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MEASURED QUANTUM GROUPOIDS

Franck Lesieur

Abstract. — In this volume, we give a definition for measured quantum groupoids. We
want to get objects with duality extending both quantum groups and groupoids. We
base ourselves on J. Kustermans and S. Vaes’ works about locally compact quantum
groups that we generalize thanks to formalism introduced by M. Enock and J.M. Vallin
in the case of inclusion of von Neumann algebras. From a structure of Hopf-bimodule
with left and right invariant operator-valued weights, we define a fundamental pseudo-
multiplicative unitary. To get a satisfying duality in the general case, we assume the
existence of an antipode given by its polar decomposition. This theory is illustrated
with many examples among others inclusion of von Neumann algebras (M. Enock)
and a sub family of measured quantum groupoids with easier axiomatic.

Résumé (Groupoides quantiques mesurés). — Dans cet volume, on définit une notion de
groupoides quantiques mesurés. On cherche a obtenir des objets munis d’une dualité
qui étend celle des groupoides et des groupes quantiques. On s’appuie sur les travaux
de J. Kustermans et S. Vaes concernant les groupes quantiques localement compacts
qu’on généralise grace au formalisme introduit par M. Enock et J.M. Vallin & propos
des inclusions d’algébres de von Neumann. A partir d’un bimodule de Hopf muni
de poids opératoriels invariants & gauche et & droite, on définit un unitaire pseudo-
multiplicatif fondamental. Pour obtenir une dualité satisfaisante dans le cas général,
on suppose l'existence d’une antipode définie par sa décomposition polaire. Cette
théorie est illustrée dans une derniére partie par de nombreux exemples notamment
les inclusions d’algébres de von Neumann (M. Enock) et une sous famille de groupoides
quantiques mesurés & I’axiomatique plus simple.

(© Mémoires de la Société Mathématique de France 109, SMF 2007
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CHAPTER 1

INTRODUCTION

1.1. Historic

Theory of quantum groups has lot of developments in operator algebras setting.
Many contributions are given by [KaV74, Wor88, ES89, MIN91, BS93, Wor95,
Wor96, VDa98, KVO00|. In particular, J. Kustermans and S. Vaes’ work is cru-
cial: in [K'V00], they propose a simple definition for locally compact quantum groups
which gathers all known examples (locally compact groups, quantum compacts group
[Wor95], quantum group az +b [Wor01, WZ02|, Woronowicz’ algebra [MN91]...)
and they find a general framework for duality of theses objects. The very few number
of axioms gives the theory a high manageability which is proved with recent devel-
opments in many directions (actions of locally compact quantum groups [VaeO1b],
induced co-representations [Kus02], cocycle bi-crossed products [VV03]). They com-
plete their work with a theory of locally compact quantum groups in the von Neumann
setting [KV03].

In geometry, groups are rather defined by their actions. Groupoids category con-
tains groups, group actions and equivalence relation. It is used by G.W. Mackey and
P. Hahn ([Mac66, Hah78a, Hah78b]), in a measured version, to link theory of
groups and ergodic theory. Locally compact groupoids and the operator theory point
of view are introduced and studied by J. Renault in [Ren80, Ren97]. It covers many
interesting examples in differential geometry [Co94| e.g., holonomy groupoid of a
foliation.

In [Val96], J.M. Vallin introduces the notion of Hopf bimodule from which he
is able to prove a duality for groupoids. Then, a natural question is to construct a
category, containing quantum groups and groupoids, with a duality theory.

In the quantum group case, duality is essentially based on a multiplicative unitary
[BS93]. To generalize the notion up to the groupoid case, J.M. Vallin introduces
pseudo-multiplicative unitaries. In [Val00], he exhibits such an object coming from
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2 F. LESIEUR

Hopf bimodule structures for groupoids. Technically speaking, Connes-Sauvageot’s
theory of relative tensor products is intensively used.

In the case of depth 2 inclusions of von Neumann algebras, M. Enock and
J.M. Vallin, and then, M. Enock underline two “quantum groupoids" in duality.
They also use Hopf bimodules and pseudo-multiplicative unitaries. At this stage, a
non trivial modular theory on the basis (the equivalent for units of a groupoid) is
revealed to be necessary and a simple generalization of axioms quantum groups is
not sufficient to construct quantum groupoids category: we have to add an axiom on
the basis [Eno00] i.e., we use a special weight to do the construction. The results
are improved in [Eno04].

In [Eno02], M. Enock studies in detail pseudo-multiplicative unitaries and intro-
duces an analogous notion of S. Baaj and G. Skandalis’ regularity. In quantum groups,
the fundamental multiplicative unitary is weakly regular and manageable in the sense
of Woronowicz. Such properties have to be satisfied in quantum groupoids. Moreover,
M. Enock defines and studies compact (resp. discrete) quantum groupoids which have
to enter into the general theory.

Lot of works have been led about quantum groupoids but essentially in finite
dimension. We have to quote weak Hopf C*-algebras introduced by G. Bohm, F. Nill
and K. Szlachanyi [BNS99], [BSz96]|, and then studied by F. Nill and L. Vainerman
[Nik02, Nil98, NV00, NV02]. J.M. Vallin develops a quantum groupoids theory in
finite dimension thanks to multiplicative partial isometries [Val01, Val02]. He proves
that his theory coincides exactly with weak Hopf C*-algebras.

1.2. Aims and Methods

In this article, we propose a definition for measured quantum groupoids in any
dimensions. “Measured" means we are in the von Neumann setting and we assume
existence of the analogous of a measure. We use a similar approach as J. Kustermans
and S. Vaes’ theory with the formalism of Hopf bimodules and pseudo-multiplicative
unitaries. The notion has to recover all known examples and shall extend their duality
if already existing.

In our setting, we assume the existence of a scaling group and a co-involution so
that we are much more closer to [MIN'WO03|. Then, we are able to construct a dual
structure for these objects and we prove a duality theorem. We also get uniqueness
of the equivalent of Haar measure.

We want to give many examples. First of all, we present a family of measured
quantum groupoids of a particular interest: their axiomatic is easier than the general
measured quantum groupoids and very similar to J. Kustermans and S. Vaes axiomatic
of locally compact quantum groups because we can construct the antipode. However,
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1.3. STUDY PLAN 3

this new category is not self dual but we can characterize their dual objects. Then we
are interested in depth 2 inclusions of von Neumann algebras of Enock’s type which
are included in our theory and for which we can compute the dual structure. In a
forthcoming article, we will study an example of the type G = G1G2 where G; and
G5 are two groupoids such that G; N Gy = GO,

We are inspired by technics developed by J. Kustermans and S. Vaes about locally
compact quantum groups in the von Neumann setting [KV00], by M. Enock [Eno04]
as far as the density theorem is concerned which is a key tool for duality and by
author’s thesis [Les03].

1.3. Study plan

After brief recalls about tools and technical points, we define objects we will use. We
start by associating a fundamental pseudo-multiplicative unitary to every Hopf bimod-
ule with invariant operator-valued weights. In fact, we shall define several isometries
depending on which operator-valued weight we use. Each of them are useful, especially
as far as the proof of unitarity of the fundamental isometry is concerned. This point
can be also noticed in the crucial paper of S. Baaj and G. Skandalis [BS93] where
they need a notion of irreducible unitary that means there exists another unitary.
Also, in [KV00], they need to introduce several unitaries. The fundamental unitary
gathers all information on the structure so that we can re-construct von Neumann
algebra and co-product.

In the first part, we give axioms of measured quantum groupoids. In this setting,
we construct a modulus, which corresponds to modulus of groupoids and a scaling
operator which corresponds to scaling factor in locally compact quantum groups. They
come from Radon-Nikodym’s cocycle of right invariant operator-valued weight with
respect to left invariant one thanks to proposition 5.2 of [VaeOla|. Then, we prove
uniqueness of invariant operator-valued weight up to an element of basis center.

Also, we prove a “manageability" property of the fundamental pseudo-multiplicative
unitary. A density result concerning bounded elements can be handled. These are
sections 6 and 7. They give interesting results on the structure and a necessary
preparation step for duality.

Then, we can proceed to the construction of the dual structure and get a duality
theorem.

The second part is devoted to examples. We have a lot of examples for locally
compact quantum groups thanks to Woronowicz [Wor91, Wor01, WZ02, Wor87|
and the cocycle bi-crossed product due to S. Vaes and L. Vainerman [VV03]. Theory
of measured quantum groupoids has also a lot of examples.
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4 F. LESIEUR

First, we lay stress on Hopf bimodule with invariant operator-valued weights which
are “adapted" in a certain sense. This hypothesis corresponds to the choice of a special
weight on the basis to do the constructions (like in the groupoid case with a quasi-
invariant measure on G{O}). For them, we are able to construct the antipode S, the
polar decomposition of which is given by a co-involution R and a one-parameter group
of automorphisms called scaling group 7. In particular, we show that S, R and 7 are
independent of operator-valued weights.

Then we explain how these so-called adapted measured quantum groupoids fit
into our measured quantum groupoids. In this setting, we develop information about
modulus, scaling operator and uniqueness. We also characterize them and their dual
in the general theory. Groupoids, weak Hopf C*-algebras, quantum groups, quantum
groupoids of compact (resp. discrete) type... are of this type.

Depth 2 inclusions of von Neumann algebras also enter into our general setting
(but not in adapted measured quantum groupoids unless the basis is semi-finite) and
we compute their dual.

Finally, we state stability of the category by direct sum (which reflects the sta-
bility of groupoids under disjoint unions), finite tensor product and direct integrals.
Then, we are able to construct new examples: in particular we can exhibit quantum
groupoids with non scalar scaling operator.
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CHAPTER 2

RECALLS

2.1. Weights and operator-valued weights [Str81], [Tak03|

Let N be a von Neumann and 1 a normal, semi-finite faithful (n.s.f.) weight on N;
we denote by Ny, My, Hy, Ty, Ay, Jy, Ay ... canonical objects of Tomita’s theory
with respect to (w.r.t.) 9.

DEFINITION 2.1.1. — Let denote by &, Tomita’s algebra w.r.t. ¢ defined by:

{z € ¥y NA| z analytic w.r.t. 0¥ such that o' (z) € A"y N A7, for all z € C}
By [Str81, 2.12|, we have the following approximating result:

LEMMA 2.1.2. — For all x € Ny, there exists a sequence (Tn)nen of Iy such that:
i) ||znl| < ||z|| for all n € N;
ii) (xn)nen converges to x in the strong topology;
iil) (Ay(zn))nen converges to Ay(x) in the norm topology of Hy.
Moreover, if x € Ny N 71/2, then we have:
iv) (n)nen converges to x in the *-strong topology;

iiv) (Ay(x}))nen converges to Ay(x*) in the norm topology of Hy.

Let N C M be an inclusion of von Neumann algebras and T' a normal, semi-finite,
faithful (n.s.f.) operator-valued weight from M to N. We put:

Np={xeM/T(z*z) € Nt} and My = N 7N 1
We can define a n.s.f. weight ¥ oT on M in a natural way. Let us recall theorem 10.6

of [EN96]:

ProprosITION 2.1.3. — Let N C M be an inclusion of von Neumann algebras and T
be a normal, semi-finite, faithful (n.s.f.) operator-valued weight from M to N and
a n.s.f. weight on N. Then we have:

SOCIETE MATHEMATIQUE DE FRANCE 2007



6 F. LESIEUR

i) for allz € N1 and a € Ny, za belongs to N'r NN yor, there exists Ar(x) €
Hompyo(Hy, Hyor) such that:

Ar(z)Ay(a) = Ayor(za)
and Ar is a morphism of M — N -bimodules from Nt to Homyo(Hy, Hypor);
ii) Nr NN yor is a weakly dense ideal of M and Apor (N1 N N yor) is dense
in Hyor, Apor (N0 NN yor NN NN y0r) is a core for Aqlp/OQT and Ap(N'r) is
dense in Homyo(Hy, Hyor) for the s-topology defined by [BDHS8S, 1.3];
iil) for allz € N'r and z € N'r NN yor, T(x*2) belongs to Ny and:
Ap(z)* Ayor(2) = Ay (T (2" 2))
iv) for all x,y € Np:
Ar(y)*Ar(z) = mp(T(x*y)) and ||Ar(2)|| = ||T(a*z)||"/?

and At is injective.
Let us also recall lemma 10.12 of [EN96]:

PROPOSITION 2.1.4. — Let N C M be an inclusion of von Neumann algebras, T a
n.s.f. operator-valued weight from M to N, v a n.s.f. weight on N and x € MrNMyor.
If we put:
Tp =1/ /+<><> e VT (z) dt
™ — 00

then x, belongs to Mr N Myor and is analytic w.r.t. 1 oT. The sequence converges
to  and is bounded by ||z||. Moreover, (Aypor(Tn))nen converges to Ayor(x) and
o¥°T(z,) € My N Myor for all z € C.

DEFINITION 2.1.5. — The set of z € X '¢ N N g N N7 N N7, analytic w.r.t. o® such
that 02(z) € Mo NN NN NN for all 2 € C is denoted by T¢ and is called
Tomita’s algebra w.r.t. woT = ® and T

Lemma 2.1.2 is still satisfied with Tomita’s algebra w.r.t. ® and T

2.2. Spatial theory [Co80, Sau83b, Tak03]

Let a be a normal, non-degenerated representation of N on a Hilbert space H. So,
H becomes a left N-module and we write ,H.

DEFINITION 2.2.1 ([Co80]). — An element & of ,H is said to be bounded w.r.t. ¢ if
there exists C' € R* such that, for all y € Ay, we have ||a(y)¢|| < C||Ay(y)|]- The
set of bounded elements w.r.t. 1 is denoted by D(,H, ).
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2.2. SPATIAL THEORY 7

By [Co80, lem. 2], D(,H,) is dense in H and «(N)’-stable. An element & of
D(,H,) gives rise to a bounded operator R*¥(¢) of Homy (Hy, H) such that, for
all y € Vy:

R*(§)Ay(y) = ay)
For all £,n € D(,H, 1), we put:

6% (€,m) = R*V(§)R™¥(n)" and (€,m)a,p = R*" (n) R (€)"

By [Co080, lem. 2|, the linear span of 0¥ (¢,n) is a weakly dense ideal of a(N)'.
(&,m)a,p belongs to my(N)' = Jymy(N)Jy which is identified with the opposite von
Neumann algebra N°. The linear span of (§,7)q,y is weakly dense in N°.
By [Co80, prop. 3|, there exists a net (1;);er of D(oH, ) such that:

290"“’(771-,7%) =1

iel
Such a net is called a (NV,9)-basis of ,H. By [EN96, prop. 2.2], we can choose 7;
such that R*Y¥(n;) is a partial isometry with two-by-two orthogonal final supports
and such that (n;,7;)q,» = 0 unless ¢ = j. In the following, we assume these properties
hold for all (N, )-basis of ,H.

Now, let 8 be a normal, non-degenerated anti-representation from N on H. So H
becomes a right N-module and we write Hg. But 3 is also a representation of N°. If
1 is the n.s.f. weight on N° coming from 9 then A yo = WZL and we identify Hyo
with Hy thanks to:

(Ao (27) — Jy Ay ()

DEFINITION 2.2.2 ([Co80]). — An element £ of Hg is said to be bounded w.r.t. ¢° if
there exists C' € R such that, for all y € Ay, we have ||8(y*)¢|| < C||Ay(y)||- The
set of bounded elements w.r.t. ° is denoted by D(Hg, ¢°).

D(,H,) is dense in H and B(N)'-stable. An element £ of D(Hg, 1°) gives rise to
a bounded operator R%¥’(¢) of Homyo(Hy, H) such that, for all y € Ay

ROV (€)Ay(y) = By")€
For all £,n € D(Hg,°), we put:
67" (¢,m) = ROV (O)R*Y" ()" and (£,m)g,yo = ROV ()" RV"(¢)*

The linear span of %% (¢,7) is a weakly dense ideal of 3(N)'. (€,7)s.0 belongs to
7y (IN) which is identified with N. The linear span of (£, 7) g, 4o is weakly dense in N.
In fact, we know that (£, 7)) yo € My by [Co80, lem. 4] and by [Sau83b, lem. 1.5],

we have

Ay (&, m)g.pe) = RV (n)*¢

SOCIETE MATHEMATIQUE DE FRANCE 2007



8 F. LESIEUR

A net (&;)ier of ¥°-bounded elements of is said to be a (N°,)°)-basis of Hp if:
Zaﬁ,wo (&, &) =1
iel
and if & such that R%¥° (&) is a partial isometry with two-by-two orthogonal final
supports and such that (&;,;)a,» = 0 unless ¢ = j. Therefore, we have:

RPY (&) = 07¥"(&,&)RPY (&) = RPY" (&)(&, &) gy
and, for all £ € D(Hg, 9°):
€= R (&)Ay((€ &) ue)
el

PROPOSITION 2.2.3 ([Eno02, prop. 2.10]). — Let N C M be an inclusion of von Neu-
mann algebras and T be a n.s.f. operator-valued weight from M to N. There exists
a net (e;)ier of o NN NN yor N W:;;oT such that Ar(e;) is a partial isometry,

T(e;ei) = 0 unless i = j and with orthogonal final supports of sum 1. Moreover, we

have e; = e;T(efe;) for alli € I, and, for all x € N'r:

Ar(z) = Z Ar(e))T(efz) and zx= Z e.T(efx)
iel el
in the weak topology. Such a net is called a basis for (T,v¢°). Finally, the net
(Ayor(€:))ier s a (N°,9°)-basis of (Hyor)s where s is the anti-representation which
sends y € N to Jyory™* Jyor-

2.3. Relative tensor product [Co80|, [Sau83b], [Tak03|

Let H and K be Hilbert space. Let « (resp. 3) be a normal and non-degenerated
(resp. anti-) representation of N on K (resp. H). Let ¢ be a n.s.f. weight on N.
Following [Sau83b], we put on D(Hg, °) ® K a scalar product defined by:

(&1 © ml&2 © n2) = (a((€1,€2) g, )M Im2)
for all &1,&2 € D(Hg,¢°) and n1,n2 € K. We have identified 7y, (N) with N.

DEFINITION 2.3.1. — The completion of D(Hg,9°) ® K is called relative tensor
product and is denoted by Hg%)aK.

The image of £©n in HB%QK is denoted by 55%)an. One should bear in mind that,

if we start from another n.s.f. weight ¥’ on N, we get another Hilbert space which is
canonically isomorphic to H Q%QK by [Sau83b, prop. 2.6]. However this isomorphism

does not send fg%an on gg%an.
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2.3. RELATIVE TENSOR PRODUCT 9

By [Sau83b, def. 2.1], relative tensor product can be defined from the scalar
product:

(61 ©ml&2 ©n2) = (B((M1,m2) a,p)E11€2)

for all £1,&; € H and n1,172 € D(oK, %) that’s why we can define a one-to-one flip
from Hg%)aK onto Kaz(?BH such that:

Ty (fﬂ%an) = nag?ﬁf

for all £ € D(Hg,v) (resp. £ € H) and n € K (resp. n € D(oK,1)). The flip gives
rise at the operator level to ¢, from f(Hﬂ%)aK) onto f(Ka;X)ﬁH) such that:

Syp(X) = oy Xoy,

Canonical isomorphisms of change of weights send ¢, on ¢y so that we write ¢y
without any reference to the weight on N.

For all £ € D(Hg,9°) and n € D(,K, ), we define bounded operators:
AP K — Hp®aK and  pP®:H — Hp®o K
' £p%an £ &sQan
Then, we have:
()X = a((6,€)p,00) and (o) = B0, M)aw)

By [Sau83b, rem. 2.2], we know that D(,K, 1)) is a(afi/Q(@(afi/z)))-stable and
forall ¢ € H,n € D(,K,v) and y € @(oﬂﬂ), we have:

BW)EsGan = Ep@aa(e?,n(v))n
LEMMA 2.3.2. — Iff’g%an =0 for all ¢’ € D(Hg,y°) then n=0.
Proof. — For all £,¢' € D(Hg,v°), we have:
a((€€)ppe)n = () N0 = (A?’a)*(flﬁ%an) =0
Since the linear span of (£',&) g,y is dense in N, we get n = 0. O

PROPOSITION 2.3.3. — Assume H # {0}. Let K’ be a closed subspace of K such that
a(N)K' C K'. Then:

Hp@o K = Hﬁ%QK' = K=K
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Proof. — Let n € K't. For all ¢,¢ € D(Hg,°) and k € K’, we have:
(€5®aklE’s®an) = (a({,E)p.00)kIn) = 0
Therefore, for all ¢’ € D(Hg,4°), we have:
§'6%an € (Hﬁ%’aK')L = (Hﬁ%mK)L ={0}

By the previous lemma, we get n =0 and K = K'. O

Let H', K', o and ' like H, K, a and 8. Let A € £(H,H’) and B € £(K,K’)
such that:
Vne N, AB(n)=p(n)A and Ba(n)=a'(n)B
Then we can define an operator Ag%QB € f(Hg%aK, H’ggaK’) which naturally

acts on elementary tensor products. In particular, if z € S(N)'N#(H) and y € a(N)'N
L(K), we get an operator x,g%)ay on Hg%)aK. Canonical isomorphism of change of

weights sends mggay on xggjgay so that we write :rg%ay without any reference to the

weight.

Let P be a von Neumann algebra and ¢ a normal and non-degenerated anti-
representation of P on K such that e(P)) C «(N). K is equipped with a
N — P-bimodule structure denoted by ,K.. For all y € P, ng%)ae(y) is an op-

erator on Hg%aK so that we define a representation of P on HB%QK still denoted
by e. If H is a () — N-bimodule, then Hg%aK becomes a @ — P-bimodule (Connes’

fusion of bimodules). If v is a n.s.f. weight on P and (L a left P-module. It is
possible to define two Hilbert spaces (H,@%)QK)EQJCL and Hg%)a (Ke®cL). These two

B(N)" — {(P)'°-bimodules are isomorphic. (The proof of [Val96, lem. 2.1.3], in the
case of commutative N = P is still valid). We speak about associativity of relative
tensor product and we write H Q%QK «®¢L without parenthesis.

We identify ng%)al( and K as left N-modules by Aw(y)g(%an — a(y)n for all
y € V. By [EN96, 3.10|, we have:

N = BV (€)sBalx
We recall proposition 2.3 of [Eno02]:

PROPOSITION 2.3.4. — Let (§)icr be a (N°,¢°)-basis of Hg. Then:
i) for all £ € D(Hg,9°) and n € K, we have:

gﬁ%an = Z giﬁ%’aa«& §i>ﬁ,w°)n

i€l
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ii) we have the following decomposition:

H@aK = @(&,@%aa(@i,&)mwo)fﬂ
el

We here add a proposition we will use several times.

PROPOSITION 2.3.5. — Let v a *-automorphism from N such that ¢ ov = 1. Then:

Hc®aoK:H®aK
ﬁ'vw'v ﬁw

Proof. — Because of invariance of ¢ with respect to v, we have a unitary I from Hy
such that TAy(y) = Ay (y(y)) for ally € Ay,. Moreover I.Jy, = JyI and I*nl = y~1(n)
for all n € N. For all £ € D(Hg,9°) and y € Ay, we compute:

Bor(y))E = B(v(y)")E = RP¥(€)JyAy (v(y))
= ROV (&) JyIAy(y) = RPY (&) 1Ty Ay (y)

that’s why we get:
D(Hgoy, %) = D(Hp, ) and V¢ € D(Hg, 4), P (€) = R*"(§)1
To conclude, we show that scalar products on D(Hg y-) ® K used to define HB%QK
and Hgo,y%aovK are equal. If ,¢’ € D(Hg,v°) and 1,7’ € K, we have:
(€0 Baor M€ poyGaoy’) = (@(Y((€,€") poy.ue))nln')

= @I (€€ g D))
(@ (&) Inin) = (€68u€ o) O

Q

To end the paragraph, we detail finite dimension case. We assume that N, H and
K are of finite dimensions. H B%QK can be identified with a subspace of H ® K.

We denote by Tr the normalized canonical trace on K and 7 = Tr o a. There exist a
projection eg o € B(N)®a(N) and n, € Z(N)* such that (1d®Tr)(es,o) = B(n,). Let
d be the Radon-Nikodym derivative of ¢ w.r.t. 7. By [EV00, 2.4], and proposition 2.7
of [Sau83b], for all £,n € H:

I, £58al — E8ac(d)!*n — 5.0 (B(no) /%€ ® a(d)'/*n)

defines an isometric isomorphism of S(N)" — a(N)’°-bimodules from H ﬁ%)aK onto a

subspace of H ® K, the final support of which is eg 4.
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2.4. Fiber product [Val96], [EV00]

We use previous notations. Let M; (resp. Ms) be a von Neumann algebra on H
(resp. K) such that B(N) C M; (resp. a(N) C M,). We denote by M{g%aMé the
von Neumann algebra generated by :cg%)ay with z € M{ and y € MJ,.

DEFINITION 2.4.1. — The commutant of M{g%aMz’ in Z’(Hg%aK) is denoted by
Mlﬁ]‘)\(]aMQ and is called fiber product.

If P, and P, are von Neumann algebras like M; and My, we have:

i (Mlﬁl‘)\(]aMQ) n (Pm;\;apﬂ =(MnN P1)ﬁ}v§a(M2 N Py)

11

(M1 0 B(N))pQa(M2 N a(N)) C My gk My

)
ii) gN(MlﬂR}aMQ) = M20‘§(53M1
)
iv)

Migraa(N) = (M 0 (N )50l

More generally, if 3 (resp. «) is a normal, non-degenerated *-anti-homomorphism
(resp. homomorphism) from N to a von Neumann algebra M; (resp. M), it is possible
to define a von Neumann algebra M; ’BKIO‘ M without any reference to a specific Hilbert

space. If Py, Py, o' and (' are like My, M5, @ and 3 and if ® (resp. ¥) is a normal
*-homomorphism from M (resp. M) to P; (resp. P5) such that ® o 3 = ' (resp.
¥ oa = '), then we define a normal *-homomorphism by [Sau83a, 1.2.4]:

(D,BEQ\I/ : Mlﬁ]’\‘[aMZ — Pm';\*]afpz

Assume K, is a N — P°-bimodule and (L a left P-module. If a(N) C M3, e(P) C
My and if {(P) C M3 where M3 is a von Neumann algebra on L, then we can construct
Mm;\cra(Mgengg) and (Mlﬁ]*(raMz)leng& Associativity of relative tensor product
induces an isomorphism between these fiber products and we write My ﬁ]‘)\(]aMge?\(fcMg

without parenthesis.

Finally, if M; and M> are of finite dimensions, then we have:
M{g%aMé = (Ig’a)*(M{ ® Mé)Ig”a and MmﬁaM2 = (Ig),a)*(Ml ® Mg)lg’ya

Therefore the fiber product can be identified with a reduction of M; ® Mj by eg
by [EV00, 2.4].
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2.5. Slice map [Eno00]

2.5.1. For normal forms Let A € Ml,@;)\(/aMg and &1,&; € D(Hg,y°). We define
an element of My by:
(@162 %aid)(4) = (NG") AN

so that we have ((Wsl,sz%aid)(A)th) = (Mflﬁ%aﬂlﬂ&ﬁ%am) for all 1,72 € K.
Also, we define an operator of M7 by:

(idﬁzawmmz))(A) = (Pg;a)*AP%a
for all n1,m2 € D(oK,v). We have a Fubini’s formula:
Wny,n2 ((w§17§2 ﬂ;aid) (A)) = W6 ((idﬁzawmﬂlz)(“l))

for all §17€2 € D(Hﬂvwo) and M,M2 € D(aKvw)'

Equivalently, by [Eno00, prop. 3.3], for all w; € M;, and k; € R* such that
w1 0 B < k11 and for all wy € M;; and ky € Rt such wy 0 a < kotp, we have:

wa((@iaid)(4)) = w1 ((idkawa)(4)
2.5.2. For conditional expectations. — If P, is a von Neumann algebra such that

a(N) C P, C M, and if F is a normal, faithful conditional expectation from Ms onto
P,, we can define a normal, faithful conditional expectation (idg;\k]aE) from M, BR;QMQ

onto Mm]»;an such that:
wgkeid)(idgxo F)(A) = E((wg*xqid)(A
( Bd} 1 )(1 ,BN )( ) (( ,Bw 1 )( ))

for all A € Ml,@?\;aMg, w€E Mf* and k; € R such that wo 8 < k1.

2.5.3. For weights. — If ¢; is n.s.f. weight on M; and if A is a positive element of
M, ﬂ]‘)\(]aMz, we can define an element of the extended positive part of My, denoted by

(gbwzaid) (A), such that, for all n € D(,L?(Ms),), we have:

||((¢>1ﬂzaid)(1‘1))1/277||2 = ¢1((idgrawy)(4))
Moreover, if ¢5 is a n.s.f. weight on My, we have:

82((615x1)(4)) = b1 ((dkada) (4))

Let (w;)icr be an increasing net of normal forms such that ¢; = sup;c; w;. Then
we have (¢1ﬂ$aid) (A) = sup; (Wiﬂiaid) (4).
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2.5.4. For operator-valued weights. — Let P; be a von Neumann algebra such
that B(N) C P, C M; and ®; (¢ = 1,2) be operator-valued n.s.f. weights from M;
to P;. By [Eno00], for all positive operator A € M, ﬁ]‘)\(]oéMg, there exists an element

((I>1B7\<]aid) (A) belonging to Pw]a\c]aMg such that, for all £ € L?(P;) and n € D(, K, ),

we have:
||((‘I)lﬁ]’\(,aid)(A))lm(fﬁ%an)||2 = |I[‘1>1((id%oewnm)(14))]1/2€||2
If ¢; is a n.s.f. weight on P;, we have:
(6101 5aid) (4) = ($17%50id) (@1 20id) (4)

Also, we define an element (idglﬂs’a@Q)(A) of the extended positive part of M; ﬂ?\(]an

and we have:

i D) ((P id)(A4)) = (® id) ((i d5)(A

(id5202) (1 5£0id) (4)) = (B1 p801d) (110 B2) (4))
REMARK 2.5.1. — We have seen that we can identify Mw]a\;aoz(N) with My N B(N)'.
Then, it is easy to check that the slice map idﬁiad] oa~! (if a is injective) is just
the injection of Mm]a\;aoz(N) into M;. Also we see on that example that, if ¢; is a

n.s.f. weight on M7, then qu]a\cjaid (which is equal to ¢1|a7,ng(ny’) does not need to

be semi-finite.
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CHAPTER 3

FUNDAMENTAL PSEUDO-MULTIPLICATIVE UNITARY

In this section, we construct a fundamental pseudo-multiplicative unitary from
a Hopf bimodule with a left invariant operator-valued weight and a right invariant
operator-valued weight. Let N and M be von Neumann algebras, o (resp. 3) be a
faithful, non-degenerate, normal (resp. anti-) representation from N to M. We suppose
that a(N) C B(N)'.

3.1. Definitions

DEerFINITION 3.1.1
A quintuplet (N, M, «, 3,T') is said to be a Hopf bimodule of basis N if I is a
normal *-homomorphism from M into M ﬁKIQM such that, for all n,m € N, we have:

i) T(a(n)B(m)) = a(n)@ab(m)

ii) T is co-associative: (Fﬁﬁaid) oll'= (idgﬁal") ol

One should notice that property i) is necessary in order to write down the formula
given in ii). (N°, M, 3, a, sy oT') is a Hopf bimodule called opposite Hopf bimodule. If
N is commutative, « = f and I' = gy o', then (N, M, , «, T') is equal to its opposite:
we shall speak about a symmetric Hopf bimodule.

DEFINITION 3.1.2. — Let (N, M, a, 3,T) be a Hopf bimodule. A normal, semi-finite,
faithful operator-valued weight from M to a(N) is said to be left invariant if:

(idgja\}aTL)l"(a:) = TL(x)g%al for all z € ﬂ/l;L

In the same way, a normal, semi-finite, faithful operator-valued weight from M to
B(N) is said to be right invariant if:

(TRIQIJ\([aid)F(l‘) = 15%QTR(x) for all z € M7,
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We give several examples in the last section. In this section, (N, M,a,S,T) is a
Hopf bimodule with a left operator-valued weight 77, and a right operator-valued
weight Tg.

DEFINITION 3.1.3. — A *-anti-automorphism R of M is said to be a co-involution
if Roa= 3, R?=id and cyo O(R;;EQR)OI‘:I‘OR.

REMARK 3.1.4. — With the previous notations, let us notice that Ro 17 o R is a
right invariant operator-valued weight from M to B(IN). Also, let us say that R is an
anti-isomorphism of Hopf bimodule from the bimodule and its symmetric.

Let p be a normal, semi-finite, faithful weight of N. We put:

P=poatoT,and ¥ =pof loTy
so that, for all z € M+, we have:
(idg*a®)'(z) = Tr(x) and (¥g*.id)[(z) = Tr(x)
2 I
If H denote a Hilbert space on which M acts, then IV acts on H, also, by way of

a and 3. We shall denote again « (resp. () for (resp. anti-) the representation of N
on H.

3.2. Construction of the fundamental isometry
DEFINITION 3.2.1
Let define 3 and & by:
B:N— £(Hs) and  &:N — £(Hy)

z — Jpa(z*)Je z— JyfB(z*)Jw

Then /3’ (resp. &) is a normal, non-degenerate and faithful anti-representation (resp.
representation) from N to £(Hg) (resp. £(Hy)).

PROPOSITION 3.2.2. — We have Ao(N'1, N Vo) C D((Hs)z,1°) and for all a €
N, NN e, we have:

R%* (Ag(a)) = A, ()
Also, we have Ag(N 1, NN'w) C D(a(Hw),p) and for allb € N'p, N N 'y, then:
R**(Ay (b)) = Az, (b)

REMARK 3.2.3. — We identify H, with H,,.,-1 and H, with H,,g-1.
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Proof. — Let y € /', analytic w.r.t. 4. We have:

By )Aa(a) = Ae(ao®; jp(aly™))) = A@(aff'_ﬁ?‘;(a(y*)))
= Aa(ac(ol; ,(y"))) = Az, (@) Au(or; 5 (y7)) = Ary, (a) JuAp(y)
Thanks to lemma 2.1.2, we get 3(y*)As(a) = Az, (a)J, A, (y), for all y € A, which

gives the first part of the proposition. The end of the proof is very similar. O

PROPOSITION 3.2.4. — We have JoD((Hs)z,1°) = D(a(Ho),p) and for all n €
D((Ha)p,1°), we have:

RH (Jgn) = Ja RO (1)1,
Also, we have JgD(4(Hyw), ) = D((Hs)g, 1°) and for all{ € D((Hs)g, p°), we have:

RO (Jy€) = Jy RO (€)J,
Proof. — Straightforward. O

COROLLARY 3.2.5. — We have Ao(Yor1,) S D((Ho)z n’) N D(a(Ho),p) and
A‘ll(g‘l’,TR) c D(&(H\I’)’u) N D((H‘P)57UO)'

Proof. — This is a corollary of the two previous propositions. O

REMARK 3.2.6. — The invariance of operator-valued weights does not play a part in
the previous propositions.

PROPOSITION 3.2.7. — We have (wy ¢p*qid)(I'(a)) € N'r, NN & for all elements a €
n
N, NN and v,§ € D(Hﬁ,/j,o).

Proof. — By definition of the slice maps, we have:
(@neeaid) (C(@))" (0. gaid) (T(@) = (W) T@)A () T(@)hd
< IIAf’“||2(wv,vﬁ:aid)(F(a*a))

< B ()| (@ iaid) ([(a"a)
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Then, on one hand, we get, thanks to left invariance of T7.:
T (@0 aid) (P(@) (o gaid) (@)
< ||R%# (f)||2TL((wv,vﬁﬁaid)(l“(a*a)))
= [|R% (5)I|2(wu,vﬁjaid)(ida:aTL)(F(a*a))
< IIRB’“O(f)||2(/\ff’°“)*(TL(a*a)w%al)/\ff’a

< |RP#(©)I1P1Te(a”a)lllla( (v, v) g, 1
< |RP* @) TL (@ a) | |R*H (v)[|*1

So, we get that (wy ¢g*aid)(I'(a)) € N 1, . On the other hand, thanks to left invariance
©w

of Ty, we know that:
O((@o.eaid) (D(a))" (@ciaid) ([ (a))
is less or equal to:
[R5 (€) P (w0 kaid) (T(a"a)
— [ R ()P0 (d o ®)(Da"a))
= [R* (©F(Tu(a*ajolo) < [ B || Te(a" ) lv]* < +oo

So, we get that (wy ¢sxqid)(I'(a)) € Ns. O
m

PROPOSITION 3.2.8. — For allv,w € H and a,b € V¢ N N1, , we have:

(vagﬁm}(a) |was§)BAq,(b)) — (Ty(b*a)o|w)

For allv,w € H and ¢,d € Ny N N1, we have:

(Aw(c)dgﬂﬂf\\v(d)dgﬁw) = (Tr(d"c)v|w)

Proof. — Using 3.2.2 and 2.1.3, we get that:
(va®sha(a)lwa®sha (b)) = (a((Aa(a), Aa(b)) 5,0 )v]w)

= (a(A, ()" Ay (a))v|w)
= (a(mu(a™ (T (b"a))))vlw)

which gives the result after the identification of m,(N) with N. The second point is
very similar. U
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LEMMA 3.2.9. — Let a € Vg NN, andv € D(Hg,u°). The following sum:
Zfzﬁ®aA¢((wv &B%a id)(I'(a)))

i€l

converges in Hg®qoHg for all (N°, p°)-basis (&;)icr of Hg and it does not depend on
m
the (N°, u°)-basis of Hg.

Proof. — By 3.2.7, we have (wy¢,s%id)(I'(a)) € Ve N N'p, for all i € I, and the
n
vectors & s®aAa ((wy ¢; xaid)(T(a))) are two-by-two orthogonal. Normality and left
n p

invariance of ® imply:

Z||£zﬁ®aA¢((wv,£zﬁ* id)(T(a)|f?

i€l

= (a({&:&)p e JAa((@n,6: 5%aid) (T(@)))[Ae (wo.g,5%aid) (T(a)))
i€l

= 800 T [ X808 A 08 @)

i€l
= ®((wo,wp*aid)(I(a”a))) = ((idpxa®)(F(a”a))vfv) = (Tr(a"a)v]v) < oo

We deduce that the sum ), ; &is®aAa((Wo ¢, p*aid)(T'(a))) converges in Hp®q Hy.
r " 1

To prove that the sum does not depend on the (N°, u°)-basis, we compute for all
be Ny, NN g and w € D(Hg, pu°):

(20 €s@ata (o mraid) (D(@)hws@aha(®))

1€l
=D _(al{, s ) Aa (wo,g p%eid)(T(a))) A (b))
el
= B a((E, w)pu0) (@0, pedd) (T(a)
1€l

= @(5'N57 | AL OEY D@ = 86" (o sxaid) (D(@)).

i€l
As D(Hg,p°) © Ao(N'1, N N'g) is dense in Hg®yHo and the last expression is
m
independent of the (N°, u°)-basis, we can conclude. O

THEOREM 3.2.10. — Let H be a Hilbert space on which M acts. There exists a unique
isometry Uy, called (left) fundamental isometry, from HQ®BH¢> to Hg®qHg such
e M

that, for all (N°, u°)-basis (&;)icr of Hg, a € N'7, N Ne and v € D(Hg, u°):

U (va®sAa(a)) = Z£16®aA¢((wv ¢:8%aid)(I'(a))))

i€l
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Proof. — By 3.2.9, we can define the following application:

U: D(Hg,p°) x Ao(Nr NN g) — Hﬁ@chp

(v, Ag(a)) '—>Z€z,@®a1\¢>((wv,siﬁ*ald)( (a))))

el

Let b e V'r, NN & and w € D(Hg, p°). Then, by normality and left invariance of @,

we have:

(U (v, Ae(a)|U(w, A (D))
= D (&, &) pe 2)Aa ((wo g 5%aid) (T(a)))[As (Wu ¢, aid) (I'(D))))

i,5€1

Z (&, €)500) (@o.,5%aid)(D(@))) [Aa (¢, 5%aid) (D))
Z TO)NE (&, &) pue) A T (@A)
D((AD*)*T(b%) [Z A NE NS (N | T(a)A)

iel
Then, properties of (N°, u°)-basis (&;)icr of Hg imply that:
O((wo,wpxadd) (T (b"a))) = wy.u((idska®) (L (b7a)))
= wy,uw(TL(b%a)) = (T (b"a)v|w)
By 3.2.8, we get:

(U((v, Ap ()| ((w, As (b)) = (va®she(a)lwagsAa (b))

so that, from U, we can easily define a suitable application Uy which is independent
of the (IN°, 4°)-basis by 3.2.9. O

One can define a right version of Uy from the right invariant weight:

THEOREM 3.2.11. — Let H be a Hilbert space on which M acts. There exists a unique
isometry Uy, called right fundamental isometry, from HyaQpH to Hug®qH
e Iz

such that, for all (N, p)-basis (n;)icr of oH, a € N'p, NN 'y and v € D(o H, p):

Uh(Ao(@)agm) = > Aw((idgxawn,n,) ([(@) s@an
i€l
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3.3. Fundamental isometry and co-product

In this paragraph, we establish several links between fundamental isometry and
co-product. In fact, many of the following relations are more or less equivalent to
definition of fundamental unitary and, depending of the situation, we will give priority
to one or the other relations in our demonstrations.

PropoOSITION 3.3.1. — We have (15%QJ¢6J¢.)UHpif(w) = I‘(m)pg;}\(b(e) foralle,x €

Ne NNz, and (JofJy ﬁ%amf;,xj(f(y) =T (YN0, () for all fy € Vo NNy

Proof. — Let v € D(Hg, u°) and (&;)icr a (IN°, u°)-basis of Hg. We have:
(1,3613an>6Jq>)UH(val§gA®($))

= 3" ipadveToho(@og sraid (D))
iel

= 3 8a (e praid) (D) Tada(e) = T(@)(vpaTaha(c)
i€l
By 3.2.2 and 3.2.4, we have Ag(z) € D((Ho)g, 1°) and JoAs(e) € D(a(Ho), p) so
that each term of the previous equality is continuous in v. Density of D(Hg, u°) in H
finishes the proof. The last part is very similar. O

PROPOSITION 3.3.2. — For all v,w € D(Hg,p°) and a € N'¢ NN 1, , we have:
() Un (t02540(0)) = Aal(w155000) D(@))
Also, for allv',w' € D(oH,p) and b € X'y NN 1, we have:
(pf;,“)*U},(Aq,(b)a/%v’) = Aw((idgraw w)(T(0))
Proof. — Let e € /' N N, . By 3.3.1, we can compute:
Juedo(A) Un (va@phe (@) = ()\g’a)*(15%QJ@6J¢,)UHpr(a)U
= 8 T(@S
= (%,wﬁﬁaid)(r(a))t}@f\@(e)
= JoeJoAa ((wo.wsraid)(I'(a)))
Density of #'¢ N AN ', in N finishes the proof. The second part is very similar. O

COROLLARY 3.3.3. — For alla € N7, NN, v € D(oH,u) N D(Hg,u°) and w €
D(Hg, p°), we have:

(Wo,w *1d)(Un)As(a) = Mg ((wo,wsrald) (T(a))

where we denote by (wy ., *1d)(Ug) the operator ()\ﬁ’a)*UH)\S’B of £(Hs).
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Proof. — Straightforward. O

COROLLARY 3.3.4. — For alle,x € N'e NN, andn € D(oHs, u°), we have:
(idgraw s o)) (D(2)) = (d* Was (@), aer 10n) (V)

Also, for all f,y € Ny NN, and £ € D((Hy)g, 1°), we have:
(@i e (),eo*ald) () = @y ), 00 5 10e * 1) Uk)

Proof. — Straightforward by 3.3.1. O

COROLLARY 3.3.5. — For all a,b € Ny NN, N Ny NN 7., we have:
(Whg (a), Ju g @) * 1) (Up)" = (Wag (), 7o g ) * 1d) (Ug)
Proof. — By 3.3.4, we have for all e € #'¢g N N '1,:
(WAg (a), 79 Ay (exb) *1d) (Upy)™ = (wJ\;,A\p(e),Jq,Aq,(b)ﬁ:aid)(r(a))*
= (Wi ae @), e he (e praid) (T(a%)
= (WAg (a*),Ju Ag (be) * 1) (U ).-

Let (ug)kex be a family in A ¢ N Ay such that uy — 1 in the *-strong topology.

We denote:
1
e = ﬁ/e_tZO;P(Uk) dt

For all £k € K, e} and ofzﬂ(e,’;) are bounded and belong to /"y and converge to
1 in the *-strong topology so that JgAgy(b*ex) = 0‘3’1/2(62)(]\1//\\1;([)*) converge to
Jy Ay (b*) in norm of Hy. Let §,n € D(,H, 1) and we compute:
(a0 * 1) (Uhr)€ln) = (TuAa (8)s@atl U (A (@)s@m)
= gienll((JwAw(GZb)ﬁﬁaﬁlU}z(Aw(a)ag,@n))
= %ienfl(((wA\p(a),Jq,Aq,(eZb) +1d)(Ugr)*€ln)
By the previous computation, this last expression is equal to:
Lim (W (@), 7o g (57er) * id)(Ug)€lm)

= ,}ieﬂll((Ub(A\I/(a)al@ﬁf)lJ\PAw(b*ek)ﬁégan)

= (Un(Aw(a)a@sE)Juhw (07)50am) = (Way (@), 70 nuer) * i) (U)El)

By density of D(,H, ) in H, the result holds. O
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3.4. Commutation relations

In this section, we verify commutation relations which are necessary for Uy to be
a pseudo-multiplicative unitary and we establish a link between Uy and I'. We also
have similar formulas for Uy,.

LEMMA 3.4.1. — Let £ € D(Hpg,p°) and n € D(H,p).
i) For all a € a(N)', we have )\f “oa= (15®a ))\ﬁ’
) For allb € B(N)', we have )\ﬂ’a = (bg (1% ))\ﬂ’a.
iii) For all z € D(c”, ), we have )\g(a)g = )\B ¢ oa(d”, ,(z)).
iv) For all x € @(052) we have pa(x)n = ga o (o i/Q(:c)),
Proof. — Straightforward. O
We recall that a(N) and B(N) commute with 3(N)'.

PROPOSITION 3.4.2. — For alln € N, we have:
i) Un(La@ga(n)) = (a(n)sQal)Un;
i) Unr(1a@;6(n)) = (16@a/f(n)Un;
i) Un (B(n)a®s1) = (15Qaf(n))Un
Proof. — By 3.3.1, we can compute for all n € N and e,z € V', N N 'g:
(a(n ),8®QJ<P6J¢>)UHPA¢,($) = (a (n)ﬁ%al)lﬂ(m)pgﬁ\@(e)
= F(a(n)x)ng}\q,(e)
= (1ﬂ%aJ@eJ¢)UHP7\f(a(n)z)
= (1ﬁ%aJd>eJ<I>)UH(1a]@)ﬁa(n))pif(x)

Usual arguments of density imply the first equality. The second one can be proved
in a very similar way. By 3.3.1 and 3.4.1, we can compute for alln € &, and e,z €

N, NN g:
(lﬁ%ajq’eJ‘PB(n))UHpr(m) = D@0k catney)
=T@)f, a(v i/2()JaAe(e)
= L@ ka (0B
(1g®an>€Jq>)UHpA¢(m)ﬂ(n)
— (19@atoeta)Un (B(n)as )30

Density of &, in N and normality of 8 and $ finish the proof. O
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PROPOSITION 3.4.3. — For allz € M' N £(H), we have:
Un(za@51) = (25Qal)Un
Proof. — For all e,y € V', NN g and x € M' N L(H) C a(N) NB(N) NL(H), we
have by 3.3.1:
(xB%ajéejé)UHpif(y) = (wﬁ%al)r(y)ﬂﬁjﬁ\é(e)
— B,a
= F(:’J)P‘]@Aé(e)x
= (lﬁ%a(]@eJ@)Uprf(y)x
= (1ﬁ%aJ¢6J¢)UH(xa1@[§1)pr(y)

Usual arguments of density imply the result. O

COROLLARY 3.4.4. — For alln € N, we have:

i) Uy (B(m)a@s1) = (B()s@al)Un,
i) Unty (6(0)a@s1) = (6(n)50a1)Un,

PROPOSITION 3.4.5. — We have I'(m)Uy = UH(laJ(\Xﬂ)ﬁm) for allm e M.

Proof. — By 3.3.1, we can compute for all e,z € V', NN '3:
(15%0¢J¢6J{>)F(m)UHPXf(E) = F(m)(lg%an)eJq))UHpr(z)
= I‘(mx)p%’/\@(e)
= (1p@aToe o) Un Py )
- (15%QJ¢,€J¢>)UH(1a]%§(>3m)pif(m)

Usual arguments of density imply the result. O

3.5. Unitarity of the fundamental isometry

This is a key part of the theory and certainly one of the most difficult. To prove
unitary of Uy (resp. Uy;), we establish a reciprocity law where both left and right
operator-valued weights are at stake.
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3.5.1. First technical result. — We establish results needed for 3.5.3. In the fol-
lowing proposition, we compute some functions 6 defined in section 2.2.

PROPOSITION 3.5.1. — We have for all c € g N Nr,, m € (W g N N,)* and
v € D(Hg, pu°):
0%+ (v, JuAw(e))m = (A3Z )P0 Juc™ Tu
Proof. — Let € A'g N N 1,,. On one hand, we get by 3.2.2 and 3.2.4:
051 (v, Jy Ay (c))ymAy (z) = RP* (v) RPH (Jy Ay (c))* Ay (mz)
= R (v)J, A1y (¢)* Ju Ay (mz).
On the other hand, if ¢ € Y'v,7,,, then we have by 3.2.8:
AN ) PSP Tuc Ty () = (Aif(m*))*(J\IJC*J\I/A\IJ(@&S%BU)
= TR(mcL’afi/2 (e)v
= RO (0) TN (B (T (0])5(c)x"m*)))
= R (v)J,Ary (¢)* Ju Ay (ma)

We obtain:
AL ey ) P8 Tt Jy A (2) = RPH (0) Ju Ay () Ju A (ma)
for all ¢ € ¥y N N 1, by normality which finishes the proof. O

COROLLARY 3.5.2. — Let a € (N 'y ﬂWTR)*(Wq> HWTL). If c € Ny QWTR, e €
NeNNr, and { € Hy,n € D(o(Hs), 1), u € H, v e D(Hg, u°), then we have:

(0680 N5k ) Uty (€a@Aa () lupaJae" Jan)
= (Juc" Ju8a@svlAu((idgkawn, 1o () (T(a7)))aBsu)
Proof. — By 3.3.1 and 3.5.1, we can compute:
(vﬁga(Aﬁ’wa(C))*UHw (a®phe(a)|us®atae” Jon)
= (P )Y€ NGhe (o) (sBadae" Ja) Uny (aBpha(a))u)
= ((Pﬁ’a)*)‘g’a()‘g\fj\w(C))*F(G)ngl\é(e)ﬂu)
— 6% (v, Jy Ao () () (@)%, o)1)

— &,p * &0 *
= (X3 (1007 sy g ) (T (ar) P €T Tuu)

= (Jw*Jwé&ﬁ%ﬁﬂf\w((idﬁ;awn,Jq,A@(e)))(F(a*)))ag?ﬁu) O
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3.5.2. Second technical result. — In this section, results only depend on 3.3.1
and co-product relation but not on the previous technical result. Let ¢ be another
Hilbert space on which M acts.

LEMMA 3.5.3. — Let a,e € Vo N N1, £ € D(Hp,p1°), n € D(oH, ), and { € H.
We have:

(15aTseJo)Un (1 @318 ) U (CaBAa(@)))

- (A?’aﬁ%al)*(idg;\k]aI‘)(I‘(a))(gﬂ%anﬁ%m}@,&{)(e))

Proof. — First let assume ¢ € D(# 3, u°). By 3.3.2 and 3.3.1, we can compute:
(16RaJoete)Un (na@s[(N") Us (Ca®phe(a))])
N e e
= (16QaJaeta)Un (Na@ 50 (Weepraid) (T(a)))
= T(w.e52aid) (T(0))) (52T Ao e)

= (230a1)" (gD (@) (@@t An (c))
I B
So, we get the result for all { € D(H g, u°). The first term of the equality is continuous
in ¢ because n € D(oH, 1) and Ae(a) € D((Ho)g, u°). Also, since n € D(oH, p) and

Ag(a) € D((Ha)z, p1°), the last term of the equality is continuous in (. Density of
D(# 3, 1°) in H finishes the proof. O

LEMMA 3.5.4. — The sum Y, m‘a@[;[()\g’a)*Uﬂ((pgra)*5a®§Aq>(a))] converges for
uO 3 HO
al & € D(Hp,p°), E € HpQuH, a € Nog N N1, and (N, u)-basis (n;)icr of oH.
m

Proof. — First, observe that nmgﬁ[()\f’a)*Uﬂ((pgf)*E@%gA¢(a))] are orthogonal.
To compute, we put: ; = pglfa)*Ea%BA@(a). By 3.4.1 and 3.4.2, we have:
||nia§ﬁ[(A§7Q)*Uﬂ(Qi)]||2
= (B(<m,ni>a,u)(>\§’a)*Uﬂ(9i)l(Af"’)*Uﬂ(Qi))
() (1aBa B 713) ) U (WX ) U ()

() Ure (B i) ) () (N ) Uit ()
= (A2 () Uy ()| U ()
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By 3.2.8, it follows that we have, for all ¢ € I:

170 @5l ) U (o) Ea® s A0 (@)
< IR (©)1P ()" Ea®she (@) (P5") Ea @50 (a))

< [[R*(©)*(Te(a"a) (o) El(pp:") 'E)
< [IRZ(©IPIT(@*a)l| () El(p)*) E)

So, we can sum over i € I to get that:

lema% (A Uﬂ((pﬁga)*EagﬁM(a))]IIQ
i€l

is less or equal to ||[R%%(€)||?||T(a*a)||||Z]|> < co. That’s why the sum converges. [J

PROPOSITION 3.5.5. — Let a,e € Ne NN, E € HpQuH, £ € D(Hp,p°), n €
m

D(o(Hs), ) and (n;)icr a (N, u)-basis of o H. We have:

(Plaean) Un Q0 @5l ") U (07:) " Easha (@)
i€l

= () T((idgxaw 1,10 (e).0) (T (@)

Proof. — The existence of the first term comes from the previous lemma. By 3.5.3 and
the co-product relation, we can compute:

(65" (LaaTue a)Un (a3 1) Une(95:%) Za@ A0 ()

el

= (05 0" 59a D) (D) (D@ (P5) Ep@aripDaTa o e))
el

= () O 59al) Caaid) (0(@) ([ X 057 (00)* | Esatato(e))

i€l

— (0) V2" 5a1)" (Ttaid) () B0 T A (¢))
= () (19Gary )" (Dsaid) () (Ep@ataho(e))

= (A0 P ((idg %oy 00(e).0)(T(@)))Z 0

With results of the two last sections in hand, we can prove now a reciprocity law
where J¢ will be equal to Hy.
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3.5.3. Reciprocity law. — For all monotone increasing net (ex)rex in Vg NN 1y,

of limit equal to 1, the following (w s, A (e,))kck is monotone increasing and converges

to W. So, for all & € Ny NN 1, (W14 Ay (er)*aid)(T(x)) converges to (¥gxqid)(I'(z))
u u

in the weak topology. We denote {; = JuAw(ejer) € D((Hw)g, p°) for all k € K.

PROPOSITION 3.5.6. — For alla € (Ve NN r)*(NeNN1,)), e € NoNNrp,,be
Ne NHNrp,e € Torg, v € D(Hg,u°),n € D(o(Hs),p) and (N, p)-basis of H,
(n:)ie1, we have that the image of:

> 1ia@slN") Unty ((05,) Uty (Juc™ Juha (0)a@gv)]a A0 (2))]
i€l

by (pgﬁzww)*UH converges, in the weak topology, to:
(P gan) (0880 (N5h o)) Uty (Aw (D)a@Aa(a)))

Proof. — Let u € H. We compute the value of the scalar product of:

Un (3 a3l Usta ((05:°) Uy (A (b)a@av)la @ A0 ()
i€l

by ug®qJoe* Jon. By 3.5.5, we get that it is equal to:
m

(P((idg*aw e a0 (c)n) ((@)) Ut (Aw (b6)a®50) Crp at)
By the right version of 3.4.5, this is equal to:
(Un (A ((idgaw o n0(e),n) (T(@))be)a@50) |G @)
By 3.3.1, we obtain:
(@i a9 () p%id) T ((idg*aw. g 20 (e).0) (T(@))be))v]u)
which converges to:
(Ypkaid)(I((idpkaw sy n (e)n) (T(@)))be)v|u)
Now, by right invariance of Tg, 3.2.8 and 3.5.2, we can compute this last expression:
(Yoraid) (N((idp*atw sy as(e)n) (T(a)))be)v|u)
= (Tr((idg*aw sy ne(e),n) (F(a))be)vlu)
= (Au(be)a@ vl ((idakawn, ssna(e)) T(a7))))aBsu)
(v5®a(>\A (¥ (e ))) UH‘I’(A\P(b)a%BAé(a))|u5%aJ<I>e*J<I)7])

which finishes the proof. U
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Let (n;)icrbe a (N, p)-basis of ,H. For all finite subset J of I, we denote by P;
the projection ), ; 0%#(n;,m;) € a(N)’ so that:

anza pm = 1ﬁ%aPJ
ieJ
For all e € V' N N7, , we also denote by P5:

15QaJoe” Jo Py Jaels = Y P sam (P gom)”
ieJ

COROLLARY 3.5.7. — Foralla € (e NN 1p)* (N e NHN1,), b € Vo NNy, and
c€ Jvry, vE€DHg, p°), e NoNNr, and J finite subset of I, we have:

P§Us (3 ma@al(00) Vst ([(057) Uty (Jue* Jo Aw (D)a@v)]a 500 (0))))
i€l

converges, in the weak topology, to:

Pi(038a (X} o) Unte (o 0)aBjAs (@)

Proof. — We apply to the reciprocity law pg;oé* Jon which is a continuous linear opera-
tor of H in Hg®,Hg, and also a continuous linear operator of H with weak topology
m

in Hg®q,He with weak topology. Then, we take finite sums. O
m

Until the end of the section, we denote by # ¢ the closed linear span in Hg of
(Ag’a)*UHW(va®ﬁA¢(a)) where v € Hy, w € JyAg(N v NN '1,), and a € (Vg N
ue

Nrp)* Ne NN, . By the third relation of lemma 3.4.1 (resp. proposition 3.4.2), «
(resp. () is a non-degenerated (resp. anti-) representation of N on .

LEMMA 3.5.8. — Let a € (No NN ) (N NHNp), b€ Ve NNy, ¢ € T v Ths
v € D(Hg,p°) and (n;)ier a (N, p)-basis of o H. We put, for all k € K:

Bk = Zma@% (A2 Uy ((05*) Ut (Juc® Juhu(b)a®pv)la® s (a))]
i€l

Then the net (Ex)kek is bounded.
Proof. — Let 2 = ”ﬁ%a()‘g;A\p(c )V Um, (A\p(b)a%BA.:p(a)). By the previous corollary,
we know that P{UgZE, weakly converges to P7Z, so that:

lim lim PSUREy, = 2
Jlleli<1 k

Consequently, there exists C' € RT such that:

sup sup||P{UgEk|| < C
Jllel|I<1 k
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and, the interversion of the supremum gives:

C >sup sup ||PfUyEg|| =sup||UgZk|| =sup||Ek|| O
ko Jllel|<1 k k

COROLLARY 3.5.9. — For alla € (Vg NN 1) (Ne NN1), b € Vg NNy, ¢ €
Jw1n, v € D(Hg,u°) and (n;)icr ¢ (N, p)-basis of o H, we put:

Er=0> ﬁiagg[()\?;a)*UH\y([(Pﬁ;a)*U}’LI(J\I/C*J\PA\I/(b)&gﬁv)]aggf\da))]
iel
for allk € K, and:

E= Uﬁ‘%a(kg;aAq,(C))*Uqu (A‘If(b)aS%éAﬂa))
Then UgEy converges to = in the weak topology.

Proof. — Let © € Hg®,Hg and € > 0. Then, there exists e € A ¢ NN ', of norm less
than equal to 1 and auﬁnite subset J of I such that ||(1 — P§)©|| < e. By 3.5.7, there
also exists ko such that |(P§UrE) — P$E|O)| < € for all k > ko. Then, we get:
|(UnEx — E[O)

|(UnEx — PjUnEL|O)| + [(P;UnEx — PE[O)| + |(PjE - E|O)

[(UnEk|(1 = P7)O)[ + e+ |(EI(1 — P})O)]

|(UnEk|(1 - P7)O)|+ e+ |(E[(1 - P7)O)| < (zlélz IE:ll + 1=l +1)e O

<
<

IN

COROLLARY 3.5.10. — We have the following inclusion:

Hﬁ@aﬂé - UH(HQ@B%{@)
I i

Proof. — By the previous corollary, we know that = belongs to the weak closure of
Ug(H.® 35‘{ o) which is also the norm closure. Now, Uy is an isometry, that’s why
e

UH(HQ(X)Bﬂcp) is equal to UH(HQ®BW¢). O
e e
THEOREM 3.5.11. — Uy : HQ®BH¢ — Hp®q,Hg is a unitary.

e M
Proof. — By the previous corollary, we have:
(1) Hp®aHo CUn(Ha®pHo) C Un(Ha® 3Ho) C Hp®aHo.

T I I B
Also, using a (N, u°)-basis, we have, for all v € Hg and a € V', N N g:
Uty (va500(@) = Y €30a(NE") Unty (008 540(0))
i

so that Up, (H\paé%Hq,) C Hyp®qH o. The reverse inclusion is the relation (1)
e B
applied to Hy. Consequently, we get:

Uny(Hya®pHo) = Uny (Hya®sH o)
p w
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Since Ug, is an isometry, H\pa®ﬁ~Hq> = H\pa®ﬁﬂ¢. and, so # ¢ = Hg. Finally, by
e e

inclusion (1), we obtain Uy (HsQpHas) = HgQuHo. O
e Iz

DEFINITION 3.5.12. — Fundamental isometry Uy is now called (left) fundamental
unitary. Right version U}, is called right fundamental unitary.

COROLLARY 3.5.13. — If [F'] denote the linear span of a subset F' of a vector space
E, we have:

Hy = [Afb((wv,wﬁ%aid)(r(a)))|U7w € D(Hﬁnu‘o)aa €ENag ﬁj‘/TL]
= [(Aﬁ’a)*UH(val@BA@(a))w € Hywe D(Hg,p°),a € e NHNr,]
= [(wvvw * ld)(UH)ﬂU € D(aﬂa ,U')’w € D(Hﬂauo)ag € HCI>]

Proof. — The second equality comes from 3.3.3. The last one is clear. It’s sufficient to
prove that the last subspace is equal to Hg. Let n € Hg in the orthogonal of:

[(Wo,w *1d)(Un)élv € D(oaH, p),w € D(Hp, p°),§ € He
Then, for all v € D(oH, ), w € D(Hg, p°) and £ € Hg, we have:
(Un(va@sOl0s8an) = (@ = 0)Un)El) =0
Since Uy is a unitary, wg(%)an =0 for all w € D(Hg, u°) from which we easily deduce

that n = 0 (by 2.3.2 for example). O

COROLLARY 3.5.14. — We have I'(m) = UH(la]%b(ﬁm)U}; for allm € M.

Proof. — Straightforward thanks to unitary of Uy and 3.4.5. O

3.6. Pseudo-multiplicativity

Let put W = Uy, . We have already proved commutation relations of section 3.4
and, now the aim is to prove that W is a pseudo-multiplicative unitary in the sense
of M. Enock and J.M. Vallin [EV00, def. 5.6]:

DEFINITION 3.6.1. — We call pseudo-multiplicative unitary over N w.r.t. a,ﬁ,ﬂ
each unitary V from Hg®,H onto H,® BH which satisfies the following commutation
7 ue
relations, for all n,m € N:
(B()a@sa(m)V = V(a(m)s@ah(n))

and

(B()a@aBm)V = V(3(n)safi(m))
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and the formula:
(Va%/@l)(Ju"al(\%)’/él)(1(11@)&‘/)0‘2”(1,3%&0”0)(lﬂ%av) =

(1a1§3wév)(vﬂ%al)
where the first 0,0 is the flip from HQ®BH onto HEA(X)QH7 the second is the flip from
e "
H,®gH onto Hg®,H and oy, is the flip from Hg®aHB®aH onto HQ®B(H5®QH).
e I I I ne I

This last flip turns around the second tensor product. Moreover, parenthesis underline
the fact that the representation acts on the furthest leg.

We recall, following [Eno02, 3.5], if we use an other n.s.f. weight for the construc-
tion of relative tensor product, then canonical isomorphisms of bimodules change the
pseudo-multiplicative unitary into another pseudo-multiplicative unitary. The pentag-
onal relation is essentially the expression of the co-product relation. So, we compute
(idﬁﬁaf‘) oI and (Fﬂ]a\(raid) oI in terms of Uy with the following propositions 3.6.4

and 3.6.6. Until the end of the section, J¢ is an other Hilbert space on which M acts.

LEMMA 3.6.2. — We have, for all & € D(oH, 1) and & € D(Hg, pu°):
)‘?{ﬁ()‘%a)* — ()‘%a)*‘fm"(la]@@‘fu))\?{ﬁ

and:

Uﬂ)\?l*ﬁ()\géa)*UH = ()\?éa)*(lﬁ%a[f%)oguo (1a](§3750u)(1a1‘?0ﬂUH))\?1”6

Proof. — The first equality is easy to verify and the second one comes from the first
one. O

PROPOSITION 3.6.3. — The two following equations hold:

1) fO’f' all €1 € D(aﬂa#’%g{l € D(OéHnu’)7£2 € D(ﬂﬁauo)’gé € D(Hﬁa/“to) and
n1,7M2 € Hg, the scalar product of:

!/
(1@l )ozu (La®50u) (La®pUn) (a1 ([€150ab1]a®sm)

by féﬁ%’aﬁzﬂ%oﬂh is equal to ((we, ¢, *id)(Uy)(we; ¢ * 1) (Un)m|n2).
ii) foralla e Ve NNr,, & € H and &, &, € D(Hg, u°), the value of:

(&) (152aUn)020 (1a@50) (1a@pUn) (0a@51)
on [§15®a1]a®zAe(a) is equal to:
7 1

U (§10@ 500 (we; ¢, %aid) (T(a))))
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Proof. — By the previous lemma, we can compute the scalar product of i) in the
following way:

Broy* B
(()‘Ega) (1ﬁ%aU5’()0‘2uo(1al§oéﬂu)(1al§oﬁUH))\?l (£§a§3n1)|€2ﬁ<§an2)
= (UﬂAZ;ﬁ(/\ff‘)*UH(ﬁiag[;m)Ifwganz)
= ((/\f;a)*Uﬂ(&agg(wg;, , *1d) (U )m|n2)

= ((wey & *1d) (U ) (wey ¢y *1d)(Un)miln2)

Also, the second assertion comes from the previous lemma and 3.3.2. Let’s first
assume that & € D(, %, u). Then, we compute the vector in demand:

(Af;“)*(lg%arfﬂ)ow(1a]@30u)(1a§ngH)A?;ﬁ (10@50(a))
= U O") Un (€28 500 ()
= Uﬂ(&a]@g/&@((Wg;,sgﬂ;aid)(F(a))))

So, we obtain the expected equality for all £&; € D(, ¢, p). Since the two expressions
are continuous in &;, density of D(,J¢, u) in # implies that the equality is still true
for all & € F. O

PROPOSITION 3.6.4. — For all a,b € V¢ N N1, , we have:
(idﬁ:ar) (F(&))pgﬁ\@(b)
= (1,658\;a(1ﬁ%aj¢bJ<b)Uﬂ)U2w(1a1§030u)(1aj<§3pUH)(0ua]§,31)Pif(a)

Proof. — Let & € J and &{,&; € D(Hg, u°). We compose the second term of the
equality on the left by ()\géa)* and we get:

(1ﬁ%an>bJ<1>)(Agéa)*(lﬂ‘l%)aUﬂ)UwO(1a1‘§;@0u)(1aj<§oﬂUH)(Uual‘§3,;§1)pif(a)
which we evaluate on &} ﬁ%afl, to get, by the previous proposition and 3.3.1:
(1ﬂ%aJ¢>bJ¢)Uﬂ(fla]%%@/\é((wﬁiwééﬁ’;aid)(F(a))))
= T (g &) @), s
= ()" (dgxaT) (D(@)p5, ) (€L B at)
So, the proposition holds. O
LEMMA 3.6.5. = For all X € Mgx.M C (1,@%,13(1\[))’, we have:

(Pxaid) (X) = (UnpQa1) (1085 X) (Ufr5Q0al)
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Proof. — By 3.5.14, T is implemented by Uy so that we easily deduce the lemma. [
PROPOSITION 3.6.6. — For all a,b € V¢ N N'r,, we have:
(Caxaid) (N(@)p]2, )
= (1s@als@atable) Unp2al) (La@aW ) Uira®s 1030 0
Proof. — By the previous lemma and 3.3.1, we can compute:
(16@alo@aTobls) Un s@al) La@sW ) Uia@s ot o)
= (U p@a1) (10851680 JabTe) (1@ W )00 o Ui
= (UHB%?al)(1041%53)3(1ﬁ%aJ¢bJ®)W*pr(a))U;
= (UHﬁ%al)(1al@3r(a)p§§¢(b))U}}
= (Unp@a)(La@T (@) Uira®3 D000 0y = Toradd)C@)p55, ) O
COROLLARY 3.6.7. — The following relation is satisfied:
(Uira251) (031 (1a@3UH) 02150000 )(15@alV)
= (1a®W)(Uf15a1)

Proof. — We put together 3.6.4 (with £ = Hg) and 3.6.6 thanks to the co-product
relation. We get:

(lﬁ%aw*)azuo(1%@)50“)(1(1%%[]}1)
= Unp@al)(1a@W ) (Uhra@;1) (0 a@s1)
Take adjoint and we are. O

THEOREM 3.6.8. — W is a pseudo-multiplicative unitary over N w.r.t. a,B,ﬂ.

Proof. — W is a unitary from Hgg®.Hg onto H¢a®BH¢ which satisfies the four
Iz e

required commutation relations. The previous corollary, with H = Hg, finishes the
proof. O

Similar results hold for the right version:
THEOREM 3.6.9. — If W' = U}an then the following relation makes sense and holds:
(W'58a1)(9,8Qal) (15QaUk)o2ue (1ap0u) (1a@pUk)
= (1pQaUx)(W'a@p1)

If H = Hy, then W' is a pseudo-multiplicative unitary over N° w.r.t. 3, a, &.
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Proof. — For example, it is sufficient to apply the previous results with the opposite
Hopf bimodule. O

3.7. Right leg of the fundamental unitary

In the von Neumann setting of the theory of locally compact quantum groups, it is
well-known (see [KV03]) that we can recover M from the right leg of the fundamental
unitary. In this paragraph, we prove the first result in that direction in our setting.

DEFINITION 3.7.1. — We call A(Uy) (resp. @(Uy)) the weak closure in ¥(H) of
the vector space (resp. von Neumann algebra) generated by (wy., * id)(Uy) with
v € D(s(Hy), 1) and w € D((Hy)s, 1°).

PROPOSITION 3.7.2. — A(Uy) is a non-degenerate involutive algebra ie., A(Uy) =
t(Uy) such that:

o(N) U B(N) € A(U}y) = 6(U}y) € M C &(NY
Moreover, we have:

z€ GUy) NLH) = U}I(I@%}oﬁm) = (1ﬁ%a1})U}I
In fact, we will see later that A(Uy) = G(Uy) = M.

Proof. — The second and third points are obtained in [EV00, thm. 6.1]. As far as the
first point is concerned, it comes from [Eno02, prop. 3.6] and 3.3.5 which proves that
A(Uy,) is involutive. O

To summarize the results of this section, we state the following theorem:

THEOREM 3.7.3. — Let (N, M,a,3,T') be a Hopf bimodule, Ty, (resp. Tr) be a left
(resp. right) invariant n.s.f. operator-valued weight. Then, for all n.s.f. weight p on
N, if ® = poa~!oTy, then the application:
va®she(a) — Zfiﬁ@fu/\@((wv,&iﬁ;aid)(F(G)))
iel
for allv € D((Hg)g, p°), a € N'r, NN, (N°, u°)-basis (&)icr of (Ha)g and where
B(n) = Jea(n*)Js, extends to a unitary W, the adjoint of which W* is a pseudo-
multiplicative unitary over N w.r.t. a,B,ﬁ from Hq,a@,éHq, onto Hpg®oHe. More-
ne B

over, for all m € M, we have:
I'(m)=W (1a](§ﬁm)W

Also, we have similar results from Tg.
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We also add a key relation between I' and the fundamental unitary proved in
corollary 3.3.4:

THEOREM 3.7.4. — For alle,x € e NN, and n € D(,Hs, p°), we have:
(idgxaw sy aa(e)n) (L)) = (d * WAy (@), suer 10n) (Unt)
Also, for all f,y € Ny NN, and & € D((Hy)g, 1°), we have:

(wJ\pA\p(f),fﬂzald)(F(y)) = (w/\\p(y)J\pf*J\pﬁ * ld)(UII‘I)
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PART 1

MEASURED QUANTUM GROUPOIDS






In this part, we propose a definition for measured quantum groupoids from which
we can develop a full theory that is we construct all expected natural objects, then
we perform a dual structure within the category and we also get a duality theorem
which extends duality for locally compact quantum groups. Two main ideas are used
in this theory. First of all, we use axioms of Masuda-Nakagami-Woronowicz’s type: we
assume the existence of the antipode defined by its polar decomposition. On the other
hand, we introduce a rather weak condition on the modular group of the invariant
operator-valued weight. Then we can proceed and we get all known examples as we
will see in the second part.
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CHAPTER 4

DEFINITION

In the following, (N, M,a,(,T") denotes a Hopf-bimodule. Like in the quantum
group case (for example [KV00] or [MNWO03]), we assume that there exist a normal
semi-finite and faithful (nsf) left invariant operator-valued weight T7,. We also assume
that we have an antipode. Precisely, like in [MINWO03], we require the existence of a
co-involution R of M and a scaling operator 7 (deformation operator) which will lead
to polar decomposition of the antipode. Axioms we choose for them are well known
properties at the quantum groups level. They are quite symmetric, easy to express and
adapted to our developments. They give a link between R, 7 and the co-product T.
They stand for strong invariance and relative invariance of the weight in [MNWO03].
Finally, we add a modular condition on the basis coming from inclusions of von
Neumann algebras. The idea is that we have to choose a weight on the basis N to
proceed constructions. That is also the case for usual groupoids (see [Ren80, Val96|
and also section 10).

DEFINITION 4.0.5. — We call (N,M,«,3,I,TL,R,7,v) a measured quantum
groupoid if (N,M,a,3,T') is a Hopf-bimodule equipped with a nsf left invariant
operator-valued weight 77, from M to a(N), a co-involution R of M, a one-parameter
group of automorphisms 7 of M and a nsf weight v on N such that, for all ¢t € R and
a,be N, NNg:

R((idpxatw 1 20 (a))T(070)) = (idpxat 1 205)) (0" a)
and 7,((idgx0t7, 0 )L (57D)) = (d3%at0 s, 0y (2 (0T (0F (57))
where ® = v o a~! o T}, and such that:
voy=v

where «y is the unique one-parameter group of automorphisms y of N satisfying for
allne N,teR:

a1 *(B(n)) = B(ve(n))
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We recall that the Hopf-bimodule does also admit a nsf right invariant operator-
valued weight T = R o Ty, o R. The rest of the section is devoted to develop several
points of the definition and clarify from where v comes from. Thanks to relation
concerning 7, we easily get that:

ol =pFoo; and (Ttgﬁaof’)Ole“oa?

for all n € N and ¢t € R (For the first one, make b goes to 1). The first equality give
the behavior 7 should have on the basis. In fact, it is necessary, if we want to give
a meaning to 7 ’61’\(/“0? . The last relation is usual in the theory of locally compact

quantum groups. Then, we can explain how to recover M from I':

THEOREM 4.0.6. — If (F)~V is the weakly closed linear span of F in M, then we
have:

M = ((wpkeid)(T(m)) | m € M,w € M,k € Rt s.t. wo B < kv)™W

= {(idgxqw)(T'(m)) | m € M,w € M}k € Rt s.t. woa < kv)™V

Proof. — Let call Mg the first subspace of M and M, the second one. Since 7¢(3(n)) =
B(of (n)) for all t € R, we have:

Mp = ((wo Tipxaid)(T(m)) | m € M,w € (Mg)f,k € RT st. wo B < kv)™V

*

Moreover we have o ((wgxoid)T'(m)) = (woT;axaid)I'(of (m)) so that of (Mg) = Mg
for all t € R. On the othery hand, by propositiorllj 3.2.7, restriction of ® to Mg is semi-
finite. By Takesaki’s theorem [Str81, thm. 10.1], there exists a unique normal and
faithful conditional expectation E from M to Mg such that ®(m) = ®(E(m)) for all
m € M™T. Moreover, if P is the orthogonal projection on the closure of Ag (N ¢ N MRg)
then E(m)P = PmP.

So the range of P contains Ag((wgkqid)I'(x)) for all w and = € N'¢. By proposi-
tion 3.5.13 implies that P = 1 so that ZC is the identity and M = Mpg. Now, it is clear
that R(Mg) = My, thanks to co-involution property what completes the proof. [

The theorem enables us to understand that formulas satisfied by R and 7 in
the definition are sufficient to determine them. For example, we can be ensured of
the commutation between R and 7 which can be tested on elements of the form
(idgtan(PA(p(a))F(b*b). Also, if we put ¥ = voB3 toTr = PoR, we get, for allt € R:

of =Rod®,0R and m,oa=aoo/ and (ongﬁaT,t)Oszoazp
Then, we can precise the behavior of 7 with respect to the Hopf-bimodule structure:

PROPOSITION 4.0.7. — We have "o 1, = (rt/gﬁan) ol for allt € R.
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Proof. — Because of the behavior of 7 on the basis, it is possible to define a normal
*_automorphism 7; 51’\(,0‘7} of M ﬁja\([aM which naturally acts for all t € R. By co-product

relation, we have for all t € R:

(idg*aD) (0} praT—t) o T = (idgxo ) 0 0

(
= (Dpxaid)l 00} = ([0 0} gxaT—)T
(07 pxaT—tg*aT—t) (Lxaid)l
= (07 g¥al(T-tgxaT—t) oT]) o T
Consequently, for all m € M, w € M, k € R* such that wo 3 < kv, we have:
Fo7_yo((wo Uf’)gtaid)F = (Wgtaidﬁtaid)(af’gta(r o7_4)) ol
— (ekaidsxaid) ¥ pral(r-tptar—o) o T)
— [(rtprars) o T o (@ o o) peaid)T

The theorem 4.0.6 allows us to conclude. O

Then, we get a nice and useful characterization of elements of the basis thanks
to I':

PROPOSITION 4.0.8. — For all x € M N a(N)’, we have I'(z) = 1g%ax < x € B(N).
Also we have, for allz € M NB(N), I'(z) = xg%al <z € a(N).

Proof. — Let x € M Na(N)' such that I'(z) = 1,@%ax. For all n € N, we define in the
strong topology:
Ty = %/exp(—thz)af’(w) dt analytic w.r.t. o¥,
and:
Yn = \i/»/exp(—thz)T,t(a:) dt belongs to a(N)'.
™
Then we have I'(z,) = lg(JXV)ayn. If d € (My N Mr,)T, then, for all n € N, we have

dz, € My NMr,. Let w € M and k € R such that woa < kv. By right invariance,
we get:

woTr(dxy,) = w((\Ilgtaid)(I‘(da:n)))
(o) (D)) = (g (402)) (0(d))
w((¥praid)(T(d))yn) = w(Tr(d)yn)

Take the limit over n € N to obtain Tg(dz) = Tr(d)z for all d € Mg N M, and,
by semi-finiteness of T, we conclude that x belongs to B(N). Reverse inclusion comes
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from axioms. If we apply this result to the opposite Hopf-bimodule, then we get the
second point. O

Finally, we are able to explain existence and uniqueness of « for the definition:

PROPOSITION 4.0.9. — There exists a unique one-parameter group of automorphisms
v of N such that:

ai*(8(n)) = B((n))
foralln € N andt € R.

Proof. — For alln € N and t € R, we have o (3(n)) belongs to M Na(N)’. Then, we
can compute:

Toof(B(n) = (rusgaol) o T(B(n))
= (i3a0?) (162a6(1)) = 150007 (B())

By the previous proposition, we deduce that o (3(n)) belongs to 3(N) i.e., there
exists a unique element ;(n) in N such that o (3(n)) = B(y:(n)). The rest of the
proof is straightforward. O

In our definition, we ask v to leave invariant v. Just before investigating the struc-
ture of these objects, we re-formulate at the Hilbert level relations for R and 7 with
Uy (or W) coming from theorem 3.7.3. Depending on the situation, we will use one
or the other expression.

PROPOSITION 4.0.10. — Let I be a unitary anti-linear operator which implements R
that is R(m) = Im*I for all m € M and P be a strictly positive operator which
implements T that is T:(m) = P~%mP® for allm € M andt € R. For allt € R and
v,w € D(,He,v), we have:

R((id * wygv,w)(Un)) = (id * wjgw,0)(Un)

7 ((id * Wygw,w)(Un)) = (id * WA;“J@v,A;“w)(UH)

(Ia®370)Us = Un(Ip®aJa) and (P“ﬂ@;aAg)UH = UH(P“agﬁAg)
GNo O (Rﬂ]‘)\(]aR) o'=ToR and (Ttlg;}\(fad;b) o' =TooP

Proof. — By theorem 3.7.4, for all e,z € V' NN, and n € D(,Hg, u°), we recall
that:

(idgkawssns(e)n) (@) = (id % WAg (2), Jaer Jan) (Un)
Then the first two equalities are equivalent to formulas of the definition and we get

straightforward the equalities at the Hilbert level. The last ones come from definition.
O
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CHAPTER 5

UNIQUENESS, MODULUS AND SCALING OPERATOR

In this section, we obtain results about the modular theory of the left-invariant
operator-valued weight. We construct a scaling operator and a modulus which link
the left invariant operator-valued weight 77, and the right invariant operator-valued
weight Ro Ty, o R. We also prove that the modulus is a co-character. We also establish
uniqueness of the invariant operator-valued weight.

5.1. Definitions of modulus and scaling operators

PROPOSITION 5.1.1
For allt € R, we have:

(1) ToolT_4 = (idgﬁaU?T_t) ol
(2) RoTpoRoofr s =Bovyo’, 08 toRoTLoR
(3) PoRooPr_,=®oR
Proof. — For alln € N and t € R, we have:
of T_i(a(n)) = o (a(o”(n))) = a(n)
so that we can define idgﬁaaf 7_4. Then, the first statement comes straightforward

from definition property of 7 and by proposition 4.0.7.
By right invariance of Tr, we deduce, for all a € Wl;R:

TrooP7_i(a) = (Upxaid)[(of7_¢(a))
= 0?7 (T sxald)(a)) = 0F7_, o Tr(a)
Then, by hypothesis on 7 and T7,, we get:
TROO';I)T_t = af”r_t ofoftoTy = gf’ oﬂoaito/f)Vl oTg =,Borytgitoﬂ*1 oTg

To conclude we just have to take v o 37! on the previous relation and use invariance
property of ¢” and vy w.r.t. v. U
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PROPOSITION 5.1.2. — The one-parameter groups of automorphisms o® and T (resp.
¥ and T) commute each other.

4 L] P

Proof. — We put k; = y0”,. Since V¥ is k-invariant, we have ¢ o0y’ o 7y = 0} ©

T_¢o00Y, for all s,t € R so that:
(idﬁlv\(lant)l" =Tok,=TocY ok00y = (0‘?5,31*)\(]&7'5) oT ok 00y
= (aigﬁaﬁ org)olo 0;1' = (idﬁ]‘)\(foﬂ's okgoT_g)ol
So, for alla € M, w € M} and k € R such that wo 8 < kv, we get:
o o 7 (wpxaid)T(a) = 7 0 07 07—y 0 Ty (wpkaid)T(a))

and by theorem 4.0.6, we easily obtain commutation between ¢® and 7. By applying
the co-involution R to this commutation relation, we end the proof. O

COROLLARY 5.1.3. — The one-parameter groups of automorphisms o® and o¥ com-
mute each other.

Proof. — By the previous proposition, we compute, for all s,t € R:

o] N4 3] N4 v 3]
I'o 0g 00y = (7—5/37\(,&03 ) ol'o 0y = (Tsat ,31\)\?10-5 T—t) ol

= (J;I,TSB]’\‘IQT—tUS) ol’

L]
s

N4 3]

Z(O’;I’,gl*)\(]aT_t)OFOU =T oo, ooy

Since T is injective, we have done. O

By the previous proposition and by [VaeOla, prop. 2.5], there exist a strictly
positive operator § affiliated with M and a strictly positive operator A\ affiliated to
the center of M such that, for all t € R, we have [D® o R : D®], = Az?* 5%, Modular
groups of ® and ®oR are linked by o2°f(m) = §o (m)§~% for allt € Rand m € M.

DEFINITION 5.1.4. — We call scaling operator the strictly positive operator \ af-
filiated to Z(M) and modulus the strictly positive operator § affiliated to M such
that, for all t € R, we have:

[D® o R: D®], = A% 6

The following propositions give the compatibility of A and § w.r.t. the structure of
Hopf-bimodule.

LEMMA 5.1.5. — For all 5,t € R, we have [D® o 02°F : D®|, = \ist.
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Proof. — The computation of the cocycle is straightforward:
[D® o o2°F . D), = [DD 0 02°F : DO o Ro 0?°F|,[D® o R : DP],
= o%°R([D® : D® o R],)[DP o R : D],

it

2 .
261t

. 142 . )
=602 (AT 5T)6A
— 5—isA—%>\ist6—it5is>\%6it — )\ist O
PROPOSITION 5.1.6. — We have R(\) = X\, R(6) = 6% and 74(8) = &, 7:(\) = X for
allt € R.

Proof. — Relations between R, A and 6 come from uniqueness of Radon-Nikodym
cocycle decomposition. By proposition 5.1.1, we have ® o 7_, = ® o ¢2°F for all
s,t € R, so:

74([D® o R: D®;) = [D®PoRoT_,: Do ], = [DPoc®RoR:DPoc?F]
Consequently, by the previous lemma, we get:
75([D® o R : D®],)
= [D®ooc?RoR:DPoR],[DPoR: DP,[DP: DP o o2k,
= R([D® o 62°F : D®|* ,)[D® o R : D®],[DP 0 02°F : DP|}

it2

. . . 2 .
— R(}\zst)A— 5 5zt)\—zst — )\—Ttszt O

5.2. First result of uniqueness for invariant operator-valued weight

Next, we want to precise where the scaling operator A sits. We have to prove, first
of all, a first result of uniqueness as far as the invariant operator-valued weight is
concerned.

Let Ty and T3 be two n.s.f. left invariant operator-valued weights from M to a(N)
such that 77 < Ty. For alli € {1,2}, we put ®; = voa~'oT; and ﬂl(n) = Jg,a(n*)Jg,.

We define, as we have done for Uy, an isometry (Us)gy by the following formula:

(U2)11(va® 5, A0, (a) = 3 Ei®aa, (g, xaid)(D(@))
iel
for all v € D(Hg,v°) and a € N g, NN 'r,. Then, we know that (Uz) g is unitary and
I'(m) = (UQ)H(la%Q@Qm)(UQ);{ for all m € M.

Since T} < T, there exists F' € £(Hg,, Hp,) such that, for all z € N g, NN 1, we
have FAg,(z) = Ag, (). It is easy to verify that, for all n € N, we have F3(n) =
B (n)F. If we put P = F*F, then P belongs to M’ N B, (N) and Jg,PJs, belongs to
MnNa(N).
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LEMMA 5.2.1
We have F(Jq>2PJq>2) = 15%QJ¢2PJ@Z.

Proof. — We have, for all v,w € D(Hg,v°) and a,b € N g, N N'1,:
(1590 P) (V2) 1 (08 3, M0, (@) [(U2) 1 (008 5, A, (1))
= (U1 (va® 5, A, ()|(U1) a(wa® 5 A, ()))

where (Uy) g is defined in the same way as (Uz) . The two expressions are continuous
in v and w, so by density of D(Hg,v°) in H, we get, for all v,w € H and a,b €
N e, NN r,:

(15QaP)(U2) 1 (va®,p,Av, () |(U2) 1 (wa®, 5, Aw, (1))

U)H(va®,5,Aw, () |(U1) 1 (wa®, 5, As, (b))
Va® 5 A, (0)[wa® 5 Aw, (b))

(
= (
=(
= (1085, P) (Va8 5, Ay (@) [0e 5, Ao (B)

so that (Ug)*H(lﬂ%aP)(Ug)H = 1a%ﬁ2P. In particular, if we take H = Hg, then
by 4.0.10 we get (UQ)H(IQ%GQQJ%PJ%)(UQ);, = lg%an)zPJ%. Finally, since

J<I>2PJq>2 € M, we have ]._‘(Jq)zPJq>2) = 15%QJ¢2PJ¢2. O

PROPOSITION 5.2.2. — If Ty and Ty are n.s.f. left invariant weights from M to a(N)
such that Th < T, then there exists an injective p € N such that 0 < p < 1 and, for
allt e R:

[D®, : D®,]; = B(p)*

Proof. — By the previous lemma and proposition 9.2.25, there exists an injectivep € N
such that 0 < p < 1 and, for all z,y € Vs, N N'1,, we have (Ao, (z)|As, (y)) =
(Jo,8(0)Jo,Aa, (x)|As,(y)). By [Str81, prop. 3.13], we get that G(p) coincides with
the analytic continuation in —i of the cocycle [D®; : D®5]. Then, we have, for all
teR:

[D®, : D®,), = B(p)* O

PROPOSITION 5.2.3. — Let T} be a n.s.f. left invariant operator-valued weight ®, is
o®-invariant. Then, there exists a strictly positive operator q which is affiliated to N

such that @1 = (®)g(q)-

Proof. — We put To = T, + Ti. Since ®; is o®-invariant, then the left invariant
operator-valued weight T5 is n.s.f. Finally, since 77 < Ty and T, < T5, there exists
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an injective p € N between 0 and 1 such that ®; = (®2)g(,) and ® = (P2)g(1—p)-
By [Str81], we have:

[D®; : D®,]; = B(p)* and [D® : D®,]; = B(1 — p)*
Then, we have, for all ¢t € R:

D it
[D®, : D), = [D®, : D®,],[D®, : DI, = 5(m)

that’s why ¢ = 1%; is the suitable element. Now, by [Str81], we have:
B(a) = o7 (B(9) = B((q))

so that, by injectivity of 3, we get that ¢ is affiliated to N7. O

LEMMA 5.2.4. — For allt € R, 7_y o T, o1 is a n.s.f. left invariant operator-valued
weight from M to a(N). Moreover, c2°™(B3(n)) = B(vs(n)) for alls,t € R andn € N.

S

lor_,o0Tp o1 = ®or. Then:

Proof. — For all t € R, we have voa™
(idgxavoa ™t or_s0Tpom) ol = (idgxa® o) o T

=7_;0(idg*xe®)oT o =7_0Tpom O

On the other hand, for all s,t € R and n € N, since v and ¢” commute, we have:

a7 (B(n)) = 1—r 0 07 0 7e(B(n)) = 7t 0 07 (B(0} ()
T1(B(1s0t (n))) = B(oL 150t (n)) = B(v¢ (n))

PROPOSITION 5.2.5. — There exists a strictly positive operator q affiliated with Z(N)
such that the scaling operator A = a(q) = B(q). In particular, A is affiliated with
Z(M)Nna(N)NB(N).

Proof. — By the previous lemma, 7,077, 07_, is left invariant. Moreover, since c® and 7
commute, ®o7_, is ¢®-invariant. That’s why, we are in conditions of proposition 5.2.3
so that we get a strictly positive operator g, affiliated with N7 such that [D®o7_g :
D®]; = (3(gs)™. On the other hand, by lemma 5.1.5, we have [D®oo®°F : D®], = \ist.
Since we have ® o 7_, = ® 0 02°F 50 we obtain that A = ((g,)¥ for all s,t € R.
We easily deduce that there exists a strictly positive operator ¢ affiliated with Z(N)
such that A = 3(g). Finally, since R(A) = A, we also have A = a(q). O
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5.3. Properties of the modulus

Now, we prove that the modulus § is a co-character. This will be a key-result for
duality.

PROPOSITION 5.3.1. — For alln € N and t € R, we have:

§"a(n)d™" = a(nof(n)) and  §"B(n)s" = B(noy (n))

Proof. — By definition of -, we have:
B(o”,(n)) = oy (B(n)) = 6" (B(n))d~* = 6" B(74(n))s~*

what gives the first equality (we recall that v and 0¥ commute with each other). Then,
apply the co-involution to get the second one. U

Thanks to the commutation relations and by proposition 2.3.5, we can define, for
all £ € R, a bounded operator 6it5%a5it which naturally acts on elementary tensor

products.

LEMMA 5.3.2. — There exists a strictly positive operator P on Hg implementing T
such that, for all z € N'g and t € R, we have P*Ag(x) = A2 Ag(74()).

Proof. — Since ® o R = ®;, by [VaeOla, 5.3|, we have:
Ao (02°R(2)) = 67 Jp A2 6" Jp A% Ay (z)

and since X is affiliated with Z(M), we get ||Ag(02°F(z))|| = |[A2Ag(z)|| for all
r € NeNHN 1, and t € R. But, we know that ® is o2°F o 7-invariant, so ||As(z)|| =
||\2 Ag (7¢(z))]||. Then, there exists P; on Hg such that:

PAg(z) = A? Ao (1e(2))

for all z € Ao NN, and ¢ € R. For all s,t € R, we verify that P;P; = Ps; thanks
to relation 74 (A) = A and the existence of P follows. The fact that P implements 7 is
clear. O

LEMMA 5.3.3. — We have, for all a,b € N N N1, and t € R:

doR
= WisAe(a) O T—t andeéAq)(b)oot =w

w
JeAe (A2 () JoAe(A2o®OR (b))

MEMOIRES DE LA SMF 109



5.3. PROPERTIES OF THE MODULUS 51

Proof. — Since 7 is implemented by P, the first relation holds. By [VaeO1la, prop. 2.4],
we know that Agor = JedJedAg so that we can compute, for all x € M and
beNasNNrp,:

(07°% () Jo Ao (b)|Jo Ao (b)) = (2A50R Jo A (b)| AgerJeAs (D))

256" Jp6 AL JeAe ()| Ja0" Jo 0 AL Je A (b))
e A (024(b))|0” " JaAa (02, (D))

= (zJoho (A7 02, (b)6")|JpAe (A2 02, (b)6%))

= (2Joho(A76 %02, ()6 | JeAe (A2 5 02, (b)6™))

= (@JeAa(A20227 (b)) | JaAa (A2 0257 (b))

(z
= (
= (6
(

PROPOSITION 5.3.4. — We haveT'o 1y = (at g*a ol for allt € R.

Proof. — For all a,b € V¢ N A1, and t € R, we compute:
(idﬁjanwq,(b))[(U?tﬁl’;,aff?m) ol'om(a”a)]
= 02, [(idgxaw s, na(ey © 07 )L 0 7i(a"a))]
By the previous lemma, this last expression is equal to:
a?t[(idﬁtan@Aq>(A%o‘ng(b)))(r or(a*a))]
= 0%, 0 R[(idg*aw s, a(ri(a))) LA 0227 (b7D)))]
= Roo? (idgraw, | 1 (T 0o (b))
Again, by the previous lemma, this last expression is equal to:
Ro a7 [(idgxawsynga) © 7L 0 07 (07°D))]

= R[(ldg*awisn (@) (T(070))] = (idgkawssnq b)) (T'(a"a))

So, we conclude that (o _tlg* o°®)yoTor, =T forallt € R. O

COROLLARY 5.3.5. — For allt € R and m € M, we have:
(6itﬁ%a6it)r(m) (67“,8%0157”) — F((sitméfit)

In particular, for all s,t € R, T'(§*) and 6”g%a5“ commute each other.
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Proof. — For all t € R, we have:

@ BoR @ ®oR _ @ ® BoR ®oR
(62,00 5Eaa_t oo, Mol = (U—tﬁ]’f]ao—t ooy Vor)ol ooy

_ D ®oR ® ®oR
= (o2, oTtﬁ]’\*]aUt or)oloo?, 00y

PoR

@ o ®oR
= (U—tﬁ]’t}aat )oTloroZ, 00y

:I‘oa?toafoR

We know that 0®,02°%(m) = 6*md—% for all m € M, that’s why we get:
(6itﬁ%a6”)l“(m)((5_”/3%(16_”) — F(éitmé_“)
In particular, for all s € R, we have:

(5it5%a6it)F(6is)(5‘“5%@5_“) _ F((sit(sis(s—it) _ F((S’LS) O

PROPOSITION 5.3.6. — Let us denote by 9;% made of elements a € N'r, NN s N
N'g, analytic with respect to both ® and ¥ such that, for all z,2' € €, of o a¥(a)
belongs to N, NN g N N'w. This linear space is weakly dense in M and the set of
Ay(a) (resp. Ag(a)), for all a € 9;&, is a linear dense subset in H. Moreover, the
subset J\pA\I;(gngL) is included in the domain of §%, for all z € G and is an essential

domain for §%.

Proof. — Let us take z € I 7, and let us write A = [;* t de; and define f, = [1 de,.

If we put:
q e 2 U
Tpq = fm/;/ e o, (z) dt

we obtain that z,, belongs to 93“, is analytical with respect to ¥, o¥(x, )
is weakly converging to = and Ag(xp4) is weakly converging to Ag(z). Moreover,
Ar, (2p,4)is weakly converging to Ar, (z).

Since, for all y € M and t € R, we have:

af’aq_’t = s

we see that, for all such elements z, , and z € C, §**z, ,6 % is bounded and belongs
to Y&, . In particular, 6_%:10,,,(15% belongs to M, N Y ¢ and is analytic with respect
to both ® and ¥. Using then the operator e, introduced in [VaeO1la, 1.1], which are
analytic to both ® and ¥ and converging to 1 when n goes to infinity, we get that
en®p q belongs to A, N A 3. On the other hand, since:

1 1.1 1
enZpq02 = (€,02)0 22, 407

belongs to V'3, we see, by [VaeOla, 3.3], that e,z, , belongs to /"¢ and, therefore,
to I ;TL, from which we then get all the results claimed. O

MEMOIRES DE LA SMF 109



5.3. PROPERTIES OF THE MODULUS 53

Let recall proposition 2.4 of [Eno04]:

PROPOSITION 5.3.7. — Let a,b in N'r,. Then Tr(a*a) and Tr(b*d) are positive self-
adjoint closed operators which verify:

Wiy A (@) (TL(b7D)) = wiyay ) (TL(a"a))

LEMMA 5.3.8. — Letb € V', NN o NN 'w and X positive affiliated to M be such that
672X672 is bounded. Then the element of the extended positive part (idg+o¥)T'(X)

is such that:

1000 (g5 I (X) = (62 x54)

Y5t 1y Ag(b)
If X is bounded, such that 6~ X3~ % is bounded and in M, then (w.s, aq ) s*aid)T(X)
belongs to ﬂ/l;L NME. IfY is in fl/li, we have:

§73TL(Y)6% = (idgka ¥)L(62 X67)

Proof. — Let us assume that a,b € N 1, NN s NN w. By [VaeOla|, JoAg(a) is in the
domain of §~2 and 5_%J¢Aq>(a) = A1§"3JyAg (a). Then, we compute the following:

01 () ({530 )T (@*0)) = B © R((w sy g (1 %0id)T(a"a))

= D((Way Au (@) %)L (070)) = w4 ny (o) (T2 (0°D)) = TL(b™b))

w
(57% J@Aq>(a)(

B w‘]@"é(mr%)(TL(b*b)) = Wrpna)(TL (6" 2a*ad™ 7))

1o 1
:w(;%JWA\p(b)(TL(é 2g*ad” 2))

If X is positive such that § “3X673 is bounded, we may consider X as the upper limit
of elements of the type a}a; where a; belongs to the dense left ideal A7, NNV s NN g.
Then every a;6~2 is bounded and we get the first formula by increasing limits. The
proof of the second one is an easy corollary of the first one because we are in the
essential domain of §2. O

THEOREM 5.3.9. — We have T'(§) = 6,3%15.

Proof. — Applying T" to the second equality of the previous proposition, we get for all
Y € ﬂ4$:

PEH)(TL()s@ul)T(5) = T((dgxa W)L (07 Y 5))
= (idgraidgra ¥)(Doxaid)[(87Y67))

= (idgraidgra ) (idgkeD)T(62Y67))
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Let now b € V;TL and define Z by:
Z = (W14 0y () 5%aid)T(67Y'62)
By corollary 5.3.5, we have:

872267 = (wyy J\I,A\p(b)ﬁtaid)l-‘(y)

which is bounded by proposition 5.3.6. By the previous proposition, we get for all
Ve Tr,NTy:
wJ\pA\p(b)ﬁ@aJ\prp(b’)(F((S%)(TL(Y)Q(]%Q]_)F((S%))
= WJ\pA\p(b)ﬁ@aJ\pA\p(b’)((idﬁﬂ;aidﬁtlx\p)(idﬁtar)l—\(&%Yd%))
= wq 00 ) ({50 V)T (@14 00 (1) §Daid)T (7 Y'62))

(To(6™226" %) =wy o (Tl@gn )y a%aidT(Y)))

Y)ﬂ%al)

= Yst g Aev) v A (b)
from which we infer, by increasing limits, that:

W14 Au ()50 doha (0) (D(6)) = 1107 JuAw(0)58ad Ju Ay ()|

which finishes the proof by proposition 5.3.6. O

5.4. Uniqueness of invariant operator-valued weight

THEOREM 5.4.1
If T’ a n.s.f. left invariant operator-valued weight such that (Ttgla\([aof’,)OF = I‘oafl,
vovy' =v and yovy' =~ o+, then there exists a strictly positive operator h affiliated

with Z(N) such that, for all t € R, we have:
® =voa ol =(oa ' oTyL)sm) and [DT': DT.], = B(h™)

Proof. — We put ® =voa~!oT’. We have for all s € R:

o] @’ o] 3’ : o]
o 0_s o Os = (T—Sﬁ]’\([ao—s) ol'o Os = (ldﬁj\([aa—s Y

‘I))ol_‘

S

By right invariance of Tg, we have for all a € /(%}'R:
Tr(o?, 007 (a) = (B 0 Rxaid)(T(0?, 0 07 (a))
S

= 02,007 ((® 0 Ryxaid)I(a)) = 02, 0 07 (Tr(a))
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Since v and 7/ leave v invariant, we get that ®o R is 0® o0 q’ -invariant and, so o
and 0®_ o afl commute each other. But ®°® and o® commute each other that’s why

o®°R and 0® also commute each other. For all s,t € R, we have:

T(of (6°)87%) = (pkaot J(T(E™)) (67 s©ad ™) = 15®a0y (5)6*
Consequently o2’ (51)6~* belongs to B(N). For all n € N and s, ¢ € R, we have:
£ (0)B(m)af (57) = o ((6™)a 2, (B(n))6 ™) = o ((6%)B(v_4(n))6 ™)
= o7 (B(1s0574(n))) = B(y1s0%74(n))) = B(150% (n))) = 57 B(n)d

So o (6%%)6~% belongs to 3(Z(N)) and we easily get that there exists a strictly
positive operator k affiliated with Z(N) such that o® (6%) = B(k?**)6%. Then, we
have:

ol 0o (m) =y (67 o (m)6") = Bk 0T 0 o R (m)s " B(k™)
— ,B(k_iSt)O-? o 0_;13' (m)ﬂ(klst)
Take m = 6% to get k is affiliated to N7. Apply ® to the previous formula and get:
®ool 0ol (m*'m) = BBk} 00 (m*m)B(k""))
=d(cf o afbl(m*m)) =do af/ (m*m)
So, by 5.2.3 and left invariance o® oTL o a ', there exists a strictly positive operator
gs affiliated with Z(N) such that @ o crs = (I)ﬁ(qs)' By usual arguments, we deduce
that there exists a strictly positive ¢ affiliated to Z(N) such that ® o 0®" = UL TO
and [D® o 0% : D®], = B(¢*). Then, again by 5.2.3, there exists a strictly positive
operator h affiliated to Z(N) such that ® = ® 4,y with [DT” : DTL], = B(h™). O

Also, we have a similar result for right invariant operator-valued weight.

COROLLARY 5.4.2. — If T a n.s.f. right invariant operator-valued weight such that
(at‘l’/ﬁ;&aT,t) ol =Too¥,voy =v andyoy' =+ o~, then there exists a strictly

positive operator h affiliated with Z(N) such that:
Tr = (RoTL o R)qn)

We state results of the section in the following theorems:

THEOREM 5.4.3. — Let (N,M,a, 3,1, T, R, 7,v) be a measured quantum groupoid
If T' a n.s.f. left invariant operator-valued weight such that (Ttg*aat ) o' =Too?,

vovy' =v and yovy' =~ o+, then there exists a strictly posztwe operator h affiliated
with Z(N) such that, for all t € R:

voa loT = (voa ™ oTL)sm)
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We have a similar result for the right invariant operator-valued weights.

THEOREM 5.4.4. — Let (N,M,a,3,T, T, R, T,v) be a measured quantum groupoid.
Then there exists a strictly positive operator § affiliated with M called modulus and
then there exists a strictly positive operator A affiliated with Z(M) N a(N) N B(N)

called scaling operator such that [Dv o aloT,oR:Dvoalto TL): = )\%6” for
allt € R.
Moreover, we have, for all s,t € R:
[DvoatoTpor,: Dvoa=toTy], = A7
[DvoatoTpoRot,: Dvoa ' oTyoR], = A"
[Dvoa~loTpo USVOO‘_1°TL°R :Dvoa~loTy], = N
[Dvoa™toTrLoRo US”°"‘71°TL :Dvoa toTpoR], =A%t
ii) RIA) =\, R(6) =61, 7(6) =6 and 1 (N) = \;
iii) 0 is a group-like element i.e., T'(§) = 65%a6.
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CHAPTER 6

A DENSITY THEOREM

In this section, we prove that there are sufficiently enough operators which are
both bounded under the left-invariant operator-valued weight and the right-invariant
operator-valued weight. This allows, as a corollary, to found bounded elements for
both a and  which will be useful for duality. This chapter is mostly inspired by
chapter 7 of [Eno04].

LEMMA 6.0.5. — Let y,z € X', N N'w and § € D((Hy)g, u°), then we have:

(@ (o) 70 70 1) UR)]* @ng ), 2 sae * 1) (U)
< IR O @so s (5% ) (T (570)
Forallye Np, "Ny, z€ M and £ € D((Hg)g, 1°), then we have:
R ([(wag (), s02 gue * 1) (U] (g (), gu 2+ g * i) (Ur))

< IR O (@200 5T (22))

Proof. — The first inequality comes straightforward from theorem 3.7.4. Then, apply
R to get for all z € A, N N g:
R ([(Wag (y), 752 gue * 1) (Up)]" (Wag (), 70 2= gue ¥ 1) (Ufr))
0 . *
< IR (©IFR@ians 951D C("D))

= IR (O (@1 o) %) (T (272))

Let us assume now that z € M. Using Kaplansky’ s theorem, there exist a family
zi in N, N Ny, weakly converging to z, with ||z;|| < ||z||. Then we infer that
Rﬁ’”O(J\pzf Jy€) is weakly converging to Rﬂ"’O(Jq,z*J\p{) with:

|R#" (Juz* Jw€)|| < [|RP (Juz* Jub)||
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Therefore (way, (y), 7427 7y *1d)(Up) is weakly converging to (way (), 2% gy e *1d)(Ug)
with:

[(Wag @), Tz dee ¥ 1)Ul < WAy (y), 79z Jwe * 1) (Ug)]
which finishes the proof. O

PROPOSITION 6.0.6. — If z € N, y € Ny, N Nw and & € D((Hy)g,1°) then
(WAg (y),Je2* Joe *1d)(Ug) belongs to N 'p, NN g.

Proof. — By the previous lemma and by right left-invariance of ®, we have:
(g ()t e st * IDUh) @ag (9,102 10 i) (Uh)
= @0 R ([(Way (y), 79 =70 * 1) Ui)]" Wy (), 7wz gue * 1) (Up))
< IBP 1Py a0y (4350 @) T (72)) = 1R (€)] P g (T2 ("2))
Also, we have:
Tr (Wag (), 7oz 0 * 1) (Un) " (@ag ), Ju =+ 1o ¢ * 1) (UR))
= Ro Ty o R ([(Way(y),0ez"o¢ * 1) (Up)]" (Way y), 7uz+gue *1d) (Up))
< IB (O (a0 () 0i) (£ To) ([ (="2)
= 1R (O @10 20 () 51 (TL (=" 2)58a1))
< ||R**" @)1 Tw (2" )| T (y* )11 O

LEMMA 6.0.7. — For ally,z € N'r, NN'w and n € D((Hg)g, 1°), we have:

R[(wy*J\pn,J\pA\p(Z) * id)(U;—I)]R[(wy*J\pn,J\yA\p(Z) * ld)(U;{)]*
< IITR(y*y)I|2(wnﬁ;§aid)(r(22*))
Proof. — Let us compute:
R[(wy*J\I;n,J\pA\p(Z) * id)(U;J)]R[(wy*J\IlThJ\pA\p(Z) * ld)(U}{)]*
= (Wag (), day* Jon * 1) (Ug) (Way (), 50y Jon * 1) (Ug)"
= (W20 ()0 %edd)(T(2) (Wi Ay (), 6%aid) (T(2))”
< IITR(y*y)II2(wnﬁzaid)(T(zz*)) O
PROPOSITION 6.0.8. — Let y1,2' € N1, NN g, y2 € Ny NN v NN g, 2 € R(T g1, )*
defined in proposition 5.8.6 and e, the analytic elements associated to the Radon-

Nikodym derivative § defined in [Vae0la|. Then the operators (wysay (yo),Jez*ex Ay (/) *
id)(Uy) belong to Ny, NN g NN, NN g.
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Proof. — Let us write X = (Wyray (ys),Jyzex Ay (z) * 1d)(Uy). Since yiys belongs to
N, NN g and z belongs to R(N 1, )* = N1, and therefore e,z belongs to A r,, we
get, using proposition 6.0.6, that X belongs to A "7, N A ¢. On the other hand, since
Y1,Y2, 2 el 2 belong to N 'r, N Ny, we can use lemma 6.0.7 to get that:

RX)RX)" < ITR(Ty0) 1 (Wrsae ) p%ald) (T (7€ 22" enz))
< TRy (@10 s (0) s%eid) (T (2" € en2)
Let us apply Tr to this inequality, we get that:
Tr(R(X)RX)") < ITr(yiy) 1 1P Ta(@rs a0 () %aid) (D ("€ en2))
which is equal, thanks to lemma 5.3.8, to:

_1 _1
I Tr(yiy)Il2']|?w d7 22"l enz072))

6‘%J\I,Aq,(y2)(TL(
With the hypothesis, we get that 622672 belongs to /A1, and therefore enz67% =
(en5_%)6%zé_% belongs also to N'r,. We also get that JyAg(y2) belongs to the
domain of §~2 which proves that R(X)* belongs to /" 7 and therefore X belongs to
N7, . We prove by similar computations that X belongs to /. U

THEOREM 6.0.9. — The left ideal N'rp, N Ny N N'p, N N g is dense in M and
AN, NN o NN, NN g) is dense in H.

Proof. — Let y be in V', NN ¢ NN g and z in V', N A 'y. Taking, by Kaplansky’s
theorem, a bounded family e; in A7, N Ay strongly converging to 1, we get that
R%*(efAy(y)) is weakly converging to R%*(Ag(y)). Taking also a bounded family
fr in R(g%%,\y)* strongly converging to 1, we get that R%#’ (JufierAw(z)) is weakly
converging, when n, k go to infinity, to RS+’ (Ag(2)). Therefore, using the previous
proposition, we get that (wa, (y),J4a4(z) * id)(Up) belongs to the weak closure of
Ny NN g NN, N Ne. By proposition 5.3.6, we get that, for any z € Y1, v,
there exists y; in N 1, NN ¢ NNV g such that Ar, (y;) is weakly converging to Az, (z)
or equivalently R¥*(Ag(y;)) is weakly converging to R**(Ag(x)). Therefore, we get
that (Way (2),J4Ag (2)¥id) (Up ) belongs to the weak closure of V', NA ¢ NN 1, "N . Tt
remains true for z in V', NN ¢ A 7, AN by density. If now 2 belongs to N 7, NN,
and h; is a bounded family in A 'r, N N'w, since Ar,(hiz) = hiAr,(z) is weakly
converging to Az, (z), we finally obtain that, for any z, z in /7, NV 'y, the operator
(WAg (y),JuAg (2) * id)(Ug) belongs to the weak closure of V', NN ¢ NN, N N g.
By density, for all £ € D( 4H,u) and n € D(Hg, u°), the operator (wg,, * id)(Uy)
belongs to the weak closure of A7, N A ¢ N A, NN . Which proves the density of
Nrpg NN g NN, NN g in M by theorem 4.0.6.
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Let g, an increasing sequence of positive elements of M7, N My N M1, N Mo
strongly converging to 1. The operators:

[1 [+
h, = 7/ eftzaf’(gn) dt
7T — 00

are in M, N Mg, analytic with respect to ¥, and, for any z € C, o¥ (h,,) is a bounded
sequence strongly converging to 1. Let now A = f0+°° t de; be the scaling operator. Let
us write h!, = ( I det)hn. These operators are in A, N N 'y, analytic with respect
to ¥, and, for an;/ z € C, oY (hl) is a bounded sequence strongly converging to 1.
Moreover the operators h,, belong also to A7, N V' by lemma 5.1.5 and [VaeO1lal].
Let now z be in V'y. We get that zh!, belongs to N ', NN ¢ NN 1, NN ¢ and that:

Ay (ahy) = Juol; /5 (hy,) Je A ()
is converging to Ay (x) which finishes the proof. O
THEOREM 6.0.10. — Let Y1, w1, be the subset of elements x in N, N Ny N
N1, NN, analytic with respect to both ® and ¥, and such that, for all z,2" € C,

o o0%(z) belongs to Ny NN g N N1, NN a. Then I 1y, w1, o is dense in M and
Ao (Y14 9,1,,0) is dense in H.

Proof. — Let = be a positive operator in My, N My N M7, N M. Let now A = fooo t de;
be the scaling operator and let us define:

" n oo e —n(t?4s%) v _&
Ty = des | — e o, 04 () dsdt
i TJooo J-oo

It is not so difficult to see that x,, is analytic both with respect to ® and ¥. By lemma
5.1.5 and thanks to [VaeOla] and [EN96, 10.12], we see that the operators o (x,,)
and ag’ (z,,) are linear combinations of positive elements in Mr, N Mg NMr, NMe. O

COROLLARY 6.0.11. — There ezist a dense linear subspace E of N ¢ such that A (E)
is dense in L*(M,®) = H and:

JoAs(E) C D( oH,p) N D(Hg,v°)
Proof. — Let E be the linear subspace spanned by the elements of the form e,z where
en are the analytic elements associated to the Radon-Nikodym derivative §, defined

in [VaeOlal, and z belongs to Y1, w1, & It is clear that E is a subset of /¢, dense
in M and that Ag(F) is dense in H. Since E C N ¢ NN ', , we have:

JaAe(E) C D( oH, p)
Using [VaeO1la], we get that:
J@A@(enw) = 5_%J\1/A\p(€nl‘)
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Since e 26" 7 = (en6*%)5%x5’% and, by the previous theorem, that §2z6~2 is a
bounded operator in A 7y, so is enzé~ % and therefore, we have:

5_%.]\1;1\\1/(6”:8) = )\iJ\pAq,(enxé_%) C Jq;Aq/(W\I/ ﬂWTR)
and we get that JpAe(e,x) belongs to D(Hg, u°). By linearity, we get the result. O
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CHAPTER 7

MANAGEABILITY OF THE FUNDAMENTAL UNITARY

In this section, we prove that the fundamental unitary satisfies a proposition similar
to Woronowicz’s manageability of [Wor96]. Following [Eno02, def. 4.1], we define the
notion of weakly regular pseudo-multiplicative unitary which is interesting by itself
but it will be useful for us to get easily von Neumann algebra structure on the dual
structure.

DEFINITION 7.0.12. — We call manageable operator the strictly positive operator
P on Hg such that P?Ag(z) = A% Ag((x)), for all z € V' and t € R.

PROPOSITION 7.0.13. — For allm € M, n € N andt € R, we have:

Pith—it — Tt(m) Pita(n)P—it — CE(O';/(TL))
PUB(n)P™" = B(at (n)) P*3(n)P~" = (o} (n))
Proof. — Straightforward. O

Then, we can define operators P¥s®,P" on Heg®.He and P“aﬁéP“ on
17 14
H¢Q®I@H{> for all t € R.
VO

THEOREM 7.0.14. — The unitary W satisfies a manageability relation. More exactly,
we have:

(UVW*Uu(qB(?av”pa%)Bw) = (UVDWUV" (Jépaggﬁpil/zv)|J¢>q,é(§9apl/2w)

for allv e D(P~2), w e D(P2) and p,q € D(4Hg,v) ND((Hs)y,v°). Moreover, for
all t € R, we have W(P" 50, P") = (P",®3P")W.
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Proof. — Let p,q € D(aHe,v) N D((He)g,v°). For all v € D(DY?) and w €
D(D~'/?), we know that:
(I(id % wqp) (W) Tvjw) = ((id * wp o) (W) PY 2| P~/ 24)
for all v € P(P'/?) and w € D(P~1/2). By 4.0.10, we rewrite the formula:
(U,,W*Ul,(q,é@avﬂpaggﬁw) = (0,0Woayo (J@paggﬁP*l/zv)|J<qu(§9aP1/2w)

Now, we have to prove W*(P“agﬁP“) = (P50, P*)W* for all t € R. First of all,
because of the commutation relation between P and 3, D((Hg)gs,v°) is P*-invariant
and if (¢;);es is a (N°,v°)-basis of (Hg) s, then (P*¢;);c1 is also. Let v € D((Hs)g, v°)
and a € ', N N 'g. We compute:

(P390 P)W* (va 5 A0(@))

=> Pitfiﬁ@a)\tﬂf\@(Tt((wv,ﬁiﬁtcxid)(r(a))))

i€l
=> P”fw@a/\q»((wPuv,Puwjaid)(F(At/ *1(a))))
el
= W*(P“vaggﬁ)\t/2Aq>(n(a))) = W*(P”agg BP“)(UO,S@BAQ(Q)) O

DEFINITION 7.0.15. — A pseudo-multiplicative unitary W w.r.t. «, ,8,/3’ is said to be
weakly regular if the weakly closed linear span of (A%#)* W% where v, w belongs
to D(,H,v) is equal to a(N)'.

PRrROPOSITION 7.0.16. — The opemtorw =o,W*o, from H@g@aH@ onto Hq,aégﬂH@

is a pseudo-multiplicative unitary over N w.r.t. a, (3, /3’ which is weakly regular in the
sense of [Eno02, def. 4.1].

Proof. — By [EV00], we know that Wis a pseudo-multiplicative unitary. We also

—

know that ((A2#)*WpP®)=% < a(N)'. For all v € D(P~2), w € D(Pz) and p,q €
D(oHg,v) N D((Hs)s,v°), we have, by theorem 7.0.14:

((Agvﬁ)*ﬁ?pf’aqlw) = (a,,oWa,,o(Jq)paggﬂp—l/zv)|J¢q3(§ap1/zw)
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and on the other hand:
(R ()R (p)*qlw) = (R™* ()1, R (Jop)" Jaglw)
= (B (0) LAy ((Jaq, Jap) 3,0 ) [0)
— (PR (0) 1,0, (Tag, ap)s, ) [PV 20)
— (B (P20 A2 A, (Tog, Jop) 5, |PY2w)
= (R*V(P~Y2p)A (<J¢p,J@q>B’V?‘)|P1/2w)
= (a((Jap, J@Q)g,yz)P_l/271|P1/2w)
(Jcppﬁ(&1 _1/2v|J¢qé(§aP1/2'w)
There exists = € Hq;/g(%)qu> such that o,cWo,.E2 = Jép/é@ap_l/zv since W is onto.
By definition, there exists a net (EZQ J¢p};a§0>5P‘1/2v}'€)i€1 which converges to =.
Then (( Z(zi()\ Py Wp “glw))ser converges to:
(J,,oWJ,,o:|Jq>qB(§>aP1/2 w) = (Jop®a P~V 0| Jpq®a P/ ?w)
= (R*"(v)R*"(p)"q|w)
Then, we obtain a(N) = (R*”(v)R*"(p)*) ™" C ((wyp * id)(/W?J,,o»_W. O
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CHAPTER 8

DUALITY

In this section, a dual measured quantum groupoid is constructed thanks to modu-
lus and scaling operator. Then, we obtain a bi-duality theorem which generalizes Pon-
tryagin duality, locally compact quantum groups duality and duality for groupoids.
Finally, we get Heisenberg’s relations.

8.1. Dual structure

DEFINITION 8.1.1

The weak closure of the linear span of (wg , *id)(W'), where £ € D((Hgs)g,v°) and
n € D(,Hs,v), is denoted by M. It’s a von Neumann algebra because weak regularity
of W (prop. 7.0.16) and [Eno02, prop. 3.2].

DEFINITION 8.1.2. — We put I the application from M into Z’(Hq;/@@aH@) such that,

174

for all z € J/M\, we have:

I'(z) = al,oW(xg%al)W*a,,

PROPOSITION 8.1.3. — The 5-uple (N, ]\/Z,a,ﬁ,f‘) is a Hopf-bimodule called dual
Hopf-bimodule.

Proof. — The proposition comes from theorems 6.2 and 6.3 of [EV00]| applied to
W =0, W¥o,. O

LEMMA 8.1.4. — Let call M™P the subspace of M, spanned by the positive and normal
forms such that there exists k € RT and both w o a and w o B are dominated by kv.
Then, M2P is dense *_subalgebra of M, such that, for all m € M, we have:

wp(m) = p((wpkaid)(I'(m))) — and  w*(m) = w o R(m*)
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Proof. — By definition wy belongs to M,. There exists £ € D(Hg, v°) such that w =
we. For all n € N, we have:

wi(a(n*n)) = p((wepkaid) (D(a(n"n)))

= (O ) (@ m)sRaDA) = W) M)

= wo a((a(n)é, a(n)€)s,0) < kv({a(n)€, a(n)é)s.m) = klla(n)|]?
= kw o a(n*n) < k*v(n*n)

Also, we can prove that wyu o 3 is dominated by k?v so that wpu belongs to MXP.
Since Roa = 3, My # is *_stable. We have to prove associativity of product and that
(wp)* = p*w*. The first property comes from co-associativity of co-product and the
second one comes from co-involution property. We only check the first one because the
second proof is very similar computation. Let w, u, y € M2 and &,¢',¢" € D(Hg,v°)
the corresponding vectors. Then, for all m € M, it is easy to see that:

(wi)x(z) = (Caxaid)(T(2))(€s®at 58at”)|Es@at sBat”)
= ((idg*aT)(T(2))(£p@at 3Bat")[€sBat s@at")
= (T ((wepkad) (C(@) (€ 5@a€)IE 5@at")
= px((wWepraid)(I'(2))) = w(px)(z)
Density condition comes from corollary 6.0.11 for example. 0

COROLLARY 8.1.5. — The contractive application T from M2P o M such that
T(w) = (w*1d)(W) is 1-1 and multiplicative.

Proof. — The application 7 is injective because of theorem 4.0.6. We prove multiplica-
tivity of 7 for positive linear forms because the general case comes then from linearity.
Let £,n € D(oH,v) N D(Hp,v°), GG € D(oH,v) and ¢ € D(Hz,v°). By proposition
3.6.3 of the first part, we know that:

((we * id) (W) (wy * id) (W)(11C2)

is equal to the scalar product of
(Uuoa%gl)(1a](§3,[3w)‘72u(1,8%a‘7v0)(1B%aw)(€ﬂ§?an,@§’a@)
by [£5®amn]a® (2. Then, by pseudo-multiplicativity of W, this equal to:
((W*al(%,é1)(1a1§;§W)(Wﬂ%al)(gﬁ@anﬂ§>a<1)|[gﬁ@an]a;@ﬁCZ)
= ((laj(\%gw)w(gﬁ@an)ﬁ@a(l|W(€ﬁ(§)an)a§/@€2)
= (L@ (id * w &) (W)W (E5@an) W (€58 an)
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Since T is implemented by W, this is equal to:
(P((d * wey 62 ) (W) (€sRam)|(€5Dam)) = (wewn)((id * wey ¢, ) (W)
= ((wewn) *id)(W)G1[C2)
By density of D(,H,v) and D(HB’ v°) in H, we get that # is multiplicative. O

To get a measured quantum groupoid from the dual Hopf-bimodule, we have to
exhibit, first of all, a co-involution. This is done and the following proposition:

PROPOSITION 8.1.6. — There exists a unique *-anti-automorphism R of]/\i\ such that,
for all w € Ma’ﬁ, we have R(7(w)) = #(w o R). Moreover R(z) = Jpz*Jo for all
z € M and R is a co-involution.
Proof. — For all £ € D(,(Hgs),v) and n € D((Hg)g,v°), we have:
(Jo#t(w o R)"Jot|n) = (#(w o R)Jon|Jag) = ((w o R *id)(W)Jan|Jef)
= w o R((id * wyyn,s0e(W)) = w((id x we n) (W)) = (F(w)&[n)

So, if we define R by E(m) = Jox*Jg for all z € M, we obtain a *-anti-automorphism
of M such that, for all weld M" | we have ﬁ(A( )) = T(wo R) Uniqueness comes
from density of #(M?) in M. By definition, we have Roa = . So, we have to check
co-involution property to finish the proof. For all w € M, bl , we compute:

L((w)) = W*(La@p(w * id) (W)W = 0,0 W ((w *id)(W)5Qa) W0y,
= oyo(w *id *x id)((1 Q%BW)(Wgcj%al)ﬂg%aW*))a,,
By pseudo-multiplicativity of W, this is equal to:
oyo(w * id * 'id)((Wa]%goél)(Uyoa]@)ﬁl)(la](\%ﬁW)O'Q,,(15%a0’yo))0},
= (w *1d * id)((1(11(%)50',,0)(Wa]@”él)(dl,oa]@ﬁl)(1(11@5”/)02”)

Then, we get:
I'o R(#(w)) = (#(w o R))

= (UJ o R xid x id)((laj(\%)ﬂ*a,,o)(Wa%ﬁl)(o‘,,oaj(\%ﬁl)(IQJ@OBW)G'QV)
Now, by proposition 4.0.10, we know that: W = (Iﬁ%aLL})W*(Iﬁ%aJ@) so that:
(1Q%Bayo)(wa1§gﬁl)(a,,oa%al)(laj@)@W)azy
= (Iaj(\g)ﬂJ@al@jﬁJ@)[(Wagﬁl)(Jyoa]@)ﬁl)(1%@)5W)0'2y(1,3%a0',,o)]*(Iﬁ%atﬂpé%a:ﬂp)
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Since R is implemented by I and R is implemented by Jg, we have:
I o R(#(w))
= (Ra]‘f]oﬂR)((w * id)[(Waj‘\%ﬁl)(Uuoa%g%l)(1a1§’,ﬁW)02V(lﬁ%aau°)])
= (Rag 5B) o o 0 F(#(w)) = s 0 (Rsxa B) 0 T((w)
A density argument enables us to conclude. O

Then, we have to construct a left-invariant operator-valued weight Tz from M to
a(N). We follow J. Kustermans and S. Vaes’ paper [KV00]: we define in fact a GNS
construction (H, ¢, A) and we give a core for A. Let introduce the space J of w € M
such that there exists k € RT and |w(z*)| < k||Ag(z)|| for all z € V¢ N N 1, . Then,
by Riesz’ theorem, there exists £(w) € H such that:

w(z®) = (§(w)|Ae(x))
LEMMA 8.1.7. — The set {{(w)| w € I} is dense in H.

Proof. — Let a,b € E define in corollary 6.0.11. Then wp, (4),a4(») belongs to MP
and we have, for all z € Ve N N 1, :

Wis(a)he () (@) = @(0°2"a) = B(z"a0Z;(b")) = (Aa(acZ;(b*))|As ()

s0 that wa, (a),A,(5) Delongs to J and we have §(wa, (), A0 () = Ag(ac?,(b*)) which
is dense in H. O

In the following, for all form w, we denote by @ the form such that w(z) = w(z*).
Observe that w € M2P implies that @ belongs also to MO,

PROPOSITION 8.1.8. — The space J is a dense left ideal of M2P such that, for all
we M®? and p € 4, we have:

§(wp) = #(w)€(n)

Proof. — If £, n belong to D(oH,v)ND(Hg,v°), then we ,, belongs to MP . Moreover,
if  belongs also to D(igHe,®) = JoAs(N ), then we have:

|we.n(@¥)| = [(€lzn)| < [[€]lllenl] < KlIE][[Ae ()]

so that, by corollary 6.0.11, we can deduce that ./ is dense in M and therefore in
M,. Now, for all z € X' N N r,, we have:

wi(a®) = p((wprald)L(2")) = u((@sxaid)T(2))*)
= (€(W)|Aa((@praid)I(2))) = (£()|(@ * 1) (W) As(2))
= ((wid)(W)&(u)[As(z))
so that the proposition holds. U
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DEFINITION 8.1.9. — For all t € R and w € M,, we define elements of M, such that,
for all x € M:

T (w)(w) =womn(z), 0 (w)(x)= w(&itx), and  p(w)(z) = w(é‘itT,t(x))

PROPOSITION 8.1.10. — The applications 7*,0* and p define strongly continuous one-
parameter groups of *-automorphisms of M, Moreover, they leave J stable and, for
allt € R and w € J, we have:

E(rf (W) = NTEPTE (W), (5 (@) = AR el TaE(w),
and  £(pr(w)) = P*Jg6" Joé(w)
Proof. — Since 1;(0) = 4, it is easy to see that 7* and ¢* commute with each other
and, for all ¢t € R, we have p, = 7*,06*, so that the last statement comes from the two
first one. Since 7 is implemented by P, 7* defines a strongly continuous one-parameter

representation of M,. It is the same for §*. If w belongs to Mf‘”g, then there exists
k € R+ such that, for all t € R, we have:

TT(w)oa=woroa=woaooy <kvoo, =kv

Moreover, there exists £ € D(,H,v) N D(Hg, ") such that w = we and, for all t € R
and n € N, we have:

8t(w)(a(n*n)) = (8" a(n"n)¢l€) = (a(n)é|a(n)s~"¢)
= (a(n)é]6 ™" a(ypo) (n)€))
so that we get:
167 (W) (a(n™n))| < kl[A, (n)]]* = kv(n"n)

A similar proof with § allows us to deduce that 7*,§* and p belongs to M2 as soon
as w belongs to My # Tt is also straightforward to check that 7;° is a *-automorphism
of M? thanks to T oT = (TtﬁﬁaTt) oI’ and the commutation between 7 and R. Also,

it is also straightforward to check that d; is a *-automorphism of M, # thanks to
() = 5[3%&5 and R(0) = 6. Finally, for all z € A ¢ N 7, , we have, on one hand:

(W) (@") = w(n(z*)) = wo ry(z*) = ()| As(m(2)))
= (EW)INZ PAg(2)) = (A7 P7¢(w)|As(x))
and on the other hand:
Si(w)(@*) = w((267)*) = (£(w)|Ag(267™))
= (E(W)|Jad " T A () = (A2 Jg0™" Ja€(w)|Aa(z))
That finishes the proof. O
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PROPOSITION 8.1.11. — There exists wunique strongly continuous one-parameter
groups 7,% and G of *-automorphisms of M such that, for allt € R and w € M,

we have:

n(@Ww)) =7(t(w), F@(W)) =7(002(w) and G (T(w)) = T(pr(w))
Moreover, for allt € R and z € ]\//.7, the following properties hold:

- ?t(iE) = Pitilﬁp_it, Et(x) = J@&itg]@qu)(s_it.]q)
and 6y(z) = Pt Jg6" JpxJpd~H Jo P~

— 7, K and & commute with each other. Also T and R do.

—Roa=aandToa=aool =Goa

- (Repta) 0 F=To7, (idgxafr) o T=ToR and (Tepradt) o F=Togd,
Proof. — By definition, we have 0 = Tok = Ko T so that we just have to do the proof
for 7 and %. For all w € M2* and t € R, we compute the values of Pi7(w)P~ and
Jo6 Jot(w)Jod " Jp. Let u € J. Since #(w) belongs to B(N)’, we have on one hand:

Pi(w) P (i) = P*i(w)A2E(r] (1) = A% P*E(wr] (1))
=&t (W) = (77 (w))€ (1)
and on the other hand:
Jp0" Joit(w) Job " Jab(n) = Job" Jai (w)AZ £(6; (1))
=&(6% (w)p) = F(6%4(w))E()

So, if we define 7; by Ti(z) = P*zP~% and %; by %;(z) = Jo6*JoxJpd *Jp, then
we get strongly continuous *-automorphism of M satisfying the first property. By
definition, 7 is implemented by P and R by Jg. Since P and Jg commute with each
other, so 7 and R do. Now, 7 and 7 coincide on a(N) C M N M because they are both
i:implemented by P. Also T coincide with id on M N M by definition. By the way, we

can give a meaning for formulas of the fourth point. Thanks to manageability of W,
we have, for allt € R and z € M:

L(F(z)) = o, W (P 2P~ 5@, )W "0,
= (Pitﬁ%apit)O',,W(l‘g%a1)W*UV(P7itﬁ%aP7it)
= (Pt (@)
Finally, since the left leg of W leaves in M, we have:
L(Ri(z)) = 0, W (Jo8" JoxJad ™" Jas@al) W 0,
= (lé%aJ@éitj.:p)UVW(iL‘g%a1)W*0',,(].B%)ajq>(s_itjq>)

= (idéj*vaat)f(m) O
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LEMMA 8.1.12. — We have (wRid)(W™) = (72, ,(w) *id)(W) for allw € D(7*, »).

Proof. — We know that (id x u)(W) belongs to 9(S) and that S((id * u)(W) = (id =
1)(W*). So (i) (W) belongs to D(r_i/») and _i s (i) (W)) = R((id* p)(W*)).
By applying w to the previous equation, we easily get the result. O

Since ¥ = ® o R, there exists an anti-unitary ¢ from Hg onto Hg such that
JAy(z) = Ao (R(z*)) for all z € Vg NN 7y,

PROPOSITION 8.1.13. — For all w € J and p € D(p;/2), wp belongs to J and we
have:

§(wp) = J*ﬁ(mm(u))*ﬂ(w)

Proof. — For all n € N, we put e, = % [ exp(—n?t?)ddt so that e,is analytic with
respect to 0®, Npe, C Ne and Ned 2e, C Ny. It is sufficient to prove the
proposition for all u € D(7*, /2(52» /2)- Then, since § is a co-character, we can compute,
for all x € N p:

Aa((idgraP)T (zen)) = Au((idgraP)T (zen)d™2)
= A ((idgxam)T(zend ™ )(15Qad ™))
The computation goes on as follow:
Ao ((idsxam)T (zen)) = Au((dgxad”, ()T (20 2 en))
=" Aa(R((idg 06" /o ()T (28 e0)"))
=" Aa((674/3(i) © Raxaid)D(R(x8 ™ Fen)"))
=" (07 3/2(n) © R xid) (W) Ag (R(20™ % en)"))
=" (074/2() 0 R id)(W")J Ay (25 Zep))
=" (r _1/2 _@/2( ) *id)(W)J As(zen)) = I ( (pis2(p p) *id)(W)J A (zen))
Now, we have:
(wi)(wen)) = (Woral)T(wen)") = w((idgxam)T((wen)"))
= (€@)IAa ((idgram)T(@en)) = (€@ 7 (pija(w)S s (zen))
= (S 7 (pij2(w)) JEW)|Aa (en))

Since (zep, )nen is converging to = and (Ag(zen,))nen is converging to Ag (), we finally
have:

(wp) (@) = (I 7 (pisa()) JE(W) Ao (2
so that wy € J and &(wp) = J 7 (pi/2(1)) J§ (w). O
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COROLLARY 8.1.14. — There exists a unique closed densely defined operator A from
D(A) c M to Hy such that 7() is a core for A and A(7(w)) = £(w) for all w € J.

Proof. — Let (wn)nen be a sequence of 4 and let w € Hg such that (7 (wp))nen is
converging to 0 and (&£, )nen is converging to w. If 4 belongs to D(p;/2) NS, then we
have, by the previous proposition, for all n € N:

ﬁ-(w'ﬂ)g(iu‘) j pz/2 jg Wn

Take the limit to get that 0 = J"#(p;/a(u))*Jw. Since it is easy to check that
piy2(D(pis2) N J) is dense in J we get that w = 0. So the formula of the propo-
sition defines a closable operator and its closure satisfy all expected conditions. [

THEOREM 8.1.15. — There exists a unique normal semi-finite faithful weight TZ :
M- a(N) such that the normal semi-finite faithful weight d=voalo 1/“; admits
(H, ¢, K) as GNS construction. Moreover, ¢ is the modular group of :I;, the closure of
PJsdJs (PAand JodJs commute with each other) coincide with the modular operator
of ® and o= (B(n)) = B(y_(n)) for allt e R and n € N.

Proof. — Since 7 is a multiplicative application and since ./ is a left ideal of M2,
zy belongs to 7() for all z € #(MP*) and y € () so, by definition, we have
A(zy) = zA(y). Using the closeness of A, we show that D(A) is a left ideal of M and
A(zy) = zA(y) for all z € M and y € D(A).

By proposition 8.1.11, 5;(z) belongs to D(A) for all z € 7(J) and t € R and
A(Gi(z)) = Pt Jg6" JpA(z). Using again the closeness of A, we get that 5;(z) belongs
to D(A) for all z € D(A) and ¢ € R and we have:

A(Gi(z)) = P Jg6" JpA(z)

By proposition 8.1.13, for all w € @(p,/g) and z € 7(Y), 27 (w) belongs to D(A)
and we have A(z7(w)) = J°% T(pisa(w N*IA(z) = S 0i/2(T(pij2)) N)*JA(z). Since
7(D(pij2)) is dense in D(7;/2) and - mvarlant 7(D(pis2)) is a core for 7. The
closeness of A allows us to conclude that zy belongs to D(A) for all z € D(A) and
y € D(0;/2) and we have:

zy) = 51 /2(y)* I (z)

Therefore we know, by proposition 5.14 of [Kus97], that there exists a normal
semi-finite weight ® on M such that (H,¢, A) is a GNS construction for ® and 7 is
the modular group of ®. Moreover, thanks to the previous equation, we have:

2y) = JGi2(y)* JA ()
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for all z € X'z and y € D(7;/2) N N 5. We easily get faithfulness of ® from this last
relation. We already know that a(N) C M N M and, by proposition 8.1.11 we have,
for all n € N:

o (a(n)) = a(ol(n) = o1 (a(n))

By Haagerup’s existence theorem, we get the normal semi-finite faithful weight 3.
Finally, we check the last property. For all n € N and t € R, we have:

0¥ (B(n)) = P Jpdta(n*)6~ " Jo P~ = P Jpa(y_s0”,(n*)) Jo P
= PUB(y-00%,(n)) P~ = B(7-4(n))
because v and ¢” commute with each other. O

LEMMA 8.1.16. — For allz € N7z N Ny, A(z) belongs to D(Hg,°) and we have

R (A(z)) = Az (2).

Proof. — By definition Jg and ¢ implement the same operator on a(N) C M N M so
that Jgza(n*)Jgz = B(n) for alln € N. Then the lemma is a consequence of proposition
3.2.2. O

LEMMA 8.1.17. — For all { € D((He)g,v°), alln € D((Hs)s,v°) N D(aHe,v°) and
alz e Ng NN £, (wn,53®aid)(f‘(m)) belongs to N g NN 7 and we have:

A(wn,e p®aid)([(@))) = (id * wye) (W)A(2)

Proof. — Thanks to the pentagonal relation, we can compute for all w € J:
(@£ 5®aid) (D(7(@))) = (W e §®aid) (F((w * id) (W)
= (wn,gé@aid)(a,,oW((w * id)(W)g%al)W*a,,)
= (Wrid x wye) (La@sW)(W58a1) (150 W7))
= (W wpe* id)((Wag?oﬁl)(0'1/"a]‘%él)(1a1‘§)ﬁw)‘7211(1ﬂ%a‘7v0))
= #((id * wy ¢) (W)w)

Then, by definition, (wn,5ﬁ®aid)(f‘(ﬁ'(w))) belongs to A3 N N7 for all w € J and
we have:

A(wn e §®aid)(D(#(@)))) = (id * wy,e) (WA (7 (w))

Closeness of A finishes the proof. O

PROPOSITION 8.1.18. — The operator-valued weight fl/;z is left invariant.
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Proof. — Let (&)ier be a (N, v°)-basis of (He)s. For allz € A'g NNz and n €
D((He),v°) N D(aHa,v), we have:

B((wnxaid) C(@"0)) = 3 B((@ne,xaid) C(@))" (@6, xaid) (C))
el

= 2 A (wng, graid) C@DI® = D [1(id # wye, ) (W)A ()]

iel el
= (o) p5°R(@) A(@)) = | A(@)p@an]”
= (a({A@), A(@))gponln) = (Tr(a"z)nln) O

To have a measured quantum groupoid, we need to check a relation between the
co-involution R and T. By the way, it will give a link between the two natural GNS
constructions of ®; = ¥ = ® o R. We put Sg,Jz and Az to be the fundamental
objects associated to ) by the Tomita’s theory in the GNS construction (H, ¢, /AX)

DEFINITION 8.1.19. — We put J* the subset of J consisting of elements of the form
WAy (a),Ae(b) Where a,b belong to E.

LEMMA 8.1.20. — We have that %(Ju) is a core for A and K(%(Jﬁ)) is a core for Sz
and for Aé for all z € C.

Proof. — This lemma comes from standard arguments and by definition of A. O

PROPOSITION 8.1.21. — For allz € E, we have Ag(x) belongs to D(S%) and we have:
SzAe(z) = Ag (S~ (x)*)

Moreover Ag(E) is a core for S.

Proof. — Let w € J*. For all RS Mf’a, we have:

p(@(w)*) = p((w *id)(W)*) = &((d * p)(W)) = w o S((id * p)(W))
((idx p)(W)) = p((@ o r_s 1d)(W)) = p(F(w oT_4))

=wroT
2 2

Then, we have:
(S3AFW))|As) = (AFW)")|As) = (AFW" o 7_1)[As)) = (W o 7_y)]
(%) = w(S7(2)) = (Ae (571 (2)")E()) = (Aa (S (2)")[A(F(w)))

=w oT_3s
2

Thus the previous lemma and the fact that £(wa,(a),ae)) = Aa(ac®;(b*)) implies
the proposition. O

PROPOSITION 8.1.22. — For all x € N1, N Ny, we have:
Jgho,(z) = Aa(R(z"))
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Proof. — Define the anti-unitary 4 of H such that JAs,(z) = Ae(R(z*)) for all
@ € N1 NNy Let a belongs to E. For all n € N, we put e, = 7= [ exp(—n?t?)d'dt

so that e, is analytic with respect to 6%, Nge, C N and ché_%en Cc Ng.
Since 75(8) = §, we see that 75(e,) = e, for all s € R, hence e, € @(7’%‘) and
Ti (en) = en. By assumption a belongs to @(T%‘) so that ae, belongs to @(T%) and
Ty (aen) = Ti (a)e,. Hence Ty (ae,)d2 is a bounded operator and its closure is equal to
Ty (a)(62e,). We recall that r;(z) is equal, by definition, to 7,(m)s® for all t € R and
m € M. Then ae, belongs to (k) and £ (aen) = 75 (a) (62e,). By assumption, Ti
belongs to A"y NN 1. So we see that r (ae,)d~2 is bounded and its closure equals
Ti (a)en, € Ny N N7, implying that ﬁ%(aen) € N NN 'p, and:

Ao (ks (aen)) = Ao (k

By definition, we have A%A@ (z) = As(ke(x)), we easily get that Ag(ae,) belongs to
@(Aé%) and:

(a€0)577) = Mg, (3 (a)en)

z
2

 (aen)) = Aa, (T

K3
2

(a)en)

By closedness of A:;%, this implies that Ag(a) belongs to D(A

Ag?Ag(aen) = Ao (k

Ti
2

=

é ) and:

AZ7As(a) = Aay (73 (a)

Ti
2

Consequently, we have:

A Ao (a) = Jha, (75 () = Aa (57 (a)") = SiAa(a) = J3AS * As(a)

l\)\b—' N\*

Since Ag(F) is a core for AA = J3S%, we have done. O

Finally, we have to recognize what is w.

PROPOSITION 8.1.23. — The unitary o, W*o, is the fundamental unitary associated
with the dual Hopf-bimodule structure.

Proof. — The fundamental unitary associated with the dual quantum groupoid is de-
noted by W. By definition of W and lemma 8.1.17, we have for all { € D(,Hg,v) N
D((Hs)p,v°), n € D((Ho)g,v°) and x € Vg NN 7

(We.n *1d)(W)A(2) = R((wengaid) (T(2)))
= (i * we ) (W)A(z) = (we,p *id) (0,0 W0 )A(z)

from which we easily deduce that W= o W*o,. ]
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THEOREM 8.1.24. — (N, M\,a,ﬁ,f,ﬁ,ﬁ,ﬁ v) is a measured quantum groupoid
called dual quantum groupoid of (N,M,«,3,T, Ty, R, 7,v). Fundamental objects
of the dual quantum groupoid (N, M,o,3,T,R,Ty,7, v) are given, for allx € M and
t € R, by:

i) W =0,W*0, is the fundamental unitary,
ii) R(x) = Jex*Jp is the unitary antipode and Ti(x) = Pz P~% is the scaling

group,
ili) A\ = A7! is the scaling operator and the closure of P_1J¢5J¢6_1A;1 is the
modulus 9§,

iv) P = P is the manipulation operator,

v) in the GNS construction (H, L,K), the modular operator Ag is the closure of
PJpd~Js and the modular conjugation satisfies JgAo,(x) = Ag(R(z*)) for all
z €N, NN g.

Proof. — By proposition 8.1.3, (N, ]\//T, a, B, f) is a Hopf-bimodule. By theorem 8.1.15,
it admits a normal semi-finite faithful left-invariant operator-valued weight ﬁ By
proposition 8.1.6, R is a co-involution for this structure and, by definition, we have
R(Fw)) = #(wo R) for all w € M*. Since J; = 4 implement R on M and
since = W = 0, W*0,, we get R((id * LUJ¢U7w)(W)) = (id * chpw,v)(W). By proposi-
tion 8.1.11, 7 is a scaling group. We just have to check that the one-parameter group
of automorphisms 5 of N leaves v invariant. However, we have already noticed, in
theorem 8.1.15, that we have 4; = y_; for all ¢ € R. By hypothesis over ~, we have
done.

By proposition 8.1.10 and by definition of 7, 7(J) is stable under 7; ¢ € R and we
have, for all w € J:

AF(FW)) = AFWo1_¢)) = E(w o 7—y) = AT PPA(R(w))

Now, by closeness of A, we get that P*A(z) = A" 5A(7,(z)) for all z € Ny NN
and t € R. From this and from lemma 5.1.5, we get that:

A—ist — [D@ 0T 4 D(/I;]t = [Dcf o Zf?"ﬁ : D</15]t = Nist

and  P"*A(z) = A2A(R(z)) = P"A(z) O

The whole picture is not completely drawn yet because the value of s is missing.
For this, we need the bi-duality theorem. The expression will finally be given in 8.2.2.
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8.2. Bi-duality theorem

In this section, we compute fundamental objects of the dual structure. Also, we
can construct the bi-dual quantum groupoid that is the dual quantum groupoid of
the dual quantum groupoid and we establish a bi-duality theorem.

THEOREM 8.2. 1 — The measured quantum groupoid (N, M, « /)’,F TL,R,7,v) and

AN =~ =~

its bi-dual (N, M a,B,T,Tp, R, T,v) coincide. Moreover, we have A= Ag.

Proof. — We know that Jg = /. Then, on a(N) C M N M, we have:

B(n) = Jza(n)*Jz = Ja(n)"d = R(a(n)) = B(n)
By proposition 8.1.23, we have:

—
-

W = a,,/V[7*cr,, =W
so that we deduce that the Hopf-bimodule and its bi-dual coincide. We denote by

%(w) = (w*id)(W) = (id * w)(W*) for all w € M h . By definition of R and R, we
have for all £, € D(,H,v):

X))

(T(Wisen) = T(Wigem o R)

(Wign.e) = (d * Wrgne) (W)

I:A\E((id *Wipen)(W™)) =

2

so that R = R. Let w € /. On note @ = 3(w). Then, for all © € 7, we have:
w(#(0)") = w((© +id)(W)") = w((© *id)(W")) = O((id * w)(W"))
= 6(a*) = (£(0)As(a)) = (As(a)|A(7(8)))
Since 7(Y) is a core for A, this implies w(z*) = (Ag(a)|A(z)) for all z € Ng. By
definition of A we get A( (w )) As(a) = A¢(§(w)). Since 721'(2) is a core for //Ai and
by closeness of Ap we have A(y) = Ag(y) for all y € 5. In particular Ty, = Ty

Finally, we have to compute 7. For example, we can use proposition 5.3.4, to get for
allt e R:

(Utﬂ* ool =Tor

and we can conclude by injectivity of I'. O

PRrROPOSITION 8.2.2. — For allt € R, we have:

S\it — PfitJ(}&fith)(sfitA;it
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Proof. — By theorem 8.1.24, we know that A% = P Jsd"Jp so that we get, thanks
to the bi-duality theorem that:

5it _ P—ZtJa;AltJ&; — P_ZtJCBAZtJEI;

From the previous proposition, it is easy to check on Ag;(z) that J3AJz coincide
with the modular operator of ¥ in the GNS construction (H, ¢, Ag,). Now, by proposi-
tion 2.5 of [Vae01al, this last modular operator is equal to the closure of Jpd 1 J56A4
so that we get the result. O

REMARK 8.2.3. — From this last expression of g, we can directly verify the following
properties which should be satisfied by duality, for all x € M and s,t € R:

0,;5 (S\zt) _ /)\\iStB\it, U?oﬁ(x) _ gito_;? (x)gfit and f(dzt) _ 6it,é®a6it

THEOREM 8.2.4. — The following properties and their dual hold:
- 1¢(m) = AgmAgt and R(m)=Jgm*Jg foralltcR and m e M
— W(A;ﬁg@QAqﬂ = (A@S%Aq,)w
and W(J&;aggBJq)) = (J§ﬂ(§a‘]¢')w*
- AgAf; = X“AﬁﬁAg, ALgis = Nstgis A% and Ag&is = (5isAg
- Jzdo = i JoJg, JoPJo=P' and Jg0Jg = 6t
— PSAY = A¥Ps  and P65 = 68 P

Proof. — Since § is affiliated to M, Jg8.J3 is affiliated to M’ so that, for all £ € R and
m € M, we have:

AZmAZY = P Jp8" JemJed~ " Jo P~ = P*mP~" = 7,(m)

We have already noticed that R is implemented by Jz by definition of ® but we can
recover this point thanks to the bi-duality theorem and the fact that, by definition, R
is implemented by Js. Now, since we have R((id * we, j,5)(W)) = (id * wy, 7,¢) (W) for
all§,n € D(oH,v), we easily get the second equality of the second point from the first
point. Also, we know that 7¢((id * we,s45)(W)) = (id * waire ait 75n) (W) for all t € R
from which and from the first point we get the first equality of the second point. Since
7 and o commute each other, it is easy to check on Ag(z) the first equality of the last
point. Since 7(4) = §, we get the last equality of the last point. The last equality of
the third point comes from the fact that 7 is implemented by Az and that 7(5) = 4.
By proposition 5.2 of [VaeO1la], we have o (§%°) = A*!§% so that we get the second
equality of the third point. Then, for all s,t € R, we have:

AZAY = P Jg0" Jo AF = P Je6" AF Js
— PitJ¢A7iStAg6itJ¢, — )\iStAgPitJ(}(Sith) — )\zstAgAg
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As far as the fourth point is concerned, the last equality comes from the fact that

R is implemented by J5 and R(§) = 6~ '. The second one can be directly checked

on Ag(z). Let us prove the first equality. Let = belongs to A'¢ N D(c¥). Then, it
2

is easy to see that R(z*) belongs to ' N D(c?). Remembering that the modular
2

conjugation of ¥ = &4 associated with the GNS construction (H,:,Ag,) is equal to
A1 by proposition 2.5 of [VaeOla], we get:

JgJoha, (z) = NJgAT Jp A, () = A1 J5As, (0¥ (") = AiAg(Ro o (2))
= A%A¢(a‘% (R(z*)*) = AT JpAg(R(z*)) = A JpJ3 A, (z) O

8.3. Heisenberg’s relations

We recall that a(N) U B(N) ¢ M c B(N) and a(N) U B(N) ¢ M c B(N)
in Z(H).
PROPOSITION 8.3.1. — For allz € M’ and y € M, we have:

W(zs@ay) = (2a@sy)W
Proof. — Straightforward by proposition 3.4.3 and by definition of M. O
PROPOSITION 8.3.2. — The following equalities hold:
i) MnNM =a(N) i) M'NnM =pB(N)
i) MnM =p(N) i) M'NM =JsB(N)Js

Proof. — We start to prove i). We already know that M N M> B(N). In the other
way, let m € M N M. Then, we have by the previous proposition and the unitarity of
W:

I'(m) = W*(lal%zi[,m)W = W*W(lg%am) = 15%am
so that m belongs to 8(N)by proposition 9.2.25. Apply R to get iii) and then apply
R to get iv). Finally apply R to i) to get ii). O
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PART 11

EXAMPLES






In this part, we present a variety of measured quantum groupoids. First of all,
we are interested in the so-called adapted measured quantum groupoids. These are a
class of measured quantum groupoids with much less complicated axioms because we
are able to construct the antipode. The axiomatic is inspired by J. Kustermans and
S. Vaes’ locally quantum groups with a weak condition on the basis. That is what
we develop first. We also characterize adapted measured quantum groupoids and
their dual among measured quantum groupoids. Then, we give different examples
of adapted measured quantum groupoids and, in particular, the case of groupoids
and quantum groups. In a second time, we investigate inclusions of von Neumann
algebras of depth 2 which can be seen as measured quantum groupoids but they are
not in general of adapted measured quantum groupoids’ type. Finally, we explain how
to produce new examples from well known measured quantum groupoids thanks to
simple operations.

We want to lay stress on a fact: historically speaking, the notion of adapted mea-
sured quantum groupoid was the first one we introduce. The main interest of the
structure is the rather quite simple axioms. So it is easier to find examples (see sec-
tions 10, 11 12, 13). But we discovered examples of quantum space quantum groupoid
(section 14) and pairs quantum groupoid (section 15) duals of which are not adapted
measured quantum groupoid anymore that is we have not a dual structure within cat-
egory of adapted measured quantum groupoid. Moreover this category do not cover
all inclusions of von Neumann algebras (section 16). That’s why we introduce a larger
category the now so-called measured quantum groupoid which answer all the prob-

lems.
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CHAPTER 9

ADAPTED MEASURED QUANTUM GROUPOIDS

In this section, we introduce a new natural hypothesis which gives a link between
the right (resp. left) invariant operator-valued weight and the (resp. anti-) represen-
tation of the basis.

9.1. Definitions

DEFINITION 9.1.1

We say that a n.s.f. operator-valued weight Ty, from M to «(N) is S-adapted if
there exists a n.s.f. weight v;, on N such that:

o= (B(n)) = B(a¥%(n))
for all n € N and t € R. We also say that T}, is B-adapted w.r.t. vp.

We say that a n.s.f. operator-valued weight T from M to B(NN) is a-adapted if
there exists a n.s.f. weight vg on N such that:

a{"(a(n)) = a(oy"(n))

for all n € N and t € R. We also say that Ty is a-adapted w.r.t. vg.

DEFINITION 9.1.2. — A Hopf bimodule (N, M, «, 5,T") with left (resp. right) invariant
n.s.f. operator-valued weight Ty, (resp. Tg) from M to a(N) (resp. B(N)) is said to
be a adapted measured quantum groupoid if there exists a n.s.f. weight v on N
such that Ty, is f-adapted w.r.t. v and Tk is a-adapted w.r.t. v. Then, we denote by
(N,M,a,38,T,v, T, Tr) the adapted measured quantum groupoid and we say that v
is quasi-invariant.

REMARK 9.1.3. — If a n.s.f. operator-valued weight T}, from M to «(N) is S-adapted
w.r.t. v and if R is a co-involution of M, then the n.s.f. operator-valued weight RoT;oR
from M to B(N) is a-adapted w.r.t. the same weight v.
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LEMMA 9.1.4. — If p is a n.s.f. weight on N and if an operator-valued weight Ty, is
B-adapted w.r.t. v, then there exists an operator-valued weight S* from M to S(N),
which is a-adapted w.r.t. p such that poo ' oTy = vo B! oSt Also, if x is
a n.s.f. weight on N and if an operator-valued weight Tr is a-adapted w.r.t. v, then
there exists an operator-valued weight S, from M to a(N) normal, which is 8-adapted
w.r.t. X such that xo B ' oTp=vofB10S,.

Proof. — For all n € N and t € R, we have afoa_lOTL (B(n)) = atyo’g_l(ﬁ(n)). By
Haagerup’s theorem, we obtain the existence of S* which is clearly adapted. The
second part of the lemma is very similar. O

Let (N, M,a,8,T,v,T,Tg) be an adapted measured quantum groupoid. Then the
opposite adapted measured quantum groupoid is (N°, M, 8, a,sy oI, v°, T, T1,). We
put:

d=voaloT;, and VU=vofB loTy
We also put S¥ = Sp, and S, = Sg. By 3.2.2 and 3.2.4, we have:
Ae(Te,5,) € Joho(N e NN's,) € D((He)s,v°)

and we have R%"’(JpAg(a)) = JpAs, (a)J, for all a € He NN s, .

9.2. Antipode

Then we construct a closed antipode with polar decomposition which leads to a
co-involution and a one-parameter group of automorphisms of M called scaling group.

9.2.1. The operator G. — We construct now an closed unbounded operator on Hg
with polar decomposition which gives needed elements to construct the antipode. We
have the following lemmas:

LEMMA 9.2.1. — For all A € C, z € D(c},) and §,&' € Ao(T»,1,), we have:

a(2)A3 C Aga(o) (@)
A

2) RO (ARE)A) C AJR(€)
and 0%y (A3, Vo) = (6, AYE N
and:
B(z)A} C AYB(o%(2))
(3) RP(AXE)A) C AYRP(€)
and ) ((A3E,€)5.,0) = (€ AE ) 5,0
Proof. — Straightforward. O
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Then, by [Sau86] and proposition 2.3.5, we can define a closed operator A$a§3A$
which naturally acts on elementary tensor products for all A € C. Moreover, for all
n € N, we have Jpa(n) = B(n*)Js, so that we can define a unitary anti-linear
operator:

Joa®sJe : Hoa®sHo — Hos®aHo

° ° v

such that the adjoint is Jg B@az]q). Also, by composition, it is possible to define a
v

natural closed anti-linear operator:
Sqm@gﬁb tHopa®pHe — Hop®oHe

In the same way, if Fp = S, then it is possible to define a natural closed anti-linear
operator: F¢B®QF¢ : H¢ﬁ®aH¢ — qu;@())éH@ and we have:

(S2a®552)" = Fo3®@aFo

LEMMA 9.2.2. — For allc € (Ne NN, ) (Ne NN1,), e € NN Np, and all

net (ex)vex of elements of Ny N N1y, weakly converging to 1, then (Ag:A‘P(ek))

(15®an>eJ¢)UH\I,pA (cv) converges to ()\A (C)) U}};pJ"baAé(e) in the weak topology.
Proof. — By 3.3.1, we have, for all k € K:

()\ﬂ\p/\\p(ek)) (1,6®O¢J<1>6J<1>)UH\;,PA (c*)

B, ,Q _ NeY B«
(>\ \pA\p(ek)) P(C )pJ@A@(e) - ( ( ))\J\p/\\p(ek)) chpA@(e)
_ &,B8 * ERe"
= <(J‘P€kJ‘1’ﬂ%a1)U}I¢)‘AW(c>> Piahe(e)
= (\iv(e) Ut (JeeiJup@a1)P508 o) = N 10) Utta Pfhu (o) Tu€i e
This computation implies the lemma. O

LEMMA 9.2.3. - Ifce (N e NN, ) N e NHN'1y), e €N NN, n € Hy, v € Hp
and a net (ex)rex of Nw NN, converges weakly to 1, then the net:

(Usy (na@pAa(c?))|JoAw(er) sQatae™ Jov))ke
converges 10 (n](p1y e (0)" Uty (A ()a@a0)).
Proof. — It’s a re-formulation of the previous lemma. O

PROPOSITION 9.2.4. — Let (1n;)icr be a (N,v)-basis of oH, 2 € Hypg®H, u €

D(,H,v), c € N NNr1,) Ne NHNr1y), h € Ve NN, and e be an element
of N g DWTLHWEHW*T . Then, we have:

i 3 (@b Vi, o) Uit () Eag 3 (¢ luaB s Ao ()

If)
el

SOCIETE MATHEMATIQUE DE FRANCE 2007



920 F. LESIEUR

exists and is equal to ((pg’“‘)*E|(pngq)(e))*U}{W (A\p(c)dgggA@(h))).
Proof. — By 3.4.1 and 3.4.2, we can compute, for all 7 € I and k € K:
(0@l N7k (o) Utta (05:*) Ea@ A0 (7)) lua®s o Aa (€7))
= (B((m5,w)aw )Nk (o) Utta (05:*) " Ea@sAa (7)) lg oo (7))
= (Vo) (5@aBUNi W) 0 )Uny ((0%) Ea@5ha(c"))| o To A (h)))
= (V350 (o))"t (8016, 1000) (052°) B © A () | Tne” T A (1))
Take the sum over ¢ to obtain:

S 0@ sh* (V35 0 Ut (0% Za@ A0 ()o@ Ta Ao (c7))
el

= (Uny (P°) Ea@sha(c))JoAe (k) s@aJae" JoAa (h))

so that lemma 9.2.3 implies:

hmz "ha@g )\gcpaAq)(ek)) UH\I/((p ) ‘—‘O¢®,@ ( ))|ua®gJ<I>A<I>(e ))
el

= (P2 BN (o) Ut (Mu(©a@pAa () O

PROPOSITION 9.2.5. — For all a,c € (Ne NN 7, )*(Ne NHN'1y), b,d € Tw 1, and
g,h € To s, , the following vector:

Uity T(8") (A (W50 (N2 s e Uty (A (@)aB A0 ((c)")))
belongs to @(Sq;ag/éS@) and the value of UV(S¢Q§5.S'¢) on this vector is equal to:
Ui, D7) (Ao (0)50 (N2 s 4o))* Uty (A (6o ®A0((ab))

Proof. — For the proof, let denote by =1 = Uy, (Ay(ab)a®sAs(h)) and by = =
Uty (Aw(cd)a®pAs(g)). Then, for all e, f € Ny, N Ne NNy, NN, the scalar
product of F¢J¢Acp(e*)a§éF¢J¢A<p(f) by:

Ui Do) (Aa(R)@a(Ni v 4ey)) Uty (Aw(@)a®Am ((cd)*))
is equal to the scalar product of J¢A<p(e)a§ﬁJ¢A¢ (f*) by:
U;I@r(g*)(A<I>(h)ﬁ@a(Aﬁf(gfi(b*)))*Uqu (AW(a)a§§A¢((Cd)*)))
By 3.5.9, this scalar product is equal to the limit over k£ of the sum over i of:

(JoAa(e)aBsJala(f")MiaBs9" N teny) Ut (05:) E1a8pA2((cd)")))

By the previous proposition applied with = = =;, we get the symmetric expression:

ﬁ,a *
((pJ@Aw)) 2|(P 7y rn(e)) E1)
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so that, again by the previous proposition applied, this time, with = = Z, we obtain
the limit over k of the sum over 7 of:

(nmgg[;h*(Angw(Ek))*UHw((pﬁ;“)*Egal@BA@((ab)*))|J¢A¢(f)a§ﬁJ¢Aq>(e*))
This last expression is equal to the scalar product of:
Ui D(h) (A (9)5@a (X5 v (10 Urty (A ()o@ A ((ab)"))

by JeAgs (f)ag%)BJ@Aq) (e*) and to the scalar product of:

00 Uity D) (A (9)58a(Ny% o 4oy)) Uty (Aa (0o A ((ab)"))

by JoAg(e*);®aJoAe(f). Since the linear span of JoAg(e”);®aJoAe(f) where
e, f €N, NN eNNp, NNy is a core of Fo3®qFp, we get that:

U (9" (Aa (M) p®a R0 o 40))) Ulty (Au(a)a®5Aa((cd)))

belongs to @(S’qmgé&p) and the value of S@a@ﬁ&p on this vector is:
01"’UITL;,F(h’*)(A‘I’(g)ﬁ@a()‘ij(gfi(d*)))*UH\p(AT(C)Q§3A¢((ab)*))) O

PROPOSITION 9.2.6. — There exists a closed densely defined anti-linear operator G
on Hg such that the linear span of:

(Aif(a‘fi(b*)))*UH\If (Aw(a)a®sAa((cd)"))
with a,c € (Ve NN, )*(Ne NN1p),b,d € w1y, is a core of G and we have:
G(/\ﬁf(a?i(b*)))*UHw (A‘P(a)a,@g/\é(@d)*))

= ()\i,a(a'fl(d*)))*UH‘I’ (A\If (C)agﬁA‘D((a’b)*))

v

Moreover, GD(G) = D(G) and G* = idjg(c)-

Proof. — For all n € N, let k, € N, a(n,l),c(n,l) € (Ne N N1, )*(Ng NNr,) and
b(n,1),d(n,l) € v, and let w € Hg such that:
kn

vn = SO o o) Ut (R (a(n, D)o@ A0 (e, Dd(n, 1)) — 0

=1
kn

W = ;(Aﬁf@ ) Ut (A (e(n,0)a®5Aa ((a(n, Db(n, 1)) — w

We have U}'}@F(g*)(Aq)(h)g(%avn) € @(S@a§35¢) for all g,h € I3,5, and n € N by

the previous proposition. Moreover, we have:

0u(S508350)Vit, 1(9") (o (1)5avn) = Uy L(H)(Aa(9) @)
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Since Ag(g) and Ag(h) belongs to D((Hs)g,v°), we obtain:
a,,(S@altlgo),é5q>)Uﬁ@r(g*))\/ﬁ\’:(h)vn = U, D(RNES wn,

The closure of Scpagﬁng(p implies that U}'}@I‘(h*))\ﬁf(g)w = 0. So, apply Ug,, to

get I‘(h*))\ﬁ’:‘(g)w = 0. Now, 93,5, is dense in M that’s why )\i’;‘(g)w = 0 for all

g € I3,5,. Then, by 3.2.4, we have:
N2l = (@((Aa(9), Aa(9)) e )wlw) = (Sp(0F5(9)02,5(g%))wlw)

By density of 7,5, , we obtain ||w||> = 0 i.e., w = 0. Consequently, the formula given
in the proposition for G gives rise to a closable densely defined well-defined operator
on Hg. So the required operator is the closure of the previous one. O

Thanks to polar decomposition of the closed operator G, we can give the following
definitions:

DEFINITION 9.2.7. — We denote by D the strictly positive operator G*G on Hg (that
means positive, self-adjoint and injective) and by I the anti-unitary operator on Hg
such that G = ID'/2.

Since G is involutive, we have I = I*, I? =1 and IDI = D~ ..

9.2.2. A fundamental commutation relation. — In this section, we establish a
commutation relation between G and the elements (w, ., * id)(Uy, ). We recall that
W' = Uy, . We begin by two lemmas borrowed from [Eno02].

LEMMA 9.2.8. — Let & be a (N°,v°)-basis of (Hy)p. For all w' € D(s3Hw,v) and
w € Hy, we have:

W/(U)Id;@o)gw) = Z&iﬁ@a(ww’,éi * ld)(W/)w

If we put 6; = (wur g, * id)(W')w, then a((&,&)p,°)0; = 0;. Moreover, if w €
D(4(Hw),v), then §; € D(a(Hw),v).

For all v,v" € D((Hw)g,v°) and i € I, there exists ¢; € D((Hw)g,v°) such that
a((&, &) ppo)Ci = G and:

Proof. — Lemma 3.4 of [Eno02]. O

REMARK 9.2.9. - If v,v' € Av(Tw,1y,) € D(aH,v)ND(Hg,v°), then, with notations
of the previous lemma, we have ¢; € D(sH,v) N D(Hg, v°).
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LEMMA 9.2.10. — Let v,v' € D(Hg,v°) and w,w’ € D(4H,v). With notations of the
previous lemma, we have:

(wy,w *1d) (Ugy) (wor o *1d) (U Z(wcug *id)(Upg)

in the norm convergence (and also in the weak com/ergence).
Proof. — Proposition 3.6 of [Eno02]. O

LEMMA 9.2.11. — Let a,c belongmg to (Ne NN, ) (N NNry,). For allb, d, d,

b, d,d € Ty ry,, the value of( Uy, on the sum over ¢ of:

Ao,
A ((Way (ab).& ¥ 1) (W)a)a @A ((¢'d)" (we, Ay (ca) * 1d) (W)
is equal to:
(@as (@) ax(ea) * 1D U AN o 0)) Uty (A (@)aBsAa((cd))
Proof. — First, let’s suppose that a € ¢ 1,. By 3.3.2 and 3.3.4, we have:
(wA\p(a’b’),A\p(c’d’) * ld)(U}_}< )(Ai:p(a‘l’ 5*)) )*UH\p (A\y(a)a;@é/&@((cd)*))
= (WAy (a'b'), Ay (c'd') * id)(qu)A‘P((wA\y(a),A\y(oE’i(b*))ﬂ@aid)(F((Cd)*)))
= (Wag () Ag(erar) * 1) (U ) Ae (Way (ab), Ay (ca) * 1) (UH,))

By 9.2.10 and the closure of Ag, this expression is equal to the sum over i € I of:

Ao ((Wwny apy e, 1) (W) Ay (a8, (wny ey ¢, 1) (WA (/) * 1) (UR,))

Again, 3.3.2 and 3.3.4, we obtain the sum over i € I of the value of ()\A (o7 (b,*))) Un,
on:

Ay ((Way (ab)&; * id)(W’)al)agﬁA{)((Cldl)*(wEi,A‘P(cd) *1d) (W'*))
A density argument finishes the proof. O

PROPOSITION 9.2.12. — If v,w € Ay(T 5 1,) € D(a(Hy),v) N D((Hy)g,v°), then
we have:

(4) (wo,w *id)(Ug,)G C G(ww,w *id)(Ug,)
(5) and (wy,p *1d)(Ug, )G* C G*(wyw *id)(Uy, )

Proof. — Let a,c € (N o N N'1,)* (N NN '7y,) and b,d,a’, b, c/,d' € Ty 1y By defi-
nition of GG, we have:

Ao (@) Ut (Au(c)a®50a((ab)")) € D(G)

and:

(Whg (@t A (ary * 1) (UGN o, (@) Utta (Aw(€)a®sAa((ab)"))
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= (WAy (a't'), Mg (c'd’) * id)(UﬁQ(Aif(agi(b*)))*UH\p (Aw(a)aggAé((Cd)*))

Bra
A (¥, (@)

Aw((Way (ca).g, ¥ 1) (W) )a@ 500 (a'V)" (e, Ay (ab) * 1) (W)

By the previous lemma, this is the sum over i € I of G( )*Upn, on:

Ba
A (o, (@)

A ((Way (eay.e ¥ 1) (W) )a@3A0 ((a'V)" (we, a4 (ab) *1d) (W)

Now, G is a closed operator, so that the sum over ¢ € I of (

belongs to P(G) and by the previous lemma, we obtain:
(@netw) putea) VGO o o) Unny (Aa(€)a5A((ab)"))
= G(“’Axp (c'd"),Ag(a’b’) * ld)(Ug(;)()‘if(afl(d*)))*UH\p (A‘I’ (C)agﬁAq’((ab)*))
Now the linear span:

R n 4ey)) Utta (A (@)a@5A0((cd)"))

)*Up, on:

with a,c € (We NN 1, )* (N e NN 1), b,d € Tw 1y}, is a core for G that’s why the

first inclusion holds. The second one is the adjoint of the first one.

COROLLARY 9.2.13. — For allv,w € A\p(gﬁ,,TR), we have:
(Wv,w * id)(U}Jq))D c D(WA;U,A\I,U; * id)(Uzlf{@)

where D = G*G is defined in 9.2.7.

Proof. — We have:

(W, *1d)(Up, )G = (Wsgw,aeSe0 *1d)(Ug,)G by lemma 3.3.5
C G(waySyv,sew *id)(Ug,) by inclusion (4)
=G(Wastyagw * id)(Uz,) by lemma 3.3.5

In the same way, we can finish the proof:

(wo,w *1d)(Up, )D = (wyw *id)(Ug, )G* by definition 9.2.7
C G (ww,p *1d)(Ug, )G by inclusion (5)
C G Gwastyagw* id)(Ug,)
= D(Waz1yapw * id)(Ug,) by definition 9.2.7.
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9.2.3. Scaling group. — In this section, we give a sense and we prove the follow-

ing commutation relation Uy, (Aya®pD) = (Ayp®aD)Uy, so as to construct the
124 v

scaling group 7.

LEMMA 9.2.14. — For all A € C and x analytic w.r.t. v, we have:

a(z)D* C D*a(0”;(2)) and B(z)D* € D*B(0”;,(x))

Proof. — For all a,c € (W NN 7, )*(N v NN 1), b,d € T 1, and x analytic w.r.t.
v, we have by 3.4.1 and 3.4.2:

B@)GOR o (yeyy) Va(Bu(@)a e ((cd)))
= B@) AR v (goy) Vo (A ()a®yAs((ab)))
= (2w ()" (158aB@)Un(Au(€)a@sAa((ab)"))
= (2w (ary) Ve (Au(©)a@sAe(B(@)b"a"))
= GO (o o, ) Vo (Aw(@a@pho((ed))
= Ga(f’iim(x*))(Aif(U\fi(b*)))*Uw(Aw(a)a§BA¢((Cd)*))

Now, the linear span of:
R v ) U (Au(@)a@sAs((cd)))

where a,c € (Mo NN 1) (Nw NN 1y),b,d € Twry}, is a core for G, so that we
have:

B(2)G C Ga(a”; (7))
Take adjoint to obtain a(z)G* € G*(0}),(")). So, we conclude by:
a(z)D = a(z)G*G C G*B(075(z"))G € Da(a” ;(z))

The second part of the lemma can be proved in a very similar way. O

We now state two lemmas analogous to relations (2) and (3) for ¥ and we justify
the existence of natural operators:

LEMMA 9.2.15. — For all A€ C, z € D(c¥,,) and §,&' € Ao (T w,1), we have:

Blz)AY C AYB(0” ()
(6) RO (A}€)A,;> C ARV (€)

and 0¥ i\ ((AYE,E)5,0) = (€, AYE ) 5,00
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and:
&(2)A% C AYé(o” iy ()
(7) R¥™(AGE)AN C AGRY(€)
and 0-—1)\(<A g €>a l/") <£ A §>a ve

Proof. — Tt is sufficient to apply 9.2.1 to the opposite adapted measured quantum
groupoid for example. O

Then, we can define, for all A\ € C, a closed linear operator A} ﬁ®aD)‘ which
naturally acts on elementary tensor products of Hyg®yHs. With relatlons (7) in
hand, we also get a closed linear operator A(\pagﬂDA on Hya®sHe.

PROPOSITION 9.2.16. — The following relation holds:
(8) Uty (Awa®pD) = (Awp®aD)Ux,
Proof. — By 9.2.13, we have, for all v,w € Ag(Y v 1,) and v',w’ € D(D):
(Ut (06@50") | A @0 D) = (@0, aq *id) (U, o' | D)
= (D (WA Y(Agv),Agw *1d)(UH¢) v'|w’)
= (wagv,w *id) Uy, ) Dv'|w’)
= (Un, (Awva@sDV) [ wp@aw')
By definition, we know that Ay (T w 1,) © D(D) is a core for Agyg®,D so, for all
u € D(AgpQqyD), we have:
(Uhta (v3250")(Aw 80 DY) = (Uh, (Auva®sD')u)
Since Ayg®qD is self-adjoint, we get:
(Aq;[g(?aD)Ullv_Iq> (’Udgﬁ’l}/) = UI/“{,; (A\Iﬂ}dggﬁD’U/)
Finally, since Ay (Y w,7,)© D(D) is a core for A\If&@gD and by closeness of Ay g®4D,
we deduce that:
Uty (Awa@pD) € (Awp@aD)Ug,
Because of unitarity of Uy, we get that (Aga®psD)Uy, € Uy(Aws®aD) and by
taking the adjoint, we get the reverse inclusion:

(Aw@aD)U&q, c Uz'qq,(A\IfdggﬂD) O

We know begin the construction of the scaling group 7 strictly speaking. We
also prove a theorem which state that A(Uj;) = M and generalize proposition 1.5
of [KV03|.
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DEFINITION 9.2.17. — We denote by Mg the weakly closed linear span of:
{(wpreid)(T(z)) | z € M, w € M st. Ik € R, wo B < kv}
Also, we denote by My, the weakly closed linear span of:
{(dgxaw)(T(z)) |z € M, w € M} st. Ik e RT, woa < kv}
By 3.3.4 and 3.7.2, MR is equal to the von Neumann subalgebra A(U};) of M.

Also, My, is a von Neumann subalgebra of M. Moreover, we know a(N) C Mg and
B(N) C My, so that My, gx,Mp makes sense. Also, we have, for all m € M:

(9) F(m) € MLﬁI‘)\(faMR
LEMMA 9.2.18. — There exists a unique strongly continuous one-parameter group T

of automorphisms of Mg such that 7;(x) = D~ "z D for allt € R and x € My.

Proof. — By commutation relation (8), for all t € R and v,w € Ag(Yw 1y), We get
that:

D™ "Wy, *1d)(Ugy, ) D" = (w Azity A *1)Ug,)

Consequently, we obtain D™®*MprD® = Mz which is the only point to show. O
LEMMA 9.2.19. — We have 1i(a(n)) = a(o}(n)) for alln € N and t € R.
Proof. — Straightforward by lemma 9.2.14. O

PROPOSITION 9.2.20. — We have (af’ﬂﬁar,t) ol'=Too} forallt € R.

Proof. — By proposition 2.3.5 and thanks to the previous lemma, it is possible to
define a normal *-automorphism o}’ FraT—t of M Bju\k]aM r- By relation (9), the formula

makes sense (7 is just defined on Mg). By relation (8), we can compute for all m € M
and t € R:

(0 pxaT—t) o T(m) = (AGs@a D)L (m) (A" s®aD™")

= (A\w®aD”)UH¢( ma@p1)U q(A?tﬂ@aD 0]

= Uy, (Aya®sD™)(m a®ﬂ1)(Aqf «®sD™Ug,

= Up, (0} (m)a®p 1)Uy, = T(0" (m)) O
We are now able to prove that we can re-construct M thanks to the fundamental

unitary.

SOCIETE MATHEMATIQUE DE FRANCE 2007



98 F. LESIEUR

THEOREM 9.2.21. — If (F)~V is the weakly closed linear span of F in M, then fol-

lowing vector spaces:

(w,g*ald)(l"( ) |meMweM keR" s.t. woB < kv)™ W

(
((Wo,w *1d)(Ug) | v € D(a(Hy), p),w € D((Hy)g, n°)) ™"
<(1dlg*aw)( (m)) |meMweM keRT s.t. woa < kv)™"V
(

A
Il

(id * wo,w)(Un) | v € D((He), 1%) 5, w € D(a(Hy), 1))~

are equal to the whole von Neumann algebra M.

Proof. — We have already noticed that Mr = A(U};) and My = A(Ug). Then, we
get inspired by [KV03]. By 9.2.19, we have 7¢(a(n)) = a(s¥(n)) so:

My, = ((idgxqw o ) (T(m)) | m € M,w € (Mg){,k € RT st. woa < kv)™V

By 9.2.20, we have o ((1dg*a )T(m)) = (idgxqwor)T(0f (m)) that’s why o (M) =
My, for all t € R. On the other hand, by 3.2?7, restriction of ¥ to M, is semi-finite.
By Takesaki’s theorem [Str81, thm. 10.1], there exists a unique normal and faithful
conditional expectation E from M to My, such that ¥(m) = ¥(E(m)) forallm € M.
Moreover, if P is the orthogonal projection on the closure of Ag (N ¢ N Mp) then
E(m)P = PmP.

So the range of P contains Ay ((idgxqw)I'(z)) for all w and z € HN'g. By right
version of 3.5.13 implies that P =1 soythat FE is the identity and M = M. If we
apply the previous result to the opposite adapted measured quantum groupoid, then
we get that M = Mg. O

COROLLARY 9.2.22. — There exists a unique strongly continuous one-parameter
group T of automorphisms of M such that, for allt € R, m € M andn € N:

mi(m) = D™"mD", my(a(n)) = a(of(n)) and 7(B(n)) = B(oy (n))

Proof. — Straightforward from the previous theorem and 9.2.18. First property comes
from 9.2.19 and the second one from 9.2.14. O

DEFINITION 9.2.23. — The one-parameter group 7 is called scaling group.

Let us notice that it is possible to define normal *-automorphisms Ttg]»\k[art and
T g;\k{aaf of M ﬁ%aM for all ¢t € R, thanks to the previous commutation relations and

recalls about tensor products.

PROPOSITION 9.2.24. — We haveT'o 1, = (Ttﬁﬁan) ol for allt € R.
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Proof. — By 9.2.20 and co-product relation, we have for all t € R:
(idg*a ) (0} pxaT—t) o idgxo ) 0 o

U;PﬁtaT—tﬁtaT—t)(Fﬁtaid)F

oy gxal(T-tpxaT—t) oT]) o T

I'=(
= (Dp*aid)T 00} = (T 0 0 gra7_¢)T
= (
= (
Consequently, for all m € M, w € M, k € R* such that wo 3 < kv, we have:
Fo7_yo((wo Uf’)gtaid)I‘ = (wﬂtaidﬁtaid)(af’gta(r o7_4)) ol
— (iraidsxaid) (¥ ptal(r—tptar—o) o T)

= [(rsxar—1) o] o (w0 o) raid)T
The theorem 9.2.21 allows us to conclude. O

PROPOSITION 9.2.25. — For allz € MNa(N)', we have I'(z) = 15%0@ <z € B(N).
Also, for allz € M N B(N)', we have I'(z) = xig%al <z € a(N).

Proof. — Let x € M Na(N) such that T'(z) = 15%ax. For all n € N, we define in the
strong topology:

Ty = %/exp(—nzﬁ)af’(as) dt analytic w.r.t. o¥,
and:
Yn = l/exp(—thz)T,t(a:) dt belongs to a(N)'.
N

By 9.2.20, we have I'(n) = 15@ayn. If d € (M N Mry,)T, then, for all n € N, we
have dz,, € My N Mr,. Let w € M and k € R such that w o o < kv. By right

invariance, we get:
w o Tr(diy) = w((Vsxaid)(T(dz,)))
= U((idgxaw) (T(dzn))) = U((dga(yaw)) (T(d)))

w((¥praid)(T'(d))yn) = w(Tr(d)yn)

Take the limit over n € N to obtain Tr(dz) = Tr(d)z for all d € My N My,
and, by semi-finiteness of Tx, we conclude that z belongs to B(NN). Reverse inclusion
comes from axioms. If we apply this result to the opposite adapted measured quantum
groupoid, then we get the second point. ]
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9.2.4. The antipode and its polar decomposition. — We now approach defini-
tion of the antipode.

LEMMA 9.2.26. — We have (wy . * id)(Uy, )D* C D/\(WA;M;,AQU; *id) (U, ) for all
AeC andv,w € Ae(Tv,1y)-

Proof. — Straightforward from relation (8). O

PROPOSITION 9.2.27. — If I is the unitary part of the polar decomposition of G, then,
for allv,w € D((Hy)g,v°), we have:
I(wigww *id)(Ug, ) = (Wigv,w *id)(Ug,)
Proof. — We have (wy,y*id)(Up, )DY/? C DY?(w,-1/2, 172, *1d) (U}, ) for all v,w €
A4 =
Ag (9w 1y,) by the previous lemma. On the other hand, by inclusion (5), we have:
(o *id) (Upg, )DY2 = (wo 0 *1d) (U, )G*T € DY21(wy,0 1) (U, )

So I(wuw,» *1d)(Ug, ) = (wp-1/2, p1/2,, *1d)(Uy, ) and, by 3.3.5, we have:

w 1=

I(ww,v * ld)(U}};)I = (wAl‘P/Qw,A\;lmv * ld)(U;_};) = (WJ\I,U’J‘I/w * ld)(U;_Iq)) O

COROLLARY 9.2.28. — There exists a *-anti-automorphism R of M defined by
R(m) = Im*I such that R? = id. (We recall that I denotes the unitary part of the
polar decomposition of G).

Proof. — Straightforward from the previous proposition and theorem 9.2.21. O

DEFINITION 9.2.29. — The unique *-anti-automorphism R of M such that R(m) =
Im*I, where I denotes the unitary part of the polar decomposition of G, is called
unitary antipode.

DEFINITION 9.2.30. — The application S = R7_;/, is called antipode.

The next proposition states elementary properties of the antipode. Straightforward
proofs are omitted.

PROPOSITION 9.2.31. — The antipode S satisfies:
i) for allt € R, we have mo R=Ro1, and ;0 S =Som
ii) SR=RS and S* =1_;
iii) S is densely defined and has dense range
iv) S is injective and S™! = Rt/ = 1;2R

v) for all z € D(S), S(z*) € D(S) and S(S(x)*)* ==z

9.2.5. Characterization of the antipode. — In 9.2.30, we define the antipode by
giving its polar decomposition. However, we have to verify that S is what it should
be.
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9.2.5.1. Usual characterization of the antipode.

PROPOSITION 9.2.32. — For all v,w € Ay(T w,1), (Ww,o ¥id)(Uy, ) belongs to D(S)
and we have:

S((ww,v * id)(U}Iq,)) = (ww,v * id)(U;{*qJ
Moreover, the linear span of (wy . * id)(Uy, ), where v,w € Ay(Yw,1y), is a core
for S.
Proof. — By 9.2.26, we have (wy o *id)(Uy, ) € D(T_;j2) = D(S) and:

S((wa 1) (U, ) = R((wp-1/2,, 12, %) (U, )

= (Wsyv,AgSew *1d) (U, ) by proposition 9.2.27,
= (Ww,v *id)(Ug,) by lemma 3.3.5.

The involved subspace of M is included in D(7_;/2) by 9.2.26, weakly dense in M
by theorem 9.2.21 and 7-invariant by 9.2.18 which finishes the proof. O

COROLLARY 9.2.33. — For a,b,c,d € T w1y, (Wag(a),Agv)s*aid)([(cd)) belongs to
D(S) and we have:

S(Wag(a),09 () said) (T(cd))) = (qu,(c),A\p(af’i(d*))ﬁ‘ﬁaid)(F(U;P(a)b*))

Proof. — By 3.3.4, we know that:
(qu,(a),Aq,(b)ﬁ‘l):aid)(F(Cd)) = (W (cd),Au (b0, (a)) * 1) (U, )
which belongs to 9(S). Then, by 3.3.4 and 3.3.5, we have:
S(Way(a),a9 (1) s%aid) (T(ed)) = S((Way (ca),Ag (b0, (a)) * id)(W"))
= (W (cd),Au (b0, (o)) * 1) (W)
= (Wag (0¥ (@)p*), A (¥, (dcr) * 1) (W)
= (“"Aq,(c),Aq,(Ufi(d*))ﬂﬁaid)(F(U?[(a)b*)) O

9.2.5.2. The co-involution R. — In this section, we give a new expression of R and
we show that it is a co-involution of the adapted measured quantum groupoid.

PROPOSITION 9.2.34. — For all a,b € Ny N N 'y, we have:

R((w.1y A (a)5%ald) (T(07D))) = (Wi Au (b 5%ald)(T(a"a))
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Proof. — The proposition comes from the following computation:

R((w.14 A0 (), o Au (@) %aid) (T (67D)))

= R((WAy (b*b),Jy Ay (a*a) *1d)(Ug, ) by corollary 3.3.4,
= (WAy (a*a),Jorg (b+b) *1d) (Ug,) by definition of R,
= (wJWAW(b)J‘I,A‘I,(b)ﬁtaid)(l"(a*a)) by corollary 3.3.4. O

REMARK 9.2.35. — We notice that R is T -independent.
PROPOSITION 9.2.36. — We have Ia(n*) = B(n)I for alln € N and Roa = (3.

Proof. — By 9.2.14, we have, for all z € ¢ 1,:
B(z)GD~Y? C Ga(o_i/((z*)) C GDY?a(z*) C Ia(z*)

and, on the other hand, 3(z)GD~'/? C B(z)I so that Ia(z*) = B(z)I. The result
holds by normality of a and g. O

By [Sau83b], there exists a unitary and anti-linear operator I3®,1 from Hg®.H
onto H aS?BH , the adjoint of which is I a%/@] . Also, there exists anyanti—isomorpﬁism
Rg;\craR from MBI’\(ID‘M onto MO‘K}CﬁM and, by definition of R, we have, for all X €
M 5;O¢M :

(RoxaB)(X) = (158 1) X" (1)

We underline the fact that, if w € M, then wo R € M and, if there exists k € R™
such that woa < kv, then wo Ro 3 < kv. Also, if § € M and k' € R™ are such that
0 oB <k'v, then § o Roa < kv. Then, we have wRg*xo0R = (wa*st) o (Rgxa R).

LEMMA 9.2.37. — For alla,z € N1, NNy, w € M} and k € Rt such that woa <

kv, we have:
w 0 R((wW.y Au () 5%ald)(T(2))) = (Aw((idgkaw)(T(a”a)))| JuAw(2))
Proof. — Let b € /'p, N N'y. By 9.2.34, we can compute:
w0 R{(@ 13 10 a)5ald) (C(E8))) = (@104 0y%0id) (T )
= ((dg*aw)(I'(a”a))Ju Ay ()] JuAw (D))
= (JubJyAy((idgxaw)(T(a"a)))|JuAw (b))
= (Au((idsxa)(Dla" )] Ju o (b°8)
Linearity and normality of the expressions imply the lemma. O

PROPOSITION 9.2.38. — We have yo © (Rg;\(,aR) o'=ToR.
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Proof. — Let a,b € N, NNy, w,0 € M} and k, k' € R such that wo a < kv and
6 o B < k'v. Then, we can compute by 9.2.34 and the previous lemma:

(0p%aw) (T © R((wW sy Ay (a) 8%ald) (T(57D))))
= (0p%aw) (T ((w.1y A4 (5) 5%aid) (T(a"a))))
= (Wi as (1) %adpraw) (idsxa D) (T(a"a))
= (Wi as (1) %aIp%aw) (Upkaid)(T(a"a))
= (Wi au () pxad) [T ((idgxaw)(I'(a"a)))]
= (Ay((idg*ab o R)(T'(6°0)))|JuAw((idg*ew)(T(a"a))))

Observe the symmetry of the last expression and use it to proceed towards the com-

putation:

(A ((dgx0w) (C(a*a) [ JuAu ((dgxaf o R)(C(7E))))

= @Ay (@sraw o R ((idsxad  R)(T(6°D)))]
= (s g (@75 © Raab 0 B)(Tsxaid)(T(5°D))

= (s hg (@3 © Baral o B)(idgtal)(T(6°D))

= (0 Ryxab o R)(L((@1, 4 (a)5%aid) (T (6°D))

= (@axs0) (R ta R) (T (@5, 04 (5%aid) (T(07D))))

= (Ox0w)sne (Rt )T ((@14 04 (055 ) (D))

Theorem 9.2.21 easily implies the result. O

9.2.5.3. Left strong invariance w.r.t. the antipode.— In this section, 7" denotes a left
invariant n.s.f. weight from M to a(N). We put ® = voa~toT’, Jg the anti-linear
operator and Ag/ the modular operator which come from Tomita’s theory of &', o®
its modular group and V' = (Ur+)%;, i.e., the fundamental unitary associated with 7.
The next proposition is the left strong invariance w.r.t. S.

PROPOSITION 9.2.39. — Elements (id * wy.,)(V) belong to the domain of S for all
v,w € Ap/ (T o 1) and we have S((id * wy ) (V) = (id * wy ) (V*).

Proof. — By 3.3.4, we have (id*w)(V) = (wo R *id)(Uy, ) for all w. If @(z) = w(x*),
then, by 9.2.32, we have:
S((id xw)(V)) = S((wo R xid)(Uy,)) = (wo Rxid)(Ug,)
= [(@o R *id)(Ug, )"
=[id *@)(V)]* = (id xw)(V") O
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LEMMA 9.2.40. — For all v € D(D'?) and w € D(D'?), we have:
(Wo,w *1d) (V)" = (wrp-1/24 1D1/24 * 1d)(V')
Proof. — We have (id * wy,o)(V) € D(S) = D(1—_;/2) for all v',w’ belonging to
Ao/ (T o 1) by 9.2.39 and, since 7 is implemented by D~!, we have:
(id * w0 ) (V)DY? C D21 15 ((id * wer o) (V)
= DV2R(S((id % w0} (V)))
= DVRI[(id * i) (V)
= DY2I(id * wyr 0 ) (V)1
Then, for all v € D(D'/?) and w € D(D'/?), we have:
(id % Wy o ) (V) DY 2 Iv| D7Y/2 [w)
= (DY2I(id * Wy o ) (V)| D™ 2 [w)

((WID—l/%,IDl/zw +id)(V)w'|v") =

~_~ o~ o~ o~

w|(id * Wy 4 )V)

= ((wy,p *1d) (V) w’, v")
Then, the proposition holds. O

PROPOSITION 9.2.41. — The following relations are satisfied:
i) (Ta@eJor)V = V*(I5@atar);
ii) (D~ 1a® Agp )V = V(D 1ﬁ®aA<I>’)
iii) (Ttﬁ*aat ) o' =Too? for allteR .

where e(n) = Jera(n*)Jg: for alln € N.

Proof. — We denote by Sg: the operator of Tomita’s theory associated with ®' and
defined as the closed operator on Hg: such that Ag/(N g N N3/ is a core for Sg
and Se/Ae (z) = Ag/(z*) for all z € N g N N, Then, by definition, we have
Aqy = 53,8¢ and Sp = J@A(ll,/?. Moreover, for all m € M and t € R, we have
o (m) = ALmAGE.

First of all, we verify these relations make sense. We have to prove some commu-
tation relations. We can write for alln € 7, and y € Vg N N 3

Sera(n)Ae(y) = SerAer(a(n)y)

— Aar(y"a(n")) = G(0”, 15(n) SorAar (1)
so &(a”; 5(n))Se: C Sera(n) and by adjoint a(n)Sg, S%rd(af/g(n)- Then:

a(n)Asr = a(n)Sg Ser C Sg/a(07)5(n)Ser C Agra(a] (n))
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Since B(n)D~! C D71B(c%(n)), the second relation makes sense. On an other hand,
we know that I3(n) = a(n*)I and Ja(n) = €(n*)Jg to terms of the first relation.
Finally, for all ¢ € R, we have:

mnoB=pB00 ando? (a(n)) A% a(n)AG! = a(o (n))
which finishes verifications.

Let v,w € As(Y 0,5, ). By 3.2.2, we know that (wy ws*aid)(I(y)) belongs to A N
N NN NNy forally € Vg NN NN NN g By 3.3.3, we can write
(Wo,w*id) (V*)Aa (y) = Ao ((Wo,wp*eid)(T'(y))) so that (wy ., *id)(V*)Ae (y) belongs
to D(Sg/). Then, we compute:

Sar(Wo,w *1d) (V) Aar (y) = Sar A ((wo,wpxaid) (T(y)))
= Mg ((ww,0p%aid)(T(y")))

= (Wu, ¥id)(V*)Aar (y7)
= (Ww,w *1d) (V") Se Mg/ (y)
Since Ag/ (N NN NN 7 NN g)) is a core for Sgs, this implies:
(10) (s #1)(V*)Sar € S (w0 #id) (V)
Take adjoint so as to get:

(1) (@ #10) (V) S} € S (o *id)(V)

Then, we deduce by the previous lemma:

(w”,w * ld)(V)A':P/ = (w'u,u) * 1d)(V)S$[S<1>/
g SE,/ (wv’w * ld)(V)Sq:,/

= S [(WID—1/2w,ID1/2v *id)(V)]* Sg

Then by inclusion (10) and the previous lemma, we have:

(wo,w *1d)(V)Agr © Sg:Ser [(wrpr/2¢,1p-1/24 *1d)(V)]*
= A<1>’(wD1/2IID1/2v,D—1/ZIID—1/2w *id)(V)
= A’:I’/(“‘)DU,N_IU) * ld)(V)

Consequently, like relation (8), we easily deduce that:

(D™ aeBan)V = V(D™ s0ular)
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Let’s prove the first relation. By inclusion (10), for all v € D(N~/2) and w €
D(D'/?), we have:

Jor (Weo * id) (V) Jor A2 = T (w0 *1d)(V*)Ser
(12) C Jor Sor (W, *1d) (V")
= AV Wy *id) (V)
For all p,q € @(A}I,//Q), we have by ii):
(wow *id)(V)p, Agr*a) = (V* (va®ep)wpaAyq)

= (V" (va®ep)| D™ (DYw) 580 A3 "0)
= (D758 08" V" (1a8p)| DY *wy®aq)
_ (V (D 1/2va®eA1/2 )|D1/2w5®aq)

)AY, plg)-

= ((WD—l/Z,U,Dl/Qw * ld)(V
Since A(lb/,2 is self-adjoint, we get:
(Wp-1/20, 1720 *1d) (V) A C AYP @y #id) (V)
Also, by the previous lemma, we have:
(“‘)D—l/%,Dl/?w xid)(V*) = (le/zw,D—l/% xid)(V)*
= (Wrw, 10 *1d)(V)

That’s why (wWrw,1v * id)(V)ACII,/,2 - ACID/F (Wy 4 *x1d)(V*). Since Aclb/,Q has dense range,
this last inclusion and (12) imply that:
(Wrw,ro ¥ 1d)(V) = Jaor (wy,w *1d) (V") Jor

Then, we can compute:

((I5®aJe )V (1380 ter) (v5Qaq)|waBeq)

= (V(Iwp®aJe q)| [va@cJap)

= ((Wrw,ro *1d)(V)Jaq|lJap) = (Jo (ww v * id) (V") q| Jop)

= (wow ¥1d)(V)plg) = (V(v5@ag)|waBeq)

so that the first relation is proved. We end the proof by the last equality. We know
that I' is implemented by V/, o? by Ag and 7 by D so that the relation comes from
(D714®cAg )V = V(D7 50,A¢/) like 9.2.20. O

If we take T" = T, then V = W*, Jo» = Jp and As = Ag so that we have the
following propositions:
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PROPOSITION 9.2.42. — For all v,w € Ae(Ta,5,), (id * wy ) (W) belongs to D(S)
and:
S((d * wy,w) (W) = (id * wy ) (W)

PROPOSITION 9.2.43. — We have (wy, * id)(W*)* = (Wyp-1/2y 1p1/24 * id) (W) for
all v € D(DY?) and w € D(DY/?).

PROPOSITION 9.2.44. — The following relations are satisfied:
i) (To3J0)W* = W(I580Ta);
ii) (Dilﬂ@aA{:')W* = W*(Dfla@aAqﬂ;
iii) (Ttﬁ]‘)\(’atf?) ol'=Toof forallt cR.

We summarize the results of this section in the three following theorems:

THEOREM 9.2.45. — Let (N, M,«a,3,T,v,Tr,Tr) be an adapted measured quantum
groupoid and W the pseudo-multiplicative unitary associated with. Then the closed
linear span of (id * wy,w)(W) for allv € D(oHo,v) and w € D((He)g,v°) is equal to
the whole von Neumann algebra M.

THEOREM 9.2.46. — Let (N,M,a,8,T,v,T,,Tgr) be an adapted measured quantum
groupoid and W the pseudo-multiplicative associated with. If we put ® = voa~toTy,
then there exists an unbounded antipode S which satisfies:

i) for all x € D(S), S(z)* € D(S) and S(S(z)*)* ==

ii) for allv,w € Ae(Ta,s,), (id * wy ) (W) belongs to D(S) and:

S((id # wy ) (W) = (id * wy ) (W)
S has the following polar decomposition S = Rr;/5, where R is a co-involution of M
satisfying R? = id, Roa = 8 and gno O(R,g;\k,aR)OF =ToR, and where T, the so-called
scaling group, is a one-parameter group of automorphisms such that 7, 0o o = a0 o},
1103 = Boo} satisfying Doty = (Tm;\(]an)of forallt e R. S, R and T are independent
of Ty, and of Tg.
Moreover, RoTp o R is a n.s.f. operator-valued weight which is right invariant and

a-adapted w.r.t. v.

THEOREM 9.2.47. — Let (N,M,a,,T,v,Tr,Tr) be an adapted measured quantum
groupoid. If R is the co-involution and T the scaling group, then (N,M,«a,B,T, T,
R, 7,v) becomes a measured quantum groupoid.

Proof. — By hypothesis, we know that 7, = o%, for all ¢ € R so that v leaves v
invariant. By theorem 9.2.46 and proposition 9.2.34, we can construct a co-involution
R and a scaling group 7 such that (N, M,«,3,T, T, R, 7,v) becomes a measured
quantum groupoid. O
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9.3. Uniqueness, modulus and scaling operator

By the general theory of measured quantum groupoids, theorems 5.4.3 and 5.4.4 can
be applied and we get the following two theorems in the adapted measured quantum
groupoids case:

THEOREM 9.3.1. — Let (N,M,a,3,T,v,T,Tr) be an adapted measured quantum
groupoid. If T' is a left invariant operator-valued weight which is B-adapted w.r.t.
v, then there exists a strictly positive operator h affiliated with Z(N) such that, for
allt € R:

voa toT' =((woato TL)a(h)

We have a similar result for the right invariant operator-valued weights.

THEOREM 9.3.2. — Let (N, M,a,3,T,v,T, RoTr, o R) be a adapted measured quan-
tum groupoid. Then there exists a strictly positive operator § affiliated with M called
modulus and then there exists a strictly positive operator X\ affiliated with Z(M) N
a(N)NB(N) called scaling operator such that [Dvoa toTroR:Dvoa toTy); =
)\§5“ for allt € R.

Moreover, we have, for all s,t € R:

[DroatoTpor,: DvoatoTy], = A7t
' [DV001_10TL0R07'S :Duoa_loTLOR]t =\t
i) [Droa~toT, oasuoafloTLoR :DvoaloTy] = At
[Dvo aloTL,oRo cr;'milOTL :DvoaloTyo R]; = st
ii) ROA) =\, R(6) =671, 7(6) =6 and 1 (N) = \;
iii) 0 is a group-like element i.e., T'(§) = 5g(]%>a5.

Nevertheless, in the setting of adapted measured quantum groupoids, we can im-
prove the previous results. We want to precise where § sits and the dependence of
fundamental elements with respect to the quasi-invariant weight.

ProproSITION 9.3.3. — The scaling operator does not depend on the quasi-invariant
weight but just on the modular group associated with. If(; is the class of § for the
equivalent relation 61 ~ d9 if, and only if there exists a strictly positive operator h
affiliated to Z(N) such that 8 = B(h")6%a(h~"), then § does not depend on the
quasi-invariant weight but just on the modular group associated with.
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Proof. — If V' is a n.s.f. weight on N such that 0¥ = o”, then there exists a strictly
positive h affiliated to Z(N) such that v’ = v},. We just have to compute:

[Dv oa ™l oTLoR: DV oa toTy],
=[Dvpoa toTLoR: D®o R [D®oR: D®[D®: Dvjoa o Ty,
= B([Dvy : Dv)* )AT 5 a([Dv : Duyly) = A7 B(h#)5% (b~ ) O
PROPOSITION 9.3.4. — The modulus ¢ is affiliated with M Na(N)' NB(N)'.

Proof. — Since ® = v o 37! 0 Sy, with the notation of section 9.2, we have:

it

A5 = [D®oR: DB, = [DRo Ty, o R : DS1]:

which belongs to M NB(N)'. Since A is affiliated with Z(M), we get that ¢ is affiliated
with MNB(N)' . Finally, since R(§) = §, we obtain that ¢ is affiliated with M Na(N)'N
BN)'. O

Let v/ be a n.s.f. weight on N such that there exist strictly positive operator h
and k affiliated with N strongly commuting and [Dv’ : Dv]; = k5 hit for all ¢ € R.
By [VaeOla, prop. 5.1], it is equivalent to o¥(h*) = k'A% for all s,t € R and
V' = vy, in the sense of [VaeO1la]. This hypothesis is satisfied, in particular, if ¢ and
0¥ commute each other. In this cas, k is affiliated with Z(N).

PROPOSITION 9.3.5. — There exists a n.s.f. operator-valued weight T} from M to
a(N) which is B-adapted w.r.t. V' such that, for allt € R, we have:

it2 .
[DT} : DTy): = B(k—2 h™)

Proof. — By 9.1.4, there exists a n.s.f. operator-valued weight Sr from M to B(N)
such that voa ' o Ty, =vo B! o Sy so that Sy, is a-adapted w.r.t. v. Then, again
by 9.1.4, there exists a n.s.f. operator-valued weight T} from M to «(N) such that
vVoB oS =voa !oT} sothat T; is B-adapted w.r.t. v’. Then, we compute the
Radon-Nikodym cocycle for all t € R:

[DT} : DTy); = [Dvoa ' oT} : Dvoa™t o Ty},
=[DvVofB toS:DroB oS

—it2

= B([DV' : Dv]%,) = B(k ™2

h’it) D
COROLLARY 9.3.6. — We have:
voa toTy =woa 'oT)sm and v oa toTy=woa 'oTL)ampsm

Proof. — Come from [VaeOla, prop. 5.1] and the following equality, for all ¢ € R,
[Dv'oa=toT, : Dvoa=toTyL); = alk

it2 —it

£k )a(hit)B(hY). O
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PROPOSITION 9.3.7. — T} is left invariant.
Proof. — Let a € Wli. By left invariance of Ty, we have:
(id,el*;al/' oa"toT})(I(a) = (id/@;)jal/ oa"toTy)(I'(a))
= (idgxa(v oo™ o T1)g(n)) (D(a))
= (idgxav 0 o o Tp)(T(B(h'/?)af(h'/?)))
= Tr(B(h'/?)ap(n'/?)) =

We state the right version of these results:

T'(a) O

PROPOSITION 9.3.8. — There exists a n.s.f. right invariant operator-valued weight T},
which is a-adapted w.r.t. V' such that, for allt € R, we have:

[DT% : DTx]; = a(k'S hit)
Moreover, we have:
voB toThp=woB 'oTr)am and vV oB 'oTh=oB " oTR)ampsm)
LEMMA 9.3.9. — The application Il’," defined by the following formula:
I (65@an) = BE/*)es@aa(h )
for all € € H and n € D(,H,v) N D(a(h/?)), is an isomorphism of B(N)' — a(N)'°-
bimodules from Hg(%)aH onto Hﬂ%)aH.
Proof. — For all x € A/, we have:
a(@)a(h'/?)n = a(zh'/*)n = R*" (n)A, (xh'/?) = R** () A, (2)

so that a(h'/?)n € D(4H,v) and R*" (a(h'/?)n) = R*¥(n). Also, we recall that
Jr = J,k"Y8.J,k/% J, by [VaeOla, prop. 2.5]. Then, we have:

(BE™*)e15@aa(hY/2)m|B(k™"%)E2p@aa(hY/?)m2)
= (B(Ju (WM ?)n1, (B )ma) s, i) BRT8)E1|B(K™/®)E2)
— (/8( z/SJ k~ 1/8J kz/SJ <7717772> J k~ 1/8J kz/SJ kz/8)€1|£2)
= (B(Jo(n1, m2) 0w Jv)é1l€2) = (fw%ml&w%m) O

REMARK 9.3.10. — For all £ € D(Hg,v°) and nn € D(,H,v), we have:
I (65®an) = Bk~ *)es@aa(h!/*)n = EsQaalk™/*hM 2y
= Bo})a (W)Ea@aalk™/*)n = Blo})n (k™ /*h/2))Ep@an

= B(k*)E@aa(0”; 5 (W) = B(KT*h12)p@an
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ProposITION 9.3.11. — Let (N, M, o, 3,T,v,T1,Tr) be an adapted measured quan-
tum groupoid. There exists an adapted measured quantum groupoid (N, M, «,3,T, v/,
T;,Ty) fundamental objects of which, R', v/, X', §' and P’, are expressed, for all
t € R, in the following way:

)R =R, N=Xand?d =6

i) ofi=Ad . Ny ”)ﬂ(k h”) oT = Ada([DV"DV]*)ﬁ([DV’:Dl/]t) oTy

i) P'it = a(k's hit)B(k~5 h=) Jpa(k's hit)B(k—>

h_it)Jq> Pit

Proof. — The existence of (N, M,a, 3,T',v',T;,Tf) has been already proved. We put
¥ =voaloT; and ¥ =1/ 07! o Th. Let 2,y € N gy, N Ny By [VaeOla,
prop. 2.5], we have:

Ju Ay (z) = Jua(k™"®) (k%) Jya(k/®)B(k™®) Ty Ay (za(R'/?) B(R/?))
WigrAgr(z) = Wa(ki/8)B(k=4/8)Jy Ay (za(h1/2)B(h1/2))
Then, we easily verify

B,a,v’ v\ Bya,v
X (ki/5)8(k=1/5) 1y Mg (zar(h1/2)3(h1/2)) = L0 Aa(k/) 14 Ay (zar(n1/2))

We compute:

\I/’A\Il’ (Z B*ald)( (y*y))

(ws
= (Wa(ki’)(k=1/%) 1o Au (wa(ht/2)8(11/2)) 8%add) (T (YY)
= (Wa(ki/9) Jo Aw (wa(h/2) 5%l (T (YY)

= (

WigAg (za(k— 1/8h1/2))5*a1d)( (v*y))
Apply R to get:
R[(WJy Ay (2)8%a1d) (T (y7y))]
= (Wg Ay (y)s*aid) (D(a(k/BhY?)a* za(k~/8h1/?)))
= (wa(k*i/shl/z)J\pA\p(y)ﬁﬁaid)(r(l'*:v))
= (wa(ki/S)J‘PA‘I’(ya(hl/Z))ﬁ‘:aid)(F(x*x))

= (WJ\I,/A\I,/(y)ﬁz(,aid)(r(x*x)) = R/[(WJ\I,IA\I,/(m)ﬂ;aid)(r(y*y))]
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so that R=R'. For alla € M, { € D(Hg,v'?) and t € R, we have:
7i((wepkaid)(D(a)))

= 7i(a(k™*h7?) (e praid) (T (a))a (K h712))

o} (k= *h ) (wepkaid) (D(a)) ooy (K 5hT1/2))

TR (g epradd) (Do (a)))a (k™2 FR7Y2)

=

=

(
(k
By [VaeOla, prop. 2.4 and coro. 2.6], we know that:
(wA;ngﬁ;aidxr(aE(a)))
= (w graid)(T(Ad 2 e 00¥(a)

alk 2~ h"‘)ﬂ(k h”)A ”5 v a(k™® h=it)a(k 2 h-it)
so that:

Ti((wepxaid)(I'(a)))

= Ad id (T
a(k—t/2+i/8p— 1/2)ﬁ(k h”) ( ,B(k i2 N itg 5 al )( (U—t(a)))

it?

= a(k 72

BB W) (waseepaid) (Do, (@) )alk s hT)

)

t2
a(k™=

BB B (wepkaid) (T(a)alk™s h)5(6
Consequently, we have:

/() = a(k h”)ﬁ( _it)'r,g(z)oz(k%ﬁh_it)ﬁ(k“22 )
for all z € M and t € R. Now, we compute the Radon-Nikodym cocycle:

—it)

[DV oa™toT' oR: DV oo™t 0T,
= [DV'a™'T'R : Dva™'TR);[Dva™'TR : Dva *T};[Dva T : Dv'a™ T’}
= a([Dv' : Dv)y)B(IDV' : Dz/]’it))\géita([Dz/ : DV'])B([Dv : DV']*,)

it2
which is equal to AT gt Finally, we express the manageable operator P’ in terms of
P. We have, for all z € A'7; NNV ¢ and t € R:

PiAg () = N/ (7/(2))

= M2 A g (kS h)B(TF K r(2)alk ™ h") Ak hit)a(hV/2)B(h1/2))

which is equal to the value of:

N2k WA R Jaa(k S R B (K/%)B(K/2) T
on Ag(¢(z)a(h/?)B3(h'/?)) and the value of:
N2 (k™S KBk R ) Jpa(k' KBk h™")Jy
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on Ag (¢ (za(h'/?)B(h'/?))) which is:

it . —it? ) it . —it? . .
a(kS BBk b= Jpa(k'S BB ™) Jp P Ay (2) 0
Thanks to these formulas, we verify for example that 7/(a(n)) = a(c? (n)),

71(B(n)) = B(c¥ (n)) and 7' is implemented by P’.

PROPOSITION 9.3.12. — Let (N, M, ,3,T,v,T,,Tr) be adapted measured quantum
groupoid and let Ty, be an other n.s.f. left invariant operator-valued weight which is 3-
adapted w.r.t. v. Then fundamental objects R, 7 X\ 6 and P of the adapted measured
quantum groupoid (N, M,a, 3,T, v, fL,TR) can be expressed in the following way:

i) R=R, =7, A=Aand P=P
6 = da(h)B(h™1) where h is affiliated with Z(N) s.t. T, = (TL)an)

Proof. — By uniqueness theorem, there exists a strictly positive operator h affiliated
with Z(N) such that voa™t o Ty = (voa~! oTr)s and, for all ¢t € R, we have
[DT : DTi], = B(h™). We have already noticed that R and 7 are independent
w.r.t. left invariant operator-valued weight and (-adapted w.r.t. v. We compute then
Radon-Nykodim cocycle:

[Duﬁ_lRfLR : Dl/a_lfL]t

= [DvB~'RTLR : DvB~'RTLR]|,[DV : D®],[Dva~'Ty, : Dva™ Ty,

= R([DTy, : DTL)*,)|D¥ : D®|[DTy, : DTL);

— Oé(hlt)Ag(Snﬂ(hilt) — Ag(slta(hlt)ﬂ(hfzt)
Then, it remains to compute P. If, we put ® = v o a~! o T}, we have, for all t € R
and z € N5 NN g:

Pt A (x) = A2A4(7u(x)) = N2 Mg (m(@)B(h?)) = N2 Mg (r(wB(1/?))
= PAg(xB(h'/?)) = P A (2) O

THEOREM 9.3.13. — Let (N,M,o,3,T,v,T,Tr) and (N,M,o,5,T,v', T}, Tf) be

adapted measured quantum groupoids such that there exist strictly positive operators
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h and k affiliated with N which strongly commute and [Dv' : Dv], = kS it for all
t € R. For allt € R, fundamental objects of the two structures are linked by:
i) " =R

ii /= Ad —it = Ad ’. * .
11) Tt a(k 2 zt)[)’(k hzt) ot a([Dv':Dv]})B(IDv':Dv];) © Tt

iii

i) A
iv) 8 = 5 where 5 and &' have been deﬁned in proposition 9.3.3
,1t2
v) P = a(k'F hit)B(k ™5 h™it)Jpa(k's hit)B(k ™3 h™it)Jp PV

Proof. — We successively apply the two previous propositions. O

We summarize results concerning the change of quasi-invariant weight in the fol-
lowing theorem:

THEOREM 9.3.14. — Let (N, M, o, 8,T,v,T1,, RoTy 0 R) be a adapted measured quan-
tum groupoid. If V' is a n.s.f. weight on N and h, k are strictly positive operators,
affiliated with N, strongly commuting and satisfying [Dv' : Dv], = kth L' for all
t € R, then there exists a n.s.f. left invariant operator-valued weight T, which is (-
adapted w.r.t. v'. Moreover, if (N, M,«a, 3,T,v',T;,Ty) is an other adapted measured
quantum groupoid, then, for all t € R, fundamental objects are linked by:

')R’—R

£ ity © Tt = Ada((Dur:Dv);)B(Dv":DV,) © T

iii

8 = 5 where 5 and &' h(we been deﬁned in proposition 9.3.3
7” ”)J@a(k} : hzt)ﬂ( zt)Jq)Pzt

iv
7“2

i) 7
i) A
)
v) Pt = a(k's hit)B(k =5

9.4. Characterization

In theorem 9.2.47, we explain how an adapted measured quantum groupoid can be
seen as a generalized quantum groupoid. But it is easy to characterize them among

measured quantum groupoids.

THEOREM 9.4.1. — A measured quantum groupoid is an adapted measured quantum
groupoid if, and only if v = ¥ if, and only if § is affiliated with M Na(N) NB(N)'.

Proof. — Straightforward. O

In general, we have not a duality within adapted measured quantum groupoid
category that is the dual structure coming from measured quantum groupoid is not
an adapted measured quantum groupoid anymore. We can be even more precise by
characterizing dual objects of adapted measured quantum groupoids.
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THEOREM 9.4.2. — A measured quantum groupoid is the dual of an adapted measured
quantum groupoid if, and only if v, = o¥, for alt € R.

Proof. — Let us denote by M a measured quantum groupoid and by M its dual. By the
bi-duality theorem and the previous theorem, M is the dual of an adapted measured
quantum groupoid if, and only if M is an adapted measured quantum groupoid if,
and only if y_; =4, = o} for all t € R. O

Also, we can deduce a precise result concerning duality within adapted measured
quantum groupoids:

THEOREM 9.4.3. — For all adapted measured quantum groupoid (N,M,«,(,T,v,
T.,Tr), the dual measured quantum groupoid is an adapted measured quantum
groupoid if, and only if the basis N is semi-finite.

Proof. — (N, ]\//_T,a,/if) equipped with 7/’; et Ro I/’z o R is an adapted measured
quantum groupoid if, and only if there exists a nsf weight ¥ on N such that, for all
t € R, we have of = Uft. In this case, ¥ is ¢ invariant, so there exists a strictly
positive operator h affiliated to the centralizer of v such that [Di : Dv]; = h®t. Then,
for all z € N, we have 0”,(z) = h''o¥(x)h™" and o”,,(z) = h®xh~". Then oV is
inner for all ¢ € R and N is semi-finite by theorem 3.14 of [Tak03|. Conversely, if N
is semi-finite, there exists a nsf trace tr on N and a strictly positive operator h such
that v = tr(h.). So & = tr(h~!.) satisfies conditions. O
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CHAPTER 10

GROUPOIDS

DEeFINITION 10.0.4. — A groupoid G is a small category in which each morphism
4 : & — y is an isomorphism the inverse of which is y~!. Let G{°} the set of objects
of G that we identify with {y € G|yoy =~}. For all vy € G, v : x — y, we denote

! = r(y) we call range object.

x = v~y = s(y) we call source object and y = yy~
If G{2} is the set of pairs (y1,72) of G such that s(y;) = 7(72), then composition of

morphisms makes sense in G{2}.

In [Ren80], J. Renault defines the structure of locally compact groupoid G with
a Haar system {\*,u € G{°?} and a quasi-invariant measure p on G{°}. We refer to
[Ren80] for definitions and notations. We put v = p o A. We refer to [Co79] and
[ADROO] for discussions about transversal measures.

If G is o-compact, J.M. Vallin constructs in [Val96| two co-involutive Hopf bi-
modules on the same basis N = L*®°(G{%} u), following T. Yamanouchi’s works
in [Yam93|. The underlying von Neumann algebras are L>° (G, v) which acts by mul-
tiplication on H = L%(G,v) and #(G) generated by the left regular representation L
of G.

We define a (resp. anti-) representation a (resp. 8) from N in L*°(G,v) such that,
for all f € N:

a(fy=for and A(f)=fos

For all 4, j € {a, 8}, we define G;-{jv} C G x G and a measure I/Zj such that:
H,@;H is identified with L*(G}}}, 7))
For example, Gézi is equal to G2} and V5 o to V2. Then, we construct a unitary Wg
from H,®,H onto Hz®,H, defined for all £ € LQ(G?’&, v2 o) by:
H #

WG£(S7 t) = g(sa St)

for v?-almost all (s,t) in G2},
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This leads to define co-products I'¢ and I/‘Z; by formulas:
La(f) = We(la@a /W5  and  Ta(k) = Wi (ks@al)Wo
for all f € L*>®(G,v) and k € £(G), this explicitly gives:

La(f)(s,t) = f(st)
for all f € L®(G,v) and v?-almost all (s,t) in G{2},

I:&(L(h))f(fay):/Gh(s)f(s_lzc,s_ly)d)\f(m)(s)

for all £ € L? (G({fi, Vs o), h a continuous function with compact support on G and

V§7a—almost all (z,y) in Gg}; Moreover, we define two co-involutions jg and ]G by:
ja(f)(z) = f(z™)
for all f € L*°(G, v) and almost all z,
jcle)=Jg'7

for all g € £(G) and where J is the involution J¢ = ¢ for all £ € L?(G). Finally, we
define two n.s.f. left invariant operator-valued weights Ps and Pg:

y) = /G f@)dN (@) and  Po(L(f)) = olfigio)

for all continuous with compact support f on G v-almost all y in G.

THEOREM 10.0.5. — Let G be a o-compact, locally compact groupoid with a Haar
system and a quasi-invariant measure pon units. Then:

(LOO(G{O}aﬂ)7LOO(Ga V)aaaﬁa FG7U7PG7ijGjG)

is a commutative adapted measured quantum groupoid and:

(LOO(G{O}) /1’)’ f(G)) o, a, Fg, Hy PG:jGPGjG)
is a symmetric adapted measured quantum groupoid. The unitary Vg = WS is the
fundamental unitary of the commutative structure.

Proof. — By [Val96, thm. 3.2.7 and th. 3.3.7], (L=°(G{°}, 1), L>(G,v), a, 3,T¢) and
(L®(G1O} ), 2(G), o, I/‘Z;) are co-involutive Hopf bimodules with left invariant
operator-valued welghts, to get right invariants operator-valued weights, we consider
jaPejc and jePajc.

Since L**(G,v) is commutative, Pg is adapted w.r.t. p by [Val96, thm. 3.3.4],

poo ™

o} "oP5 fives point by point a(N) so that Pg is adapted w.r.t. .
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Finally, for all e, f,g continuous functions with compact support and almost all
(s,t) in G2}, we have, by 3.3.1:

(1p@aJe])Wa( fagag)(s,t) =e(t)f(s)g(st) = FG(Q)(fﬁ%aE)(S,t)
= (1B%QJ€J)UH(fa%)ag)(s’t)

so that we get Uy = Wg. O

dv!
dv

REMARK 10.0.6. — In the commutative structure, modular function and mod-

ulus coincide and the scaling operator is trivial.

We have a similar result for adapted measured quantum groupoids in the sense of
Hahn ([Hah78a] and [Hah78b]):

THEOREM 10.0.7. — From all measured groupoid G, we construct a commutative
adapted measured quantum groupoid (L>° (G0}, u) L°°(G 1/) @ ,B,Fg,,u,PG jePaic)
and a symmetric one (L®(G1%, u), £(G), o, o Fg,,u,Pg,nggjg) Objects are de-
fined in a similar way as in the locally compact case. The wunitary Vg is the
fundamental unitary of the commutative structure.

Proof. — Results come from [Yam93] for the symmetric case. It is sufficient to apply in
this case, technics of [Val96] for the commutative case and invariant operator-valued
weights. O

CONJECTURE 10.0.8. — If (N, M, o, 8,0, u, T1, Tr) is an adapted measured quantum
groupoid such that M is commutative, then there exists a locally compact groupoid G
such that:

(Na Maa7ﬁaF7/~L7TL7TR) ~ (LOO(G{O}Hu')vLOO(G7V)aaaﬂ7FG7/J“7PG7jG o PG OjG)
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FINITE QUANTUM GROUPOIDS

DEFINITION 11.0.9 (Weak Hopf C*-algebras [BSz96]). — We call weak Hopf C*-
algebra or finite quantum groupoid all (M, T, k,e) where M is a finite dimensional

C*-algebra with a co-product I' : M — M ® M, a co-unit € and an antipode k : M —
M such that, for all x,y € M:

i) I" is a *~homomorphism (not necessary unital);
ii) Unit and co-unit satisfy the following relation:
e@e)(ze)I'(1)(1®y)) = e(zy)
iii) & is an anti-homomorphism of algebra and co-algebra such that:
~(ko*)?2 =1
- (mrk®id) @id)I'®id)I'(z) = (1 ® z)I'(1).

where m denote the product on M.

We recall some results [NV00, NV02] and [BNS99]. If (M, T, &, €) is a weak Hopf
C*-algebra. We call co-unit range (resp. source) the application e; = m(id®«)T" (resp.
es = m(k®id)I"). We have koe; = e50k. There exists a unique faithful positive linear
form h, called normalized Haar measure of (M, T, k, €) which is k-invariant, such that
(id® h)(T'(1)) = 1 and, for all z,y € M, we have:

(id®h) (1@ y)l(z) = £(({ ® h)(T(y)(1 © )))

Moreover, Ef = (h ® id)T" (resp. Ef = (id ® h)T') is a Haar conditional expectation
to the source (resp. range) Cartan subalgebra e5(M) (resp. range ;(M)) such that
ho E; = h (resp. ho Ef = h). Range and source Cartan subalgebras commute.

By [Da03, Nik02, Val03], we can always assume that ”|2<-:1(M) = id thanks to a
deformation. In the following, we assume that the condition holds.

Since ho k = h and ke; = €4k, we have hoe; = hog,.
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THEOREM 11.0.10. — Let (M,T,k,¢) be a weak Hopf C*-algebra, h its normalized
Haar measure, E; (resp. E.) its source (resp. range) Haar conditional expectation
and e;(M) its range Cartan subalgebra. We put N = e4(M), a = id|n, B = K|n, r
the co-product T' viewed as an operator which takes value in:

M{g}*)\([aM ~ (M X M)F(l)

and pp = hoa = hof. Then (N, M, a, 3, T, w, EL, E5) is an adapted measured quantum
groupoid.

Proof. — o is a representation from N in M and, since li‘zst(M) = id, @ is an anti-
representation from N in M. They commute each other because Cartan subalgebras

commute and Koe; = 50 k. For all n € N, there exists m € M such that n = e;(m).
So, we have:

L(a(n)) = L(ei(m)) = T(1)(e(m) ® HI(1) = a(n)sQ@al

Also, we have T'(3(n)) = lg%aﬂ(n) and T is a co-product. Then (N, M, a,(,T) is
Hopf bimodule. Moreover, for all n € N and t € R, we have:
t o t oES h
o) " (B(n) = 0, (B(n) = 0" (B(n)) = 0" (B(n))
h o
= By () = B(o", ()

and EZ is B-adapted w.r.t. . Since E}, = HOEZOFL, then Ej is a-adapted w.r.t. p. [
THEOREM 11.0.11. — Let (N, M, , 8,1, v,T1,,Tr) be an adapted measured quantum
groupoid such that M is finite dimensional. Then, there exist T, k and € such that
(M,T, k,¢€) is a weak Hopf C*-algebra.
Proof. — By 2.3, we identify via If ,, L2(M)5%QL2(M) with a subspace of L?(M) ®
L*(M). We put I(z) = Ij I(z)(I4,)*. By [ValOl, def. 2.2.3], the fundamental
pseudo-multiplicative unitary becomes a multiplicative partial isometry on L?(M) ®
L2(M) of basis (N, a, 3,3) by I = Ir ﬁW(I‘ﬁ”a)*. I is regular in the sense of [Val01,
def. 2.6.3] by 7.0.16. Moreover, if we put H = L?(M), then Trg(R(m)) = Tryg(m)
for all m € M because R is implemented by an anti-unitary, so Trgof8=Trgoa =
Try o 3 and we conclude by [ValO1, prop. 3.1.3]. O
REMARK 11.0.12. — With notations of section 2.3, x and S are linked by:

k() = a(ng?d"/?)B(ngV2d=11%) S (x)a(ng V/2d~V?) B(ng/?d!?)
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QUANTUM GROUPS

THEOREM 12.0.13. — Adapted measured quantum groupoids, basis N on which is
equal to C are ezactly locally compact quantum groups (in the von Neumann setting)
introduced by J. Kustermans and S. Vaes in [KV03].

Proof. — In this case, the notion of relative tensor product is just usual tensor product
of Hilbert spaces, the notion of fibered product is just tensor product of von Neumann
algebras and the notion of operator-valued weight is just weight. O
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CHAPTER 13

COMPACT CASE

In this section, we show that pseudo-multiplicative unitaries of compact type in the
sense of [Eno02] correspond exactly to adapted measured quantum groupoids with a
Haar conditional expectation.

DEFINITION 13.0.14. — Let W be a pseudo-multiplicative unitary over N w.r.t.
a, (3, /3’ Let v be a n.s.f. weight on V. We say that W is of compact type w.r.t. v if
there exists £ € H such that:

i) ¢ belongs to D(Hy,v°) N D(oH,v) N D(Hg,v°);

ll) <£a€>,@,ya = <§7§>o¢,v = <£a€>ﬂ,y0 =1
iii) we have W (£;®an) = Eaggn forallne H.

In this case, £ is said to be fixed and bi-normalized. We also say that W is of
discrete type w.r.t. v if W is of compact type.

By [Eno02, prop. 5.11], we recall that, if W is of compact type w.r.t. v and & is
a fixed and bi-normalized vector, then v shall be a faithful, normal, positive form on
N which is equal to wg o =wg o B =we o B and it is called canonical form.

PROPOSITION 13.0.15. — Let (N, M, «, 3,T) be a Hopf bimodule. Assume there exist:

i) a n.f. left invariant conditional expectation from E to a(N);
ii) a n.f. right invariant conditional expectation from F to B(N);
iii) a n.f. state v on N such that voa o E=vof3 loF.

Then (N, M, o, 3,1, v, E, F) is an adapted measured quantum groupoid. Moreover,
if R, T, X and § are fondamental objects of the structure, then we have F = RoEoR and
A =06 =1. Finally, Aoa-105(1) is co-fired and bi-normalized, and the fundamental
pseudo-multiplicative unitary W is weakly reqular and of discrete type in sense of
[Eno02, §5].
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Proof. — For allt € R and n € N, we have:
P (B(n) = 07> " °F(B(n)) = o7°" T (B(n) = B(o” ,(n))

Also, we have:

o (a(n) = 07" (a(n)) = 07°* "B (a(n)) = a(o} (n))
so that (N, M, a, 5,T',v, E, F) is an adapted measured quantum groupoid. By defini-
tion, we have:
[Dvoa*oEoR:Dvoa 'oE], = N git
On the other hand, since voa~' o E = vo 37! o F and by uniqueness, there exists a
strictly positive element h affiliated with Z(N):

[Dvoa 'oEoR:Dvoa 'oE]|;=[DRoEoR:DF], = a(h®)
We deduce that A = 1 and § = a(h), so a(h~!) = §~! = R(§) = B(h) and by [Eno00,
5.2], we get h = 1.
We put ® = voa~toE. If (&)icr is a (N v°)-basis of (Hg)g then, for all
v € D(Hg,v°):

Ug (va®ﬂAq> Z&,@@)aA@((wv & ,e*ald)(F( )
el
= Zﬁw@aa(@’fi)ﬁ,uoﬂ\@(l) = 05QaAs(1)
icl

It is easy to see that Ag(1) belongs to D((He)s,v°) N D(aHe,v) and satis-
fies (Ao(1),A0(1))5,. = (Aa(1),Ap(1))a,, = 1 so that, by continuity, we get
U (UQ§BA¢(1)) = vgQqAa (1) for all v € H i.e., Ap(1) is co-fixed and bi-normalized.
Since voa loE=®=vo083 !oF, we have by 3.2.2, for all n € /",

B(n*)Ae(1) = B(n")JeAa (1) = JoAr(1)A,(n)

so that Ag (1) is S-bounded w.r.t. v° and R%""(Ag(1)) = JpAr(1)J,. Consequently,
A (1) is bi-normalized and W is of discrete type. O

COROLLARY 13.0.16. — Let W be a weakly regular pseudo-multiplicative unitary over
N w.r.t. a,ﬂ,B of compact type w.r.t. the canonical form v. If £ a fized and bi-
normalized vector, we put:

i) @ the von Neumann algebra generated by right leg of W

i) I'(z) = JVDW(xa®51)W*aV for all z € G;

iii) E (ww* id) o F and F = (1d5*aw§) ol.
Then (N, @,a,83,T,v,E,F) is an adapted measured quantum groupoid such that E
and F are n.f. conditional expectations. Moreover, if R, T, \ and § are the fundamental

objects of the structure, we have F = RoEoR, A = 6 = 1 and the fundamental unitary
is W.
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Proof. — By [EV00, 6.3], we know that (N, &, «, 3,T) is a Hopf bimodule. By [Eno02,
thm. 6.6], F is a n.f. left invariant conditional expectation from % to «(N). By

[Eno02, prop. 6.2 and prop. 6.3], F' is a n.f. right invariant conditional expectation

from @ to B(N). Moreover, we clearly have wg o E = wg o F so that voa™!o

E =vofB!oF. We are in conditions of the previous proposition an we get that
(N, @, a,B,T,v,E F) is an adapted measured quantum groupoid, F = Ro F o R
and A = § = 1. Finally, by [Eno02, coro. 7.7, W is the fundamental unitary. (More
exactly, it is 0,0 W¥o, where Wy is the standard form of W in the sense of [Eno02,
§7)). O

The converse is also true and so we characterize the compact case:

COROLLARY 13.0.17. — Let (N, M, a, 3,T) be a Hopf bimodule. We assume there ex-
st:

i) a co-involution R;

ii) a n.f. left invariant conditional expectation from E to a(N).
Then there exists a n.f. state v on N such that (N,M,a,3,T,v,E,Ro E o R) is an
adapted measured quantum groupoid with trivial modulus and scaling operator and the
fundamental unitary of which is of discrete type w.r.t. v.

Proof. — We put F = Ro E o R which is a n.f. right invariant conditional expectation
from M to B(N). We also put:

E = Ejgv) : B(N) — a(Z(N)) and F = Fio(n) : o(N) — B(Z(N))
We have, for all m € M:
FE(m m)5Qal = (Fpraid)(E(m)sQal)
= (Fpxaid)(idgxa E)L(m)
= (idgka E)(Fgxaid)l(m)
= (idpxa B)(15Qa L (m)) = lﬁ%aEF(m)
so, if FE(m) = ((n) for some n € Z(N), then EF(m) = a(n). Moreover, we have:
EF(m)ﬂ%al = BF(m)sQal = ([dgxa E)L(F(m))
= (idpxa B)(15Qa L (m)) = 1a§3aEF(m)

so that a(n) = B(n). Consequently EF(m) = FE(m) and EF = FE is a n.f. condi-
tional expectation from M to:

N =a({n € Z(N),a(n) = 6(n)}) = B({n € Z(N),a(n) = (n)})
Also, we have R|1\7 = id. So, if w is a n.f. state on N, we have wo Eo=wo Foa
and v = wo Eof = wo F o« satisfies hypothesis of 13.0.15: then, corollary holds. [
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COROLLARY 13.0.18. — Let (N,M,a,3,T,v,T1,Tr) be an adapted measured quan-
tum groupoid such that Ty, is a conditional expectation. Then there exists a n.f. state

v on N such that 0¥ = o and the fundamental unitary is of discrete type w.r.t. V.

Proof. — Let R be the co-involution. By the previous corollary, there exists a n.f. state
V' on N such that (N, M, «a,3,T,v', T, RoTy, o R) is an adapted measured quantum
groupoid. Since Ty, is B-adapted w.r.t. v and v/, we have o = o¥. We easily verify
that the fundamental unitary of the first structure coincides with that of the last one
which is of discrete type w.r.t. v’ by the previous corollary. O
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CHAPTER 14

QUANTUM SPACE QUANTUM GROUPOID

14.1. Definition

Let M be a von Neumann algebra. M acts on H = L*(M) = L2(M) where v is
a n.s.f. weight on M. We denote by M’, (resp. Z(M)') the commutant of M (resp.

Z(M)) in £(L?*(M)). Let tr be a n.s.f. trace on Z(M). M’ x M = M’ ® M acts on
Z(M) Z(M)

[/Q(M)(?L2 (M). There exists a n.s.f. operator-valued weight T' from M to Z (M) such
that v =troT.

Let « (resp. 8) be the (resp. anti-) representation of M to Mé((}}%)]% such that
=1 . =y 1) wh i(x) = Jyx*J, for all L2(M)).
a(m) = 1.6 m (resp. f(m) = i(m) 1) where j(z) = J,a"J, for all = & £(L(M))

PRrROPOSITION 14.1.1. — The following formula:
1+ (L2 (M)@LA(M)]5@a LA (M@ LA(M)] — LA(M)®LA(M)SLA(M)
(A (¥)@]pQaE — aly)E@n

for alln € L?>(M),= € LQ(M)(?LQ(M) and y € M, defines a canonical isomorphism
such that we have I([né(%)z]géybaZ) = (a(M)ZZ(%)z)I, forallme M, ze€ Z(M)' and
Z L*(M M.

€ 220D x ]
Proof. — Straightforward. O

We identify (M’ @ M)gxo(M' @ M) with M’ ® Z(M%@ M and so with M’ @ M.

Z(M) M Z (M) Z (M) (M) Z(M)
We define a normal *-homomorphism I' by:
M @M-— (M @ M)gxq(M' @ M)
Z(M) zvy v Z(M)

n@m+—I"(n®1Qm)I=[1® m|gQaun ® 1]
Z(M) Z(M)Z (M) ZM) v Z(M)

T is, in fact, the identity trough the previous isomorphism.
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THEOREM 14.1.2. — If we put TR = id*T and R = <z o (j ® j), then
Z(M) Z(M{
(M, M;(%I)]M,a,ﬁ,F,V,R o Tr o R,Tg) becomes an adapted measured quantum

groupoid w.r.t. v called quantum space quantum groupoid.

Proof. — By definition, I' is a morphism of Hopf bimodule. We have to prove co-
product relation. For all m € M and n € M’, we have:

(Fg*ald) o F(n @m)=[1® m],g®a[1 ® 1]g®a[n ® 1]

Z(M) Z(M) Z(M) Z(M)
= (idg*al) o T
(idgxal’) o (g(%)m)

Now, we show that T is right invariant and a-adapted w.r.t. v. So, for allm € M,n €
M’ and € € D(a(LQ(M)?L2(M)), 1°), we put ¥ = v o 37! o Tr and we compute:
T

(i) (1, © m) = (i) (L & mlo@aln @ 11)

= (L ® mlB({[n ® 1]5 o))

Z(M) Z(M)

=v(([n N T(m)l§, &) aw)

=we(n ® T(m)) = ws(TR(g(%)m))

Z(M)
Finally, we have for all t € R:
To _ o _ s
Ot =0 (M) @ M)NG(M)" = Ot (M}, @ M)N(M, « 2(L2(M)))
vV x UV
z(M) .
=0 zengm = 09900) e M =} &0t

so that o7 ® o a(m) = IZ(%)JQ’(m) = aoyf(m)) for all t € R and m € M. Since it is
easy to see that R is a co-involution, we have done. O

14.2. Fundamental elements

By 3.3.1, we can compute the pseudo-multiplicative unitary. Let first notice that
®=1 xv=Vsothat \=6 =1 and:
Z(M)

a—1®1da—1d®1ﬂ—j®1and,3—1®
z(M M) Z(M) z(M

For example, we have D((H@H)B bo) D H(?D(Hj,VO) = H(?A,,(W,,) and for all
n € H and y € I, we have R (n®A,(y)) = Xy 7" (A, (y)) = \yy.
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LEMMA 14.2.1. — We have, for alln € H ande € N ,:

IpPe )\ Joed, ®)1 and I)\A e = (1®y)

n®.J,Au(e) — 709

Proof. — Straightforward. O
PROPOSITION 14.2.2. — We have, for all E € H®H,n €eH andmeN,:

W* (B0 (n2A, (m) = I'(09(L,© m)=)

Proof. — For all m,e € /", and m/,e’ € N/, we have by the previous lemma:

’ B,a
TEm @m0 ineganite = (M & LEMILITN g, n.e

= (m ® 1 ® m)AJ;/AV,(e/)JyeJ%(%)l

= )\?:,le/JV/AV/ (m’) Jl/ejlé(%;rn

On the other hand, we have by 14.1.1:

(1 © 1]3@aldve Ty @ Joed, )W p8 ,
(( (®)]B®a[ e Z(@]\% edy]) PA, (m)@A,i (m')

= (€T © Juedy & DIW 535 ren o
Then, by 3.3.1 and taking the limit over e and e’ which go to 1, we get for all
Ee H?H:

W (E0 (A (@A, () = I (A (m)B(L © m)=)

Now, if E € D(, (H%Z)H), v), by continuity and density of A,/ (A ,/) we have for all
e D(Q(H%?H),V):

W (Eaganh, () = I (13(1L @ )
Since n(?A,, (m) € D((H®H)ﬁ _o), the relation holds by continuity for all = € H;}@H

O
REMARK 14.2.3. — If 0y, is the flip of L2(M)§L2(M), then o4 0 3 = B0 oy and if
I'=(1® atT)I(atrﬁ®a[l ® 1])o,0, then I’ is the identification:
Z(M) v Z(M)
I': [LQ(M)gLQ(M)]a@B[LQ(M)<§>L2(M)] — LQ(M)géLZ(M);@Lz(M)
EpQan@Ay (y)] — nRa(y)E

for all n € L?3(M),E € L2(M)§>L2(M) and y € M. Consequently, by the previous
proposition W* = I*I'.
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COROLLARY 14.2.4. — We can reconstruct the von Neumann algebra thanks to W :

M) & M = ((idxwe,,) (W) | € € DIH@H)3%).m € Dla(HRH),v))™

Proof. — By 3.4.3, we know that:
((id * we ) (W) [€ € DI(HRH) 5,v%,n € D(a(HRH),v))™™ C M;(%)M
Let n,£ € H and m,e € A,. Then, for all 1,5, € H%H7 we have by 14.2.1:
(i * @y, (m) €07, ) (W) [E2)
= (W* (E1a@ 120, (m)[E268a 68, A ()
= (I" (121, @ m)=Z1) E2p@a 6@ LA ()
= (1L e, mEER(ed,  1E)
= (((n,&)erJue™ T, ® m)Z1|E2)

Consequently, we get the reverse inclusion thanks to the relation:

(ld * wn@Au(m),ftg)JVAy(e))(W*) = <773§>tTJye*Jy ®@m U
tr tr Z(M)
Now, we compute G so as to get the antipode.

PROPOSITION 14.2.5. — If F},, = S} comes from Tomita’s theory, then we have:
G =0y 0 (FV(EQF,,)
Proof. — Let a = Jya1J, ® as,b = J,b1J, @ ba,c = Jyc1J, ®c; and d =
Z(M) Z(M) Z(M)
J,d1J, ® do be elements of M’ ® M analytic w.r.t. v’ xv. Then, by 14.2.1, the
Z(M) Z(M) Z(M)

Bro * *

value of (AAU(J;/Q(bl))gA.,(aZi(b;))) W* on
[AV’(JualJV)%?Au(aﬁ]a%ﬁ[Au’(JudTCTJV)gAV(d;C;)]

is equal to:

(Aii,a(a;’/z(bﬂ)t@;Ay(oii(b;)))*I* (Ay (JVdICIJV)(th)AV’ (JualJV)g)Av (d3chas))

= [Pj\ru(a"i(b;))(g(%)a;’/z(bl))] (Aw(Judi‘ci‘Ju)?;Aw(JualJu)gAu(dchaz))
= (d3c3A0 (a2), Ay (02 (02))) e Aur (Jodie1 T )80 1o (b1) A (Jpar )
= (Au(agha), Au(cada))ir Ju Ay (dic]) @, Ay (a11)

Consequently, by definition of G:

G [(A,,(azbg), Ay (cadn))er JVAU(d;c’;)gJuAy(albl)]
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is equal to the value of G(/\i’ (00,5 (1) @A (0 ,(b3)) )*W* on:
i/2

[A,,/(Jyley)@Ay(aQ)]agﬁ[Al/(JUdTCTJV)gAV(d;C;)]

which is equal to the value of (/\A (0%)5(d1)) @A, ("q(d*))) W* on:
[AV’(JVCIJV)(E?AV(@)]asgﬁ[Au’(Jub1a1JV)§AV(b;a;)]

This last vector is (A, (cadz), Ay (azb2))er JUAU(bTa’{)?J,,A,,(cldl). Since G is closed,

we get:
G [JVAy(d;c;)gij,,(albl)] - [JyAy(b;a;)gJyAu(cldl)]
so that G coincides with oy, (Fl,(tX)F,,). O

The polar decomposition of G = ID/? is such that D = A;l(?A;l and I =
O’tT(J,,i@J,,) so that the scaling group is 74 = O'Z,E (7\/1 ?Q’ for all t € R and the unitary

antipode is R = sz (p) © (j ® j). We also notice that v/ % v is 7-invariant.
Z(M§7 M)

REMARK 14.2.6. — If M is the commutative von Neumann algebra L°°(X), then the
structure coincides with the quantum space X.

14.3. Dual structure

Here we compute the dual structure and we observe that this is not of adapted
measured quantum groupoid’s type.

PROPOSITION 14.3.1. — For all e,y € N, and n,{ € H, we have:
(WA, oo (e) * ) (W) = g(%)Jue*Ju(P?)*Utrpf,ry
Proof. — For all Z € H(?;H,g € H and m € A, we have:
(WA, @)@n.cg (e * 1) (W)E[ERA, (m))
— (A )98V (CRTAOa@ERA (m)])

(@ (® )y)ugbmg@c@mJ A (€)) = (E@nIERy™ (@] ed, Ay (m))

fn ® Jtpr CJ BJ )(ggAV(m)))
= ((1Z(%I)Jye J,,(pg )" Utrpn y):|§§Ay(m)) O

COROLLARY 14.3.2. — We have M@ M = 1® Z(M)" which is identified with
Z(M) Z(M)
Z(MY.
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Proof. — We already know that a(M) U 3(M) C M’ ® M so that IZ(%)Z(M)

M;/S/I)\)M The reverse inclusion comes from the previous proposmon O

With this identification between 12(% )Z (M)" and Z(M)', the dual structure admits

M for basis, id for representation and j for anti-representation. The dual co-product
necessarily satisfies I'(mn) = m;®;qn for all m € M and n € M’. If I, is the canonical
v

isomorphism from L?(M);®iqL?*(M) onto L*(M) given by I, (A, (z);®an) = a(z)n
for all x € A, and 7 € IV/Q(M), then we have I, (mg®q.n) = mnI: and we can
identify the von Neumann algebra M’ ﬁj*\jXM with Z(M) ;nd the von Neumann alge-
bra Z(M)’ﬁjtlaZ(M)’ with Z(M)’. The dual co-product is then identity through this

identification.

LEMMA 14.3.3. — We have A((WE7AV(W)®JVAV(6) *id)(W)) = (m* (® Jye*J,)E for all
m,e €N, et =€ D((H(?H)Ig,llo).

Proof. — Let my, mg € A,,. Then, we have:
AWz, ., (0) * id)(W))lAuf(JumlJu%(%)Au(%))
= wE,A,,(m)®J,,A,,(e)(']vm1Jlé((%/[)7n2)
= ((JymyJy 8 mz) A (m)®J, Ay (€))
= (:|mJ,,Al,(ml)(t%J,,eJ,,A,,(mg))
((mz(%)J,,e Ju)‘:|AV’(Jum1Ju)(tXT)Ay(m2)) O

PRrOPOSITION 14.3.4. — The dual operator-valued weight 1/“1\3 coincide with T~ in
sense of proposition 12.11 of [Str81]. Also, the dual operator-valued weight Ty, coin-
cide with joT 1o

Proof. — Via the identification between M;/@I\)M and Z(M)’, we have, by proposition
14.3.1:
(@2 a6 * )W) = T T () 00rpl Ty

Let m,e,y € A, and n € H. On one hand, we compute:

IAA, (gt mip s o) * DI = [[m* Ay (W)@ e T
= ((Joe*Ium, Jue* Tun)er Ay (M y) A, (Mm™y))
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On the other hand, we have:

A, (g (2.0 * D)
‘i’((PfITUe*JUn)*UtrPf\TD(y*m)(qu(y*m))*atrpzewun)
B(05,e01,0)" 0" (A 0 m). Aoy m)) @ 1105 5,0)

- é((Jue*Jun, J,e* I, -0 (AL (y*m), A, (y*m)))

Then we conclude that, for all m,y € A ,,, we have:
S0 (A (y*m), A (y*m))) = [|A, (m*y) |1 = || A 2T, A, (y*m) |2
=V (0" (J, A, (y*m), J,A,(y*m))) = v o T~ (J, A, (y*m), J,A,(y*m)))
=vojoT o6 (A(y*m)), A, (y"m)))

Therefore T, = j o T~! 0 j and we get the proposition. O

PROPOSITION 14.3.5. — The dual quantum space quantum groupoid can be identify
with (M, Z(M)',id, j,v,id, joT o4, T~1) which is a measured quantum groupoid but
not an adapted measured quantum groupoid. Moreover, expressions for co-involution
and scaling group are given, for all x € Z(M)' and t € R:

R(z) = J,z*J, and 7 (z) = AltzA;
Proof. — The proposition gathers results of the section. Nevertheless we lay stress on
the following point. We have, for all ¢t € R and m € M:

of " (m) = oL, (m) = 0¥, (m)
instead of o (m) to have an adapted measured quantum groupoid. O

REMARK 14.3.6. — If M is a factor, £(H) is the von Neumann algebra underlying
the structure of quantum space quantum groupoid whereas M’ ® M is the underlying
von Neumann algebra of the dual structure. In general, they are not isomorphic.
Nevertheless, if M is abelian or if M is a type I factor (and henceforth a sum of type I
factors cf. paragraph 17.1), the structure is self-dual. In the abelian case M = L*°(X),
we recover the space groupoid X. This example comes from the inclusion of von
Neumann algebras [Eno00]:

ZM)ycMczZM) cC---
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PAIRS QUANTUM GROUPOID

15.1. Definition

Let M be a von Neumann algebra. M acts on H = L?(M) = L2(M) where v is
a n.s.f. weight on M. We denote by M’ the commutant of M in £(L?*(M)). M’ @ M
acts on L?(M) ® L*(M).

Let a (resp. B) be the (resp. anti-) representation of M to M’ ® M such that
a(m) =1®m (resp. B(m) = j(m) ® 1) where j(z) = J,a*J, for all x € L(L%(M)).
ProposITION 15.1.1. — The following formula:

I:[L3(M)® L*(M))s®q[L*(M) ® L*(M)] — L*(M) ® L*(M) ® L*(M)
(A (y) @ 1]p@aE — aly)E @0

for alln € L>(M),Z € L>(M) ® L?3(M) and y € M, defines a canonical isomorphism
such that we have I([m @ z]aQa[y @ n]) = (y@mnx)I, for allm € M,n € M’ and
z,y € L(L*(M)).

Proof. — Straightforward. U

Then, we can identify (M’ ® M)gﬁa(M/ ® M) with M’ ® Z(M) ® M. We define a
normal *-homomorphism I" by:
M @M — (M ® M)gkqo(M' ® M)

n@m— I"(n®1@m)l =[1Q m|g®an® 1]

THEOREM 15.1.2. — (M, M;(%b/[)]\/l,a,ﬁ,ﬂu, V' ®id,id ® v) is an adapted measured

quantum groupoid w.r.t. v called pairs quantum groupoid.
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Proof. — By definition, I' is a morphism of Hopf bimodule. We have to prove co-
product relation. For all m € M and n € M’ we have:

(Cssaid) o Tn @ m) = 1 & mlsGall @ sgaln o1
= (idgtaf) ol(n®m)

R=co(8,®p,), where ¢ : M' ® M — M ® M’ is the flip, is a co-involution so it
is sufficient to show that T;, = v/ ® id is left invariant and B-adapted w.r.t. v. Let

m € M,n € M’ and £ € D((L*(M) ® L?>(M))g.,0). We put ® =voa~! 0Ty, and we
compute:

we((idgra®)I(n @m)) = @((wepraid)([1 @ m]pQa[n @ 1))

(
= &([n® a(([1 ® m|¢, €)p,00))
=V(n)v(([1®@mlE, €)g,ve)

v'(n

/

nwe(l®m) = we(Tr(n ® m))

Finally, we prove that T = Ro T o R = id ® v is a-adapted w.r.t. v. For all t € R,
we have:

Tr _ V' Qv Vv o v
oy =0, 7 jremnsmy =07 - |zamem =A@ 0] |zonem

so that we have for all t € R and m € M:

ol 0 a(m) = 1® Y (m) = a(o} (m)) O

REMARK 15.1.3. — If M = L*°(X), we find the structure of pairs groupoid X x X.

15.2. Fundamental elements

By 3.3.1, we can compute the pseudo-multiplicative unitary. Let first notice that
®=1"®v=Usothat A\=§ =1 and:

a=1®id,a=id®1,8=8,®1and =130,
For example, we have D((H ® H)ﬁ L) DH®D(Hg,,v°) = H® A, (V) and for all
n € H and y € I, we have %" (n® A, (y)) = AR (A, () = Mgy
LEMMA 15.2.1. — We have, for alln € H and e € N ,,:

IpP™ )y =Apdved, ®1 andI)\A (wyon = Pn(1®Y)

nRJ, A, (e

Proof. — Straightforward. U
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PROPOSITION 15.2.2. — We have, for allE € HQ H,n€ H and m € N ,:

W (Ea®s(n ® Ay(m))) = I"(n © (1@ m)=F)

Proof. — For all m,e € ", and m’, e’ € N,,, we have by the previous lemma:
B, _ Ne
IT(m' @ m)p %y norn,e = (M ®@LM)IPIT (o a e
= (m/ ®R1® m))\JV,AV,(e/)J,jeJV ®1
=AJ e d Ay (m)Jved, @m
On the other hand, we have by 15.1.1:
* a,,@
I(1® 1]6‘%a[<]u/e/=]u’ ® Juel, )W PA, (m))@A,/ (m")
= (e @ duedy @ DI B
Then by 3.3.1 and taking the limit over e and e’ which go to 1, we get forallZ € HQH:
W*(Ea®s(Aw (M) ® Ay (m))) = I" (A (m) @ (1 @ m)E)

Now, if & € D(,(H ® H),v), by continuity and density of A,.(V /), we have for all
Ee€D((H®H),v):

W (Ea®3(n ® Ay(m))) = I"(n © (1@ m)=F)

Since n ® Ay(m) € D((H ® H) ,.), the previous relation holds by continuity for all

EcH®H. 0

REMARK 15.2.3. — If o denotes the flip of L2(M) ® L?*(M), then o o § = S0 o and
if I' = (1®0)I(03®a[l ®1])o,0, then I" is the identification:

I': [L*(M)® L2(M)]a§ﬁ[L2(M) ® L*(M)] — L*(M) ® L*(M) ® L*(M)
EQaln © Ay (y)] — 1 ® aly)=

for all n € L*(M),Z € L?>(M) ® L?>(M) and y € M. Consequently, by the previous
proposition W* = I*I'.

COROLLARY 15.2.4. — We can re-construct the underlying von Neumann algebra
thanks to W:

M' @M = ((id * we,,)(W") | € D((H ® H),v°),n € D(a(H® H),v))™"

Proof. — By 3.4.3, we know that:
((d % we ) (W) [£ € D(H® H),v°,n € D(o(H® H),v))™" C M @M
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Let n,€ € H and m,e € A ,,. Then, for all 51,55 € H ® H, we have, by 15.2.1:
((d * wyga, (m) 0,4, () (WT)E1[E2)
= (W*(Elal‘%,én ® Au(m))|52ﬁ§)a§ ® J, Ay (e))
= (I"(n® (1@ m)Z1)[E25@a © J, Ay (e))
=n®(1e@m)Ef® (Je, ® 1)E)
= (m§)((Joe™J, ® m)Z1|Ez)
Consequently, we get the reverse inclusion thanks to the relation:
(13) (id * Wy, (00,00 0) (W) = (0]E) (Jue® T, © m) O

Now, we compute G so as to get the antipode.
ProProSITION 15.2.5. — If F}, = S} comes from Tomita’s theory, we have:
G=0(F,®F)

Proof. — Foralla = J,a1J,Qas, b= J,b1J,Rbs,c = J,c1J,®co and d = J,dJ, Rds
be analytic elements of M’ ® M w.r.t. v’ ® v. Then, by 15.2.1, we have:

()\?\7 (a@/z(bl))@’A (Uil(b*))) W*(AV'(Z)V(a’)a%ﬁAV'(@V((JVdTJV ® d;)c*))
= O e o 03) T (A (i1 ) @ (18 d5ei) Aoy (a)
= p/\u(ffii(bé))(l ® 05/2(1)1))] (A (Judicidy) ® (1 ® d3cs)Apigu(a))
= (d3c3A0 (a2) Ay (07;(03))) A (Judicidy) ®@ 0¥, 5 (bT) A (Jyardy)
= v(dscsa9be) J,AL(dic]) ® J, AL (a1b1)
Consequently, by definition of G, we have:
G [ (d*c§a2b2) JVA,,(dTC’{) ® Jl,A,,(alb1)]
= GO N (07,5 (b1)®AL (0, w) W (Aven(0)a@sMveu((Judi ], @ d3)cT))
ﬁ * * *
()‘A (0%)5(d1))®Ay (0¥ (d*))) W*(A V’®V(C)oc§g”AV’®u((Jub1JV ® b3)a"))
= v(bjascads) JyA,(b1aT) @ JuA,(c1dy)
Since G is anti-linear, we get:
G[J A (dic}) @ J,AL(a1hy)] = [JLAL(bTaT) @ J, A (c1dy)]
so that G coincides with o(F, ® F,). O

The polar decomposition of G = ID'/? is such that D = A;' ® A;! and I =
3(J, ® J,) so that the scaling group is 7 = Uilt ® of for all t € R and the unitary
antipode is R = ¢ o (8, ® (). We also notice that v’ ® v is 7-invariant.
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COROLLARY 15.2.6. — We have D(S) = D(o 1/2) ® D(0”,/,) and we have
S(Jved, @ m*) = Jy075(m)J, @ 0¥, 5 (e”)
for all e,m € D(ay),). Moreover (id * we ) (W) € D(S) and:
S((id * we ) (W) = (id * we ) (W)
forall§;n € D(o(H ® H),v)ND((H ® H)4,1°).
Proof. — The first part of the corollary is straightforward by what precedes. Let {,n €
H and e,m € @(02’/2). By 13, we have:

S((id * weg.g, A, (e)mon, (m)) (W) = S((C|n) Jved, @ m™)
= (C|n)J0;’/2(m)J® Uzi/2(e*)
= (d * weg g, A, (e),nea, (m)) (W)

Since S is closed, we can conclude. O

15.3. Dual structure

We are now computing the dual structure.

ProrosITION 15.3.1. — For alle,y € N, and n,{ € H, we have:

(WA, W)@, () * i) (W) =1® Jye*Jup: Epny

Proof. — ForallE€ H® H,£ € H and m € I, we have:

(WA, (yy@n,cotu A, (e) * 1) (W)E[E ® A, (m))

([A () @ M]p@EIW™([C ® J, Ay (e)]a@s[6 ® A (m)]))
(Toy)EenEe@ml,A(e) = (Eny ¢ Jel Ay (m))
((

((

1® py)E|(1 @ Epy-cJuedy)(€ @ Ay (m)))
1® Jye*J,piXpny)ElE @ Ay (m)) O

COROLLARY 15.3.2. — We have M’ @ M = 1 ® £(H).

Proof. — By definition, we recall that:

M'® M = ((ws, =, *id)(W) |Z1 € D((H @ H)p,1°), 52 € D(o(H ® H),v)) "

)
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and we notice that £(H)®1 C a(M)'NB(M)’. First of all, we prove that M@Mc
1® £(H).Let E€ Hyne Hand m € ', For all z € £(H), we have:

(1 © 1]s®ale ® )W (Ea®sln © JA (m))

=(1® 1]5@”9&[1 QINI'(n® (1@m)E) =I"(zn® (1 @ m)E)
= W*(Ea®jlen ® J, A, (m))

= W ([1® 1]s®ale ® 1)(Ea®50 ® J Ay ()

Therefore, we get that ([1®1]s®4 [zR1))W* = W*([1®1]3Qq[r®1]) for all z € £(H).
Thus, we get:
M@Mc (L(H)®1) =10 £(H)

Then, we prove the reverse inclusion. By the previous proposition, we state that,
for all v,w € H:

(WA, (@n,cot A, e) ¥ 1) (W) (v @w) = (18 Jye"J,)py- (1 ® X)p,(v @ w)
=v® (wly*()Je"Jun
and therefore we have:
M'® M D (wa, (yencesi e *id)W)|n, € HeyeN,)™™
= (1 ®p|p rank 1 projection ) ™™ =1® £(H) O
We verify that (M’ ® M) NM@M=10M = a(M). The dual co-product is given
by (@) = 0,0 W (Z5Q41)W*0,, for all € M’ @ M. We us the following identification:
o:1® L(H) — L(H)
1@z +— =z

which is implemented by A, where e € H is a normalized vector. Then, we know that
@Bta@ is the identification between [1® f(H)]B@a[l ®#(H)] and Z’(H)gy;idf(H) ~
£(H).

PROPOSITION 15.3.3. — We have W*o,(Aeg, ®idde) = I*(Ae ® A)I, for all vector
e € H of norm 1.

Proof. — Let m € ", and n € H. We have:
W*UV(Aeﬁu?id)\e)(Au(m)ﬁu ‘?idn) =W, (e® Au(m)]g‘?a[e ®n])
W (e ® laale ® A (m)]) = I'(e ® ¢ & m)
= I (% © AL (A (m), S1am) 0
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COROLLARY 15.3.4. — For all x € #(H), we have:
(®4%a®) 0T 0 @7 (z) = Iz,
Proof. — Let x € £(H) and e € H be a vector of norm 1. We have:

(2% ®) 0 od (x)
= (A, @iaAc)owe W([1 ® 2] 3@a[1 @ 1YW 0, (e, DidAe)

=LA@ XA)I([1©2]58a[1 @ NI (A ® A) L,
=LA @A) (1®1®z)(\e ® )Ly = [z, O

Now, we are computing the dual operator-valued weight.
AL (m)®J, AL (e) * ld)(W)) = (m* ® J,,e*JV)E fOT all

LEMMA 15.3.5. — We have A((w=
mee N, etE € D(H® H)g,v°

Proof. — Let m1,mg € N,. We have:
(A((WE,AV(M)QDJVAV(e) * id)(W))|A,,/®,,(J,,m1J,, ® ma))
,Au(m)®JVA,,(e)(JVmIJV ®msy) = ((JymiJ, ® m3)=[A,(m) @ J,A,(e))

mJd,A,(m1) ® Jyed, Ay (m2)) = (M* @ J,e*J,)E|A g (Jymid, @ ma)) O

PROPOSITION 15.3.6. — We have TL = id ® E,, where E, is the operator-valued

weight from L(H) to M obtained from the weight v'.

Proof. — Let m,e,y € N, and n € H. On one hand, we compute:

1A (W a, )@ a,a, ) * I W) = [[m* Ay (y) @ Jue* Junl|®
= |l7.e" Tl [*| Ay (m*y)||*

On the other hand, by proposition 15.3.1, we have:

IA((ws,a, (m)@, A (o) * id) (W) ||
= 0(p; (1@ Z)pyen, (m) (1 ® Je,) (1 ® J,€* ) pie p, iy (1 ® E)py)

= [|Jve" nlP@(1 ® (A, (m"y) ® Ay (m"y)))
where £ ® £ is the operator of #(H) such that (£ ® £)v = (v|§)€. Then, if £ € D(S,),

then we have:
2~ 2 dV '
D10 (€8 ) = 158112 = (Asgle) = (1) = (8" (,)
:yoEy/(£®£)=I/Oa710TL(1®(f®£)) O
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We also have the following formulas, for all z € £(H) and t € R:

Rl®r)=1®J,2*J, and #(1®z)=1® AzA"
The right invariant operator-valued weight is given by: Tr=RoTLoR = (d® E,).

PROPOSITION 15.3.7. — The dual pairs quantum groupoid can be identify with
(M, £(H),id, j,id,v, E,, E,) which is a measured quantum groupoid but mot an
adapted measured quantum groupoid. Moreover, expressions for co-involution and
scaling group are given, for all x € £(H) and t € R:

R(z) = J,a*J, and 7i(z) = A%zAH

Proof. — The proposition gathers results of the section. Nevertheless we lay stress on
the following point. We have, for all ¢t € R and m € M:

E,
o, (m) =o”,(m)
instead of o} (m) to have an adapted measured quantum groupoid. O

REMARK 15.3.8. — If M = L*°(X), we find the structure of pairs groupoid X x X.
This example comes from the inclusion of von Neumann algebras [Eno00|:

CcMcPL*M)CLL*>M)@MC -
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INCLUSIONS OF VON NEUMANN ALGEBRAS

Let My C M; be an inclusion of von Neumann algebras. We call basis construc-
tion the following inclusions:

My C My C My = JyM{Jy = Endpge (L (M)

By iteration, we construct Jones’ tower My C M; C My C M3 C ---

DEFINITION 16.0.9. — If My N M; C MjN M, C MjN M; is a basis construction,
then the inclusion is said to be of depth 2.

Let T be a n.s.f. operator-valued weight from M; to M. By Haagerup’s construc-
tion [Str81, (12.11)] and [EN96, (10.1)], it is possible to define a canonical n.s.f.
operator-valued weight T5 from M, to M, such that, for all z,y € A1, we have:

To(Ar, (2)A, (y)") = 2y*

By iteration, we define, for all ¢ > 1, a n.s.f. operator-valued weight T; from M; to
M;_. If vq is n.s.f. weight sur My, we put ¢; = ;1 o T;.

DEFINITION 16.0.10 ([EN96, (11.12)], [EV00, (3.6)]). — 17 is said to be regular if
restrictions of Ty to M} N My and of T3 to M| N Mj are semi-finite.

PropPoOSITION 16.0.11 ([EVO00, (3.2, 3.8, 3.10)]). — If My C M; is an inclusion with
a regular n.s.f. operator-valued weight Ty from My to My, then there exists a natural
*_representation © of M, N Mz on L%(M} N M) whose restriction to M, N My is the
standard representation of M§N Msy. Moreover, the inclusion is of depth 2 if, and only
if ™ is faithful.

The following theorem exhibits a structure of measured quantum groupoid coming
from inclusion of von Neumann algebras.
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THEOREM 16.0.12. — Let My C M; be a depth 2 inclusion of o-finite von Neumann
algebras, equipped with a reqular nsf operator-valued weight Ty in the sense of [Eno00]
and [Eno04|. Moreover, assume there exists on M N My a nsf weight x invariant
under the modular automorphism group Ti. Then, by theorem 8.2 of [Eno04], we
have:

(1) there exists an application T from M} N M to
(Mo N Mz) j, % 1a (Mg N Mz)

’
MMy

such that (M N My, M{N Mg,id,jl,f) is a Hopf-bimodule, (where id means here
the injection of M{NM; into M{NMs, and j; means here the restriction of j; com-
ing from Tomita’s theory to M} N M, considered then as an anti-representation
of M} N M into M} N Ms). Moreover, the anti-automorphism ji of M{N My is
a co-involution for this Hopf-bimodule structure.

(2) the nsf operator-valued weight T> from M} N My to M} N M, restriction of
the second canonical weight construct from Jones’ tower and 11, is left invariant.
(3) Let x2 be the weight XOT;; there exist a one-parameter group of automorphisms
Tt of M} N Ms, commuting with the modular automorphism group oX2, such that,
for all t € R, we have:

f @) 0’;(2 = (ﬁjl*iddzcz) o f
X
Moreover, we have j, o Ty = T4 0 j1.
Then, (M} N My, Mj N Ma,id, j1, T, Ty, j1,7, X) is a measured quantum groupoid.
Proof. — We have ® = 5. Then, by proposition 6.6 of [Eno04|, we have the relation

between R and I'. Also, we notice that 7 coincide with oX on MyNM; by theorem 5.10
of [Eno04]| and that we have, for all n € M/ N M; and t € R:

o2 (j1(n) = o2 (j1(n)) = j1 (o7 (n)

by corollary 4.8 and by 4.1 of [Eno04]. So that, v = o071 leaves x invariant by
hypothesis. O

Then we can show that the dual structure coincide with the natural one on the

second relative commutant of Jones’ tower.

THEOREM 16.0.13. — Let My C M; be a depth 2 inclusion of o-finite von Neumann
algebras, equipped with a reqular nsf operator-valued weight Ty in the sense of [Eno00]
and [Eno04|. Moreover, assume there exists on M N My a nsf weight x invariant
under the modular automorphism group T;.
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(1) there exists an application I from M| N Ms to
(M7 N Ms) j, % jpo, (My N Ms)

/
MjnMy

such that (M) N My, M{NMs,ja0j1,71,1") is a Hopf-bimodule, where ji, ja come
from Tomita’s theory. Moreover, the anti-automorphism jo of M{ N M3 is a co-
involution for this Hopf-bimodule structure.

(2) the nsf operator-valued weight Ts from M{ N Ms to M{ N My = j1(M{n M),
restriction of the second canonical weight construct from Jones’ tower and Ty, is
left invariant.

(3) Let x3 be the weight XOﬁ; there exist a one-parameter group of automorphisms
7t of M{ N Ms, commuting with the modular automorphism group oX3, such that,
for allt € R, we have:

T A X3 _ (=~ L. . X3\,
Foogi® = (Tt]1;12°]10-t ol
Moreover, we have jy o Ty = Ty © ja.

Then, (M} N My, M{ N M, js o jl,jl,f,ﬁ,jg,?, X) s the dual measured quantum
groupoid of M{ N My (equipped with the structure described on 16.0.12).

Proof. — All objects are constructed from the fundamental unitary that’s why the
Hopf-bimodule structure of the dual coincide with the structure on the second relative
commutant. The uniqueness theorem implies that the dual operator-valued weight
coincide with the restriction of T35 up to an element of the basis. O

We can’t characterize, at this stage, inclusions of von Neumann algebras among
measured quantum groupoids. A way to answer the question is to know if each mea-
sured quantum groupoid acts on a von Neumann algebra .

SOCIETE MATHEMATIQUE DE FRANCE 2007






CHAPTER 17

OPERATIONS ON ADAPTED MEASURED QUANTUM
GROUPOIDS

17.1. Elementary operations

17.1.1. Sum of adapted measured quantum groupoids A union of groupoids
is still a groupoid. We establish here a similar result at the quantum level:

PROPOSITION 17.1.1. — Let (N;, M, o, Bi, Ui, v, Th, Th)icr be a family of adapted
measured quantum groupoids. In the von Neumann algebra level, if we identify

®Dic; Mi,@;in with (D;e; M;) g * o (B;er Mi), then we get:

D N;
i€l

(O~ Q1D D Or.Dn DT D)
iel iel il iel el iel i€l iel
an adapted measured quantum groupoid where operators act on the diagonal.

Proof. — Straightforward. O

In particular, the sum of two quantum groups with different scaling constants
(IVV03] for examples) produce an adapted measured quantum groupoid with non
scalar scaling operator.

17.1.2. Tensor product of adapted measured quantum groupoids. — Carte-
sian product of groups correspond to tensor product of quantum groups. In the same

way, we have:

PROPOSITION 17.1.2. — Let (N, M;, o, i, T, vi, T, Th) be adapted measured quan-

tum groupoids for i = 1,2. If we identify (Mlﬂlj’\*]alMl) ® (MQ[BZE\\}OLQMQ) with (M1 ®
1 2

M2)g,88; * a1@as (M1 ® M) as von Neumann algebras, then we have:

N1 ®No

(N1 ® Noy, My @ My, 0y @ a2, 1 ® B2,T1 @ To,v1 @ 10, T} @ T7, T ® T3)
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is an adapted measured quantum groupoid.

Proof. — Straightforward. O

17.1.3. Direct integrals of adapted measured quantum groupoids. — In this
section, X denote o-compact, locally compact space and p a Borel measure on X.
Theory of Hilbertian integrals is described in [Tak03].

PROPOSITION 17.1.3. — Let (Np, My, atp, Bp, T, vp, T5, Th ) pex be a family of adapted
measured quantum groupoids. In the von Neumann algebra level, if we identify

f;? Mpgj\a;aMp du(p) and (f;? M, d,u(p)) 8 * a (f;? M, d/,L(p)), we have:

I Np du(p)

(/X@ Np du(p),/j Mpdu(p),/X69 apdu(p),/j 8, du(p), - -

~-/j deu(p),/j Vp du(p),/j deu(p)v/j Tﬁdu(p)>

is an adapted measured quantum groupoid.
Proof. — Left to the reader. O

[Bla96] gives examples. In this case, the basis is L°(X) and o = 8 = 3. The
fundamental unitary comes from a space onto the same space and then can be viewed
as a field of multiplicative unitaries.

17.2. Opposite and commutant structures

DEFINITION 17.2.1

We call Hopf-bimodule morphism from (N, My, a1, 61,T1) to (N, Ms, as, 82,T5) a
morphism 7 of von Neumann algebras from M; to Ms such that:

i) moa; = ag et mo B = o
ii) Tgom = (ngja\(,alw) ol
Also, we call anti-morphism of Hopf-bimodule from (N, My, a1, 81,T1) to
(N, M3, as, 32,T'2) a morphism j of von Neumann algebras from M; to M5 such that:
i) joar =B et jo P = ay;
11) Iy Oj = (jﬁ1§a1j) ol
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DEFINITION 17.2.2. — For all Hopf-bimodule (N, M;,a1,61,T1) and all 1-1 mor-
phism of von Neumann algebras = from M; onto My, Ms, (N,Ms,m o ai,7 o
,81,(71'511»;&171') oIl o 77!) is a Hopf-bimodule called Hopf-bimodule image by .
Also, if j is a 1-1 anti-morphism of von Neumann algebras from M; onto M, then
(N° My, joai,jo B, (jﬁlj’(]alj) oI 0 ;1) is a Hopf-bimodule called Hopf-bimodule
image by j.

PROPOSITION 17.2.3. — Let w a 1-1 morphism from (N,My,a1,61,T1) onto
(N, Ma, as, 32,T2). If (N, M1, a1,01,T1, R, Ty, 7,v) is a measured quantum groupoid,
then (N, My, aa, B2, To,mo Ron™ L, moTpon™ , moron™1,v) is a measured quantum
groupoid such that:
)\2 = 7['()\1) et 62 = 7'('(51)

We denote by &' = l/oozfl oTy, and ®2 = &L o~ 1. If I is the unitary from Hg1 onto
Hg> such that IAg1(a) = Ag2(m(a)) for all a € N g1, then fundamental unitaries are
linked by:

Wy = (Ialz(\%)ﬁll)wl(j*ﬂ?z%azl*)

Proof. — It is easy to state that (N, My, ag, 32, o, moRon ! moTponr ™1 moror™1,v)
is a measured quantum groupoid. For all v € D((Hg1)g,,v°), a € N1, N N g and
(N°,v°)-basis (& )iecr of (He1)g,, we have:

Wi (I 02 ©4,17) (1va: @ g, Az (m(a)) = Wi (va, 8 g, Awr ()

= €is Qo Aot (Wo.g, 61 %0, 1)1 (a))
iel

= 3 €15, G Ao (90,5150 d) (1 gy, 7 )T (7(a)
i€l

= (", ®a:1") D T€i®an Moz (10,16, %00 i) 2(a)
icl
= (I 590 T)W; (025, A (r(a)
Then, we have proved that Wy = (Ialz%%gll)Wl(I*ﬁz%%I*). For all a,b € X jr,; N
N 0, we have:
Ro((idp, ®a,w 7,5 A 42 (w(a))) T 2(m(07) (D))
= (1B, ®a,w7,5 842 (r(v) ) T2(m(a"a))
= (idﬁ‘.’(%azwfézl\@z(W(b)))(ﬂﬁl})\([alﬂ)l—‘l(a’*a)
= W((idﬁlgalw%l/\@l(b))Fl(a*a)) = ﬂRl((idglggale@lA@l(a))Fl(b*b))
=Ry ((idg, Do, Aga (r(a)))T2(m(b")m(b)))
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from which we get that Ry = moRjom~! and then S, = moS;omr~! and 75 = morjom ™!

thanks to fundamental unitaries. Finally, we have for all ¢t € R:
[D®? o Ry : D®?]; = [D®' o Ry o' : DO o r ™1,
it2 ;
= n([D®' o Ry : D®')y) = w(A\1) 2 7(61)™
and, so we have d2 = w(d1) and A\ = w(\1). O
PROPOSITION 17.2.4. — Let j a 1-1 anti-morphism from (N,My,a1,61,T'1) onto
(N° My, a9, 32,T2). If (N,My,a1,B1,01,R,Tr,7,v) is a measured quantum
gTOUpOid, then (NO7M2’/327O‘27F27.7. oRo j_laj © TL ° j_17j 0T—¢ O j_lallo) is a
measured quantum groupoid such that:
Ao = (A1) et & = j(81)
We denote by ®' = voa; oTy, and &% = ®oj~1. If J is the unitary from Hg1 onto
Hg:2 such that INg1(a) = Jp2Ae2(j(a™)) for all a € N g1, then fundamental unitaries

are linked by:
Wo = (Jar @5, WL x5, ")

Proof. — The proof is very similar to the previous one. O

DEFINITION 17.2.5. — We call opposite quantum groupoid the image by the co-
involution R of the Hopf-bimodule, denoted by (N,M,«,B,T,R, Ty, 7,v)°P. THe
Hopf-bimodule is then the symmetrized one (N°, M, 5, a,sn o).

REMARK 17.2.6. — If N is abelian, o = 3, ' = ¢y o I' then the measured quantum
groupoid is equal to its opposite: we speak about symmetric quantum groupoid.

We put j the canonical *-anti-isomorphism from M onto M’ coming from Tomita’s
theory, trivial on the center of M and given by j(z) = Jpx*Js. Then, we have joa = 3
and we put ¢ = jo3. We can construct a unitary jgﬁoﬁj from Ml@ﬁoﬁMl onto MBKIQM
the adjoint of which is jgja\k[aj.

DEFINITION 17.2.7. — We call commutant quantum groupoid the image by j of the
Hopf bimodule. It is denoted by (N,M,a,8,T, R, Ty, 7,v)¢. The Hopf-bimodule is
equal to (N%, M', B, 0, (jsxas) o T 0 j). We put I = (jkaj) o T o j.

We describe fundamental objects of the structures.

PRrROPOSITION 17.2.8. — We have the following formulas:
i) WP =0,0W™ 0,0, RP =R, /P =7_4, 6P =51 et \oP = \7L;
i) We = (JosQado)W(Je,Q 5Ja), R® = jRj, 77 = jT-1j, 6¢ = j(8) et X° =
AL
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Proof. — It is an easy consequence of propositions 17.2.3 and 17.2.4 except for the
relation between WP and W’'. For all v € D(o,Hy,v), a € N, NNy, and (N,v)-
basis (;)icsr of o Hy, we have:

(W) 0u0(Aw(a)a@pv) = (W) (va@pAv(a))
= Z Nia® pAw ((Wo,n akpid)(sn 0 I'(a)))

= 0, > Aw((idax 0,0, )T(0)) gt
i€l
= O-I/WI(A\I’(a)dI(%ﬁ/U)

Then, we have proved that W°P = g, W"™*0,.. O
COROLLARY 17.2.9. — We have W' = (J@al@gJ@)al,W*au(J%dl@gt%).
Proof. — 1t is a consequence of the previous proposition and proposition 17.2.4. [

REMARK 17.2.10. — The application j o R, implemented by Jod, gives an isomor-
phism between the measured quantum groupoid and the opposite of the commutant

one.

ProposITION 17.2.11. — We have the following equalities:

1) (Nvaaaﬂar7V7TLaTR)opA = (NaMaaaﬁar7V7TL7TR)/\c
ll) (N7 M7a7ﬂ7P7V7TLaTR)CA = (N7M7a7ﬁ7FaV7TL7TR)AOp
111) (N7 M7a7ﬂ7P7V7TLaTR)C P = (Na Maaaﬂ7F7V7TL7TR)Op N

Proof. — The dual of the opposite and the commutant of the dual have the same
basis N°. The von Neumann algebra of the first one is generated by the operators
(w xid)(W*P) so is equal to Jg{(w *id)(W)}"JZ = M'. The representation and the

anti-representation over N° are both given by B and «. Finally, for all z € M , We
have:

[P () = o,,WOp(a:a]%Qoﬁl)(WOp)*al,o = W'*(lg%aw)W'
By the previous corollary, we have:
Lo (2) = 00 (J5a8505)W (T3 /520 1) W (584 I5)0ve
= (J359a5)T (J5275)(J5aQs75) = I (x)

So i) is proved. ii) comes from i) and the bi-duality theorem.
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The opposite of the commutant and the commutant of the opposite have the same
basis N° and the same von Neumann algebra M’. The representation and the anti-
representation are both given by ¢ and B By [VaeO1a], we have Jg = \/*Jg. Then
we get, for all z € M’:

IrePe(z) = (J\I/al@éJ\y)gNF(Jqu,)(,]\I,a%;!]\p)
= GQNeo (JQQ,(%BJ@)P(J{)xJ‘I’)(J@al@éz]cp)rc op(x)

because A/ € Z(M) N a(N) N B(N) So iii) is proved. O
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