n.

Proof. — We use the same method as in Theorem 4.3.1. According to Lemma 4.2.1,
the claim (i) is equivalent to solve the system of equations

(4.4.3) r(a,,9;(0,y,;-) =0, j=1,...,n.

We shall solve this system in the set
(4.4.4)
20y
— n n.,
E= {(a,b) €R" xR": ‘a—i— T

\flyl}

‘ < V6 inf(1, Jy)), ‘b"_ 1+ 462 S (0)

where 0 < § < 1.

First of all we give equivalent equations to (4.4.3) in the set E. We write as in
(4.3.13)

(4.4.5) r(a,b,g;) = g;(— Z 89] —a) by, + Z 0.y, 0,a,b) by, by
p,q=1
where
) 1 827“
(4.4.6) H] (0,y,0,a,b) = (a,tbh,g;(8,y,;-))(1 —t)dt.

o Oby, b,
By (4.2.2) we have
(44.7) |04 0 r(asth,g;(---))| < Cap Y /lag 9(0,y, o, §)| d&.
[vI<|Al+3n

Since for 6§ > 0 we have,

gi(n) = x (i> (& —ix;)(—0;y + x(0; ), n + £(0; @) + iz + i og)]

Ho

we deduce from Propositions 3.3.1 and 3.3.2 that |0 5‘5 95(6,y, o, m)| is bounded on
the support of y, by

cio) if B=0,
( (x)? ) it |B[=1,
<rc>cfflioo ( %) if |B|]>2
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It follows that

C () if |IB|=0
A AB o+ 20 if [B] =1
(4.4.8) 10(ap) 0y Hy 40y, a,a,b)| < (z)2Fo0
CB€

(1+%) if 1B > 2

Since x(—a) =1 and x'(—a) = 0 we see that (4.4.3) is equivalent in E to the vectorial

equation,
(44.9) [¢—iw—i) (ﬁ — 8—2) be| (=05 + 2(0; 0), £(0; 0) — a)

+i(ag +iae) + Z Hpq(0,y,a,a,b)b,by =0.
p,q=1
To shorten the notations we shall set
p(0; @) = (2(6; @), £(6; )
(4.4.10) py(0; ) = (y + (6; @), £(0; @)
py.all; ) = (y + x(0; ), £(0; ) — a).
Since, by assumption, the point p, o(; &) belongs to S_ (the outgoing set for 6 < 0)
we can use the Proposition 3.3.1 to write
z(—0; py.a(0;0)) =y + 2(0; ) — 20E(—0; py.a(8; ) + 2(—0; py.a(0; )
£(=0; py,a(ts ) = —a+£(0; @) + C(—=0; py,a(0; ).
It follows that (4.4.9) is equivalent to

(1+2i0)£(=0:py,a(0;0)) —iy —iz(b; o) — iZ(—9;py a0 )
_i[(1+2i9)z(§§ —0; py.a(0; @) ZZ (—0; py.a(0; ) by,
k=1

+i(ag +iae) + ZHpq - g = 0.

p,q=1

Taking the real and the imaginary parts, we are led to the 2n real equations

8 .
§i(=; py.a(; ) +200b; + 20 a—gg (=0; py,a(0;)) - b
= pya(@:)) b—ad 4 Hib-b—0
¢ 3 Py,alV; Qe 1 =
= 20€(=0; py,a(0; ) +bj +y; + x(8;0) — & + 2i(—6; py.a(8; )
0 ]
+ 52 (ip,0(6:0) b+ Hib-b=0
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where
0 0 , " . , . .
Cf Z CJ by, HIb-b= > Hj byby, H’ =H]+iHj.
P,q=1

Setting X = (57( epb,,c,(e a))), A= (_129 219), our system can be written A X = F.

Since A~! = T +1192 (219 *129) it is equivalent to the following system.

20y 1 . . .
605 py.0(0:0)) = Ty + Tz |20@(0:0) — o) + 20 2(=6:py0(650)
0z
+oae+ o= 7€ (—=6; py,a(60;0)) -b— (Hy —29H2)b-b]
—y 1
b= T AT [x(@;a) — g — 20 ag + 2(—0; py o (6;0)) + (20 H1 + Ha) b - b}

s 0 0:,

8§ ( 0, pya(9 Oé)) +ma—€(—0,py7a(9,a))~b.

Finally, since {(—6; py.q(0; @) = —a+ £(6; @) + ((—6; py,o(0; ) the system (4.4.3) is
equivalent to

_ %y . 1 . -
= 11402 +&(0:a) — 15207 [045 +20(x(0; ) — ap) + 20 2(=0; py o (0; @)
0
+ g (03 pua(0:0)) B + C(=0: pya (0:0) + b
b= — 7 ! [(0; @) — oy — 20 e + 2(—0; (6; )]
1+462 14462 5V @ ¢ 1Py.al%
oC 20 0z . .
8§( t_‘)pya(Q Oé)) +1+74928_€(_9,Py,a(0,04))'b+H4b'b

where according to (4.4.8) Hy, £ = 3,4, are two matrices which entries satisfy the
following estimates

C, if |B|=0
_ C e (6) )
(4.4.11) |90, 08 HI (8,9, 0.0,b)| < @(Hm), if Bl =1
Cpe (0) .
—_— L >
() (x)lal+1+00 (1 + (m))’ if B >2
Let us set
(4.4.12)
D4 (a,b) = —20y +£(0;a) — #{ +20(2(0; @) — ) + 26 z(—0; 0;
1(a 1+ 402 . 15 402 o z(0;a) — oy 2(—0; py,a(6; )
+ g (05 y.0(8:0)) - B] + C(=8 pya(6:0) + Hyb-b
__ -y 1 co) o _p. )
@2(@,1)) - 1+492 1+492 [CL'(@,OC) Qg 2290af—gz( 9apy,a(9aa))]
z
({)E( 0; Pya(9 a))'b—i—m8—§(—9,py,a(9,a))~b+H4b-b.
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Then the system (4.4.3) to be solved is equivalent in E to the equation
((I)l(aa b)v () (av b)) = (av b)

Let us set ®(a,b) = (P1(a,b), P2(a,b)). We shall use the fixed point theorem in F
(see (4.4.4)).
(i) ®(E) C E.
Let us recall that (y + 2(0; @) - ¢ < o (y + 2(0; @) |ae].
Case 1. — Assume that
(4.4.13) z(0; @) - ag = 2¢o (x(0; @) e
It follows that

(4.4.14) vl > 3 (a(6;0)) > T

Indeed one can write
2¢o (2(0; ) |ag| < (2(0;0) +y) - e —y - ag
<o (Y + 2(0; ) |ag| + [y - |og|
< o (2(0; @) |ae| + co |y| - [eve| + y] - |ee].

Therefore ¢ (x(0;a)) < 2|y|. Here we have used the inequality (a + b) < {(a) + |b|.
Let 6* > 0 be such that z(6*;«) - a¢ = 0 (this is possible since ¢ - ¢ < 0 and
z(0;a) - ag > ay - ae + 0|ag|* — +oo if § — +00). Then the point (z(6%; @), ag) is
outgoing for # > 0 and 6 < 0.
We can write by Proposition 3.3.1,

z(0;a) = 2(0 — 0% 2(6%; a), £(67;a))
=x(0";0) +2(0 — 0%) (0 — 0% 2(0%; ), £(0"; ) + 2(6 — 67, ---)
=z(0%5a) +2(0 —0%) (0, ) + z(0 — 05 2(07; ), £(6%; ).

It follows that

z(0;a) - e = 2(0 — 0%) |ag|* + O(e) |0 — 0| + 2(0 — 0% 2(0%, @), £(6%; ) - .

Since |z(0 — 6*,---)| < Ce|f — 0*| we deduce the estimate,

210 — 0%| |ae]® < |20, )| - |ag| + C' |0 — 67

Therefore if € is small enough we obtain

(4.4.15) |0 — 6% < 5z(0, ).
Now let us introduce

(4.4.16) u(0) = z(0; ) — ay — 26 ae.
We claim that

(4.4.17) |u(0)] < Ce (0 —0%).
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Indeed we have 4(0) = 0 and for all § in R,
i(0) = #(6; @) — 2a¢ = 2A£(6; @) — ag) + 2¢ b(a(B; ) - £(65 ).
It follows from Proposition 3.4.1 that
[u(0)] < Ce.
Now since z(0*; ) - e = 0 it follows from Proposition 3.5.2 that
(0% ) = ap + 20" e — 2(—0%;2(0%; @), £(07; ).

This implies that |u(6*)] < Cye. Now we write

lu(6) ‘/ |ds Caeld — 07|

and
[u(@)] < Cre+Cae|d—0"| < Cse (0 —6%).
It follows then from (4.4.14) to (4.4.17) that,

|2(0; ) — gy —20 ] < C5e (0 —0) <5C3¢(x(0;))
o 10Cs

< e [yl.
co

Using (4.4.12) we see that

y ‘< |[2(0;0) — az —20a¢| | [2(=0;py.a)l

(I)2 (av b) +

1+ 462 1+ 462 1+ 462
(1) (2)
a¢ 1 )
122 (=0, pya)| 0] + — 0: pya)| 10| + | Hal - b2
5 (0| 101+ 5 | 55 (=05 ] 1+ 4] -
—_——

5
(3) (4) ©

We have (1) < Cyely|/(0)%, (2) < Ce/(0)? < C'ey|/(0)? since by (4.4.14) |y| > co/2.
Moreover
C'elyl
= <
LR NCT O
and, by (4.4.11), (5) < C 14 4. Since |y| < 3 (0) it follows that (5) < C 3 |y|/(6)>.
Summing up we obtain

y |yl
4.4.18 d b <C 1)
( ) 2(a7)+1+492 (€+ )1+492
so we take ¢, 0 so small that C (¢ + 6) < V6.
Let us look to the term
20y
‘ 1(a7b)+ 1+492
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We have
20y 20
<I>1(a,b) + HTGQ = 5(9,04) — Q¢ — W [x(@,a) — Oy — 290&5]
1) )
20 1 0z

(=0; py.a) - b+ C(—0;py.a) + H3b-b.
—_—
(5) (6)

2 (—p: —
T2 05 Pue) ~ T 00m B
(3) (4)

We have |(1)] < Cs, |( )| < CERGEL < C'e (see (44.17)), |(3)] < G (by Proposi-

< <
tion 3.3.2), [(4)] < |b| <C"¢,|(5)| < Ce, |(6)] < C§2% Tt follows that if € and §
are small enough we have

(4.4.19) (I1) < C (e + 62) < C (e +6%) 2 inf(1, |y]) < V3 inf(1, |y))
co

since |y| > co/2. It follows from (4.4.18) and (4.4.19) that ® maps E into E.
We show now that one can find a constant k € ]0, 1] such that

(4.4.20) 1B(a,b) — B(a’, 1) < k|(a,b) — (@, b)), V(a,b), (V)€ E.
‘We have
1
[21(a,0) = @1(a", )] < s 12(=65 py.a(80)) = 2(=0; oy, (6, @)
39
1 0z . . 9z . . .
T 17308 gg THipve(Bi) b= g (<0 pyw(B0)) b

@)
+[¢(=0; py,a(0; ) — ((=0; pyar (0; ) | + | H3b-b— Hi b - b |.

(3) 4)

Since the point (y+ z(6; a), ae) is outgoing we can use Proposition 3.3.2, (4.4.11) and
the fact that |b| < 2' | < 26, to write

ol , Coe , ,
- _ < 7= _ _
(1)< g cla—dl. (@) < 755 (=¥l +la =)
(3) < Cela—d, (4) < C8(ja—d|+[b—b]).

It follows that

(4.4.21) By (a,b) — 1(a’, V)| < C (e + 8)(Ja—d| + |b—V)).
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Now we have

Y 0 0 /
|(I>2(a7 b) - @Q(G ,b )l < a_g (_6§ py,a(e; a)) b — a_g (_6§ py,a’(e; a)) -b
26 0z %

(=0, Py,aw? a))-b— (—0; py7a’(9; a)) - v

1+ 462 |5¢
+ |Hyb-b—HL Y -V |+

23

1
T gz P05 pya(050)) = 2(=0; py.0r (8 ).

The same estimates as those used in the first case show that
(4.4.22) |®2(a,b) — (IJQ(a’, b')| <C(e+6)(Ja— a’| +1b— b’|).

Thus (4.4.20) is proved if (¢ + ) is small enough. Then the fixed point theorem shows
that the system (4.4.3) has a unique solution in F.

Case 2. — Assume that
z(0; @) - ag < 2¢o (z(0; @) e
It follows that we can apply Proposition 3.5.2 with (y,n) = « which allows us to write
z(0; ) = ag + 20 ae — z(—0; p(0; @)
{ £(0; ) = ag = ((=0; p(6; )

where p(6; o) = (2(6; o), £(6; ).
Using (4.4.12) we obtain the following expressions of @1, ®,.

—20y 26

®1(a,0) = Tz ~ T agz P05 pual) = 2(=0; p(8; )]
(1)
1 0
- i e (0ipa(050)) b+ 0y al0:) — (=05 pl050)) + Hb- b,

e (3) (4)
Y 1
®y(a,b) = 1T 11 [2(=0; py.a(0; ) — 2(—0; p(6; ) |

(5)

o | | 20 Oz
= 7¢ “Hipvalbio)) -0+ e o

(6) )

(=05 py,a(t;0)) b+ Hyb-b.
8)

Let us show that

20y
Py (a,b < V6 inf(1,
(4.4.23) [®1(a,0) + 5 +y492‘ |y|( lvl)
‘(I)Q(avb) + 1 +402‘ < \/g (0)2
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If |y| = co then inf(1, |y|) = co. It follows that
20
DI 1+ 462

@) < 0o < S5 ini(1 ),

0e < 28 i1, y)),
Co

6) < Celbl < 22 <2026 < 25 int( ),
@< 22 i, ),

6) < s < S5 L

6) < Celbl < C"e

(M) < e i,

[(8)] SC’é%.

These estimates imply (4.4.23).
Assume now that |y| < ¢o. It follows that for every ¢ in [0,1] the point (ty +
z(0; ), £(0; ) — ta) is outgoing for § < 0 (i.e. belongs to S_). Indeed we have

£(6;a) —ta=oac+0O(+9)
lz(0; )| < |yl + |y + x(6; )] <1+ |y + z(6; )
SO

(ty +z(0; ) - ae

yl - | + 2 co (2(0; @) |ae|
co (z(6; )) |o]|

<
<
S Geo (y +a(6; ) |ag.

3
6
Then we have the following estimates.

W< / [| |‘ ‘H |‘ H —0,ty +z(0;),§(0; ) — ta)dt

(W< Cely| since [a] < C'| yl-
By the same way we have |(3)| < Ce |y|. Moreover |(2)] < Cely|, |(4)] < C d|y| since

b < 4 < 26.
On the other hand we have
Celyl C'e ly|
< — < <
|(5)| ~ <9>2 ’ |(6)| = Ce |b| = <9>2
() < Celpl < e UL (8) < oYL
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These estimates imply (4.4.23) since in this case |y| = inf(1,|y|). Summing up we
have proved that ® maps E into itself.

We show now the estimate (4.4.22). But it is easy to see that the proof given
in Case 1 works also in Case 2. Using again the fixed point theorem we see that
the system (4.4.3) has a unique solution in E. This proves the points (i) and (ii) of
Theorem 4.4.2.

To prove (iii) we use an induction on |A| starting with |A| = 1. Let us set for fixed

(6, a)

~ 20
(4.4.24) Yya = (y +z(0,0),£00,a) —a(b,y,a) + T feg).

Using (4.4.12) we see that (a,b) satisfy the system

(4.4.25) @=¢£(6,a) — 2&F 20(2(0, ) — az)

1+ 462
260 1 0z 1~
" Trag S = g g A gyt
(1) (2)
1 0z Y
i £l (—=0,7y.3) Tt C(=0,7y.a)
) (4)
I =55 2 = =y ~ y Yy
—— H3b- — H H. .
gy Ha b gy Ha b T Y s T T
(5) (6) (7)
= (O)(x(0, ) — ax — 20 ) (0) -
(4.4.26) b= Ty T3 ag2 20w
(8)
¢ 7, 0¢ y0) 1z omT Y
— (0, 7,2) b+ =2 (=0, 7,3 — Hyb b+ 2H b —L
g 0 wa) b F e (0 7ma) T + gy Hab- b+ 2 Hab
—_———
(9) (10) (11) (12)
~ Y Y 20 0z ~ 20 0z y(0)
H . e Np T _y T
O T T g T a ag 0 ) YT T e 0w T
(13) (14) (15)
where for j = 3,4 IAi:j =H;(0,y,0,a— 12_3—4%2, (9)3— 1+y_w2) and H; satisfies (4.4.11).
We claim that, for j = 3,4,
1.4.27 8, [E,) < (10, + (8 9, 5| + — °
(4.4.27) 0ul;]1 < (10,31 + (0)10, 81+ 755 + 7o)
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Indeed, skipping the index j for convenience, we have

O g OH 0HO@ 2 OH ,O0H® 1 OH
Oy © Oyr Oa Oyi, 14462 Jay ob Oyr  1+462 0by’
Now we use (4.4.11). The first term in the right hand side is bounded by % + (xf’;ﬁ,

the second by C'|Val, the third by <%>’ the fourth by C (0)|V, b| and the last one by
().

For ¢ € N let us introduce the following space
(4.4.28)

F = {F € C®(R" x R") : |02 98 F(x,¢)| < Cap e

AT ¥ (@ 8) € R x R”}.

For example (, g—g € Fi, z, g—z € Fy according to Proposition 3.3.2.
Let us set now,

(4.4.29) {Mw=y+dﬁw

hy) = £(6;0) = @(0,9,0) + T35
Then for F' € Fy and k =1,...,n we have,
1 1
<o )

5 (y)”‘ e + g 1V
where z = y + z(6; ).

Let us prove (iii) for |A| = 1. We differentiate the equations (4. 4.2 5), (4.4.26) with
respect to yx and we use (4.4.27), (4.4.30) and the fact that |b] < 5% <36 < 1. We
have, with the notations in (4.4.25), (4.4.26),

(4.4.30)

31yl
@)

By (D] + 19y, (8)] < C 2]V, dl +06%} 5(&+%)

9y, (2)] < Ce(19y 3l + IV, Bl) + %55 (5 + 7

18, 3)] < CelV, a + ﬁ (& + )

9y ] < Ce |V, al+ e (¢ + )

2, O]+ 20, O + 100, (D] < CHV il + V) + ey + G
0y, (9)] < Ce(IVal + |Vb|> B (m + %)

9y, (10)] < CelVal + 55 (2 + 3

By (D] + 195, (12) 4 9, (19 < €9 (97 + 5] + = 2”0(9) +8
By, (19)] + [y, (15)] < C (e +0)(1Vy @l + [V B) + 155 (& + )

It follows from (4.4.25), (4.4.26), that

~ = -~ ~ c 1 1\2 C96
V@l + |V, 8 < C (= +0)(IVal + V) + ——( )+

which is (iii) for |A| = 1.

MEMOIRES DE LA SMF 101/102



4.4. THE CASE OF INCOMING POINTS 65

Let us assume that (iii) is true for 1 < |A| < k and let [A| =k +1>

We claim that for F' € Fy and |B| < k we have
Cge 1 1 \IBI+¢
4.4.31 oPIF h < — + :
( ) | y [ (g(y)a (y))” <x>o'0 (<x> + <9>>
Indeed the term we want to estimate is a finite sum of terms of the following form
(see Section A.1).

S

N AN
(4432) Ry o = (95 07 F)(9(y). hy) [T (95 9)" (9 1)
j=1

where 1 < s < |B|, 1 < |8 + 7] < [B], Zj VK =8 2k = (k] +
|k;|)£] =B, gj # 0, (k;ak]) #0,7=1,...,s

Let us write {1,...,s} = I U I where

L ={j: 1G] =1} |Ll={j: 4] =2}

For j € I; we have 8£j g = O(1), 8@? hi, = —85’ a+ (’)(m). For j € I we have
85j gr = 0. Therefore the only terms which are present are those for which & = 0. Tt
follows that 77, &} = 3", Kk = 8. Moreover 8y h = —8i7 @. Tt follows from these
facts and the definition of F, that
C ) 2i=1 kil
( 6) s i (_ + —
(@)oo 2i=1 ksl \(z) — (6)
Now [B| = >20_, |kj| = >25_, |kj[1¢;] since |£;| = 1 in Iy and kj = 0 in I>. Tt follows
that

0576
Ryl < (z)IBI+E+0

1 \Zio kil (O §)25= k]
) (9)Zi=1 15106 1+1)

Ce 1\ Ik 1Ig1+e o 1 1\ 2Z5=1 1kl 1451
R (=t SR .
oul < 73 (7 * ) (@ @)
The result follows then, since Z;:1(|kj| + kD] = B

On the other hand, for F' € Fy and |A| = k+ 1 > 2, we have

~ . Cae 1\ IAl+e
A A I T
(4.4.33) 0,/ (Po(y). h)| < Coe 1033l + 730 (@> + <9>)
Indeed
< OF
A(F(g A A
93 P00 h) = 3 (g (0000 )2 00+ G a(0) 1) 5
is a finite sum of terms Rg. s given by (4.4.32) where 1 < s < |4], 2 < 8]+ |v] < 4],
Yoo Ky =8, Y ki = Skl + KD G = A |€ | = L ksl + K5 > 1,

j=1,...,s. Since |G| + |y| = 2 we have |[{;| < |A| — 1 so the term Rg,, is bounded,

using the induction, by
Cae 1 ) |Al+e.

| — + JR—
(z)o0 (<$> {6)
On the other hand, since |A| > 2 we have 9;} g = 0 and 9;' hy, = —8;' @) By (4.4.28)
we have |8§k (9(y), h(y))‘ Ce so (4.4. 33) is proved. Note that C is independent
of A.
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Let us now prove the last step of the induction. We apply 8;/4 to both members of
(4.4.25), (4.4.26). Then we estimate each term of the right hand side using (4.4.31),
(4.4.33). We obtain

~ Cae 1 1 1\ 14
01 (1)] + 102 (8)] < Coe [0, a |+<§‘ )

ot 1 O O
0, ()I\Coe|aAa|+<;5( )
feY A Aa A CAE i i i [A]
o 1)
~ 7 A
10,1 (9)] +10;" (10)] < Coe((|0; @l + |0 b]) + e (@+@

Finally

10, (5)| + 10, (6)] + 10,1 (7)] + 19, (11| + 19, (12)] + 9y (13)]

Cye 1 \[4l+1 C4d
we @ m) e

If € 4+ ¢ is small enough (compared with a finite number of fixed constants) we can

absorb the term Cy(e + 6)(19;' a| + |9} b) by the left hand side and we obtain the
estimate given in (iii).

Cod (10 al + 10 b]) +

Let us now prove (iv). First of all since the point (y 4+ z(0, ), n+ £(6, &)) belongs
to S_ and —6 < 0 we deduce from Proposition 3.3.2 that

100 £(=0,y + x(0,0),n + £(0, )| + 0] 2(=0,y + x(6, ), n + £(6, )| < C (6).
It follows then, from (4.4.2) and Lemma 4.2.1 that
an
5‘@
Therefore we will have,
l9x(1, a,,95) — ar(—a,a,0,g;)| < C(0) (In + al + [b]).

Now if || < V0 we Wlll have |n + a| + |b| < 5v/8. On the other hand (4.2.7) shows
that, when |n| < V6 < 1 co,

(n,a,b,g,) ‘—i—‘ab n,a,b,g5)| < C{6).

) oc;  Ox;
a(—a,a,0,g;) = 8? (—a) = (8—2 —i8—2)(—9,y+x(9,a),—a—i—f(@,a)).

By Corollary 3.3.3 we have
gr(—a,a,0,g;) = (1 +2i0) 6, + O(e (0)).
Finally we obtain,
|k (n, a,b, g;) — (1 +2i6) ;.| < C (= +V5) (6),

which is precisely the claim of point (iv).
The last point (v) can be easily deduced from Proposition 3.3.2 and Lemma 4.2.1.
This ends the proof of Theorem 4.4.2. O
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We continue the proof of Theorem 4.1.2 in the case (4.4.1). We follow basically the
same method as in Section 4.3 with small changes. For the convenience of the reader
we give some details.

Let us set,

O ={(4,(y.n) € Ry x R*":
(4.4.34) |y| < 6(0), (y + 2(0,0)) - a¢ < e1 (y + (0 @))|ael; [n] <V}
A= {aeT*R": L <ag| <2, ap - ae < —co {aa)|ag]}

We consider families (f(-, @),z of function on O.

DEFINITION 4.4.3. — We say that (f(-,@)),cx

(i) for all a € /N\, 0,y,m) — f(0,y,n,a)is C* on O.
(ii) For every A, B in N™ there exists Cyp > 0 such that

sup 9207 f(0,y,n,0)| < Cap.
(6,y,0)€EOXA

belongs to H if

REMARK 4.4.4

1) H is closed under multiplication and derivation with respect to (y, 7).
2) If we set, with the notation (4.2.10),

[0,y,n,a) = —v;(0,y +2(0,0),n +£(0, )

1
o)
— 7 [0+ 20,000+ €(0,0)) ~ of

- z(a:(—@, Yy + 33(9, Oé), n + 5(95 a)) - Oé;)]
then (f(-,@)),cz € H. This is a consequence of Proposition 3.3.2.

DEFINITION 4.4.5 (Lagrangian ideals). — The Lagrangian ideal J is defined as the
set of families ' = (F(-,a)),,x which can be written as

F(6,y,m,a Z (0,9,m, ) 72 0;(0,y + (0, a),n + £(0, @)

1
<9>
for all (8,y,n) in © and « in A, where (f(,a))pex EH.

EXAMPLE 4.4.6. — Let us set

F(ea y,1n, Oé) =Nk — wk(97ya Oé)
with

(4435) wk(ea:%a) = _(ak +ibk)(97y,06),
where ay, by are those given in Theorem 4.4.2. Then (F((-,®))aer € J-
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Indeed if |n] < v/§ < L co then xo(n) = 1 so it follows from (4.4.2) and Theorem
4.4.2 that we have

’Uj(@, Y+ QC(Q, a)v 5(97 a) + 77) = Z Qk(nv a, bv 9])(77k - 1/)19(9, Y, a))
k=1
Since qx (1, a,b, g;) = (1+2i0) 55 +O((e +v/0)()) (by (v)) it follows that the matrix
(qe(n,a,b,95))"" = (djx(0,y,n,a))1<jk<n exists. Moreover ((0) djk(',a))aex € H.

Now we have
n

M — Y(0,y,0) = > (0) djr(6,y,0)

Jj=1

. <7}> vi(0,y+x(0,a),n+£(6,a)).

This proves our claim.

LEMMA 4.4.7. — For F and G in J let us define

" JOF 0G  OF 0G

F,GY0,y,1n,a) = 2226,y ).
{F.G}(0.y.n.0) ;(amayj 5 ) G 0)

Then {F,G} € J.

Proof. — Since v;(0,y + 2(0, &), n + £(0, ) = uj 0 x—o(y,n) where u;(z,§, ) =& —
04% —i(zj—ad) and x_g(y,n) = (x(—0,y,1),£(—0,y,0)) is the symplectic map defined
by the flow we have

{Uj7 ’Uk}(ea y,1n, Oé) = {U'ja uk}(X—G(ya 77)) =0
because {uj,ug} = 0.
Let F =5 f] y v, G = > gk <0 vg be two elements of J with f; € H, gx € H.

Then a stralghtforward computation and the Remark 4.4.4 give the conclusion (see
the proof of Lemma 4.3.10). O

LEMMA 4.4.8. — Let R = (R(-,@)),cx € J and assume that R(-, a) does not depend
on n. Then for every N € N one can find Cn > 0 such that for every (0,y) in Qs
and a in A we have

|R(0,y,0)] < Cn [Im (6, y, )|V

Proof. — We are going to show by induction on N > 1 that we can write
(44.36)  R(O.y.0)= Y hy(Oy.0)n—9) + Y 950,y n)(n )
0<|y|<N lv|=N

where (h, (-, @),z and (g4(+, @)),c5) belong to H.
For N =1 the first sum in the right hand side of (4.4.36) is empty and by assump-
tion we have

R(0,y,a Zf]f)ym, 00,y + (0, @),n + £(0, @)).

< )
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Using Theorem 4.4.2 we obtain since xo(n) = 1 when || < v/,

n n

R(Qayva) = Z (Z % fj(gvyanva) Qk(nva7bv gj)) (77k - 11)1@(9,2/7@))

k=1 j=1
Since f; and ﬁ qr. belong to H this shows that (4.4.36) is true when N = 1. Assume
now it is true up to the order N. We can apply Lemma 4.2.1 to the function
57(951%77)04) :Xo(n)97(97y5777a)7 |7| =N
with z; = —,(0,y,a). It follows that
(4437) g’y(gv Y, 1, a) = Z qk (777 a, bv g’y)(nk - 1/% (0a Y, a)) + r(a, b7 ,gv“/)
k=1
For the ¢;,s and r we have the estimates (4.2.2). Let us set
(4 4 38) h“/(gv Y, a) = T(a’(gv Y, a)ﬂ b(@, Y, a)v gv(h; Y, a))
g“/(gv Y, 1, a) = Qk(nﬂ a(@, Y, a)v b(gv Y, Oé), g“/(gv Y, Oé))

It follows from (4.2.2) and Theorem 4.4.2 that (h~(,@))q and (g, & (-, @))a belong to
‘H. Using (4.4.36) at the level N and (4.4.37), (4.4.38) we deduce that (4.4.36) holds
at the level N 4 1.

Now let us take in (4.4.36) n = (Rey + s Im¢)(0,y, @) when s € [0,1]. Then the
same argument as in the end of the proof of Lemma 4.3.11 gives the result. O

COROLLARY 4.4.9. — For every N € N there exists a constant Cy > 0 such that

‘(% _ %)(H,y,a)‘ < Cy [Tm (8, y, )|~

for every (6,y) in Qs and o in A.
Proof. — Identical to the proof of Corollary 4.3.12. O
Now we go back to the original coordinates
r=y+z(0,a), £=n+E&0, )
and we set for k=1,...,n,
(4.4.39) @,(0,z,0) = Yi(0, 2 — x(0,0), ) = & (0, ) — (ar + i bg)(0, 2 — z(0, @), )

where ay, by have been described in Theorem 4.4.2.
Then we can state the following result.

THEOREM 4.4.10. — We can write for (6,z) € Qs and |€ — £(6,a)| < V0,

(1) Ek - (I)k(aaxaa) = Zejk(gvxvfaa) ’Uj(e,x,f)
j=1

where eji, are smooth functions which satisfy
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(i) 0402 eju(0,, €, )| < %

Moreover we have for (0, x) in Qs and |€ — £(6,a)| < V3,
(ili) |®x(0, 2, ) — ag| < Co (e +V3).

. _xk_xk(eaa) |J)—$(9,0¢)|
(iv) ‘Im@k(O,x,a) i ‘ < \/57<9>2 .
(v) |20, %, a)] < Co,

1

A
|0, ®(0, 7, a)| < CA<<9>|A|+1 + <x>\A\+1+ao
(Vi) q)k(gv 1’(9, a)a a) =&k (9, a)'

for alla e N and ¢ =0, 1.

)irAent, |A]>1,

o | (0P 0D 1 1 |z —2(0,0)|N
hofind. e | <
(vii) ‘((%j 8xk)(9’x’a)‘ = CN(<x>3/2 + <9>3/2) (0)2N » NeN
where the constants Cu, Co, Cn are independent of (6, x,&, ).
Proof. — (i) follows immediately from the computations made in Example 4.4.6 as

well as (ii). The point (iii) is obvious since £(6, a) = ag+O(e) and |ay|+ |br| = O(V9)

by (4.4.4). Then (iv) follows from Theorem 4.4.2 (ii) as well as (v). The point (vi) is

obvious since ay, = by, = 0 when y = 0. To prove (vii) we use Corollary 4.4.9, (4.4.35),
(4.4.39) and (iv) of Theorem 4.4.10. We obtain

(o -

825]‘ 8xk

Now by (v) of the present theorem we have,

|J) — 33(9,04)|N

)(9,3:,04)‘ < Cn )28

10; (0, 2, 0)| < c(# + @)

|3/4 and using the above estimates we obtain (vii). O

Writing |a| = |a|>/* |a|}/4

DEFINITION 4.4.11. — Let (F(-,@)),c5 be a family of C* functions for (¢, x) in Qs

and |€ — £(0, @)| < V6. We shall say that F € J(x,¢) if we can write
F(g,l',f, a) = jz:; fj(gvxvfa Oé) <T}> ’Uj(G,CL',f, Oé)

where
|a;‘1'c4 853 fj(aaxagva” < CAB
for all (0, z) in Q5, |£ —£(0, )| < V68, a € A where Cup is independent of (6, z, &, ).

Then exactly as in Lemma 4.4.7 J(, ¢) is closed under the Poisson bracket in (z,§)
and we have the analogue of Lemma 4.4.8. In fact J, ¢) is just the image of J under
the diffeomorphism © = y + z(0, ), & = n + £(6, ). Then we have

THEOREM 4.4.12. — With ® defined in (4.4.39) we have for k=1,... n,

Op 0%k 0k op

(-3 @ e0.2.0) - 55 L (0.7.0) 5 (2.0(0,7,0))) € Tug)

Ozx (0,2, 0) - o€
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Proof. — We follow word by word the proof of Lemma 4.3.16 and Corollary 4.3.17.
Let us just sketch the proof.

We begin by the proof of the theorem when ®(6, x, ) is replaced by £. By Theorem
4.4.10 (i) we have

& — (0, 2,0) = Ze]k 0,2, a)v;(0,x,8).

Then we set z(—0,z,&) = X, £(—0,x,£) = = that is z(0, X,E) = =z, £(0, X,E) = &.
The above identity reads

& (0, X,2) — 24(0,2(0,X,2),0) = > ej(0,2(0, X, Z),£(0, X, Z), a) u; (X, Z).
k=1
We differentiate this equality with respect to 6 using the equations of the flow given by
(3.1.2). Then we use Theorem 4.4.10 (ii) and we come back to the original coordinates
(x,€). Finally we write £ = & — ®(0,z,a) + ®(0,z,«) as in the proof of Corollary
4.3.17. Details are left to the reader. O

COROLLARY 4.4.13. — For every N € N one can find C > 0 such that

9p 0Py, 00y dp
5y (1 2(0,7,0)) = 5 (B,0) = T (0,,0) 5 (w, 2(0,, )|
|J) — 33(9, Oé)l N
< O 6)2 )
Proof. — Use Theorem 4.4.12 and Lemma 4.4.8 in the coordinates (z, £). (|

We are ready now to define the phase ¢, as we did in Proposition 4.3.19 for the
outgoing points, but we find here a slight problem. Indeed if we look to formula
(4.3.48) we see that ¢ is defined by mean of ®(0, sz + (1 — s)x(0,a)), s € [0,1].
In the present case when 6 > 0, ®(0,z,«) is defined for z - a¢ < ¢p (%) |ag| and
|z — x(0,a)| < 6(0) and it is easily seen that the point z = sz + (1 — s) z(6, )
does not satisfy these conditions. Therefore we have to modify the expression of ¢ in
(4.3.48) to take care of this problem. We split the discussion into several cases giving
in each of them a different expression of ¢. Our purpose is to prove the following

result.
Let us set,
¢ )
(4.4.40) O = {(9 7) €Ry X R" 13- ag < 23 (@) lagl, 2 —a(6,0)] < E<9>}
PROPOSITION 4.4.14. — There exists a smooth function ¢ = ¢(0,x,a) defined on

Os such that,

) 1
(i) »(0,2,a) = (z — az) ag + % (. —ag)® + 5% o +O(|lz — ag|V), VN € N.
For every N € N there exists Cy > 0 such that

(ii) % (0,2,a) — @(Q,x,a)‘ < CN(W)N
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i) |22 Op z—2(0, ) \N ,
=Y} — < = 7

(iii) 90 (0,2, ) +p<$, o (H,x,a)) ‘ \CN( 0) ) uniformly in (6, z, o).

Moreo({sjer

(iv) a_i (0,2,0) — 045‘ < C (e +V0).

(v) 107 ¢(0,2,0)| < Ca, VAEN", |A]>1.

1o —=(0,0)

|z — x(6, ) ?
2 1-+462 '

(6)

We split the proof into several cases which are summarized in the following figures.

(vi) | Im (0, z, ) —

1
+§af‘<0(6+\/5)

Case 1 (see Figure 1). — Let (6,2) € Os be such that

2(6,0) - ag < 5 ((6,0)) o] and |z~ 2(6, @) < (2(6, ).

LEMMA 4.4.15. — In the case 1 we have sx+ (1—s)x(0,a) € Q5, for s € [0,1], that
18

(sz+(1—9)z(0,0)) - as <co{sz+ (1—s)z(0,a))|ac]
and
[sz+ (1—s)z(0,a) —x(0,a)] <5(0).

Proof. — We use the following elementary lemma.
LEMMA 4.4.16. — Let a,b € R™ be such that |a — b| < (a). Then for all s in [0,1]
(1—s)la] +s[b] < V2{(1 - s)a+sb).
Proof. — Since |a — b|> < |a|? + 1 we have 2a - b > —1, it follows that
|(1—s)a+sb*>=(1—5)2]al®> +2s(1 —s)a-b+s>b]*>> (1 —s)*|al?

+s2 b —s(1—5) > % (1= s)lal + s[b]))* =

|~

Therefore ((1 — s)a+ sb)? > 3((1 — s)|a| + s]b])*. O

Let us now apply Lemma 4.4.16 to a = z(0,«), b = x. Using our hypotheses we
obtain

(sw+ (1= 8)2(0,a)) - ag < Z (s (2) + (1 = ){a(8, ) ||
< C_;(s+s|x| + (1 —5)+ (1 —9)|z(0,)])|ag|
< %0(1+\/§<sx+(1—8)$(9,04)>) - |ag]
<ceo(sz+ (1—s)x(0,0)) o,
On the other hand [sz + (1 — s) z(0, o) — (0, )| = s |z — z(6, )| < 6 (0). -
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Figure 1. C = {y, |y — z(0,a)| = 6(0)} et H = {y,y.a¢ = co(y)|ae|}

Qg

(case 3.1)
Qg

(case 3.2)

Figure 2. C = {y, |y — z(0,a)| = 6(0)} et H = {y,y.a¢ = co(y)|ae|}

In the set defined in case 1 we can therefore define ¢ by the same formula as in
Proposition 4.3.19. We set
1
1
(4.4.41) ¢(0,z,a) = / (z—2z(0,a)) @0, sz+(1—s)z(0,a),a)ds+60 p(a) + 5 ag.
0 (3

The proof of the points (i) to (vi) is exactly the same as the corresponding points in

Proposition 4.3.19 using Theorem 4.4.10. O
Case 2. — Let (0,z) € Os be such that
1
z(0,a) - ag < %O (z(0, ) |ae| and |z — z(0, )| > 3 |z(8, ).

(See Figure 1).
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In this set we have

(4.4.42) { |2(6, a)| < 2o — 2(0, )] < 6{6),

|z] < 3|z —x(0,a)| < 6(6).

Moreover for y € [0,z] U [0,2(0, )] the point (#,y) belongs to the set 5 on which
® is defined. Indeed if s € [0,1] we have sz - ag < 55 () |ag| and [sz — z(6, )| <
sle —xz(0,a)] + (1 — s)|z(d,0)] < 2|z — z(8,a)] < 0(0) by (4.4.42). On the other
hand, sz(0, ) - ae < 5% (2(0,a)) [ae]| < co(w(0, @) |ag| and [sz(0, ) — 2(0, )| =
(1—3s)|z(0,a)| < § (). Therefore we can define the phase ¢ by the following formula.

(4.4.43) (0, x, )

1 1
1
:/ x.(b(@,sa:,a)ds—/ x(@,a)-@(9,sx(9,a),a)ds+9p(a)+Zag.
0 0

Let us show that ¢ satisfies the conditions of Proposition 4.4.14. It follows from
Theorem 4.4.2 and (4.4.39) that

®(0,z,a) = ag +1i (2 — az) + O]z — az ™).
Therefore
1
0(0,z,a) = / (z-ac+iz(sw— o) — agag —ip(say — )|z O|sz — x| V)
0

1
N 2
+ || O(|s . — ay | ))d8+2_ia§

) 1
:(x—ax).ag—f—E(a:—ozx)2+—oz§+(’)(|a:—ax|N)

1
because |z| < |z — az| + o], sz — az| < | — a,| and |a,| < |2 — az|. Thus (i) is
proved. Now

1 nooel
%(ﬁ,x,a)—/o @j(ﬁ,sx,a)ds—kZ/o sxk%(ﬂ,sx,a)ds.
J 1 J

Using Theorem 4.4.10, (vii) we obtain

Op ! Vod
aTj(@,x,oz)—/o <I>j(9,sx,oz)ds—/0 sa(éj(e,sx,a))ds‘

! 1 1 lsz — (0, )|V
<CN/O s|gc|(<m>3/2 + <9>3/2) s

Now s|z| < (sz)3/? and by (4.4.42), s|z| < §(0), |sz — (0, )| < s|z — x(0,a)| +
(1—=3s)|x(8,a)| < 2|z —2x(0,a)|. Therefore the right hand side of the above inequality
is bounded by Cy |z — z(0, )|V /(0)?N. Integrating by parts in the second integral
of the left hand side we obtain (ii).
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Now we have

dp L oo b
%_/0 x@(&saﬁ,a)ds—/o (0, a) - (0, s2(0, ), ) ds

1 2
1
0P
— x(0, o 0,sx(0,a),a)ds
| ato.0)- 5 0.500.0).0)
(3)

_ Z / z1(0, ) (9 sz(0,a), o) sae(0, ) ds +p(a).

k=1

(4)
We use Corollary 4.4.13 to write

n ool
0
1) = ;/0 Tk 8—31 (sz,®(0,sz,a))ds

8<I>k 8p
- Z/ Tp — 83:5 a)'g(sx,CI)(@,sx,a))ds—f—Ro

k=1 ¢

1 N
52 — 2(0,0)
< —_— -
< ) W
By (4.4.42) we have |z| < § (); since (9)2V =1 > ()N if N > 1, and

with

52 — 2(6,0)| < 5]z — 2(8, @)| + (1 - 5)[2(6, )] < 2| — 2(6,0),
we obtain |Ry| < Cx |z — (0, )|V /(0)N if N > 1. Now |z — 2(6,a)| < 6(0) so the

same estimate is valid for N = 0. Finally

|z — z(0, )Y
(4.4.44) [Rol < O 3=

Using Theorem 4.4.10 (vii) we obtain

VN > 0.

1
d
1) == [ 4 Glsw 205w ds + I
o ds
where R satisfies (4.4.44). Therefore

|z — 2(0, )Y
(@)

Let us look the term (4); we use Theorem 4.4.10 (vii) again and we obtain

(4.4.45) (1) + p(®(8, 2,0) — p(0, 8(6,0,0))| < Ciy

Z/ sae(6, ) (@g(@ sz(0,a),a))ds + Ra,
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with

el < /01 sl (o + ) (=) - as

It follows from (4.4.42) that Ry satisfies (4.4.44). Therefore integrating by parts in
the above integral we obtain

1 _ N
()=~ [ 30.0)-0(0.55(0,0).0))ds+5(0,0) 80,210, 0).0) + O (LG,
0
Using Theorem 4.4.10, (vi) and the Euler identity we can write

#(0,0) D(0, 2(0,0), 0) = £(0,0) - g—g (2(00), £(0, ) = 2p(a).
It follows that

B o — 2(0,0)Y
(4.4.46) )+ () - 2(e)] < O T

Now, by Corollary 4.4.13 we have

@) == [ 2(0.0)- 3L (s2(0.0).0(6.52(0.0).0)) ds

n 1
- Z / JTk(H,Oé)'@(9,51‘(9,0[),0[)%(SJ)(@,O[),‘1)(9751‘(9704)706)d5—|—R3
=1 0 axz af@

where . v v
(8, )™ |5 — 1]
Rl < O laft0)] [ RO
0
If N > 1 we have "gg‘;;ﬁ?' < v so Ry satisfies (4.4.44) using (4.4.42).
Using again Theorem 4.4.10 (vii) we obtain

ds.

1 r—z(0,a)N
(3) = _/0 % [p(sx(@,a),@(9,833(9,04),0&)] ds + O(%)
|(3) + p((8, ), ®(6, 2(0, ), ) — p(0, ®(6,0,)| < Ciy %

Finally we obtain
|z — z(0, )Y
O
Since g—‘g 0,z,a) = (1) — (2) — (3) — (4) + p(v) we deduce from (4.4.45) to (4.4.47)
that

(4.4.47) |(3) + p(a) — p(0,®(0,0,))| < Cy

|z — 20, )|V
O
Using the point (ii) already proved in Proposition 4.4.14 we obtain the point (iii).
The point (iv) follows easily from (ii) since by (4.4.39) and Theorem 4.4.10 we have

(0, x,0) = ag + O(c + V9).

192 (6,2,0) + pla, ®(0,2,00)| < O
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Let us prove (v). To bound 94 ¢ when |A| > 1 we have to bound, accord-
ing to (4.4.43) the quantities (1) = fol s (OA ®)(0, sz, 0) ds, |A'] < |A] —1 and

= fol |z| |02 ®(0, sz, )| ds. Using Theorem 4.4.10, (v), we see easily that (1) is
uniformly bounded and

ds

1
|(2)] < Ca x| <0>|A| +Calx |/ W~

By (4.4.42) we have |z| < 26 (8) < 26 (0)14] since |A| > 1 and setting t = |z|s in
the integral above we see that (2) is uniformly bounded in (6,2, ). This shows (v).
Finally by (4.4.43),

1 1
1
Im(p(@,x,oz)z/ x-Im‘I)(G,sa:,a)ds—/ a:(@,oz)-Im‘b(@,sm(@,a),oz)ds—Eag.
0 0

Using Theorem 4.4.10, (iv) and (4.4.42) we obtain (vi). This completes the proof of

Proposition 4.4.14 in the case 2. O
Case 3. — We consider here the case where
(4.4.48) (0,x) € Os and z(0, @) - ag > %O (x(0, ) |ael.

(See Figure 2).

Let us recall that we are dealing in this Section 4.4 with the case where
Qg - e < —¢p () |ag|, (see (4.4.1)).

(1) The continuous function ¢ — x(t, ) - e is then strictly negative for ¢ = 0 and
strictly positive for t = 6. It follows that

(4.4.49) there exists 6% €]0,6[ depending only on «a such that z(6*,a) - ag = 0.
Then we have the following Lemma.
LEMMA 4.4.17
1) 516 -9 ||a5| |2(0, a) — (67, )] <30 — 07 |ee],
0—0*
11) | | 507

(
(i) |z —2(0,a)| < |z — (0%, a)| + |2(6", a) — (0, )| <5z —2(6,a)],
(iv) Ky (0) < (67) < K2 (6).

Proof. — Tt follows from (4.4.48) and Definition 3.2.2 that the point
o = (@(0°,),£(6", )
belongs to Sy N'S_. By the group property and Proposition 3.3.1 we have
z(0,) =x(0 — 6%, p") =x(0",a) +2(0 — 0") ae + O |0 — 0%]) + O(e).
It follows that
(4.4.50) z(0,a) —z(0%,a) =2(0 —0") ae + O(e 10 — 0%]) + O(e).
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Now we deduce from (4.4.48) and (4.4.49) that
* Co Co Co
(a0, 0) — (6", 0)) -0 > 2 (a(6, 0} loe| > 2 fog| > &

< |ag| € 2. So by (4.4.50),

[=p)

N[=

since
200 — 0%) ae|? > %0 —Chelf — 0| — Cye.

Taking & small compared to ¢y and Cy we obtain (ii). Then (i) follows easily from
(4.4.50) if ¢ < ¢p. Now the first inequality in (iii) being obvious, let us prove the
second one. We write

|z = 2(0,0)* = (1) + (2)
(1.4.51) (1) = o — 2(6%, @) + 2(6°, @) — 2(6, a)

(2) = 2(x — (6", a))(x(6", a) — 2(0, @)).
If we use (4.4.50), (i) and (ii) we obtain,

(2) = —4(0 = 07)(z — (6", )) - ag + O(e(1)),
so by (4.4.49),
(2)=—-40—0")z- e + O(e (1)).
Now since (6, x) belongs to Os (see (4.4.40)) we have
70 < 2 () fag] < 2 (a(6, 00) o] + 2 [z — (6, )] .

It follows from (4.4.48) that

z-ag < 75 (0,0) - ag + — Ix (0, o) e,
and we deduce from (4.4.49) that
3
20 < 55 (2(0.0) —2(0,)) - a¢ + 75 | — 2(60,0) o]
3

@0 < 75 |2(6, @) — (67, )||a5|+ 012 20 o)l lagl,

3 c
2+ ag < (35 + T2 )0(6, @) — (6", ) Jag| + 32 | — 2(6", )] lal,
3 c o0 X
2) > —4(35 + 10 ) le(6,0) = 2(67, )| 6 — 6" x|
20 * *
— =" =2 (8%, )| 18 — 67 || + O(e (1)).

Using the first inequality in (i) we obtain

2) > — (§+%)| o, a)—x(@*,a)|2—% z—a(0%,a)| |20, @) — (0%, a)| +O(e (1)).

Finally
4  12¢

@) > _<3+ 15

+C€) (1).
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If ¢y and € are small enough we find (1) + (2) > 4 (1) so (iii) is proved using (4.4.51).

Finally (iv) follows from (i) and (iii) taking ¢ small enough. O

Then we split the case 3 in two subcases.
Case 3.1. — (0,z) € Os, (0, a)-a¢ > 2 (x(0, a)) |ae| and [z —z(0*, )| < (2(0%, ).
It follows then that
(4.4.52) s+ (1—s)z(0*,a) € Q5 forall sel0,1].
Indeed, using Lemma 4.4.16 with a = 2(6*, «), b = = we obtain
sle] < V2(sz+ (1 —s)z(6",a))
so if (0,z) € Os we get

(sz+ (1—s)z(0*,a)) ag =sz ae < %s<x> lae] <co(sz+ (1 —s)z(0%,a)) |agl.

Moreover by Lemma 4.4.17,
s34 (1= ) (6", @) — 2(0, 0)

since in Oy, |z — 2(0, )| < & (0).
Therefore we can define ¢ on this part of Os by the following formula.

1
(4.4.53) @(0,z,a) = /0 (x —z(60*,a)) - 20,5z + (1 —s)z(0",a),a)ds

[%
1
= [ b6 ), B(s.a(6" 0 ) ds + 7 pla) + 5 ol

¢

Our goal now is to show that ¢ satisfies the claims (i) to (vi) of Proposition 4.4.14.
The point § = 0 does not belong, by (4.4.48), to this part of Os. Thus the claim
(i) is empty. Let us check (ii). We have

1
9 0,z,a) = / D0, s+ (1 —s)x(0",a),a)ds
8xk 0
[t . 0P i
+ Z/ s(xe — xo(0 ,a))aT O,sz+ (1 —s)x(0",a),a)ds.
=170 k
Using Theorem 4.4.10, (vii) we see easily that

1
(4.4.54) 9 O,z,0) = | Pp(0,sx+ (1—s)x(0*,a),a)ds
axk; 0

1
—|—/ sdi [Pr(0, s+ (1 —s)z(0", ), a)]ds + R
0 S
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with

ST — S , OKN
IB| < C |& — (6" |/| +{ <é§ )= 2@ o

It follows from Lemma 4.4.17, (iii) that

|z — (0, )Y
L

Integrating by parts in the second integral of the right hand side of (4.4.54) we obtain

the claim (ii). Let us prove (iii). We have

850 ! * 8@ * *
57 (0.2.0) = [ (@ =2(0".) - 37 (0. X,.0) ds = p(a(60), 2(0,2(6" ). )

where X = sz + (1 — s) z(0*, o).
Using Corollary 4.4.13 we obtain

(4.4.55) IR| < Cy N>o0.

dp ! dp
22 (0.2,0) = / (0 — (6%, 0)) - 3 (X, (6, X, 0)) ds

_ Z/ p — (67, ))g‘bj 6, X, ) gf (X, B(8, X,, ) ds

k=1
—p(x(@*,a),<I>(f9,x(0*,a),a)) +R

where R satisfies (4.4.55). We use again Theorem 4.4.10, (vii), and we obtain

1
ng 0,z,a) = /0 dis [p(Xs, ®(0, Xs, )] ds — p(x(0*, ), ®(0, (6%, ), ) + R’

where R’ satisfies also (4.4.55). This implies immediately (iii).
The points (iv), (v) follow easily from Theorem 4.4.10. Let us check (vi). According
0 (4.4.53) we can write

p(0,x,a) = A+ B with,
1

A:/ (x—z(0%,a)) - ®0,sz+ (1 —s)z(0*,a),a)ds.
0

Using Theorem 4.4.10, (iv) and Lemma 4.4.17 (iii) we see that

(4.4.56)

(4.4.57)
A = 5 o [0 = (0,00 + 200 = 2(0%, ) (00", 0) — (0, )] + R
IR| < C\/EM.

(0)

To check the term B let us set z(t) = z(t, ) and

0
F(t) = - / p(a(t), B(s, 2(t), a)) ds + tp(a).
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F/(t) = p(a(t), B(t, 2(t /t kz_: a—p (s, 2(t), ) i (1) dt

(2)

/ a & 1), (s, (1), ) gif (5, 2(t), @) in(t) ds +p(a).
toge=1

3)
By Theorem 4.4.10 (vi) we have,
(1) = p(x(t), £(t)) = p(a).

By the point (vii) of the same theorem we have,

=3 2 o, 00,0 ) 22 (5,000, 00 0015+ o
t 8§€ Oxy
k=1
with ,
|z(t) — 2(s)[Y
< —_—.
Rl < O |
Since |z(t) < [} lé(o)| do < C(s — t) we obtain
/ ¢ (S — t)N *
t
Using Corollary 4.4.13 we obtain
(s,z(t), ), ) ©(t) ds
letaxk (1)), ) (1)
/ aq”“ L) iy (t) ds + Ry
k 17t

where R; satisfies (4.4.58).
It follows that

Zxk (®k(6, z(t), @) — D (t, (), @) + R

Now
zxk Bult,0(t).0) = 360 2 (2(0).6(0) = 20(0).
k=1
Therefore we obtaln7
F'(t) = (1) = (2) = 3) +pla) = D> @x(t) (0, 2(t), @) + Ra
k=1
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Now by Theorem 4.4.10 (iv),

Tk (t) — Xk (9)

Im @k (0, z(t), ) = 5102

Since #(t) is uniformly bounded we deduce that
1d Ja(t) —=(0)]
2dt 1+ 46?

o (s—t)N
|G(t)] < C\/_<> +CN/ 7(5)2]\’ ds.

Im F'(t) = + G(t) with

Integrating between 6* and 6 we obtain

(4.4.59) |Im F(6*) — % %‘

gc’\/g(e 9 +CN// S_t YU st

Let us call I (resp. II) the first (resp. the second) term in the right hand side of
(4.4.59). By Lemma 4.4.17 we have

|z —2(0,0)
(4.4.60) 11| < CVs o

0 s 0 *\N+41

ds (s — )N+
11| < ! _ N < " )
1] CN/*</*(S ) dt)(1+s)2N CN/* T

Now it follows from Lemma 4.4.17 and (4.4.40) that 6 —0* < 20 () < 26 (1+6) which
means that (1 —25) 60 < 0* + 26. Since 26 < 1/2 we have 6 < 260* + 1. Tt is then easy
to see that the function s +— (s — 8*)N+1 /(1 + 5)2V is increasing on (6*,6). Therefore

Now

(9 _ 9*)N+2

<
N T

< Cn(0 - 6%)?

Taking N = 2 and using Lemma 4.4.17 (i) and (iii) we obtain

9,)|?

4.4.61 17 52 u

(1.4.61) 1) < o8t

It follows from (4.4.59) to (4.4.61) and from (4.4.53), (4.4.56), (4.4.57) that

1|z—20,0)* 1 |z — (0, a)|?

which is precisely the claim of point (vii) of Proposition 4.4.14.
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Case 3.2. — (0,z) € Os, x(0, )-c¢ > L (x(0, )| ag| and [z —z(0*, )| > F|z(0*, o]
According to Lemma 4.4.17 (iii) we have
0*,a)| < 10|z — z(0, )| <26 (0
o) (6", )| < 10z~ 2(6, )| < 25 (0
2] < [z — 2(6°, )| + la(6", )] < 15|z — 2(0, )] < $4(6).

On the other hand if y belongs to the union of the two segments [0, z] and [0, z(0*, )]
then (y,#) belongs to s, the set (defined in (4.1.4)) on which & is defined. Indeed,
by (4.4.40), if s € (0,1) then sz - ae < 5- 7§ () || < co (sx)|ag|. Moreover
lsz —2(0,0)] < sz —2(67, a)| + |2(6", @) — x(6, o)
< slz—2(07, @) + (1 = 9)[z(67, )| + [2(67, a) — 2(6, ).

Since we are in case 3.2 we have by Lemma 4.4.17, |sz — z(0, )| < 10|z — x( @)
0(#). On the other hand, if s € (0,1) we have, by (4.4.49), sz(6*,«) - =
Moreover

|s:c(0*,a) - x(@,a)|

<
0.

|[2(6%; @) = 2(6, )| + (1 = 5)|2(6", )|
|2(6%; @) — (6, a)[ + 2(1 = )|z — (6", )]

<
<
< 10|1:—x(9,a)| < 0 (),

by Lemma 4.4.17, (iii).
Therefore in the present case we can set

1 1
(4.4.63) (0,x,a) = / x-®(0,sz,a)ds — / z(0%,a) - 0, sx(0",a),a)ds
0 0

0
~ [ pla®" ). @0, 0(6" ) ) ds + 6" ple) + 5 o,

*

Our goal is to show that ¢ satisfies all the requirements of Proposition 4.4.14.
The point (i) is empty since § = 0 does not belong to this part of Os. Let us check
(ii). We have

8(,0 ! 1 8@k
9z, 0, z,a) = /0 @j(e,x,a)ds—i—/o I;sxka—xj(&sx,a)ds.
By Theorem 4.4.10 and (4.4.62) we have
0Py, 0P |sz — 2(6, )|V
il _ 27 < P A
7z, 0,sx, ) A (9,53:,04)’ < Cy OB
(4.4.64) N
o lr—a(b.0)
SO g

It follows that
Oy

|z — $(970)|N+1)
0z; '

1 1
0,z,a) = /0 @j(ﬁ,sx,a)ds—i—/o sdis(@j(g,sx,a))ds—l-(?( ()28
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Integrating by parts and using the bound |z — z(6, «)| < 6 (6) we obtain

({9(,0 |{E—£L‘(9,Oc)|N
T%(Q,x,a)—Qj(Q,x,a)‘écNT, VN eN.
Thus (i) is proved. Let us prove (iii). We have
'oo ! i
g—g 0, z,a) = /0 x ?9_9 0,sx,a)ds —/0 x(60%, a) ?9_9 0,sx(0%,a),x) ds
(4.4.65) (1) 2)

Using Corollary 4.4.13 we can write
nooel
0
(1) = —;/O Tk a—i (sz,®(0,sx,a))ds

n 1 &
+ Z/O xk(O,sx,a)~g—i(sx,@(&sx,a))Q(G,sx,a)ds.

k=1 Lk
Using again (4.4.64) we obtain,

|z — 2(0, )|V

(1) = —/01 %(p(sx,@(@,sa:,a))) ds + O(W>

Finally, since |z — z(0, )| < § (0), we have

z—z(0,a)N
(4.4.66) (1) =p(0,2(0,0,q)) — p(z, (0, z,a)) + O(%)
By exactly the same computation (using (4.4.62)) we obtain
_ B . . |z — (0, )|V
(4.4.67) (2) = p(0,9(0,0,0)) — p(z(6*, ), ®(0,z(0*, ), ) + O<—<9>N —).

So using (4.4.65) to (4.4.67) we derive the point (iii). The last non trivial point to be
proved is the point (vi).

Using the expression of Im® given by Theorem 4.4.10, (4.4.62) and (4.4.59) to
(4.4.61) which are valid also in the Case 3.2, we can write

1

i p(0,2,0) = 5 71 (17 = 20,00 ~ 2(6,0) — [2(0°,0) — (0, )
* |z — 2(0, a)|?
a0, + 60", ) — 20,0) + O VE LT

which is exactly what is needed.

To finish the proof of Proposition 4.4.14 we must show that the phases ¢ which
have been constructed by the formulas (4.4.41), (4.4.43), (4.4.53), (4.4.63) in different
regions can be matched in only one phase. We begin by a Lemma.
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LEMMA 4.4.18. — Let I = [%, %0] and let us consider the function on [0, +oo[xI,

9(s,¢) = x(s,a) - ag — ¢ (x(s, )) |ag].

(i) For all ¢ in I the function [0,+0co[xR, s — g(s,c) is strictly increasing.
(ii) For all ¢ in I there exists a unique 6(c) > 0 such that

9(6(c),c) = 0.
(iii) The function I — [0,+o0[, ¢ — 6(c) is strictly increasing.
Moreover we have the following estimates
(iv) 5 18(c) = [ lag| < [a(8(c), @) — 2(67, @) < 310(c) — 7| |ae].
(v) 16(c) — 0*| = co/120.
]

(vi) For all z in Os and ¢ in [ %],
|z —2(0(c), )| <[z — (67, a)] + [2(0%, @) — z(6(c), @)| < 4]z —2(6(c), ).
(vii) If c € [2 %] we have
15 (@67, 0)) < [6(c) — 6] < de (w(6", ).
Proof
(i) We have
99
0s

x(s,a) - (s, @)
(z(s,0))

Thus % (s,c) > 5 if € and ¢ are small enough.
(ii) It follows from above that g(s,c) > 15 s+ g(0,¢) so g(s,c) — 400 if s — +o0.

(s,c) =x(s,) - ag — ¢ lag| = 2 |ae* + O(e + ).

Moreover g(0,¢) = ag - e — c (o) |ae| < ag - ae < —co (o) |ag| < 0. Therefore there
exists a unique 6(c) such that g(6(c),c) = 0 and ¢ — 0(c) is C*°. Differentiating this
equality with respect to ¢ we obtain

6'(c) % (0(c),c) + % (6(c),c) = 0.

By the above computation of % we can write

(a0, 0) o]
) = SlacP + O + 0

which proves (iii). Now we have

0(c)
x(0(c),a) — x(0*, ) = / z(s, ) ds = 2a¢(0(c) — 6%) + O(elb(c) — 67])

*

from which (iv) follows easily. Let us prove (v). By definition of §(c) and 8* we can
write
0

(4.4.68) (x(0(c), ) — (0", ) - g = c{x(0(c), ) |ae| = ;—0
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so by (iv),
56 <310() = 07| - ae| < 69(c) — 6.
The first inequality in (vi) being trivial let us prove the second one. We write
o — 2(0,0)* = |z — (0", &) + (0", a) — 2(0(c), o)
1)
+2(x —z(0",a)) - (z(0", ) —z(8(c), a)) .
2

We have
(2) = 2(z — 2(6", @))[2(0" — 0(c)) g + O(e |6 — O(c)]].
It follows from (iv) that
(2) = —4(0(c) —0")z - ¢ + O(e(1)), where 0(c) — 6" > 0.

Now in Os we have x - ag < {5 () |oe]. It follows that

7+ ag < 0 (@(0(0),0)) lagl + & | — 2(0(c), @) |a|

Using (4.4.68) we obtain

7+ ag < 1= (2(0(c), @) — 2(6", ) - ag + 15| — 2(6(c), o) ael,
so we will have
(2) > =22 2(0(c); @) — (0", ) ae] 0(c) — 0
— 20 fo — 2(0(e), ) el 0(6) — 0°] — O(=(1)
(2) > 12 2(6(c), ) — (6", o)
=50 o~ 2(0(e), )] [2(0(c), @) — (6", )] - O=(1))
) > (- T2 - 52 e(0(e), @) — 2(6", )
- 2 le = (0(e). ) — O(=(1).

If ¢ > ¢o/3 then 4cy/15¢ < 4/5 so we obtain
(1) +(2) = 1—10(|$(9(C)7 ) —2(0", )] + |z — 2(0,0)]?)
if ¢ is small enough. This implies (vi). Let us prove (vii). We have
z(0(c), ) = x (6%, ) +2(0(c) — 6") - ae + O(e).
It follows that
c(w(0(c), 0)) log| = 2(0(c), @) - g = 2(0(c) = ")|ael* + O(e)
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5 1600) — 0] < e (x(6(c), )} < 516(c) — 07|

Moreover we have

(z(0(c), )

8

0, a)) + (07, a) — z(0(c), )|
07, a)) +30(c) — 07 |ag|
)
)

=

0%, @) + 6¢ (x(6(c), ) o]
0%, @) +12¢(x(6(c), o))

o~ o~~~
8 8
~ o~~~

INCINCIN N

which implies that (x(6(c), «)) < 2 (z(0*, «)) if ¢o is small enough. By the same way
(x(0*, ) < 2(x(0(c), @)). Thus we obtain (vii). O

Now let us set

O5(6) = {z € R" 12 g < % (@) |ael. |z — (0, 0)] < 2 {6))}

(4.4.69) {
0=0(co/2), 0 = 9(00/10).

In the beginning of this Section we have constructed the different ¢ assuming z- o <
% (@) lagl, | — 2(8,a)| < §(0).
In the proof of Proposition 4.4.14 we have constructed
¢1 when 0 €[0,0] and |z — 2(0, )| < (2(6, a)), (case 1)
1
o when 0 €[0,0] and |z — z(0, )| > §| z(0, o), (case 2)

w4 when 6 € [0 4+ oo and |z — z(0*, a)| < < (0, c)), (case3.1)

a)
5 when 6 € [0/ 4+ oo and |z — x(0*, a)

\\/

| (0", )|, (case 3.2).

We are going first to match ¢1 and 2, 4 and 5. The matched phase will be defined
on a smallest set than Oy defined in (4.4.40) namely for (6, z) where 2 € Os(6) (see
(4.4.69)). We show first that the point (6, 0) belongs to the sets where @1 and ¢
are defined. According to (4.4.40) and what we recalled above it will be the case
if |2(0, a)] < g (0). We may assume that the domain where g is defined contains
points (0, z) where 2 € Os(0) otherwise we don’t match ¢ and @, and we take only
¢1. So let (0,z) be such |z — 2(0,a)| < & (0) and |z(0, )| < 2|z — z(0, @)|. Then
|2(0, )| < & (9) which implies our claim.
Now it follows from (4.4.41) and (4.4.43) that

(4.4.70) ©1(0,0,a) = v2(0,0, a).

By the same way we may assume that the domain where 5 is defined contains
points (0, z) where x € Os(f). So let z be such that |z — 2(6,a)| < % (#) and
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|z — (0%, )| > 3 |2(*,a)|. Then we write, using Lemma 4.4.18,

\

(0, )] < [x(07, )| + |2(67, a) — 2(6, o),
(0, a) < 2(Jz — (6%, a)| + [2(07, ) — x(0, @)]) < 8|z — (6, )| < £ (0).

9

5
So the point (6, 0) belongs also to the sets where ¢4 and @5 are defined and by (4.4.53),
(4.4.63) we have

(4.4.71) 04(0,0, ) = p5(6,0, ).

Let us match ¢; and ¢o. Let x € 65, 0 e [0,5] be such that

L12(6, 0)] < |z — 2(8, 0)] < {2(6, ).

(4.4.72) 5|

We are going to show then that

_ 0 N+1
(4.4.73) VYN eN ICy > 0:|p1(0,2,0) — p2(0,2,0)| < Cn %
Indeed let y(o, x) be a regular path such that
(4.4.74) ~7(0,2) =0, ~(l,z)==x

and there exists K > 0 such that for all ¢ in [0, 1],

(4.4.75) % (o, x)‘ < Klx —2(6,0)]
(4.4.76) A(o,2) - ag < 75 (v(0.2)) lag]
(4.4.77) |v(o,2) — x(0, )| < g 0)
(4478) {if |z — x(0,a)| > |2(0, )| then,

lz(6, )| < |v(o,2) — (0, )| < [& — (6, o)
(4479) {if |z — 2(6,a)] < |2(0, )| then,

|{E - 1’(9,&)| < |7(0'7 :L') - 1’(9,0&” < |x(9aO‘)|

The construction of this path will be made at the end of this Section.
It follows from (4.4.78) or (4.4.79) that

L 12(6,0)] < 1y(0,2) — (6, 0)] < (a(60,0).

We write for j = 1,2,

'O

I,
0 Do (07 J?) a.. (977(07 J?), Oé) do.

Soj(97x7a) = @](950704)_‘_ ax
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Using Proposition 4.4.14 (ii) and (4.4.75) we obtain
1
0
w;(0,xz,0) = ;(6,0,a) + / 8_Z (0,2) ®(0,7v(0,z),a) do + R,
0
1 _ N
Ryl < Ox [ o= ot L2E LB g,
0 {6)
Then by (4.4.72), (4.4.78) or (4.4.79) and (4.4.70) we obtain (4.4.73).

Now let xo € C§°(R) be such that 0 < xo < 1 and xo(0) = 1if o] < 1, xo(0) =0
if |o| > 1. Let us set

x—z(0, a)
0,x) = ——).

wen =0 (g )
Now for z in Os(6) we set
(4480) @3(95 z, Oé) = X1(97 J?) ¥1 (9 4 Oé) + (1 - X1(97 .1?)) P2 (97 Zz, Oé).
On the support of x; we have |z —z(0, a)| < (x(6, )) thus ¢ is well defined. On the
support of 1 — x1(0,x) we have |z — z(0, )| > % (x(8,
defined. Therefore @3 is well defined when z € (95(9)
all the conditions in Proposition 4.4.14. We have

8303 ( ) 8 8X1
Ox

@) = 1 |z(0, )] so o2 is well
We show now that (3 satisfies

Jp1
0,r,a) = {Xlg*‘(l— 8—4‘%(1—@2) (0,2, ).

On the support of dﬁl we have |(p1 — v2)(0,z,a)| < Cn % by (4.4.73).
Moreover we have by (4.4.72)

(4.4.81)

3X1 C C
— < <
oz (9"”)‘ S 20,0) Sz —2(0,0)|
and
91 02 1
[ o+ (1= x0) G2 = @] (0,2,0)| < hal| G (6.3.0) = @(6,2,0)|

+(1- P2 0, z, ) —@(G,x,a)‘.

0
)%
It follows that the claim (ii) in Proposition 4.4.14 holds for ¢3. The point (iv) follows
from (4.4.81) and (4.4.73) for N = 1 which gives |(¢1 —¢2)(0, z,a)| < C'4. The points
(v) and (vi) are straightforward. Let us show (iii). We have
ox1 #(0,0)  x(0,a)E(0,a) 9xo0
20 (O0) = [_ o) @@y &l O‘))} o 0
Since #(0, ) is bounded we deduce from (4.4.73) that

aXl
<
20 “’)‘ S

It follows then that

des _ (0o 9p2
<ae (0% 90 +(1—x1) 89) 0,2, )
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Then (iii) follows easily.
Let us now take 6 € [0/, +oo[ and & € Os(#). Assume that

(1.4.82) 5 2(6°,0)] < | — 2(6", )] < (26", ).

We shall show that

|z — (0, )|V
R

Let us take a path v satisfying (4.4.74), (4.4.76), (4.4.77) and

(4483) |(904 - 905)(& Z, a)| <Cn |£L‘ - (E(g*, a)|

(4.4.8) {if |z — z(6*, )| > |2(6%, )| then

[2(6%, )| < [y(0,2) — (07, )| < |z —2(6%, o),
(1.4.85) {if |z — 2(6*, )| < |z(6*,a)| then

[z — (0%, )| < |y(o, @) — 2(0%, )| < [z(67, a),
(4.4.86) ‘g—z (0,0)| < K Jo = 2(67, ).

Let us remark that in the two cases (4.4.84) or (4.4.85) we have
1(0,0) — 26", @) < 2|o — 2(6, @) < 8 | — 2(6, )

by Lemma 4.4.18.
Then using the same method as before we obtain easily (4.4.83). To match ¢4 and
5 we set

xi(z) = XO(%)

and we deduce from (4.4.83) that ‘% ()| < \:E—T%*a)\' Then we set

(4487) 506(9511)04) = [Xl Y4+ (1 _X1)¢5](97x7a)'

It is then easy to see that ¢g satisfies all the requirements of Proposition 4.4.14.
Our last step is to match 3 and ¢g. With the notation 6(c) introduced in Lemma

4.4.18 let us set

=052, mmo(2). 0-n(R).

We have therefore according to (4.4.69)
0 <6y <6 <05<80.

Using (4.4.87), the fact that xi(x(6*,«)) =1 and (4.4.53) we get

(4.4.88)
02

1
w6 (02, (0%, a), ) = —/ p(z(0%, o), P(s, (6%, o), ) ds + 0" p(a) + % e |
On the other hand we have
(4.4.89) p(z(0%, ), D(s, (0", a), ) = —% (s,z(0",a),0) + A+ B
s

MEMOIRES DE LA SMF 101/102



4.4. THE CASE OF INCOMING POINTS 91

where

A= p(a(0",0), 9(s,2(0", ), ) — p (20", 0), 22 (5,2(0", ), )

Oe: 0
B =p(w(0°,0), 2 (5,2(0",0),0)) + Z22 (s,20(0", ), ).

By the estimates proved in Proposition 4.4.14 we have

|$(9*,Q)—$(S,C¥)|N |x(0*,a)—x(92,a)|N
(s) (=)~
Here we used the fact that for s € [0/, 6] we have (s) ~ (0*) (see Lemma 4.4.17 (ii))
and |z(0%, a) — x(s, a)| ~ |z(0*, @) — z(02, )| by Lemma 4.4.18.
It follows from (4.4.88) and (4.4.89) that
62 8303 723

1
we(f2,2(0%, @), ) = 2 (s,2(0", o), ) ds+6* p(a)—i—Z—Z. |a5|2+/ (|A|+|B]) ds.
0+ 0

(4.4.90)  |A|+|B| < Cx <Cy

Therefore we obtain
(4491) 906(9% (E(g*, a)v a) = 903(9% (E(g*, a)v a)
1
— p3(0*,2(0%, o), ) + 6" p(a) + % loag> + R

where by (4.4.90)

|2(0%, &) — x(B, ) |V

4. <
(4.4.92) |R| < Cn 6 )N

Now using (4.4.80) and (4.4.53) we have

1
903(9*735(9*76“)7@) = ¢1(0*,x(9*,a),a) =0" p(a) + Z |a€|2a
so we obtain
(4.4.93) w6 (02, (0", a),a) = p3(b2, (0", 0), ) + R

where R satisfies (4.4.92).
Now let 6 € [01, 03]. We set

, n c )
04(0) = {x ER":x-ae < 32 (a) lacl, lr — v(8,0)| < 5 <9>}.

Let € O4(f). We can find a path v joining  to (6%, «)) such that v C O5(6) and
there exists K > 0 such that

0 *
(4490 |5 (0.2)| < Kla— (0, 0)l,11(0,5) = (62, 0)| < Kla = (62, 0)|
Indeed if |x — (6%, )| < |z(0*, «)| we set

7(0'71:) =0x+ (1 —O')LE(Q*,O()
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and Lemma 4.4.16 show that

co
(o, 2)) - ag = 0w - ag < 5ol +al) |ag|
Co *
< 5o @+ ozl + (1 = 0)z(67, a)l)) o]
Co Co
< B VI hio,a)logl < 2 (1(0,) ]

If |z — z(0*, )| > |z(0*, )| we take v to be the union of the two segments joining
and z(6*, ) to 0 and we obtain with y = x or y = z(0*, «) for t € [0, 1],
Co Co
ty-ae <t —2 <2
y-ae Stop(y)lael < o
Since 0 belongs to O%(0) these two segments are contained in O%(0).
Let us prove the estimate on 7 given in (4.4.94).
If |z — 2(6*, )| < |z(6%, )| we have
lox+ (1 —0)z(0*,a) —x(02,a)| < oz —z(0*,a)| + (1 — 0)|xz(0", a) — (b2, )]
< K|z — z(02, a)|.

{ty) log-

If |z — z(0*, o)| > |x(6%, )| we have

<tle—xz(0%, )|+ (1 —1) |20, o) + |2(0%, a) — 2(b2, @)
<o — (6%, 0)| + 267, @) — (6, )

< K|z — z(02, )]

[tz — x(62, @)

again by Lemma 4.4.18. Moreover
t2(07, a) = (02, )| < [2(02, ) — (6%, )| + (1 = 1) |2(67, )]
< K|z — (02, a)|.

Concerning the estimate on g—;, if | — (6%, )| < |x(6*, «)]| it is straightforward by
Lemma 4.4.18. If |x(0*, o)| < |z — z(6*, «)| the same Lemma shows that |x(6*, )| <
K|6* — 03] < K |z(0*, ) — 2(02, )| and |z| < |x — (02, )| + |2(02, @) — z(0*, )| +
|z(0%, )| < K’ |x — x(62, )|. Thus (4.4.94) is entirely proved.

Now for j = 3 or 6 we can write

N ! oy 0,
1(02..0) = (02,206, ).0) + [ 5L (020) T (02,7 (0 ), o

1
0
= (02, 2(0", a), ) +/ a—z (0,2) ®(02,7(0,x),a) do + R;
0

where N1
|z — z(02, )|
Rj|<C
| Jl N <92>N
by Proposition 4.4.14 and (4.4.94). By (4.4.91) and (4.4.92) we have
_ 0 N+1
(4.4.95) (05 — ¢6) (6,2, 0)] < Oy =202 0)

(02)N
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Now for 6 € [01,603] and j = 3 or 6 we can write

1
0p;
00, z,a) = pj(02,2,a) + / (6 —69) =2 50 I (06 + (1 — o) 02, z,a)do
so by Proposition 4.4.14 and Lemma 4.4.18 we have
1
(4.4.96) ¢;(0,x,a) = (02,2, ) — / (0 —62) p(x,P(c0+ (1 —0) 02, x,0)) do + A,
0

where
|z — (00 + (1 — 0) b2, )|V
(08 + (1 —0)62)N

Al < C

PROPOSITION 4.4.19
For all @ in [61,03] and all ¢ in [0,1] we have
(4.4.97) (1) (o0 + (1 —0)b2) > K, (0)
(17) |z —x(c0 + (1 —0) b2, a)| < Ko |z — 2(6, a)].

Proof
Case 1: 0 € [02,03]. — We write with 87 = 06 + (1 — o) 65,

|z —2(0,a)> =T+ II where

(4.4.98) I=|z—x(07, )+ 267, a) — z(0,a)
IT=2(x—z(07,a)) - (2(07, ) — z(0, a)).

Since z(0,z) — (07, o fea s,a)ds =2(0 —07)ag + O(e |0 — 67|) we have I] =

—4(0 — 67)(z — x(67, )) ag + O(eI). Now in Og we have x - ae < 55 (x) |ag| ;
moreover by Lemma 4.4.18 (i) we have (67, ) - ae > 22 (2(67, ) e | since 67 >
02 = 6(12%). Tt follows that I > —< (0 — 67)(x) |oe | + 800 (x(07, @) |ae| — O(e I).
Therefore we obtain

11> =2 (0 67)(a(67. ) o]
(9 07) o — (67 )IIO&gI+T< 2(07, ) |ag| = O(e I).
The second term in the right hand side can be bounded by 73 I. Using (4.4.98) we
obtain

c 7c
70, @) =1 +11 > (1= 35— K) [+ > (2(6”,0)) .

Taking co and € small enough we obtain I < 2|x — x(f,«)|> which implies since
10 — 67| < 2|z, ) — 2(67,a)] < 2V1, that |6 — 07| < 2|z — z(h, )| < 26 (0) so
() < (67) + 26 (f) and therefore (7) > 3 () since & is small. This proves the claim
(i) of (4.4.97).

To prove (ii) we just use the fact that

|z(0, ) — (07, a)| <310 — 07| < 6]z — x(0, ).
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Case 2: 6 € [01,02]. — The point (i) in (4.4.97) is obvious in this case since o +
(1 — 0’) 92 2 0.
By the same computation as above, since 6 > 6;, we will have
(4.4.99) [z —2(0,0)] > 5 (Jz — 2(61,0)| + |2(61, @) — z(6, a)]),
o 110 — 01] < |20, ) — 2(61, )| < 610 — 04].

On the other hand we claim that we have

9
(4.4.100) 3—30 (@(0,0)) |oe| < 3|z — 2(60,q).
Indeed we have
- 11 Co
(¢~ 2(6,0)) -0 = 7 ¢ — 2(6,0) -0 < 22 (1) g — T2 (w(6, ) o
by Lemma 4.4.18 (i) since 0 > 6, = 9(11“0) Thus
c 11c
(0~ 2(6,0)) - ¢ < 2 (20, @)} g + & | — (6, @) Jae| — =2 (2 (6, ) e

It follows that

9co o
30 (20 @) lag] < 55 o — (0, o)l lag| — (z — 2(8,a)) - ag
from which (4.4.100) follows easﬂy since |ag| < 2 and §5 [ag| < 1. Now 67 = o6 +
(1 — o) 63 belongs to [61,02] for o € [0,1]. Since by Lemma 4.4.18 (iii) the function
0(c) is strictly increasing there exists a unique ¢, € [11&, 12%] such that §7 = 6(c,).

30 ° 30
Now we have |z — (07, )| < |z — z(01, )| + |z(01, @) — (07, )| which implies
11
(4.4.101) z — 2(6°,0)| < |z — (61, a)| +6 ‘9( 350) —0(co)|.

We claim that

(4.4.102) ’0(1:1,)50) —9(cy)

<D sup (a(s, ).
s€[61,02]

To see this we compute 9’( ). Recall (see Lemma 4.4.18) that g(6(c),c) = 0 for
c € [$8, 2] 1t follows that a—g (B(c),c) 8 (c) + 52 99 (9(c), ¢) = 0. Now we have g—g (s,¢) =

—(z(s,a)) |ae| and % (s,¢) = #(s,a) - ag — c% |aee|, which shows that
gg (s,¢) = 2(Jag|? + O(e + ¢). Therefore we have |0'(c)| < 2 (z(0(c), ) and we obtain
(4.4.102). The last step consists in showing that

(4.4.103) sup (z(s,a)) < 2(z(0,a)).
0€[61,02]

To see this let us set h(s) = (z(s,a)). Then h'(s) = 796(?(;‘(),595;)&) Thus h'(s) =
72953(5?@).)% + O(e). Now since s € [f1,603] we have 1%50 (x(s, @) |ae| < z(s,a) -

ae < 228 (2(s,a)) |ag] so 0 < W(s) < 2¢p + O(e) and therefore if s1,s2 € [61,65],
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|h(s1)—h(s2)| < (2co+0O(e)) |s1—s2|. Let us take s1 = 0(c), s2 = 0(c’) with % <gc,
¢ < 2% Then

30
(4.4.104) [{2(0(c), ) — (@(0(c'), )| < (20 + O(e))[6(c) — O(c')I-
On the other hand

2(0(c), @) = x(0(c'), o) = 2(0(c) — 0(c)) - o + O(e |0(c) — O(c)])

which implies that

2(0(c), @) - ag — 2(0(c'), @) - ag = 2(0(c) — 0(c)) |ag|* + O(e]0(c) - 6(c')]
and, by definition of (c) (see Lemma 4.4.18)

[c(z(8(c), @) — ¢ (x(0(c'), a))] |ag| = 2(0(c) — O(c")) [ag|* + O(e 8(c) — b(c")]).
Combining with (4.4.104) we obtain
[{z(0(c), o) = (2(0(c'), )|
< 2(2¢0 + O(e))[e[{z(B(c), ) — (z(0(c), )| + |e = [{z(0(c), ).

Since ¢p and e are small enough we obtain

c
[{z(6(c), @) = (2(0(), )| < 2]e = {x(B(c), a) < % (@ (6(c), a))

which shows that all the (x(6(c),a)) are equivalent in [0y, 82], more precisely taking

s =06(c),0 = 0(c) we obtain

sup (x(s, @) < 2 (2(6, ),
56[91,02]

which is (4.4.103).
Finally using (4.4.101), (4.4.99), (4.4.102), (4.4.103) and (4.4.100) we obtain

|z —2(07,a)] < K |z — z(0, a)|
which is Proposition 4.4.19 (iii) in the case 2. O

Now using Proposition 4.4.19, (4.4.95), (4.4.96) we obtain

|z — 2(0, 0) |V

(44105) |(g03 — 306)(02,95, a)| < CN <9>N
1
(0, x,0) = @j(02,z, ) — p(z, ®(07,z,a)do + A, j=3,6,
(4.4.106) | N+1
x—z(0,a)|NT
Al < —_—

Let now x2 € C*°(R) be such that xa2(s) = 1if s > 1, x2(s) = 0 if s < 0 and set
x3(0) = Xz(:3:9911)~ Then let us set
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We have
Do _ Jips3 D6 X3
20 (0,2, 0) = x3(0) 20 (0,2, 0)+(1-x3(0)) 20 (0, , 04)4‘W (0)(p3—p6)(0,, ).

Now we deduce from (4.4.105) and (4.4.106) that on the support of (‘%3 we have
|z — 2(6, )|V

O
By Proposition 4.4.14 for 3 and ¢g we have for j = 3 or 6,

|z — 2(6, )|V
(O~

|(p3 — w6)(0,7,a)] < Cn

9¢;

— <
or (9,1‘,0&) @(9,]},0&)‘ X C(N

therefore this is also true for ¢ and since for j = 3 or 6,

z —z(6, )|V
(6.2.0) = pla,0(6.,00)| < O Tl

the function ¢ defined in (4.4.107) satisfies all the requirements of Proposition 4.4.14.
The proof of Proposition 4.4.14 will be therefore complete when we will construct
the path v(o, x) satisfying (4.4.74) to (4.4.79).

9¢;
00

Construction of y(o,x). — Let us set a = z(0,«). We first show that we can join
any point x to a point a — |« — a| a¢ by path remaining in the set

Co
{veR iy ae < T W) lacl, ly—al =l —al}.
Making rotations we may without loss of generality assume that % =(-1,0,...,0),
a = (a1,0a2,0,...,0),x = (z1,22,23,0,...,0). Therefore it will be sufficient to restrict

ourselves to the dimension three. We will construct our path on planes so we begin
by the dimension two. Let us set with D € ]0, 1[, & > 0,

C={yeR’:|y—af =|z—al*},
H:{y€R2:—y1:D\/k2+y§},
D={yeR?: —y; < D/k2+y3}.

LEMMA 4.4.20. — D¢ = R? \ D is strictly conver.

Proof. — This follows easily from the strict convexity of the function g(t) = V&2 + 2.
O

LEMMA 4.4.21

(i) Letb € D andu = (1,y) with |y| < 1. Then for allt > 0 we have b+tu € DNH.
(ii) Letb € D¢ andv = (—1,y) with |y| < 1. Then for allt > 0 we have b+t v € D°.
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Proof
(i) Let b = (b1,b2) and h(t) = by +t + D \/k? 4 (ba + ty). Then

Dby +1ty)y
_ /1.2 1 12 I
h(0)=b1+Dy/k2+b5>0 and h'(t)=1+ k2+(b2+ty)2'

Since D |y| < 1 we have D |ba + ty| [y|//k? + (b2 + ty)? < 1. It follows that h/(t) > 0
so h(t) > h(0) > 0.
The proof of (ii) is the same. O

Assume that C NH contains at least two different points (otherwise C ~ (C NH)
would be connected). Let us set

0
My =a+|z—a (ZTE&) 0 € [0,2n],

= inf{f € [0,2n[: My € CN'H},
02 = sup{d € [0,2n[: My € CN'H}.

(4.4.108)

REMARK 4.4.22

. — .

(i) If 6 € [0,Z] U [27 — %, 27| we have a My = |z — a|(5§) with cos# > 0 and
‘Sina < 1. Since a € D Lemma 4.4.21 (i) implies that My € D\ H. It follows that

cos 6
we have

il o — L.
4<91<92< 1

(ii) We cannot have 6, € } T g] and 6, € [37”, 2 — %[ Indeed if this was true
then by Lemma 4.4.20 the segment | My, , Mp,[ would be in D¢. But sinf; > 0 and

sinfz < 0 so there exists ¢ € |0, 1[ such that ¢ sin6; + (1 —¢) sinf; = 0 ; then

t 0 1-—t 0 1
Ny =tMy, + (1 —1t) My, = a+ |z — a ( o8 1+(0 ) cos 2) =a+a<0>
with « > 0 since cosf; > 0 and cosfs > 0. By Lemma 4.4.21 (i) N; € D since a € D
which is in contradiction with N; € |My,, My, [C D°.

(iii) If 61 € | %, %] then for all 6 in ]91, 7] we have My € D¢ which implies 02 €
|, 32] by (ii). Indeed we have MelMg = |z — a|(cs‘i’§g:§§fgll) ; since for 6 € [0, 7],
cos @ is decreasing we have cos — cosf; < 0 and

e ]

<1

since T < 2401 < 3™ Then Lemma 4.4.21 (i) implies that My € D°.

It follows from Remark 4.4.22, (i), (i), (iii) that we have else 6; € |Z,7[ or
0y € } , 2” [ By symmetry it is enough to consider one case. Therefore we shall
assume in the sequel that 5 < 01 < 0y < 2w — T 0, € } %,7‘(‘[. We claim that

(4.4.109) My € D¢ for all 0 in 01,65

We split the proof in two cases.
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Case 1: 0 < ‘%’T — Since sin @ is decreasing on [g, 37“] we have

—if § <01 <62 < 37”, sin#; > sinf > sin 6y,

—if § <01 <0 <316 < 37”, sin#; > sin@ > sin(37 — 03) = sin s.
Let us set

1—
Ne=tM, +(1—1t) Mg, = a+ |z —a (t cosby +(1—1) COS@Q).

t sinf; + (1 —t) sinfy
Now there exists ¢ € |0, 1[ such that
t sinf; 4+ (1 —t) sinfy =sin @

and since 0 € [3, 37”] we have 6 = Arcsin(¢ sin6; + (1 —¢t) sinfy) + 7. Then

cosf = — cos(Arcsin(t sinfy + (1 —t) sinfy)) = —+/1 — (¢t sinf; + (1 — t) sin6y)2,

cosf < —ty/1 —sin® 6; — (1 —t\/l—sin2 02 <t cosby + (1 —t) cosbs.

Here we have used the strict convexity of the function /1 — 22. Since N; € D¢ and
My = Ny+a( ') where a > 0 (see (4.4.108)) we deduce from Lemma 4.4.21 (ii) that
My € D¢ which proves (4.4.109) in case 1.

Case 2: 05 > %’T and 0 < 3w —63. — Since 03 < 27 we have § > 7. Now by (4.4.108),

—_ cosf — cosf
Mg, My = |z —a| (. R
sin @ — sin 65

Since cosf is increasing for § € [m, 27| we have cosf — cosfy < 0. Moreover,

sinf—sinfy | __ 6462 : 0+6- 3 o o
‘0059760502| - |COtg 2 ‘ < 1 since 2 = 20 0 < 2 4> 92 < 2 4 50

862 < 27 — Z. 1t follows from Lemma 4.4.21 (ii) that My € D° which proves

(4.4.109) in case 2.
We conclude that if z € C U (D \ 'H) then = = a + |z — a|($3]) with 6 ¢]6,, 62

and there exists a path joining the point z to the point a + |z — a|((1)) with length
less than 27 |z — a.

Construction of the path in dimension 3. — We have ae = (—1,0,0), a = (a1, az,0),

r = (21,72,23) and —a < Doy/1 + |a|?, —x1 < Doy/1 4 |z|? with Dy = £5. We first
construct a path in the plane y3 = x3. We set

D= {(917927173) D=y < DO\/1 + |23l + u7 +y§}

D /
Z{(y1,y2,x3):—y1< d 1+|J)3|2—|—y§}
1 — D}
0

Dg

Since ¢g is small enough we have < 1. By the same way we see that the

D3
point a is such that —a; < —2e— /1 + a%. Therefore a = (a1,az,x3) € D. Since

x € D, by the construction made in two dimensions there exists a path lying in the
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set {y cys =x3, |y —al = |z —a] = \/(xl —a1)? + (z2 —a2)2} joining z to z =
(a1 + \/(xl —a1)? + (2 — a2)?, az, :Cg) of length smaller than 27 |« —a| < 27 |z — al.
Let us construct now a path in the plane yo = as. Let us set

D={y=(y17a27y3):—y1<D0\/1+yf+a§+y§}
Do

— Ly = (1, a0,u3) : — <7\/1+a2+2}.

{y (yl 2y3) 1 1—D(2) 2T Y3

We have z € D, a € D. There exists a path joining z to (a1 + |z —al, ag,0) lying in the
set {y = (y1,92,y3) : Y2 = az, |y — a| = |z — a|} with length smaller than 27 |x — al.

Now to join 0 to « we join 0 to z; = (a1+|al, ag,0) then = to zo = (a1 +|x—al,az,0)
and since the segment [z1, 2] is included in D by Lemma 4.4.21 (i), the path joins
0 to z and its length is smaller than C(|z — a| + |a|). Now by (4.4.78) we have
la| < |z —al or |z —a|] < |a|] < 2|z — a|, so the length of the path is smaller than
Clz —a| = c|lz — z(0,a)|. Moreover |y(0,z) —a| < 2|z —a| < &5 (0) so (4.4.77) is
satisfied. Finally (4.4.78) and (4.4.79) are obviously satisfied.

This ends the proof of Proposition 4.4.14.

4.5. The phase for small ¢
We shall need the following precision on the phase when |0] < 1.

THEOREM 4.5.1. — Let ¢ be the phase given by Theorem 4.1.2. Then one can find
positive constants such that for |0] < 1, |z — z(0,a)| < 0(0) and |ag| < 2 one can
write

(= ) - ag = Olag* + § o — au|?

1 2
0,z a) = T+ 20 +Z|a5| + R, z,a);
where
OR OR
<Cle+o)lo—aul +10), || <C(e+6) 1ol
S| <CE+Or—ai +10). 55| <C e+l
0’R O’R
— | < Nz — > +14), |=——=—|< 9) 16|,
57| SC e+l —aul +10l), 5| <Ce+o)l
0’R
<
8042 < C(e+0)]0),
and
C if A2 =0
o o R,z < ¢
e e Ca,,a, 0] if |As| > 1.
Proof. — Let us introduce the following space of functions.
(4.5.1)

£={ZeC®RxR" xR"):|0f 93 0% Z(t,2,)| < Cp.a, a,¢|t|'~, for all
AjeN", £=0,1, [t| <1, z€R", £€R" with [¢| <2 and Z(0,z,£) =0}
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Let us also recall that Proposition 3.2.1 gives the following description of the flow for
[t| <1,z e R &R with |{] <3

(4.5.2) §(t,z,8) =+ ([t z,8),
z, €E.

It follows that, with f = z or £, we have
(4.5.3) |0 0.1 072 f(t, )| < Crapa, 1 L4 A + | Ao > 1

Let us set now
g;(n) = XO(%) (&) —i2;) (0, +2(0,0),7 +£(0, ) — (af —iad)]

where xo € C§°(R™), xo(n) = 1if [n] < 1, xo(n) = 0if || = 1 and |y| < §. Setting
zr=y+z(0,a), E =n+£(0,a) and using (4.5.2) we obtain
(454) g;(n) = xo(m)[(1+200)my — i + (1 +206) (0, 0) — ir;(6, )
We claim that we have the following estimates for £ =0, 1,
C if A=0,
(4.5.5) 105 07 0 9 g < § '
CZ,A/,;;,AE |9|17€ if |A| >1

These estimates are obvious for the four first terms of g;. So we are left with the
estimate of

(1) = 0507 0402 [Z(—0,y + x(0,0),n +£(0, )], Z€EE.

To handle this term we shall make use of the Faa di Bruno formula given in Ap-
pendix A1, with FF = Z, Y = (0,y,n,a), U1(Y) = =0, U1+,;(Y) = y; + z;(0, @),
Uiint;(Y) =n;+&;(0,0), 5 =1,...,n. Since Z € £ we find easily, using (4.5.3) that
(1) < Ce|f|*~* which proves our claim.

Another property of g; which will be used in the sequel is the following.

(4.5.6) For 8 =0, g;(n) = xo(n)(n; —iy;) is independent of .

Now according to our procedure we have solved the equations (see (4.3.14)),

(457) 0= (Cl b gj) = gj Z a/) bk + Z ng(97yaaaa7b) bp bq
k= p,q=1
in the set
20y Iyl Iyl
E = Rn Rn . X X
{(a,b)e % ‘ 1+492‘ ‘[ ‘b+1+492‘ f }
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Let us recall that we have the following bounds on HJ, (see (4.3.13) and (4.3.16))
0§y ot o, HY | < > / |05 0) 92 0% g;(n)| dn., £ =0,1.
|l <M |+3n+2
Here we have used the fact that r(a, b, g;) is linear with respect to g;. It follows from
(4.5.5), since g; has compact support in 7, that
: C if A=0,

(4.5.8) 05 8y o2 oM ) HI | < § M .

’ Cg,%A7ME|9| it Al > 1.

Using (4.5.4) we see easily that the equations (4.5.7) are equivalent to the following
system

—20y,; u .
a; =7 — 4932 + 7510, 0) + Z85(=0,y + 2(0, ), —a + £(0, @)
(4.5.9) » +Z84(=0,y +2(0,0), —a +£(0,0)) b+ HI(0,y,,a,0) b+ b
b = g 4392 + Z;1(97 a) + Z;Q(—G, y+xz(0,a), —a+£0,q))

+ Z]I'),Zi(_@ay +2(0,0), —a+£(0,0)) b+ H;?(Q,y,a,a,b) b-b

where the Z's belong to the space € defined in (4.5.1) and the H}s satisfy the estimates
(4.5.8).

According to (4.5.6), (4.4.2), Theorem 4.4.2 and Theorem 4.3.1 for § = 0 a; and
b; do not depend on a and moreover we have,

{%(o,yva) = a;(y) = O(ly1"),
b;(0,y,a) = b;(y) = —y; + O(ly|V),

for every N € N and |y| < 4.
Let us set

(4.5.11) G;(0,y,a) = H; (0,y,, a(8,y,a),b(0,y,a))-b(0,y,a)-b(0,y,a),* = a or b.
Then, since the Z}s vanish for § = 0, (4.5.10) implies that

(4.5.10)

(4.5.12) Gi(0,y,0) =G5 (y) =O(ly/Y), VN eN.

Therefore we can write

0
* * d *
(4.5.13) G5(0,y,a) = G (y) —|—/O i Gj(0,y,a)do.

We claim that we have the following estimates on aj, b;. Let us set for convenience
fj =a; or b;.
of;
00

Cy, if A=0,
|ag a@’j 8(13 fj(gvyaaﬂ < K 10
Ciny,a (e +6)10] if [Al>1, £=1

(0.y,0)| < C (e +9)
(4.5.14)
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To prove the first estimate we differentiate both sides of (4.5.9) with respect to 6.

Since the terms in Z belong to £ and using (4.5.8), the fact that (6, «),£(0, ) are
bounded, we obtain

Oay

00

ob;

o da 8b‘>.

< Cily;| + Cae +C’3(E+5)(‘@ + o

|
Taking € + § small enough and since |y| < ¢ we obtain our first claim. To prove
the second estimate we use the Faa di Bruno formula (see Appendix A.1) and an
induction procedure.

Let us set Y = (0,y,a),A = (£,7,A) and let us apply the operator 9% to both

sides of (4.5.9). We have

0(1) if A=0 —20y; —Y;j
A fo_ ’ _ ] j
8yf0{0 " |A|>1.7 f0f1_|_402 or T 102

|08 Z(0,a) < Celd) .
Assume now that our estimate is true for |A| < k and let |A| = k + 1. Then
M Z(=0,y+2(0,a),—a+&0,a)b(0,y,a)] = (1) + (2) + (3)
where

(1) =Z(=6,---) o3 b(Y)
(2) = 8¢ [Z(=8,y + x(6. a), —a(Y) + (8, )] b(Y)

B= % (4) oo o,

Artho=A T
A;£0

Using the Faa di Bruno formula in the terms (2) and (3) we see that

0(1) if A=0,
|03 [Z(=6,---)]| < Ce6](103 al + |03 b]) + ey

0((e +0)|0)* %) if |A|l#0.
By the same way, using (4.5.8) we obtain

O [H(Y, a(Y), b(Y)) -b(Y) - b(Y)[] < C (¢ + 0)|8](|0ya(Y))
0(1) if A=0,

A
+ [0y b(Y)]) + {0((6+5)|9|1_€) if |A] > 1.

Taking € + 0 small enough we obtain the second estimate of (4.5.14).
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Now it follows from (4.5.9), (4.5.11), (4.5.12) and (4.5.13) that we can write, with

Y =(0,y,0),
(4.5.15)
(aj +1ib;)(Y) = ;(Y) where
( ):Z] ( a)+Z12( 9,y+a:(9,oz),—a(Y)+§(9,oz))

+Z3(=0,y +x(0,a), —a(Y) +£(0, @) - b(Y)

aH OH da OH 0b b
/ { 3 90 " oy gl V0T 2L ae}(“’y’o‘)da

with |87 i(y)| < CN ly|N¥ for all N € N and v € N".

Using (4.5.1), (4.5.3), (4.5.8), (4.5.14) we deduce the following estimates
UY)|+ |5 (V)] < CN|ZJ|N+C(5+5)|0|<C’(5+6)
(4.5.16) |0y U(Y)| < CNA, ly|N +C, 0] if |y| =
07 04 U(V)| < Coa (= + 6)10] i 1 >0 and [4] > 1
Now recall that,
(0, z,a) =¢;(0, a) - (aj +1ib;)(0,z —x(0,a),q)
(4.5.17) 00, z, ) fo a)) - (9 sz (1-s)z(,a),a)ds
+9p( )+ 37 el
It follows that,

w0, z,0) = (x —x(0,a)) -£(0,a) + % %

“ @)
— [ @ = a0.0)) - UG 5(0 = a(6.0)).0) ds +0p(0) + 5 ol

We have,
(1) = (z — ag)ag = 20 ag|* — (0, @) - ag + (z — z(0, @) - ¢(0, )

(4.5.18) (2) = 1 55— [(z — ) — 40(z — ap) - e + 462 |oe|?
+2(x — g — 20 ) - 7(0, ) + |r(6, ) [?].

Let us consider the term in ¢ which does not contain any error term. It can be written

as

(7 — az)? —40(z — ag) - ag + 402 |ag|?
2(20 — 1)

1
(z — ag) - o — 20 g |* + +9|045|2+Z|045|2

which is equal to

(= az) -ag + § (& — az)® — 0 agl .y
1+2i0 2

%
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It follows that

(z—aw) - ag+ 5 (v - 02)? — 0]agl”
1+ 2:6

1
80(9a$a04) = +2_Z-|af|2+R(9axaa)

where

R(Q,:L’, a) = —7“(9, a) “oe (iL' - 1’(9, a)) ’ C(gv a)
) (2)
(z—az —20ag) -7(0,a) + 5 |r(0, o)
20 —i
(3)

+0(p(a) —Jael?)
)

1
_ / (= 2(0,)) - U0, s(z — 2(0,0)), ) ds .
0
(5)

We are ready now to show that the remainder R satisfies the estimates given in
Theorem 4.5.1.

First of all, since r and ¢ belong to £ (see (4.5.1)), since the functions = — (6, «)
and £ — o, — 20 o are bounded together with all their derivatives with respect to o
and since p(a) = |ag|? + ¢ E;kzl bik(az) af o/g we have

(4.5.19) |02 (i)] < Caclf] for i=1,2,3,4.
So we are left with the term (5). Let us note that if we set fo(6,2,a) = z — x(0, a)

then,

dfo dfo <clf

< < |z — — | K A
7l <26, 1l < Jo—arl +Clol 52| <0 5D
|02 fol < Celd)] if |A] > 2, uniformly in (z,6, ).

(4.5.20)

With this notation one has
1
(5) = f0(9,x,a)/ U9, s fo(0,z,a), a)ds.
0

Then, with ¢ = = or &,

) afo [* LoafyoU U
= U d — 0 ds.
(5) /0 (0,5 fo, ) S—I—fo/o ( + )(,sfo,oz) s

ooy T da; y Oa; Oy  Oq;
Now it follows from (4.5.18) and (4.5.20) that
2 (5)] < C e+ 8)(| -l + [6])
Oy ’

(4.5.21)
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since |g—£ (5)| < C'0] and |z — az| < . Now, with 4, = x or &, we have

92 2f (! dfe Y/ 0fy OU oU
8ai 8aj (5) o 8ai 804]‘ /0 U(675f07a) ds + 80@ /O (5 8—% 8_y + 8—%) ds

dfe Y/ Ofy U U /1 O%fy U  dfy r0fy U  OU
+8aj/0 ( >d5+f0 0 [S Oa; 0oy Oy +58ai(8aj 0y? +8aj)
9*U %+ o*U }ds
da; Oy Oaj  Oa; Dol

5 da; Oy + ooy

Using (4.5.16) and (4.5.20) we check easily that

82
S (5)] < C e+ 9l — af? + 10
9?2
_ <
(4.5.22) e 5)| < e+l
2G| <cE+o0.
(%ug ‘

Combining (4.5.19), (4.5.21) and (4.5.22) we obtain the claimed estimates on the two
first derivatives of R.
Finally using again (4.5.18) and (4.5.20) we deduce the following estimates of the

higher derivatives
C if A =0,
o<y
e e Ca, 4, |9| if |A2| > 1.

The gain of || when |A2| > 1 coming from the fact that a derivative of  — z(6, @)
and U with respect to o makes appear a 6. Thus the proof of Theorem 4.5.1 is
complete. O
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CHAPTER 5

THE TRANSPORT EQUATIONS

5.1. Statement of the result and preliminaries

Let P = E?,k‘:l ¢’*(z) D; Dy, be a second order differential operator of the form
(2.2.7) We shall denote by ¢ P the transposed operator.

In Chapter 4 we have constructed a phase function for P. The purpose now is to
construct an amplitude.

Recall that the set 25 have been introduced in Definition 4.1.1.

The main result of this Section is the following.

THEOREM 5.1.1. — For every a € T*R"™ with % < |ag| < 2, every N € N and every
A =1 one can find an amplitude en(0,y, o, \) which is C*° on Qs such that
(i) en(0,y,a, A) = 1.

.s . 0 L 0 % T,x
(ii) (z)\% —MEW —tP) (e Ae020) o (0, —

:RN

(0,a),a,))
(0, 2, a, ) A9 02:2) yphere
N g2 e —x(0,0)Y
|Rn (0, 2,0, )| < CN(/\ +A T)
for every (0,z,a) in Qs, A = 1 and Cy is independent of (0, x,a, \).

(iil) |04 en (0,7 — 2(8, @), o, \)| < Cn.a uniformly with respect to (0, x, a, \).
COROLLARY 5.1.2. — For every o € T*R"™ with % < Jag| € 2, every N € N and
every A = 1 one can find an amplitude an (0, x, o, \) which is C™ on Qs such that

(1) a‘N(Oa z, o, A) = 17

(ii) (iA % —tP)(eM0m) qn (0, 2,0, 0)) = Ry (0, 2, a, A) €059 where

N 2 lz—2(0,0)Y
IR (0,2, 0, \)| < c;v(A +A T>
uniformly with respect to (6, x,a, A).
iii) |02 an(6,z,a,\)| < Cn.a (0)~"/2, uniformly with respect to (6, z, a, ).
x )
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In flat case Ry and R/ are bounded by CyA~%, but no explicit formula for ey is
available.

Proof. — We have just to set an (0, z,a,\) = (0)""?en(0,z — 2(h,a),a, \) where
ey has been defined in Theorem 5.1.1. O

Proof of Theorem 5.1.1. — We have 'P = E]k 1 9°%(z) D; Dy, + Z;’:l g;(z) D; +
go(), where g/% = §;1, + e bji and by, € BUO, g €EB2,1<jk<n, g € B;O;O where,

Ca
(z)[Al+Ero0

oo’

(5.1.1) Bgoz{geCOO(R"):|a§g(x)|< , Yz eR, VAGN”}.

A straightforward computation shows that

o _.n_0 ire
(5.1.2) (Mae NG T P)(e f)

=l (% ?))HM( ﬁ”fi " o e

+Z 83:383: 21+92f+ Zg] ) f]

7,k=1

According to Theorem 4.1.2 the coefficient of A? in the right hand side of (5.1.2) is
bounded by Cy (‘””+Efa>') for any N. Therefore if we set

0 n 60 -
_ =iy I W A S - i
(5.1.3) [=e (Mae Z/\21+92 P)(e /)
-1 0 " dp 0
X — E Jk _—
89+2] "~ O0x; 8l‘k

we obtain

_ o 9% n 0 "N Oy
14) |[I—iNXf—i gk - = ' =) f-tpP
(5.14) ‘ INXT “(Zg d; O 21+92+Z;gfaxj)f f‘

j k=1
<Cy X2 (7” _?H(f’aﬂ)N.

To pursue the proof we consider separately the two cases.

5.2. The case of outgoing points
For convenience we shall set
S, = {a e T"R™ : = < |ag| € 2,00 - ¢ = —co () |ag|}

S = {a e T"R™: = < |og| € 2,00 - e < co () |oe|}-

N = N =
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Here we assume o € §i~ Let us set R; = % — ®;. It follows from Theo-
J

rem 4.3.13 (v) and (4.3.48) that |04 R;(0,z,a)| < Ca/{0)/4 for A € N* and from

Proposition 4.3.19 (ii) that |R;(0,z,a)| < CN(%W)N for all N € N.

First of all, according to (4.3.43) and Taylor’s formula, we have

22 (0,2,0) = &(0,0)
J
N 3580 0(1 — x1(0))(x; — ; (0, @) — (a; +ib;)(0, 2 — x(6, ), )
(5.2.1) ()
+R;(6,z,a),
Ap. |z —2(6,a)[\¥
02 R (0,2,0)] < Can ) )
Using Theorem 4.3.1 (iii) we deduce,
0? 1 sgné
7z, ci)‘pxk 0,z,a) = 3 %‘% (1—x100)) 0k + djr(0,x — z(0, ), @)
+R;r(0,x, ),
(5.2.2) c
02 djs, (0,2 — 2(0, @), )| < Wﬁ
Ap. lz =26, 0)\¥
02 Rt (0, 2,0)] < Can (P57

uniformly with respect to (6, z, «).
Now if g € By, (see (5.1.1)) and (0, z) € 25 we can write
Ca
(y + (6, )l A Hoo”
Since |y| < §(f) we can use Proposition 3.3.1 to write
1

102 9(2)| = 182 9)(y + (8, )| <

1
(y+a(0,a)) > (x(0,a)) — |y > 7 (0) = 6(0) = 5 (6).
It follows that
C
(5.2.3) 10, ()] < Wﬁ-

This can be applied to the functions g% — 6,1, g;, go, 1 < j,k < n. It follows from
(5.2.2) that

n 2
Y @) gt (0,0,0) = 5 (1 a(0)) + (O, 2(0,0),0) + R0, 7,0)
k=1 8xj 8xk 2 <9>
where d and R satisfy the same estimates as in (5.2.2). Now we have

1 sgné 1 6  1sgnd 10| 0 x1(0)
1sgnd 1—x:1(0) _ (L)
2.(0)2 @) +10  T\O)?

(5.2.4)
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Summing up, we have proved

n ) 8230 n 0
Z gjk(x) W (9,:[,’,&) - 5 1_'_—92 = Dl(gvx - x(f),a),a)
jk=1

+R1(0a z, Oé),

a
(5.2.5) Zg] a_ (0,2,a) = Dy(0, x — (0, @), @) + Ra(6, 2, ),

C .
|8;:‘ D;(0,x - x(6,0),0)| < W j

— N
lz =208, )] Z)(;g’a)l) , j=12 YNEeN.

We are going now to simplify the vector fields X introduced in (5.1.3). Let us set

(5.2.6) {Zzi —z(0, a).

=12,

IR;(0,2,0)] < On (

Since i (6, ) = 85 ((0,@),£(0,a)) =237, ¢/"(x(0, ))&k (0, ), we obtain

n

B ) . 0 0
X = % - 2j7k=1 {g]k(x(sva))gj(sva) _gjk(y"'x(sva)) a—;i (Say+x(sva)va)} a_yk

Now using (5.2.1) and g/ = ik + € bjk, bji € By, we can write

Jd sgns
X = (1- §
75 T LTl i g

— 2 Z {bik(a(s, @) = bjr(y + 2(s,0))} & (s, )

J,k=1

~ (aj +iby)(s,y,0) 9 11
-2 c— 4 2¢ bik(y + z(s,a)) — (= sgnsy;
2y o5, Z ey + 2(5.0) 5 (5 s

9
Oy

; 0 L
— (g +ij)(8,%0¢)) s +2 > gFy+a(s,) Ri(s,y + 2(s,0),q) oo
J,k=1

DEFINITION 5.2.1. — We shall say that a function f = f(s,y,a) on Qs x S1 belongs
to & if

f(5,0,0) =0
(5.2.7) 104 £ (5.9, 0)| < <>CTA+1 Aenn

uniformly when (s,y) € Qs and a € Sy
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According to (5.2.4), (5.2.3) and Theorem 4.3.1, (ii), (iii) we have,

(1=xa(s))

e(bjr(z(s,
(5.2.8)

1
(s)

Then we have,

(5.2.9)

ebjr(y + (s, )

sgns
(s) V7

S
€&
1+52y]

a) = bjr(y +2(s,0)))) &(s, ) € €

s (l -sgns -y — (a +ibj)(s,y7a)) ce

2

(a; +1bj)(s,y,a) € E.

n

0 L
1+S2Zy]a +;Ejsy’ 7]+;RJ(S,Z],04 a.

N
where E; € £ and |R’ (s,9,0)| < CN(%>

Now we perform another change of variables. We set

0=s
(5.2.10) _
(s)
Then we have % = % + 1 Zj 195 ay It follows that
n n 8
(i) X———l—z Hzaaz Z Gzoz)az
j=1 J j=1 J
(i)  h;(0,0,a) =0,
(5.2.11) A Ca N
(111) |az hj(gv 2, a)| < <9> AeN”,
(iv) |R 0,z,0)] < <J; |z|V, for all N in N, uniformly when
0 >0 (resp. 0 <0), |2|<9d, a€Ay, j=1,...,n
Moreover, since aiyj = @ 8% we have by (5.2.3),

tp= Z ku(0,z,a) 07,

(5.2.12) <2
|8Zkv(eazaa)|<«o>ﬁ7 VENTL
Let us set
0 " 0
2.1 X — h;(6 —
(5 3) 0 89+Z J( ﬂzaa)azjv

where h; satisfies (5.2.11).
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It follows from (5.1.4), (5.2.5), (5.2.6), (5.2.10) and (5.2.11) (i) that

‘1 - z‘A(Xof +d(8,z,a) f — %tPf)‘ < On A2 12N (1] + [V f])

(5.2.14)
|07 d(0, z, )| <

¥
<9>17+00, v e N”™ .

Now let us fix an integer Ny large enough depending only on the dimension n (and
chosen later on). For the coefficients hj, k., d in (5.2.13), (5.2.12) and (5.2.14) we

write
F(0,z,a) = FNo(0,z,a) + 7o (0, 2, a) where,

.
(5.2.15) FNo(9,z,0)= Y 07 F(0.0,0) 5,
I71<No—1 K
|rNo (0, 2, a)| < O, |2|No.
Let us set
0 . N 0 N
L= —+Zh °(0, z 04)8—+d °(0, z, @),
-
(5.2.16) !
Q=> k 0, z,a)
lv|<2
Using (5.2.14) to (5.2.16) we see that
(5.2.17) ‘I - i/\(Lf - %Qf)’ < Oy X121 7 107 £(6, 2.

[v1<2

Now we have the following result.

LEMMA 5.2.2. — There exist functions Ay = Ae(0,2,a), £ =0,..., Ng+ 1 which are
C*> in (0,2) in the set O = {(6,2) : 0 € R*, |z| < &} such that

(1) AQ(O,Z,Oé) =1, Ag(O,z,a) =0,¢=1,...,No+1,

(ii) |07 Ae(8, z, )| < Co, uniformly in O x Sy, (L €N, v € N"),

(i) LAg =0, LA =iQAp 1, £=1,...,Ng+1.

Let us assume for a moment this lemma proved. Let us set

(5.2.18) f:fN[):AO"‘%Al"‘""’_ﬁANOJrl'
Then Lemma 5.2.2 shows that
fng(0,z,0,A) =1
(5.2.19) |87fN0(9 Z,0,N)| < Cyn, if (0,2) €0, a eS8y, A>1
L fn, — QfNo SATN2Q An ] < Oy AN 2,
It follows from (5.2.17) and (5.2.19) that

(5.2.20) 1| < Cly, A 2|V + CRpy AN

MEMOIRES DE LA SMF 101/102



5.2. THE CASE OF OUTGOING POINTS 113

Coming back to the variables (0, z) we set
r—z(0,«a
eny (0,2 — (6, a), 0, X) = f, (9, %,a,)\).
Then it follows from (5.2.20), (5.2.19) that en, satisfies the conditions (i), (ii), (iii) in

Theorem 5.1.1.
So we are left with the proof of Lemma 5.2.2.

Proof of Lemma 5.2.2. — We are going to straighten the principal part of the oper-
ator L given by (5.2.16). Recall that we have L = Lo + d™°(0, z, o) with

0 N )
Lo = %—kZhjo(f),z,a)—

j=1 8Zj
Moreover, according to (5.2.11) and (5.2.15) we have
. No " Oh;
(1) hj (gvzva) = E(Q,O,Q)zk +gj(0azaa)a
k=1 7k .
(5.2.21) (i) g;(0,z,0)= > =07hi(0,0,a)27,
2<|y|<No—1
& C
(i) Y107 h;(0,0,a)] < e YrEN

j=1

In that follows all the objects will depend on o € S. but all the estimates will be
uniform with respect to a.
Let us set
Oh,;

5.2.22 H(9) = (—J 9,0, )
(5222) (0) = (52 0.0.0)
If 0y € R* we shall denote by Y (6, 6) the unique n x n matrix solution of the problem

Y (0,00) = H(O)Y(,60), 0 cR*E,
Y (6o,6p) =1d.
Since by (5.2.21) (iii) the entries of the matrix H(6) are bounded by C/(6)?, the
Gronwall inequality shows that there exists My > 1 such that

1<, k<n

(5.2.23)

(5.2.24) Y (8,00)|| < Mo, for all 6,6y € R* and a € Sy.

Moreover since Y (6,6p)~! = Y (g, 6) we have also,

(5.2.25) 1Y (0, 00) || < Mo, for all 6,60y € R* and a € Sk.

Now using (5.2.21) we see that the problem

(52.26) {zj(e) =h1"°(0,2(0),0), 0 €RE, 1<j<n,
zj(0) = yj,
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is equivalent, setting z = (2;)1<j<n, 9 = (9j)1<j<n, tO

0
(5.2.27) z2(0) =Y (60,0)y + / Y (6,1) g(t, 2(t), ) dt.
0
Then we have the following Lemma.

LEMMA 5.2.3. — One can find n > 0 such that for all y € C™ such that |y| < n
the problem (5.2.27) has a unique global solution z such that |2(0)] < 2Mon for all
6 € R*. This solution will be denoted by z(0,y). Moreover one can find a constant
C(NO,MQ) 0 such that

||(82J) Y (6, O)H C (Mo, No)n, and for every v € N, one can find a
constant cy 2 0 such that
(ii) |9y 2(0,y)| < C, for all @ >0 and |y| <n

Proof. — Let > 0 (to be chosen). Assume |y| < 7 and set A = {T > 0 such that
(5.2.27) has a solution for 6 € [0, T satistying |z(0)| < 2Myn}. Since (5.2.27) (which is
equivalent to (5.2.26)) has a continuous solution for small § and since |z(0)|| = |y| < 7n
there exists g > 0 such that eg € A. Thus A is non empty and it is obviously an
interval. Let T* = sup A. If T* = 400 we are done so assume T* < 4o00. Let us take
T €]0,7*[. Then on [0,T] we have

0
[2(0)] < [Y(6,0)y] +/O Y0, D)1 g (¢, (), )| dt.

Now by (5.2.21) (ii) and (iii) we have
Ky,
l9(t, 2(1), )| < <t>20 2Mon |z(1)]

if 2Myn < 1, where Ky, = EzgngWI %
It follows from (5.2.24) that,

12(0)| <Mon+/
0

Then the Gronwall inequality implies that
+o00 dt }

|2(0)| < Mon exp [QMgKNoﬂ/ w2l
0

Therefore taking n small (compared to M, and Kp,) we can achieve that
|2()] < 2 Mon for all € [0,T]. A classical argument shows that z(T*) can be
defined and |z(T*)| < 2 Mgn. Then solving again (5.2.26) with data z(T*) we see
easily that this contradicts the definition of T* as the supremum of A. Therefore
T™ = +oo0.

Now differentiating (5.2.27) with respect to y yields

Y oM2 Ky, n

e )] dt

0z o " g 824
5.2.98 22 (0,y) - Y(0,0 +/ ve.0S =L t,y) dt.
(5:228)  Zo @) =Y(O,0e+ | Y Zza @) 5= (6y)
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First of all (5.2.21) (ii) show that

C’/Y y|l—=1
(5.2.29) Z‘azz ‘g > W|z(t7y)|‘ -1« i

2<|v|<No—1
if 2Myn < 1. It follows that
0 2
g; 0,y ‘ \Mo—l—/ %‘%(Ly)‘dt.
The Gronwall inequality shows that one can find K = K(Ny, My) such that
g—yi(@,yﬂ < K, for all § € R* and |y| <7
Using again (5.2.28) and (5.2.29) we see that

9 O Oy, ME - K
= (0) - YO0 x| < [ T e < Oy, No)
89 0 (t)

Finally the estimate on 8] z, which is true for |7] = 0,1 by the above results, can be
easily obtained by induction on |y| using (5.2.27), (5.2.21) and the Gronwall Lemma.
O

In the sequel we shall take 7 so small that C(Mo, No)n < 3.
Let us now consider the map
O :REx{yeCn: |y <n} — RExC",
{ (0,y) — (0,2(0,y)).
We claim that ® is injective. Indeed for a fixed § € R* if we have Y, 7 = 1,2 such
that |y;| < n and 2(6,y1) = 2(6,y2) then

n L 9z & &
o=2/0 S Ot (1= )0 o) .

(5.2.30)

Since |t y1+(1—1t) y2| < n when t € [0, 1] we can use the estimate given in Lemma 5.2.3
to ensure that
Y'(0,0)(y1 — y2)| < C"(No, Mo) 1 [y1 — yal.
According to (5.2.25) this implies that y; = yo if 7 is small enough.
It follows that ® is bijective on its range. We show now that

(5.2.31) {H 0 is small enough we have

R* x {z €C": |2| <0} CO(RF x {y €C": |y| < n}).
This equivalent to show that for fixed § € R*,

{for all z € C™ such that |z| < § there exists y € C"

.2.32
(5.2.32) such that |y| < n and 2(0,y) = z.

According to (5.2.27) the equation to solve is equivalent to the equation y = F(y)
where

%
(5.2.33) Fly) = (6,00~ = — Y(0,0)~ /0 Y(0,1) g(t, 2(t, ), o) dt.
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Let B = {y € C" : |y| < n}. We shall show that if § and n are small enough
compared to Ny, My then F' maps B into B and there exists ¢g < 1 such that
|F(y1) — F(y2)| < eoly1 — yz2| for all y1,y2 in B. Then (5.2.32) will follow from the
fixed point Theorem. Since Y (,0)~ = Y (0,6) and Y (0,0) Y (0,t) = Y (0, ) it follows
from (5.2.24) and (5.2.21) that if |z] < ¢ we have

7 ( M06+‘/ e CMo)”

since |z(t,y)| < 2Myn by Lemma 5.2.3. Then |F(y)| < n if  is small enough in terms
of My and My d < %n.
Moreover if y1,y2 belong to B we have

0
C(My, N,
P - Fwl < | [ SRR gl - (0,0 ]
Since by Lemma 5.2.3 we have |z(t,y1) — z(t, y2)| < C'(Moy)|y1 — y2| we obtain finally
|F(y1) = F(y2)| < C"(Mo, No)n lyr — v2l.

Taking 7 small enough we obtain (5.2.32).

We can now straighten the vector field Ly which is the principal part of L given
n (5.2.16). Let us make the change of variables, (6',y) — (6, z(6,y)). Then we have,
according to (5.2.26)

AN o PPN o 0 _
+§k@w%f%+;@w4mm%f

In the new coordinates (6’,y) the operator L has therefore the form

_ 0 No / _i
L= 5‘9’+d 0',2(0",y),a) 89’+d(9 a).

Now we note that

% (efogl d(t,y,o) dt u(t,y, a)) = efog/ d(t,y,a) dt Lu(t,y, a).

It follows that the problem
LAy=0, A0,y,a)=1
has the (unique) solution Ao (6,1, ) = e~ Sy dlty.a) de. By the same way the problems
LA =iQA;q, Ay0,y,0)=0, €=1,...,No+1,

are solved by

’

gg(@’,y,a) —e foel d(t,y,a) dt/ Z(@ Avé—l)(ty, )efo s,y,0) ds gy
0

To end the proof of Lemma 5.2.2 we are left with the uniform estimates (ii).
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First of all, using the estimate in (5.2.14), (5.2.15), Lemma 5.2.3 (ii) and the Faa
di Bruno formula we see that,
c,
(0%

(5.2.34) |0y (d™ (0, 2(0, ), )| <

Denoting by x(0, z) the inverse map of y — z(6,y), that is k(0, z(6,y)) = y and using
Lemma 5.2.3 we see that,

(5.2.35) |07 k(8,2)] < C, for § > 0 and |z] < 6.
Then let us set for £ =0,..., Ny + 1
A0, z,0) = Ag(0,5(6, 2), ).

Using (5.2.34), (5.2.35), (5.2.16), (5.2.15) and the estimate in (5.2.12) we see that
(A¢)e=o0,... No+1 satisfy all the requirements of Lemma 5.2.2. This ends the proof of
Theorem 5.1.1 in the case of outgoing points. O

We consider now the case of incoming points.

5.3. The case of incoming points

We assume here that o € T*R" is such that 3 <|a.| <2 and
(5.3.1) Oy - e < —¢p (o) |agl.

Since such points belong to S_ (see Definition 3.2.2) the case where 6 < 0 is covered
by the Section 5.2. We focus now on the case 8§ > 0. Here the method used in
Section 5.2 does not work for many technical reasons. For instance, when |a| is very
large, ag = —a,/|o| and 6 = 3 |a,| we can see that (2(6,«)) is of magnitude one.
Therefore we are far from the estimate (z(6,a)) > \% (#) used for instance to get
(5.2.3). Here also we shall use the method which consists to straighten the vector
field X, defined in (5.1.3). This is done by a change of variables in (0, z) deduced
from the flow of X. The problem here is that X has non real coefficients (because of
[?T"’;) which are merely C*°. Therefore we are led to push the problem in the complex
domain by extending all the functions almost analytically as in [MS] for instance.
So we begin our Section by a Lemma on almost analytic extensions adapted to our
situation. In that follows we shall consider together two cases. Case 1: 2 = R7, case
2: Q = Qs (see Definition 4.1.1). We shall denote by X the variable in € that is

X = z in the first case, X = (6, ) in the second one.
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LEMMA 5.3.1. — Let f be a function defined on Q which is C* in X and satisfies
for all X in Q, in case 1 (resp. case 2),

[f(X)] < éWTSI (resp. Mo(ﬁ + @%))

My, 1 1
Z |8Zf(X)|<W (resp. Mk(<x>k+03+<9>k+03>, kE>1
Ivl=k

(5.3.2)

where (My)k>0 is an increasing sequence in |0, +oo[ and 0 < 01 < 03, 0 < 02 < 03.
Then there exists F' = F(X,y) defined on Q x R} which is C* in (X,y) and satisfies
for all (X,y) in Q x RY,

() F(X,0) = f(X).
(i) 1P(X.9)| < 7 (resp. Col gy + )

(iii) For every A, B in N™ with |A| + |B| > 1 there exists Cap > 0 such that

A 9B AB 1
10, 0 F(X,y)| < (@) [ATHBT o5 (resp. CAB(<x>\A\+|B\+U3 + <9>\A\+\B\+ag))'

(iv) For every N € N there exists Cy > 0 such that for j =1,...,n,

10; F(X,y)| < CN(%)N . W%UJ (resp. Cn |y|N[(% + ﬁ)N(W%as +

1
e
where Ej = %(8%7 +i8%j),
Proof. — See Section A.4 in the Appendix. O

Now recall that for o € T*R™ such that oy - e < —co (ag)|ae| and § < Joe| < 2
we have constructed in Theorem 4.4.10 a function ® = ®(6, z, o) uniformly bounded
on the set Q5. By Lemma 5.3.1 we can extend ® almost analytically as a function,
which we denote by ®(0, z, @), on the set
(5.3.3)

QF ={(0,2) eRxC": |z —x(0,0)] <6(0),Rez- g < co (Rez)|agl,|Imz| <5}

and ®(0, z, «) is still uniformly bounded on this set.

Again by Lemma 5.3.1 one can extend almost analytically the coefficients of our
symbol p, keeping the bounds of its coefficients. In that follows for z € C™ we shall
denote by X (¢, 6, z) the solution, whenever it exists, of the following problem.

(534) X(t’ 9’ Z) = g_é) (X(tv 97 Z), (I)(ta X(t7 97 Z), a)),
X(6,6,2) = z.

Our aim is to prove the following result.

MEMOIRES DE LA SMF 101/102



5.3. THE CASE OF INCOMING POINTS 119

THEOREM 5.3.2. — One can find positive constants c1, 61, K, I?, with ¢ < ¢,
01 K 0, such that for all x € R™ such that

[z —2(0, )] <01(0), =-ae<cz)lal,
the solution of (5.3.4) exists on [0,0] and satisfies the estimates,

(i) | X (t,0,2) —x(t, )| < K|z — (0, )] @,

|z — x(0, o) v
(i)  |[ImX(¢60,z) < KT

(i)  (z) + (0 —t) < K (Re X(¢,0,x)),

(5.3.5)

1
(iv) ReX(t,0,z)- ae < = (Re X (1,0, x))|ae],
uniformly for t € [0, 6].

Let us remark that the estimates (5.3.5) ensure in particular that if §; is small
enough we have (t, X (¢,0,a)) € Q5. With 0 < ¢; < ¢2 < ¢g to be chosen, we divide
the proof in three cases.

— Case 1: x-ae < co(x)|agl, 2(0, o) - g < c2 (z(0, a))|ae|, |z — (8, )]
— Case 2: z-ae < e (x)|ag], z(0, ) - ag < c2 (z(0, )| ael, |z — (6, )]
— Case 3: z-ae < c1 (2)|agl, (0, a) - ag > ca (x(0, a))|oe|.
Here is the geometrical interpretation of case 1 and 2. We denote by [a,b] the
segment joining two points a,b € R™.
LEMMA 5.3.3. — Let c2 > 0 and assume that x € R™ is such that « - ae < ca (z)|ag],
|z — (8, )| < §(0) and that (0, o) - ae < c2 (x(6, a))|ce|. Then we have:
(i) either |x — z(0,a)| < |z(0, )| and then,
Vy € [z,2(0,0)], y-ac <2 (y)lacl,
(ii) or |z —z(8, )| > |x(8, )| and then,
0,2(0,)]U0,z] C{y e R": ly —z(0, )| < o (0) and y-ae < co(y)|ael}
Moreover
|z +[2(0, @) < 3|z — (0, )| <3 (|x] + [x(0, )]).
Proof. — In the first case applying Lemma 4.4.16 we obtain for ¢ € [0, 1]
(tzx + (1 = 1) z(6, @) - ag < ea(Hz) + (1 = 1) {z(6, @)))|ae]
< eo(L+tlz[ + (1 = )|2(0, a) )]
< a1+ V3ltz + (1 — 1) 2(6, 0) ) ae|
<2c(tr + (1 —t) (0, a))|oe|.
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Assume now that |z — z(6, «

)| > |z(0,«)]. Then |x(6,a)| < do(d). Therefore [0, 2] U
[0,2(0,)] C B(x(0,«),d0(0)
t

|
). Now if ¢ € [0,1] and Z = =z or z(6,) we have
)

tZ - ae < te(Z)| ag| < o (t Z)|ag|. Moreover
3z —a(0,a)| = |z —2(0, )| + 2|z —2(0, )] > [2| — |z(0, a)| + 2 |z(0, @)
= |x| + |z(6, o). O
1) Proof of Theorem 5.3.2 in case 1 and 2. — Let us take cg, 02 such that

0<ca<Kcg, 0 < 02 < 6. Let A be the set of T € [0,60] such that for every
z € C™ such that |z — 2(0,a)| < 02(0), Rez - ag < ca(Rez)|ag|, |[Imz| < do,
z(0, o) - ag < c2(x(6, a))|ag| the problem (5.3.5) has a unique solution on [T, 8] which
satisfies for ¢ € [T, 6], in case 1:

(5.3.6) | X (t,0,2) —z(t,a)| < My |z —z(6, )] %
(5.3.7) (@ —t) + (Re(sz+ (1 —s) z(0,a)))
< Mi(s ReX(t,0,2)+ (1 —s)z(t,a)), s€][0,1]
(5.3.8) (s ReX(t,0,2)+ (1 —s)z(0,a)) - ag
<My (s ReX(t,0,2)+ (1 —s)z(0,a)) |ag]
|z — (6, a)|
(5.3.9) ITm X (.0, 2)| < Mg(T + |Imz|)
in case 2:
(5.3.10) | X (¢,6,2) — X(t,0,0)] < My |z| %
(5.3.11) (6 —t) + (Re(sz)) < M1(sRe X (t,0,2) + (1 —s)

Re X (t,0,0)), se€]0,1]
(5.3.12) (s ReX(t,6,2) + (1 —s) Re X (t,0,0)) - «
< Mz (s ReX(¢,0,2) + (1 —s) Re X(¢,6,0))

and (5.3.9).

Our aim is to show that if My, My, M3 are correctly chosen then A = [0, 6].

Let us show that the set A is not empty. Indeed if ¢ = 6 the estimates (5.3.6) to
(5.3.12) are satisfied with strict inequalities if M7 > 1, My > 2C5, M3 > 1 (using
Lemma 5.3.3). It follows that they still hold for T'= 6 — ¢, if ¢ is small enough.

On the other hand A is an interval. Let T, = inf A. If T, = 0 then the theorem
5.3.2 is proved. Assume then that T, > 0 and let T > T. Then on [T, 6], (5.3.6) to
(5.3.12) hold.

REMARK 5.3.4. — If the case 2 is not empty then the point zy = 0 satisfies all the
requirements of casel. Indeed if there exists z; such that |z; — (6, )| > |z(6, @)
then |z(0, )| < d2 (0) so |0 — z(0, a)| < J2 (#) and the other requirements are trivial.
Therefore if the case2 is not empty then X (¢,0,0) is well defined on [T, 6] and satisfies
(5.3.6) to (5.3.9).
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Let us show that we have (¢, X(t,0,2)) € Qf (see (5.3.3)). This is the case if
My 6y <0, My < ¢g, 2M3d5 < §. Indeed the only non trivial point is to prove that
| X (t,0,z) — z(t,a)| < §(t) in case 2. We have

|X(t,0,2) —x(t, )| <|X(t,0,2) — X(£,0,0)| +[X(2,0,0) — x(t, )| = (1) + (2).

It follows from (5.3.10) that (1) < M |z| % and from (5.3.6) with z = 0, that
(2) < My |z(0, o) %. Now by Lemma 5.3.3 (ii) we have |Rez|+ |z(0, )] < 3|Rez
—2(0,a)|; since |Im z| < d2 we will have (1) + (2) < M1(d2 + 3|Rez — z(0, a)]|) <<t—>>
Since |Rez — z(0, )| < d2 (#) we obtain finally (1) 4+ (2) <4 M 2 (t) < I (t).

In the sequel we shall denote by C' or O(1) the constants which may depend on

bounds of p, ® but are independent of M7, My, M3. Moreover for the sake of simplicity
we shall write

X(t) = X(t,0,2)
(5.3.13) {)Z'(t) = xz(t,a) in case 1, X (¢,0,0) in case 2.

In particular X (0) = z(f, @) in case 1 and X () = 0 in case 2. Our goal is to show that
the estimates (5.3.6) to (5.3.12) hold on [T, 6] with better constants than M, My, Ms.

a) Improvement of (5.3.7) and (5.3.11). — By Theorem 4.4.10 (iii) we have
D(0,z,a) —ag = O(e +0) if (f,z) € Qs and by Lemma 5.3.1 this estimate still
hold on QY ; it follows that ®(¢, X(t),a) — ag = O(c + ). On the other hand
g—’g (x,8) — 26 = O(e)|£| which also extends for z € C", |Imz| < d2. It follows then

from (5.3.4) that X (t) = 2a. + O(e + §). Therefore
{X(t) =220 —t)ag + O+ Vo) (0 —t)

(5.3.14) X(t) = X(0) — 20 — t) ae + O(c + V3)(6 — 1).

Now for s € [0, 1]

(1) = |Re(sX(t) + (1 — ) X(£))]* = |s Rez + (1 — s) Re X(0)[> + 4(0 — £)? |ae|?

—4(0—t)(s Rez+ (1 —s) Re X(6)) - e
+O((e+0)[(6 —t)? +|s Rez + (1 —5) Re X(8)?].
It follows from the conditions on z and the definition of X (6) that
(s Rez+ (1 —s) Re X(0)) - a. < 2¢2(s Rez + (1 —5) Re X(6)) |a|
S0
1 ~ ~

(1) > §|s Re z+(1—s) Re X (0)|*+3(0—t)? |ag|*—8c2(s Re z+(1—s) Re X (0))(6—1)|ag|
if € + ¢ is small enough. It follows that

]_ ~
1) > (5 - 1602) IsRez+ (1 —s) Re X(0)[2 + (3= 16¢2)(0 — )% ae|? — 16 co.
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If ¢o has been chosen small enough we obtain in particular
(5.3.15)
(i) [Re(s X (£) + (1 — ) X(1)|* > § |Re(s z + (1 — 5) X ()2
+2(0 = 1)? g — 3

(1) (Re(s X (t) + (1= 5) X(1)))? = 15 [(0 = )* + (Re(s 2 + (1 — 5) X(0)))?].
This improves (5.3.7) and (5.3.11) if M; > 4.
b) Improvement of (5.3.8), (5.3.12). — Tt follows from (5.3.14) that

(2) =Re(s X(t)+ (1 —s) X(t)) - e
=Re(sz+ (1 —5)X(0)) - ag — 20 — t)|ae|* + Oe + 6)(0 — t).
Applying Lemma 5.3.3 we obtain if € + § is small,
(2) < 2¢2 (Re(sz + (1 — 8) X (0))) — (0 — t)]ae|>.

Using (5.3.15) (i) we obtain, (2) < 4co(Re(s X (¢) + (1 —s) X(t)). Taking 16 co < My
we deduce finally that

(5.3.16)  Re(s X(t) + (1 —8) X (1)) - ag < 5 Ma(Re(s X (1) + (1 = 5) X(1))) |ac].

This improves (5.3.8) and (5.3.12).
¢) Improvement of (5.3.6) and (5.5.10). — We have

X(t) = g—g (X (1), B(t, X (1), ),
X(t) = 2 (X (1), (. X(1), ).

o€

the second equation being true in the case 1 according to the fact that the identity
D(t,x(t, o), ) = &(t, ). Let us set

(5.3.17) Z(t)=X(t)— X(1).
Then
Z(t) = 2[®(t, X (t),a) — B(t, X (1), )] + g—g (X (t),®(t, X (t),q))
Jq ~
- 8_5 (X(t)a (I>(t7 X(t)a Oé)),

since p = [¢|* + q.

Now we use (4.4.39) and Theorem 4.4.2 (i). It follows after extending almost
analytically @, b and the coefficients of ¢ by Lemma 5.3.1,
i~

—(a+®b)(t,z,a).

z—x(t, @)

(5.3.18) Ot 2, ) = £t @) + =
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It follows then that

(5.3.19) '
Z(t) = ;Z—Etz — (a(t, X(t),a) —a(t, X (t),a)) — é—>(5(t,X(t),a) —b(t, X (t),a))
+ S (X0, B(t, X (0),0) = 5 (K00, B0t X(0), ) + 5L (X020, X(0),0)
dq ~
- 8_§ (X(t)v (I)(ta X(t)a a))
We have the following lemma.
LEMMA 5.3.5. — One can find a positive constant C such that
|7 - iz—ftz‘ < Cle +9) |Z(t)|(7<9 E it #)
Proof
(i) Estimation of (1) = a(t, X (t), a) — a(t, X (t), ). We have
(1) = ; % (t,s X (1) + (1= 8) X(£), a)(X () — X (t))ds
1 a - -
/| %(t,sX(tH—(l — ) X(1),0) (X (t) — X(1)) ds.

Using the estimates on a given in Theorem 4.4.2 and Lemma 5.3.1 with o3 = 1 we
find

oa| |0
(‘5‘ + %D(t’”') S C(E+6)(<Re(sx(t)+(11—5))?(15)»2 +#)

Using (5.3.7) and (5.3.12) we deduce that

ga| |0a 1 1
5|+ 5l < cone +0) (2 + )
It follows that,
1 1
(5.3.20) (1) < CORE+8) 1201 (=757 + 772

Here C(M,) is a constant depending only on M.
(ii) Setting (2) = <71> (b(t, X (t), ) — b(t, X (), ) we have exactly by the same way
|Z(t)] 1 1
3.21 2)| < C(M — — ).
(5.3.21) @) < COm)e+8) T (= + 2)

(t
(iii) Estimation of (3) = 54 (X (t), ®(t, X (t),a)) — 5L (X (t), ®(t, X (1), ). We have

mm

®= [ ot (X0 + (1) K@), 20, X(0,0)(X(0) - K(0) s

82
+ analogue term with — q

0z 9¢”

SOCIETE MATHEMATIQUE DE FRANCE 2005



124 CHAPTER 5. THE TRANSPORT EQUATIONS

Now the coefficients of ¢ say bji, extended by Lemma 5.3.1 satisfy
8bjk 8bjk ‘ Ce
5 )]+ |5 )] < (z)2Fo0”
Using again (5.3.7) and (5.3.13) we obtain
Celz(t)|
(6 —t)2too”

(iv) Estimation of (4) = §¢ (X (t), ®(t, X (t),a)) — 5¢ (X(£), ®(t, X (t), ). We have,
by (5.3.18),

(5.3.22) 1(3)] <

=~ Z(t
[B(t.X(0.0) - 20, Xo). ) < 20 4 )+ 121

On the other hand (5.3.7), (5.3.11) with s = 0 imply that M; (Re X(¢)) > (0 — t).

Therefore using the decay of the coefficients b;x of ¢ and the estimates (5.3.20), (5.3.21)
we obtain

Ce 1 1
H<<—\7 — + —.
] < g 120l + 5=2)

It follows then that,

(5.3.23) 1(4)] <05|Z(t)|(<1> 7 1t>2).

Gathering the estimates (5.3.20) to (5.3.23) we obtain the claim of the Lemma. O

Next we state the following Lemma.

LEMMA 5.3.6. — Let 0 < T < 0. Let Y(t) = (Yi(¢),...,Y,(t)) € C™ be such that
Y € CY([T,0]) and satisfies on [T, 0] the inequality

V(1) ~ 52 Y ()] < )] Y ()] + o)
for some continuous functions h,g. Then for all t in [T, 6] we have
0
Yo < (% vor+en [ 95la) e / h(s)] ds).

Proof. — Let us set W (t) = . Then |[W(t)| = |Y( ,

o Y(t) v

W(t)*%—z’ (2t—z N ( 2t—z)
It follows that [W(8)] < s (IR()] Y (8)] + lg(0)]) < [h()][W(0)] + 4L, Then, for

> T and o € [t, 6],

o 0
W<+ [ inewelass [ 9
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By the Gronwall Lemma we obtain

wol< (wel+ [ 9 %ds) o ([ ' Ih(s) ds).

Coming back to Y (t) we obtain the claim of the Lemma. O

COROLLARY 5.3.7. — Let Z(t) be defined by (5.3.17). Then if 46 is small compared
to My we have

12(1)] < 2% =~ X(0)]

Proof. — We apply Lemma 5.3.6 and Lemma 5.3.5 with

Then
It follows that

Since Z(#) = X (0) — X(0) = z — X(0) our lemma follows. O

We can now show the improvement of (5.3.6) and (5.3.10). In the case 1 we
have X () = z(0,«) and in the case 2, X () = 0. Therefore in case 1 we find by
Corollary 5.3.7,

| X (t,0,z) —x(t,a)| < 4@ |z — x(6, )],

(6)

and in case 2,

X(00.5) = X (0,0 < 45 o,

Taking M; > 4 this shows that (5.3.6) and (5.3.10) have been improved.
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d) Improvement of (5.3.9). — Let us set

(5.3.24) N
U(t) = Im(X(t) — X(1)),
(1) =2 U0,
_ 2Re(X(t) - X(1))
@) = 1+ 4¢2 ’ _
(3) = —TImfa(t, X(t),a) —a(t, X(£), )],
(@) =gy e X(0).c) = e, X(1). ),
(5) = [—Z (L, X (1), ) - g—g (Re X (1), ®(t, X (1), )|,
(©) =1 3 (Re X (0), bl X(tm))—%(Re)?(t),@(t,)?(t),a))},
(7) =Im \ aza (Re X (t) +is Tm X (£), ®(t, X (1), o)) ds (i Tm X (),
(8) =Im / ag (£) + is Tm X (8), &(t, X (£), @) ds (—i Tm X (£)),
9) = —Im/ agaz (Re X (t) +is Im X (t), ®(t, X (), o)) ds (i Im X (t)),
(10) —Im/ 85(% (Re X (t) +is Im X (£), ®(t, X (t), o)) ds (—i Im X (¢)).
Then it follows from (5.3.17) and (5.3.19) that,
) At 10
(5.3.25) U) =154z U + Z (i).
LEMMA 5.3.8. — With the above notations, if ¢ + 0 is small enough we have
. 4t 3Milz—z(0,0)] |z —x(0,0)] 1 1
VO -7 VO < — G0 0 (<9 e b W)

1 1
+ (W + W) |U(f,)|

Proof. — We use (5.3.25) and (5.3.24). We estimate the terms (i) for i = 2,...,10.
(i) Estimation of (2). It follows from (5.3.6) and (5.3.10), since X () = z(0, @) in
case 1 and X (f) = 0 in case 2, that
|X(t) — X (t)] (t) = M, |z —x(6, )|, case 1
— < M —— 12— X(0)] <
1+ 42 I R AN Y

But in case 2 according to Lemma 5.3.3 (ii) we have |z| < 3|z — z(0, a)|. It follows

2|, case 2

that in both cases we have
3M |z — z(6, )]
(0)(t)

(5.3.26) 12)] <
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(i) Estimation of (3) and (4). We note that a(t, Re X (t), ) and a(t,Re X (t), )
are real. It follows that

1 o~
(3) = —Im/0 % (t,Re X (t) + si Im X (¢), @) ds(i Im X (¢))
- Im/ 8—§ (idem)ds(—i Im X (¢))

+Im/ (t,Re X (t) + si Im X (t), ) ds (i Im X (t))

' oa =
—|—Im/ — (idem) ds(—i Im X(¢)) .
0 0z
Now, according to Theorem 4.4.2 and Lemma 5.3.1 we have

da da 1 1

= = < = ).

5% (bw )] + [ 5 (w )] < C(€+5)(<Rew>2 * <t)2)

We use this estimate with w = Re X (£) +i s Im X (¢) and w = Re X () +is Im X (t).

By (5.3.7) (with s = 1) and (5.3.11) (with s = 0) we have (Rew) > 0 —t).
Moreover in case 1, Im X (t) = Im z(t,a) = 0 and in case 2,

12| 3M5|z—x(9,a)|

1
My

(5.3.27) |Tm X ()] < M3 7 < 7
Summing up we obtain

Froo z—z(0,a
(5.3.28) |<3>|<c<a+a>(<1> +<ﬂj >)<|U()|+M57| <0<>9 )

since | Tm X (¢)| < [U()] + |Tm X ().
For the term (4), due to the factor ( 77 We have a better estimate. Indeed by (5.3.21),
(5.3.17), (5.3.6) and (5.3.10) we have

(5.3.29) @) <00m) (e +8) B ?9(;) = <<9 - 0 #)
9q

(ili) Estimation of (5). We note here that Ff(z,¢) is linear in { and real if
(x,€) € R™ x R™. Tt follows that

)= 5

Using (5.3.18) we obtain

(Re X (t), Im(®(t, X (1), a) — B(t, X (), ))).

Re(Xl(iz ;th(t)) b fth (X (1) - X(0))

—Im [a(t, X(t),a) —a(t, X (t),a)] — <71> Re [b(t, X (t), @) — b(t, X (t), )] .

Im(D(t, X (1), a) — ®(t, X (), ) =
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By (5.3.6) and (5.3.10) we have |X(t) — X(£)] < 3M; |z — z(0, )| %. Moreover
we can use (5.3.28) and (5.3.29). Finally we use the fact that the coefficients of
8‘1 ¢ (Re X(t),---) are bounded by @Re){?% which by (5.3.7) (with s = 1) and
(5 3.11) (with s = 1) can be estimated by W Gathering these informations we
see that

Ce 1 1 C(Mielz — z(0, a)|
601 f—rem (g * =) VO =g

(iv) Estimation of (6). Since agaln 5t 1 (z,¢) is linear in £ and real when (z,¢) € R®xR"
we can write

(5.3.30)

0q > 0 S S
(6)] < |57 (Re X (1), m (1, X (1), 0))| +| 5 (Re K (1), Im&(t, X (1) )]
Since the coefficients of g—g are bounded by wfgiivo we obtain

Ce

[(6)] < (DD | Tm & (¢, X (t), ).

In the case 1, X (t) = z(t,a) which implies that Im ®(¢, X (t),@) = 0. In the case 2,
| Tm ® (¢, X (1), )| < M3 = 09&)‘ 3 M 1z=2l0.] E(G ) Therefore

C M —x(0
(5.3.31) 1(6)] < =25 'Z 2(0, )|

(0 —t)+oo(6)
(v) Estimation of (7), (8), (9), (10). Using (5.3.7) and (5.3.11) and the estimates on
the coefficients of ¢ we find that

[(7) +(8) + (8) + (10)] < U )] + | Tm X (£)])-

(6 — t)2+oo (
Using (5.3.28) we obtain finally

Ce 3M;3 |z — z(0, a)|
Ut) + 2= 7 )

7=z UU(
Gathering the estimates given by (5.3.26) to (5.3.32) and taking £ + ¢ small compared
to My, M3 we obtain the conclusion of Lemma 5.3.8. O

(5.3.32) [(7) + (8) + (9) + (10)] <

LEMMA 5.3.9. — Let Y(t) = (Y, (t),...,Yn(t)) be a C* function from [T,0] to R™
which satisfies

. 4t K
Y(t) - < Y =
Y0~ 1 YO <OV @1+ o]+ 755
for some continuous functions h,g and K > 0. Then
2t)
|Y<t>|<(<<29 |+/|g )l ds+ K exp /|h )lds).
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Proof. — Let us set Z(t) = % Then Z(t) = % - 4t> Y (t). Tt follows that
l9(®)| K
Z)| < |h@)||Z(t =
201 < hol1z]+ 23+

Therefore for o € [t, 0], t > T we have

0
2(0)| < |+/ Ih(s)]12( )|ds—|—/ '?( ds+K/ .

Now we have,
/Jrooi<L /0|g(8)|ds<i/9|g(s)|ds.
e 14482 T2t f, (2s) T (2t ),

Using Gronwall’s Lemma we obtain

|Z(U)|< 2t / lg(s |s—|— exp /|h |ds

Taking ¢ = T and o = ¢ we obtain, since Y (t) = <2t>|Z(t)|, the claim of the Lemma.
O

COROLLARY 5.3.10. — With U(t) = Im(X (t) — X (t)) introduced in (5.5.24) we have

|WW<CWWWHML+QE;%EQ>

Proof. — This follows from Lemmas 5.3.8 and 5.3.9. O

We can now finish the proof of the improvement of (5.3.9).

Indeed we have U(0) = Im(X(6,0,z) — X(0,6,0)) = Imz. Therefore Corol-
lary 5.3.10 and Remark 5.3.4 show that if C' < Mj and (6 My + C) - C < M3 then
(5.3.9) is improved.

End of the proof of Theorem 5.3.2 in the cases 1 and 2. — The estimates (5.3.5) to
(5.3.12) improved are true for t € [T, 0] for all T > T,. By continuity they continue
to hold on [T, 60]. Now we consider problem (5.3.5) with data at ¢ = T equal to
X(Ty,0,c). For this problem the estimates (5.3.6) to (5.3.12) hold on [Tk — €9, T%]
which contradicts the fact that 7% = inf A. Therefore A = [0, 6] which implies Theo-
rem 5.3.2 in this case.

2) Proof of Theorem 5.3.2 in case 3. — Here we shall take x € R™ such that
z-ag < o (x)|ae] and |z — x(0, )] < 61 (0), with 0 < ¢1 < ¢2, 0 < 1 < a.

Let us recall (see (4.4.49)) that there exists a unique 6* € [0, 0] such that z(6*, «) -
ae = 0. We shall make use of Lemma 4.4.17. To prove the claim of Theorem 5.3.2
we shall use the same method as in the cases 1 and 2.
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We introduce first the set A of T' > 6* such that the problem (5.3.4) has a solution
on [T, 0] which satisfies

(5.3.33) X (t,0,2) — 2| < Myt — 0]

(5.3.34) ReX(t,0,z) - ag < M5 (Re X (¢,0,2)) ||
(5.3.35) (@) + (t — 0) < My (Re X(t,0, 7))
(5.3.36) T X (1,6, 2)| < Mg 2= 20|

If My is large enough, M5 > ¢1, Mg > 0 one can find €y > 0 such that 8 —egg € A. Let
T, = inf A. We want to prove that T, = 0* if My, M5, Mg are correctly chosen; let
us assume Ty > 6 and let ¢ > T,. Then on [T, 6] we have a solution X (¢, 6, z) which
satisfies (5.3.33) to (5.3.36). Let us show that this implies that (¢, X (t,0,z)) € Qf for
t € [T,0] (see (5.3.3)) if 07 is small enough.

From (5.3.36) we have |Im X (¢, 6, z)| < Mg 1 < § if 41 is small enough. Moreover
by (5.3.34) we have

Re X (t,0,z) - e < M5 (Re X(t,0,)) |ae| < co(Re X (¢,6,x)) o]
if M5 < ¢p. Finally,
(1) = |X(t,9,{£) - x(t,a)| < |X(t797x) - (E| + |£L’ - (E(Q*,Ocﬂ + |£L'(9*,Oé) - x(t,a)|.

From (5.3.33) we have | X (¢,0,z) — x| < My |t — 0] < My(0 — 0*) since ¢t > 6*. Now
we use Lemma 4.4.17 to write

X (t,0,2) — 2| <10 My |z — x(0, 0)| < 10 My 61 () < 10 M 5(0%) < 10 My 81 (t).
K K,
Again by Lemma 4.4.17,
5 5
[ — 26", @) < 6l — 2(6,0)| < 651(6) < L (6) < L g,
K, K,

Finally |z(t, o) — z(0*, )| < f;* |Z(s, )| ds < 5(t — 0*) if & is small enough. It follows
from Lemma 4.4.17 that

50 61
e ).

|x(t, ) — x(6%, )] < 5(0—0") <50|x—x(0, )] <505,(0) <

Summing up we find that if §; is small enough,

10My 56
3. < —1 = < 65(t).
(5.3.37) (1) < max ( e Kl) Su(t) < (1)
As in the cases 1 and 2 our goal is to prove that one can improve the estimates (5.3.33)
to (5.3.36).
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(i) Improvement of (5.3.33). — We have by (5.3.5), X(¢,6,2) = 2a¢ + O(e + 6).
Therefore

(5.3.38) X(t,0,2) =2 —2(0 —t) ac + O((c + 6)(0 — 1))

It follows that | X (¢,0,z) — x| < 5(0 —t) if € + § is small enough. We shall take My
so that 5 < § My and then, (5.3.33) will be improved.

(ii) Improvement of (5.8.35). — We deduce from (5.3.38) that

1+ Re X (1,0, 2)] = 14|z +4(0 1) |ae* + O((e +6)(|2* + (0 - 1)*)) —2(0 —t) z- ae.
Since z - a. < ¢1(x)|a.|, taking € + § small enough we obtain, 1+ |Re X (¢,6,2)|* >
1+ 2|22+ 30— )% — 4ei (0 — t)(z), so

(5.3.39) 14+ |Re X(t,0,2)]* = ~((x)2 + (6 — t)?),

if ¢ < 15. In particular 3(Re X(t,6,z)) > (0 —t) + (z), so (0 — t) + (z) <
2 My (Re X (t,0,2)) if My > 6.
(iii) Improvement of (5.8.34). — From (5.3.38) we have
Re X (t,0,7) - ag =z - ag —2(0 —t)|ag|* + O((s +6)(0 — t)).
It follows that

e

(Gnl)
4

by (5.3.39). We shall take 10¢; < 3 Ms and (5.3.34) will be improved.

(iv) Improvement of (5.8.86). — Let us set X (¢,0,z) = X (t) = Y1(t) + i Y2(t) where

Y1,Y5 are real.

Re X (t,6,2) - ag < c1(x) o] - < 10¢1 (Re X (t,6,2)) |ag

LEMMA 5.3.11. — There exists positive constants C, K independent of €,0 and T
such that for all t € [T, 0] we have
. 01 |z — z(0, )|
Ya(t)] < C Mg + (e +0) ——Lg(t)) + —
Ya ()] (7 + A I0) +

where g is a continuous positive function satisfying fﬁ g(s)ds < K.

Proof. — From (5.3.36) and (5.3.37) we get

(5.3.40) | X (t) —z(t,a)| < C(My)d1 (t), |Ya(t)| < Mg .
Now (5.3.18) shows that

X()

—xz(t) - i~
o A X (X (0),0) — b X(0),0)]

Im ®(t, X (1), @) = Im [
where x(t) = z(t, ). First of all we have,
X(t)—ax(t)  2tYs(t)  Yi(t) —x(t)
20—1  144¢2 1 4 4¢2

Im

SOCIETE MATHEMATIQUE DE FRANCE 2005



132 CHAPTER 5. THE TRANSPORT EQUATIONS

Using (5.3.40) we deduce, since (0) ~ (t),

X(t) —=(1)
2t —i

5 5
‘éCMG—lJrC !

(5.3.41) ‘ Im URRAOE

On the other hand we can write with f = a or E,
_ Lof , :
[t X(t),a) = f(£,Y1(D), @) + = (t, Y1 (t) + is Ya(t), o) ds(i Ya(t))
1
+/O % (£,Y1(1) + is Ya(t), o) ds (—i Ya(2)).

Since a(t, Y1(t), «) is real, using the estimates on the derivatives of a and b given by
Theorem 4.4.2 and their extensions to the complex domain proved in Lemma 5.3.1

we obtain
- 1 1\ |z —z(0,a)]
.3.42 Ima(t, X (¢ < C M, 5 — | —
(53 ) | ma(, ()7a)| C 6(€+ )<<9—t>2+<t>2) <9>
Here we have used the estimate in (ii) and (5.3.36).
Moreover we have by Theorem 4.4.2 (ii) and (5.3.37),
[b(t,Y1(), )| < ﬁw <VOC(My) 6y < 6y
if ¢ is small enough. Therefore
ib(t, X (1), q) &1 1 1\ |z —2(6,0)]
3.4 Im ————= | <0 — Mgl —5++—) —————.
O34 | R < O+ O (Gt )
We deduce from (5.3.41) to (5.3.43) that
C oy gt | — z(0, )|
5.3.44 Im ®(t, X (1), )| < 2 + C Mg~ + Mg —— U1 gy
(G344) | (.0l < S5+ 0t 1, E= 0 g

where g(t) = C(ﬁ + #)
It follows from (5.3.4) that

Va(t)| < 2| Im®(t, X (t), )| + ‘g—g (Yl(t),Im@(t,X(t),a))‘

i ‘/o ai o= (VA1) + s Ya(t), 9(t, X (1), ) ds| [Ya (1)

1 82q )

Ce

This estimate together with (5.3.36), (5.3.44) prove the Lemma. O
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We can now improve (5.3.36). Indeed, by Lemma 5.3.11, we have, since
X(0,0,x) = x is real

61(0 —1t)

|z — z(0, a)| 0—t
@) |+

(©) (6

9 .
|Y2<t>|</t [Va(s)|ds < C M a7

+(e+0)K

Moreover by Lemma 4.4.17 we have
0—t<0—-0"<Clxr—x(0,0)

Taking 01,9, small enough we obtain |Ya(t)| < %Mg W which improves
(5.3.36).

The improvements (i) to (iv) show that the set A where (5.3.33) to (5.3.36) are
true is equal to [6*,4].

We can now give the proof of Theorem 5.3.2 in the case 3. Indeed (5.3.34) to
(5.3.36) imply the estimates (ii) to (iv) in this Theorem. To prove (i) we just remark
that

| X (t,0,2) —x(t, )] < |X(¢,0,2) — x| + |z — 2(6, )|
< (10My + 1)|z — 2(0, )| < C'|lx — z(0, a)] %

since (t) ~ (#) when t € [0*,0]. Therefore we are done for ¢ € [#*,0]. For t € [0, 6*]
we first remark that

X(t,0,x) = X(t,0",X(0,0,x)).
We would like to apply the cases 1 and 2 already done, with § = 6* and z = X (0*, 0, x).

So we have to prove that

(i) (07, a) - ag < ez (2(07, ) |a],
(i) |z —=(6", ) < 62 (67),

(ili) Rez - a¢ < 2 (Re2) |ae],

(iv) |Im z| < d2.

First of all (i) is trivial since z(6*, &) - & = 0. Now we have,
[ X(07,0,2) — (07, )| < |X(0%,0,2) — x[ + [z — 2(6", a)| = (1) + (2).
By (5.3.33) and Lemma 4.4.17 we have if §; < J2

(=9

(1) < May(6 —0) <10 Mala — (6, 0)] < 10 Ma61(6) < Co(6°) < 3 (0°)
(2) <5z —2(6,a)] <C' 5, (0") < %<9*>

since (f) ~ (0*). Thus (ii) is satisfied. Now (iii) is also satisfied if M5 < co. This
is possible since the only constraint on Ms (see (iii) improvement of (5.3.34)) was
Ms > 20 ¢;. Finally by (5.3.36), | Im X (6%, 60, 2)| < 01 Mg < 42 if 1 < d2. Therefore
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X(t,0%, X(0%,0,x)) satisfies the estimates (5.3.5) to (5.3.9) in case 1 and (5.3.9) to
(5.3.12) in case 2. Therefore we have the following estimate,

(1) =|X(t,0",X(0",0,2)) — x(t,a)| < 3M7|X(0%,6,z) —x(0", )] RUA

o)
(1) < 33 7 (IX(6.0,2) =]+ lo = (6", )

(1) < 3 72 (Va8 = 0°) 2 = (6", )

(1) < CMi(1 + M|z — 2(6,0)]

(0)
Here we have used (5.3.33), Lemma 4.4.17 and (6*) ~ (#). Therefore we obtain (i) of
(56.3.5) it K > C' M;(1 + My). Now (5.3.9) implies that
| X (6%,0,2) — (6%, )|
(6)

Using (5.3.36) and the same argument as in the term (1) we obtain
| —z(0, )|

o
Thus (ii) in (5.3.5) is satisfied if K > C(M;, M4, Ms).

From (5.3.15) (ii) with s = 1 we have

(2) = [ Tm X (t,6%, X (6",0,2))| < My + I X(67,0,2)]).

(2) < C(Mla M4; MG)

(3) = (Re X (t,0",X(6%,0,2))) > - [(0" —t) + (Re X (0",0,x))].

[S =

So using (5.3.35) we obtain
1
3) = -
3>
and (iii) satisfied K - C(My) > 1.
Finally let us set (4) = Re X (¢,60%, X (0*,0,x)) - a¢. Using (5.3.8) and (5.3.12) with
s =1 we can write,

(0 = 1)+ (0" = 0)] > C(M)(0 1),

(4) < My (Re X (t,0%,X(0%,0,x))).
This shows that (5.3.5) (iv) holds if K > MLQ and completes the proof of Theorem 5.3.2.
o
Having proved in Theorem 5.3.2 the existence of the solution X (¢,6,z) of (5.3.4)
we want to give estimates on its derivatives with respect to (4, ).

PROPOSITION 5.3.12. — The solution given by Theorem 5.5.2 is C'°° with respect to
y = (0,2) and satisfies the following estimates,
c % if |Al=1,
(5.3.45) 04 X (t,0,2)| < . 2t> . . s
4 @(@wuao * <9>|A|71> it 4> 2.

uniformly in (t,0, ) € [0,6] x Q5.
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To prove this result we need a Lemma.

LEMMA 5.3.13. — For j =1,...,n let us set L;(t,z) = ag (z,®(t, z,)). Then for
any integer N > 0 one can find Cn > 0 such that for j =1,...,n and all (¢,0,z) in
[0, 0] x Q5 we have

(53.46) ‘3 2k (t, X(8,6,2)) = 22t§iki‘ = Cl((<x> + <91 2+”° <t (t)?
(5.3.47) ‘a L (6, X (1,6 x))‘ < CN<(<x> . <91_ e + #)(|x—<$9(>0,a)|)

For any p,v € N, such that |u|+|v|=N>22,j=1,...,n,

ot I

1 1
(5.3.48) D2k 0z¥ (X (56 1:))‘ C‘“’(((a:) + (0 — t))lul+Ivl+1+00 + <t>\u\+|u\+1)'

Proof of Lemma 5.3.13. — We have

Lj(t,z) =2®;(t,2,0) + 26 > bjo(2) Do(t, 2, ).
=1

Using (5.3.18) we obtain

o, 8k da; i Ob;

-— (2, = _(_ ——)t,, .

Oz, (t 2, a) 2t —1i Oz (t) Oz (t,2,0)
Then (5.3.46) follows easily from the estimates on 5,5 given in Theorem 4.4.2, the
estimates on the coefficients b;, and from the inequality (iii) in Theorem 5.3.2.

The estimate (5.3.47) follows from the same arguments and Lemma 5.3.1 (iv),
Theorem 5.3.2 (ii), (iii). The same method can also be used to prove (5.3.48). O

Proof of Proposition 5.83.12. — Let usset for k=1,...,n,q > 1,
Y(t) = 02 Xi(t,0,2)

where |A] = gq.
We begin by the case ¢ = 1. Differentiating one time (5.3.4) with respect to y we
obtain

. 8Lk aLk

5.3.49 Y (t 6 X (t,0,2)) Y, (t) + = (t, X (t,0 t)|.
(5.349) Vi) = ;[azﬁ (60,00 Y} (1) + 22 (0. X (0,0,0) YT
Using (5.3.46) and (5.3.47) we see that Y!(¢) = (Y{'(¢),...,Y,}(t)) satisfies the
hypotheses of Lemma 5.3.6 with ¢ = 0 and h(t) = W + # Since
gf}: (0,0,z) = 0 and % (0,6, x) is bounded we obtain (5.3.45) when |A| = 1. Let
us consider the case |A| = 2. Differentiating (5.3.49) with respect to y we see that
Y2(t) satisfies the equation

7200 = 32 [ 52 X000, Y710) + 5L (0.X(10.0) V0 + Zutt..)

j=1
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where, by (5.3.48) and (5.3.45) for |A| =1, Zi(t) is estimated as follows

(t)? 1 .
|Zk(t707x)| < CW((<1'> i <9—t>)3+‘70 + W)

We want to use Lemma 5.3.6 (with T = 0) so we are led to estimate the quantity
fa |Z’“(g 9 [2:(s.92)| g5 Using the above estimation we see that

, 1 (o) L\ s
AL / (@To=ar= " or) %

By a straightforward computation we see that we have

0 o)t 9)¢
(5.3.50) /O(<x>+<<9>_t>)k+aoda<c<m>i_7>l+%, k0> 1.

It follows that

0 <l )

Using Lemma 5.3.6 and the fact that 02 X (0,60,r) = 0, since |A| > 2, we obtain
(5.3.45) when |A4| = 2.

Now we proceed by induction on ¢ > 2. Let |A| = ¢+ 1 and let us differentiate the
equation Xy(t,0,x) = Ly(t, X (t,6,z)) |A| times with respect to x. Using the Faa di
Bruno formula and the notation quﬂ = 02 X}, we obtain the equation

Yo (r) ﬁ;[%i]k (t, X (1,0,2) Y (8) + g’;’“ (t, X (t,0, ))} YITL(t) + Zi(t)

where Zy(t) is a finite linear combination of terms of the form

(2) = (00, L) (t. X (.0,2)) [ ] (0% X (t,0,2))"
=1
where 2<|3|<q+1,1<s<q+ 1, |[K¢| 21, |[Lo| 21, > ) Kie=03, > 11 | Ki| Le= A
It follows that |L,| < |A] —1=g¢.

Since by (5.3.45) we have different estimates for |L;| = 1 and |L¢| > 2 we must
separate these two cases. So let us write {1,...,s} = [ Uly, Iy = {€ : |L¢| = 1},
L] = {€: L] > 2}.

Now let us use (5.3.48) and the induction. We obtain

1 1 (1) el
2)] < C<(<x> @) PTiTes <t>\ﬂ|+1) ZH (<_)

€l

| K|
1 |5 (s + )|

Lels

~
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Since Y7, |K;| = |B] we have

It follows from (5.3.50) that

I

Now we have

11 (o

<i Kol <L ke (B)F
}l <9> }l > (6141
1 1 1 1\ IK
S @(@)lmwo + <9>\5|—1> }l (<m>|Lz\+Uo + <9>\Le|—1> '

1

LeTr

Indeed

S

Al = 18] =

It follows that

Then using Lemma 5.3.6 and the fact that 92 X (6,6, ) = 0 since |A|
(5.3.45) for |A| = ¢+ 1.

We need another lemma. Let us recall that we have set L; (6, z) = 85 (z,®(0,z,)).
LEMMA 5.3.14. — Let u;(t)

<x>|Lz|+00

<9>|L£—1)Ke| = le_[12< |Le|—1 <9>Lle| 1)‘KA
s¢ H ( |K[\ |Lel— 1) (6) 1 )

[Ke|(ILe|=1)

< [(@)21612 [ Ke|(|Le|—-1) N (%)Zm@ IKZ(L4|—1)}
, |A|—| |A|—|
<0[<$) 5|+<%) 6|}

S

Z | Ke| |Le| — Z | K| = Z | Ke| + Z | K| |Le| — Z | K| — Z | Ko
=1

{=1 lel LeTs lel Lely
= Z | Kol (| Le| = 1).
Lels

< %(@;Hao + <9>|}3\—1)(<x>|j|—|m + )
< 7 (s * s

(O)1AT—18]

G

> 2 we obtain
O

S (4,0,2) + Y, 2 (2,9(0,7,0)) 5

L (t,0,x).
Oz, (7 9
Then for every integer N > 0 one can find a constant Cn > 0 such that for all

t €[0,0] and all (0,x) in Qs we have

uy(0) < O (L0 )

{6)
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Proof. — First of all we claim that uj(#) = 0. Indeed since X/ (6, 6, x)—i—aa);’ (0,6,2)=0
we have % (0,0,x) = —L;(@,2). Then our claim follows from the fact that
gf: (0,0,z) = d,i. Now

, X; ~ X
uj(t) = 8—; (tvgvx) + ZLk(eax) le (t,@,x).

k=1
Using (5.3.4) we obtain

=~ [0L; 0X,, L 9L 0X,,

= "\ 0L, 0X,
# 20, 3 [ 0. X000 T (1 6.2)

p=1

oL; 09X,
+ g (0 X(0,2)) SO (1,0,0)]

Zai £ X (0, 2)) (1)

X t.0,)].
k

0X,
Zazu (t, X (t,0, ))[89 (t,0, ) +Zth9x

It follows then from (5.3.45) that with u(t) = (u1(¢), ..., un(t)),
. 2u,(
iy ()~ 2299 < o) (o) + o0,

where

OL; 20k ‘

h(t) = Z 5 (1 X(1.0.0) = 570

CZ‘ tXt@x))‘

H,g=1
Now using (5.3.46) and (5.3.47) we have fo h(t)dt < C and

’ |z —2(0, )|V
/0 glt)dt < C Oy ——g——.

so Lemma 5.3.14 follows from Lemma 5.3.6 since u;(6) = 0. O

To solve the transport equations we need to introduce some notations. First of all
we shall set,
(5.3.51)
01

o1
= el < —= < — . <
D {(H,Z)ERX(C |z —2(0,a)| < K(H}, [Im z| < e Rez-a. < c1 (Rez) |a€|}

where 41, ¢1, K have been introduce in the statement of Theorem 5.3.2.
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Let a € C*°(D). We introduce some possible estimates.
(5.3.52) Vu,veN', 3C,,,>0 such that
o for all (9,z) € D, 0¥ 0% a(f,z)| < Cuv
VNeN, 3Cy >0:Vji=1,...,n, V(0,2) €D
(5.3.53) da (9,2)‘ < Cx [T

z;
Joo>0:Vu,veN", 3C,, >0:V(0,2) € D

v Cp,,l/

(5.3.54)

We first state the following result.

PROPOSITION 5.3.15. — Let ug = wug(z) be a C™ function in a neighborhood of
Dy ={z€C":|z— a;| <1} such that for any N € N one can find Cny = 0 such
that for every j=1,...,n and z € Dy,

g—;‘j (z)‘ < Oy |Imz|V.
For (0,z) e RxR"™, (0,z) € D we set u(,z) = uo(X(0,6,x)). Then for any N >0
we can find Cly > 0 such that

ou "~ Op ou e — 20, 0)|\N
(5.355) |55 (0.0)+ k}jjl 56, (020, ,0) (0.2)] < CN(T)
(5.3.56) u(0,2) = uo(x)

" >
(5.3.57) {For any 7 € N" one can find €, >0 such that

|0Y u(d,z)| < C, forevery (6,z) in DNR xR".

Proof. — First of all by (5.3.5) (i) we have for (§,z) € DNR x R”,

|z — 2(0, )| 01
— < — K —— = .
|X(0,0,2) —a,| < K @ \KK 01

Therefore u(6,x) = uo(X(0,6,x)) is well defined and satisfies (5.3.57) by Proposi-
tion 5.3.12, the fact that ug is C*° in a neighborhood of Dy and the Faa di Bruno
formula (Chapter 7.2). Now since X (0,0,z) = x, (5.3.56) is obvious. Let us check
(5.3.55). We set

_@ T Y @J) T, % T
(1) = 55 0:3)+ X 5 (0, 9(C,z.0)) 3 6,2).
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Then

Zlg— (0,6, ))[a(;; (0,6, ) +Zagk x@(e,x,a))%(o,e,x)}

8u0 8X p 8X
Z 5z, (X(0.0.2) (57 0.0.0) + g oe, (0 ®(6,7,0)) 5L 0,6,2)]

and we write (1) = (4) + (B).
By Lemma 5.3.14 with ¢ = 0, the term (A) satisfies (5.3.55). By the hypothesis
made on ug and (5.3.5) (ii) we have

8u0 N / |x—x(0,a)| N
< < _
75 (X(0.0.2))| < Cx [In X©.0,)1" < cN( ) )
Using (5.3.45) and the fact that ® and the coefficients of p are bounded we deduce

that the term (B) satisfies also (5.3.55). O

PROPOSITION 5.3.16. — Let a € C™ on D which satisfies (5.3.53), (5.3.54). Let us
set

As,0,x) = / a(0, X (0,0, 2)) do
0
for s €10,0] and (0,2) € DNR x R™. Then
for any N € N one can find Cn > 0 such that

0A 0A
89 (s,0,x) —I—Z x@@xa))a—m(s,e,x)—i—a(e,x)‘

(5.3.58) N
z—z(0,«
< CN(‘ (é) )I)
for all s € [0,6] and (0,z) € DNR x R".
(5.3.59) A(0,0,z) =
{For every <y € N”, there exists C, >0 such that

(53.60) 187 A(s,0,2)] < C,, on [0,6] x DR x R™.

Proof. — The claim (5.3.59) is trivial, (5.3.60) follows from Proposition 5.3.12,
(5.3.54) and (5.3.5) (iii). Let us show (5.3.58). We set

(1) = % (s,0,z) + ; g—i (z, (0, z, ) 3—2 (5,0,7) +a(0, ).
Then
B S < da 0X; "L 9p
(1)—/9 ;Z(U,X(U,Q,x)) [8—9](0,9,3:)—l—;z(m,@(e,m,a))—;(aﬁ,m) do
s " da X, n op -
i = —_ 0 —2 (0,0 d
+/€ ;azj(U,X(U797x))l 7 (m@,x)—l—;agk(m,@( , T, ) k(a, ,m)] o
— (4)+ (B)
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By (5.3.54) and (5.3.5)(iii) we have ‘g—;j (O',X(O',G,x))‘ < C/{0 — o)1to0. Therefore
using Lemma 5.3.14 we obtain (5.3.58) for the term (A).
Now it follows from (5.3.53) and (5.3.54) by interpolation that

da " | Tm 2| ¥
a_zj (‘9, Z)‘ < CN,O'O (Re Z>1+ao/2'

Thus using (5.3.45), (5.3.5) (ii), (iil), we obtain (5.3.58) for the term (B) since ® and
the coefficients of p are uniformly bounded. O

This is the last result before the final one solving the transport equations.

PROPOSITION 5.3.17. — Let b be C™ on D satisfying (5.3.52) and (5.3.53). Let us
set B(s,0,x) =b(s, X(s,0,x)), s €1[0,0], (0,2) € DNR x R™. Then,

for every N > 0 there exists C'y > 0 such that
0B —~ dp OB
g — (z,® -
(5.3.61) ‘ a9 +0:2) +k=1 ag, (& @0 2,0)) 5 (s,e,x)\

con(lz=00ly”

(5.3.62) B(6,0,z) = b0, x),

{for every v € N*, /,m € N there exists C,, > 0 such that

(5363) |a;/ B(S,H,x” < CA/’ v(svgvx) c [0’9] x DNR x R™.

Proof. — The claim (5.3.62) is obvious and (5.3.63) follows from Proposition 5.3.12
and (5.3.52). Let us show (5.3.61). The left hand side of (5.3.61) can be written,

)= 3 5 (5. X(5.0.2) [38—9 (5.0:2)+ Y- 5% (2. 0(6. >>g—f]j(s,e,x)]
+32 (s x(s.0,0)) [38—9 (5.05) 4 3 5 (2 8(0,,0)) 52 (5.0 x)}
7j=1 k=1
= (4)+ (B)

The estimation of (A) follows from Lemma 5.3.14 and (5.3.52). Now from (5.3.53),
(5.3.5) (ii) and Proposition 5.3.12 we deduce the estimation of (B) since ® and the
coeflicients of p are uniformly bounded. O

THEOREM 5.3.18. — Let a = a(f,z) be a C® function on D satisfying (5.5.53),
(5.8.54). Let b = b(0,z) be a C* function on D satisfying (5.3.52), (5.3.53). Let
ug = up(z) be a C™ function on Dy satisfying the hypothesis of Proposition 5.3.15.
With the notations of Propositions 5.3.15, 5.8.16 and 5.3.17 we set

9
v(0,z) = / eA(0.2) B(s, 0,x)ds + eA(0,0,7) u(f, x).
0
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Then
=1 there exists Cy > 0 such that
zz: 85] a: P 9 x,)) g—::k(@,a?) + a(@,x) U(gw) _ b(@,x)

o — a(6,0)]"
@

for every N

(5.3.64)
<Cn

for all (,2) € DNR x R™,
(5.3.65) v(0,x) = up(x),

{for all v € N, there exists Cy > 0 such that

(5.3.66) 0% v(0, )| < C,(0) for all (§,x) € DNR x R™.

Proof. — (5.3.65) is obvious, (5.3.66) follows from (5.3.57), (5.3.60) and (5.3.63). Let
us show (5.3.64). We set

0 "L Op
E - 89 +k:1 Ek (x,@(@,x,oz)) 83%

Then
Lv(0,x) + a0, z)v(d,x) — b0, z) = b0, )
0
+ / eAls:0,7) [LB(s,0,2) + LA(s,0,x) B(s,0,x)]ds
0

+ eA002) (0, ) LA(0,0, 2) + Lu(8, x)) + a8, z) e OO (0, z)

0
a(@,x)/ eA(0:2) B(s, 0,2)ds —b(0,x).
0
So

Lo(0,2) + a0, z)v(0,x) — b0, )
= /9 eAls:0:7) [LB(s,0,2) + (LA(s,0,2) + a(0,2)) B(s,0,z)] ds
0

+ eA0,0:) [LA(0,6,2) + a(0,2)] u(f,z) + eA002) £4(6, z).

The Propositions 5.3.15, 5.3.16 and 5.3.17 show that

|z — 2(0, )Y

|LB(s,0,x)| + |LA(s,0,2) + a(0,z)| + |Lu(d, z)| < Cy BN

and |A(s,0,z)| < C. Then (5.3.64) follows. O
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Proof of Theorem 5.1.1 (continued). Case of incoming points. — Let us set
0 - p 0
== — (x, ®(0,
0 Z ag, &2z a) 5
(5.3.67) e 0 n
n .
Z ,x,a)—§m+zZgj(m)fbj(e,x,a).
J.k= j=1
By Proposition 4.4.14 (ii) we have

‘8—5 0,z,a) —@(Q,x,a)‘ < Cn <W>N.

Therefore using (5.1.3), (5.1.4) we see that to prove Theorem 5.1.1 it will be sufficient
to construct a smooth symbol f = f(0,z, A) (with all derivatives in 2 bounded) such
that

1
[ef +af+ 5P| < OxATY
We shall take f on the form

0,2z, a) Z/\ fr(0, 2, ),

where the f;s are the solutions of the problems,
Lfo+afo=0, folo=o=1,
Lfe+afe=—"Pfr_1, felo=o=0, k=>1.

Since « is fixed, we shall skip it in writing the f;’s. By Theorem 5.3.18 we have,

(5.3.68)

fo(e’ {E) _ eA(O,e,x)’

9
fi(0,2) z/ eAls:0,7) By (s,0,x)ds where,
0
0
A(s,0,x) = —/ a(o, X (0,0,x))do,

Bk(S,@,(E) = _tS]kafl(sﬂX(saeax))a k> 1.

(5.3.69)

Our aim is to prove, by induction on k£ > 0 that,

vl
1 1
3. v < — 4+ — .
(5.3.70) |07 fr(6,2)| < Crpy <<x> + <9>)
We claim that for all £ € N”,
1 1\
(5.3.71) |08 A(s,0,2)| < Cp | — + —
T »Vy T <9> )

uniformly with respect to s € [0,0] and (0, z) € 5.
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Indeed using (5.3.18) and the estimates on E,g given in Theorem 4.4.2 we see easily
that

1 1
(5.3.72) 10(. 2 a(o,2)| < Cg <<Rez>a|+z+ao + <g>|ﬁ+2>'

Moreover by Theorem 5.3.2 (iii) we have

(5.3.73) (Re X (0,0, 2)) > % ((z) + (6 — o).

Using the Faa di Bruno formula we see that 9% A(s, 6, z) is bounded by a finite sum
of terms of the following form.

4 S
:/O ‘3@75)61(0,)((0,0,@)1_[(3? X(0,0,2))% | do

j=1
where 1 < 8] < [0, 1< s <[], 2251 by = B, 225 |ksl 4 = ¢.
Setting I1 = {j € {1,2,...,s} : [{;| =1}, Iy = {j € {1,2,...,s} : |¢;] > 2} and
using (5.3.72), (5.3.73) and (5.3.45) we can write

)Pl ks
<C/ [ >)|3+2+00+<0>;|+2] NEL UH( \z| it >3j_1)| |

since 37, kj = f.
Using (5.3.50) and the fact that >

jen, [kl 1¢5] = €] — | B we obtain

(1)<c(%+%>5' (é_>+<%>)lel—w

which proves (5.3.71).
As a consequence of (5.3.71) we claim that

]

1 1

5.3.74 Y (A2 L ¢ (— + —) .

Indeed by the Faa di Bruno formula the left hand side of (5.3.74) can be bounded by
a finite sum of terms of the form

( ‘A(q@x)H 8@ 891‘ kj

where 1< s < 71, 1< X [yl < £ 30, [kl 6 = .

Then (5.3.74) follows easily from (5.3.71).

Now (5.3.70) for k = 0 follows from (5.3.74) (take s = 0). On the other hand by
the Faa di Bruno formula 97 f(0, z,«) can be bounded by a finite sum of terms of
the form

)
_ / |3;n (eA(s,a,x))| o) [tp fk_l(S,X(s,H,a:))] ds.
0

MEMOIRES DE LA SMF 101/102



5.4. THE AMPLITUDE FOR SHORT TIME 145

Setting for convenience by = 'P f,_ it follows from the induction and Lemma 5.3.1
that

1 1 |8]+2

Then the Faa di Bruno formula shows that the term 92['P fy_1(s, X (s,0,x))] can be
estimated by a finite sum of terms of the form

(4) = | (0.2 ) (5, X (5,6, ) Ha@X

where 1 < |8 < [y2l, 1 < s < |yl, 2251k = B, 35_1 |kj| € = 72. Then using
(5.3.75), (5.3.73), (5.3.45) we see that

. 1 5) \5| [ks1(1¢;1—=1)
<4)<C<(<x>+<e—s>>lﬁ+2 i <s>ﬂ'+2> o)1 ( ) |

JEl2

Now by (5.3.71) we can write

C/ [ R <5>}3|+2] EZ;I? ds (% + <7}>)|71+|72_5|

since 3 e, [k (165] = 1) = |ra[ = |5]-
It follows from (5.3.50) that

(3) gc(ﬁjLﬁ) <%+<T}>)Ivl+lv2—ﬁl o <%+%>w

since |y1| + |y2| = |y|]- This proves (5.3.70) for all k.

5.4. The amplitude for short time

We shall need the following precision on the amplitude when |6] < 1

PROPOSITION 5.4.1. — Let ay be the amplitude defined in Corollary 5.1.2. Then for
every v € N> one can find a constant C, > 0 such that

|8¢;¢Y[GN(97 €, a, )‘)H < C’Y

for all 6] <1, |z — (6, 0)| < 6(F), A >1 and o € T*R™ such that § < |ae| < 2.
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Proof. — When 6 < 1 we can use the method of Section 5.2 no matter is «, provided
that % < |04§| < 2. Let us recall how the amplitude ay is produced. We have

aN(anaO‘a >‘) = <9>7n/2 eN(an - x(&,a),a,)\),

B x—z(0,a)
6]\](9,1[}—1'(0,04),04,)\) - fN(ea TaavA)v

N+1

(5.4.1) ~N(0,z,a) Z)\ A0, 2, @),

LAy=0, LA@—ZQA[ 1, £=1,....N+1,
AO(OaZaa):la Ag(O,Z,Oé)ZO,

102 Ag(0,2,a)] < Cs, VBEN", 0] <1, [2] <5, = < |ag] <2

N~

Now, according to Proposition 3.2.1 for every v € N2 such that |y| > 1 one can find
C’, > 0 such that

(5.4.2) |00 x(0, )] + 103 £(0,0)] < C,
if 0] <1, a € T'R™, 1 < Jag| <2

Assume that we show that for all 3 € N, v € N*" one can find Cj, > 0 such that
(5.4.3) 10701 A6, 2, 0)| < Oy

if 6] <1 and 3 < |ag| < 2. It will follow from (5.4.1) to (5.4.3) and the Faa di Bruno
formula that

(5.4.4) |02 an (0,2, , \)| < C,

if 6] <1, |2 — 2(0, )| < (), 3 < |ag| <2, which is the claim of Proposition 5.4.1.
So we are left with the proof of (5.4.3). By (5.2.8), (5.2.9) and (5.4.2) for all u € N™,
v e N2” there exists C\y 2 0 such that

|3u37 (8,9, @) < Oy,

for all |s| <1, |y| < (s) and 3 < |ag| < 2. It follows from (5.2.10), (5.2.11) that for
all 3 € N, v € N7 there exists Cg, > 0 such that

(5.4.5) 10500 h;(6,2,0)| < Cssy,

for all ] <1, 2] <4, 1 <ag| < 2. And we see easily from (5.2.5), (5.4.2), (5.2.15),
(5.2.16) that hévo, d™No, ko satisfy also the bound (5.4.5). By induction on the size
of derivation, using the Faa di Bruno formula and the Gronwall Lemma we see easily
that the solution z = z(6,y, ) of (5.2.26) satisfies the bound

(5.4.6) |8“87 0,y,)] < C,y

uniformly for |6 < 1, [y| <7, 3 < |og| < 2. Moreover by Lemma 5.2.3, if we denote
by (0, z) the inverse map of z(6, y) we have also by (5.4.6),

(5.4.7) 102 93 K(0, 2, @) < Cgy
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uniformly for |0] < 1, |z| < 4, % < |ag| € 2. Finally we have set for £ =0, 1,..., No+1,
(5.4.8) A0, z,0)) = gg(@, k0, z,a), a)

where
0

Ao(8,y,a —eXp[ /dN°tZ(t,y,a)7a)dt}
0

A6, y, ) —exp[ /dNOtz(t Yy, a ),a)dt} /Oei(@Ag_l)(t,y,a)dt

so using (5.4.6), (5.4.7), (5.4.8) and the estimates (5.4.5) for d™o, k)0 we see easily
that (5.4.3) holds, which completes the proof of Proposition 5.4.1. O
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CHAPTER 6

MICROLOCAL LOCALIZATIONS AND THE USE OF
THE FBI TRANSFORM

In this Chapter using the phase and the amplitude constructed in Chapters 4
and 5 we shall define general FBI transforms which will lead to a parametrix for the
Schrodinger equation. These constructions will be microlocal so we will need several
microlocal localizations.

6.1. Preliminaries

6.1.1. The semi-classical calculus. — We shall work with semi-classical pseudo-
differential operators (p.d.o) and we shall use the Weyl calculus described by Hor-
mander. We refer to [H] for notations and details.

Let p € STH(R") (the usual class of symbol of order m) and let us set
a(z,§) = p(x, %), A > 1. It is easy to see that a € S(M, g) where,

dg?

SrEE M=l

g=dz®+
The p.d.o associated to the symbol a is denoted by p(m, %) Then we have the
following symbolic calculus.
i) Let p € ST, ¢ € S{’f’(;. Then one can find £, € Sf’(f'm such that

o 2) oo 2) -0 D)

The semi norms of ¢, are uniformly bounded when A > 1 and for any N € N* we
have
11 1 ., o 1
Z)\(xvf) = Z —ag p(xvf) ax Q(xvf)'i_A_NrN()‘vxvf)

al ilal Al
lo] <N—1

where ry € Sfl(;rmlfN uniformly for A > 1.
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ii) Let p € S(io. Then there exists C' > 0 such that

oz 5

for every u € L?(R™) and A > 1. As a consequence, for all s € R and all p € ST one
can find a constant C' > 0 such that for every u € S(R"),

(- %) (e 3) el <l (-2) "

for all A > 1, where A = 37", 2.

< Clullz

L2

6.1.2. The FBI transform. — We recall here the definition of the classical FBI
transform as described in Sjostrand [Sj]. We set for o = (ag,¢) € T*R™, A > 1,
u € L*(R™) and ¢, = 2~/ 2g—3n/4

(611) T’U,(Oé, )\) =c, )\371/4/ ei)\(y*ax)aa*%‘y*awar%‘Ot£|2 u(y) dy

n

Then T maps continuously the space L?(R"™) to the space of functions v = v(«) such
that e~ 2lo¢l” o € L2(R2™),
The adjoint of T" is then given by the formula

(6.1.2) T*v(z,\) = cp )\3”/4/eii)‘(mfaw)'affglmf%‘%%|a5‘2 v(z) da.

Then we have

(6.1.3) T*T is the identity operator of L*(R™).

We shall need also the expressions of 7" and T™* by means of the Fourier transform.
We have,

Tu(a, A) = (%)nM/eia'%—%\ag-ir%lz-irél%lz (o) do

(6.1.4) -
Tv(E,\) = ¢, A"/4/e_ig'(’*’_%‘%*%'z_%‘“f'z v(a) do.

Let us consider now a self adjoint operator,

(6.1.5) P = Z Dj(gjka)—l—Z(Dj bj + b; Dj)+b0

k=1 j=1
with ¢7F = 0k + €bji, where € is a small positive constant, d;; is the Kronecker
symbol and,

Ay
Zlaﬁbjk(x)KW, k=0,1,....,0 €R", ou>0.

loe|=F
Then by interpolation and duality we can prove the following estimates. For all s € R
there exists C' > 1 such that for all u € C§°(R")

1
(6.1.6) clullas < (I + P)*? |2 < Clul| g
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For all s > 0 there exists C' > 1 such that for all A > 1 and u € C§°(R"),
1 D\ s/2
1. —\F . < = < .
(6.1.7) Al < (1P (2 5)) " w|, < Cllulla

618) Sl < | (14 (2 D))

L <ON[ully-.

6.2. The microlocalization procedure

We begin by introducing several cut-off functions. Generally speaking we shall
denote by x (resp. ¥) cut-off functions in the space (resp. frequency) variables.

Let & € R™, |£y| =1 be fixed.

Let xo € C*°(R) be such that,

(6.2.1) Xo(s) =1if s < Xo(s)=0ifs>1, 0<xo<1.

3
4)
With 4; > 0 to be chosen later on we set

xf(x)=><o(— 51()), Xér(ﬂ?):Xo(— 2510)7X§($):X0(_ 3510)
_ _ z - &o + _ z - §o + _ z - &o

X1 (x)—xO(—51 ) X2 (a?)—x()(—%l ) X3 (x)—xO(—361 )

These cut-off functions will correspond to outgoing and incoming points. Now for

(6.2.2)

convenience we shall set,

6 19
2. = — - =
(6.2.3) =1 "=
and with d2 < 1/100 (chosen later on) we introduce the following cut-off functions.
Let 99 € C*°(R™) be such that 0 < wo 1 and

suppwoc{ m—ﬁo‘g%g and |§|>52}

Let ¢ € C§°(R™) be such that, 0 <1 < 1 and
Y1(§) =1if a—d2 < [§] < b+ b,
supp ¢ C {f a—202 <€l <b+ 252}

‘ d2 and [€| > 209
(6.2.4)

(6.2.5)

We shall set
(6.2.6) P2(&) = Po(§) ¥1()-

Now we introduce for ¢ € R the operators,
) o—itP

UL (t) = xi (@) s
) o—itP.

U () = X7 (@) ez
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It follows that if we denote by U* the adjoint of U then we have

Ui(tl) Ui(l‘,g)* = Ki(tl — f,g), where

(6.2.8) K (t) = x1 () ¥ (g) e w(?) X1 (@),

- DN Dy _
Ko (1) = x; (@) v () e () X7 @):
Let now 13 € C§°(R™) be such that 0 <3 < 1 and

bs(€) = 1if \%+50‘ <36, anda— 38 < |¢] < b+ 36

(6.2.9)
supp ¥z C {ﬁ: ’é—| —|—€0‘ <402 and a — 402 < [¢] < b—|—452}.

The first localization result requires to introduce the following Definition.

DEFINITION 6.2.1. — We shall call R the set of families of operators R = (R (1))
depending on A € [1,4o00[ and t € [T, T] such that for every N in N one can find a
constant C'y > 0 such that for every u € S(R"™),

(6.2.10) ||R)\(t) u||H2N(]Rn) < CN ||u||H—2N(]Rn)
uniformly with respect to (A, t) € [1,+o0[x [T, T].

Then we can state the following result.
THEOREM 6.2.2. — Let T > 0. For every t € [-T,T] and A > 1 one can write

+ Dy 4 + —itP |+ Dy 4+
(6.2.11) K4 (t) =x{ wz(;) Xo Taow X3 (@) ¥3(ae) Tya {e Xz %(;) Xl}
+ R (1)

where (RY (t)) € R. The same formula is true with the sign — instead of +.

The proof of this Theorem requires several steps.

LEMMA 6.2.3. — There exist a constant C > 0 such that

H%(%) T*[(1 — y3(ag)) v] ‘

—3 03 ||o— 2 loel?
L2(R™) sCe=™ He ’ UHL2(R2")
for every v such that e=2lo¢I*y € L2(R?™).
Proof. — We claim that on the support of 12 (&)(1 — ¥3(ce)) we have
1
(6212) |§+a5| = 552|a£|.

Indeed, according to (6.2.4) to (6.2.6) and (6.2.9) we have on this support
‘% —&o] < 202, a — 202 < €] < b+ 202 and either |ag| < a — 362 or |ag| > b+ 302 or
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“a i + & = 36,. In the first case we have |¢ + ag| > €] — |ag| > d2. In the second
case we have |€ + ag| > |ag| — || > 02 and in the third one we have

Iaal |£|‘ - ‘|a£| +§0‘ - ‘% —60‘ > by

Therefore |ove + \E\ §| 02 |ae]. It follows that

fac-+¢ > [oe + 1l - e - 1

s0 |ag + & = 1 03 |ag| and our claim is proved.
Now using (6.1.4) we can write

(1) = F (2 (2) [0~ wslae))] v) (©
At (§) [ eienmtiner P (1~ yy(ag) v(e) do.
Let us set
w(§, ag) = / emitas=alocl y(a) da, = Fa, (72177 ) (€, ag).

Using Cauchy-Schwartz inequality we obtain

F <o ([ e 3 (£) (1 - vatae) dae) ([ Iwiesac dac)

so by (6.2.12)

(D)2 < CAMn i3 (/6_;a§+§2daf) </|w(§’a5)|2da5)'

It follows that

§| = sala| = |16l = lael| > S| — lag +¢]

P < e 3% [ ug,a0)P dac

Integrating with respect to £ and using Parseval identity we obtain
Dy .. —242 X o |? 2
H%(X) T*[(1 — ¥3(ag)) v] ’ Lo <Ce 5% /Rzn e~ 212l [u(a)]? dov. O
COROLLARY 6.2.4. — We have fort € [-T,T] and A > 1
Dy, .. i D
Ky(t) =it () T slae) Te P (5 ) X + BL ()

where (RY (t)) € R. The same is true for the sign —.

Proof. — Using (6.1.3) we write Id = T*T = T* ¢3(ae) T + T*(1 — ¢3()) T. So we
have to prove that the family of operators

D : D
() = xt v (5) 70— ws(ae) Te " () xt
belong to R.
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Let {/LE Cs°(R™ ~ 0) be such that ¢(€)¢a(€) = wa(€). Then writing

o (R) =1 (L) 4ho (L), using Lemma 6.2.3 and the fact that |[¢)(2) 0] 1ran<C AV (0] 2
we obtain
5 ; D
[RY (1) vl ey < C AN e~ 8N ||p— B lagl® p —itP 1/’2(y) Xt u‘

Since T is continuous from L? to the space of v such that e=32locl”y € L2 and using

L2

the conservation of L2 norm we obtain
D
IRE@ ol < O 2% un (T xi < 07X em320% fufy-an

so our claim is proved. O

LEMMA 6.2.5. — Let x4 be defined in (6.2.2). Then we have for t € [~T,T] and
A=,

D . D
Ko (t) = xi ¥2 (K) X3 T s(ae) T e x5 o (;) Xi+ Ry ()
where (RY (t)) € R.

Proof. — Since by (6.2.2) the support of x§ and 1 — x4 are disjoint, the symbolic
calculus shows that the operators x 1/)2(%) (1—x3) and (1 —x3) 1/)2(%) X7 belong
to s Sl_,éw for any M € N. It follows from (VI.1.7) that if M > 2N,

It 02(5) =) T* gstae) Te P (D) x|
com|(1-2) wa()a- |

< CAQN_MHT* vs(ag) Te P 1?2(%) xfu\

- D

< C'/\QN_I‘A’H@_%'%‘2 ba(ag) Te ™" %(X) X7 u‘
. D

< ONNM ey () x|

< C >\4N_M ||u||H—2N.

L2

L2

L2 (]R2n)

<o (D) iy

L2 L2

Taking M > 4N we conclude that the remainder under consideration belong to R.
By the same way

HXf ¢2<§) X3 T*s(ae) Te ™" (1 - x3) ¢2<2) X1 u‘

A H2N
com(-2)" (B,
coxta—wre(3)(-3)" (1-5) " ol
AN-N
< O/ NN-M H(I— ﬁ) u‘ L SN |y an.
The proof is complete. O
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LEMMA 6.2.6. — Let ¢, € C§°(R) and xq(x), xp(cz) be C™ functions such that one
can find p > 0 such that |v — ag| = p if (z,ay) belongs to supp(xa(z)(1 — xp(az))]-
Then one can find € > 0, C > 0 such that

_ A e |?
||Xa wa(aﬁ)(l _Xb(a:c U]HLz(R") <Ce = ||€ zloc] ’UHLz(]Ri”)
for all v such that the right hand side norm is finite.

Proof. — Tt follows from (6.1.2) that

Xal@) T* (Gafag) (1 = () () = [ K(.)e” 3 o(a) da
where
K (,) = ¢ X7/ =Moo 0e=3r=ael g (ag) x, (2)(1 — xp(r)).
Using our assumption we can write
K (@,0)] < CAP/4emint emdlrmely, (o).
Therefore one can find £ > 0 such that,
sup/ |K (z, )| da < Ce =, sup/|K(x,a)|dx <Ce
so the Lemma follows from the well known Schur Lemma. O
COROLLARY 6.2.7. — We have
K (1) = xi 0(5) 1 T s(0e) i () T e x5 o (5) 0+ RE (1)
where R € R and the same is true for the sign —.
Proof. — We have to show that the operator
R0 = xit v (2) X T (o) (1 = x5 (@) Te™ v 2) xt
belongs to R.

We apply Lemma 6.2.6 with x, = X;, Ve = Y3, xp = X; Then according to
(6.2.2) we have on the support of x4 (z)(1 — x3 (), —2 - & < 201, —a - &o = § 61
Therefore we have, 2 101 < —ap & < (T —ag)-§o —x-& < |v— agl - €] 4 201, so
|z —az| = p>0. Then using Lemma 6.2.6 we can write

) D
IRA@) ull o < €N €| 3ol TP 3 gy (<) X

L2
< O/ \2N ==X ‘1/) ( )X1 ‘ . < C" AN = [ o 0
Proof of Theorem 6.2.2. — It follows immediately from Corollary 6.2.7. O
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6.3. The one sided parametrix

The purpose of this Section is to use the results of Chapters 4, 5 and 6.2 to show
that the operators K (t) and K_(¢) introduced in (6.2.5) can be written as Fourier
integral operators with complex phase functions. We shall take the expression of
K (t) given by Theorem 6.2.2 and we begin by considering the expression

T[eiitp X5 ’Lpg(g) X7 u} (a, A)  (see (6.1.1)).

Let us first introduce some other cut-off functions.

If |og-ael < il (az) |ag| we set xT(y) = 1.
If |og-ael > 30 (az) || we set,
(6.3.1) (i) in the + case, x (y) = XO( _ y5-6§o)’
1
(if) in the — case, x; (y) = XO(yE)'éO)?
where xo has been defined (in (6.2.1)).
In all cases let x5 € C§°(R™) be such 0 < x5 < 1 and
_ )
(6.3.2) xs(y) =1 if [yl <5, swppxs € {y: [yl < 0}

where § is the small constant introduced in Theorem 4.1.2. For the convenience of
the reader let us recall the main properties of the phase and the symbol constructed
in Corollary 5.1.2, and Theorem 4.1.2. First of all the phase ¢ is defined on the set
Qs where,
(i) if |y - | < co (ag)|ae| then
Qs ={(0,y) eRxR": |y—ax(f,0)] <5(6)}.

(i) if oy - ¢ > co{ay)|oe| then,
Q5 = {(0,y) € (0,+00) x R" : |y — 2(6, )| < 6(0)} U{(6,y) € (—00,0) x R":
ly — (0, )] <6(6) and y-ag > —cr (y)]ael}-
(ili) if g - e < —colag)|o| then,
Qs ={(0,y) € (—00,0) x R™ : |y — z(0, )| < §(0)} U{(0,y) € (0,+00) x R":
ly—x(0,0)] <) and y-ae <ci(y)lael}

Moreover on this domain
1ly—z(0,0) 1

3. I 0 > -0 = 2,
(633) mp0,p,0) > 7 LTI 2o
Now if we set, with the notations of Theorem 5.1.1, for N € N,
(6.3.4) a0, 3,0, X) = (1+6%) " e (6, — 2(6, ), o, V),
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then a is defined on Qs for A > 1 and satisfies,
a(o) y7 a’ A) = 17
la(0,y,a, M) < c(1+6%)~/4,

(6.3.5) (ix % +1P) (00 a8,y 0, 0) = by (0. @, 1) X900,

with [bn (0, y, )] < en(1+ 02)‘"/4(>\—N + AQ(W)N)

Let us introduce now the following set.

1
(6.3.6) W*= {a ETR": 5 <agl <2, |z - ag| < co<ax)|a§|}
U {a € T'R" : |ag - ag| > co (o) |ag], (am,a¢) € supp(x?(ax) . 1/)3(@5))}

where x and 13 have been defined in (6.2.2) and (6.2.9).
Then we can state the main result of this Section.

THEOREM 6.3.1. — We have fort € [-T,T], and o € W,
T[e_itp X3 0] (o, A)
, —x(=At
=l [ o) a(at, a0 i s (L) ) dy
(At)
+ I3 () v(e)

where the operator J;r is such that, for any M € N one can find a constant Cpy > 0
such that for all X > 1 and t € [T, T

C
e~ losl? T 0] oy < )\—]\AZHUHL?(R"%

and the same is true with the minus sign.
Proof. — Let us introduce the following family of operators. We set for o € W+
(6.3.7) Sv(0,t,a,\)
, _ 2(0 ,
o0t [ o0 00,00 1 ) xa (L ) e ko] ()

We must verify that the right hand side is indeed well defined.

On the support of x5 we have |y —x(6, a)| < §(f) (which is one of the conditions for
(0,y) tobein Q). If « € W then either |a,-ae| < colaw)|ae| or [ag-ae| > co{a )]
and (o, ) € supp(x3 -¢3). In the first case by (6.3.1) xi (y) = 1 but (6,y) € Q5 for

0 € R. In the second case since o, € supp X; and a¢ € supp 3 we have, by (6.2.1),
(6.2.2) and (6.2.9), aw - &0 > =301 and |55 + & < 402. It follows that
Qg

a
(6.3.8) oy ﬁ = —qay &+ ag - <@ —1—50) < 701 {ag).
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On the other hand we have |ag - ag| > co (ag)|ag|. According to (6.3.8) we cannot
have ag - ae > co (az)|ae| if 61 < ¢o ; thus we must have o, - ae < —co{az)|ae|. So
we are in the case (iii) for the definition of 5. Since in the integral, on the support
of X1 (y) we have by (6.3.1), y- & > —5d1 = —5 01 (y), we deduce that
Y =y Gty (& +€o) <901 (y) < co(y)-
e ||

Therefore (6,y) € 5 and the right hand side of (6.3.7) is well defined. Of course the
same argument is valid in the case of the minus sign.

Now let us set for s € [0,¢] if t > 0 (resp. s € [t,0] if ¢ < 0)
(6.3.9) g(s) = Sv(A(s —t),s,a, ).
Since ¢'(s) = (Mg + 0¢)(Sv)(A(s — 1), s, a, A) we obtain
Sv(0,t, a, A) = Sv(=At, 0, a, \)
+/0t()\89 + 0)(Sv)(A(s —t),s,a,\)ds ift >0

(6.3.10)
Sv(0,t, a, A) = Sv(=At, 0, a, \)
- /t()\(% + 0)(Sv)(A(s —t),s,a,\)ds if t <O.

Let us set ’
(6.3.11) Ult,y,\) = [e_itp X3 0] ().
Then according to (6.3.7) we can write
(6.3.12) (Mg + ;) (Sv) (0, t, 0, \) = N4 (A) + Ay + As)
where

Ay = /Aae(e““’("’”’“’a(9,y7a7k)) Xi () m(%}f’o‘)) U(t,y, \)dy

Ao = [ 03 a(b. g0, 3) ) o (L) (<P Ul N
(6.3.13)

=3 [ 20 a0y ) 0 (- )

- Oy (%@) Ult,y,\) dy.

Integrating by parts in the integral giving A2 we obtain

; —z(0,
A= [P0 o,y ] o ) s (M) Ut )
+ >0 [ OO0,y 0, N)(05 X () (6) 17!
1<|81<2
B=p1+082

o y_x(gva)
(O () Ut N dy

where bg is a symbol satisfying the same estimates as a(6,y, a, A) (see (6.3.5)).
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Combining the term A; with the first part of As and using (6.3.5) we can write
(6.3.14) (ADy + 8,)(Sv)(0,t,a,\) = N3"/*(B) + By + Bs)
where
Bi(0,t.a.0) = [ 200 by (6,y.0.0) xF 0)

X5(w) Ul(t,y,\) dy

(0)
(6.3.15) By(0t,0,0) = 3 eV Og 5 (0,1, 0, ) (9 X1 ) () () 17!
o [B1+B32|<2 (b0
o (8‘32><5)( <9(>9 )>U(t Yy, \) dy

BB(gvta Q, >‘) = Zlg\ﬂgQ j‘ei)«p(e,y,a) (9 Y, a, /\)(ag’/Y X4 )( )
o

o () vty dy

where Cg, s, and d- are bounded symbols. Here we used the estimate ‘5‘9 (%»(Ga)) ‘ <

C/(#). Now we state a Lemma.

LEMMA 6.3.2. — One can find constants C > 0, n > 0 and for every M > 0 a
constant Cpr > 0 such that for all 6,t,\ such that X > 1, |0| < |Mt], |t| < T we have

le= leel® B (0, ¢, -, A Crr XM o] 2@y

||L2(W+)

e~ sloel® By(6, ¢, -, < Ce ™ ||| p2

||L2(W+)
for all v in L?(R™).
Proof. — Let us consider the term B. Using (6.3.5) and (6.3.3) we obtain

L) )t (o)

_ ly—=0,0)]2 — N
<COye ™ 0 <9>*”/2(A*N+A2(7|y fe(;)’o‘”) ) 1w e

e Ov)=3lacl py(9,y, a,A) X5<

= K(,y,a,\).
On the other hand we have
e~2loel’ B = /K(@,y,a,A)U(t,y,)\) dy.

We want to apply Schur Lemma to this integral operator. First of all making the
change of variables y — z(6, ) = (8) z/v/X we can write

2 2
/K 0,y,,\) dy < C (0 >"/2/e—% A2 N2 ATN2 N

Since (8) < 1+ AT we obtain finally for all M > 0 and A > 1, [ K(0,y,a,\)dy <
Cyp A~ M.
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In order to estimate (1) = [ K(f,y,«,\) da we make the change of variable § =
(x(0,a),&(0, ) Since this transformation is symplectic we have da = df. Therefore
we obtain,

_% \’y*ﬁg@ —n _ Yy — B:c N
Since £(—0, ) = B¢ + O(e) we have % < |Bel < 3. Setting as before y — 3, = % we

deduce easily that (1) < Cyy A™M for every M > 0. It follows from these estimates,
the Schur Lemma and (6.3.11) that,

. P
"67%|a§|2 Bl||L2(W+) < CM )\7M||67’Ltp 1/)2 (ﬁ) X;UHLQ(R") < C;W )\7M ||v||L2(]R”)'

To deal with the term Bs we use exactly the same computations and the fact that on
—z(0,a) s ly—2(0,a)]

the support of (9.2 X5)(%), for |B2| > 1 we have § < % <4. O

Proof of Theorem 6.3.1 in the following cases

{(i) | - ag| < o (az) |ag| and ¢ € [T, T,

(6.3.16) “
(i) |og - ce| > co (@) |ag| and t € [0,T).

In both these cases we are going to show, with the notations of (6.3.15), that Bz = 0.

In the case (i) this is obvious since by (6.3.1) we took xi(y) = 1. Now if
t > 0, by (6.3.9) we have § = A(s —t) < 0. In the case (ii) we have seen that
in the case + we must have a; - a. < —c¢p{ay)|a:]. Now on the support of
X5(%) we have |y — x(6, a)| < §(f) and it follows from Proposition 3.4.1 that
z(0, ) = ag + 20 ae + O(e(f)). Then we write

y-So=(y—=z(0,0)) &+ (az +20ag) - §o + O(e(0)).
On the support of ¥3(a¢) we have |% + §0| <441 so

Yo = +2000) - (fo+ o) = (n +200¢) - o+ O((= + 6)(6))
|ag| |ag|

Y- &0 = co o) +210] [oe| — 461 (az) — C(0 + e+ 61)(0).

Since 6, ¢, 61 are small compared to ¢ we deduce that y - §o > % (f) in the integral

defining Bj in (6.3.15). Since the support of 0 X1 (y), for v # 0, is contained in
3< 75?’6'150 < 1 we deduce that Bz = 0 in this case, (see (6.3.1) and (6.2.2)). It follows
from (6.3.10) and (6.3.14) that

t
(6.3.17) Sv(0,t, 0, A) = Sv(—At, 0, a, A) +/0 (B1 + Bs)(s) ds.
It follows from Lemma 6.3.2 that,
—3agl? ' ¢
(6.3.18) W2 Owﬁﬂﬁﬂﬁwwﬂgvﬂﬂwwy
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Now we have
w(ovyaa) = SOO(yva) +g(y - l’) where
po(y, @) = (y — az) - ag + § |y — au|® + 55 |agl?,
lg(x)] < Cn |z|" for every N € N.

Let x € C§°(R™) be such that x(z) = 1if |x| < 1, supp x C {z : |z] < 2} and let us
fix N > 3. We can write

(6.3.19) Sv(0,t,a,A) = A1 — Ag — A3 + Ay

where

A =c, A3"/4/ Ao\ (y) xs(y — ) Ult, y, A) dy
Ay = e X1 [ Do) (1 (Cyly = ™))

Xd W) x5y — ax) Ut y, A) dy
(6.3.20) Az = ¢, >\3n/4/6i)\cpo(y,a) (1 . eiz\g(g—(%)) (CN >\|y _ az|N) X3 (y)

Xs(y —az) U(t,y,A) dy
A=, >\3n/4/eik(tpo(y,a)-i-g(y—am)) (1= x(Cx Ny — a.)™)) xT (v)
Xs(y — ) U(t,y, A) dy.
We claim that we have for j = 2, 3,4,
A |? Cu
(6321) | e 2‘ 5‘ AJ||L2(W+) < )\MN ||v||L2(]R”);MN —_— +OO lf N —_— +OO

(i) Term Ag
On the support 1 — x(CnAly — a.|V) we have |y — a,| > Cy A"V, So,

1-2

‘e_%‘o‘ﬁlz 0 (1 — x(Cy Ay — a|™))| < Cealymoal® o~CXATH
Using the Schur Lemma and the inequality ||U(¢, -, )|z < C||v||r2 (see (6.3.11)) we
obtain (6.3.21) for A,.
(ii) Term As
On the support of x(CyAly — a.|V) we have Ag(y — az)| < CnAy — a. |V < 2
Therefore we have |1 — e?9W=%)| < C\|g(y — a.)| < O Ay — ax|N. Tt follows that

=3 loel? gidpo(y,a) (1 — M=)y (O Ay — o |V)| < Cly e Bly—asl® Ay — az|V

C, 2
<= A2y —a )V e Fly—axl? o= 3ly—os|
Az
!
ON ~3ly—aul®
Az

The Schur Lemma shows again that Ag satisfies (6.3.21).
(iii) Term Ay
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On the support of x5(y — a) we have, according to (6.3.2), |y — a.| < 0. It follows
that |g(a, —y)| < 0 Csly — au|? so if § is small enough,

1 1
=5 lag* =Tmgo(y, @) —Tmgly — az) < =7 ly — af?

and, as for Ay, the Schur Lemma implies that A4 satisfies (6.3.21).
Using (6.3.19) and (6.3.21) we see that

(63.22)  Sv(0,4,a, ) = ¢, A1 / PP\ (y) xs(y — aw) Ult,y, N dy
+J3 () v(a).
(6.3.23) l[e=21o<l® T (#) v]| < Car A M [[o]] L2 gy

Now, on the support of x5(y — ;) — 1 we have |y — a, | > g so modulo a term which
satisfies (6.3.23) we can remove x5(y — ag) in the right hand side of (6.3.22). Let us
remove 4. When o € W we have |, - ae| < co{az)|ag| and x7 (y) =1 (see (6.3.1))
(so there is nothing to remove) or a, € suppx3 (see (6.3.6)) that is —a, - & < 36;.
In the later case on the support of 1 — x (y) we have 75%'150 > 3 (see (6.2.1), (6.3.1))
SO ly—aql =2 ap & —y-& = %61. The corresponding term, again by the Schur
Lemma, satisfies (6.3.23).
Using (6.1.1) we see therefore that

(6.3.24) Sv(0,t,a, ) = T [e P xFv](e, ) + I (t) v(),

where JY (t) satisfies (6.3.23).
Gathering the informations given by (6.3.17), (6.3.18), (6.3.24) and (6.3.23) we
obtain the claim of Theorem 6.3.1 in the case (6.3.16).

Proof of Theorem 6.3.1 in the following case
(6.3.25) lag - ae] > colag)|ae| and t e [-T,0].

According to (6.3.14), (6.3.15) and Lemma 6.3.2, we must prove that for all N € N
one can find Cn > 0 such that for A > 1,

(6.3.26) [e=21e¢l” By (o, ¢ <O AN o]l p2@n)-

" >‘)HL2(W+)

Here 6 = A(s —t) > 0 since s € [t,0].
Let us introduce a new cut-off function. Let ¢4 € C§°(R™) be such that 0 < 94 < 1
and,

+ 502

(6.3.27) Pa(§) =1 if ‘|5| +§0‘ 502, a— 5 < [€] <
< +652}-

< <lel <
supp i © {€ & + 6| <602, a— 65 < ¢ <

We state a Lemma.

MEMOIRES DE LA SMF 101/102



6.3. THE ONE SIDED PARAMETRIX 163

LEMMA 6.3.3. — Let us set

(6.3.28)

~ 1

W= {a: 5 <la <2 Jou-adl > alaslacl, (ar,00) € suppli (ar) valac)) |

Let k(0,y, o, \) be a symbol and let us set

F(0,0,\) = 155, () e lagl? /eiz\w(e,y,a) k6, y,a,\) X5(%(f,a)>

D
-7 x4 (v) {I - m(—)} v(y) dy.
Then for every N € N one can find Cx > 0 such that for A > 1 and |0] < AT we have

1F(0,, N2 < Cn AN ||v]| p2gn).-

Proof. — By (6.2.12) we have | + ag| > u > 0 on the support of ¢s(ae)(1 — 14()).
Now recall that Theorem 4.1.2 shows that the phase ¢ satisfies

{ 09 (6.9.0) ~ ae| < O + V)

|0y ¢(0,y,0)| < Cﬁ it =1

(6.3.29)

on the support of Xd%(?’a)) o) X4 (v) 154 ().
Let g € C§°(R™) be such that g(§) =1 if |{] < 1. Then

(1= wi(F)) ol =tim (3)" [[ 201 = vule) gl o(z) o

e—0 27‘(‘

It follows that
(MA)—hm Kefaw 2)o(e) dz with
/ lael? Ly (@) €M)+ =20 (g 4 o, \)

(W) ) X (y)(1 = ¥a(€)) g(c€) dé dy.

K.
(6.3.30) (v, 2) 27r

Let us consider the vector field

_;@Qi( ,_Z,)i)
1+ Ay — 2 et YiT A &)
Then it is easy to see that
X eiMy—2)€ _ gidy—2)€
Ca(y — 2)4 02
(tX)N — Z A(y ) ¢
L+ Aly = 2[*)N

|AI<N
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Then we can write
(6.3.31) / € (1 4y (€)) g(e€) de = / A€ (N1~ 1y (€)) glc €] de

= Z eiA(y,Z).g CA1A2 (y_—Z)AQN aéql (1 - 1/)4(5)) €‘A2‘
A=A1+A> (1 - )\ly - Z| )

AN (0 g)(£€) de.

Now on the support of ¥3(ce)(1 — ¥4(€)) we have |§ + ag| > p > 0, it follows from
(6.3.29) that

dp dp W
. > — | == — > u— >L
|5 @900+ € > lag+8 =57 (B.,0) —ag| >0 - Ce +V5) > §

if € and § are small enough.
If [£] > 2 sup |%‘5 (9,y,a)| we have |g—‘§ 0,y,a) + §| i. Therefore in all cases
we have, with 19 > 0,

(6.3.32) 2(0,y,0) + §‘ =10 (&)

‘ 0
Yy
Let us set then

n

1 dp 0
Y (228 .
Z/\IE+ £(0,y,a)|2 <3yj( o HE]) dy;

Jj=1

and T = 2 a0 (0,y,0) +¢&.
Then
Y etM@(0,y,0)+(y—2)-8) — i@ (0,y,a)+(y—2)-E)

(6.3.33) { jtvyN _ L T N\, Psn_op-1(0,y,0, T, T) _,
(Y) - (i/\)N |E—:N(|T|2> 8 + Z |T|4N 2|y ay

V| <N—1

where Py, (0,y,a,T,T) is a polynomial in T, T of order < k with C°°—bounded coef-
ficients.
It follows from (6.3.32) that on the support of 13(a¢)(1 — 14(€)) we have,

Z | Psn—2ju—1(- )| < Cn

(6.3.34) TR <

ITI2

lv|= N‘ lv|<N-1

On the other hand we check by induction that

N | (y—2)" N
(6.335) o {(1 R )N} = j%:u ONGAB T Ay = SN
1BI<IA|+5

25+ AI<|Bl+|v|

Now if we insert (6.3.31) into (6.3.30) and if we make integration by parts with respect
to Y using (6.3.33) we see using (6.3.34) and (6.3.3) that K.(«,z) is bounded by a

MEMOIRES DE LA SMF 101/102



6.3. THE ONE SIDED PARAMETRIX 165

finite sum of integrals of the following type

Ny — 2|18l N
/ AN<5>N(|1y+ ;Llu — s L (108 (L= 0a(©) 21 (9 9)(0) 19 K

—z(0,a s L PP
‘(8§2X5>(yT5>)>‘<9> el|gptes xF(y) e T @ dydg

where |B] < |A|+j, i +va+v3 =v, v <N, A=A+ As, |A] < N, j < |y,
2j + Al < 18] + |vl.

CLAIM. — We have

9 n
(2) = sgp/ |K:(, 2)| da < Cy )<\1\Z/2
Let us first remark that
J |28 ) . .

, ) A
Indeed —[B] < |v| — 2j — |A] s0 j — 5l < Il - 2l <
To estimate (1) we use the above estimate of K.(a,z) which we integrate with
respect to z. For the integral in z we use (6.3.36). The integral in £ is estimated
thanks to the term ﬁ where |v| < N, finally the integral in y is bounded by

_Aly—e@e)? N
/e 60 0?2 dy<C /<\n>/2

Therefore we obtain

O ()

/2 ¢ AN/2°

To estimate the term (2) we use the change of variables & = (z(0, @), (0, )) as in
the proof of Lemma 6.3.2 and (6.3.36). This gives, (2) < C f\?}/;. Since |0] < AT we
obtain

A" N_n
(1)<C)\_N)\2 2

1)+ (2) <CA Tt
We can therefore use the Schur Lemma and (6.3.30) to achieve the proof of
Lemma 6.3.3. 0

COROLLARY 6.3.4. — With the notations of (6.5.15) and (6.3.11) we have

A — 2(8,
Bom 3 [0 a6 y.0,0@) D) s ()

INNEES D ()
() Ul g ) dy + 5 (1) v(a)
(6.3.37) ||J;_(t) U||L2(W+) < Cn AN ||’UHL2(]Rn).

Now we state the following result.
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LEMMA 6.3.5. — Let b="5b(0,y,a, A) be a bounded symbol. Let us set

G(0,a) = /ei”\"’(e’y’o‘) X5 (%@) b(0,y, a, ) v(y) dy.

Then one can find C > 0 such that for all |0] < AT and v € L*(R"),

~ X ael? "
le™ 21" G0, )| oy < C oz 10z

Proof. — Let us write

G(0,a) = /K(G,a,y,/\) v(y) dy.

Then using the estimate (6.3.3) we see that

ly—(0,0)|2

A
e 310 1y (@) [K(0, 0,5, M) S CeT ™ @2 150 o

From this estimate we can use the Schur Lemma (making the change of variables
a=(z(0,),£(0,a))) to conclude. O

Let now 15 € C5°(R™) be such that 0 < 95 < 1 and

Us(&) =1 i | + 6| <7020 78
SUPP¢5C{‘|§—|+€0‘<852}, a — 899

3
3

The analogue of Lemma 6.2.3 proves that one can find C' > 0, g9 > 0 such that

<|
(6.3.38)
<|

6339 [va(5) Tos, 10 w50l

A 2
< Ce*M ezl o) 2.

L2(Ry)
COROLLARY 6.3.6. — We have
Bom 30 [0, 0.0,0.00) D)
1<]v[<2

y—z(0, a .
o (LY 1 s (80 Ty Ut 2,0
(0)
+J3 () v(a)
where Jy (t) satisfies (6.3.41).
Proof. — We use Corollary 6.3.4, (6.3.39) and Lemma 6.3.3 to remove 1p4(%). O
Let now x& = x¢ (8:) € C§°(R™) be such that 0 < y¢ < 1 and

{Xér(ﬁx)zl if 261 < -3 & <66

(6.3.40)
suppxd C{Bs: L6 < =B & < T}

MEMOIRES DE LA SMF 101/102



6.3. THE ONE SIDED PARAMETRIX 167

Then we can apply Lemma 6.2.6 with x, = 9 X5 7l =1, xo = x¢. Indeed on the

support of 97 X4 (W) (1 = xg(B:)) we have 22 (51 < —y-& <5 and —Be & < 5
or —f3; & = 64;. In the first case we wmte

v Bl 2 e b0 -y 0> 0 — 261 = 10,
and in the second case we have,
|y — Bzl 2y -0 — Br-&o =661 — 561 =01.
Therefore we obtain
(63.41) (107 X7 (1) Ty ¥5(Be) (1 = x6(Ba))W |2 < C e [l 2176 W[ o

Using Corollary 6.3.6 we deduce the following Lemma.

LEMMA 6.3.7. — We have

Z / z)«p(&ya 9 , Y, Q /\)(a )( )

1<|v|<2

s (P ) T 56800 (BT Ut )0
+ J3 (1) v(a),
where J (t) satisfies (6.3.57).
Now on the support of 95(3¢) x¢ (B3:) we have by (6.3.38), (6.3.40),

152 Bl < (162 ol + 161|155 P &) 1

< (1601 + 802 [8z|) [Be| < co (Ba) B¢l

if 161 + 892 < ¢g. Therefore we are in the case (i) of (6.3.17) and since Theorem
6.3.1 is already proved in this case for ¢t € [-T,T] we can write,

(6.3.42) T._.p U(t,-,/\)=>\3”/4/ e (=A2B) (=X, 2, B, M) xT (2)
o () o)) de + 210 0(6)

where JY (t) satisfies

for every N € N one can find Cy > 0 such that
(6.3.43)

He 316¢1* 1/15(55)X6 (Bz) J+ ||L2 Cn AN ||’U||L2(1Rn)~

From this we can deduce the following result.
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COROLLARY 6.3.8. — We have
T. s U(t, -, \) = \3V/4 / e (=A2B) o (XL, 2, 3, \)

s(FE ) ) (e 4 L) 006)
where Jy (t) satisfies (6.3.43).

Proof. — We have just to show that we can replace X4 by X;{ in (VI1.3.42). But this
is obvious since (see (6.2.1), (6.3.1)) we have x{ x5 = x4 (1—x3)x3 +X4 X3 X3 and
(I=xd)x3 =0, x4 xd =xs- O
We are ready now to prove (6.3.26).
LEMMA 6.3.9. — For all N € N one can find C > 0 such that
le™® o< By (0,1, ||L2(W+) S

forallA>1,0=Xs—t) € [0,\T] and all v € L*(R™).

Cy AN vl L2 (®n)

Proof. — We use first Corollary 6.3.8 and Lemma 6.3.7. On the support of

¥s(Be) xg (Ba) X5(%) we have by (6.3.38), (6.3.40), (6.3.2), since x(—X\¢t, ) =
Be — 2t B + O(e(t)),

z-& < (z—2(=At, 0)) - o+ (Bz — 2Mt Be) - {0 + Ce (At)

< B, 50—2At65'(£o+|ﬁ|)+2At|ﬂfl+0(€+5)<kt>

7
51 + 2t |Be| + Ce + 6 + d2) (At).

Since |B¢| > a — 2 we obtain
17
z- & < 5 61— 2(a — 02) Aft| + C(e + 6 + 62)(At).

Taking €, §, 2 small with respect to §; and a we obtain z - & < —% 01. Now on the
support of x4 (z) we have by (6.2.1), 2 - & > —361.

It follows from Corollary 6.3.8 that 7,3 U(t,-,A\) = Rtv where RT satisfies
(6.3.37). Now we use Lemma 6.3.5 and we obtain since |§] < AT,

)
He 2|O‘§| B3(97 7)‘ ||L2(W+ <C <)\n/2 HT[3—>y w5(ﬁf)xg(ﬁx)TZ—'ﬁ U(ta'a/\)]||L2(]R”)

< ||e 318el? ws(ﬁg)XG (Be) Tomp ULt HL2

Since 1,3 U(t,-) = R*v, where R* satisfies (6.3.37), we obtain the conclusion of
Lemma 6.3.9. O

To complete the proof of Theorem 6.3.1 in the case (6.3.25) we use (6.3.11), (6.3.14),
Lemmas 6.3.2, 6.3.9 and the same argument as in the end of the proof of the case
(6.3.17) to remove the cut-off functions x7 (y) and xs5(y — o). O
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6.4. Conclusion of Chapter 6

Here we state a result which combines the conclusions of Theorems 6.2.2, 6.3.1 and
(6.3.5).

THEOREM 6.4.1. — Let K the operators defined in (6.2.8). Then we can write
Ki(t)u(x)=1+1I+1I1

where

1= NP2t (@) (B [ [ erreremm aat )t ) @)
-w3<a£>x5(W)(@<§)xfu)@)dyda]

1= (0) 2 (5) W @) T [0 () ) () 3 (i v (52) i)
IIT =R (t)u
where
F(=Xt,z,y,a) = (=AMt y, ) — (z — ag) - ag + % |7 — g |? + % e |2,
la(=At, y, a, N)| < C()\t)*"/z
X3 (02) s (ae) e~ 210l T (1) v]| 2 < C AN [[v] 2, YN €N,
IR () ull o < Cn |lullg—2n, YN €N,

and x;,1b; have been defined in (6.2.1) to (6.2.6), (6.2.9), (6.3.1) and (6.3.2). More-
over the same result holds with the minus sign.

(6.4.1)
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CHAPTER 7

THE DISPERSION ESTIMATE AND THE END OF
THE PROOF OF THEOREM 1.0.1

7.1. The dispersion estimate for the operators K (¢)

Let us recall that Ky (¢) have been introduced in (6.2.8). The purpose of this
paragraph is to prove the following result.

THEOREM 7.1.1. — Let T > 0. Then there exists a constant C > 0 such that
C
K1) ullpe < 72 flul| 1
for all 0 < |t| < T and all uw € L*(R™).

Proof. — We shall use Theorem 6.4.1 and its notation and we shall consider only
K (t). Then we can write

(7.1.1) K4 (@) ullzoe < Mz + 1] Loe + |[TTT]| Loe-
Let Ny € N be such that 2Ny > %. By the Sobolev embedding and (6.4.1) we have
Cc(T)

(1:0.2) W < CNRL Oullrvo < Ok, 20 < € lllr < i v

Let us consider the term 1. We have
D . D
I < C |t e (5) T (x; va 7 (v (5) xfu)) |
SO NPT ()| 2y
A2 D
e () vt 0 va(F) )

<o g (2|

H?2No

< C// )\QNO

L2(RZ")

L2(R")
< O N0 [ (2) (1= 2)%

< C]l\// )\4NO_N H’U,HH—2NO.

L2 (]Rn)
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Taking N = 4Ny we obtain finally,

c(T
(7.13) 11l < C s < T ol
So we are left with the estimation of ||I||f~. Let us set

(7.1.4) kg (t, 2y, \) = A3/2 / M EALY) (N, a, A) xd (1) X3 (az) s (ag)

. X5(y — z(=At, a)) o

)
and

(7.1.5) Rt o) = [ ytmp) [ (3 ) xi'e] )
Then

(7.1.6) 1=xte(2) 3 Koty

Since the operator x; (%) X4 is bounded from L* to L>° with bound independent
of A we have,

(7.1.7) 1l < C IR+ (t) vl
Assume that the kernel k; has the following bound,

C
(718) |I€+(t,$,y,>\)| < |t|T/27

with C independent of A. It will follow from (7.1.7), (7.1.5) and (7.1.8) that

Il < g e (3) b

28

Since the operator (%) X7 is uniformly bounded on L' we will have

C
(7.1.9) ||z < NRE |l 1.
Then Theorem 7.1.1 follows from (7.1.1), (7.1.2), (7.1.3) and (7.1.9). O

Proof of (7.1.8). — We divide the proof in three cases: At > 1, At < —1, |At| < 1.
Let us remark first that in the integral in the right hand side of (6.1.4), on the
support of X;(ax) -P3(ae) we have —ay - & < 361 and h%g—‘ + fo‘ < 4 69. Therefore

Q¢ Q¢
Qg+ 7T = Qg —+£O _az'£0<(452+361)<az>
|ce (|a5| )
SO
(7.1.10) Oy - e < oo (ag) |ael,

if 61 and Jo are small compared to c¢g.
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Case A: proof of (7.1.8) when At > 1. — In this case § = —At < 0 and it follows
from (7.1.10) and Definition 3.2.2 that all the points « in the integral giving k4 are
outgoing for # < 0. It follows from Corollary 3.3.3 that

&vj

(7.1.11) ok (0:0) = 2085 + O 0), 1< jk<n.
3

Now using Theorem 6.4.1 and (7.1.4) we obtain

A ly—a(=At,)|?

(7112) |k+(t,fc,y,)\)| < C>\3?’L/2/ 16 (Zt)2 \Z ag|? w?;(a.f) <>\t> n/2 dev.

By (7.1.11) we can make the change of variables
Oy = 0, ¢ =x(—Mt, )

and ‘det %| > (M) if € is small enough (since (At) < v/2|Mt|). It follows from
(7.1.12) that

PN ly— ag\

K a,y, V) < X202 I [T a0 el g
|

Setting ae —y = 4\(/);) 21, Qg — T = % 29, Z = (21, 22) we obtain

Ikt (@t y, V)| < CN2 0802 (A [ e 12z
R2n

SO

|k+(t,l‘,y,)\)| < Wv

since (\t) < v/2At. This proves (7.1.8) in this case.

Case B: proof of (7.1.4) when At < —1. — In the right hand side of (7.1.4) we
integrate on the support of x4 () -¥3(ag) on which we have (7.1.10). We divide this
support in two subsets U; and Us where

Ur = {a = (o, ae) € supp(xif (an) ¥s(e)) : —o {) lae| < g - e < colas) el }
Uz = {a = (e, a) € supp(xif (an) () : 0 - e < —co () e}

According to Definition 3.2.2 we have U; C S4 NS_ (which means that the points in
U; are outgoing both for § > 0 and 6 < 0).

According to Corollary 3.3.3 we have (7.1.11) for # € R so in particular for
0 = —At > 1. Therefore the same arguments as those used in case 1 work. It follows
that the part of the integral giving k4 which concerns U; is bounded by C |t|_"/ 2,
We consider now the integral on Us;. Here § = —At > 1 and the points in U, are

incoming for 6 > 0. The needed estimate on ky will follow from the following result.
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PROPOSITION 7.1.2. — One can find a function g = ¢(0,y,as) such that for all

0>1, all o € Uy and all y € supp (x5 (v) X5(%(f’a))) we have,

joc — (0,9, 00)] < 5 Iy — (0, ).
For the proof we need the following Lemma.
LEMMA 7.1.3. — Let « € Us and 6 > 1. Then for allY € R™ such that,
(i) Y -ag <2006 (Y)agl,

() ‘Y_az <
ii —ae| < ¢,
20 g%

there exists a unique B¢ (6,Y, o) € R™ such that
1Be(0,Y, az) — ae| < 2co,
{ x(—0,Y, Be(0, 2, 0)) = g
Proof. — Let E = {f € R™ : |B¢ — ae| < 2¢0}. Then we have

1
Y'ﬁg :Y'QE+Y'(5§—C¥£) < 2000<Y> |Oé§|+200<Y> < Z<Y>|a£|

It follows that the point (Y, 8¢) belongs to S— (see Definition 3.2.2). Since —f < 0 it
follows from Proposition 3.3.1 that the equation x(—6,Y, B¢) = a, is equivalent to,

Y - 295(_97 Yv BE) + Z(_Qa Ya 65) = Oy,
that is to the equation, Y — 26 B¢ —20 ((—0,Y, B¢) + 2(—0,Y, B¢) = a. This equation
can be written,
Y — o, 1
65 = 20 _C(_avyvﬂf)"_Z_ez(_avaﬂﬁ) :F(ﬁg)
We show now that we can apply the fixed point theorem to F' in the set E. First of
all if B¢ € E we have,
Y-« 1
[P (Be) = ael < | =55 — a¢| + [C(=0,Y, 8¢)| + 55 12(=6, Y, B) .
Using our assumption and Proposition 3.3.2 we obtain,

|F(Be) — ae| < co+2e < 2¢ if 2 < cp.

Now if 8¢ € E, 62 € E we have again by Proposition 3.3.2,
|F(Be) — F(B¢)| < Celfe — Bl

Taking € so small that C'e < 1 we obtain the conclusion of the Lemma. O
REMARK 7.1.4. — Let (0, «,y) as in Proposition 7.1.2. Then they satisfy the con-

ditions of Lemma 7.1.3. Indeed we have y € suppxi that is —y - & < 541 and
‘\3_; + &) < 46. Tt follows that
e’ e’
y — <y <—§+§0) —y-&o <40yl +56 <10c (y)
|a| |ae]

since 1 and Jo are small compared to cg.
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Moreover we have |y — z(6,a)| < §(0) <

z(0, ) = az + 20 ac + O(e (0)) so

175

V266. By Proposition 3.4.1 we have

ly — az — 20 o + O((0))] < V266.
It follows that
Y — Qg
—e| < C(0+¢) < oo,
if € + § is small enough. O
Now for fixed 0 > 1 and a € Us let us set
Y - T
(7.1.13) A—{YGR”:Y-aE<2Oco<Y>|aE|, 290‘ —ag‘ <c0},

and for Y € A let us set

(7.1.14) H(Y)

= 5(_9a Ya 65(97 Yv az))

LEMMA 7.1.5. — There exists a constant C' > 0 independent of 0, « such that

for every Y in A.

Proof. — By Lemma 7.1.3 we have for j =1,...,n

¢
S

Y

z;(—0,Y,B:(0,Y, ;) = al.
Let us differentiate this equality with respect to Y;. We obtain

Oz Ox; 35§ B
o (=0,Y, B¢(0,Y, 0z)) + %: 7€, (=0,Y, B¢(0,Y, oz ) v, (0,Y,0,) =0.
Since the point (Y, B¢) belongs to S_ we have by Corollary 3.3.3
0x; 0x;
a—xi (_HaYa ﬁﬁ()) = Ojk +O(59)a 8—52 (_HaYa ﬁﬁ()) = _295jk+0(59)'

It follows that

(7.1.15) Haﬁg

(5+¢).

Now thanks again to the fact that (Y, 8:) € O_ we deduce from Proposition 3.3.1

that
O‘gc - xj(_ea Y, ﬁi(ev Y, O‘JE)) =
Differentiating with respect to Y yields

Y =20 Hj(Y) + 2;(=0,Y, B¢(---))-

0H; 0z; 0z; a6,
8jr, — 26 Y)+ 2L (-0,Y, L (0,Y, Be(-+)) e (8,Y, ) = 0.
Jk 8Yk( )+8k( BE +Z ’ aﬁﬁ( ))8Yk(ﬂ ,Oé) 0
Using Proposition 3.3.2 and (7.1.15) we obtain the claim of the Lemma. O
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Proof of Proposition 7.1.2. — We shall prove that the function g defined by,
(7116) g(avyaax) = H(y) = g(_gvyaﬁi(gvyaax))a

satisfies the claim of the Proposition.
To do so we must consider several cases.

Case 1. — Here we assume that
(7.1.17) {x(@, a) - ae < 10¢ (x(0, @) |ael,
ly —z(0,a)] <[z(0,a)].
Let us show that this implies that
(7.1.18) ty+ (1 —1t)x(0,a) € A for all ¢t €0,1]
where A has been defined in (7.1.13).
First of all using the Remark 7.1.4 and (7.1.17) we can write,
(ty + (1 —t) (6, ) - e < 10co(t (y) + (1 —)(2(6, @) e |
S10coft(1 + Jy[) + (1 = 1)1 + [x(0, a)])] |ae].
Now we use Lemma 4.4.16 and we obtain
(ty + (1 —t) 2(0,)) - ag < 10co(1 + V2 - [ty + (1 — t) 2(0, )|)| e |
< 20co(ty + (1 —t) (0, o)) ||
On the other hand we have
[ty + (1 —t)x(0, ) — g — 20 ae| < tly — z(6, )| + |z(6, @) — oy — 20 g
<2t00+ Ceb < 2¢p 0,
since y € supp X5( <( : )) and ,9 are small compared to cg.

In particular (7.1.18) for ¢ = 0 and ¢ = 1 shows that we can apply Lemma 7.1.3 to
Y =2(0,a), Y = y. Therefore we have

z(—0,2(0,a),B: (6, 2(0, ), az)) = ag.
But we have also
z(=0,2(0,a),£(0,a)) = ay
and since [£(6,a) —ag| < Ce < 2¢p it follows from the uniqueness of §¢ in the set

E (see the proof of Lemma 7.1.3) that G¢(6, (0, @), ay) = £(6, ). Therefore we have
by (7.1.16),

ag =E&(—0,2(0, ), Be(0,2(0,0), o)) = H(x(0, a)).

Finally we write

laf — 950, y, 0)| = |Hj(2(6, ) - H, (y)l

|y—x9a|/ ty+(1—t) (0, )| dt
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so using (7.1.18) and Lemma 7.1.5 we obtain

c
g = 9(0, 9, a0)| < 5 ly — 2(0, ).

Case 2. — Here we assume that
z(0,a) - as < 10¢ (x(0, a)) |ag],
_—_ (6,) g < 100 (2(6.0)) |ag|
ly — z(0, a)| > |z(0, ).

It follows that
(7.1.20) ly| < 2|y —x(0,a)]|.
We claim that in this case we have
(7.1.21) tye A, tx(f,a) € A for t €]0,1].
Indeed we have by Remark 7.1.4
ty - o < t-10co (y) o] < 10co (ty) o]
[ty — oz — 20 ae| < tly| + |2(0, )| + |2(0, o) — iy — 20 g
<3|y —x(0,0)|+ Ce () <2(Ce+36)6 < 2cb.
tz(0,0) - ae <t-10¢o (z(0, ) |ae| < 10 ¢ (tx(0, @)) ||
[tz (0, ) — ay — 29a5| < (1 —=t)]z(8, )] + |z(6, @) — oy — 20 cg| < 2¢0 0.
As before we have
(1) = lag — 9(0,y, 02| = | H(z(6, 0)) — H(y)|

and we write

(1) < [H(z(8, ) = H(0)| + [H(0) — H(y)]

(0,a)|/01 Hg—g(tm(&,a))Hdt+|y|/01Hg—g(t,y)Hdt.

Then we use (7.1.21), Lemma 7.1.5 and (7.1.19), (7.1.20) to conclude that

1)< Sy —200,0).
The last case is the following.

Case 3. — We assume that

(7.1.22) z(0, @) - ag > 10¢o (x(0, ) ||

Recall that a € U, that is in particular ag-ae < —co (ag) |ag|. By (4.4.49) there exists
6* € 10, 60] depending only on « such that z(6*,«) - a¢ = 0. Then by Lemma 4.4.17
we have

510 — 0"l ae] < |2(0, ) — 2(0", )| < 310 — 07| ||
(7.1.23) 10— 0] > &
ly — (0, ) < |y — (6", )| + |2(07, @) — (6, )| <5y — (60, 0)].
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Here again we consider two subcases.

Case 3.1: z(6,a)-ag > 10¢o (x(0, ) |oe|, |y — (6%, )| < |z(0*, )]. — In this case,
(7.1.23) ensures that

(7.1.24) ty+ (1 —t)2(6",a) € A.

This follows from Lemma 4.4.16, since ¢ |y| < V2 [ty + (1 — t) #(#*, )| and from the
following estimates,

[ty + (1 —t) (0", ) —az — 20 cg| < t|ly — z(0", )| + |2(6", @) — p — 26 ]
<Btly —x(0,0)| +210 — 0™ |ae| + O 07) < C(6 +¢)0 < 2¢b.
Then we write

lag = 9(y, 0, 02)| = [H(y) — ag| < [H(y) — H(z(07, )| + |[H(x(6", ) — ag].
(€)) (2)

By (7.1.24), Lemma 7.1.5 and (7.1.23) we have

(7.1.25) (1) < % ly — x(0, a)l.

Now we have

*

x( — 0, 2(6%, a), % £(6", a)) — (=0, 2(6%, ), £(6%, ) = as.

Therefore
Be(8, (0", 0), ap) = ?E(H*mz).
It follows that
* * 9* * 9* * * * 9*
H(w(0,)) = §( = 0,2(0%, 0), 7 §(67,0) ) = = &(=0",2(6", 0), §(6", ) = - ac.
Therefore
667 _C
(7.1.26) @ =l T2 < Sy a0, 0)

by (7.1.23). The estimates obtained on (1) and (2) show that

C
|aE _g(avyaaxﬂ < g |y - x(&,a)|

which is the claim of Proposition 7.1.2.
The last step concerns the following case.
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Case 3.2: z(8,a) - ag > 10¢o (x(0, @)) |ag], |z(0*,a)| < |y — z(6%,a)]. — It follows
then from (7.1.23) that we have

(7.1.27) lyl + [2(0%, a)| < C'ly — (0, a)|.
Moreover we have
(7.1.28) tyc A, tz(0",a) € A for t €]0,1].
Indeed we can write,
ty- ae < t- 1060 {y) la] < 10co {ty) o]
[ty —az — 20 ae] < tly| + |z(6%, )| + |2(0", o) — ap — 20 g
<Cly—z(@, )| + 10— 0|+ Ce0*) <2cf
tr(0*,a) - ag=0
[tz (6", ) — ay — 20 ae] < (1 —8)|z(0", )| + |z(8", @) — ap — 26 o]
<CA—t)|y—x(0,a)| +Cl0 — %] + Ceb*
<

by (7.1.23). Then we can write

|Oé§ - 9(97% a$)|

< [H(y) — H(z(0%, )| + [H(2(0%, ) — o
<|

H(y) — H(0)| + [H(0) — H(x(0%, )| + [H (2(0", @) — ]
Using (7.1.28), Lemma 7.1.5, (7.1.26) we obtain

o — (0,9, 0] < 51y~ (6, 0).
This completes the proof of Proposition 7.1.2. O
End of the proof of (7.1.8) in case B, (At < —1). — For the part of the integral in

(7.1.4) (giving k4 ) where o € Uy we use Proposition 7.1.2. Let us call it (1). As in
(7.1.12) we have

(1 )|<CA3”/2/ _LT_%M—%P(MF”/%Z&

N t)2
(1)] < C}\gn/z At) —n/2 // —eo0 (MB; log—g(=At,y,az)|? e |z —a|? day dove
)\3n/2</\t —n/2 )\t "
<’ .

Case C: proof of (7.1.8) when |At| < 1. — In this case the proof made above does not
give the needed result since (At) ~ 1. We will use instead a stationary phase method.
Let us set § = —At and let us recall (see (7.1.4)) that we have to bound the following
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kernel
(7.1.29) Ky (t,z,y, \) = A3/2 / MOz 40y ) xg (y) xa () ¥3(ae)

X5 (7?4 — Z;(;g’ a)) dao.

Let us recall also that, according to the Theorems 6.4.1 and 4.1.2 we have,
1

(7.1.30) ImF(0,z,y,a) > 5 |z — oz |

Let x6 € C5°R™) be such that,

z)=1 if |z|] < l,
(7.1.31) X6 () - || < 3
Xxe(z) =0 if |z|>1

)

We write in the integral in the right hand side of (7.1.29) 1 = xg(x—ay)+1—xs(x—ay).
The part of the integral containing 1 — x¢(z — o) can be bounded, using (7.1.30),
by the quantity

cxnzeis [[etiemet iy ag) da

which is 0(1) uniformly in (¢, ,y, ). Setting a1(0,y, ) = a(0,y, ) x4 (y) x4 () we
see therefore that we are left with the bound of the following kernel.

(7.1.32) ky(t, 2y, M)

. —z(0,
= a2 [ A0 030, 0) xo(a = ar) (g (L) d

Now, according to Theorem 6.4.1 we have,
i 2 1 2
F(@,J),y,@) = 50(9):%0[) - (l‘ _aﬂf) T+ 5 |J)—Oéx| - Z |Oé§| .
Using Theorem 4.5.1 we obtain

(7.1.33) F(b,z,y,a)

(y—2) e —2i0(x — ay) - ag — Oag? = 0lz — au > + |2 — a2+ & |y — ag?

1+ 2:6
+R(0,y,a)
where
OR |  |0°R
Z < _
50| * 522 < Cle+0)(|y - ol +16]);
OR| |0°R| | O°R
—_— <
(7.1.34) 3a§‘+‘5‘a§‘+ aamaaf‘ S Oleto)lel
c if Ay =0,
024 022 R X D
v Cay 4,00 if A > 1.
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It follows that we have,

oF 1 OR

Do T aip W~ ) 20— an) = 2ad 5

oF 1 . ) )

e = 1526 (200 ce + 20(x — ) — 2i(x — o) —i(y — )] + das
92F —20 6, 0’R

dol ook 1+ 2i0 8042 dag
PF  2i06,  O°R

80(2 dak 1+ 2i0 80(2 dak
O*F (20 —20)d; 0’R

(7.1.35)

dod Bk 1426 Dok Dok
oAl AR

= if |A| > 3.
daA daA 4]

Let us recall that (6.2.9) shows that
(7.1.36) supp ¢3(ag) C {ae : a — 402 < |ag| < b+ 462}
We shall divide the proof into three cases

|z -y

case 1: 200] < a— 502
(7.1.37) case 2: |x2|—9|y| > b+ 5ds
|z —yl

case 3: a— b5dy <

Case 1. — We have the following result.

LEMMA 7.1.6. — When x — oy € supp xe, ¥ — (0, @) € supp x5, ¢ € supp s we
have

OF |12 1 |0F 2
2 L S (e — au? + 10
Q=[5 + e > Ol —aul? + 0,
if (A >1, A=
|8§;8§§2F|< Ca, 1 A1l > 1, A2 =0,
CAl,A2|9| if |A2|21

uniformly in (0,x,y, a).

Proof. — Let us set X = 2 — a,, Y = a¢ — %57 Using (7.1.35) we see that

OF  —20 OR

e Y +iX) 4+ —.
ae ~ 1r2i0 Y T 5o
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It follows from (7.1.34) that

%|Y+iX| ‘a |+ C+6)0)
Therefore
(7.1.38) O axE v < 2|25 e + 02 o1
1+ 462 |9| 8
By the same way we have
goi = - +12i9 (2i0Y — 2iX +20X) + goi.
Since |y — az| < |y — 2| + |z — az| < |z — ag| + C|0], we obtain
Loy - x4 02 x ) <2 DTy oot 0210 41X,
14 462 Oay,
It follows that
(7.1.39) 2(‘502 i L m (\ oF 2 )+ Cale +0)2(10] + 1XP)

(16 = X[+ 0] [Y]?).

2
1+ 46?2
Since 2 [6]|X||Y] < 2 | X2+ 2 62 |Y|? we can write
1 1 1 1
0Y = X+ 0lV[* > 5 [X[* = 5 2 [V + 0] [Y]? > S |X]° + 5 0]V ?
since |0] < 1. We deduce from (7.1.39) that
2
Q2 7 (XP +101[Y[*) = Cule +6)°(16] + | XT)-
Now in case 1 we have, according to (7.1.37)

ly—2|
2|6

v=| > 6.

y—z
20

Taking ¢ and § small compared to d; we deduce that Q > ¢(|X|? + |0|) which is the
first claim of the Lemma. The second claim follows easily from the fact that |Y|, | X|

are uniformly bounded and from (7.1.35), (7.1.34).

Case 2. — We have the following result.

LEMMA 7.1.7. — When x — oy € supp xe, ¥ — (0, @) € supp x5, ¢ € supp s we

have
oF
80@

|aA FI|<Cy if |Al>1
|00 042 F| < Cay ay ly — x| if Ag| 21

2 1 OF
|y — x| 1 0ag

9L > el — aul? + 10,

MEMOIRES DE LA SMF 101/102



7.1. THE DISPERSION ESTIMATE FOR THE OPERATORS K4 (t) 183

Proof. — Here we set X =2 — oz, ¥ = 2=% — 20 —% Then we can write,

ly—z] ly—z|*
OF 1 OR
e — 2|V - 2i0X) + =%
Pac T+ 2i0 1Y~ elY —20X)+ 5o
OF 1 . OR
It follows that
1 2 1v12 212 oF |2 21912
- - — < —_— .
g (v —al? Y2 4 467 x| )\2(‘8%‘ +Ci(e + )2 |0]?)

Therefore we have the estimate

1 OF ‘2

2
y—z||Y]|* <10
| Y™ < ly — x| | 0ce

+ Ca(e+6)?16].

On the other hand since |y — ay| < ly — 2| + |2 — oy

OF
Oay

2
22X + |y — 2| Y]* < 10‘ +Cs(e + 0101 + |y — af” + |o — aa]?).

Summing up we see that
10Q + Ca(e+0)2(10 + |y — a* + [X°) = [2X + |y — 2| Y[* + |y — [ [Y]*.

Writing y —z = y — x(0, &) + (0, &) — g, + i, — , we see that one can find a constant

Ky such that |y — x| < Kp. Let 19 > 0 be such that 4207]0 Ky < % Then we have

4
4|y—f¢||X|'|Y|<(4—770)|X|2+m|y—$|2|y|2~

It follows that

Mo
2X 4 by —al Y > 0 X = P fy = af? Y

4 _
This implies that

10Q + Cyle + 5)2(|9|2 +ly — a?|2 + |X|2) Z 1o |X|2 + |y — 2| |Y|2(1 T3 iono KO)
. 1
> min (770, §>(|X|2 + 1y — 2| [Y]?).

On the other hand we have

|a£| S . b —+ 452 - 52
ly —z| ~ b+5d2 b+ 502
because |y — x| = 2(b + 502)|6], since we are in case 2. Therefore

10Q+ Cs(e+6)(10] + |y — 2| + |X[*) = Cs(|1X* + |y — =)

V1> 129

Taking ¢ + § small with respect to Cg we obtain the first part of the Lemma. The
bounds on the derivatives of F' can be easily obtained since |0 < (b+5d2) ! [y—z|. O
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Case 3. — Recall that we have a—5 d3 < ‘g‘_j‘" < b+502. Then we have the following
result.

LEMMA 7.1.8. — One can find po > 0 such that the equation x(0,z,a¢) =y has a
unique solution in the set E = {045 : |a5 — % < po},

Proof. — First of all one can find pg such that if a¢ € E then % < Jag| < 2. It follows
from Proposition 3.2.1 that z(6,z,a¢) = = + 20 ae + r(6, z, ae) where || < Celd).
The equation to be solved is in E equivalent to the equation a = ¥55* + % (0, z, ag).
If we set ®(ag) = L5~ + % (0, z, ag) then ® maps E in itself if C'e < pg. Moreover,
again by Proposition 3.2.1 we have |®(ag) — ®(a)| < C" ¢ ag — a|. Taking € small
enough the Lemma follows from the fixed point theorem. O

We shall set
(7.1.40) ae = (z,ag)

where of is the unique solution of x(0,z,a¢) = y given by Lemma 7.1.8. Then we
have the following result.

r r
LEMMA 7.1.9. — We have % 0,z,y,a%) = % 0,z,y,a%) =0.

Proof. — Let us recall that

oF =ag—i(z —oay) + 0

(7.1.41) Jag | 303@
5‘7«5 = —(3?—0%)4-10454-87“5-

On the other hand we have (see (4.5.17))

(11.42) p(6,5(6,0),0) = Op(0) + 5 o

Therefore

Moreover we have

%i (9,1’(9,04),04) = @(9,1’(9,04),04) = 5(9,04)

(7.1.43) 0% (0,2(0,0),0) =022 (0) = 3" x(6,0) 222 (0,01,

ool Ox; Oz;
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Now by the definition of the flow and the Euler relation we have

Zxkea & (0,0) = Zwa ((0, @), £(0, @) = 2p(cv)
k=1

p(z(0,a), (0, @) = p(a )

Differentiating these two relations with respect to o/, we obtain

0% . 43 Ip
0 0 0,a) - — (6 2 —
S (0.0)-(0.0) + i(0.0) - 55 (0.0) =2 5 (0)
Op Ox Op 0¢
(7.1.44) . (z(0,a),£(0,a)) - 8_% 0,a) + T ( (0,2),£(0,a)) 8_% 0, )
dp
= a—xj ().
Using the equations of the flow the last equality can be written as
. Oz ) ¢ _Op
5(9, a) ’ 8$j (97 a) + {E(Q, a) 81‘]' (97 a) - 8$j (a)
Combining with (7.1.44) we obtain
ot : Ox dp
§ (0.0)-(0.0) +£00.0)- 5L (0.0) = 7L (o)
which can be written as
Ox _Op
2l 5 (0.0 60.0)] = FE ()
Integrating both side we obtaln
Ox dp j
oz, 0,a) - £(0,) =0 oz, () + .
Using (7.1.43) we deduce
dp ;
0,20, = —al.
Dol (0,2(0,0),a) ¢
Since a® = (z, ag) where (0, z,af) = y we deduce from (7.1.41) that
OF ) , ,
—i (0,7,y,0%) = af + 802 (0,2(0,a%),a%) = af —al =0.
Now differentiating (7.1.42) with respect to aé yields
9e Op Oz 0 ity
g (0:2(0.0).0) + 52 0,000,000 - 5 0,0) =0 52 () +

As above we see easily that,
d [ oz
doLgad oy

dp

a_fj (a)v

(0.0) - £(0,0)] =
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from which we deduce that ’9”” (9 a)€(0,a) =46 gg) (a). Since 2 G2 (0,2(0,),8(0,0)) =
£(0, ), we obtain

dp I
5‘72 0,2(0,a),a) = 7%

OF _
Ba‘é (gvxvya ac) =0. O

which implies that

LEMMA 7.1.10. — Let us set
oF |2

Q:[af%

X=a,—=x

10] ‘aag‘ } 0, 2,y,0)

Y =oae —of
where o has been introduced in (7.1.40). Then we have
> C(XP+ 101 Y ),
04 F| < Cy if [Al 21
|04 022 F| < Cayanlf] if A2 > 1

uniformly in (0,z,y,«) when |0] < 1, v — a, € suppye, ¥ — z(0,a) € supp xe,
Q¢ € supp 3.

Proof. — For t € (0,1) let us set my = (0,z,y,tac + (1 — t)a®). Then using
Lemma 7.1.9 we can write for j =1,...,n,

801; 0,z,y,a) = zn: </01 [ C(fF (mt)(afc—xk)-i—ﬂ (mt)(alg_(ag)k)k)] dt)

0 — dazdak 804%80/5
) - /1 [ O*F X O*F X , ] )
— (0, z,y,a) = . me)(ay —xp) + —— (my) (o — (ag dt |.
oy ) =3 ([ [50 et = 55 ot~ o)
It follows from (7.1.35) and (7.1.34) that

oF 2i — 26 2'9

—=—X;+ ———Y] (X +10||Y

OF 20 26

g, Y; X|+|Y
9ag = Tz~ T ¥+ O+ NI YD)

Therefore we have
5
0% | X2+ X —0Y >+ 0] [X|*+ 0] |[Y]* < @+ 0+ 82 (1X [ + 101> Y ]?).

Taking €+ ¢ small enough we obtain Q > C(|X|?>+ 6| |Y|?) which the first claim of the
Lemma. The other claims follows from (7.1.35) and the fact that |z —y| < 2(b+5 d2)|0]
since we are in the case 3. (|
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We shall set in what follows,

1 <~/ 0F 0 1 OF 0
L=- P 9,.13, Q) — + = —— 9,1‘, &)
i ;(ao&( i >aa§ Daag( / )804;)
(7.1.45) B (‘8_F 2 1 8_F‘2)(9 )
- aam D 8a5 y U, Y, &

where D = |0| in the cases 1 and 3, D = |z — y| in the case 2.

Let us note that, according to Lemmas 7.1.6, 7.1.7 and 7.1.10 L is a vector field whose
coefficients are uniformly bounded together with their derivatives with respect to a.
Moreover we have

(7.1.46) LerM = )Qe.
Our first goal is to prove the following result.

ProprosITION 7.1.11. — For any N in N™ we can write

N-1
LN giAF(B.ay.0) _ ()\N oN + Z hk,N(97$7y,04))\k> oA (8,2,y,0)
k=1

where hy, N are smooth functions satisfying
IL7 hien (0, 2,y,0)| <CjnQF, 0Kk N-—1, jEN,
uniformly when 0 < 6] < 1, |z — ag| <1, |y — z(0, o)| < 20, |ae] < 2.

Proof

Step 1. — Let H be the set of C°° functions ¢ = ¢(6,x,y, ) such that for any
v € N2 97c is uniformly bounded when 0 < |0] < 1, |z — | < 1, |y — 2(8, a)| < 26,

: oF 1 OF
|ae] < 2. For instance ) and 5 Do belong to H.

_ OF 7 _ OF __1 9F T _ _1 OF
Let us set T' = F4-, _8%73_\/58&57 = 75 Dac-

Let P be the set of homogeneous polynomials of order 2 in T, T, S, S with coeffi-
cients in H. For instance we have @ € P. We claim that L sends P into P. First of

. ¥y . o 2 ¥y ==l
all if P € P then 5);: (;)5 € P since 88(5 eH, g;; € H and 5);: =T;. On the other
1 9F 9P : 1 OF 1 9F _ 7. 1 _9*F
hand 5 Dol Dol € P since 5 Do € H, VD ol ~ T; and 5 Bacoa © H. It follows

that L maps P into P.
Now if P € P then |P| < C Q. It follows that for all j € N,

(7.1.47) Q| < C;Q
uniformly in (0, z,y, «).
Step 2. — We claim that

forall N €N, j €N we have |L7 QY|
0<|0] <1, |[x—ax <1, |ly—x(6,a)]

Cin QN uniformly when
25, |Oé§| < 2.

(7.1.48) {

NN
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Indeed by the Faa di Bruno formula (since L is a homogeneous vector field) L’ Q* is
a finite linear combination of terms of the form

QN_M H(LE,Q)k7
=1

<M, Y0 ki=M, Y | ki{; = j. Each of such terms
1.47) by CQN-MQXiki = CQN-M QM = C QN which

where 1 < M < N,1<s
is bounded, according to (7
proves our claim.

Step 8. — Proof of Proposition 7.1.11
We use an induction on N. For N = 1 the result follows from (7.1.46). Let us
assume it is true up to the order N. Then

N-1 N-1

LNJrl(ei)\F) :ei)\F<>\NNQN71 LQ+ Z(Lhk,N) )\k +)\N+1 QNJrl + Z Qhk,N )\kJrl
k

=0 k=0

N
_ NF ()\N+1 QN+ 4 Z hie N1 /\k>
k=0
where
hnnt1=NQY'LQ+ Qhn_1n,
hens1i=Lhpyn +Qhr—1n, 1<ESN -1,
ho,n+1 = L hon.

Now we have
J j J j
LIh <N LEQN-Y Lt L'Q| L7 " hy_1. Nl
Wil <V (]) 1@ IB @+ 3 (7) 10111
Using (7.1.47), (7.1.48) and the induction hypothesis we deduce that |L7 hy yi1]| <
C; n QY. The estimates for the other terms are completely analogous. O
We need another Lemma.

LEMMA 7.1.12

(i) For any N € N* we can write
LY (M) = G (0, x,y, a,\) e
(ii) There exists a constant Ky > 0 such that
|Kn + Gn (0,2, y,a,\)| > %(AN QY +1).
(ili) For any j € N, N € N* we can find a constant Cj n > 0 such that
|L7Gn(0,2,y,0,\)| < Cj N |GN(O,2,y,0,)) + K.
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(iv) For any j € N, N € N* we can find a constant C}y > 0 such that

. Vol
(tL)j<KN i GN)‘ S TRn + Gnl

where 'L denotes the transpose of L.

Proof. — (i) is a consequence of Proposition 7.1.11 with
N-1
GN(G, €, Y, a, A) = >‘N QN + Z hk,N(aa z,Y, a) Ak
k=0

and b | <K CyQF, 0< k<N -1,Cn >1
(ii) If AQ < 2N Cx then

N-1 N-1
Z | A < O <Oy S @N Oy
k:O k=0

IfAQ >2NCy then
AQN =AQNFANQ)F =2NCN(AQ)F fO<KES N -1,

Then
N-1 On N-1
e | X < 7 ( 1) AQN = Z(AQ)
k=0 k=0
Therefore
N-1 1
|hie, N | AF < i(AQ)N + K.
k=0

This implies

AN QN +1).

N =

1 1 1
‘K§v+§+GN‘ ;K&+§+ANQN—§ANQN—K§V>
(iii) We have, by (7.1.48) and Proposition 7.1.11

|LJGN|—‘>\NLJQN+ZLJhkN>\ ‘ ]NANQN+Z ' A QF

(1 +/\NQN) Cin|Kn + Gyl

(iv) Let us recall that L = 5971«? 2+ gfg ac: According to the Lemmas 7.1.6,
7.1.7 and 7.1.10, we see that 'L = —L + ¢(0, x,y, o) where

|a¢;¢y 0(97 z,Y, Oé)| < C’Y
uniformly in (6, z,y,a). We claim that for j € N
J
tL) = Zcﬁk(&m,y,a) L*, with

|5‘ch;€(9 z,y, )| < ¢k

(7.1.49)

SOCIETE MATHEMATIQUE DE FRANCE 2005



190 CHAPTER 7. THE DISPERSION ESTIMATE

We saw above that this is true when j = 1. Let us assume that (7.1.49) is true up to
the order j. Then
J j+1
(*L) = (=L +¢) Z cjr(0,z,y,a) LF = Z cjr1k(0,z,y,a) LF
k=0

where

cjy+1,0 =ccjo— Lejp

Cjt1,k =CCjk — Lcjy —cjp—1, 1 <k<]

Cj+1,j41 = —Cjk-
Then the estimate on |92 ¢;y1,%| follows from the induction and the fact that the
coefficients of L have all their derivatives with respect to a bounded uniformly. It
follows that

, 1 d 1
7.1.50 (0 ()| < 2| (=) |
( ) L) Ky +Gn ]’Nkz:% Kn+Gn
Now by the Faa di Bruno formula, L* (m> is a finite linear combination of terms

of the form
1 £; ki
(Kn + GN)HB H(L @)

where 1 < 3 < k, 1<s<k Y i ki=p, ZZ 1 ki i = k. Tt follows from (iii) that

]. s . CN
Y AL D P S - T
‘ KN+GN PN |KN+GN|1+B| N vl |[Kn 4+ G|

Then (iv) follows from (7.1.50). O

We can now state the estimate on the kernel for 0] <1

LEMMA 7.1.13. — Let ky = ki (t,z,y,\) be the kernel defined by (7.1.32). Then
one can find a positive constant C' such that

~ C

|k+(ta z,Y, )‘)| < |t|T/2
for all (t,z,y, \) such that A > 1, M| <1, x € R", y € R".
Proof. — The kernel EJF can be written as

Erltong ) = [ FCMT09 G0 2, 0) do
where
~ —z(=Mt,«
a(At, z,y, @) = a1(=At,y, @) x6(z — ) ¥s(ag) m(%)

Let us note that all the derivatives of a@ with respect to « are uniformly bounded.
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We use Lemma 7.1.12 to write

7. _ N\ JiAF (=Xt z,y,a) Ad()‘ta z,Y, Oé)
kJr(taxayv)‘) /(KN+L )e KN+GN(_>\t,fE,y,CY7>\) dor
Now using (ii), (iv) of Lemma 7.1.12, (7.1.49) and the fact that Im F' > 0 we obtain
= Vlag)
@5 Enenl<ox 0 [ S g = oy

where @ has been introduced in (7.1.45) and 1;(045) is a smooth function with compact
support. Now according to the Lemmas 7.1.6, 7.1.7 and 7.1.10 we have

Q= C(lz — az|* + |\t]) (case 1 and 2)
Q = C(lz — ag|? + |\t| |ag — 042|2) (case 3).
Let us fix the integer N such that N > n. Since 1; has compact support we have in
dX
I < )\371/2/ )
re 1+ AV X 2N 4 AN |V
1/2N

Let us set X = % z. Then

case 1 and 2

P (14 AN |\t |V)n/2N 1 / dz

/2 L+ AV XN Jgn 1+ |22V

If A|M\t| < 1, that is A2 < ‘71“ we have,

Cn

I<CyA' K< .
N FRE

If A|At| > 1, that is 55 < |¢], we can write for N > n,

(AAe)" Cn
(A MDY T A2V -n)

It follows from (7.1.51) that |E+(t,x,y,A)| < \tl’(i/z'

H3 N < O N <

n
I<CnA S ez

In case 3 we have

do
I< C>\3”/2/ :
ren L4+ Mz —auf? + At Jag — o)V

Setting X = VA (2 — az), Y = VA /M| (ae — ag) we obtain

: axdy
I< C«AJn/Q Afn/2 Afn/2 by’ 7n/2/ )
A e TR RN

It follows that

|k(t,z,y,\)| < REk

This completes the proof of Lemma 7.1.13 thus the proof of Theorem 7.1.1. O
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7.2. End of the proof of Theorem 2.2.1

Let us recall that we have set in (6.2.7),

(7.2.1) UL (t) =i wa(5) e

It follows from Theorem 7.1.1 that there exists C > 0 such that

" C
Ux(t1) Us(t2)" fllpoomny < PETATE Il e

for all t1,t5 in [T, T] with t; # to and all f € L'(R"™). Moreover there is a conser-

vation of the L? norm for e~** which implies,

1Ux(t) uoll L2mny < Clluollz2mm
for all [t| < T and ug € L2(R").
We can therefore apply Lemma 2.1.3 with X = R", H = L?(R") and we obtain
(7.2.2) U+ () wol| Laq—7,7),7 (7)) < C [|uol|2(rn)

for all ug € L?(R"), where ¢ > 2 and % = 5 — . Now it follows from (6.2.2) that we
have

X7 (@) + x1 () =1 for all z € R™
Then (7.2.1) and (7.2.2) show that

Dy —ip
(723) H%(X) € 'U,()‘

for all ug € L*(R"), where I = [T, T).
Now let us recall (see (6.2.6)) that 12(€) = ¥o(§) ¥1(€) where

o) =1 if | & —6| < 228, lol=1,
supp o C {€:  — €| <282} and [¢] > 6

<C .
La(I,L7(R")) lluoll 2 (mm)

{1/)1(5)_1 ifa—62<|§|<b+52, a:%, b:i—g,
suppyn C{{:a—2d2 < [€] < b+ 202}
By a finite partition of unity we deduce easily from (7.2.3) that

DN _up
o [l

Now let us recall that p(z,&) = [¢]* + ¢ Z;k:l bjr(x) & &k Therefore if € is small
enough we have

9 1,
(7.2.5) 1o 67 < p(@,6) < 5 lél
Let ¢o(t) € C§°(R) be such that

< C |luol|L2(®n).-

La(I,L™(R™))

wo(t) =1 if || <

ol ©

o(t) =0 if [t| >3
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and set

(7.2.6) @(t) = wo(t) — po(41).
It follows that supp C {t € R: & < [t| < 3}.
Let ¢ € C*°(R) be such that

supp ¢ C {t eR: & <t < }
(7.2.7) =1 ona nelghborhood of supp¢, so

o(t) o(t) = o(t).
We claim that for every (z,&) € T*R",
(7.2.8) (1 =1(8)) e(p(x,€)) =0
Indeed on the support of 1 — wl (&) we have

(i) [fl<-—=-0 or (i) [>— + d2.
In the case (i), (7.2.5) shows that

6 4
0 < p(z,€) < |€|2 (1o> <10

In the case (ii) we have
9 /19 31
Pz 8) 2 (10) ~ 10
Thus ¢(p(z, &) = 0 by (7.2.7).
Now, with ¢ introduced in (7.2.6) we claim that

(7.2.9) ()= “¢<;) e uo‘ La(I,L" (]R")) H<'0<AQ) ‘

for all ug € L*(R™). Indeed we can write

D<o () o) &l 1 (=00 (3) #l55) 7w
(2) (3)

Since (&) commutes with e =", we deduce from (7.2.4) that

(7.2.10) ) < ng(%) uo‘

Using (7.2.7) we can write

@ =] (1= 0(3) o) 7 el5) wl

Now, since r > 2, there exists, by the Sobolev embedding, s > 0 such that
H*(R™) — L"(R™). We fix such an s. Then

< |- (3)) o) e ) ol

L2(Rm)

La(1,L7)

L2(Rn)

La(1,L7)
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Now we use (7.2.8) and Proposition A.1 in [BGT]. It follows that

. P P
—itP - < C (_) ‘
€ QO()\2)UOHL°C(I,L2(]R")) Pz ) Yo L2(Rn)’

which, together with (7.2.10) proves our claim (7.2.9). By (7.2.6) we have

1"

(3) <’

+oo
po(t) +) (27t = 1.
k=1

Then using Corollary 2.3 in [BGT] we can write

+oo
lle™* wol| par.Lr@ny) < C lluoll L2en) + H ( > e g2 P)ug|
k=1

La(I)
By the Minkowski inequality and (7.2.9) we obtain

+oo

—i _ 2 1/2
le™* woll Laqz,r(nyy < C lluoll 2qeny + ( (27 P) u0||L2(R")) :
k=1
This implies that
—itP /
e U’OHLG(I,LT(R")) < O luol 2,
which is the estimate claimed in Theorem 2.2.1.
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APPENDIX

A.1. The Faa di Bruno Formula

We shall make a repeat use of the following formula which can be found in even a
more precise form in the paper of Constantin and Savits [CS].
Let m € N*, F € C™(RN,C), Uy € C™(RP,R), k = 1,...,N. Then for |A| < m

we have
o F Z S W) ULY) + (1)

where (1) is a finite linear comblnatlon of terms of the form

S

Lj K;
@R U] 0y v)
j=1
where 2 < 8] < |A|, 1 < s < |A|, |K;| 21, |Lj] > 1 and

s S
S Ki=p, > |K;j|Lj=A.
j=1 j=1

The precise coefficients of this sum can be found in [CS].

A.2. Proof of Proposition 3.2.1

The system satisfied by r and ( is the following.

7 () = 2¢(t) +2eZb]k r;(0) =0
: 8bpq
Gt) = —e Z 5, C0) &) & (1), ¢;(0)=0
pa=1 "7
We prove our claim by induction on |A| + |B| = k. Moreover it is clear that (ii)

implies (i) since 7(0) = ¢(0) = 0. Setting ®(t) = |#(t)| 4 |((t)| the above equations
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show that ®(t) < Coe + C fo o) do. Thus by Gronwall inequality, ®(t) < Co(T)e.
This shows that (i) and (ii) are true for £ = 0. Let us assume they are true up to
the order k — 1. Let us set X = (z,¢) and if @ = (4, B) € N* x N*, 9% = 94 853. It
follows from the induction that
£(t,2,8)| < C(T)
|39< x(t, z, §)| + 0% &£(t, 2, §) < Ca(T)
ifl<|al<k—1land k>
It follows that if 1 < |a| k —1 we have [0S [F(x(t))]| < Co(T) if F =
Let us now take |a| = k > 1 and let us set ®(t) = [0% 7(t)] + |0% (1)]. Then usmg

the Leibniz and Faa di Bruno formulas (see Section A.1) and differentiating the above
differential system we find

t
O(t) < Coce+ C(;/ O(o)do
0

after using the induction. We conclude again by the Gronwall inequality. O

A.3. Proof of Proposition 3.3.2

The system satisfied by z and ( is the following.

—ngb]k De -2t Y T (aie) 16,0

Lj

p,q=1
(A3.1) 0b
=€ Z - &p(t) &g (1)
pyq=1
zj(0) = ¢;(0) =
By Proposition 3.3.1 we have (x(t, z,€)) = C(1+ |z|+1t). This implies that for £ > 1
¢ ds Cg
A.3.2 < :
(432 J, Ton < g

We proceed by induction on k. Let us begin by the case k& = 0. We deduce from
(A.3.1) that

, 1 t C' (A, Ar) e
1(0)] < C(A07A1)6(<x(t)>1+00 + <x(t)>2+go) < i
. C(Al)éf
|C](t)| < <x(t)>2+‘7°

since |£(t,x,€)| < 2]€] < 4. Then the estimates in Proposition 3.3.2 when k = 0
follow from (A.3.2). Assume now that these estimates are true when |A|+|B| < k—1
and let us deduce several facts.

For ¢ € N let us introduce the space,
Cs

BL, = {F e C*®"):|07F(y)| < PR

, forall y € R”}.
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Let us set X = (2,¢) and if a = (4, B) € N* x N*, 9% = 92 853. Then a straightfor-
ward computation shows that for a € N x N™,

1 1
(A33) 0%(6)| < oy 19 ()] < Zoyr-
It follows that for |a| < k —1,
2My—
(A.3.4) 95 &t 2.9 < T
Indeed
0% (€(1,2,6) < 1061 +10% G112, )] < g + ]
X \Sj\b 4y X VxS X S7\E b = <x>|A| <x>\A\+1+ao'
Therefore if |of < k —1
Cy, M?
(A35) 05 (&0 &) < =
Now if || = k we have from (A.3.3)
1
(A36) 8?( fj(ta Iaf) = 831( Cj(t7x7§) + RLOU |Rj70(| < <$>‘A‘
% (&p(1) - &q(1)) = & (1) O% &q(t) + &4(1) 0% &p(t) + Rp,g.a
(A.3.7) C M
Bl < =it

Now we claim that if F € B4 and |a| < k — 1 we have
Ch Ml‘coill
<x(t)>£+1+ao <{E>|A| '
This estimate is easy if k = 1 and if & > 2 we use the Faa di Bruno formula (see
Section A.1). It follows that 0% [F(x(t))] is a finite sum of terms of the following form
S
(@7 F)(x(t) [[(0F =)™, ¢ € N* xN", k; € N"

j=1
where 1 < |8| < |a|, 1 <s < |al, |kj| > 1 and

k=8> |kl =a
j=1 j=1

If we write ¢; = (a;,b;), @« = (A, B) we have in particular

(A.3.8) |05 [F(z)]] <

(A.3.9) > lkjla; = A
j=1

Now we write {1,2,...,s} =11 Uy U I3 where
I = {] : |£]| = 2}; I, = {] : |£]| =1, gj = (aj,O)}, I3 = {j : |£j| =1, gj = (Oabj)}
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and we denote by ¥; the sum ) i =1,2,3. When j € I} we have

jEL
171 a e
I (x (1)) = 2t 9% (G (1)) + 9% (2(1))-
Since |¢;| < |a| < k —1 it follows from the induction that
QtEMk,1 €Mk,1 EMk,1 ( 2t )

0% (x(t))] < (@)leaTroot1 + (@) a¥o0 ~ (gylasIton * (z)

It follows that

(A.3.10) ‘ 1 @%@e)®| <

jeh

Clo(e My_1) =11l 211k
(z)Z11k;llas] ( * <x>21|’%‘|)'

Now when j € I we have ¢; = (a;,0), |a;| = 1. Then
ZEtMl €M1
e+ Ty

0% (2, ()] <1+ < 2M1(1 + #)

BRI

Therefore we have

(A.3.11) ‘ H (0% (x(t)))"

Finally for j € I3 we have ¢; = (0,b;), |b;| = 1. Then
bj
|85 (zp(t))| < 2My (t).

1221k5]
(w)B2lk;l(2+00) ) ’

< O(2My) =2k (1 n

It follows that
1 kj
(A.3.12) ‘ [T (0% =)
JEI3
Using (A.3.10), (A.3.11) and (A.3.12) we obtain

< (QMl)Es\kj\ <t>23‘kj‘, i

S

1) =@ F)eo) T (0% )

Jj=1

+22]k;]

Cp M~} 1 ¢ k] Sk
= (z(t))IPl+ 41400 ' (z)Z1lkjllas] (1 + () =1lks] ) (1 + <x>22|k.7‘|) () )

Now we have
1 kil + B2 [k + Bs [k;[ = 18], (@(t)) = C(t) and (z(t)) > C(z).
It follows that

Cr, M~} 1
(A313) (1) < <x(t)>£+1+0'0 <l‘>21 |kj||aj|+22 |kj| :

On the other hand,
|A] = Z |kl laj] = 31 |kj|laj| + 22 |k;| since |a;| =1 for t € I,
j=1

and a; = 0 if j € I3. Therefore (A.3.13) implies (A.3.8) and our claim is proved.
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Moreover if |a| = k we can write

)0 + R wh
Zayg ) 0% xo(t) where

Ck Mk 1 1
|R| < o :
<x(t)>€+1+0'0 <x>‘A‘

(A.3.14)

Indeed R is a finite sum of terms of the form (85F)(x(t))H§=1(8§g x)*i where

2 < |f| < |a|. It follows then that |¢;] < |a| — 1 =k — 1 and the above computations
are valid.
Let us now prove Proposition 3.3.2 for |a| = k. Let us set

Z(t) = 0x 2(t), E(t) = (x) 0% ().

We can write

2 3 {1000 0% 60(0) + 10 )] 6101
k=1 (1) )

. (O‘j‘l) O by (@(£))] 952 E(t }—257:2{ [ab”q (2(8))] &(1) €4(1)

a=«a1+as p,q=1
a; #0 (3)

(4)
+(Zb—;;(x(t))83’<(§p(t) L)+ Y (;) oY [gb—;; (x(t))} % (&, (1) fq(t))}

a=aitaz

Ocj;ﬁo

(5) (6)

£ = e (o) Y- { 0% [ G2 (0] 60 €0) + G (o) 35601 4(0)

p,q=1

J

(7) (8)
s Y () w[Fren]senamn )

a=aitaz
a; #0

)
We shall use the fact that bj, € B and %b—;jq € BZ,. We deduce from (A.3.3) that
Ce Ce |Z()]
1)] < .
WIS Zorm=mm * o @

To estimate the term (2) we use (A.3.14) with F' = b;;, and the equality

(A.3.15)

0% xj(t) = 0% (z; + 2t &) + 2t EZ:C(;) + Z;(1).

We obtain
Ce Ce |Z(¢)] Ce

(A316) |(2)| < W |Z(t)| + <J)(f,)>1+00 <$> + <£L’(t)>1+‘70 <x>|A|
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To estimate (3) we use (A.3.4) and (A.3.8) ; we obtain,
Cre M::ll
A31 < ——— -
3T OIS Gy

By the same way we have,
Cre M,f__ll
(@(t)) oo (z)lAl"
Then (4) has the same estimate as (2) and (5) as (1) since (z(t)) = C (t).
To take care of (7) we use (A.3.14) with F' = 8 S24 € B2 . We obtain
Ce Ce Ce
(7] < @)y 1Z(t)] + @)y IE(®)] + (@)oo ()T
since (z(t)) > C (z) and (z(t)) > C (¢t). Finally
e B0 e
(a(t))1+oo (@(t))Hoo ()l Al
1(9)] < %
= (a(t)) oo ()l
Gathering the estimates obtained in (A.3.15) to (A.3.20) we obtain

Ce CreMi~}

1Z(B)] +E®)] < O (IZz@+ [E@)]) + ()]0 () AT

It follows from Gronwall’s Lemma, (A.3.2) and the estimate (x(t)) > C (t) that

1Z(t)] + [2(t)] < %

(A.3.18) 16)] <

(A.3.19)

I(8)] <
(A.3.20)

which, according to the definition of Z and = proves Proposition 3.3.2 when |a| = k.
O

A.4. Proof of Lemma 5.3.1

The proof is the same for the two cases so we shall consider the more general case
where f = f(x,0).
Let x € C§°(R™), x(&) = 1if [¢] < 5, x(&) = 0if [¢] > 1. We set
(A4.1) Z sup |0°x| = Dy, ¢ €N.
pl<e

We want to show that one can find an increasing sequence (Ly)r>1 in |1, 4+o00[ such
that if we set for (6, z,y) in Q x Ry

Py 0,2) = 03 £6.0) 7 x (L (5 + 7)) bl =1

F(0,2,y) = f(6,2) + Y Fy(,0,y)
v#0

then F is well defined in 2 x R} and satisfies all the requirements of Lemma 5.3.1.

(A.4.2)
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First of all in the expression of F,, on the support of x we have |y| < L‘l ‘ <é§>+<2>.
Y

It follows that

|y 1 |yl 1
AA43 W 2 W 2
(A43) () " Lyy (0) " Ly

Using (5.3.2) we can write,

71
P2 (6,2.)] < M (Goiess + mmees) o ()

(9)II+os
S0 Do
o My ¢ 1 1
< .
|F (0,2, y)| < L] ((m)"3 + <9>03)
i
Taking
(A.4.4) L7l > Do My

we deduce that F' defined in (A.4.2) is well defined and satisfies

(44.5) 70.2.9)] < o 5 + )

since o3 > o1 and o3 > 0.

Therefore (ii) in Lemma 5.3.1 is satisfied and (i) follows immediately from (A.4.2).
We shall strengthen the condition (A.4.4) on L, to obtain a C*° function F. First
all there exists absolute constants C; ¢, (i € N, £ € N) such that

(A.46) h}; o [(% 4 %)é} < ci,e(% + Wg)éﬂ.

Let 8 € N". For any p € N™ one can find an absolute constant K, independent of
(Lk)) such that for all (¢, z,y) in R x R} x R} we have

oL {(5?)() (le\y<% + Fg))} < Ky Dig4 (% + %) |u|.

Indeed let us set h(f,z,y) = Lh‘y((?l) + ﬁ) By the Faa di Bruno formula,

OL[(0Px)(h(0,x,y))] is a finite linear combination with absolute coefficients of terms

(A.4.7)

of the form

S

@) (h0, ) TT (02 00, 2,9))"

j=1
where 1 < |V| < |,LL|, 1<s< |M|7 |kj| =1, |£J| > 1 and

ijzl/, Z|k‘j|£jzu
j=1 j=1

Since |v| + |B] < |u| + |5 we have
(A4.8) 108\ (1(8, 2,9))| < Djppaa-
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On the other hand it follows from (A.4.6) that

s 1 1\ 227 1k 1 (1+1€510)
- ‘Hy (0, 2,9)" Hclell |L|v\)zl‘k"(@+@) .

On the support of x we use the estimates (A.4.3). Moreover we have > ] |k;| = |v|,
1 kil 1451 = || Tt follows then that,

(A.4.9) (1) < c/ﬂ(%Jng)lm.

Then (A.4.7) follows from (A.4.8) and (A.4.9).
Now with F, defined in (A.4.2) we can write

OF Fo(0,2,y) = il % 16,2) Z (51) (’yyi__;i)! {Lwl(é N

~! (0)
By
(8foBIX)(LW|y(<x> 1 >))

Then
02 0F Fy(0,x,y)

B A A—A 1
= s () () (") s
’ y
BieB Avca avona, \D1 A Az (v — By)!
Bl\’y 1

Lo 1P gt p (9, 2) 02 K@ + %)'B—Bl}

op A [(353_31 X) (y Ly (é + <T}>))} :

Now we use (A.4.3), (A.4.6) and (A.4.7). Since |y|+| 41| < |y|+|A], |[A — A1 — A3| <A,
|B — B1| < |B|, we obtain

107 07 By (0, 2, y)]

<> D <BBl> <i> <A;12A1) hl=IB| plBii- |7<<w>+6)|31|_|7

Bi<B A1<A
B1<y As<A-A;

1 |BI=IBi] 1 1

Ly, Ml7\+|A|<<x>|v\+|A1|+as * <9>Iv\+|A1|+as) Claal|B-B|
1 1 \ |A4z2]+|B|—=|Bi| 1 1\ lAl—-|AL|—|Az2]
4 KiaD 4
(<x>+<9>> 41 ‘A‘+'B‘(<x>+<0>)

where |y| satisfies (A.4.3).
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It follows that we can find a constant 5|A|7|B‘ < 1, depending only on |A], |B| and
the dimension such that

(A.4.10) |02 08 F,(0,2,y)]

o C|A|,|B\D|A|+\B|M|v\+|A|( 1 L 1 )
< LniilB‘ <x>|A|+\B|+03 <9>\A‘+|B‘+U3
Let us set
(A.4.11) 6k = max 6\AHB|~
|Al+|BI<k ’

We shall take the increasing sequence (Lg)i>o such that
(A.4.12) Lk 2 max (1, Qk ék Dk Mgk).

Then we write, according to (A.4.2)

(Ad13)  F(Ozy) =fO.2)+ >  FElzy+ > Fbzy).
vI<IAl+1B| >4+ B]

The first two terms in the right hand side of (A.4.13) define a C*° function. For the
third one we deduce from (A.4.10), (A.4.11) and (A.4.12) that

Ol Dy Moy 1
L"Y| = 2|’Y‘

107 0y f(0,2,y)| <

This shows that the third term define also a C*° function. Thus F' is C* in (z,y).
Let us prove (iii). According to (A.4.2) if |[A] + |B| > 1 we have

(1) =07 0 F(0,2,y) =0, 0F f(0,2) + > _ 9 0f Fy(0,2,y).
¥#0

If |B] > 1 we use (A.4.10), (A.4.13) and (A.4.12). We get

1 1
(D < CAB<<x>|A|+\B|+as + <9>|A|+\BI+03)'

If B =0 we use furthermore (5.3.2). We obtain

1 1 , 1 1
(D] < M\A\<<x>\A\+ag + <9>|A|+03) + CAB(<x>|A|+ag + <9>\A\+ag)'

This shows that (iii) holds.
Finally let us prove (iv). Let us set again

hh‘(e,x,y) = L|7\ y(% + %)
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According to (A.4.2) we have for j € {1,2,...,n},

O, F = 0, £(0,2) + 3 (02, 07 1(0,2) X1y (0,2,))

v#0
- (Ej y 8 )Y
- ;Lm <x—>yf 9 f0,x) - % (hj5(0, , y))) ( 3,)
iy)” 0
O0F = 301100 GF ) (w5 + ) 8? (b1 (6,2, ))
+iy 07 f(0,2) ) ) X(hy (0, 2,9)),
7521
where e; = (0,0,...,1,...,0). Setting v = v — e; the sum above can be written
. 1 1y)”
zaxjf(H,a:)X(L1y(< ) )) +1 28% aY f( %X(hhﬂ(e,x,y)).
It follows that
(A.4.14) (0u, F 410y, F)(0,2,y) = (1) + (2) + (3)
where
0= (1-x(Bv (g + ) 9 5600
2) = 3 00, 31 0.0) L el (0 2.) = b0, ))
(A.4.15) 70 (iy)" "oy Oy
® =3 970.07; Liy( - > T ag, (i@ )
71 1 195%
+ z(@ @) 3¢, (0.2 ).
Let us set for convenience
1 1
(A.4.16) R=1yl (@ + @).

On the support of 1 — x(L; y(i> %)) in the term (1) above, we have LiR > 3.
Therefore

1) 1 !
(A.4.17) RN < (2L)Y M1<<x>1+(73 + <9>1+as)'

On the support of x(h,(0,7,y)) = Xx(h|y+1(6, 2,y)) we have
we write with N > 2,

(2) = Z (0, x,y) + ZG 0, z,y).

1I|yvISN -1 lvIzN

gRéﬁ.NOW

1
2L15)141
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When [y] < N —1 we have L|,11 < Ly so R > 57—. It follows that

Z |G~ (0,2,y)] - RLN < (ZLN)N Z Myy41 - L(<x>11+a3 + <9>11+as>'

1<]y|IKN -1 1<)y |IKN -1 [7]

Therefore we obtain

(A418) Z |G’y(9axay)| < CN RN<<x>3'+03 + <6>3+03)'

1<[7I<N -1

On the other hand we have

> G (6, 2,y)]
|’Y‘>N 1
< (G * ) B 3 Mot BN ) = 1l 0)
lvI=N
S 16, (0. 2.y)|
[v|>N 1 1

S (<x>1+03 + <9>1+03> RNy Migjon R [x(hygen) = x(Rygpen)].
5

On the support of x(hg+n5) — X(h|g|+n+1), we have Ljgn R < 1. It follows that

(A.4.19) Z |G (0, 2,y)| < Cn RN(<x>11+a3 + <9>11+03 )

[v[ZN

Combining (A.4.18) and (A.4.19) we obtain

1 1
/ N
(A.4.20) @) < oy R ( ot 7 9>1+f’3)'
Finally we consider the term (3) in (A.4.15). We have ( > < 1 and on the support of

g—g‘j (hy4((8,2,y)) we have L, (i 1 it follows that (3) is bounded by a finite sum
of terms of the form

’ 1 1 ~ 8
(3) = (<x>1+"3 + <9>1+03> ;}MMR‘ lLIv\ 85 (hiy(0,2,9))|-

As before we write the above sum as » ;| <y 1+Z|7‘>N. If |y < N — 1 then
dx 1

L, < Ly-1s0on the support of 85 we have R > 2L‘ ‘ > TN and R < L‘ - It

follows that

1 N 1

1<|yISN -1 1<|yISN -1 71
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For the second sum we write
_ 195%
|2 | <BY XD My RN L, }a_g- ()|
[v|>N [v|=N J

Ligj+n

N N
<R ZM|5\+NL|TD1 =C\ R".

B |B]+N
It follows that

(A4.21) 3) < oy RY( <x>11+[,3 + <9>11+[,3)-

Using (A.4.14) to (A.4.21) we obtain the part (iv) of Lemma 5.3.1. The proof is

complete.
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