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MEASURED QUANTUM GROUPOIDS IN ACTION

Michel Enock

Abstract. — Franck Lesieur had introduced in his thesis (now published in an expended
and revised version in the Mémoires de la SMF (2007)) a notion of measured quantum
groupoid, in the setting of von Neumann algebras and a simplification of Lesieur’s
axioms is presented in an appendix of this article. We here develop the notions of
actions, crossed-product, and obtain a biduality theorem, following what had been
done by Stefaan Vaes for locally compact quantum groups. Moreover, we prove that
the inclusion of the initial algebra into its crossed-product is depth 2, which gives a
converse of a result proved by Jean-Michel Vallin and the author. More precisely, to
any action of a measured quantum groupoid, we associate another measured quantum
groupoid. In particular, starting from an action of a locally compact quantum group,
we obtain a measured quantum groupoid canonically associated to this action; when
the action is outer, this measured quantum groupoid is the initial locally compact
quantum group.

Résumé (Actions d’un groupoide quantique mesuré). — Frank Lesieur a introduit dans sa
thése (maintenant publiée dans une version révisée et complétée dans les Mémoires de
la SMF (2007)) une notion de groupoide quantique mesuré, dans le cadre des algébres
de von Neumann, et une simplification des axiomes de Lesieur est placée en appendice
de cet article. Nous développons ici les notions d’action d’un groupoide quantique
mesuré, de produit-croisé et un théoréme de bidualité est démontré, en s’inspirant
largement de ce qui a été fait par Stefaan Vaes pour les groupes quantiques localement
compacts. Ainsi, nous prouvons que 'inclusion de 1’algébre initiale dans son produit
croisé est de profondeur 2, ce qui fournit une réciproque & un résultat démontré par
Jean-Michel Vallin et 'auteur. De plus, & toute action d’un groupoide quantique
mesuré, on associe un autre groupoide quantique mesuré; ainsi, en particulier, on
construit un groupoide quantique mesuré associé canoniquement & toute action d’un
groupe quantique localement compact ; quand cette action est extérieure, ce groupoide
quantique mesuré est le groupe quantique initial.

(© Mémoires de la Société Mathématique de France 114, SMF 2008






CONTENTS

1. Introduction ........ ... 1
0 1
1057 1
0 2
L. 2
5T 2
7 2

. Preliminaries ...... ... 5
2.1. Spatial theory [5], [31], [34] .. cverne i 5
2.2. Jones’ basic construction and operator-valued weights; depth 2 inclusions 8

2.2.1. Proposition ..........oiiuiiiii e 9
2.2.2. LBIMIMNA ettt e 10
2.3. Relative tensor product [5], [31], [34] ....vvvirniriii i 10
2.4. Fiber product [35], [15] «..vuiiniiiit e 14
2.5. Slice Maps [B] «.ovnintit 15
2.6. Vaes’ Radon-Nikodym theorem .......... ... .. .. .. .. 17

. Measured quantum groupoids ...............c it 19
3.1, Definition .. ... e 19
3.2, DefInition . ...o.uutti e 21
3.3. Algebras and Hopf-bimodules associated to a pseudo-multiplicative

UIIBATY .« ottt e 22
3.4. Fundamental example .......... .o 23
3.5. Definitions ([20], [21]) .. .coovnirii 24
3.6. Theorem([20], [21]) - .ovrnirni i 24
3.7, DefInitions .. ..vtt et e 25
3.8. Theorem ([21], [L1]) - vvnrriie e 26
3.9, NOtatIonS .. .vv ettt e e 28
3.10. Theorem ([21]) vurrninei e 28
3.11. Theorem ([21]) . ovurnnin et 30
3.12. Theorem([21]) . .onvniniri e e 31
3.13. Example .. ..o 32

3.14. Example ... 32



6 CONTENTS

3.15. Theorem([15], [8] 8.2 and 8.3) ... ..ottt 33
4. Left invariance revisited ........... ... ... 35
4.1. Definitions and notations .............c..ccoiiiiiiiiii i 35
4.2, LemMIa ..ottt e 36
4.3, Lemma . ..ot 36
4.4. Definitions and lemma ......... ... 37
4.5. Proposition ...........oiiuii i e 38
4.6. Proposition ....... ... 39
4.7 Proposition .. ... e 41
4.8. TheOorem . ...ttt e 42
4.9, Proposition ....... ..o e 42
4.10. Proposition . ........o.ueoutitr e 43
4,11, Proposition ...ttt e e 44
4.12. TREOTEIM ..ottt et e e e e e e 46
5. Corepresentations of measured
quantum groupoids ............ 47
5.1, Definition . .....c.o.oooi e 47
5.2, TReOTemM . ...t e 48
5.3, Corollary .. ..o 49
5.4, Proposition . .........oinii e 49
5.5, Proposition . .........ciuii i e 51
5.6. Example .. ... 51
5.7, Proposition . .........oiuii e 52
5.8, Proposition . .........ciuii i e 52
5.9, Proposition . .........ciuii i e 53
5.10. THEOTEIL ...ttt e e e e 53
5.11. TREOTEIL ..ottt e e e e 54
6. Actions of measured quantum groupoids .............. ... ... .. 55
6.1, Definition .......uuiit i e e 55
6.2. Example .. ... e 56
6.3. Example .. ... e 56
6.4. Example .. ... e e 56
6.5. Example .. ... 56
6.6. Proposition ......... ..o e 57
6.7. TheOoTeml . ...ttt et e et e e 57
6.8. Proposition ......... ..o e 58
6.9. DefInition . ......utii i e 59
6.10. Example . ... 59
6.11. Definition . .....ovnuiii it e 59
6.12. Proposition .........oeuiiii i 59
6.13. Proposition ..........oeiiiiiii e 60

MEMOIRES DE LA SMF 114



CONTENTS 7

6.14. Definition ........couiiiii i e 60
7. Some technical properties of actions .............. ... ... ..l 61
7.1, Definition .. ... e 61
7.2, PropoSition . ...ttt 61
7.3. Definition .........oiuii i e 62
A S 71 45 ' < Y 62
7.5, LemImna ..ot 63
7.6. Proposition . ...... ..o e 64
7.7, Proposition . .......c.oiui i e 64
7.8, COrOllary .. ...ttt e 65
8. The standard implementation of an action: the case of a j-invariant
welght . 67
8.1. Definition ... e 67
8.2, Example .. ... 68
8.3, Lemma ...ttt e 68
8.4. Proposition ...........iiiiiii i e 69
8.5. Proposition . ... e 71
8.6. Theorem . ... e 73
8.7, LeIMIMA ..ttt ettt 74
8.8. Theorem . ....c..oiui i e 75
8.9. Corollary . ...t e 78
8.10. CorOllary .. ...t 79
8.11. COrOllarY ..ottt e 79
9. Crossed-product and dual actions ............... ... ... .. i 81
9.1, Definition ... e 81
9.2, Example .. ... 81
9.3, ExXample ... e 81
9.4, TREOTEIN ...\ttt e 82
9.5, ExXample ... e 83
9.6. Example .. ... 83
9.7. Proposition ...........oiiuiii e 83
9.8. TRheorem .. ...t e 84
9.9, Definition .......uiiii e 84
9.10. Lemma ..ot 85
9.11. Proposition . ........ouuiiii e 85
9.12. Lemma ..ottt 86
10. An auxilliary weight on the crossed-product ......................... 89
10.1. Proposition ... ......uoeinuiti e e 89
10.2. Proposition ..........couiiiii e 90
10.3. Proposition .. ........oeinuiii e e 91

SOCIETE MATHEMATIQUE DE FRANCE 2008



8 CONTENTS

10.4. Lemma ..ottt et e 92
10.5. Proposition ... .......oeonieii e e 93
10.6. COrollary .. ...ttt e 94
10.7. TREOTEIML . ..ot e e 95
10.8. TREOTEIMI . ..ottt e e 95
10.9. Proposition ... 96
10.10. Definition .. ..ot e e 96
10.11. Proposition . ......couuiiii i e 96
10.12. Corollary ... ...ointi it 96
11. Biduality ..o 97
11,1, LemMImMa .ottt e e e e e e e e e 97
11.2. Proposition ..........couuoinin 98
11.3. Proposition ..........couiiim e 100
11.4. Proposition ... ......ueeii e e 101
11.5. Theoreml .. ...ttt e e e e et e 102
11.6. TREOTEIMI . ..ottt e 103
11.7. TREOTEIM . ..ottt e e e e 104
11.8. TheOreml . ...vtttt ettt ettt e et e 105
11.9. Theoreml .. ...ttt ettt e e et e 105
11.10. Remark ..o e 105
12. Characterization of crossed-products ................................. 107
12,1, NOtatIONS ..\ e e 107
12,20 LeMIa .. oottt e 107
12.3. TREOTeIM . ..ottt e e 109
12.4. Corollary ...ttt 111
12.5. Corollary .. ...t e 112
13. Dual weight; bidual weight; depth 2 inclusion associated to an
ACHIOM .. 113
13.1. Definition .. ..o.uutii i e e e 113
13.2. Example ... e 113
13.3. TReoTem . ...ttt 114
13.4. TREOTEIM . ..ottt e e e 114
13.5. Proposition .. ........coiuuiiiii e 115
13.6. LeMMa ..ottt ettt e e e e 116
13.7. TREOTEIML . ..ottt 116
13.8. TREOTEIMI . ..ottt e e 118
13.9. ThEOTem .. ..ot e e e 119
13.10. Theorem . ... e e e 120
13.11. Remark ... e 121

MEMOIRES DE LA SMF 114



CONTENTS 9

14. The measured quantum groupoid

associated toan action .......... .. ... 123
14.1. TREOTEIM . ..ottt et e e 123
0 Y=Y <Y oo 124
14.3. TheOoreml . ...ttt et e e e e e 124
14.4. ThEOTEIML . ...\ttt ittt et ettt e e et e 125
14.5. Corollary . ..ot 126
14.6. Corollary . ......oui i 126
14.7. Proposition ..........couoiii 127
14.8. EXample .. ...t e 127
14.9. Remark ... e 128

APPendix . ... 129
A. Coinverse and scaling group

of a measured quantum groupoid .............. ... ..o 131
AL Lemma ..ottt e e 131
A2, Definition .....oiuii i 132
A3 Proposition .. ...t e 132
A4 Proposition .. ...t e 133
A5 TRhEOTem ... 133
A6, TRheorem . ..o e 134
AT, TheoTemMl . ..ottt e e e 134
A8, Definition .....oiii i 135
N TR VYo =3 P 135
A 10. Proposition . .........o.uiuiiii e 136

B. Automorphism groups on the basis of a measured quantum

BrouPOid ... 137
Bl Lemma . ... e 137
B.2. Proposition ..........coiiiiii e 138
B.3. Proposition ...........oiiiiii e 138
B4, Corollary . .....uoi e 140
B.o. Lemma ... e 141
B.6. Lemma . ..ot e 142
B.7. Proposition ..........coiiiiii e 143
B.8. Theorem ........ooiin i e e e 146

Bibliography ... ... 147

SOCIETE MATHEMATIQUE DE FRANCE 2008






CHAPTER 1

INTRODUCTION

1.1.

In two articles ([40], [41]), J.-M. Vallin has introduced two notions (pseudo-
multiplicative unitary, Hopf-bimodule), in order to generalize, up to the groupoid
case, the classical notions of multiplicative unitary [2] and of Hopf-von Neumann alge-
bras [14] which were introduced to describe and explain duality of groups, and leaded
to appropriate notions of quantum groups ([14], [44], [46], [2], [22], [45], [18], [19],
[23]). In another article [15], J.-M. Vallin and the author have constructed, from
a depth 2 inclusion of von Neumann algebras My C M;, with an operator-valued
weight T3 verifying a regularity condition, a pseudo-multiplicative unitary, which
leaded to two structures of Hopf bimodules, dual to each other. Moreover, we have
then constructed an action of one of these structures on the algebra M; such that M,
is the fixed point subalgebra, the algebra Ms given by the basic construction being
then isomorphic to the crossed-product. We construct on My an action of the other
structure, which can be considered as the dual action.

If the inclusion My C M; is irreducible, we recovered quantum groups, as proved and
studied in former papers ([12]).

Therefore, this construction leads to a notion of “quantum groupoid", and a con-
struction of a duality within “quantum groupoids".

1.2.

In a finite-dimensional setting, this construction can be mostly simplified, and is
studied in [24], [3], [4], [33],[42], [43], and examples are described. In [25], the link
between these “finite quantum groupoids" and depth 2 inclusions of II; factors is

given.
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2 CHAPTER 1. INTRODUCTION

1.3.

Franck Lesieur introduced [20] a notion of “measured quantum groupoids", in which
a modular hypothesis on the basis is required. Mimicking in a wider setting the tech-
nics of Kustermans and Vaes ([18], [19]), he obtained then a pseudo-multiplicative
unitary, which, as in the locally compact quantum group case, “contains" all the in-
formation of the object (the von Neuman algebra, the coproduct, the antipod, the
co-inverse). Unfortunately, the axioms chosen then by Lesieur don’t fit perfectely
with the duality (namely, the dual object does not fit the modular condition on the
basis chosen in [20]), and, in order to get a perfect symmetry between his objects
and their duals, Lesieur gave the name of “measured quantum groupoids" to a wider
class [21], whose axioms could be described as the analog of [23], in which a dual-
ity is defined and studied, the initial objects considered in [20] being denoted now
“adapted measured quantum groupoids". In [9] had been shown that, with suitable
conditions, the objects constructed in [15] from depth 2 inclusions, are “measured
quantum groupoids" in this new setting.

1.4.

Unfortunately, the axioms given in [21] are very complicated, and there was a seri-
ous need for simplification. This has been done in [11], which is given in an appendix
of this article.

1.5.

Here are developped the notion of action (already introduced in [15]), crossed-
product, etc, following what had been done for locally compact quantum groups
in [7], [13], [36]. Then we prove a Takesaki-like biduality theorem; moreover, we
prove that the inclusion of the initial algebra into its crossed-product is depth 2, and,
therefore, using ([15], [9]), we can construct another measured quantum groupoid,
canonically associated to the action. These results generalize both the case of locally
compact quantum groups ([36]) and the case of measured groupoids ([47], [48], [49]).

1.6.

This article is organized as follows:
In chapter 2 are recalled all the definitions and constructions needed for that theory,
namely Connes-Sauvageot’s relative tensor product of Hilbert spaces, fiber product
of von Neumann algebras, depth 2 inclusions, and Vaes’ Radon-Nykodym theorem.
The chapter 3 is a résumé of the construction of measured quantum groupoids; this
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1.6 3

theory is developped using the axiomatization given in [11]; the equivalence with
Lesieur’s axioms given in [21] is postponed in an appendix.

Chapter 4 is a technical part, mostly inspired by [19], which will be needed in chap-
ter 6.

In chapter 5 is introduced the notion of (unitary) corepresentation of a measured
quantum groupoid; this notion will be used throughout the paper.

In chapter 6 is defined the notion of an action of a measured quantum groupoid on a
von Neumann algebra; we define, using chapter 4, the notion of integrable action.

In chapter 7, we define some technical properties of actions (which will be proved to
be always satisfied in chapter 11).

Chapter 8 is very technical; we prove, when there exists a d-invariant weight, that
there is a standard implementation of an action.

In chapter 9 is defined the crossed-product of a von Neumann algebra by a measured
quantum groupoid, via an action, and the dual action of the dual measured quantum
groupoid on this crossed-product.

In chapter 10, we construct on the crossed-product an auxilliary weight which will
satisfy all the properties needed for applying chapter 8. Therefore, we get that the
dual action has a standard implementation. This auxilliary weight will be used in
chapter 13 to define the dual weight.

In chapter 11, we obtain a Takesaki-like biduality theorem: the double crossed-product
is, in a certain sense, equivalent to the initial algebra, and the bidual action to the
initial action.

In chapter 12, a measured quantum groupoid & be given, we characterize the crossed
products by an action of & among von Neumann algebras on which acts the measured
quantum groupoid ®e.

In chapter 13, using the weight defined in chapter 10 and duality theorems proved in
chapter 11, we define the dual weight on the crossed-product, and obtain some results
on this weight, and then on the bidual weight, which allow us to study the basic
construction made from the inclusion of the initial algebra into its crossed-product,
and, using chapter 12, to prove that this inclusion is depth 2.

In chapter 14, we apply the results of ([15], [8]) to the depth 2 inclusion obtained
in chapter 13, which allow us to construct a new measured quantum groupoid. In
particular, starting with an action of a locally compact quantum group, we obtain
a measured quantum groupoid; this gives a new example of a measured quantum
groupoid which should look familiar to specialists of group actions and groupoids.
In the appendix had been postponed the proof that our axioms, developped in [11], are
equivalent with Lesieur’s axioms, given in [21]. Namely, in appendix A, with our ax-
ioms, we construct the co-inverse, the scaling group and the antipod, mimicking what
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4 CHAPTER 1. INTRODUCTION

Lesieur did for his “adapted measured quantum groupoids". Then, in appendix B, we
prove the equivalence of the two sets of axioms.
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CHAPTER 2

PRELIMINARIES

In this chapter are mainly recalled definitions and notations about Connes’ spatial
theory (2.1, 2.3) and the fiber product construction (2.4, 2.5) which are the main
technical tools of the theory of measured quantum theory. We recall also some defini-
tions and results about depth 2 inclusions (2.2), and Vaes’ Radon-Nykodym theorem
(2.6).

2.1. Spatial theory [5], [31], [34]

Let N be a von Neumann algebra, and let ¥ be a faithful semi-finite normal weight
on N; let My, My, Hy, Ty, Ay,Jy, Ay, ... be the canonical objects of the Tomita-
Takesaki construction associated to the weight . Let o be a non-degenerate normal
representation of N on a Hilbert space H. We may as well consider H as a left
N-module, and write it then ,JH. Following ([5], definition 1), we define the set of
1-bounded elements of ,H as:

D(oaH, ) ={€ € H;3IC < oo, [la(y)¢ ]| < CllAy(w)l], Vy € Ny }
Then, for any ¢ in D(,H, 1), there exists a bounded operator R*¥(£) from Hy to
J(, defined, for all y in 91y, by:

R*¥(&)Ay(y) = aly)é

If there is no ambiguity about the representation «, we shall write R¥(¢) instead of
R*¥(£). This operator belongs to Hom y (Hy, H); therefore, for any &, n in D (3, 9),
the operator:

0% (&,m) = R*V(R™¥ (n)*

belongs to a(N)’; moreover, D(,H, ) is dense ([5], lemma 2), stable under a(N)’,
and the linear span generated by the operators %% (¢,n) is a weakly dense ideal in

SOCIETE MATHEMATIQUE DE FRANCE 2008



6 CHAPTER 2. PRELIMINARIES

a(N).
With the same hypothesis, the operator:

< &1 >ap=R*¥(n)*R¥V(€)

belongs to my(N)'. Using Tomita-Takesaki’s theory, 7y (N)' is equal to Jymy (IN)Jy,
and therefore anti-isomorphic to N (or isomorphic to the opposite von Neumann
algebra N°). We shall consider now < §,n >4, as an element of N°, and the linear
span generated by these operators is a dense algebra in N°. More precisely ([5], lemma
4, and [32], lemme 1.5), we get that < &, >0, 4 belongs to My, and that:

Ay(< & >0y) = JyR* (€)™

If y in N is analytical with respect to ¢, and if £ € D(,3, 1), then we get that a(y)¢
belongs to D(,H, ) and that:

R*Y(a(y)8) = R*¥ (&) Jyo?, 5 (y") Iy
So, if i is another ¥-bounded element of I, we get:

0‘(3/)5777 >3,1l): Uzb/g(y) < 6777 >g¢,w

There exists ([5], prop.3) a family (e;);cs of ¥-bounded elements of ,H, such that
Z Ga’w(ei, 62') =1

Such a family will be called an («,%)-basis of K.
It is possible ([12] 2.2) to construct an (c«, 9)-basis of H, (e;);er, such that the opera-
tors R*¥(e;) are partial isometries with final supports 6% (e;, e;) 2 by 2 orthogonal,
and such that, if ¢ # j, then < e;,e; >q44= 0. Such a family will be called an
(o, w)-orthogonal basis of H. We have then, for £, n in D(,H,9):

R¥(¢ Zew (ei,e) RUY (€ ZR‘“” ) <& € >ay

<ENSay= Y <M e >hy<Eei >ay
i
£=D R (e)Jyhy(< & e >0y)
i
the sums being weakly convergent.
Moreover, we get that, for all n in N, 0% (e;, e;)a(n)e; = a(n)e;, and 0¥ (e;, e;) is
the orthogonal projection on the closure of the subspace {a(n)e;,n € N}.
Let 8 be a normal non-degenerate anti-representation of N on H. We may then as
well consider H as a right N-module, and write it Hg, or consider 8 as a normal non-
degenerate representation of the opposite von Neumann algebra N°, and consider H
as a left N°-module.
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2.1. SPATIAL THEORY (5], [31], [34] 7

We can then define on N° the opposite faithful semi-finite normal weight 1°; we have
Nyo = Ny, and the Hilbert space Hyo will be, as usual, identified with Hy, by the
identification, for all x in My, of Ayo(z*) with JyAy(x).

From these remarks, we infer that the set of 1°-bounded elements of Hg is:

D(Hp, 9°) = {€ € H;3C < 00, [|B(y")Ell < CllAw ()l Vy € Ny }

and, for any ¢ in D(Hg,¢°) and y in Ny, the bounded operator RAY¥°(€) is given by
the formula:

ROV(€) Iy (y) = By")E
This operator belongs to Homyo(Hy, H). Moreover, D(Hg, 1°) is dense, stable under
B(N) = P, and, for all y in P, we have:

RPY (y€) = yRPV(€)
Then, for any &, n in D(Hg,1°), the operator
07" (&,m) = R*V () R™ (n)”

belongs to P, and the linear span generated by these operators is a dense ideal in P;
moreover, the operator-valued product < £, >g yo= R5¥°(n)*R%¥° (€) belongs to
7 (N); we shall consider now, for simplification, that < £,7 >3 40 belongs to N, and
the linear span generated by these operators is a dense algebra in N, stable under
multiplication by analytic elements with respect to 1. More precisely, < &£,1 >g o
belongs to M, ([5], lemma 4) and we have ([32], lemme 1.5):

Ay(< &n >pp0) = ROV (n)"¢
A (B, 9°)-basis of H is a family (e;)ier of ¥°-bounded elements of Hg, such that:
D 0% (ese) =1
i
We have then, for all £ in D(Hg, ¥°):

€= R (e)Ay(< & e >pye)

It is possible to choose the (e;);cs such that the R%¥"(e;) are partial isometries, with
final supports 0%%"(e;, e;) 2 by 2 orthogonal, and < e;,e; >g.4o= 0 if i # j; such a
family will be then called a (3, 1°)-orthogonal basis of . We have then

Rﬁ”wD (61) = Hﬁ’wo(ei, ei)R’g’wo (61) = Rﬁ’wo (61) < €i,€; >3y

Moreover, we get that, for all » in N, and for all i, we have %% (e;, e;)3(n)e; = B(n)e;,
and therefore, §%%° (e4, €;) is the orthogonal projection on the closure of the subspace

{B(n)ei,n € N}.

SOCIETE MATHEMATIQUE DE FRANCE 2008



8 CHAPTER 2. PRELIMINARIES

2.2. Jones’ basic construction and operator-valued weights; depth 2 inclu-
sions

Let My C M; be an inclusion of von Neumann algebras (for simplification, these
algebras will be supposed to be o-finite), equipped with a normal faithful semi-finite
operator-valued weight T) from M; to M, (to be more precise, from M1+ to the
extended positive elements of My (cf. [34] IX.4.12)). Let ¢y be a normal faithful semi-
finite weight on My, and 1 = oo T; for i = 0,1, let H; = Hy,, J; = Jy,, A; = Ay,
be the usual objects constructed by the Tomita-Takesaki theory associated to these
weights. Following ([17], 3.1.5(i)), the von Neumann algebra My = JyM{J; defined
on the Hilbert space H; will be called the basic construction made from the inclusion
My C My. We have My, C M>, and we shall say that the inclusion My C My C Ms is
standard.

Following ([12] 10.6), for  in My, , we shall define Aq, (z) by the following formula,
for all z in My, :

Ary (2)Ayy (2) = Ay, (22)
This operator belongs to Hom g (Ho, Hy); if x, y belong to N, then Ar, (z)Ar, (y)*
belongs to Ms, and Aq, (z)*Ar, (y) = Ti(z*y) € M.
Using then Haagerup’s construction ([34], IX.4.24), it is possible to construct a normal
semi-finite faithful operator-valued weight T% from Ms to M; ([12], 10.7), which will be
called the basic construction made from T;. If z, y belong to My, then Ar, (x)Ar, (y)*
belongs to Mr,, and To(Ar (z)Ar (v)*) = zy*. As we have, for all normal semi-finite
faithful weight ¢ on Mj:

de
de° T
the operator-valued weight T5 is charaterized by the equality ([12], 10.3):
dy1oTs di

= = A
g d(gooTr)e
The operator-valued weight T from M, to M; will be called the basic construction
made from the operator-valued weight 77 from M; to M.
Repeating this construction, we obtain by recurrence successive basic constructions,
which lead to Jones’ tower (M;);cn of von Neumann algebras, which is the inclusion:

MyC My C My CMsC MyC...

which is equipped (for ¢ > 1) with normal faithful semi-finite operator-valued weights
T; from M; to M;_1. We define then, by recurrence, the weight ¢; = ¥;_1 o T; on M;,
and we shall write H;, J;, A; instead of Hy,, etc. We shall define the mirroring j; on
L(H;) by ji(x) = Jiz*J;, for all x in L(H;).
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Following ([12] 10.6), for = in Ny, we shall define Ar,(x) by the following formula,
for all z in My, _,:

A, (2)Ay,_, (2) = Ay, (72)
Then, Ar, (z) belongs to Homyo | (Hi-1, H;); if z, y belong to Nr,, then A, (z)*Ar, (y)
T;(z*y), and Aq,(z)Ar,(y)* belongs to M;;1; more precisely, it belongs to My,
and T;y1 (A7, (2)Ar, (y)*) = zy*.
Let My C M; be an inclusion of von Neumann algebras, equipped with a normal
semi-finite faithful operator-valued weight T} from M; to My; following ([GHJ] 4.6.4),
we shall say that the inclusion My C M is depth 2 if the inclusion (called the derived
tower):

+19

MéﬂMchéﬂMQCM{]ﬂMg,

is standard, and, following ([12], 11.12), we shall say that the operator-valued weight
T is regular if both restrictions Ty s nnr, and T3ja;nn, are semi-finite.

By Tomita-Takesaki theory, the Hilbert space H; bears a natural structure of M; —
M?P-bimodule, and, therefore, by restriction, of My — Mg-bimodule. Let us write r for
the canonical representation of My on Hy, and s for the canonical antirepresentation
given, for all  in My, by s(x) = Jyr(z)*J;. Let us have now a closer look to the
subspaces D(Hqs,%§) and D(,Hi,¢0). If = belongs to Mg, NNy, , we easily get that
JiAy, (x) belongs to D(,Hq, 1), with:

R™°(J1Ay, (2)) = JiAT, (2)Jo
and Ay, (z) belongs to D(Hs, 1), with:
R*¥5 (Ay, (2)) = Ar, ()

In ([8], 2.3) was proved that the subspace D(His,v%§) N D(,-H1,1y) is dense in Hy;
let us write down and precise this result:

2.2.1. Proposition. — Let us keep on the notations of this paragraph; let Ty, 7, be
the algebra made of elements = in Iy, NNy N Ny, NN, , analytical with respect to
Y1, and such that, for all z in C, o¥'(x,) belongs to My, NNy, N My, NN, . Then:
(i) the algebra Ty, 1, is weakly dense in My; it will be called Tomita’s algebra with
respect to 1 and Ty;

(ii) for any x in Ty, 1, Ay, (z) belongs to D(His,%0) N D(,H1,v0);

(i) for any & in D(Hqs,v3)), there exists a sequence ,, in Ty, 1, such that Ar, (z,,) =
R5V6 (Ay, (z)) is weakly converging to RSV (€) and Ay, (z,,) is converging to €.

Proof. — The result (i) is taken from ([12], 10.12); we get in ([8], 2.3) an increasing
sequence of projections p, in M, converging to 1, and elements x, in Ty, 7, such
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that Ay, (zn) = pné. So, (i) and (ii) were obtained in ([8], 2.3) from this construction.
More precisely, we get that:

Ti(zhzn) = < RO (Mg, (20)), BVS (Mg, (20)) >0
= < P&, Pn >syg
= R (PR ()
which is increasing and weakly converging to < £,& > ye. O

We finish by writing a proof of this useful lemma, we were not able to find in
litterature:

2.2.2. Lemma. — Let My C M; be an inclusion of von neumann algebras, equipped
with a normal faithful semi-finite operator-valued weight T from M, to My. Let 1y be
a normal semi-finite faithful weight on My, and ¥, = g o T; if x is in Ny, and if y
is in M} N Ma, analytical with respect to ¢, then xy belongs to Ny.

Proof. — Let a be in Ny, ; then za belongs to Ny, and xya = zay belongs to My, ;
moreover, let us consider the element T'(y*z*zy) of the positive extended part of MJ ;
we have:

<T(y"z*zy),wr, @@ > = Yi(a"y 'z zya)

= ||Ay, (zay)|?
17,02 (%) Ty Ay, (wa) |2
175,078 5 (") Ty A (2) Ay (a) |
< 0¥ )P AT (@) Ay, (@)

6”2 o ()1 < T(a" ), wa @) >

from which we get that T'(y*z*zy) is bounded and
T(y*z*zy) < 0%, (y")IPT (")

2.3. Relative tensor product [5], [31], [34]

Using the notations of 2.1, let now X be another Hilbert space on which there
exists a non-degenerate representation v of N. Following J.-L. Sauvageot ([31], 2.1),
we define the relative tensor product J s®. X as the Hilbert space obtained from the

P
algebraic tensor product D(Hg,¥°) ® K equipped with the scalar product defined,
for 517 §2 in D(:H:,Ba’wo)y i, 12 in gCa by

(&1 OMml& O n2) = (V(< &, & >p,40)Mn2)
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2.3. RELATIVE TENSOR PRODUCT (5], [31], [34] 11

where we have identified N with 7y (V) to simplifly the notations.
The image of £ © 7 in H g®~ X will be denoted by £ s®, 1. We shall use intensively
¥ P

this construction; one should bear in mind that, if we start from another faithful
semi-finite normal weight 1)’, we get another Hilbert space H s®- K; there exists an
¢/
isomorphism U g’ f from H 3®, X to H 3®, X, which is unique up to some functorial
P b’
property ([31], 2.6) (but this isomorphism does not send £ g®+ 7 on £ g n!).
P P’

When no confusion is possible about the representation and the anti-representation,
we shall write H ®, X instead of H g®., X, and £ ®, n instead of £ s®~ 7.
» »

In ([32] 2.1), the relative tensor product H 3®., K is defined also, if &, &2 are in K,
P
M1, N2 are in D(,XK, 1), by the following formula:
(61 Oml&2 ©n2) = (B(< M1, m2 >4 4)1162)

which leads to the the definition of a relative flip o, which will be an isomorphism
from H 3R, K onto X ,®g H, defined, for any & in D(Hg,¢°), n in D(,K, ), by:

¥ pe

oy (§ @y n) =1 Qyo &
This allows us to define a relative flip ¢, from L(H 3®,K) to L(K,®gH) which sends
¥ e
X in L(H ﬁ%7 X) onto ¢y (X) = oy Xoy,. Starting from another faithful semi-finite
normal weight ¢, we get a von Neumann algebra L(H 3®. X) which is isomorphic
,Ll)/

to L(H g®+ X), and a von Neumann algebra L(X ,®s H) which is isomorphic to

P ,w'o
L(X ,®s H); as we get that:

wo
oy o Uy = UV ooy

we see that these isomorphisms exchange ¢, and ¢y/. Therefore, the homomorphism
Gy can be denoted ¢x without any reference to a specific weight.

We recall, following ([31], 2.2b) that, for all £ in H, n in D(,%K, %), y in N, analytic
with respect to ¥, we have:

By)E @y n=E®y (0?5 (y)n

With the notations of 2.1, let (e;);cr a (83, 1°)-orthogonal basis of H; let us remark
that, for all  in X, we have:

€i 38y 1 = €; @y V(< €ir€i >p.yo)n
" "
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On the other hand, §%¥° (e4, €;) is an orthogonal projection, and so is gov° (eir€:) @y 1;
N

this last operator is the projection on the subspace e; g®+ V(< €, e; >g.40)X ([9],
¥
2.3) and, therefore, we get that H g®, X is the orthogonal sum of the subspaces

(4

€; ,3®’Y ’Y(< €;,€; >/g’wo)fK
P

For any Z in H g®+ X, there exist & in X, such that v(< e;,e; >p.40)& = & and
b
E =Y, € 3®y &, from which we get that Y, [|&]*> = ||I=]*.
¥

Let us suppose now that X is a N — P bimodule; that means that there exists a von

Neumann algebra P, and a non-degenerate normal anti-representation € of P on X,

such that e(P) C v(N)'. We shall write then ,X.. If y is in P, we have seen that it is

possible to define then the operator 13 g®- €(y) on H s®, K, and we define this way
¥ P

a non-degenerate normal antirepresentation of P on H 3®., X, we shall call again € for
P
simplification. If  is a  — N bimodule, then H g®., X becomes a ) — P bimodule
P

(Connes’ fusion of bimodules).

Taking a faithful semi-finite normal weight v on P, and a left P-module (L (i.e. a

Hilbert space £ and a normal non-degenerate representation ¢ of P on L), it is pos-

sible then to define (H g®, K) Q¢ L. Of course, it is possible also to consider the
P v

Hilbert space H 3®, (X c®¢ L). It can be shown that these two Hilbert spaces are
P v

isomorphics as 3(N)' — ¢(P) °-bimodules. (In ([39] 2.1.3), the proof, given for N = P

abelian can be used, without modification, in that wider hypothesis). We shall write

then H s®, XK .®¢ L without parenthesis, to emphazise this coassociativity property
P v

of the relative tensor product.
Dealing now with that Hilbert space H g®., X ®¢ L, there exist different flips, and
P v

it is necessary to be careful with notations. For instance, 13 ® o, is the flip from
P
this Hilbert space onto H g®- (L ¢®c X), where v is here acting on the second leg of
P ve

L ®:X (and should therefore be written 1,®. 7, but this will not be done for obvious

reasons). Here, the parentheses remain, because there is no associativity rule, and to

remind that v is not acting on £. The adjoint of 13 ® 0, is 13 ® 0.
P P
The same way, we can consider oy Q¢ 1 from H g®, K Q¢ L onto (K ,®s H) Q¢ L.
v P v o v

Another kind of flip sends Hg®- (L :®.XK) onto L R, (H 3®.,K). We shall denote this
v owe ve "
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2.3. RELATIVE TENSOR PRODUCT (5], [31], [34] 13

1,2
7€

the first and the second leg, and the representations v and € on the third leg.

application 012 (and its adjoint ‘751,’3)7 in order to emphasize that we are exchanging

If = denotes the canonical left representation of N on the Hilbert space L2?(N),

we verify that the application which sends, for all £ in H, ¢ normal semi-finite

faithful weight on N, and z in 91, the vector & s®, JyAy(x) on B(x*)E, gives an
P

isomorphism of H 3®, L?(N), which sends the antirepresentation of N given by
P
n— lg g®x Jym(x*)Jy on [. The same way, there exists a canonical identification,
N

as left N-modules, of L?(N) ®, X with K. For any ¢ in D(Hg,°), we define the
bounded linear application )\g” from X to Hz®,X by, for all in X, )\g’”’(n) = £3Q41.
P

P
We shall write ¢ if no confusion is possible. We get ([12], 3.10):
X7 =RV (&) @y 1x
We have:
)N = (< &6 >p.40)
We may define, for any n in D(,X, ), an application p,ﬁ]” from H to H 3®, X by
P

pﬁ’” (&) = € 3® 1. We shall write p,, if no confusion is possible. We get that:
P
(o) P = B(< 1,1 >+,)

Let z be an element of L(H), commuting with the right action of N on Hz (ie.
belongs to B(IN)). It is possible to define an operator = g®., 1x on H s®., K. We can
¥ ¥

easily evaluate ||z 3®., 1x||: for any finite J C I, for any #; in X, we have:
P
("7 @y 1) (Zicsei @y mi)|(Bicsei @4 mi)) = Ties(V(< e, xe; >py0)nilni)
P P P

2] Zics (V(< €y €5 >p,p0 )i |m:)
= |2)?Sicsei & il
P

from which we get ||z g®~ 1x|| < ||z
%

By the same way, if y commutes with the left action of N on X (i.e. y € v(N)'),
it is possible to define 13 3®~ y on H 3®, X, and by composition, it is possible to
¥ P

define then z 3®. y. If we start from another faithful semi-finite normal weight ¢’, the
canonical isomorphism Ug”’ff’, from J{ﬂ%x to Hg®+ XK sends as[;%,yy on xﬁia,,yy ([31],

wl
2.3 and 2.6); therefore, this operator can be denoted = g®. y without any reference
N
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to a specific weight, and we get ||z 3®~ y|| < ||lz]|||y|l-
N

If X is a Hilbert space on which there exists a non-degenerate representation v of N,
then X is a N —y(NN)’® bimodule, and the conjugate Hilbert space X is a y(N)" — N°
bimodule, and, ([31]), for any normal faithful semi-finite weight ¢ on y(N)’, the fusion
+XK 52 K., is isomorphic to the standard space L?(N), equipped with its standard left

and right representation.
Using that remark, the associativity rule, and the identification (as right N-modules)
of H ®y L%(N) with H, one gets for any z € B(N)":

[z 6@y 1|l < lz 6@y 1 ® 1zl = [z 6@ 1r2(wll = |z
N N y(N)° N
from which we get ||z g®~ 1x|| = ||z|| .
N

If H and X are finite-dimensional Hilbert spaces, the relative tensor product Hz®, X
%

can be identified with a subspace of the tensor Hilbert space H ® X ([15] 2.4), the
projection to which belongs B(N) ® v(N).

2.4. Fiber product [35], [15]

Let us follow the notations of 2.3; let now M; be a von Neumann algebra on H, such
that 8(N) C M;, and M be a von Neumann algebra on X, such that v(N) C Ms.
The von Neumann algebra generated by all elements z 3®- y, where z belongs to M7,

N
and y belongs to My, will be denoted M{ s®., My (or M{ @y My if no confusion if
N

possible), and will be called the relative tensor product of M, and M over N. The
commutant of this algebra will be denoted My g%y My (or My *x M, if no confusion
N

is possible) and called the fiber product of My and My, over N. It is straightforward
to verify that, if P and P, are two other von Neumann algebras satisfying the same
relations with NV, we have:

My sy Mo N Pyxy Py = (M NPy sy (MaN Po)
Moreover, we get that ¢y (M7 gy Ma) = My % M.
In particular, we have: N v
(MyNB(N)') 58y (M2 v(N)) € My gy Mo
and:
M, 8%y v(N) = (Myn B(N)) p%y 1
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More generally, if § is a non-degenerate normal involutive antihomomorphism from
N into a von Neumann algebra M7, and v a non-degenerate normal involutive homo-
morphism from N into a von Neumann algebra Ms, it is possible to define, without

any reference to a specific Hilbert space, a von Neumann algebra M; g*., M.
N
Moreover, if now [’ is a non-degenerate normal involutive antihomomorphism from

N into another von Neumann algebra P;, ' a non-degenerate normal involutive ho-
momorphism from N into another von Neumann algebra P, ® a normal involutive
homomorphism from M, into P; such that ® o 8 = 3, and ¥ a normal involutive
homomorphism from M into P, such that ¥ o~ = 4/, it is possible then to define a
normal involutive homomorphism (the proof given in ([32] 1.2.4) in the case when N
is abelian can be extended without modification in the general case):

P B*y U M, B*y My — Py B’ *~7 P,
N N N

In the case when X, is a N — P° bimodule as explained in 2.3 and (L a P-module, if

v(N) C M3 and €(P) C Ms, and if ((P) C M3, where M3 is a von Neumann algebra

on L, it is possible to consider then (M; g%y M2) ¢ M3 and M gk, (M cx¢ M3). The
N P N P

coassociativity property for relative tensor products leads then to the isomorphism of
these von Neumann algebra we shall write now M g*., My ¢ M3 without parenthesis.
N P

If M, and M, are finite-dimensional, the fiber product M; g+, M2 can be identified to
N

a reduced algebra of M; ® Ms (reduced by a projector which belongs to (V) ®~y(N))
([15] 2.4).

2.5. Slice maps [8]

Let A be in M g*y M, ¢ a normal faithful semi-finite weight on N, J{ an Hilbert
N

space on which M; is acting, X an Hilbert space on which M5 is acting, and let &1,
& be in D(Hg,9°); let us define:

(s 2 4 1) (4) = (A&7 AN

We define this way (we, ¢, g%~ id)(A) as a bounded operator on X, which belongs to
¥
M, such that:

((we, &5 gy 1d)(A)mnz) = (A(&1 5@+ 71)[E2 5@ 12)
" ¥ ¥
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One should note that (we, ¢, g*~y id)(1) = V(< &1,&2 >p,p0)-
P

Let us define the same way, for any 11, 72 in D(,X,¢):
(id ﬂ:;v Wy nz) (A) = (pnﬁ) AP

which belongs to M;.
We therefore have a Fubini formula for these slice maps: for any &;, & in D(Hg, ¥°),
N1, N2 in D(,%K, ), we have:

< (w§17§2 B*y id)(A)awThﬂlz >=< (idﬁ*’)’ wmﬂlz)(A)awﬁh& >
P P

Let ¢ be a normal semi-finite weight on M. 1+ , and A be a positive element of the fiber
product M, g*., Ms, then we may define an element of the extended positive part of
N

M, denoted (¢1 g~ id)(A), such that, for all n in D(,L?*(Mz),), we have:
¥

(81 g%y id)(A)2n]* = ¢1(id sy wy)(A)
» P
Moreover, then, if ¢5 is a normal semi-finite weight on M;‘ , we have:
b2 (¢1 B*y id) (A) =¢1 (id B*y ¢2)(A)
P P

and if w; be in My, such that ¢1 = sup;w;, we have (¢1 g*1d)(A) = sup;(w; g*id)(A).
P »
Let now P; be a von Neuman algebra such that:
B(N)C P, C M,

and let ®; (i = 1,2) be a normal faithful semi-finite operator valued weight from M;
to P;; for any positive operator A in the fiber product M; ﬁ* M, there exists an

element (®; g* id)(A) of the extended positive part of P; 5* M27 such that ([8], 3.5),
for all 7 in D(7L2(M2) ), and € in D(L*(P1)g,4°), we have.

[[(@1 Bry id)(A)V2(¢ ﬂ®7 m? = (|1 (id p* 5 wn) (A2
If ¢ is a normal semi-finite weight on P, we have:
(¢ 0 D1 gty id)(A) = (¢ g*y 1d)(P1 g* id)(A)
P P N

We define the same way an element (id g, ®2)(A) of the extended positive part of
N

M, ,xg P>, and we have:
N

(id gry @2)((R1 gty id)(A)) = (P2 gty id)((id gty P2)(A))
N N N N
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Let m denotes the canonical left representation of N on the Hilbert space L?(N); let
x be an element of Mg ;SWW(N), which can be identified (2.4) to M; NB(N)’, we get

that, for e in M, we have:
(ids % om0 (@) = Blec")a
Therefore, by increasing limits, we get that (idg :Z ~) is the injection of My N B(N)’
into M;. More precisely, if z belongs to M7 N B(N)’, we have:
idg * ® 1) =
(i 8% ¥)(zp ©rl) =2

Therefore, if ®5 is a normal faithful semi-finite operator-valued weight from M> onto
v(IN), we get that, for all A positive in M; gk, M, we have:
N

(ids 1 10 @2)(A)s © 11 = (id 1 ,P2)(4)

With the notations of 2.1, let (e;);cs be a (8, 1°)-orthogonal basis of H; using the
fact (2.3) that, for all n in X, we have:

€; p®y 1 = €; 3@~ V(< €is € >pg.yo)
P P
we get that, for all X in M; g%, Mo, £ in D(Hpg,9°), we have
N

(We,e; #* id)(X) = (< i€ >pp0) (We e p* id)(X)

2.6. Vaes’ Radon-Nikodym theorem

In [35] is proved a very nice Radon-Nikodym theorem for two normal faithful semi-
finite weights on a von Neumann algebra M. If ® and ¥ are such weights, then are
equivalent:

- the two modular automorphism groups ¢® and ¢¥ commute;
- the Connes’ derivative [DV : D®], is of the form:

[DV : D®), = \i**/25it

where A is a non-singular positive operator affiliated to Z(M), and § is a non-singular
positive operator affiliated to M.
It is then easy to verify that o (§°*) = A%*§%, and that

[D® oo} : DB], = N
[D¥ ool : DU, = \~ist
Moreover, we have also, for any x € M™:

U(z) = lim, ®((6"2e,) (6" %e,))
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where the e,, are self-adjoint elements of M given by the formula:
_ 2n?
- T(1/2)T(1/4) Jge

The operators e,, are analytic with respect to ¢® and such that, for any z € C, the

2,2 4. 4 . .
én e T T Y N drdy

sequence o2 (e,,) is bounded and strongly converges to 1.

In that situation, we shall write ¥ = ®5 and call 6 the modulus of ¥ with respect to
®; X\ will be called the scaling operator of ¥ with respect to ®.

Moreover, if a € M is such that ad'/? is bounded and its closure ad1/? belongs to N,
then a belongs to Mgy. We may then identify Ag(a) with Ag(ad?/2), which leads to
the identifications of Jg with \/4Jg, and of Ay with Jpd— 1 J0As.
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CHAPTER 3

MEASURED QUANTUM GROUPOIDS

In this chapter, we first recall the definition of Hopf-bimodules (3.1). We then
give (3.2) the definition of a pseudo-multiplicative unitary, give the fundamental ex-
ample given by groupoids (3.4), and construct the algebras and the Hopf-bimodules
“generated by the left (resp. right) leg" of a pseudo-multiplicative unitary (3.3). We
recall the definition of left-(resp. right-) invariant operator-valued weights on a Hopf-
bimodule; we then give the definition of a measured quantum groupoid (3.7). We give
the essential theorems which found the theory of measured quantum groupoids and
its duality (3.8, 3.10, 3.11, 3.12).

3.1. Definition

A quintuplet (N, M, «, 3,T) will be called a Hopf-bimodule, following ([40], [15]
6.5), if N, M are von Neumann algebras, o a faithful non-degenerate representation
of N into M, 8 a faithful non-degenerate anti-representation of N into M, with
commuting ranges, and I an injective involutive homomorphism from M into M g, M

such that, for all X in NV: N
() T(B(X)) =1 6®a B(X)
(i) T(a(X)) = a(X) 584 1
(iii) T satisfies the co—a];,sociativity relation:
(T g id)I' = (id g*o I')T
N N

This last formula makes sense, thanks to the two preceeding ones and 2.4. The von
Neumann algebra N will be called the basis of (N, M, «, 5,T).

If (N,M,a,B,T) is a Hopf-bimodule, it is clear that (N°, M, 8, a,sn oT') is another
Hopf-bimodule, we shall call the symmetrized of the first one. (Recall that ¢y o T is
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a homomorphism from M to M 4xg M).
NO
If N is abelian, o = 8, I = ¢y o ', then the quadruplet (N, M, «, o, T") is equal to its

symmetrized Hopf-bimodule, and we shall say that it is a symmetric Hopf-bimodule.

Let G be a measured groupoid, with G(®) as its set of units, and let us denote by

1

r and s the range and source applications from G to G(¥), given by zz~! = r(z)

and 7'z = s(x). As usual, we shall denote by 3 (or 992) the set of composable

elements, i.e.
5 = {(z,y) € §% s(z) = r(v)}

Let (A"),eg be a Haar system on § and v a measure v on G, Let us write u the
measure on G given by integrating A" by v:

uw= / Adv
G

By definition, v is said quasi-invariant if u is equivalent to its image under the inverse
x — a1 of G (see [28], [29], [30], [6] II.5, [27] and [1] for more details, precise
definitions and examples of groupoids).

In [47], [48], [49] and [40] were associated to a measured groupoid G, equipped with a
Haar system (A"),cg and a quasi-invariant measure v on G two Hopf-bimodules:
The first one is (L>(3®,v), L>(8, 1), rg, sg,I'g), where we define 7 and sg by
writing , for g in L>(G(®):

rg(g) =gor

sg(g) =gos

and where T'g(f), for f in L>(9), is the function defined on G by (s,t) s f(st);
I'g is then an involutive homomorphism from L*°(§) into L>°(G2,) (which can be
identified to L*>(G)s*,L>(9)).

The second one is symmetric; it is (L (G, v), L(5),rg, g, f‘;), where £(G) is the
von Neumann algebra generated by the convolution algebra associated to the groupoid
G, and T'g has been defined in [49] and [40].

If (N,M,a,,T') be a Hopf-bimodule with a finite-dimensional algebra M, then, the
identification of M g*, M with a reduced algebra (M @ M), (2.4) leads to an injective
N

homomorphism I' from M to M ® M such that I'(1) = e # 1 and (T ®id)[" = (id®I)T
([15] 6.5). Then (M,T") is a weak Hopf C*-algebra in the sense of ([3], [4], [33]).
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3.2. Definition

Let N be a von Neumann algebra; let $§ be a Hilbert space on which N has
a non-degenerate normal representation a and two non-degenerate normal anti-
representations B and (. These 3 applications are supposed to be injective, and to
commute two by two. Let v be a normal semi-finite faithful weight on N; we can
therefore construct the Hilbert spaces ) g®a $ and H a®5 9. A unitary W from

9 5®a $H onto H V5 ) $ will be called a pseudo multlphcatlve unitary over the basis

ve

N, with respect to the representation «, and the anti-representations ﬁ and 8 (we
shall write it is an (c, B8, B)-pseudo-multiplicative unitary), if:
(i) W intertwines a, B, 8 in the following way: we have, for all X € N:

W(a(X) 6%a D) =10z (X)W

NO
W(1 58 B(X)) = (1a®5 B(X))W
N Neo
W(B(X) s®a 1) = (B(X) a®p nw
N Neo
W(1 580 f(X)) = (B(X) a®y W
N No

(ii) The operator W satisfies:

(L C¥®B w)w B&a lg) =W a®,3 15'9) (W /5®a (1 JeR ove)(lg BQa W)

No N No N N

Here, UZ’% goes from (H a®g H) ,3®a H to (H 5®a H) .®; H, and 15 Ig%a Oyo gOEs
from Hﬁ®a (H a®ﬁ H) to H,3®a Hﬁ®a H.
All the propertles supposed in () allow us to write such a formula, which will be
called the "pentagonal relation".
One should note that this definition is different from the definition introduced in [15]
(and repeated afterwards). It is in fact the same formula, the new writing:

02 : (W ﬁ®a (1 ﬁ%a Ove)

is here replacing the rather akward writing:

Opo oWps 1y H a®j O2v\lp pQa Opo

( ®51 )1 ®p W)oa,(1g 5® )

Ne Ne N

but denotes the same operator, and we suggest the reader to convince himself of this
easy fact.
If we start from another normal semi-finite faithful weight v’ on N, we may define,
using 2.3, another unitary wv' = U:Oé” OWUEI’” from ,3®a $ onto 9 «®; H. The

VO
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formulae which link these isomorphims between relative product Hilbert spaces and

the relative flips allow us to check that this operator W' is also pseudo-multiplicative;

which can be resumed in saying that a pseudo-multiplicative unitary does not depend

on the choice of the weight on N.

If W is an (a,ﬁ,ﬁ)—pseudo—multiplicative unitary, then the unitary o,W*o, from

9 5®a £ to H.®s H is an (o, B, B)—pseudo—multiplicative unitary, called the dual of
v ve

w.

3.3. Algebras and Hopf-bimodules associated to a pseudo-multiplicative
unitary

@ B) W pl® will be written

For & in D(a9,v), n2 in D($4,7°), the operator (p
(id * wey m, ) (W); we have, therefore, for all &1, np in $:
((id * we, 1y ) (W)ErIm) = (W (&1 p®a €2)Im a®p n2)

v

and, using the intertwining property of W with 3, we easily get that (id * Wey e ) (W)
belongs to B(N)'.
If  belongs to IV, we have:

(Zd * wﬁzﬂh)(W)a(x) = (Zd * w€2,a(w*)772)(W)

B() (id # ey ) (W) = (id % w1, ) (W)

We shall write A, (W) the weak closure of the linear span of these operators, which are
right a(N)-modules and left 3(N)-modules. Applying ([9] 3.6), we get that A, (W)
and A, (W)* are non-degenerate algebras (one should note that the notations of ([9])
had been changed in order to fit with Lesieur’s notations). We shall write A(W') the
von Neumann algebra generated by A, (W) . We then have A(W) c B(N)'.

For & in D(93,v°), m in D(o9,v), we shall write (we, n, * id)(W) for the operator
(Ag{B)*W)\g’a; we have, therefore, for all &5, 72 in $:

((wey iy *3d)(W)Ea|m2) = (W (&1 g®a &2)|m a®p 72)

and, using the intertwining property of W with 3, we easily get that (we, ,, *id) (W)
belongs to B(N)'.

We shall write Aﬁ) the weak closure of the linear span of these operators. It is
clear that this weakly closed subspace is a non degenerate algebra; following ([15] 6.1
and 6.5), we shall write A/(ﬁ/ ) the von Neumann algebra generated by AW) We
then have A/(-VI?) C B(N)".

In ([15] 6.3 and 6.5), using the pentagonal equation, we got that (N, A(W),«, 3,T),
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and (N ,A/(I/I\/'),a, B,f) are Hopf-bimodules, where I" and T are defined, for any z in
A(W) and y in A(W), by:

F(l‘) = W*(l 04@,@ l’)W
NO

T(y) = 0o W(y s®a 1)W*a,
N

(Here also, we have changed the notations of [15], in order to fit with Lesieur’s nota-
tions). In ([15] 6.1(iv)), we had obtained that z in £($)) belongs to A(W)’ if and only
if z belongs to a(NN)' N B(N)’ and verifies (z o® 4 1)W = W(z 384 1). We obtain the
N N
—
same way that y in £($)) belongs to A(W) if and only if y belongs to a(N)' N G(N)’
and verifies (1 ,®; Y)W = W(1 3Qaq y).
Neo N
Moreover, we get that a(N) C A NA, B(N) C A, B(N) C A, and, for all z in N:

B

I'(a(z)) = a(z) 6% 1
I'(B(z)) =1 6®a Bx)

T(a(z)) = a(z) 5 1
N

T(B(z)) =1 3®a Alz)
N

3.4. Fundamental example

Let G be a measured groupoid; let’s use all notations introduced in 3.1. Let us note:

Srr =A{(z,y) € §%,r(z) = r(y)}

Then, it has been shown [40] that the formula Wg f(x,y) = f(z,z~1y), where z, y are
in G, such that r(y) = r(z), and f belongs to L?(G(?) (with respect to an appropriate
measure, constructed from A and v), is a unitary from L?(§®) to L?(G2,) (with
respect also to another appropriate measure, constructed from A\* and v).

Let us define g and sg from L>(3(®,v) to L>°(G, 1) (and then considered as repre-
sentations on L(L?(G, i), for any f in L= (3, v), by 7g(f) = for and sg(f) = fos.
We shall identify ([49], 3.2.2) the Hilbert space L?(3(®) with the relative Hilbert ten-

sor product L?(G, 1) s4®r; L*(§, 1), and the Hilbert space L?(G2 ) with the relative
Lo (SO ,v)
Hilbert tensor product L*(G, 1) r,®r, L*(G, 1). Moreover, the unitary Wg can be
L= (§,v)
then interpreted [41] as a pseudo-multiplicative unitary over the basis L>(3(®), ),
with respect to the representation rg, and anti-representations sg and rg (as here
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the basis is abelian, the notions of representation and anti-representations are the
same, and the commutation property is fulfilled). So, we get that Wg is a (rg, sg, rg)
pseudo-multiplicative unitary.

Let us take the notations of 3.3; the von Neumann algebra A(Wg) is equal to the von
Neumann algebra L>(G,v) ([41], 3.2.6 and 3.2.7); using ([41] 3.1.1), we get that the
Hopf-bimodule homomorphism T' defined on L™ (G, u) by Wg is equal to the usual
Hopf-bimodule homomorphism I'g studied in [40], and recalled in 3.1. Moreover, the
von Neumann algebra m) is equal to the von Neumann algebra £(G) ([41], 3.2.6
and 3.2.7); using ([41] 3.1.1), we get that the Hopf-bimodule homomorphism T de-
fined on £(G) by Wg is the usual Hopf-bimodule homomorphism I'g studied in [49]
and [40].

Let us suppose now that the groupoid §G is locally compact in the sense of [29]; it
has been proved in ([9] 4.8) that Wg satisfies a strong condition of regularity, called

“norm regularity".

3.5. Definitions ([20], [21])

Let (N,M,a,3,T') be a Hopf-bimodule, as defined in 3.1; a normal, semi-finite,
faithful operator valued weight T' from M to «a(N) is said to be left-invariant if, for
all z € im}', we have:

(’Ld B*a T)F(x) = T(:L‘) 8Qa 1
N N

or, equivalently (2.5), if we write ® = v o a~! o T where v is a normal semi-finite
faithful weight on V:
(id gxq @)'(z) = T'(z)

A normal, semi-finite, faithful operator-valued weight 7" from M to B(IN) will be
said to be right-invariant if it is left-invariant with respect to the symmetrized Hopf-
bimodule, i.e., if, for all x € zm;,, we have:

(T g#a id)D(z) = 1 504 T'(z)
N N

or, equivalently, if we write ¥ =vo 1o T

(U g*q id)T(z) = T'(z)

3.6. Theorem([20], [21])

Let (N,M,a,3,T) be a Hopf-bimodule, as defined in 3.1, and let T be a left-
invariant normal, semi-finite, faithful operator valued weight from M to a(N); let us
choose a normal, semi-finite, faithful weight v on N, and let us write ® = voa~'oT,
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which is a normal, semi-finite, faithful weight on M ; let us write Hg, Jg, Ag for the
canonical objects of the Tomita-Takesaki theory associated to the weight ®, and let us
define, for x in N, B(z) = Jpa(z*)Jsp.

(i) There exists an unique isometry U from Hg a®ﬁ Hg to Hyp 5®a Hg, such that,

for any (B, v°)-orthogonal basis (&;)icr of (Ha)g, for any a in Ny ﬂ Ne and for any
v in D((Hg)p,v°), we have

U(va®; Aa(a)) = Y & s®a Aa((wog, g*e 1d)(I(a)))

ve i€l v
(ii) Let us suppose there exists a right-invariant normal, semi-finite, faithful operator
valued weight T' from M to B(N); then this isometry is a unitary, and W = U* is an
(o, ,@', B)-pseudo-multiplicative unitary from He 3®qo Ho to Ho a®g Hg which verifies,
v

Vo

for any x, y1, y2 in Ny N Ng:
(0% Wrg An(y7y2) M0 (@) (W) = (id p¥a WigAg (y2),JeAn ()T (27)
N

Clearly, the pseudo-multplicative unitary W does not depend upon the choice of the
right-invariant operator-valued weight T', and, for any y in M, we have:

T(y) = W* (1@, )W
NO

Proof. — This is [21] 3.51 and 3.52. O

3.7. Definitions

Let us take the notations of 3.6; let us write ¥ = v o 37! o T’. We shall say that
v is relatively invariant with respect to T' and T” if the two modular automorphism
groups associated to the two weights ® and ¥ commute; we then write down:

Definition

A measured quantum groupoid is an octuplet & = (N, M,«a, 3,T,T,T’,v) such that:
(i) (N,M,a,B,T) is a Hopf-bimodule, as defined in 3.1,

(ii) T is a left-invariant normal, semi-finite, faithful operator valued weight T' from
M to a(N), as defined in 3.5,

(iii) 7" is a right-invariant normal, semi-finite, faithful operator-valued weight 7" from
M to B(N), as defined in 3.5,

(iv) v is normal semi-finite faithful weight on N, which is relatively invariant with
respect to T and T".

Remark These axioms are not Lesieur’s axioms, given in ([21], 4.1). The equivalence
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of these axioms with Lesieur’s axioms had been written down in [11], and is recalled
in the appendix (B.8).

3.8. Theorem ([21], [11])

Let & = (N,M,a,8,1,T,T',v) be a measured quantum groupoid in the sense
of 3.7. Let us write ® = voa ! oT, which is a normal, semi-finite faithful weight on
M. Then
(i) there exists a x-antiautomorphism R on M, such that R? = id, R(a(n)) = B(n)
for allm € N, and

I'oR =g¢no(R g*q R)T
N

R will be called the coinverse;
(ii) there exists a one-parameter group T: of automorphisms of M, such that
Roms =71 0R forallt € R, and, for allt € R and n € N, 1i(a(n)) = a(of(n)),
7(B(n)) = B(of (n)) and:
For = (7 g*a )T
N
Toof = (7 g*q of )T
N
7+ will be called the scaling group;
(iil) the weight v is relatively invariant with respect to T and RTR; moreover, R
and T are still the co-inverse and the scaling group of this new measured quantum
groupoid, we shall denote

& =(N,M,«,8,I',T,RTR,v)

(iv) for any &, n in D(oaHe,v)ND((Hs)s,v°), (id*we,y)(W) belongs to D(7;/2), and,
if we define S = R7_;/5, we have:

S((id x we n)(W)) = (id * wn ) (W)

More generally, for any x in D(S) = D(7_;/2), we get that S(x)* belongs to D(S) and
S(S(z)*)* = x; S will be called the antipod of & (or &), and, therefore, the co-inverse
and the scaling group, given by polar decomposition of the antipod, rely only upon the
pseudo-multiplicative W .

(v) there exists a one-parameter group v: of automorphisms of N such that, for all
teR andn € N, we have:

oi (B(n)) = B(1e(n))
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Moreover, we get that v oy, = v.
(vi) there exists a positive non-singular operator A affiliated to Z(M), and a positive
non singular operator § affiliated to M, such that:

(D® o R : D), = \it'/2

and, therefore, we have:

(D® o gl . DB), = \i*¢
The operator \ will be called the scaling operator, and there exists a positive non-
singular operator q affiliated to N such that A = a(q) = B(q). We have R(X\) = A.
The operator § will be called the modulus; we have R(§) = 671, and 74(8) = 6, for all

t € R, and we can define a one-parameter group of unitaries 6 g®, 0" which acts
N
naturally on elementary tensor products, which verifies, for all t € R:

F((Slt) — 5it ﬁ®a 5'it
N

(vii) we have (D® o1y : D®), = A\~ which leads to define a one-parameter group
of unitaries by, for any x € Ng:

P Ag(z) = M2 Ag (i ()
Moreover, for any y in M, we get:
7 (y) = PityP_it

and it is possible to define one parameter groups of unitaries P" s®, P and
N

p# a®j P such that:
NO
W(P'Lt ﬂ®a P’Lt) — (P'Lt a®@ Pit)W
N Neo
Moreover, for allv € D(P~Y/2), w € D(P'/?), p, q in D(oHge,v)ND((Ho)s,v°), we
have:
(W*(va®j @)|w 5®a p) = (W(P™Y%0 @4 Jop)| P *w a®z Joq)
We shall say that the pseudo-multiplicative unitary W is “manageable”, with “manag-
ing operator” P, which implies it is weakly regular in the sense of [9], 4.1, which im-
plies (with the notations of 3.3) that A,(W) = A(W) =M and A,(W) = A(W) = M
AsTio 0';1) = O'ZI) oy, we get that Jg PJg = P.

Proof. — Result (i) is A.6, result (ii) is A.5, result (iii) is B.7(iv) and A.8; result (iv)

is A.9, result (v) is B.2 and B.7(iii); result (vi) is given by 2.6 and (iii), B.7(iv), (v),
and, using B.8, [21], 5.6 and 5.20; result (vii), using B.8, is [21] 7.3. O
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3.9. Notations

We shall use the notations of 2.6 about Vaes’ Radon-Nykodym theorem for the

weights ® and ® o R. Let A be the scaling operator of ® o R with respect to ®, and
be the modulus of ® o R with respect to ®, defined in 3.8(vi). Then, the self-adjoint
elements e,, of M defined in 2.6 verify R(e,) = ep.
If € M is such that £61/2 is bounded and its closure z61/2 belongs to N, then
x belongs to Naor (2.6), and, then R(z*) belongs to MNe. In particular, if z € Ng,
then ze, belongs to Mg N Naor (and R(x*)e, belongs also to Mg N Naor), and
lim, Ag(ze,) = Ag(z).

3.10. Theorem ([21])

Let 8 = (N,M,a,8,1,T,T',v) be a measured quantum groupoid in the sense
of 8.7. Let T be the subset of N NNrrr NNe N Neor made of elements © which are
analytic with respect to both ® and ®o R, and such that, for all z, 2’ in C, USOJS°R(:B)
belongs to N N Nrrr N Ne N Naor. Let E be the linear subspace generated by the
elements of the form e,x, where e, had been defined in 3.9, and x € T, and let us de-
note & the linear subspace JoAo(E). Let us denote M2 the subspace of M, spanned
by the positive elements w in M} such that there exists k € RT such that wo a < kv
and wo B < kv. Then:

(i) T and E are dense in M; Ae(T) and € are dense in Hg. As
€ C D(oHs,v)ND((Hs)g,v°)

we get that D(oHs,v) N D((Hg)g,v°) is dense in Hg; therefore MXP is dense in
M.. Moreover, ifn, n' are in €, then < n,n' >¢, , and < n,n’ >3 vo are analytic with

respect to both of and ;.
(ii) If w1, we are in M2P | et us define wiws = (w1 g*e w2)l. If w € M2P and
N

z € M, let us define w*(z) = w(R(z*)); with such product and involution, M®" is
an involutive algebra, and we can define a faithful representation of this involutive
algebra by:
F(w) = (w*1d) (W)

Let M be the weak closure of the algebra generated (which is a von Neumann algebra,
by 3.8 (vii) ) and is included in B(N)'. More generally, for any v in D(oHy,v), w in
D((Ha)p,v°), let us write (wyw) = (Wy,w * 1d)(W); then T(wy.w) belongs to M. If
moreover, v belongs also to D((Hg)g,v°), we have, for all z € Ng:

Ao (W0 p*ra 1d)T(2)) = 7T (wy,w) A ()
N
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(iii) If y is in J/\/[\, let us define:
T(y) = 0,:W(y s0a HYW*a,
N

with these notations, (N, ]T/I\,a,/;’,f) 18 a Hopf-bimodule.

(iv) there exists a unique x-anti-homomorphism R of M, such that R#(w) = #(woR),
for allw € M. Moreover, we have R(y) = Joy*Jo for ally € M, R(a(n)) = B(n),
for allm € N, and:

f o ﬁ = Q‘No(R\ B*o‘ ﬁ)f
N

and, therefore, R is a co-inverse of the Hopf-bimodule (N, ]\//T,a,ﬁ,f).
(v) let Is C M, be defined as:

Iy = {w € M,; 3K € RY | |w(z*)| < ¥||As(2)]], VT € N}
and, for any w € Iy, let ag(w) be the unique vector in Hge such that, for all x € Ng:
(ap(w)[Ae (7)) = w(z")
Then Is N M2P is a left ideal of Mf’ﬂ, and there exists a unique normal semifinite
faithful weight ® on M, such that 7(Is N Mf"’g) is a core for Ag. Moreover, we may
identify Hg with He in such a way that we have, for any w € MP N Ig:
Ag(F(w)) = as(w)
We have also, with the notations of 3.9, for all x € Mg and n € N:
J3Ao(zen) = Mg (R(x*)e,d1/2)

and, for any y € M, we get R(y) = Jzy*J5.
Moreover, there exists a unique left-invariant normal faithful semi-finite operator-
valued weight T' from M to a(N) such that

~

d=voa loT

(vi) the octuplet (N, ]/\4\, a,,@,f,f, RoTo E, V) is a measured quantum groupoid, de-
noted by & and called the dual of & (or of &).
(vil) The pseudo-multiplicative unitary W constructed from & is:

W = o, W*o,
The scaling group 7¢ of & is given, for all y € J\//.T, by:
#(y) = PtyP~"

The scaling operator A of & satifies A= A"L. The managing operator p ofw is equal
to P.
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The modular operator Ag is equal to the closure of PJ3d~Jg, and, therefore, for all
x € M, we have:
T(z) = Anggt

The automorphism group 4 is equal to v_;.

Proof. — Result (i) is [21] 6.7, result (ii) is [21] 8.4,8.5, 3.18 and 8.1; result (iii) is [21]
8.2, (iv) is [21] 8.6, (v) is [21] 8.7, 8.14, 8.18 and 8.28, and results (vi) and (vii)
are [21] 8.24. O

3.11. Theorem ([21])

Let 8 = (N,M,«,8,1,T,T',v) be a measured quantum groupoid in the sense
of 3.7, & its dual in the sense of 3.10; then:

(i) the bidual & is equal to &;

(ii) the modulus 5 is equal to the closure of P_IJ@(SJ@(S_IA;I; therefore, we have
1

0Az = 0As

(iii) it 4s possible to define one-parameter groups of unitaries Ag Q@ A% and
14

A2 ,®; AY and we have:

v

W(Ag BRa Ag) = (Ag a®§ Ag)W

v

W(J3 a®5 Ja) = (J3 5@a Jo)W*

(iv) for all s, t in R, we have:
ARAZ = XA AR

and we have JgJop = )\i/4Jq>J5.

(v) we have the following “Heisenberg-type" relations:
MM = a(N)
MNM = B(N
M'0nM = B(N
M' N M = &(N)

where we put, for alln € N, &(n) = JofB(n)*Jo = J;I;/S’(n*)Ja.

)
)
Proof. — Result (i) is [21] 8.25, (ii) is [21] 8.24 (iii); results (iii) and (iv) are [21] 8.28,
and (v) is [21] 8.30. O
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3.12. Theorem([21])

Let 8 = (N,M,«,8,0,T,T',v) be a measured quantum groupoid in the sense
of 3.7, & its dual in the sense of 3.10. Then:
(i) The octuplet (N°, M, B,a,sy o', RTR, T, v°) is a measured quantum groupoid we
shall write &° and call the opposite measured quantum groupoid. We have ($°)° = &.
(ii) For any z in M, let us write j(z) = Jpx*Jp the canonical x-anti-homomorphism
from M onto M’ and let us define then I'® = (jg*qj)T0j, R = joRoj, T = joToj.
N

The octuplet (NO,M’,,@,@,FC,TC,RCTCRC,I/O) is a measured quantum groupoid we
shall write ¢ and call the commutant of . We have ()¢ = &.

(iii) we have B°¢ = B°° and this last measured quantum groupoid is isomorphic to &,
via the isomorphism implemented by Jo Jg.

(iv) We have & = (QAS)C and B¢ = (GA5)°

(v) The pseudo-multiplicative unitaries W° and W€ of &° and &° are given by:

We = (J3 o«®; J3)W (J5 28 I3)

N
wWe = (Jo a®5~ Jo )W (Ja 5‘®5 Jo)
Neo No

where W° is a unitary from He ,®g Ho onto He s®4s Ho and W€ is a unitary from
ve v
Hg 5"®ﬁ Hgs onto Hs ,é®a Hs.
ve v

Moreover, for any x € M, y € J\/Z, we have:
I'(z) = (6,W°0,)*(z 4®p 1)(0,W°0,)
NO
T(y) = We(y a®; 1)(WE)*

NO
(vi) The pseudo-multplicative unitary W°¢ of °¢ is given by:

Woc = (J@J@ a®,é J@J&;)W(J&;Jcp B@d J@J{))
Neo N
and is a unitary from Hg 5®a Hgs onto Hy 4®p He.
Let us denote Jg the isomorphism between M and M' given, for x € M, by:
Jqs (il?) = J@J@ZL‘J&;J@

Then Jg is an isomorphism of measured quantum groupoids between & and &°°.
Moreover, for any y € M', we have:

T°(y) = W(y ;04 1)(W)*
N

Proof. — Result (i) is [21] 17.8, (ii) is [21] 17.10, (iii) and (iv) are [21] 17.14; result (v)
is [21] 17.11, and (vi) is a straightforward corollary of the preceeding statements. [
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3.13. Example

Let G be a measured groupoid; let’s use all notations introduced in 3.1 and 3.4. If
f € L*(8, )™, let’s consider the function on G, u fg fdX*, which belongs to
L>(5® v); the image of this function by the homomorphism rg is the function on G,
v fS fdA™™); the application which sends f on this function can be considered as
an operator-valued weight from L>(G, 1) to 74(L>°(S(®),r)) which is normal, semi-
finite, faithful; by definition of the Haar system (A*),cg, it is left-invariant, in the
sense of 3.5; we shall denote by Tg this operator-valued weight from L%°(G,u) to
rg(L>®(3®,v)). If we write A, for the image of A\* under the inverse z +— z~! of
the groupoid G, starting from the application which sends f to the function on G(®
defined by u — [, 5 fd)\y, we define a normal semifinite faithful operator-valued weight
from L*(G, u) to sg(L>®(G(®), v)), which is right-invariant in the sense of 3.5, we shall
denote by Tg(fl).
We then get that:

o0 oo -1
(L (9(0)7V)7L (g’u)arga‘SS)FSvTQaTé )’]/)

is a measured quantum groupoid, we shall denote again G.

It can be proved ([10]) that any measured quantum groupoid, whose underlying von
Neumann algebra is abelian, is of that type.

The constructions obtained by applying 3.8 to this measured quantum groupoid are
the following: the pseudo-multiplicative unitary is the operator Wg defined in 3.4;
the co-inverse is given by dualizing the inverse x +— z~1 of G to L>(§, u); the scaling
group is trivial, and the co-inverse is equal to the antipod; the automorphism group
is trivial, the scaling operator A is 1, and the modulus ¢ is the usual Radon-Nikodym
derivative between p and its image under the inverse z — 27! of G.

The underlying Hopf bimodule of the dual § constructed in 3.10 is the symmetric
Hopf-bimodule (L°°(9(0),V),L(S),rg,rg,f;) constructed in [49] (3.1).

The constructions obtained by applying 3.12 are the following: (G)° is given by the
opposite groupoid (in which we return the product, and exchange source and range
applications). As L*°(G, 1) is abelian, we have clearly (§)¢ = §.

3.14. Example

Let G = (M, T, ®,7) be a locally compact quantum group, in the sense of Kuster-
manns and Vaes ([18], or, preferably, the von Neumann version given in [19]). Here
M is a von Neumann algebra, I" a coassociative coproduct M — M ® M (where ® is
the von Neumann tensor product), and ® (resp. ¥) is a left-invariant (resp. a right-
invariant) normal semi-finite faithful weight on M ™. Then, thanks to (|18], prop. 6.1),
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we see that:
(C,M,id,id,T",®, ¥, w)

(where id is the canonical homomorphism from C into M, and w is the canonical state
on C), is a measured quantum groupoid, we shall still denote by G.

Conversely, it is clear that any measured quantum groupoid whose basis IV is equal
to C is of that type.

3.15. Theorem([15], [8] 8.2 and 8.3)

Let My C M; be a depth 2 inclusion of o-finite von Neumann algebras, equipped
with a regular (in the sense of 2.2) normal semi-finite faithful operator-valued weight
Ti. Then:

(i) there exists an application T' from M N M to

(Mo N Mz)j, o, id(Mg N My)
such that (M N My, M{N Ms,id, j1, T') is a Hopf-bimodule, (where id means here the
injection of M{NM; into M{NMa, and j; means here the restriction of ji to M{NMy,
considered then as an anti-representation of M N M, into M| N Ms). Moreover, the
anti-automorphism j1 of M N My is a co-inverse for this Hopf-bimodule structure.
(i) Let us write Ty for the restriction of Ty to M{ N My (which is semi-finite, by
definition of the regularity of Ty (2.2)); we then get that Ty is a left-invariant operator-
valued weight from M} N Ms to M{ N My, and, therefore, that ji o Ty 0 j1 is a right-
invariant operator-valued weight from M, N Ma to M{ N Ms.
(iii) Let us suppose moreover that there exists on M) N My a normal faithful semi-
finite weight x invariant under the modular automorphism group of Tiand let xo be
the weight x o Ty; the modular automorphism groups o} and oX2°7 commute.
Therefore, (M} N My, MjN My, id, j1,T, Ty, j1 0 Ty 0 j1,X) is a measured quantum
groupoid &1 in the sense of 3.7.
Moreover, the inclusion My C My satisfies the same hypothesis, and leads to another
measured quantum groupoid o, which is isomorphic to E‘E\lo.

Let us describe how the coproduct I is constructed: let 1y be a normal semi-finite
faithful weight on My, 11 = ¥ 0T} the normal semi-finite faithful weight constructed
then on Mj, ¥ = 91 o T the normal semi-finite faithful weight constructed then on
Ms; let x be a normal semi-finite faithful weight on M{§N My, x2 = Xofg the normal
semi-finite faithful weight constructed then on Mj N M.

Then, the application defined, for z € Nz NN,, and y € Ny, by:

U(Axz (2) ©x Ay, (9) = Ay, (2y)
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is a unitary from H,, ®, Hy, onto Hy, ([15], 4.2 and 4.6).
Moreover, using the fact that the inclusion My C My C My is standard ([12], 4.5),
we get ([15], 4.6):
U*[My 0 My N (Mo N M) U = 7y, (Mg 0 Ma) *apsang, Mo 0 Mo
and, on the other hand, composing the mirrorings (with the notations of (2.2)), we
get that:
Ja o j1(Myn My) = My My C Myn My (M) N M)
and, therefore, z — U*jy0j1(z)U is an injective x-homomorphism from M} N M; into
Ty (Mg N M2)" *pg5a0r, Mg 0 M.
On the other hand, using U, it is possible to define a pseudo-multiplicative unitary
W ([15], 5.3), which leads to a coproduct I' on ,, (Mj N M) by the formula (y €
Ty (Mo N My)"):
[(y) = W(y ®x HW*
and we have ([8], 5.1), for all z € M| N Ma:
W (7, () @x YW = argn, (20 *arpnna, o ) (U2 0 G (2)U)
which shows that, if we write W = (Jy,J @y 1)oyeWayo(JJy, ®, 1) (where J is the
standard implementation of ji|ar;nar, OR H,,), or, equivalently W = ﬁ/\c, we obtain
a coproduct I' on Mg N M, which satisfies

f‘(m) =W (1 @y )W = (']ij ®x 1)U j2 Ojl(x)U(j']m ®x 1)
(in which, for simplification, we have identified M) N M, with 7, (M N Ms).)
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CHAPTER 4

LEFT INVARIANCE REVISITED

In the definition of a left-invariant operator-valued weight, recalled in 3.5, we have,
for any x € ML, (idg*o T)I(z) = T(x) s®4 1 (or, equivalently, T'(z) = (id g%, )T'(z),
N N v
where ® = v oa~! o T). In this chapter, we extend this formula to any positive =
in M, and even, any positive z in a fiber product L($)) p*, M, where b is a faithful
N
antireprentation of N on $ (4.12(i) and (ii)). On our way, we prove a Plancherel-like
theorem (4.8), which extends the construction of the dual left-invariant operator-
valued weight recalled in 3.10(iv). The result 4.12(ii) will be used in 6.12, and I am

indebted to S. Vaes who pointed in [36] how this kind of result was necessary in order
to get correct proofs.

4.1. Definitions and notations

Let N be a von Neumann algebra, ¥ a normal semi-finite faithful weight on N;
following ([14], 2.1.6), we define, for all w € M,:

[wlly = sup{lw(z™)|,z € Ny, Y(z"z) < 1}
and Iy = {w € M,,|w|ly < oco}. Then w € M, belongs to I, if and only if there
exists a vector ay(w) in Hy such that:

w(z®) = (ay(w)|Ay ()

and we have then ||ay (w)|| = ||w||4- Moreover, the application a here defined is clearly
linear from I into Hy, and, ¥ being semi-finite, injective.
Let us identify N and 7 (N); then, any element w € M, is of the form we ,, where
&, n belong to Hy. For any n in Hy, let us define the following operator 7'(n), with
D(n'(n)) = Ap(Ny), and, for any x € Ny, by 7' (n)Ay(z) = zn. We then easily get
that we , belongs to I if and only if £ belongs to D(n’(n)*), and we have then:

ay(we ) = ' ()€
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Let us write K, = D(7’(n)*); then (7'(n)*) |k, is a densely defined operator from K,
into Hy, and we may consider ((7'(7)*)x,)*(7'(1)*)|x, Which is a positive self-adjoint
operator on K,; we shall write, for simplicity, P,, for

(7' (m)*)1x,)" (7" (M) )1k, + 0o(1 = pK,,),
which belongs to the positive extension of N'. We have then, for any £, n in Hy:

lwe I} =< Py, we >

4.2. Lemma

Let & = (N,M,a,3,T,T,T',v) be a measured quantum groupoid; & its dual mea-
sured quantum groupoid; let u, v in Hg such that w, , belongs to I, and let e, the

self-adjoint elements introduced in 3.9. Then, we have, for all z € Ny :
(Jgaa(wa) Ao (wen)) = (R(z*)end Zolu)

where e,01/2 is the closure of the bounded operator e,d/2.
If v belongs to D(6Y/?) and Way,v belongs to Ig (for instance, ifv € €, and anyu € Hg ),
we have:

(J300 (Wu,v)|Aa () = (R(x*)51/2v|u) =< x*,wél/zvyu oR >

and, therefore, wsi/2, ,, © R belongs to Is, and ag(wsi/z, , 0 R) = J308(Wu,v)-

Proof. — We have, using 3.10(v), 3.9 and 4.1:

(J$a<1>(wu,v)|A<I>(xen)) = (J<£A<I>(xen)|a<1>(wu,v))
= (As(R(z")end"/?))|as(wu,v))
= (R(z*)en,02v|u)

which is the first result. The second result is clear by continuity. O

4.3. Lemma

Let & = (N,M,a,B8,T,T,T',v) be a measured quantum groupoid; let & be the
subspace introduced in 3.10; then:
(i) & C {¢€ € D(oHs,v) N D(6'/2),6Y2¢ € D((Hs)p,v°)}
(i) &€ C {¢€ € D((Hg)p,v°) N D(61/2),5'/2¢ € D(,Ha,v)}
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Proof. — Let us recall that € is the linear subspace generated by all the elements of the
form JpAg(enx), where the self-adjoint elements e, had been introduced in 2.6, and
x belongs to the subset T of elements in M NNrrr NNe N Neor Which are analytic
with respect both to ® and ® o R, and such that, for any 2, 2’ and C, 02 0 02°%(x)
belongs to M N Nrrr N Ne N Neor. Using then the identifications made in 2.6, we

have:
JoAo(ent) = 62 JporAsor(€nt)

and, therefore, J3Ag(e,z) belongs to D(5'/2) and 6'/2JpAs(ent) = JoporAvor(€nT)
which belongs to D((Hg)s,v°). So we have (i).

On the other hand, for all t € R, as 6§ tzd* C 0®,,02°%(z) is bounded, we get that
enxdt C e,6t9-tzdt is bounded also, and belongs to Mg, and that:

Jo Ao (e,z6t) = 6" Jp Ao (N~ 2e,, 1)

So, 8t JpAs(en) = JpAe (A "%/?e,26t) which belongs to D(,Hs,v). So, we get (ii).
O

4.4. Definitions and lemma

Let® = (N,M,a,5,T,T,T',v) be a measured quantum groupoid; let T and & be the
subspaces introduced in 3.10; let us define T, as the subspace of T made of elements
which are analytic with respect to 14, and such that, for any z € C, 7,(x) belongs to T,
and &, as the linear subspace of € generated by the elements of the form JoAo(enx),
where the self-adjoint elements e, had been introduced in 2.6, and x belongs to the
subset T.. Then:

(i) &, is dense in Hg; moreover, for any & in D(,Hes,v), there exists &, in &, such
that R*" (&,) weakly converges to RV (§).

(ii) & C {¢ € D(§'/2),5/%¢ € D((Ha)s,v°)}.

(iii) for all s, t in R, £ € &, & belongs to D((6A;)"), and (6A;)'E belongs to & ;
moreover, £ belongs also to D(P'6%), and P'§°¢ belongs to €.

(iv) let us define &; the linear subspace associated to the dual measured quantum
groupoid &. Then:

& c {€ € D(,Hs,v)ND(6Y2),6'Y2%€ € D((Hy)p,v°)}

Proof. — There exists an invertible positive operator ¢ affiliated to Z(N) such that
A= a(q) = B(g) (3.8(vi)). Let us write ¢ = [;~ ude,, and let f, = flT/T de,,.
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PoR
t

Let z € T; as the automorphisms groups 7¢, of and o are two by two commuting,

we can check that, for any = € 7, the operators:

Ty = \/ﬁ/ e_ntzfth(CL')dt
T J—c0

belong to T, the strong limit lim, ,z,, = x, and lim, Ae (s ) = As(z). From
which we get that £, is dense in &, and, therefore, in Hg; moreover, as we can

prove that all the operators T(xzwe%xnw) are uniformly bounded, we get also that

R*"(JoAs(eprn,r)) is strongly converging to R*¥(JeAs(epz)), from which we get
(1).
Let now z be in T,. Then, using 3.11(ii), we get that:
81/2.]@1\@(6”.73) = P_1/2J¢51/2J¢5_1/2A;1/2J@Aq>(enl‘)
P_l/z)\i/‘qu)Aq;(G'_i/Q(en)U??/Rz(fL'))
= )\i/4J<I>A<I>(U—i/z(en)T—i/z(Ufi/Rz(95)))
We get also that Jgd'/2JpAe(enz) = )\_i/4Jq>Aq>(cr_i/gTi/zaf;%R(:r*)en), which be-
longs to D(oHg,v), and, therefore, 6*/2J3Ag(e,z) belongs to D((Ho)g,v°), which
is (ii).
If x belongs to 7,, and t € R, we get that:
PtJsAg(enz) = Jo(A " 2e,m_u(x)) € &,
and, using 3.8(vii):
(6A$)th>Aq>(ena:) = Jq>Aq>()\_itencr?itagoRT_it(x))
and, therefore, &, C D((6A3)"), and (6Az)'E, C &,
Moreover, we have also:
8 JpAo(ent) = JoAo (N "%/ %e,28°) € &,

from which we get (iii).
If we consider now the dual measured quantum groupoid &, and the linear subset &5
associated with, we get, using (iii), that 6'/2€; C D((Hg)gs,v°), which is (iv). O

4.5. Proposition

Let & = (N,M,a,3,T,T,T',v) be a measured quantum groupoid in the sense
of 8.7, ° the opposite measured quantum groupoid in the sense of 8.12(1), n in
D(oHg,v) N D(5Y/2) such that §*/%n belongs to D((Hs)gs,v°), (€i)icr an (a,v)-
orthonormal basis of Hg; then, for all x € No, £ € D(oHa,v), (id grq wye)I'(2)

N
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belongs to Ng, and the pseudo-multiplicative we satisfies:

We(Ag(z) 4®5 02n) = > As[(id p¥a wn,e, )T ()] 5@a €;
ve i N v

Ag[((id p*a wne)l(2)] = (idxwsijey ) (W) As ()
= J(’I;ﬁ(WJag,J@(gl/2n)*J&;A@(ZL‘)
If u belongs to D((Hg)g,v°) and v belongs to D(oHg,v) N D(6Y/2) such that §'/%v
belongs to D((Hg)s,v°), we get that (id g*a wsi/2, ,, © R)T'(x) belongs to Ne, and:
N

Ao ((id pxa wy 5172 © R)T(2)) = Jgf(wu,w)* JgAa(z)
N

Proof. — Let’s apply the definition of W* (3.6) to the measured quantum groupoid
®°, with the identification made in 3.9 of Ag(ze,) with Agor(ze,d-1/2) (where e,
has been defined in 2.6):

We(Ag(zen) a®p 87/%n) = > Ag[(id g o wye, )T (wen)] p®a €
ve i N v

from which we get:

Ag[((id ,3:;1 wn.e)l(ze,)] = (id * w(;l/zn’g)(ﬁ/\o)/\@(xen)

As Ag is o-strong *-norm closed, we get that (id g*q wy¢)I'(x) belongs to Mg, and
N
that:

—

Ag[((id pra wne)T(2)] = (id * ws1/2, ) (W) Mg (2)

Now, we get easily the first formula. The second equality is just an application
of 3.10(ii) and 3.12(v). Then, writing u = J56'/2n, and v = Jz¢, and using 3.10(v)
and 3.8(vi), we get the last formula. O

4.6. Proposition

Let 8 = (N,M,a,3,T,T,T',v) be a measured quantum groupoid; & its dual mea-
sured quantum groupoid; let & in D((Ha)g,v°), n in D(oHa,v) such that we ,, belongs

to Iy; then, the operator @t(we ) belongs to Ng, and we have then:

Ag(7t(we,p)) = a(we )
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Proof. — Let £ € D(oHo,v) N D((Ha)g,v°), n € D(oHs,v) such that we , belongs
to Ip; let u € D(oHg,v), v € D(6Y/2) such that §'/2v is in D((Hs)s,v) and w,,, is
in Ip; we have then, for any x € Mg, using successively 3.10(ii), 4.2 and 4.5:

(7t (wen)Jgaa(Wuo)lAe () = (Jgae(wuw)|T(wen) As(z))
= (Jga0(wup)|Aa((wn,e o*a id)I'(z))

= (ao(wWsi/20,u © R)|Aa((wn,e g*a id)I'(z))
= < [(wng pra id)(2)]", w5172 © R >

= < (wep E:«; id)['(2"), ws1/24, © R >

= <[(id ﬁ;:wu,(sl/zv o R)I'(2)]", we,n >

= (ao(wen)|Aa((id Fa Witz © R)I'(z))

= (aa(wen) I3 (Wuw)" JgAa (7))
= (ST (wuw)Jgae(we )| Aa(2))

From which we get, by density:
7t (We,n) J308 (Wuw) = JTt (W) Jgas (e n)

Let us take v = JpAg(e,x), with e, defined in 3.9 and = € T (3.10). Then, this
formula gives:

7t (wen) Jg e (enz)" Jou = T3 (Wu, 15 Aa(ene)) T30 (We,n)
which, by continuity, gives, for any v € D(,Hs,v), v € JoAs(Na) N D((Hs)p,v°):
t(we ) T3 (V) u = Jgft (W) Jgae (we )

Let us suppose now that u, v belong to D(oHa,v) N D((Hs)g,v°) and are such that
wy,» belongs to Ip; with the notations of 4.1, let us write:

Py :/ Adey + (1 — p)oo
0

As w, ,, belongs to Iy, we get that pu = u. Let us define v, = e,v which belongs to
JoAe(Ma) N D((Hg)g,v°). We have:

lim,' (v,)*u = lim 7' (v)* e u = ' (v)*pu = 7' (v) v = ag(wy,v)
w
and we get also, for the weak limits:

lim”RB’”o (vu) = lz'mHe,LRﬂ”’o (v) = pR®" (v) = RP" (pv)
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and, as p € M’, we get for the weak limits:

lim 7 Wy, ) = My (Wu,v, * id)(W) = (Wu,pv * id) (W) =
= (Wpy,v * 1d) (W) = (wy,p *1d) (W) = T (wy,v)

and, taking the limits of the equality:

T(wen) I3 (V) v = Jg@t (Wayv, ) J500 (we,n)
we get:

7t (we,n) J508 (Wuw) = 7 (W) J308 (we )
for all u, v in D(,Hg,v)ND((Hs)s, v°) and are such that w,, , belongs to Is; therefore,
by linearity, we get, for all w € M2 N Iy, that:

T (wep)Jga(w) = Jeit(w)Jga(we n) = Jgit(w)Jgn' ()€

*

By the closedness of 7T,(77)|Kn (4.1), this formula remains true for £ in D((Hg)gs,v°)
such that we, belongs to Is. From which we get that a(we ) is left-bounded with
respect to @, and the result, by standard arguments of Tomita-Takesaki’s theory. [

4.7. Proposition

Let & = (N,M,a,3,T,T,T',v) be a measured quantum groupoid; & its dual mea-
sured quantum groupoid; let’s take £ in D((Hg)a,v°) and n in D(oHg,v), and let us
suppose that 7t (we ) belongs to Ng. Then we, belongs to Iy and:

Az (7 (we,n)) = ase(we,y)

Proof. — Let u, v be in D(,Hg,v) N D((Hq))lé,l/o); then the linear form &, , on M

defined, for y in M by W (y) = (yulv) belongs to J/\/LO"B (with the notations of 3.10(i)
applied to &). Let us suppose that @, , belongs to Iz. Using 3.10(v) and (ii), applied
to @5, we get:

(a&;(‘bu,v”[\%(ﬁ'(wém))) = < ﬁ'(w§ 77)* Oy >
((we,p * td)(W)*u|v)
( a®ﬁ U|W( ﬂ®a ))

= (Ww 5®a v a®p €)

= (%r(@u,v)ﬂﬁ)
and, by linearity, we obtain, for all & in M B A Iy:
(Ag (7 (wen))lag(@)) =< 7(@)", we,y >
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But, by 3.10(v) applied to &, and 3.11(i), we have ag(w) = Ag(7(@)), and, by 3.10(v)
applied to & and again 3.11(i), we know that the algebra %(Mfﬂ N Ig) is a core for
As; so, by the closedness of Ag, we get, for all x € Ng:

(Ag (7 (we,n))|Aa(2)) =< 2%, we,py >

from which we get that | < z*,we, > | < [|[Ag(7(wen))ll|[Ag(2)|], and that we,
belongs to Ig. Then, using 3.10(v), the proof is finished. O

4.8. Theorem

Let 8 = (N,M,a,3,T,T,T',v) be a measured quantum groupoid; & its dual mea-
sured quantum groupoid; let’s take & in D((Hg)g,v°) and n in D(oHs,v); then, are
equivalent:

(i) 7(we,y) belongs to Ng;
(ii) we , belongs to Is.
We have then Ag(t(wey)) = as(we ).

Proof. — This is just 4.6 and 4.7. O

4.9. Proposition

Let 8 = (N,M,a,3,T,T,T',v) be a measured quantum groupoid; & its dual mea-
sured quantum groupoid; for any X € &(N)', let us define:

8(X) = (id g*a )W (X 5®5 HW)
N v°
Then:
(i) 8(X) belongs to the positive extended part of &(N)', and, for any § € D((Has)g,v°),
n € D(,Hs,v), we have:

< S(Hd(J$J<I>777 J@‘]‘Pn))?wJaJ@ﬁ >= 6(7%(“]5771)*%(“"5:?7)) =< Ppwe >
(i) for alln € D(,Hg,v), we have:
8(0%(JgJon, JgJon)) = JzJoPyJo s

(ii) 8(X) belongs to the positive extended part of M.

Proof. — Using 3.12(v), we get that W = (JoJ5o®;1)W (J3Jo 3®q 1); so, with the

14
intertwining properties of W, we easily get that S(X) is an element of the extended
positive part of &(N)'.
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Let us notice that J3Jo belongs to D((Hs)s,v°), and JzJon to D(sHe,v). We then
get that < 8(95‘(J5Jq>77, J@qu)),wJ@J@g > is equal to:

Q((Wig Tat, a5 den * 1) (W) (Wis ae, 75 Tan * 1d) (W) =
= B((we,p * id)(W)* (we,y *id) (W) = B(F(we,n) 7 (we )

If it is finite, it is equal to ||Ag(F(we,n)|*> = [laa(we,y)||? = |lwe,y |3, thanks to 4.8. If
it is infinite, using 4.8 again, |Jwe ,||¢ also is infinite. So, in both cases, it is equal to
l|lwe »||%, which is equal, using 4.1, to < P,,,we >, which finishes the proof of (i). Then
(ii) (resp. (iii)) is a straightforward corollary of (i) (resp. (ii)). O

4.10. Proposition

Let 8 = (N,M,a,3,T,T,T',v) be a measured quantum groupoid; & its dual mea-
sured quantum groupoid. Let X be a positive element in M ; then, we have:

~

(id 5o ®)T(X) = T(X)

Proof. — Using 3.12(v), we get that:

T(X) = WX 4®; YW

ND
and, therefore, with the notations of 4.9, (id xq P)[(X) = 8(X). Using 4.9(iii), it

belongs to the positive extended part of M, arfd, by construction, it belongs to the
positive extended part of M. So, it belongs to the positive extended part of a(N).
If w is a unitary in N, we easily get that S(a(u*)Xa(u)) = a(u*)8(X)a(u), and,
therefore, the application X — 8(X) is an operator-valued weight from M on a(N).
It is clearly normal and faithful, and, as §(X) = f(X ) for any X € im%, we get it is
also semi-finite, and that, for any positive X in M, we have S$(X) < T(X)

Let us define ®(X) = voa~'08(X); we have ® < @, and these two weights are equal
on Mz; moreover, as, for all t € R, we have:

fa? = (&4 s*a U'?)f
N

we get that SO'EI; = 78, and that ® is invariant under a;{; , by 3.8(ii) applied to
@; therefore, we have & = ZI;, from which we deduce that § = f, which gives the
result. U
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4.11. Proposition

Let & = (N,M,a,B,T,T,T',v) be a measured quantum groupoid; & its dual
measured quantum groupoid, § an Hilbert space with b a faithful normal anti-
representation of N on §. Let X be a positive element in L($)) pxo M; then, we

N
have:
(id po id gra @) (id pro D)(X) = (id pxa )(X) 1®a 1
N N N N

v

—

Proof. — Using 3.12(v), we get that, for X € L(9) p*xq M:
N

(id po T)(X) = (1,80 WO)(X 4®5 1)(1 4@0 W°)*
N N e N

For any Y in L($) y®q Hs)T, commuting with 1,8, &(N), let us write
v N

S(Y) = (id y*a id sa ®)[(1580 W)Y 6®; 1)(1 4@a W°)']
N v N No N
which is an element of the positive extended part of L(9 ,Qn Ho).

Let’s take £ in D((9 y®a Ho) °) and n in D(1,5.4(9 6®« Hs), V). Then, we
v N v

1,8.0"Y
N
1y®a b
get that < S(0 ~ (1,7)),we > is equal to:

Bl(we o iD)((112a WO (0,m) a2 (1180 W)

v Neo

which can be written also:
B[((wen *id)((148a W))" (we * id) (LGB0 W)]

Using now 3.12(v), we get that W = (JoJ5 o®; 1)W (J3Je 3®a 1) and, therefore,
L i R ve v
<S8 "N (m,m)),we > is equal to ®(A*A), where:

A = (W1,007572)6, (1080 o Tg)n * 1d)(1 @0 W)
N N No

Let (e;)icr be a (b,v°)-orthogonal basis of $. Using ([9], 2.3(ii)), there exist & in
D((Ho)g,v°) and n; in D(sHs,v) such that:

fzzeib(%aﬁi

n= E €; bQa 1Mi
. v
1
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and we get that A = >, a(< e, €; >b0) (W5 Iat,, 05 Jen,; *id)(W) because JgJo&; be-

1,®ad
longs to D((Hg)s,v°), and JgJen; belongs to D(o Hs,v); so, < S(0 'R (m,m)), we >

is equal to:

Z E)(ﬁ(wJ@J@éi,JaJ@m)*a(< €5 € b0 < €5, €5 >b,V°)7Ar(wJ@J¢€j,J@J®m))
i,j

If it is bounded, then so are, for all 7 € I:
<D(ﬁ-(""}J@JcIﬁi7J<3J<1>7M)*OZ(< €i, € >b7VO)7}(wJ§J¢§i7J$J<I>ni))
which implies (4.7) that, for all i € I, wy_ js¢,,7575n; Delongs to Is, and, therefore,
using 4.1, that JgJs; belongs to D(n'(JzJen;)*); moreover, we then get:
1,Qaé

<SO N () we > = 1D al< ei,er >pp0)m (JpJom) T Jakill?

7

= | Z e b‘%a 7' (JgJom:) I3 Ja&ill?

By definition of the extended positive part, there exists a closed subspace
1 ®0¢A
K C 9 y®, Hp on which S(6 "N a(n,n)) is a positive self-adjoint operator, and

v
it is co on the orthogonal of K.
So, K = @;K;, where the K; are the closed orthogonal subspaces e; ,®4 Jo Js Ky gem:
v

(with the notations of 4.1).
Let u be a unitary in M’; we get that each K is invariant under 1 ,®, u, and so, we
N

get that px belongs to L(§) p*xq M; as (1,®4 u)¢ belongs to D((Hp®q H‘I>)1b® 3 v°),
N N v N
we get that:

1,®a & *
<SSO N () wae > = || e v®a 7 (JgJomi)* T Jousi|?
= 1> e s®a R(Jou* Jo)n' (JgJon:)* I3 Jakil®

1, ®a &
= <80~ (n,m),we >

&

1,Qa 1,Qa b
So, we get that (1 ,®, u*)S(6 "N n,mM) (1 R4 u) is equal to "N (n,m) from
N N

1,®06
which we get that S( "N (n,7m)) belongs to the positive extended part of L($)p%q M.
N
Let (n;)jes be an ((1 p®q &),v) orthogonal basis of § ,®, Hg; for any
N v
Y € L(9®q Ho)", commuting with 1,®, &(N). We have:
v N

1, ®aé
Y= 0 Ny, v )
J
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and, therefore:
1 ®a A
S(Y) =3280 "N (¥ 2, Y )
J
from which we get that S(Y) belongs to the positive extended part of L($)) p*, M.
N

In particular, if X is a positive element in £(9) p*q M ; then
N

(id yo id gxo @) (id pro T)(X) = S(X)
N N

belongs to the positive extended part of L($)) b;a M. As, by definition, it belongs
to the positive extended part of L(9) p*q J/\/[\, we get that it belongs to the positive
extended part of L($) %4 a(N), from whj\i]ch we get that there exists X’ in the positive
extended part of b(N)’ ]\s]uch that:

(id e id Bia ®)(id e N (X)=X' ¥8a 1

Let £ be in D($,v°), n in D(aHe,v) N D((He)s,v°); we get:
<b(< N >an) X\ we > = (We p¥a W sHa ®)(id pra T)(X)
N N

v

= (g g0 D)T((we pra id)(X)
v N

which, using 4.10, is equal to:

-~

(we p*a wy)(id pxa T)(X)
N N

< T(we p¥a id)(X),wy >
N

~

= <b(<mn >au)(idpra P)(X),we >

~

from which we infer that X’ = (id p*, ®)(X), which gives the result. O

4.12. Theorem

Let & = (N,M,a,8,T,T,T",v) be a measured quantum groupoid; let ) be an
Hilbert space with b a faithful normal anti-representation of N on $. Let X be a
positive element in M, X a positive element in L($) pxo M; then:

N

(i) we have (id g*o T)I'(X) = T'(X) g®q 1;
N N

(ii) we have (id y*o id gro T)(id yxo T)(X) = (id pro T)(X) 5Qq 1
N N N N N

Proof. — Let us apply 4.10 and 4.11 to the dual measured quantum groupoid 6. O
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CHAPTER 5

COREPRESENTATIONS OF MEASURED
QUANTUM GROUPOIDS

In this chapter, we define corepresentations of measured quantum groupoids (5.1),
and we prove a fundamental property of these with respect to the antipod S (5.10).

5.1. Definition

Let & = (N,M,a,3,T,T,T',v) be a measured quantum groupoid; we shall use
all the notations of chapter 3; let $§ be a N — N-bimodule, i.e. an Hilbert space
equipped with a normal faithful representation a of N on $) and a normal faithful
anti-representation b on §, such that b(IN) C a(N)'. Let now V be a unitary from
5 o®p He onto 9 1@, He, satisfying all the following properties, for all x € IV:

V(b(z) o®p1) = (1,®q B(z))V
Ne N
V(1a®g a(z)) = (a(z) y@a 1)V
Ne N
V(l a®,3 B(.’Iﬁ)) = (1 bQa B(.’E))V
Ne N
Thanks to these intertwining properties, the following operator has a meaning:

(16®a W) (1 @4 0,)(V ,é®a nQa a®p a.0)(1 a®p W)
N N No Neo No
and is a unitary from $ a®g (Hs g®a Hg) onto $ b®a Hg g®a Hg. Let us recall

that the parenthesis in the ﬁrst Hllbert space means that the antlrepresentatlon I5]
is here acting on the second leg of Hy gs®, Ho. Moreover, here, o, is the flip from

Hgy ﬁ®0¢ Hg onto Hg Oé®ﬁ Hg, and 0,0 is the flip from Hg 8®a H¢ onto Hg a®g Hg.

v ve
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We may consider also the following unitary from $ ,®s3 (He g®« Hs) onto
ve v
@0 Ho sQq Hy:
ve v

(V5®a Doy e (V o®p 1)(1 4®5 0)
N Neo No

Now, in that formula, o, is the flip from Hg 5®a Hg onto Hg a®5 Hg, and ofg is

the flip from ($) b®a Hy) a®g Hg onto ($ a®g H<p) b®a Hgs.
We shall say that V is a corepresentatlon of @ on the bimodule ,$; if we have:

(16®a W) (1 6®a 00)(V 300 1)(1a®p 0ve)(1a@p W)
N N No Neo No

= (V ®a )Ub a(V a®ﬁ D(1.®g0v)
N No

5.2. Theorem

Let® = (N,M,a,3,T,T,T',v) be a measured quantum groupoid, and ,$p a N—N -
bimodule; let V' be a unitary from .83 Hao onto Q4 Ha, satisfying all the following
properties, for all x € N :

V(b(z) o®p1) = (1,®q B(z))V
Ne N
V(1.®p a(z)) = (a(z) 1®a 1)V
Ne N

V(1,85 B(x)) = (1,04 B(z))V
No N

Then, are equivalent:

(i) V is a corepresentation of & on the bimodule ,9p;

(ii)) for any & € D(,9,v) and 17 € D($y,v°), the operator
(wen *id)(V) belongs to M and is such that:

T ((we,p *id)(V)) = (we,y *id % id)[(V 180 1oy o (V o®p 1)(1 o®p 01)]
N No No

Proof. — Let V be a corepresentation on ,$; let us take now a unitary u in M’; as
we have then:

(’U.* a®ﬁ 1)W(’LL 8Qa 1) =W

Vo

it is easy to get, because V' is a unitary, that:

(]. »Ra u*)V(l a®ﬂ U) =V
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from which we get, for any £ € D(,9,v) and n € D($,v°), that the operator
(wen * id)(V) belongs to M; from the definition of a corepresentation, we then get:

D((we,q * d)(V)) = (weyn *id * id)[(V 40 1oy (V a®p 1)(1 @5 0,)]
N Neo Ne

The converse is trivial. O

5.3. Corollary

Let 8 = (N,M,a,3,T,T,T',v) be a measured quantum groupoid, and .9, be a
N — N-bimodule; let V be unitary fromﬁa®ﬁ Hg onto ﬁb®a Hg; then, are equivalent:

(i) V is a corepresentation of & on the N N-bimodule aﬁb,
(ii) V* is a corepresentation of &° on the N° — N°-bimodule ,9,.

Proof. — Let us suppose that V is a corepresentation of  on the N — N-bimodule
o9p; then, for any £ € D(,9,v) and n € D($),°), the operator (we ,*id)(V') belongs
to M and we have:

T((wey * id)(V)) = (we.p * id % id)[(V +Ca Doye(V a®p1)(1a®p 0,)]
Ne Ne
Therefore, taking the adjoint, we get:
' ((wng id)(V")) = (wn,¢ x id x id)[(V" a®p Doy (V* b@a 1)1 a8 oy)]

which gives, thanks to 5.2, that V* is a corepresentation of &° on the N° — N°-
bimodule $),. The proof of the converse is the same, applied to &°. O

5.4. Proposition

Let® = (N,M,a,3,T,T,T',v) be a measured quantum groupoid, and ,$p a N—N -
bimodule; let V' be an isometry from $H,RsHo to HQq Ha, satisfying all the following

properties, for all x € N:

V(b(z) a®p 1) = (1p®a B(2))V

No N

V(1,8 a(z)) = (a(z) 1®a 1)V
Ne N

V(14®s B(x) = (1®a B(z))V
No N

and let us suppose that for any & € D(,9,v) and n € D($H,,v°), that the operator
(wen *id)(V) belongs to M and is such that:

T((wen #id)(V)) = (wen x id + id)[(V 1@ Doya(V a®p Ht a®p av)]

then V is a unitary and a corepresentation of & on 9.
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Proof. — We easily have:
(16®a 0,0 W*0,)(V 584 1)(1a®p 00 Wa,) = (16@a 040)(V 6@a 1oy e (V a®p 1)
N N No N N ’ No
Then, taking the adjoints, we get:

(1.®p 0,0 W*0,)(V* 586 1)(158a 00 Wa,) = (V* a®5 1)02p (V" 50 1)(148a 0,)
Neo N N Ne N N
and, by multiplication, we get, because Q = VV™* is a projection in L($)) pxo M:
N

(1p®q 0o W*e,)(Q 5®a 1)1 o®g 0,0 Wo,)
N N No

= (1580 040)(V 584 1)0;74(Q 584 1)o7, (V" a®3 1)(1a®5 0,)
N N N Ne Ne
which can be written:
(id o T)(Q) = (V 484 1)03 0 (Q p®a 1o (V* 45 1)

N N ’ N ’ Neo

from which we get that (id p%, I')(Q) = (Q s®4 1)(id p%4 ') (Q).
N v N
But, using 3.12(v), we know that (id p*, I')(Q) is equal to
N
(180 0.W°0,)"(Q a®s1)(11Qn 0, W°0,)
N Neo N
from which we infer that:
(1 bR UVWOUV)*(Q d®ﬁ 1) = (Q ,@®a 1)(1 bRq UVWOUV)*(Q d®ﬁ 1)
N Ne Neo N No

Let’s take now £ € D((Hs)g,v°) and n € D(oHg,v), and let us apply (id * id * we ;)
to this last equality. We find:

(1680 (wy.¢ x1d)(W?))Q = Q1180 (wn ¢ +id)(W*)")Q
and, by density, we get (1,Q, ¥)Q = Q(1,®, y)Q for all y € M', from which we get
N N
that @ belongs also to L($)) p*q M.
N
Therefore @ belongs to L($) p*o a(N) = b(N) &4 1. So, let ¢ € b(N)' such that
N N

Q = qbpQq 17 and (idb*a F)(Q) = qbpQq 1 ,@®a 1

N N N N
So, we get:

(q vQa 1 B®a 1) = (V bQa 1)(q Qa1 B®a 1)(V* a®p 1)
N N N N N No

and, taking the adjoints, we get:

(V* ﬁ@a 1)((] b®a 1,6’®a 1)(V a®ﬂ 1) = (q b®a 1 ﬂ®a ]-)
N N N Ne N N
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but, as, by definition of ¢, we have (¢,®q 13®q 1)(V a®31) =V .®31, and, as V is
N N Ne Ne
an isometry, we finally get that ¢ = 1; so, V is a unitary, which finishes the proof. [

5.5. Proposition

Let® = (N,M,a,3,T,T,T',v) be a measured quantum groupoid, and ,$p a N—N-
bimodule; let V' be a unitary from $,®3 Ha onto @, Ha, satisfying all the following

properties, for all x € N:
V(b(z) 4®p1) = (1,®q B(z))V
Ne N

V(1a®g a(z)) = (a(z) 1®a 1)V
No N

V(1,85 B(z)) = (1,®4 B(z))V
No N

and let us suppose that, for any & € D(.9,v) and n € D($,v°), the operator
(we,n * id) (V) belongs to M; therefore, it is possible to define (id x 0)(V), for any
0 in M2, Moreover, are equivalent:

(i) V is a corepresentation of & on o9p;

(i) the application 8 — (id % 0)(V) from M into L($) is multiplicative.

Proof. — Clear. O

5.6. Example

Let 8 = (N,M,a,3,T,T,T',v) be a measured quantum groupoid; then the

pseudo-multiplicative unitary W verifies:
* 2,3
(15 a®5 W)W 5®a 15)(1s s®a W¥) = (W o 8 lﬁ)aa,ﬁ(W §®oc 1)(1g 5®a 0v0)
No N N No N N

from which one gets, using the definition of f, that we have, for any £ € D((Hg)g, V°)
and n € D(,Ho,v):

NI (we y *id) (W) = (weq * id % id)[(W o® 1g) 025 (W @0 1)(Ls ﬁ%a ou0)]

Ne N

~

which means, thanks to 5.4, that W is a corepresentation of (&)° on the N° — N°
bimodule g(Hg)qa. S0, (0,0Wo,0)* is a corepresentation of ° on the N° — N° bi-
module Q(H‘I’)O“ and, using 5.3, 0,0Wo,0 is a corepresentation of & on the N — N
bimodule « (He) -

We get also that (0, W°0,)* is a corepresentation of ® on the N —N bimodule 4(Hg)g
and that W°¢ is a corepresentation of &¢ on the N° — N° bimodule 5(H‘I’)5"
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5.7. Proposition

Let® = (N,M,a,3,T,T,T',v) be a measured quantum groupoid, and ,$p a N—N -
bimodule; let V' be a corepresentation of & on ,9y. Then, we have:

(V a®3 1)(1a® 000 W*0,)(V* 5300 1) = 02, (V* 584 1)(1584 0,)(1 480 0,0 W*a,)
No No N N N N

Proof. — From 5.1, we easily have:

(1,®q 0o W*a,)(V 4®a 1)(1 48 0,0Wa,) = (1pQ®4 0,0)(V b®a )ob a(V a®,@ 1)
N N Neo N

Then, taking the adjoints, we get:

(1a®p 00 W*0,)(V* 5®a 1)(1®a 0veWa,) = (V* «Bg Doy (V* o8a D1 4®a o)
Neo N N N

from which we get the result, because V is an unitary. O

5.8. Proposition

Let 8 = (N,M,a,8,0,T,T',v) be a measured quantum groupoid, and .9y
a N — N-bimodule; let V' be a corepresentation of & on ,9Hy. Let &, & be in
D(a$,v) N D($y,v°), m, n2 be in D(aHo,v) N D((Ho)s,v°). Then, the element:

(wV*(§1b®a7]1)7V*(§2b®a7}2) * Zd)(l a®p UV"WUV)
v v NO
belongs to D(S), and:
S((Wv+(g1,@am),V* (€250am2) * 1) (1 a®p 0,0 Way,)) =
v v NO

(wv*(§1b®an1)7V*(§2b®a7]2) * id)(l a®p U"OW*U")
v v NO

Proof. — By linearity, it suffices to prove that the element of J\//.T* defined, for y in M
by:
Yy wV*(§1b®oﬂ71)(1 a®s y)
v NO

belongs to M*”. For n € N, we have:

(1 a®ﬁ a(n))V*(é-l b®a 771) = V*(a(n)£1 b®a 771)
No v v

1 “]Q\?f Bn)V* (& ba m)=V*(& b B(n)m)
and, therefore, if n € 91,
(1 a8p a(n))V7 (€1 6®@a m)ll < (1B () [I1E* (€) | A (n)]
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1 a8 Bn)V* (& 0®a )|l < IR EOIIE ()14, ()]

which, therefore, gives the result. O

5.9. Proposition

Let & = (N,M,a,8,T,T,T',v) be a measured quantum groupoid, and ,$p
a N — N-bimodule; let V' be a corepresentation of & on ,9y. Let &, & be in
D(a$,v) N D($p,v°), m, n2 be in D(aHo,v) N D((Ho)s,v°). Then, the element:

(’Ld * wmﬂ?z)(W) (wfl,Ez * Zd)(V)
belongs to D(S), and:
S[(id * Wy, )W) (wey g, *9d) (V)] = (wey ¢, * 1d) (V) (id % wny 5, ) (W)

Proof. — Using 5.7, we get that:

(id * Wy, 5y ) (W) (We 6, % 1d) (V) = (Wy+(¢1,@am),V* (€25@anz) * 1) (1 a]%?ﬂ o,oWao,)

(wflafz * Zd)(V*)(Zd * w’hﬂlz)(W*) = (wV*('glb@anl)vV*(§2b®aﬁ2) * ld)(l a®p UVOW*UU)
v v NO

We then get the result by 5.8. O

5.10. Theorem

Let® = (N,M,a,3,T,T,T',v) be a measured quantum groupoid, and .9, a N—N-
bimodule; let V' be a corepresentation of & on 9. Let &1, &3 in D(.9,v) N D($Hp, v°);
then the element (we, ¢, * id)(V*) belongs to D(S), and:

S((w&,&z * zd)(V)) = (w§1,§2 * 2d)(V*)

Proof. — Using 5.9, we get that, for any x of the form (id * wy, ,,)(W™*), where 7,
n2 are in D(oHe,v) N D((He)s,v°), the operator z(we, ¢, * id)(V) belongs to D(S),
and S(w(we, ¢, *id)(V*)) = (wey,e, *id)(V*)S(2),
If, moreover, 7; belongs to D(P_1/2) and is such that P~1/25; belongs to
D((Hs)s,v°), and if n belongs to D(P'/?) and is such that P'/27n, belongs to
D(n(Hg,v), then using ([10], 3.8), we know that:

(1d * WJgny,Jon ) (W) = (id x wp-1/2p, pr/2y, ) (W)

and we know ([10], 3.9) that the linear space generated by such elements is weakly
dense in M. Let A be the algebra generated by these elements, which is therefore
involutive, and dense in M.

Therefore, we obtain that S(z(we, ¢, *id)(V*)) = (we, ¢, *id)(V*)S(z) for any = € A.
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Then, by Kaplanski’s theorem, it is therefore possible to find a sequence a,, in D(S)
increasing to 1 such that:

S(an(we, g, *id) (V7)) = (we, g, * id)(V")S(an)
Let’s take now o
en = 1/\/E/ eV 1 (an)dt
As S is closed, we have again
S(en(we, g ¥ 1d)(V7)) = (wey 6, % id)(V7)S(en)

Moreover, e, is increasing to 1, and, as 7_;/5(e,) is bounded, 7_; 5(e,) converges also
to 1, and so does S(e,). So, we get the result, using again the closedness of S. O

5.11. Theorem

Let 8 = (N,M,a,8,T,T,T',v) be a measured quantum groupoid, and .9, a
N — N-bimodule, and let us suppose that D(,$,v) N D($Hp,v°) is dense in $.
Let V' be a corepresentation of & on ,9p. Then, for any (1, (o in 9, for any
¢ € D((Ha)p,v°) N D(PY?) such that P'/%¢ belongs to D(4Hg,v), and for any
n € D(oHs,v) N D(P~Y/2) such that P~'/2y belongs to D((Hs)s,v°), we have:

V(¢ a®5 )G p®a 1) = (V(C1 6®a J3P720) |2 o5 J3PY2€)
Proof. — It is clear that J@P‘l/Qn belongs to D(,Hs,v) and that J@Plﬂg belongs
to D((Hg)g,v°). Moreover, we have, if we take (1, {2 in D(o9,v) N D($p, v°):
V(€1 a®s )]G e®an) = (C1a®s&V(G6®an))
(€l (wea o * id)(V™)n)
which, using 5.10, and the fact that J3PY/2 = P~1/2 ]z is equal to:
El8[(wepc xid)(VIm) = (ElJgP P (wey ¢y * id)(V)* P2 T5m)
= (e, +id) (V)" TP~/ 20| J5 P1/2¢)
(Jg P20l (wes ¢, * id) (V) T P'/2€)
= (Qs®a JP V2|V (& o®p J3PY20))

= (V*(C1 v®a J3P7Y20)|¢2 u®p J3 PV/%€)

Therefore, the result is proved for (1, ¢z in D(,$,v) N D($p, v°), and it remains true,
by continuity, for any (i, (2 in $. O
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CHAPTER 6

ACTIONS OF MEASURED QUANTUM GROUPOIDS

In this chapter, we define actions of measured quantum groupoids on von Neumann
algebras (6.1) and actions implemented by a corepresentation (6.6). We define also
invariant elements by an action (6.11), the canonical operator-valued weight on the
invariants (6.13), and integrable actions (6.14)

6.1. Definition

Let 8 = (N,M,a,8,T',T,T",v) be a measured quantum groupoid, and let A be a
von Neumann algebra.
An action of & on A is a couple (b, a), where:
(i) b is an injective x-antihomomorphism from N into A;

(ii) a is an injective *-homomorphism from A into A y*, M;
N
(iii) b and a are such that, for all n in N:
a(b(n)) = 14®a B(n)
N
(which allow us to define a p*,, id from A p*o M into A pxq M gxq M) and such that:
N N N N
(apkq id)a = (id pxo Ia

N N

If there is no ambiguity, we shall say that a is the action.

So, a measured quantum groupoid & can act only on a von Neumann algebra A which
is a right module over the basis V.

Moreover, if M is abelian, then, as, for all n € N, a(b(n)) = lb%a B(n) commutes

with a(z), for all x € A, we see that b(N) is in the center of A. As in that case (3.13)
the measured quantum groupoid comes then from a measured groupoid G, we have
N = L*®(5 1), and A can be decomposed as A = f9<0> A%dv(x).
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6.2. Example

Let & = (N,M,«,3,T,T,T',v) be a measured quantum groupoid; then (id, 3) is
an action of & on N°, we shall call the trivial action of & on N°.

6.3. Example

Let G be a measured groupoid, and let a be an action of § on a von Neumann
algebra A = fge?o) A®dy(z), as defined in ([49], def. 3.1(i)); let us define then b as the
homomorphism which sends L“(S(O)) into the diagonalizable operators in A. Then,
(b, a) is an action (in the sense of 6.1) of the measured quantum groupoid § defined
in 3.13 on A ([26], Th. 3.2), i.e. for all g € G, there exists a family of *-isomorphisms
a, from A% onto A™(9), such that, if (g1, g2) € G, we have a,,,, = a,, a,,, and such
that, for any normal positive functional w = fg‘?o) w®dv(z), and any y = f;?o) ydv(z),
the function g — w9 (a,(y*\9))) is u-measurable. We then get:

(S3) &)
a [3 v du(z)) = /9 8, (5°®)du(g)

(0)

Let now b be a coaction of G on a von Neumann algebra B which is a L>®(3(%) v)-
module, as defined in ([49], def. 3.1(ii)); let us define then b as the homomorphism
which sends L>® (G, v) into B; then, (b,b) is an action of G (as defined in 3.13) on
B. ([49], 3.1 (ii) and [26], 2.3).

6.4. Example

Let G = (M,T',®,¥) be a locally compact quantum group; an action of G on a
von Neumann algebra A is an injective *-homomorphism a from M into A ® M, such
that

(a®@id)a=(id®T)a
(where id means the identity of A or of M). ([36], 1.1)
Writing now id for the canonical *-homomorphism from C into A, we get that (id, a)
is an action of the measured quantum groupoid G (3.14) on A.

6.5. Example

Let My C M; adepth 2 inclusion of von Neumann algebras, with a regular operator-
valued weight 77 from M; to My, as defined in 2.2. Let &; be the measured quan-
tum groupoid constructed (3.15) from this inclusion, and &5 the measured quantum
groupoid constructed from the inclusion M; C M, which is isomorphic to 0/5\10; we
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shall use the notaions introduced in 2.2 and 3.15. Then, there exists ([15], 7.3) a canon-
ical action of &5 on M;, which can be described as follows: the anti-representation of
the basis M{ N My (which, using ji, is anti-isomorphic to M} N M), is given by the
natural inclusion of M{ N M; into M;, and the homomorphism from M; is given by
the natural inclusion of M; into M3 (which is, thanks to ([15], 4.6), isomorphic to
My « L(H,y,)).

6.6. Proposition

Let & = (N,M,a,B8,T,T,T',v) be a measured quantum groupoid, .9, be a
N — N bimodule, and V' be a corepresentation of & on $; for any x € a(N)', let us
write a(z) = V(z ,®3 1)V* and let A be a von Neumann algebra on $), such that

NO

b(N) C AC a(N), and a(A) C Apxo M; then:
N

(i) (b,a) is an action of & on a(N)';
(ii) (b, aj4) is an action of & on A.
In such a situation, we shall say that a and a4 are implemented by V.

Proof. — The intertwining properties of V' imply that, for all n € N:
a(o(m) = 194 (1)
(a(n) 1@a 1)a(z) = a(z)(a(n) y®a 1)
N N

and this last property gives that a(a(N)’) C a(N)’ p*, M. Therefore, we can consider
N

(a p*q td)a(z), which will be equal to:
N
(V48a D)oy (V @5 1)(@ 485 1a@s (V" a®p Doy (V" 180 1)
N ’ No No No No ’ N
which, thanks to 5.1, is equal to:
(16®a W*)(1p®q 0u)(a(z) 3®a D(1®a 0v0)(1 @0 W)
N N N N N

which is equal to (id px, I')a(z). O
N

6.7. Theorem

Let 8 = (N,M,a,3,T,T,T',v) be a measured quantum groupoid, A a von Neu-
mann algebra, (b,a) an action of &; then, there exist an Hilbert space $), a faithful
normal representation ™ of A on $, a normal faithful representation a of N on $,
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such that m(A) C a(N)', a corepresentation V of & on the N — N bimodule 9 rob,
such that, for all x in A:

(7 p*q td)a(z) = V(n(z) ,®@p 1)V*
N No

Proof. — Let’s take ) = L*(A) yQq Hsg, let us write a(n) = 1r2(4) 1®q &(n), for all
N N
n € N, and take V = 17204 4®q (0,W°0,)* which is (5.6) a corepresentation of &
NO

on 491 8) and choose m = a to obtain the result. O

L2(A) b;?oa

6.8. Proposition

Let = (N,M,a,5,T,T,T',v) be a measured quantum groupoid, .9, be a N — N
bimodule, and V' be a corepresentation of & on $); let A be a von Neumann algebra
on $), such that b(N) C A C a(N)'; then, are equivalent:

(i) the corepresentation V of & implements an action a of & on A;
(ii) the corepresentation V* of &° implements an action a’ of &° on A’.

Proof. — Let us suppose (i); then, we have V(A ,®;, 1)V* C A px, M; taking the
Ne N
commutants, we get:

A [ M' c V(A/ a*g L(H@))V*
N No

and, therefore, A’ ;®, 1 C V(A' z%g L(Hg))V*, from which have:
N No

V(A @0 1)V C A’ wig L(Ho)
N No

but, from 5.3 and 6.6 applied to V*, we get that:
V*(b(N)/ »Ra 1)V C b(N)/ a*g M
N Neo
and, therefore, we have:

V(A 4@ )V C A g M
N No

from which we get (ii), using 6.6 again. If we apply this proof to &°, we obtain that
(ii) implies (i). O
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6.9. Definition

Let & = (N,M,«,3,T,T,T',v) be a measured quantum groupoid, A a von Neu-
mann algebra, (b,a) an action of & on A; let ¢ a normal semi-finite faithful weight
on A, and let us define, for all n € N, a(n) = Jyb(n*)Jy, which gives to ,(Hy)p a
canonical structure of N — N bimodule; let V' be a coreprentation of & on Hy; let us
suppose that V implements qa, i.e. that, for any z € A, we have:

a(z) =V(z 5 1)V*
NO
We shall say that V is a standard implementation of a if, moreover, we have:

V* = (Jw a®p J;};)V(Jw »Ra qu)

6.10. Example

Let & = (N,M,a,3,T,T,T',v) be a measured quantum groupoid; then (3,T) is
an action of & on M.
Moreover, (0,W?°s,)* is a corepresentation of & on 4(Hg)s which is a standard
implementation of I'.

6.11. Definition

Let & = (N, M,o,8,T,T,T',v) be a measured quantum groupoid, and let A be
a von Neumann algebra, (b,a) an action of & on A; we shall call A* the invariant
subalgebra of A defined by:

A*={x e ANb(N);a(z) == b(]%a 1}

In the example 6.2, the invariant subalgebra is Z(N); in the example 6.5, the in-
variant subalgebra is My ([15], 7.5); in the example 6.10, the invariant subalgebra is
a(N)(3.11(v)).

6.12. Proposition

Let & = (N,M,a,3,T,T,T',v) be a measured quantum groupoid, and let A be a
von Neumann algebra, (b, a) an action of & on A. Let ® = voa 1oT; for any x € AT,
the extended positive element of A

Ta(x) = (id p*a ®)a(z)

is an extended positive element of A®.
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Proof. — Let w € (A p*o M)} ; then, we have:
N
woa(Ty(z)) = w(idpxqidgre P)(ap*y id)a(x)
N v N
= w(id pxq id gxq P)(id pxo T)a(z)
N N N
which, thanks to 4.12(ii), is equal to:
w((id pro P)a(z) @ 1)
v N

from which we get that a(T,(z)) = Tu(z) »®4 1, which is the result. O
N

6.13. Proposition
Let (N,M,«,3,0,T,T',v) be a measured quantum groupoid, and let A be a von

Neumann algebra, (b,a) an action of (N, M, o, 3,T, T, T',v) on A. Let ® = voa=1oT,

and, for any x € AT, let Ty(x) = (id p*o P)a(x) be the extended positive element of
N

A% defined in 6.12. Then T, is a normal faithful operator-valued weight from A on

A®.

Proof. — Let y in A%; let w € A, such that there exists k > 0 for which wob < kv; as
y € b(N)', the element w, of A defined, for all z € A by wy(z) = w(y*zy) satisfies
the same property, and we have, for z € A™:

<Tu(y"zy),w > = w((id b¥a ®)a(y*ry))

w((id p¥a @) (Y* 1@ 1)a(z)(y p®a 1))
N N N

= wy(Ta(z))

= <y'Ta(2)y,w>

which proves that T}, is indeed an operator-valued weight. Normality and faithfulness
are trivial. O

6.14. Definition

Let & = (N,M,a,8,T,T,T',v) be a measured quantum groupoid, and let A be
a von Neumann algebra, (b,a) an action of & on A; we shall say that the action is
integrable if the operator-valued weight T, introduced in 6.12 and 6.13 is semi-finite.
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CHAPTER 7

SOME TECHNICAL PROPERTIES OF ACTIONS

In this chapter, we define technical properties (property A in 7.1, saturation prop-
erty in 7.3) and prove technical results (7.6, 7.7) about these properties which will be

necessary in the sequel. We shall prove in chapter 11 that these properties are always
fulfilled.

7.1. Definition

Let 8 = (N,M,a,8,T,T,T',v) be a measured quantum groupoid, (b, a) an action
of & on a von Neumann algebra A; following ([7], III2), we shall say that the action
a satisfies the property (A) if:

(a(A)U1,®q a(N))" = Ay L(Hs)
N N

7.2. Proposition

Let 8 = (N,M,a,3,T,T,T',v) be a measured quantum groupoid; then, we have:
(T(M)U15®a a(N)')" = M p*q L(Hs)
N N

In other words, the action (8,T') of & on M (6.10) satisfies the property (A) (7.1).

Proof. — Let y be in B(N)’ such that W (y 3®q 1)W* belongs to L(Hg) o*5 M'; then,
N No
for any u unitary in M, we have:

(]. a®p U)W(y ELOSP ].)W*(]. 0‘®@ 'u,*) = W(y B8R ].)VV”<
Neo N Neo N

which can be written:
L(u)(y p®a DI'(u") =y s®a 1
N N
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and, therefore, we have I'(u)(y s®q 1) = (y sQa 1)I'(u); therefore, y commutes with
N N
all elements of the form (id o*3 w)I'(u), for all v unitary in M and all w € M, for

N
which there exists k > 0 such that w o @ < kv, and, using A.7, we get that y belongs
to M’. So, we have:

(ﬂ(N)/ BRa 1) n W*(L(Hq)) a*[@ M/)W =M 8Qq 1
N Neo N

and, as (B(N)' s®q 1) = L(Hg) g*a a(N) = (1 384 a(N)'), we get the result, taking
N N N

the commutants. O

7.3. Definition

Let 8 = (N,M,a,8,T,T,T',v) be a measured quantum groupoid, (b, a) an action
of & on a von Neumann algebra A; following ([13], II8), we shall denote:

Sata = {X € Ab;kva M, (a ba id)(X) = (id b¥a ) (X)}

By definition, we have a(A) C Sata, and we shall say that a is saturated if a(A) = Sata

7.4. Lemma

Let & = (N,M,a,3,T,T,T',v) be a measured quantum groupoid, ,9p a N — N
bimodule, V a corepresentation of & on ,9y; let SatV be the set of elements X in
a(N) yxq B(N) such that:

N

(V®a 1)y o (X a®3 1)y (V* 5®4 1)
N No N
= (104 WH)(1p®4 0,)(X 5®a D(16®q 0,)(1 5Q4 W)
N N N N N

Then, we have:

(i) SatV =V (L(9) axg M')V*;
NO

(it) V*(1 @0 M)V C L($) axs M’
N No

Proof. — As V is a corepresentation, we have, by definition:

(1y®a W*)(1®q 0,)(V 5‘®a 1(1a®p 0,0)(1 a®p W)
N N No Neo Neo

= (V p®a 1)05”2(V a®p1)(1 Qg 0,)
N No No
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and, therefore:

(14®a 0u0) (1580 W)(V 4®a 1)ops
N N N ’

=V 5®a 1)(1a®p 000)(1a@p W)(1a®p 00e) (V" a®p 1)
No Ne Ne Ne Ne

So, X belongs to SatV if and only if we have:
(1 a®ﬂ O'VOWUVO)(V*XV a®ﬂ 1) = (V*XV ﬁ@a 1)(1 a®ﬁ U,,DWO'VO)
NO NO N NO

from which we get that X belongs to SatV if and only if V* XV belongs to L (ﬁ)a*ﬂj/[\’,
ND

which finishes the proof of (i).
As it is clear that 1,Q, M’ C SatV, we get (ii) from (i). O
N

7.5. Lemma

Let 8 = (N,M,a,8,T,T,T',v) be a measured quantum groupoid, .9, a N — N bi-
module, A a von Neumann algebra such that b(N) C A C a(N)', V a corepresentation
of & on 9y which implements an action (b,a) on A; then we have:

Sata = A ykq M OV(L($) g5 M)V
N No

and also:

Sata = A p*xq L(H@) N V(a(N)’ a®p 1)V*
N Neo

Proof. — Let X € A px, M; as we have:
N
(@ pta id)(X) = (V 4@a D)oy a(X @5 1oy (V" 5@ 1)
N N ’ Neo ’ N
and:

(Zd b¥a F)(X) = (1 b®cx W*)(]- b®a Uu)(X ﬁ@a ]-)(]- b®cx UV)(l b®a W)
N N N N N N

we get that Sata = A p*xq M N SatV, which, thanks to 7.4(i), gives the first formula.
N

Starting from this formula, we get, because V is a corepresentation of &:
Sata = V(V*(A e M)V N L($H) s M)HV*
C V(L) o MNLE) o M)V*
= V(L(®) a*p BIN)V*
= V(a(N) .®31)V*

No
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and, therefore, Sata C Apxo M NV (a(N) (@ 1)V*.
N No

As a(N) ,®p1 C L(9) o*p Z\/Z’, using the first formula, we get:
No Ne

Sata = A ko M NV (a(N) (®51)V*
N No

And, as V(a(N) @3 1)V* C L(9) p*o M, we get the second formula. O
Neo N

7.6. Proposition

Let 8 = (N,M,«,8,0,T,T',v) be a measured quantum groupoid, .9 a N — N
bimodule, A a von Neumann algebra such that b(N) C A C a(N)’', V a corepresenta-
tion of & on ,$Hp which implements an action (b,a) of & on A and an action (a,a’)
of ° on A’. Then, are equivalent:

(i) a is saturated;
(ii) o’ satisfies property (A).

Proof. — Using 7.5, we get that a is saturated if and only if:
V(A @3 1)V* = Apky L(He) NV (a(N) @5 1)V*
No N Neo

which, taking the commutants, is equivalent to:

V(AI a*p L(H@))V* = (AI b%a 1U V(a(N) a*g L(H@))V*)H

No No
or, to:
A a*g L(H@) = (V*(A/ bR 1)V @] a(N) ] L(Hq>))”
No N No
which is:

A gxp L(Hg) = (a'(A) U (125 B(N)))"
No Neo

which means that a’ satisfies property (A). The converse is proved the same way. O

7.7. Proposition

Let & = (N,M,a,3,T,T,T',v) be a measured quantum groupoid, A a von Neu-
mann algebra, (b, a) an action of & on A; let ¢ be a normal semi-finite faithful weight
on A, and let us suppose that there exists a corepresentation V' on Hy which is a
standard implementation for a in the sense of 6.9. Then, are equivalent:

(i) a is saturated;
(ii) a satisfies property (A).
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Proof. — By 6.9, for alln € N, we write a(n) = Jyb(n*)Jy, and V is a corepresentation
of & on ,(Hy)p, which implements a, and verifies:

V= (Jy a®p J3)V (Ji v®a J3)

from which we get that the action a’ implemented by V* satisfies:

(Jy B )0’ (A)(Jy 1®a J3) = a(4)
As (Jy “gﬁ Jg)(A aj(\?oﬁ 1)(Jy b(%a Jg) = A’ b%a 1, we get that:

(Jy «®p Jg) (A’ a*p L(Ha))(Jy 18a J5) = A o L(He)
Thanks to 7.6, a is saturated if and only if ' satisfies property (A), which means that:
A’ oxp L(Hg) = (a'(A) U (185 B(N)))"
Ne Ne

from which we get that:

Ao L{He) = (a(4) U (1180 a(N))"

which means that a satisfies property (A). O

7.8. Corollary
Let 8 = (N,M,a,3,T,T,T',v) be a measured quantum groupoid; then, we have:
D(M) ={X € M gxq M; (T g*q id)(X) = (id g*o T')(X)}
N N N
Proof. — We have seen in 6.10 that I" can be considered as an action of & on M,

which has a standard implementation; moreover, by 7.2, it satisfies property (A),
and, therefore, by 7.7, this action is saturated, which finishes the proof. O
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CHAPTER 8

THE STANDARD IMPLEMENTATION OF AN ACTION:
THE CASE OF A /-INVARIANT WEIGHT

In this chapter, we define §-invariant weights on a von Neumann algebra on which
is acting a measured quantum groupoid (8.1); in that situation, we construct (8.8) a
standard implementation of the action. As a corollary, we obtain in that case that the
property A and the saturation property introduced in chapter 7 are equivalent (8.10).

8.1. Definition

Let 8 = (N,M,a,3,T,T,T',v) be a measured quantum groupoid; let A be a von
Neumann algebra, (b,a) an action of & on A and let ¢ be a normal faithful semi-
finite weight on A. We shall identify A and my(A), for simplification. Let a be the
representation of N on Hy given by:

a(n) = Jyb(n*)Jy

We shall say that 1 is d-invariant if, for all n € D(qHg,v) N D(6'/?), such that §*/2p
belongs to D((Hg)g,v°), and for all z € Ny, we have:

V((idpro wy)a(z"2)) = |[Ay(2) «®s 5/ 2|?

One should remark that (id y*4 wy)a(z*x) belongs then to E)ZTQ
N

Moreover, if the subset D((Hy )b, v°) N D(,Hy,v) is dense in Hy,, we shall say that ¢
bears the density property,
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8.2. Example

Let us consider (6.10) the action (8,T') of & on M; then, by 4.5, we get that ®
is d-invariant. Namely, taking (e;);c; an orthonormal (o, v) basis of Hg, we get, for
z € Ng and convenient 7, that:

o[(id pra wy)L(z*z)] = Z O((id pra wn.e, )T (2)" (id o*a wn.e )T (2))

> (id * wyr/2g 0,) (W) A ()2

12201580 07 (esse)Wo(Ao(2) 4@ 8/ 20)|

[As () a®p 51/ 2|2

Moreover, as D((Hg)g,v°) N D(sHa,v) is dense in Hg, ® bears the density property.

8.3. Lemma

Let & = (N,M,a,3,T,T,T',v) be a measured quantum groupoid; let A be a von
Neumann algebra, (b, a) an action of & on A and let ¢ be a §-invariant normal faithful
semi-finite weight on A. Let (e;)icr be an (o, v)-orthogonal basis of He. Let x € Ny,
and n as in 8.1. Then:

(i) for all ¢ € D(,Hs,v), (id bj:;a wy.¢)a(z) belongs to My ;

(i) the sum Y, Ay((id p*q wy,e,)a()) y®aq €; is strongly converging, the limit does not
N v

depend upon the choice of the («,v)-orthogonal basis of He, and:

” ; Ay ((id b]";oc wr,e;)a()) b(%)oc eil|* = ((id bj’t[a wy)a(z"z))

Proof. — We have:
(id p*q wy,)a()"(id pxa wy.g)a(x) = (id p*q wy)(a(z™)(1Qq 047 (£, 6))a(x))
N N N N

which is less than ||R*"(£)||2(id p*o wy)a(x*x), which belongs to 9, by hypothesis;
N

so we get (i).
As the vectors Ay ((id p*q w.e;)a(2)) »®aq €; are two by two orthogonal, for any finite
N v
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J C I, we have:

1D Ay ((id pxa wy.e,)a(@)) b@a eil|?
ieJ N v

= Z ||Aw((ld b¥a wn,ei)a(m)) pQa ei||2
ieJ N v

= 9(id p¥a wy) (a(2")(14@a D 07" (es,€:))a(z))
N N Ges
which is less than (and uprising to) ¥(id p*q wy)a(z*z). If £ € D(Hs,v), we have:
N

(p?“)*(z Ay ((id pxa wn.c,)a(2)) 1®a €i) = Ay ((id p*a wn.c)a(z))

which does not depend upon the choice of the basis, and finishes the proof of (ii). O

8.4. Proposition

Let & = (N,M,«,3,0,T,T',v) be a measured quantum groupoid; let A be a von
Neumann algebra, (b, a) an action of & on A and let v be a §-invariant normal faithful
semi-finite weight on A. Let us define the representation a of N on Hy, by, forn € N:

a(n) = Job(n*)Jy
Then:
(i) there exists an isometry Vi, from Hy ®5 Ho to Hy ,®q He such that:

Vi (Ay (2) o®p 0V/%n) = Z Ay ((id b*Na Wn.e;)0(T)) p Q0 €5

for all z € My, 1 as in 8.1 and for all (o, v)-orthogonal basis (e;)icr of Hs.
(ii) for all e € Ny, we have:
(Jpedy v@a DVy(Ay (@) a®5 8/%n) = a(z)(JyAy(€) 5®a 1)
(iii) for all £ € D(,Hg,v), we have:
Ay ((id o wy ¢)a(@)) = (id 5 W51/20.6) (Vo) Ay ()

(iv) for ally € A, z € M’, we have:

a(y)Vy = Vy(y «®p 1)

(16®a 2)Vy = Vy(1 a9 2)
N No

(v) for all n € N; we have:

(a(n) p®a 1)V = V(1 a®p a(n))
N No
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(1 ¥®a B(n))Vy = Vi (b(n) af?oﬁ 1)

(15®a B(n)Vy = Vy(1 o®p B(n))
N No

Proof. — Defining V,;, by the formula given in (i), we easily obtain, using 8.3(ii), that
for all ' € My, n' as in 8.1, we get:

(Vo (Mg () a® 6" [V (A (') @ 6"%0)) = 9((id ba Wy )a(272))
which, by polarization of the definition of §-invariance, is equal to:
(Ay(2) o®p 82| Ay (") u@p 6/ 1)

which implies that this formula defines an isometry which can be extended by conti-
nuity to Hy ,®3 He, and does not depend upon the choice of the basis, which is (i).
VO

We then get:

(Jypedy b®a 1)Vy(Ay(2) o5 6Y%n) = Z JyedyAy((id e Wy e, )(T)) p®0 €

= Z(ld b;t’oc wn,ei)a(m))J,/,Ad,(e) pRq €i
= a(@)(JyAy(e) 18a )
which is (ii). Using (ii), we then get:
Jypedy Ay ((id o wpela(z)) = (id pho wp,¢)a(z) Sy Ay (e)

= Jyedy (id * w51/2n,£)(V¢)A¢ (z)

from which we get (iii), by taking the limit when e goes to 1. Using (ii) again, we
have also:

(Jyedy 1@a 1aly)Vy(Ay (z) «2g §%n) = a(y)(Jyedy b®a 1)Ve (A (2) «2p 5/%n)
= a(yz)(JuAy(e) 1®a )

which, thanks to (ii) again, is equal to:

(Jyedy b 1)V (Ay (yz) a8p §1%n) = (Jyedy b 1)Vy(y aj%?oﬁ 1)(Ay () a®p /%)

from which we get the first formula of (iv), by taking the limit when e goes to 1. We
have also:

(Jypedy bDa 2)Vy(Ay(z) o®p 6 %n) = (1 b z)a(z)(JyAy(e) s®a 1)

a(z)(JypAy(e) b®a 2n)
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and, thanks to (ii) again, we get:
(Jyedy ba DVy(Ay(2) o®p §122m) = (Jypedy vDa 1Vy(Ay(2) «®5 26"%n)
= (Jyedy vPa 1)V (1 a®p 2)(Ay() o®5 6'/*n)
Neo ve

from which we get the second formula of (iv), by taking the limit when e goes to 1.
Let’s take now n € N, analytic with respect both to ¢” and . We have:

(Jyedya(n) 1@ DVy(Ay(2) «2g §*/%n) = (Jyeb(n*)Jy bDa DVy(Ay(2) «2p §/%n)
= a(x)(JyAy(eb(n®)) s®a n)
It is equal to: !
a(z)(a¥; 5 (b(n)) Ty Ay (e) b®@a 1) = 8(2) (b(1-i2(n)) Sy Ay (€) @0 1)

which is equal to a(z)(JyAy(€) v®a a(0”, 57-i/2(n))n), and, thanks to (ii) again, to:

(Jypedy b®a DV (Ay(2) o®p 5 2a(0” s ;g v-i/2(n))m)
= (Jyedy b D)Vy(Ay (@) o®p a(n)d/*n)
= (Jypedy b DV, (1 a}‘?ﬂ a(n))(Ay(2) o®p §'/%n)

from which we get the first formula of (v), by taking the limit when e goes to 1.

~

The other formulae of (v) are special cases of (iv), taking y = b(n), and z = B(n). O

8.5. Proposition

Let & = (N,M,a,5,T,T,T",v) be a measured quantum groupoid; let A be a von
Neumann algebra, (b, a) an action of & on A and let ¢ be a §-invariant normal faithful
semi-finite weight on A. Let us define the representation a of N on Hy, by, forn € N:

a(n) = Jyb(n*)Jy
and let Vy, the isometry from Hy o®g Ho to Hy ,®o He constructed in 8.4, which

satisfies the intertwining properties proved in 8.4(v). Then we have:

(16®a 000 W*0,)(Vy 580 1)(1a®p 00oWa,) = (1@a 0ue) (Vi 5®a oy e (Vy a®p 1)
N N No N N No

Proof. — Let 1, 2 in My, &1, &2 in D(oHs,v), and 71, 12 as in 8.1 (i = 1,2); then,
the scalar product of the vector:

(Vy bDa 1)(1a®p 000) (Vg a® 1)(1 o®p 02) (Ay(21) «®p (6211 @0 6'/%n2))
Neo Neo No ve v
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with Ay (22) 1®a &1 3®a &2 is equal to:
v v

(Vi ((id * wsir2, €,) (Vi) Ay (21) o®p 82 m1)| Ay (z2) b@a &1)
which, thanks to 8.4(iii), is equal to:
(Vi (Ay[(id b¥a Wiy ,)8(1)] «®p 8211) | Ay (£2) 40 &1)
and, using 8.4(iii) again, is equal to:
(Ay[(id p*a w6 )a((id bia wny 6, )a(21))]|Ay (22))
N N
which, using 6.1, is equal to:
p((1d p*a Wy g1 pFa Wiy 6 )(1d g*a 1)1y (22
(Ay ((3d p*o w *o W )(id g*o D)a(z1))| Ay (22))
N N N

Let us define Q € M, such that, for any x € M, Q(z) = (wp, ¢, g*a Wny,e,)L(2).
N

Let (e;)ier be an (ciz, v)-orthogonal basis of Hg. There exists a family of vectors &; in
H, such that & = (< e;,e; >q,,)&, and:
W (& ﬂ@V@a &) = Zei a®p &i
Moreover, as, for n € ,,:
Z lam)&l* = I aﬁ% a(n))W (& #®a &)
W (a(n)é #®a &)|?

IR (€)1 1R (€)% [ Aw (m) ]|

we get that the vectors §; belong to D(,Hs,v). The same way, there exist vectors
n = ﬁ(< €4, €4 >Ot,l/)77i S D(QH<I>7 V)7 SuCh tha‘t:

IN

W 771 ,3®04 772 Z €; a®ﬁ B

Moreover, as we have I'(6%) = § 3®, 0", we get that the vectors 7; belongs to
N
D(6'/2), and that:

W (5 2m p®a 6'/%12) =Y €i a®3 6"/ %0,

We have also:

> 18(m)8 2 )?

(L a®5 B))W (8Y2m 5@q 6/ %02)|
Neo v

|RP (81200 |2 R (8" 2m) 2] A, ()]

IN
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from which we get that the vectors 6'/2n; belong to D((Hg)s,v°). From these results,
we get that, for any « € M, we have Q(z) = Y. wy, ¢, (¢), and, therefore, we have:
(A ((id o wny ¢, B*a W ) (id Bt I)a(z1))|Ay (22)) = D _(Ay((id v¥a Wy, ¢ )a(@1))|Ay(22))
The properties of the &;s and the 7;s allow us to use again 8.5(iii), and this is equal
to:
D (i * ws-1/2, ) (V) Ay (21) Ay (22))

On the other hand, if ¢; belongs to D(,Hy,v) and (o to D((Hy)s,v°), we get,
by 8.5(iv), that (w¢, ¢, * id)(V) belongs to M, and that:

D ((idxwsiog, ¢ )(Vp)alG) = D wsjeg, g (We ¢ *id) (V)

K3

= (W61/2n1,§1 ﬁ;a w61/2n2,§2)r[(w<17§2 * id) (V)]
is equal to:

(W (1 a®p (weyco * id) (Vi) )W (6211 5®a 6'/°02)[€1 p®a &2)
No v 14

which is equal to:
((h%aauoW*%)(Vw[}%a 1)(1a§OBUV°WUV)(C1a%ﬁ51/2772a%f351/2771)|C2a§2ﬁ§201§651)
From which, by continuity, we get that the scalar product of the vector:
(Vs 4@ Doy (Vy B (1 a®p o) (Ay (1) 2®p (6"/2m 9®a 5"/%ns))
with Ay (z2) 1Q®q &1 3®4 &2 is equal to the scalar product of the vector:
(1 b%a o, W*0,)(Vy ﬁ%a 1)(1 a;?f e Woy,)(Ay(z1) af?)ﬂ 5%, a%ﬁ §1/2,)

with Ay (z2) pQq &1 3®q &2, from which, by continuity, we get the result. O

8.6. Theorem

Let & = (N,M,«, 8,0, T,T',v) be a measured quantum groupoid; let A be a von
Neumann algebra, (b, a) an action of & on A and let ¢ be a §-invariant normal faithful
semi-finite weight on A. Let us define the representation a of N on Hy, by, forn € N:

a(n) = Jypb(n*)Jy
and let Vy, the isometry from Hy ,®g Hge to Hy y®q Ho constructed in 8.4; then:
(i) Vi is a unitary, and, for all z in A, we have a(z) = Vy(z .®p 1)V;;;
NO

(i) Vi is a corepresentation of & on the bimodule ,(Hy )y which implements a.

SOCIETE MATHEMATIQUE DE FRANCE 2008



74 CHAPTER 8. THE STANDARD IMPLEMENTATION OF AN ACTION

Proof. — Thanks to 8.4(i), (v), (iv) and 8.5, we can apply 5.4, which says that V is a
unitary and a corepresentation, which gives (ii), and (i) by 8.4(iv) again. O

8.7. Lemma

Let & = (N,M,«,3,0,T,T',v) be a measured quantum groupoid; let A be a von
Neumann algebra, (b, a) an action of & on A and let ¥ be a d-invariant normal faithful
semi-finite weight on A. Let us define the representation a of N on Hy such that, for
n € N:

a(n) = Jyb(n")Jy
and let us suppose that 1 bears the density property, as defined in 8.1. Let V,;, be the
corepresentation of & on the bimodule o(Hy)p constructed in 8.6. Then, for all z, y
in Ny NN, analytic with respect to 1, and & in D((Hs)p,v°) ND((PI)~") such that
(P5)~1¢ belongs to D((He)g,v°) and n in D(aHe,v)ND((PS)™1) such that (P§)~'n
belongs to D(,He,V),we have:

(Vo (AypAy(2)a®p (P5)_1§)IA¢(y)b§>a ) = (Ve (A (2) a®p &) Au Ay () 1@ (P8)~'n)

Proof. — Thanks to the density property, we can use 5.11; therefore, with &,  in &,
using 4.4(iii):

(Vo (Ap Ay () aDp PT176) Ay (y) 6®a m)
= (Vi (Buho(@) 180 TP Pa)lAy(w) o8 JgP25716)
= (Boy(a) 80 TP 0V (s) w05 T P~/36716)
which, thanks to 8.4(iii), is equal to:

(AyAy(2)|(id wJ@P*1/26*1§,J&)P*1/2n)(Vw)Aw(y))
= (AwAw(x)IA¢[(id * WJ@P—1/25—1/25,J5P—1/%)a(y)])
= (Ay[(id * WJ@P*1/27,,J@P71/2571/2§)a(y*)]|A¢($*))

which, using again 8.4(iii), is equal to:

((id % wyy po1r25-1/2g 15 p-1/25-112¢) (Vi ) Ay (y7) [ Ay (27))
= (Vo(Ay (y") a®p Jg P76 20) Ay (27) 4@ Jg P12 /%)

— (Ao (") aBp JgP 2 20IVE (A (07) 180 J5P/267112))
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which, using again 5.11, is equal to:
(As(y") 1®a 572V, (Ay (") a®p P67 20) = (A (y")[(id % wprg-1/2y 5-112) (Vis) Ay (27))
which, using again twice 8.4(iii), is equal to:

(A (y")| Ay [(id b wWps)-1n,5-1/2¢)8(x7)]) = (SyAy (y)|SypAy[(id bo Wi-1/2¢,(Ps)- n)a(@)])
AwAw[(Zdb* Ws—1/2¢ (P§)—1 ) (@)]Ay (y))

Ay (id * we,(psy-15) (Vi) Ay (2) | Ay ()

(
= (
= (
= (Vu(Ap (@) a5 )l ApAy Y) 1@a (P&)~'n)

from which we get the result, thanks to 4.4(i). O

8.8. Theorem

Let & = (N,M,«, 8,0, T,T',v) be a measured quantum groupoid; let A be a von
Neumann algebra, (b, a) an action of & on A and let ¢ be a §-invariant normal faithful
semi-finite weight on A. Let us define the representation a of N on Hy such that, for
neN:

a(n) = Jypb(n*)Jy

and let us suppose that 1 bears the density property, as defined in 8.1. Let Vi the

corepresentation of & on the bimodule o(Hy)p constructed in 8.6. Then:

(i) for allt € R and n € N, we have af (b(n)) = b(y(n)).

(ii) 4t is possible to define two one parameter groups of unitaries Afga&g 5P~ gqnd
No

AZZ »®a 6P~ with natural values on elementary tensor products, and we have:
N
Vw(A a® 5 th zt) (Aw b®a 5_itP_it)Vw
(iii) for every z in A, t € R, we have:
P PoR

a(0} (2)) = (0} v¥a 71027 %0} )a(2)
N

(iv) we have:

and, therefore, Vy is a standard implementation of a.
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Proof. — Let z, y in Ny NN}, analytic with respect to v; let £, n as in 8.7, n in N
analytic with respect both to ¢} and ~v;; we have:

(Vo (Ay Ay (b(n)2) a5 (P8)™6)|Ay (y) )
= (Vo Ay (b(n)7) 85 )| Ay Ay (1) 10 (P&)~*n)
= (Vs (b(m) Ay (2) a®3 Ol A Ay (1) 10 (P5)~n)
which, using 8.4(v), is equal to:
((16Ba BV (Ay(2) «Bp 1Ay (Y) 1®a (P&)~'n)
= (Vi (Ay() «2p OlAA(Y) v@a B(n")(PS)'n)

but, we know that 8(n*)(P§)~1n = (P&)~18(v:(n*))n, and B(y;(n*))n bears the prop-
erty necessary to apply 8.7; therefore, it is equal to:

(Vo (A (2) @5 &) Av A (1) 1@a (P&)~B(vi(n*))n)
= (W (Ay Ay (@) ap (P3)7"O)IAy (y) v@a B(i(n"))m)
= (16@a Blr-i(n))Vu(AyAy () «Bp (P3) 7" O)IAy (1) v@a )
which, using again 8.4(v) again, is equal to:
(Vp (b(r=i(n)) Ay (2) « B (P8)7")IAv (y) v@a m)
from which we get that:

AypAy (b(n)z) = b(y-i(n)) Ay Ay (z)
and we see that b(n) belongs to fD(Ufi) , and that afi(b(n)) = b(y-i(n)). By classical
approximations, we can prove this result for any n in D(vy_;), from which, using ([16],
4.3 and 4.4), one get (i).
Let £ € D(,Hy); we have, for alln € M, ¢t € R:
a(n)ALE = Jpb(n*)JyAl
= Jpb(n*) A€
= JyAfe?, (b(n")Tyé
= JpAub(y—e(n*))Jyé
= Aya(y—¢(n))¢
= AYRY ()AL (v-4(n))
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If we define H* by HitA?(n) = A,,(jt(n)), we get that A€ belongs to D(,Hy,v),
and that R*¥(A}€) = A R*Y(§)H™"; then, we get, if ¢’ € D(,Hy,v), that:
< AYEATE >0 o= (< E,E >2 ,0)
But, for all n € N, we have:
Bre(n) = of (B(n))
= P (B(n))s"
= 67"B(0%,(n))s"
= 07"7_4(B(n))s"
= (0P)""B(n)(sP)"
Therefore, it is possible to define a one-parameter group of unitaries Afﬁ a®pd P
NO
on Hy ,®p3 Hg, with natural values on elementary tensor products.
NO
The construction of Al ,®, 67" P~* is done in a similar way.
N
Let Ay o®gs (P6)~! and Ay p®, (P5)™! be the analytic generators of these two one

parameter automorphims groups. We had got in 8.7 that:
Vo (Ay a®5 (PO)™1) C (Ay ba (P6)"H)Vy

from which we finish the proof of (ii). Then, we get (iii) from (ii) and 8.6(i).
We can verify that it is possible to define an antilinear unitary Jy ,®, Jg from

Hyy®q Ho onto Hy ®3 Hg, with natural values on elementary tensors, whose inverse
14 Vo

is Jy «®g J3; moreover, we have, using 5.11:
Lo

((Jy a®p J5)Vy (Jy a®p J3)(Ay(2) a5 §)| Ay (y) v®a n)

= (VJ(JapAw(ﬂJ) b‘%a J@f”JMJAd)(y) a(%ﬂ J&S )

= (Vp(JyAy(z) a®s P1/20)| Ty Ay (y) 1®a P1/%E)
which, using (ii), is equal to the scalar product of Jy,Ay(y) s®4 PY/2¢ with:
(A 520 87EPTVL(ALY? a5 82PV2) Ty (@) ap P~H/2)

which is:

(Fyhy (y)b§>a5_1/2£|Vw(Aw(x*)aéiﬁmn)) = (Fy Ay (y)|(idxwsr/2g,5-1/2¢) (Vi ) Ay (7))
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and, using twice 8.4(iii), is equal to:

(FypAy(y)|Ay ((id ba Wy 5-1/2¢)a(z"))
= (Ay((id b¥a Ws-1/2¢ ) 0(x) [ Ay (1))
= ((id * we,n) (Vip) Ay (7) Ay (y))

from which we get (iv). O

8.9. Corollary

Let & = (N,M,«, 3,0, T,T',v) be a measured quantum groupoid; let A be a von
Neumann algebra, (b, a) an action of & on A and let v be a §-invariant normal faithful
semi-finite weight on A. Let us define the representation a of N on Hy such that, for
neN:

a(n) = Jyb(n*)Jy

and let us suppose that 1 bears the density property, as defined in 8.1. Let Vy, be the

corepresentation of & on the bimodule o(Hy), constructed in 8.6. Then:

(i) it is possible to define the one parameter group of unitaries Aflf «®3 6‘“A;t and
NO

another one Aﬁ; oo 5‘“A;t, with natural values on elementary tensor products.
N
(ii) we have:
) it it ) it it
Vd,(Aﬁ a](\??og ) ZtA$z )= (A:ﬁ b%a ) ZtAil )VdJ
(iii) for any x in A, t in R, we have:

a(a;/’(:p)) = (Aﬁf b%a 57itA£it)a(:u)(A;it b%a 5itA%)

Proof. — Using 3.10(vii), Ag is the closure of PJgd ™' Jg, and, therefore, §A 5 is equal
to PdJsd~1Js, and, using 8.8(i), we can define Af/fa®5 5‘“A§t and Al ,®q 6‘”A§t
Ne N

by writing:

Az a®p 5_”Aéit = (Az a®p 5_“]3_”)(1 a®p J@é_itjcp)
No No Neo

A 4®a 0 TAZT = (A 480 6P (1484 Jod " Js)
N N N

We then obtain (ii), thanks to 8.8(i) and 8.6(ii). Then (iii) is an easy corollary of (ii)
and 8.6(i). O
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8.10. Corollary

Let & = (N,M,«, 3,0, T,T',v) be a measured quantum groupoid; let A be a von
Neumann algebra, (b,a) an action of & on A; let ¢ a d-invariant normal semi-finite
faithful weight on A, and let us define the representation a of N on Hy such that, for
n &€ N:

a(n) = Jypb(n*)Jy
and let us suppose that v bears the density property, as defined in 8.1. Then:
(i) a has a standard implementation;
(ii) a satifies property (A) if and only if a is saturated.

Proof. — We obtain (i) by 8.8. We obtain then (ii) by using (i) and 7.7. O

8.11. Corollary

Let & = (N,M,«,3,T,T,T',v) be a measured quantum groupoid; let A be a von
Neumann algebra, (b, a) an action of & on A and let 1, 1o be two §-invariant normal
faithful semi-finite weights on A, and let us suppose that both 11 and 1o bear the
density property. Then, for allt in R, (Dq : Do), belongs to A®.

Proof. — Let us consider the von Neumann algebra B = A ® M5(C); for n in N, let
us define b(n) = b(n) ® (e11 + e22), which is an injective *-antihomomorphism from N
into B, and, for X = (z;,);,; in B; let o denotes the flip from He ® C? onto C? ® He,
and let us define:

b(X)=(1 bDa o)(a(zi,;))i,;(1 vQa o)

which belongs to B jxq M.
N

It is easy to check that (l;, b) is an action of & on B. Moreover, let ¢ be the
normal semi-finite faithful weight defined on B by, for X = (z;;);; in BT,
Y(X) = ¥P1(x11) + Y2(x22); we then can verify that ¢ is a d-invariant weight with
respect to b, and that ¢ bears the density property.

Therefore, we have, by definition of (D : Di)s)y:

(1 b%a o)[a(Dyy : Dipg)e) ® ea1](1 b%a ") = b[(Dyy: Dipa); ® ea]
= bO’Z’b(l ® 621)
which, using 8.8(ii), is equal to:

(UZ” ¥ T10 2 B0 )b(1® ) = (02/’ %o T-10 2 Bo) (1 ® €21) §®a 1]
N N N
= [(DY1: Do) ® e21] j®a 1)
N

from which we get the result. U
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CHAPTER 9

CROSSED-PRODUCT AND DUAL ACTIONS

In that chapter, we define the crossed product of a von Neumann algebra by a
measured quantum groupoid (9.1), and the dual action on this new von Neumann
algebra (9.4). We prove that the dual action is integrable (9.8), and satisfies (9.7) the
property (A) introduced in chapter 6.

9.1. Definition

Let 8 = (N,M,a,3,T,T,T',v) be a measured quantum groupoid; let A be a von
Neumann algebra acting on a Hilbert space $), (b, a) an action of & on A; we define the
crossed-product of A by & (via the action a) as the von Neumann algebra generated
by a(A) and 1 b(}%a M’ on the Hilbert space ) b%a Hg. This von Neumann algebra will

be denoted by A x4 &. Clearly, this von Neumann algebra is included in A%, L(Hg).
N

9.2. Example

Let G be a measured groupoid, and a an action of § on a von Neumann algebra A,
in the sense of [47], [48], [49]. We have seen in 6.3 that a can be as well considered
as an action of the abelian measured quantum groupoid constructed from G (3.13) on
A. In [47] and [49] is given a construction of the crossed product of A by G; using
([47], 2.14), we get that the crossed product defined in 9.1 is the same.

9.3. Example

Let My C M; be a depth 2 inclusion of von Neumann algebras, with a regular
operator-valued weight 77 from M; to My, as defined in 2.2. Let &; be the measured
quantum groupoid, whose underlying von Neumann algebra is M} N My and whose
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basis is M N M, constructed (3.15) from this inclusion, and &, the measured quan-

tum groupoid constructed from the inclusion M; C Mo, which is isomorphic to @\10

(therefore, we get that &,y = é\l) Then (6.5), there exists ([15], 7.3) a canonical

action ay of &, on Mj, which has the following properties:

(i) the basis of B4 is M{ N My (which, using j;, is anti-isomorphic to M{ N M), the

underlying von Neumann algebra of &, is M| N M3 and, for = in M, as(z) belongs

to My j,*j, M{N Ms;in fact ay is given by the natural inclusion of M; into Ms;
MiNMs

(ii) we have My = M7'?;

(iii) there is an isomorphism I,, from M; x4, &5 onto M2 ([15], 7.6), such that, for any

x € My, we have I, (az(x)) = z, and, for any y € M{NMs, we have I, (1 ;,Q,, y) = y.
M{NM,

9.4. Theorem

Let & = (N,M,a,3,T,T,T',v) be a measured quantum groupoid; let A be a von
Neumann algebra acting on a Hilbert space $), (b, a) an action of & on A, A x4 ® the
crossed product of A by & wvia the action a. Then:

(i) the operator 1g b%a W€ is a corepresentation of (é\ﬁ)c on the N° — N° bimodule
1b%a[§(ﬁ b%az H@)h,%a&-
(ii) this corepresentation implements an action (1 b(}%a &,a) of (@)C on A X4 6, which

verifies, for any x € A, y € M':

a(a(z)) = a(z) a®p 1

(1pQa ¥) = 1@ T(y)
N N

This action (1,®q &,d) (or & for simplification) of (&)° will be called the dual action
N
of a.
(iii) We have:
a(A) C(Axg8)" = Ax, &N Ayxg M
N

Proof. — (i) is given by 5.6. Moreover, as a(z) belongs to A p*, M, we have:
N
(15 6®a W)(a(z) 584 1)(15 6®a W)" = a(z) 495 1
N N N Neo

and, using 3.12(vi), we get:

(15 580 W) (1 6®a ¥ 5@a 1)(1g 5@a W)* = 1,84 I(y)
N N No N N

MEMOIRES DE LA SMF 114



9.7. PROPOSITION 83

and, therefore, we have:
(].y, pRa WCO)A Xa @(153 pQa WCO)*
N N
C (O(A) a®g 1U1,®¢ ]/\4\/ a*g J/W\I)” CAX.® a*g ]T/[\l
Ne N Ne Ne
which proves (ii).
The inclusion a(A4) C (A x4 &) is given by (ii); let now X be in A x, &, then X
belongs to (A x, )% if and only if we have:

(1680 W)X 485 1) = (X 495 D(L1@a W)
N N Neo N

which means that X belongs to L($)) p*q M. As A Xq & C Ak, L(Hg), this finishes
N N
the proof of (iii). O

9.5. Example

Let & = (N,M,a,8,T,T,T',v) be a measured quantum groupoid, and (id, 3) its
trivial action on N° (6.2); then the crossed-product N° x3® is equal to M’; moreover,
the dual action 3 is equal to T'°, considered as an action of (&)° on M’ (6.10).

Therefore, (3,T"), considered as an action of & on M, is the dual action of the trivial
action (id, @) of &° on N.

9.6. Example

Let G be a measured groupoid, and a an action of § on a von neumann algebra A,
in the sense of [47], [48], [49]. We have seen in 9.2 that the crossed-product A x4 G in
the sense of 9.1 in equal to the crossed-product in the sense of Yamanouchi; moreover,
the dual action a in the sense of 9.4 is an action of the measured quantum groupoid
§C (whose underlying von Neumann algebra is the von Neumann algebra generated
by the right convolution algebra of G). Using ([49], 4.4), we see it is equal to the “dual
coaction of §" introduced in ([49], 4.9).

9.7. Proposition

Let & = (N,M,«, 8,0, T,T',v) be a measured quantum groupoid; let A be a von
Neumann algebra acting on a Hilbert space $, (b,a) an action of & on A; the dual
action a of (&)¢ on the crossed product A x, & satisfies the property (A) defined
i 7.1.
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Proof. — Let us consider the von Neumann algebra B generated on the Hilbert space
He®a Ho a®p5 He by 6(A X&) and 1,84 1483 6(N)'. By 9.4(ii), it is generated by
v vo N Ne°

a(A4) 4®s 1, 1,Q4 f’(]/\/[\’) and 1,®4 1 4®g B(N)'; but, using 7.2 applied to ((’3)0, we
Neo N N Neo
get that:

@(M')U1 4R B(N)) = M’ 4% L(Hg)
Ne° No
and, therefore:

o~

B=(a(A) a®p1U1,®, M’ a%5 L(Hs))"
Ne N

NO
or:
B = Cl(A)/ a*p L(Hq;.) n L(ﬁ) b*a ﬂ@@lg 1
Ne©o N No
= (L(9) b*a M Na(A)) 4®s 1
N No
which gives that B = A x4 & 4x3 L(Hgs), and finishes the proof. O

No

9.8. Theorem

Let & = (N,M,a,5,T,T,T',v) be a measured quantum groupoid; let A be a von
Neumann algebra acting on a Hilbert space $, (b,a) an action of & on A; the dual
action a of ()¢ on the crossed product A x4 & is integrable.

Proof. — Let y be positive in ﬁ’; we have:

Ta(l pPa y) = (id a*g ‘50)(1 bQa fc(y)) =1,®aq fc(y)
N N N

vo

As T° is a semi-finite weight from M’ to B(N), we get that Ty is semi-finite, which
finishes the proof. O

9.9. Definition
Let us take the notations of 9.8. Let ¢ be a normal semi-finite faithful weight on

(A x4 8)%; then, we shall denote ¢ the lifted weight ¢ = ¢ o Ts, which is a normal
semi-finite faithful weight on A x, &.
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9.10. Lemma
With the notations of 9.9, we have, for all x € (A x4 )% and a € Na.:

P(2*(14®0 a*a)z) = P(z" (1,00 T(a*a))z)
N N

Proof. — We have, using 9.4(ii):

(1,84 a%a) = 1,Q4 I'°(a”a)
N N

from which we get that:

~

Ta(l (S a*a) =1®, Tc(a*a)
N N

and, therefore:

~

Talz"(1®4 a*a)z] = 27 [1 4®4 T(a*a)]x
N N

from which we get the result. O

9.11. Proposition

Let’s take the hypothesis and notations of 9.9; there exists an isometry V from
Hy v®q He into Hy, such that, we have, for all x in My and a in Np. N Ng.:
14

V(Ay(2) 6@ Age(a) = Ag((1 b a)z)

Moreover, we have, for all b € M, Y € (A xg ®)8:

V(l »Ra b) = W&(l »Ra b)V
Ne N
V(JypyJy +®a 1) = Jymg(y)JgV

Proof. — For any a in Mz, NNg., we have Ag.(a) = JzAz(Jzatz), which belongs to

D(oHg,v) (2.2), and R*"(Ag.(a)) = J3As(Jzatz)J,, and, therefore, we have:
< A5.(0)), A3.(a)) >a,= o [T (Jza"aJ3)]° = B~ (T*(a"a))
and we get:
186 (2) 180 Age(@)]* = (o 57H(T"(a"a)) Ay()| Ay (2))

which, using 9.10, is equal to [|A;((1s®a a)z)||*. Which, by polarisation, proves the
N

existence of the isometry V.
The formula V(1 ,®q4 b) = 7;(15®q b)V is then trivial.
Ne N

As, for all t € R, and y € (A x4 )%, we have azp(y) = Uf’(y), we get that if y is
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analytic with respect to 1, y is also analytic with respect to 1/;, and, for such an
element:

V(Jy0?, 5 )y b 1)(Ay (2) 1®a Age(a)) = V(Ay(zy) 1®a Age(a))

= A5((18a a)ay)

which is equal to:
T5m5(0% o DT80 a)a) = Jym(0¥, (0 T5A 5 (10 @)a(@))

which, by continuity, gives the result which finishes the proof. O

9.12. Lemma

Let’s take the hypothesis and notations of 9.9 and 9.11; then, for all X in A X, &,
we have m;(X)V =VX.

Proof. — Let x € A; we have:

(apkq id)a(z) = (idpxq Ia(z)
N N

(1680 W°)(a(z) a®p 1)((1 4@a W°)"
N Neo N
and, therefore:

(a(z) 4®s 1)((1 580 W°)* = (1,80 W°)*(a p*q id)a(z)
No N N N
Let £ € D(oHs), n € D(Hg); we have:

(@) (148 (id e} (T5)) = (6% (1100 W9)' (4 gta id)a(e)p”
N
Let (e;)icr be an orthogonal (a,v)-basis of He; as Y, p2*(p2*)* = 1, it is equal to:

S0 (Lo ) 9% (02:%)" (@ g id)a(a) " =
7 N
D (1480 (id 5 we, ) (W2))a((id yx we.e,)a(x))
- N N

This sum being convergent o*-strongly.

Let y be in N NNe NNrrrNNaor; and let us put 7 = JzJeAs(y); then Jgn belongs
to JoAe(Me) N D(oHe,v) N D((Hs)g,v°), thanks to 3.10(i); therefore, n belongs to
D(oHg,v)ND((Hg)p,v°); moreover, as 7'(Jg7) is a bounded operator, we get (4.1)
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that wj_¢ s, belongs to Iy, and, therefore, by 4.8, that (wy_¢ j.n * id)(W) belongs
to Mg; we then get easily that (id x we ,)(W° ) belongs to Nz., and that:
JgAg(wrge,75n * id)(W))

= Jzaa(wizezn)

= Jpm'(Jgn) JI5

= JzJoy JaJgé

Age((id % we ) (WO ))

Let 2’ be in Ny, then, a(z)(1 ,Q4 (id * w&n)(ﬁ-/\"*))x’ belongs to 917, by 9.11, and is
N
the o*-strong limit of:

D (108 (i we ) (WS ))a((id yx0 we.e,)a(2))s’

?

Let J finite, J C I; then:
A3 (18 (id+ Weun) W)a((id vra we.c,)a(@))2]
1€
is, using 9.11, equal to:
VOl e Jal) A (o) 120 Agel( 2 00n) (V)
1€
which is:

VO llid e we.e )a(@) Ay (@) 18 T5Tay" Jo Tged]
ieJ
which can be written:

V(11@a JgJay Jadg) D ol (04) a(z)(Ay(z') 1@ €)
N ied N
which converges in norm, when J is growing, to:

V(L1@a T3 Tay" Jo J3)0(@) (Mg (@) 180 €) = Va(@) (Ap(2') 18a Ty Jay" o T58)
= Va(e) (Ap(a') 8 Age ((id * we ) (W)
As Ad; is 0*-norm closed, we therefore get that:
Va(@)(Ap(a) 180 Age (i we,) (W) = Agla@)(1p®a (id  we) (W))a’]
= 5 (@)A1 180 (id* we) (W)
= 15(a(2))V (A (') 400 Mg ((id x we ) (WO )
N

and, by linearity and continuity, we get that m;(a(z))V = Va(z), for any z € A.

As we have obtained in 9.11 that V(1 ,®q b) = 7m;(1 4®q b)V for any b € M, we
Ne N

SOCIETE MATHEMATIQUE DE FRANCE 2008



88 CHAPTER 9. CROSSED-PRODUCT AND DUAL ACTIONS

obtain that m;(X)V = VX for any X in the involutive algebra generated by a(A)
and 1,®, M ; then, by strong limit, we obtain the result. O
N
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CHAPTER 10

AN AUXILLIARY WEIGHT ON THE
CROSSED-PRODUCT

Be given an action a of a measured quantum groupoid & on a von Neumann algebra
A, and a normal semi-finite faithful weight ¥ on A, we construct, in this chapter,

(10.1) an auxilliary weight 1g on A x, & which will allow us, thanks to chapter 8, to
construct a standard implementation for the dual action (10.7). We obtain (10.7) that
the dual action satisfies the saturation property introduced in chapter 7; we introduce
a third technical property (property (B) in 10.10) which is satisfied by the dual action
(10.12).

10.1. Proposition

Let’s take the hypothesis and notations of 9.9 and 9.11; then:
(i) there exists a unique normal semi-finite faithful weight o on A xq & such that:

‘JIQLO = {CE S ‘JIIZ,qu(x) S ImV}

and such that we may identify Hy  with ImV, Az?)o with the restriction of AJJ to Ny,

and, for anyy € AXqa &, T (y) to the restriction of T (y) to ImV.

(ii) let us write V the unitary from Hy yQq He onto leo defined, for allE € Hy p®q
14 14

Hg, by VE = VE; then we have, for all yin Ax, ®&:

w5, () = VyV*
(iii) the linear set generated by the elements of the form (11,(%1(1)3:, with a € Nz NNy,
and z € Ny, is dense in A Xq 6.

Proof. — Using 9.10, we get that {z € 9;,A;(z) € ImV} is an ideal of A x4 &,
which is dense by 9.11; then, we can apply ([36], 7.4) to obtain (i); result (ii) is then
straightforward. Result (iii) is also a corollary of 9.10 and 9.11. O
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10.2. Proposition

Let’s take the hypothesis and notations of 9.9, 9.11 and 10.1; let us define the
unitary Uy from Hy ®g Ho onto Hy yQq Ho by the formula:

Uy = V*J,J}Of/(Jw a®p J3)
Then:
(i) for ally in (A x4 )%, we have y = Uy (my(y) «®p DU;
NO

(ii) for all t € R, we have 0,;0 (y) = 0¥ (y);
(iil) we have Uy (Jy b%a Jg) = (Jy a(X())g J$)U,,-

Proof. — Let us first remark that it is possible to define on elementary tensors an
antilinear surjective isometry Jy .®s J3 from Hy ,®p3 Heo onto Hy y®q He, whose
vo Vo v
inverse is Jy y®q Jg, which is defined the same way.
14
Let us take now y € D(UZ’/2
Mg l(1s®a a)zy] = V(Ay(zy) s®a Ag.(a)
Yo N v

= V(Jymp(ol,®) Ty b0 1)(Ay (2) 180 Age(a))

); we have, for all z € Ny, a € Ng. NNy

which is equal to:
V(Jymy(0],) Ty b@a VA (1 b®a a)2]
As the linear set generated by all the elements of the form (1,®,a)z is, by construction
N

of 1[)0, a core for A1/307 we get that, for any X € ‘ﬁd;o, we have:
Mgy (Xy) = V(Tumu(0])5 (1)) g 1@a DV Ay, (X)
from which we deduce that y belongs to D(of/"?), and that:
T30 @ o)) g, = V(g (0, )" Ty 0 1V
which can be written also, thanks to 10.1(ii):

7372 ¥) = Us(my(07)(4)) @5 DU

Taking the adjoints, we get that, if 3’ belongs to D(aflﬂ), then y’ belongs to D(ad";/z),

and:
oL = Ua(mo(02, o)) a8 DU
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If now z belongs to D(c?;), then z belongs to D(aﬂ)ﬂ), and:
_Z/z(z) Uw (771# (Ufi/g(z)) 0«]?,3 1)qu
But, as 0¥,(z) belongs to D(c /2), o¥ (2) belongs to D(o 1/2) and:
011 (02:(2)) = Up(my(07)5(%,(2)) <8 DU = Uy(my(0?, 5(2)) @5 DU;

and we get that ow‘;/z( z) = 0302( 0¥ (2)); therefore, z belongs to D(Jfg), and

wo( )= (z) Then, using ([16], 4.3 and 4.4), we obtain (ii). Let us return now to
the formula obtained for y € D(o, /2) we had obtained:

1/2(y) Uw(ﬂw(fff/g(y)) a®p I)U:;
NO

Using (ii), we get:
7372(4) = Un(ms(@115()) 85 U
from which, by density, one obtains (i).

From the definition of Uy, one gets:

Ul = (Jy ¥®a TV V

and the formula (iii) is straightforward. O

10.3. Proposition

Let’s take the hypothesis and notations of 9.9, 9.11 and 10.1; then, the weight 1;0
is 8~ -invariant with respect to the dual action a.

Proof. — By 8.2 apphed to Qﬁc we know that ¢ is 6~ !-invariant with respect to the
action T'° of ¢ on M'. Moreover, by 4.5 applied to FC we get that:

Agel((id axg Wy, ) T°(@)] = (id * wy1/2, ) (W) A ()

for all a € N5, € € D((Hs)s,v°) and ) € D((Hs)g,v°), such that §~1/2 belongs to
D(@H@,l/).

Therefore, for any z € My, and a € Nz N Ng., we have:

Per

A, (id axp wy )3((1 480 a))] = Ay, [(14®a (id s% wy.e)T°(a)z]
Neo N N No
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which is equal to:
VI8 (@) 18 Age[(id axp wn (@]
= V1480 (id 5 W5-172, ) (W) (A (2) 180 Az ()

= V10@a (id % w5172, ) WV A5, (1180 a)a())

which, by definition of 1/30, and the closedness of Ad?o’ allows us to write, for all
X e ‘JIJ)O:

Ay, ((id ap wn,e)&(X)) = V|1 b@a (id % g1/, ) (WOV* A (X)

Taking now (&;);cr an orthogonal (3, v°)-basis of Hg, we have:

do((id axp wy)a(X* X)) = Z 1A, ((id axs wn ¢, )&(X))]|?

which is equal to:
Z II[1 b%a (id * wtg_l/zn’gi)(WOC)]v*AJ}O (X)||2 =
= [1(1+&a WOV (A, (X) 5o®a 6201 = [[Ag, (X) g,®a 60|

where we put, for n € N, fo(n) = J

7o (16®a &(n*))J; . Which is the result. O
N

10.4. Lemma

Let (b,a) be an action of a measured quantum groupoid & on a von Neumann
algebra A, and let v be a normal semi-finite faithful weight on A. Let A x4 & be the
crossed product, and 1 be the weight defined in 10.1. Then, the linear span generated

by the elements s (z*)V (Ay(y) v®a Ag.(a)), where z, y belong to Ny, and a belongs
to Np. NNg. NNZ, NNZ,, is a core for Sy, and we have:

S0 @)V (Ay(y) b®a Age(a)) = 75, (y")V (Ay(z) b®a Ag.(a”))

Proof. — By definition of ¢y (10.3(ii)), the linear span generated by the elements
(14®q a)z, where a belongs to Nz. NNg., and z belongs to Ny, is a core for A; . We
N

deduce easily the result from this. ]
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10.5. Proposition

Let (bya) be an action of a measured quantum groupoid & on a von Neumann
algebra A, and let v be a normal semi-finite faithful weight on A. Let A x, & be the
crossed product, and vy be the weight defined in 10.1. Then, the unitary Uy defined
in 10.2 satifies, for all b € M:

(1 pRa Jq;.bJ@)Uw = Uw(l a®p J@qu;)
N No

Proof. — Using the notations of 4.7 and 10.4, we have:
(1+®a JabJa)V Sy w5 (27)V (A () 1®a Age(a®)) =
(1 b%a J<1>bJ¢,)f/*7rJ)0 (y*)f/(Aw(x) b%o‘ Agz.(a))
which is equal to:
(14&a JobJa)y" (Ay(z) p®a Age(a)) = y™(1 +®a JabJo)(Ay () 1®a Ag.(a))
= y*(Aw(IL’) R J@bJ{)A@c(a))

Using 3.10(v), we get that, for all t € R, Angng@A;t belongs to M’, and we define
this way an automorphism group p; of M’; if we suppose that Jg R(b*)Je belongs to
D(p—;/2), we get that:

JabJaAg. (@) = J3AZ 2 u_i o (JoR(6*) Ja)Ag. (a¥)
and, therefore, using 10.4, we get:
(1620 JubJa) V85,75, () (A4 (v) 80 Ag. (a))
=y (A (2) 180 J5AS 2 u_ija(JaR(6") Ja)Ag. (a”)
= Vg, (0)V (Ap (@) 180 JgAG " poijo(Jo (V) Jo) Mg (a”)
= V85,75, (@ )V (Ay(y) 6®a p—ifa(Jo R() J6) Az (a”))
= VS, Va* (Ay(y) b®a p—is2(JoR(b") Je)Ag. (a7))
and, by the closedness of S 5o We get:
(14@a JebJe)V*S; V C V*S; V(1 6@a Hif2(JoR(b") o))
Taking the adjoints, we have Jg R(b)Jo € D(u;/2) and:
(16®a pi2(JoR(b)Je))V*F V C V*F; V(1,04 Job* Js)
N N
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Therefore, if we suppose that JgbJs belongs to p_;, we get:
(1 b%a Jcpr@)f/*AJ)OV C V*AJ)OV((l b‘]%a p—;(JobJs))

So, for any X € L(Hy y®q Hy), let (X) = ‘N/*ASOVXV*A;”V; we then get that

v 0
(1®4 JobJs) belongs to D(e_;), and, therefore, for any b in M, we have:

N
Gt(l pRa Jq;chp) =1,®q ,U't(J@bJ(I’)
N N
and:
(16Qa JobJo)V*J5 V =V*J; V(1,84 JoR(b*)Js)
N N

and, therefore:
(1 pRa J@qu:.)U¢ = U¢(1 [P Jcpr@) O
N N

10.6. Corollary

Let (bya) be an action of a measured quantum groupoid & on a von Neumann
algebra A, and let ¥ be a normal semi-finite faithful weight on A. Let A x4 & be the
crossed product, and 1/;0 be the weight defined in 10.1. Then, for alln € N, we have:

Jil;oﬂlzo(l b‘]%a &(n))*‘]d”)o = V(l b%a B(n))‘?*
Proof. — We have, using 10.1(ii),

Jg g, (1 ¥8a G &(n))*Jg = J5 V(1p®a é(n)")V*J5
N

which, using 10.2, is equal to:
VUG (Jy 4@a J5) (1680 &(n)*)(Jy o®p J5) U V"
N N Neo
and, using 10.5, is equal to:

VUL a5 ULV = V(1180 Bm)) =

10.7. Theorem

Let (bya) be an action of a measured quantum groupoid & on a von Neumann
algebra A; let A xq & be the crossed product, a the dual action of B¢ on A Xg B,
and let 1 be a normal semi-finite faithful weight on (A x4 ®)%. Let 1/30 be the weight
defined in 10.1. Then,

(i) the weight 1/;0 is 6~ '-invariant with respect to the dual action a, and bears the
density property defined in 8.1.
(ii) there exists a standard implementation of the dual action on the Hilbert space
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Hy, .
(iii) the dual action is saturated.

Proof. — As V[D((Hy)p, V°) 1®a D(aHe,v) N D((Hs)4,v°)] is dense in H , we get

that 1/70 bears the density property defined in 8.1; so (i) is then given by 10.3. Then
(ii) is given by 8.10(i), and (iii) is given by 9.7 and 8.10(ii). O

10.8. Theorem

Let (b,a) be an action of a measured quantum groupoid & on a von Neumann
algebra A; let A x4, & be the crossed product, @ the dual action of B¢ on A x4 &, and
let 3 be a normal semi-finite faithful weight on (A x4 ®)%. Let ¥ be the lifted weight
defined in 9.9,and o be the weight defined in 10.1. Then:

(i) we have ¥ = to;

(ii) the linear set generated by the elements of the form (1,®qa)z, with a € Ng. NN,
and x € Ny, is a core for Aj. "

(iii) the weight 1; is 6~ '-invariant with respect to the dual action a, and bears the
density property defined in 8.1.

Proof. — Thanks to 10.7(i), we can apply 8.8(ii) to the action & and to the weight 1,

and we have, for any x € A x4 &:
8(0}" (@) = (01" axp 7207 0" Ja(a)
and, using 3.8~(Vi) and (V~ii) applied to </I\>C, we get that, for any positive z in A x4 &,
we have Ti(07°(z)) = o7 (Ts(x)), which implies, using 10.2(ii), that:
Ta(o}" (x)) = of (Ta(x))
and, therefore, 12(05’0 (z)) = ¢(z).
By construction (10.1(i)), we have ¢(z) = o (x) for all z € M, ; from which we can

deduce now (i). Then (ii) is just given by (i) and the definition of vy, and (iii) by (i)
and 10.7(i). 0

10.9. Proposition

Let 8 = (N,M,«, 8,0, T,T',v) be a measured quantum groupoid, 9 a N — N
bimodule, A a von Neumann algebra such that b(N) C A C a(N)’, V a corepresen-
tation of & on .9y which implements an action (b,a) of & on A; let A xq & be the
crossed-product, and a the dual action of of (QAﬁ)C on the crossed product; then:
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(i) Axa ® C V(L(9) x5 M)V

(ii) (A x4 ®)% C Sata.N

Proof. — We have obtained in 7.4(ii) that 1 ,®, M c V(L(9) a*p ]\//.7/)V*; as
a(A) = V(A ,®3 1)V*, we obtain (i) by deﬁnitiorzlvof A X4 &. Then (ii)Nis a corollary
of (i) and 94(1\/1;) O

10.10. Definition

Let & = (N,M,a,3,T',T,T',v) be a measured quantum groupoid, A a von neu-
mann algebra, (b,a) an action of & on A; following ([13], II5), we shall say that a
satisfies property (B) if we have a(4) = (A x4 ®)°.

10.11. Proposition

Let & = (N,M,a,3,T,T,T',v) be a measured quantum grou-poid, .9, a N — N
bimodule, A a von Neumann algebra such that b(N) C A C a(N)’, V a corepresen-
tation of & on .9y which implements an action (b,a) of & on A; let A xq & be the
crossed-product, and a the dual action of of ((’Ai)c on the crossed product; let us suppose

that the action a is saturated, in the sense of 7.8. Then, the action a satisfies property
(B) (in the sense of 10.10).

Proof. — Using 9.4(iii) and 10.9(ii), we have:
a(A) C (A x, 8)° C Sata

Therefore, the result is trivial. O

10.12. Corollary

Let & = (N,M,a,3,T,T,T',v) be a measured quantum groupoid; let A be a von
Neumann algebra acting on a Hilbert space $, (b,a) an action of & on A; the dual
action a of (QA5)C on the crossed product A X, & satisfies property (B) of 10.10.

Proof. — This is a straightforward corollary of 10.7(ii) and 10.11. O
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CHAPTER 11

BIDUALITY

In that chapter, we prove a first version of biduality theorems (11.3, 11.4), which
implies that any action satisfies properties (A) (11.5(ii)) and (B) (11.5(i)). We then
get the biduality theorem (11.6) and commutation theorem (11.7).

11.1. Lemma

Let & = (N,M,«, 8,0, T,T',v) be a measured quantum groupoid; let A be a von
Neumann algebra acting on a Hilbert space $), (b, a) an action of & on A, Ax,® the
crossed product of A by & via this action. Then, we have:

[(a %o id)a(A) U1 ,@0 M gro L(He)]" = A xq & o L(Ho)
N N N N

Proof. — We have a(A) C A px, L(Hg), and, therefore:
N

(Cl b*o zd)a(A) C Cl(A) b*a L(Hq;.)
N N
from which we get:

[(a pxq id)a(A) U100 M gro L(He)]" C A xg & gro L(Ho)
N N N N

Conversely, let X € L(9) p*q M, such that X 8®q 1 commutes with (a p*, id)a(A).
N N N

As, for x € A, we have, using 3.12(v):
(ap*q id)a(z) = (id p*o Da(z) = (1 p®q 0, W°0,)" (a(z) 6®s 1)(1 @4 0, W°0,)
N N N No N
and, therefore:

a(z) a®p 1 = (1s®q 0,W°0,)(apxq id)a(z) (1 p®q 0, W°0,)*
No N N N
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As X belongs to L(9) p*q ]/M\, we get that:
N

(1 P UVWOO'V)(X BQa 1) = (X 5‘®ﬁ 1)(1 pQa O’VWOO'V)
N N No N

and, therefore, we get that X a®p 1 commutes with a(z) 4®g 1, which means that

Ne Ne°

X belongs to a(A)’; as X belongs to L(9) pxo M, we finally get that X belongs to
N

(A x4 ). So, we have proved that:

[(a p%q id)a(A) U1 ,®4 M giq L(He)]' C [A xq & gxo L(Hg))'
N N N N

from which we get the result. O

11.2. Proposition

Let & = (N,M,a,5,T,T,T',v) be a measured quantum groupoid; let A be a von
Neumann algebra acting on a Hilbert space $), (b,a) an action of & on A, a the dual
action of (@)c on the crossed product A x, ®, & the bidual action of (8)°¢ on the
double crossed-product (A x4 &) x5 @50; we shall denote:

A= (a(A)U1,®,a(N))"
N
and, for any X € A:
a(X) = (1pQ®q 0o Wa,0)(id pka sn)(a pka 1d)(X)(1 p®4 o Wa,o)*
N N N N
Moreover, for any Y € L($ Q0 Ho sQq Ha), we define:
@(Y) = (1 »Ra O'VWOO',,)Y(l b%a O'VWOO'V)* S L(f) Qo Ho a®p Hq>)
Then, for any X € A, we have:
O(a prq id)(A) = (A xq B) x5 B°
N
(O(a p*q id) p*a T )a(X) = @0 O(a p¥q id)(X)
N N N
and, for any Z € A 1, &, we get that O(a x4 id)(Z) = a(Z).
N
Proof. — Let z € A; then a(z) € A, (ap*q id)a(x) = (id p* [)a(x), and, using 3.12,
N N

we have:

G)(a b¥o zd)a(:z:) = a(z) a®p 1
N Neo

MEMOIRES DE LA SMF 114



11.2. PROPOSITION 99

Let y € M'; then 1,@,y € A, (ap*a id)(15®0y) = 1,80 1 384y, and, using 3.10(iii)
N N N N N
and 3.12(iv), we get:

O(ap*qa id)(1®a y) = 15Qa I'(y)
N N N
So, for any Z € A x4 &, we get that O(a p*, id)(Z) = a(Z). Let now z € M’; then
N
1 bQa 2 € Aa (ab*a Zd)(]- bQq Z) =1 bQq 1 ﬂ®a Z, and:
N N N N N
6(a b*a ld)(l »Ra Z) =1,Qq1 a®p 2
N N N No
from which we get that ©(a p*q id)(4) = (A xq &) X5 ®°. Moreover, using 3.6,
N

we deduce from (a p*o id)a(z) = (id p*, I')a(x), that, for all x € A, we have
N Ne

a(a(z)) = a(z) 3®q 1. From which we deduce that:
N

(O(ap%a id) p¥a Js)a(a(z)) = a(x)a®p 1,041
N N Ne N

Il
a

(a(z)) 3®a 1
N

(a(a(z)))
0 O(a p*q id)a(z)
N

an an

For y € ]\//.7', we have a(1 ;R4 y) = 15Q0 ¥ 5®a 1 and, therefore:
N N N

~

(O(apxq id) p*a Je)a(1b®a y) = 1®a [(y) 3®a 1
N N N N N
= 4(1y®ay) s®a 1
N N

= a(@(1p®a v))
N
= a00(apke id)(1,Qq y)
N N
from which we deduce that, for all Z € A x, &, we have:

(O(a p*q id) p*a e )a(Z) = 4(a(Z)) = ao O(a y*q id)(2)
N N N
For z € M’, we have (a p*q id)(1 Q4 2) = 15Q4 1 3®4 # and:
N N N N
a(14®4 2) = (15®a 010) (1 4®a (W(1 R4 2)W*))(1 5@ 0vo)
N N N N N

As W = (J3 s®a Jo)W*(J5 3R®a Ja), We get that:

N N

a(15®q 2) = (id p*a sno) (1 4®0 (J3 8®a Jo)[(Jo2Js)(J5 4@ Jo))
N N Neo N N
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and:
(O(ap*q id) 10 Je)a(13® 2) = 134 1a®aT%%(2)
N N N N No
= A(1pQa14®p 2)
N Neo
= a00(apy id)(1,Qq 2)
N N
from which we get the result. O

11.3. Proposition

Let & = (N,M,a,3,0,T,T',v) be a measured quantum groupoid; let A be a von
Neumann algebra acting on a Hilbert space $), (b,a) an action of  on A, a the dual
action of (6\5)C on the crossed product A x4 &, a the bidual action of (8)°¢ on the
double crossed-product (A x4 &) Xz @50; then, with the notations of 11.2:

(i) (1 b%a B,a) is an action of & on A;

(ii) this action satisfies property (B);
(ili) A=A %, &

Proof. — Thanks to 11.2, we get that, for any n € N:

a(1,®q B(n)) = (idp*a sno)(1 @0 (V5 s®a Ja)I'(a(n))(J5 s®a Ja))
N N No N N

= 1pQal /@®a ﬁ(’n’)
N N

On the other hand, we get, using 11.2, for any X € A, that:

(O(apxq id) ba Js ba Js)(a(X) p*a id)a(X)

N

is equal to:

an

(@0 0(apkq id) p¥a Jo)a(X) = (3 ;@4 id)ao O(ap*a id)(X)
N N N

N
= (idp®aT*°)a 0 O(a p*q id)(X)
N N

(O(a p*q id) pko [°° 0 Jg)a(X)
N N
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which is equal to (©(ap*q id) pxo Ie p*a I6)(id g*o I')a(X), from which we get (i). On
N N N N
the other hand, we have:

(O(a pa id) 1o Jo ) (A %3 8) = (O(apkq id) %o o) (a(A) U100 1 504 M')"
N N N N N N

= (5[(A Mg @) Xa @o] ul b%a 1 B®6‘ ]/W\)H
N
= [(Axg®) x5 6] Xz &°
Using then 9.4(iii), we get that:

(0(a pta id) pra Je) (A g 8)F) = (O(a v*a id) p*a Jo)((A Xg &N A zro M)
N N N N N

which, using 11.2 and 9.4(iii) again, is equal to:

[(A %10 ®) 315 B°] 31z 6% N [(A x5 8) x5 8] g5 M’ = ([(A x4 B) x5 8% x5 6°)
NO

which, using 10.12, is equal to 3[(A Mg B) Xz QA5°], and, therefore, by 11.2 again, is
equal to (O(a p*, id) p*a Jo)a(A). From which we get that (A x, )% = a(A4) which
N N =
is (ii).
Using 11.3, we get that X in A belongs to A®* if and only if ©(a p*, id)(X) belongs
N

to [(A Xq &) x5 6\50]3, which, using 10.12, is equal to a(A x4 &), or, using 11.3 again,
is equal to ©(a p*4 id)(A Xq B); from which we get (iii). O
N

11.4. Proposition

Let & = (N,M,«,3,0,T,T',v) be a measured quantum groupoid; let A be a von
Neumann algebra acting on o Hilbert space $), (b,a) an action of & on A, a the dual
action of (@)c on the crossed product A x4 ®, a the bidual action of (8)°¢ on the
double crossed-product (A x4 B) x5 650; let’s use the notations of 11.2 and 11.3. Then,
we have:

A Xg® = (Zd b*a §No)[(1 pQa W)(A X B B*a L(Hq;.))(l pRa W)*]
N N N N

Proof. — By definition of A, we have:

a(4) = (id p*a sne) [(1 5@ W) ((a pkqa id)a(A) UL pQ4 1 R4 a(N)")" (104 W)
N N N N N N
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and A, & = (a(4) U14®a 1 5®a M’)". But, on the other hand, using 3.11(iii), we
a Vel

get that W*(M’ o®z 1)W is equal to:
NO

(J5 0@ Jo)W (J5 a®; Jo) (M @5 1)(J5 5®a Jo) W (J5 5®a Ja)
Ne Ne Ne N N
= (V3 «®3 Jo)I°(M)(J5 s®a Ja)
Ne N
Therefore, we get that:

M 0®y1=W(J5 a®; Jo)T°(M)(J5 580 Jo)W*
No No N

and:

1 ;@0 M' = sno[W (J5 a®; Jo)TO(M)(J5 5@ Jo) W]
N No N
Moreover, we have:

(J5 a®3 Jo)T°(M)(J5 520 Jo) U (1 500 a(N))" =
Neo N N

= (J3 «®; Jo)T°(M) U1 0®; BIN)"((J3 @0 Jo)
No No N

which, by 7.2 applied to @50, is equal to:
(T3 a®5 Jo)(M ox 5 L(Ha))(Jg 580 Ja) = M’ 5%a L(Ha)
Ne Ne N N
Therefore, we get that A x4 & is equal to:
(Zd b*a gNo)[(l QR W)((a b*q zd)a(A) Ulp®a Z/\ZI B*a L(H@))”(l R W)*]
N N N N N N

which, using 11.1, gives the result. O

11.5. Theorem

Let & = (N,M,a,3,T,T,T',v) be a measured quantum groupoid; let A be a von
Neumann algebra acting on a Hilbert space $), (b,a) an action of  on A, a the dual
action of (Q/S)c on the crossed product A xq &. Then:

(i) a satisfies property (B), i.e. we have:

(4 x4 8)° = a(A)
(ii) a satisfies property (A), i.e. we have:
(Cl(A) Ul p®q Oz(N)/)H = A p*q L(H@)
N N
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Proof. — Let’s use the constructions and notations of 11.2, 11.3 and 11.4. Us-
ing 9.4(iii), we have (A xq4 B)E = A Xa & NL(H yQa Ho) p*o M, and, therefore,
v M

using 11.4 and 9.4(iii) again, we have:
(A xa 8)% = (id p*a sno)[(1 60 W)((A %0 ) gro L(He))(15@a W)']
N N N N
But, by 11.3, we have:

(A xq 8)% = a(A) = (id p*a sno)[(1 @0 W)(a p*q id)(A) g*a L(Hos)) (1 5®a W)*]
N N N N N

from which we deduce that (A x4 8)% g, L(Hg) = (a p*, id)(A), from which we get
N N
that (A x4 )% g%, L(Hg) C a(A) g*o L(Hs) and we deduce that (A x4 )% C a(A),
N N

which, thanks to 9.4(iii), gives (i).
But we have now:

(apxq id)(Ap*a L(He)) = a(A)g*a L(He)
N N N
= (A4 ©)" gro L(Ha)
N
= (apxqid)(A)
N
which gives (ii). O

11.6. Theorem

Let & = (N,M,a,3,T,T,T',v) be a measured quantum groupoid; let A be a von
Neumann algebra acting on a Hilbert space $), (b,a) an action of  on A, a the dual
action of (B)¢ on the crossed product A x4 &, a the bidual action of (®)°° on the
double crossed-product (A x4 &) x5 @50; let us define, for any X € A b;k\fa L(Hs):

a(X) = (1p®q 0o W) (id p*a sn) (A p¥e 1d)(X)(1 p®q e W)™
N N N N
Moreover, for any Y € L($ Qa0 Ho sQq Ha), we define:
G(Y) = (1 »Qa O'VWOO',,)Y(l b(l%a O'VWOO',,)* S L(f’:) Qo Ho a®p H@)
Then, for any X € A pxq L(Hs), we have:
N
O(a p¥a id)(A pra L(Hp)) = (A xq B) x5 B°
N N

(O(a p*q id) p*a T )a(X) = @0 O(a p*q id)(X)
N N N
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and, for any Z € A x4, &, we get that O(a p*, id)(Z) = a(Z).
N
Then (1 ®4 B,g) is an action of & on A yx, L(Hg), and:
N N

(Apkq L(Hp)) = A X, 6
N
Moreover, for any X € (Ap*xq L(Ho))T, we have:
N

T-0(a b;kva id) = O(a b*Na id)T,(X) = a(To(X))

Proof. — This result is given by 11.2, 11.3 and 11.5(ii). O

11.7. Theorem

Let 8 = (N,M,«,3,0,T,T',v) be a measured quantum groupoid, .9 a N — N
bimodule, A a von Neumann algebra such that b(N) C A C a(N)’, V a corepresenta-
tion of & on .9, which implements an action (b,a) of & on A and an action (a,a’)
of ° on A’. Then:

(1) Axg & =V(L(H) o%5 M)V N A vta £ (Ho)
No

(i) A’ X ° = V*(Ax, 6)V.

Proof. — Using 11.6, we get that X € Ay, L(Hg) belongs to A x, & if and only if
N
X € Apx, B(N)', and a(X) =X 5®a 1, or, equivalently:
N N

(a b¥a zd)a(X) = (1 »Qa W*)(l QR J,,)(X B®O‘ 1)(1 QR 0',,)(1 »Ra W)
N N N N N N

which means (7.4) that X belongs to Ay, B(N)' N SatV, and, therefore, by 7.4(i),
N
we get:

Axg & =V(L(H) axg M)V N Apko B(N)
No N

We have seen in 7.4 that V(L(9) o*s J\/Z’)V* belongs to a(N)' p*xq B(N)', which gives
N N
(i)-

From (i), we get that:
(Axg®) = (V(1,®@s M)V*UA @4 1)"
N N

and:

—.

V(A xa 8)V = [V(A 4®a 1)V* UL ,@4 M]"
N N

which gives (ii). O
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11.8. Theorem

Let & = (N, M,a,3,T,T,T',v) be a measured quantum groupoid; let A be a von
Neumann algebra acting on a Hilbert space $), (b,a) an action of & on A; then, a is

saturated, i.e. we have:

a(d) ={X € Ab;a M, (a ba id)(X) = (id ba ) (X)}

Proof. — Let us suppose that there exists a corepresentation V' on $) which implements
a; using 7.6 and 11.5(i), we get that a is saturated (7.3), which means that we have
the result. Applying this fact to 6.7, we get that (a y*, id)a(A) is equal to:

N

{X € Cl(A) bka M, (Cl b¥*q 0d B*a Zd)(X) = (Zd b¥o td B*a F)(X)}
N N N N N
which is the image under (a p*,, id) of:
N
{Y € Apxg M;(apkq id gkq id)(a pxe 0d)(Y) = (id p*q id g*o I')(a px4 id)(Y)}
N N N N N N N

As, (idp*qid g*a ) (apkq id)(Y) = (ap*q id g*q id)(idp*o I')(Y), we get the result. O
N N N N N N

11.9. Theorem

Let & = (N,M,a,5,T,T,T',v) be a measured quantum groupoid; let A be a von
Neumann algebra, (b,a) an action of & on A and A x4 & its crossed product. Then,
the linear subspace generated by all elements of the form (1 ,®, a)a(z), with a € M’

N

and x € A, is dense in A X, .

Proof. — Using 11.5(i), this is a straightforward corollary of 10.1(iii). O

11.10. Remark

These theorems (11.5, 11.6, 11.8) are the generalization, up to the measured quan-
tum groupoid framework, of biduality theorems ([V2] 2.6, 2.7) obtained for actions of
locally compact quantum groups, and we followed the same strategy as [V2] (which is,
in fact, the strategy of [ES1]). These theorems generalizes as well the duality theorems
for groupoid actions ([Y3], 6.5) and integrable groupoid coactions ([Y3], 7.8).
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CHAPTER 12

CHARACTERIZATION OF CROSSED-PRODUCTS

On this chapter, inspired by ([13], V), a measured quantum groupoid & be given,
we characterize crossed-products among the von Neumann algebras on which there
exists an action of &° (12.3). A corollary (12.5) will be used in chapter 13.

12.1. Notations

In this chapter, we shall consider a measured quantum groupoid &, its dual @, and
a von Neumann algebra B on a Hilbert space $). We suppose that there exist:
(i) a normal faithful morphism p from M’ into B;

(ii) a normal faithful morphism b from B into B ,.a%g M, such that (wod,b)is an
NO
action of &¢ on B;

(iii) we have, moreover: bo p = (u a4%g id)Te.
ND
This last formula implies that, for any n € N, bo u(8(n)) belongs to (po &(N))" and:
b0 u(B(n)) = (s axs I)T(B(n)) = (1 axp id) (B(n) 4@ 1) = p(B(n)) poa@p 1
Ne° Ne° ve vo

and, therefore, by definition, u o B(N) C B*.

12.2. Lemma

Let’s take the hypothesis and notations of 12.1. Then
(i) there exists a corepresentation Y of & on the bimodule 049 ,0p5- such that, for any
£ € D(oHo,v), n € D((Hs)g,v°), we have:

(id * we, ) (Y) = pl(id * we ) ((0,W°0,)%)]
(ii) for any b’ € B, we have Y (V' 10a®p 1) = (b 40p®a 1)Y;
Ne Ne

(iii) for any b € B, Yb(x)Y* belongs to B® ,o5%q L(Ha); moreover, if z € B®, then
N
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Y (2 4op®a 1)Y* belongs to B® ,op%q M;
N N

(iv) the coreprentation Y of & implements on B® an action of &, we shall denote .

More precisely, (1o 3,0) is an action of & on BP°.

Proof. — By 3.10(v), Hg can be considered as the standard Hilbert space of M\’, we
can identify with M°. Therefore, the Hilbert space §) is isomorphic (2.3) to the relative

tensor product ) ,®z (Hs), where 7 denotes here the canonical representation of M
3
(resp. M') on Hg, and this isomorphism is an isomorphism of right M-modules, which

means that, modulo the identification of these Hilbert spaces, we have, for all x € M ,
plz) =1,z .
M
Let us put ¥ = 14 ,®z (6,W°0,)*. So, Y is a unitary from § ,.a®3 He onto
— UO

M
9 108Qa Ho. As (0,W°0,)* is a corepresentation of & on the N — N bimodule

v

a(Ha)p (5.6), we get easily that Y is a corepresentation of & on the N — N bimodule
uodf)yoﬂ-
Moreover, we have then:

(idwen)(Y) = (id uxs id * we)[1 4 @5 (0,W°0,)"]
M M
= 1 u(;’iﬁ- (Zd* W§7n)((UVWOUV)*)
M
= pl(id * we n) (0, W°a,)")]

which gives (i). Then (ii) is a straightforward corollary of (i). From (ii), we get easily
that Y'b(b)Y™ belongs to B ;0% L(Has), and, therefore, that (id yog%q we)(Yb(D)Y™)
N N

belongs to B. Let (1;);cr be an orthogonal (3, v°)-basis of Hg. We get that the element
(td pog*a we)(Y'B(D)Y™) is equal to the sum:
N

D (id ogra we) (VO™ (i, m)b(0)87 (0, m) V") =

= Z(id * we ) (V) (id nosxp wWn, ;)0 (0)[(id * we ;) (V)"

o~

And, as we know that (0, W°o,)* = W€, we get that:
b((d oo ) (VDY)

is equal to the sum over (i, j) of all following elements:

b o pl(id * wen, ) (W) (id yoa*s id a5 wn, n,)(id yoas T)BB)]b o p(id * we,y, ) (W)*
N Ne© Ne
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Using the pentagonal relation for W“, we get that:
b o uf(id  we,n, ) (WF)] = (u axs id)Le[(id * we,p, ) (W)]

is equal to (1 a%g id) (id * id * we )05 5 (W o®5 1)(1 485 0,)(1 a®p W)]. And, as
Ne Neo

. Ne Ne
(id poa*p I'°)b(b) is equal to
NO
(15 u®z W) (1 poa®p 010)(b(b) 6®p 1)(1 poa®p 0ve)" (1s Q7 W),
% Ne Ne Ne %

we obtain finally that this sum is equal to:
(. axs id)(id * id * we) o5 (Wb (b) (W*)* 283 D(052)"]
which can be written:

(id pol*a we) (055(YB(B)Y™ a®p 1)(054)") = (id nof*a we) (Yo (D)Y™) a®p 1

and, therefore, we get that Y'b(b)Y* belongs to B® o5, L(Hs).

Let + € B® C po &N). We have obtained thafcv Y(z 40a®s 1)Y* belongs to
B® op%a L(Hsg); as it belongs clearly to £(9) jop*a M, we getNtOhat Y(z poa®s 1)Y*
belon]gvs to B® Hozﬁv*a M, which finishes the proof]\éf (iif). "

If n € N, we have:

o~ o~

WpoB(n)) = (lgu®: WO)(lg u®z B(n) a®p 1)(1g ,@z WE)*

M M Ne M

= 1y u(?ifr F(ﬂ(n))
M

= 15 u® 15®q B(n)
i N

=1 p,oﬂ®a 6(”)
N

which gives (iv). O

12.3. Theorem

Let & be a measured quantum groupoid, & its dual measured quantum groupoid, B
a von Neumann algebra on a Hilbert space $. Then, are equivalent:
(i) there exists a von Neumann algebra A, an action (b,a) of ® on A, and an isomor-
phism J between the von Neumann algebras B and A x4, &.
(ii) there exists a normal faithful morphism p from M’ into B, a normal faithful mor-
phism b from B into B ,0a%*s M’ such that (o @,b) is an action of & on B which
No
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satisfies bo = (1 a3 id)Te.
NO
Moreover, we have then:

NO
JoTy=Tz07
J(B®) = a(A)

B = (B" U p(M))"
and, for any r € J/\Z', we have:

Jou(z) =1@4x
N

Proof. — Let us suppose (i); then, if we define b by b = (J 4% id)"! oaoJ, and, for
NO

z € M, if we put u(z) = I71(1 ,®q z), then, we have (ii).
N

Let us suppose (ii); we can use all notations and results of 12.2. Let us consider the
action (p o 3,0) of ® on B®; we have:

—

B*xy 8 = (0(B°)U1 4op®4 M)
N
= (Y(B® 4oa®3 1)Y* U1 4op®a M')"
Neo N

But, for any = € M\’, we have:

Y*(1,p0p®a )Y = (1 u®: W7)(1g 4u®s 1 4og®a z)(1g n®7 W°)
N M M N M

1y @ I(z)
M

(1 a5 id)T° (2)
NO

bopu(z)

and, therefore, we have:

B*x, & = (Y(B" o5 HY*u1 o ®a My

= (Yb(B")Y*UYb(u(M))Y*)"
= Yb((B°Uu(M)")Y*
C Yb(B)Y*

For y € B, let us define J(y) = Yb(y)Y™; so, we get B® x, & C I(B).
Using 12.2(iii), we get that J(B) C B® ,o5%4 L(Hs), and, therefore:
N

(
(

J(B) C B® ,opa L(Hg) NY (L(9) posrs M)Y*
N Ne
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which, thanks to 11.7(i), is equal to B® x, &.
So, we have proved that J(B) = B® x, &, and we get (i), with A = B® and

(b,0) = (o ,). N
We have already obtained that a oJ = (J 4%g id)b, and, for any x € M’, we have
NO
Jopu(z) =1,®q x from which we get, from the definition of the crossed-product, that
N

B = (Bb U N(]/\ZI)H' 0

12.4. Corollary

Let’s take the hypothesis and mnotations of 12.1 and 12.2; then, there ex-
ists an isomorphism J from B° pop*a L(Hg) onto B Xy B¢ such that, for all
N

z € B® ,o5%q L(Hs), we have:
N

b3() = (3 pop*a Jo )e(x)
N
where
e(z) = (1 4op®a 0o Woyo)(id pop*a SN) (¥ pop*a id)(2)(1 4og®a Ore Waye)™
N N N N
and Js had been defined in 8.12(vi).

Proof. — Thanks to 12.3, there exist an action (o 3,0) of & on B®, and an iso-
morphism J from B onto B® x, & such that 9 0J = (J a*g td)b. Therefore, we get,
NO

using 11.6, that there exists an isomorphism © such that:

(T axg id)(B xp ) = (B° xp &) x5 &°
NO

= O pop*a id)(Bb pop*a L(Hs))
N N

Let’s use again 11.6; for all z € B® ,.5%, L(Hg), let’s define:
N

¢(#) = (1 4op®a 0o Woue)(id pop*a SN) (D pop*a id)(2)(1 pop®a oveWaye)*
N N N N

We have then:

0(D jogta id) () = (O(D pop*a id) yop*a Jo)e(x)
N N N

Let us define J = (J 4% id)~1 o O(d popf*a td) which is an isomorphism from
Ne N
B® ,op%q L(He) onto B xp 8¢ we have then:
N

(3 pop*a Jo)e(z) = 00(D op*a id)(z) = b3 ()
N N
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which finishes the proof. O

12.5. Corollary

Let & be a measured quantum groupoid, and (b, a) an action of & on a von Neumann
algebra A; let Ag a von Neumann subalgebra of A%, and let us write D = AN Ay, and
0 =ap; then:

(i) (b,0) is an action of & on D;
(11) D xy®=Ax, 601401);& (H@)

Proof. — Let us define B = A xq & N Aj p*q L(Hg) For z € ]/\/I\’, let us put
N
w(z) = 13®q =, which belongs to B, and let us write b = ap; for all b € B, and
N
ag € Ag, we have:

b(b) (a0 s®a 1 a®s 1)
N No

a(b)a(a(ao) aﬁ,@ 1)
= a(a(ao) a®g 1)a(b)
NO
= (a0 ®a1a®s1)b(b)
N No

from which we get that b(b) belongs to Aj p*q L(Has) a*g L(Has), and, therefore, to
N No
B a*xg M'. So, (uo &,b) is an action of ®° on B, and we can apply 12.3, from which
NO
we get that B is the crossed product of B® by an action of &.

But we have B® = (A4 x, &)*N Al pa L(Hg), which is equal to a(A) N Aj p*xq L(Hg)
N
(11.5(i)), and, therefore, to a(D). We then easily finish the proof. O
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CHAPTER 13

DUAL WEIGHT; BIDUAL WEIGHT; DEPTH 2
INCLUSION ASSOCIATED TO AN ACTION

Be given an action (b,a) of a measured quantum groupoid & on a von Neumann
algebra A and a normal semi-finite faithful weight ¢ on A, we define in 13.1 a dual
weight ¢ on the crossed-product A x, &, using property (B) proved in 11.5(i) and
the weight constructed in chapter 10. We obtain a characterization of these weights
(13.3), and the GNS construction associated to this weight (13.4). Moreover, we study
(13.5) then the unitary U, constructed in 10.2. Using then the isomorphism obtained
in chapter 11 between the double crossed product and Ab;a L(Hg), we obtain a char-

acterization of the bidual weight (13.7), which will allow us to construct, using 13.5,
Jones’ tower associated to the inclusion a(4) C A x4 & (13.8 and 13.9(i)). We prove
then that this inclusion is depth 2 (13.9(iv)) and that the operator-valued weight T
of this inclusion is regular in the sense of 2.2(13.10).

13.1. Definition

Let (b,a) be an action of a measured quantum groupoid & on a von Neumann
algebra A, and let ¢ be a normal semi-finite faithful weight on A; using 9.8, we get
that the dual action @ of &¢ on the crossed product A x,® is integrable, and, therefore,
by definition, the operator-valued weight T from A x4 & on (A x, )% is semi-finite.
On the other hand, using 11.5(i), we know that a(A) = (A4 x4 ®)%. So, the formula
’(/NJ =1 oa"! oT; defines a normal semi-finite faithful weight on A x4 &, we shall call
the dual weight of .

13.2. Example

Let G be a measured groupoid, and a an action of § on a von Neumann algebra,
as defined in [47], [48], [49]. We have seen in 9.2 that the crossed-product defined by
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Yamanouchi is the same one as ours, and in 9.6 that the dual coaction of G introduced
by Yamanouchi is our dual action a (of §C) on the crossed-product A x4 G. Starting
from a normal semi-finite faithful weight on A, in [47], [48], Yamanouchi defines a
dual weight on A x4 G ([48], 4.10), using an operator-valued weight defined in ([48],
3.11), which is equal ([48], bottom of the page 665) to our operator-valued weight Tj;
therefore, Yamanouchi’s dual weight is the same as ours.

13.3. Theorem

Let & be a quantum measured groupoid, and (b, a) an action of & on a von Neumann
algebra A; let ¢ be a normal semi-finite faithful weight on the crossed product A x4, ®;
then, are equivalent:

(i) there exists a normal semi-finite faithful weight ¥ on A such that ¢ = ¥;
(ii) the weight @ is 5‘1—invam'ant, with respect to the dual action a of & on the crossed

product A x, &, and bears the density property defined in 8.1.

Proof. — Let us suppose (i): then, we have (ii) by a simple application of 10.8(ii).
Let us suppose (ii), and let now 6 be a normal semi-finite faithful weight on A, and
6 its dual weight; by 8.11, we obtain that (D : D9~)t belongs to (A x, ®)%, which is
equal to a(A) by 11.5(i). As Jfoa = aoo! by definition of the dual weight, there exists
a normal semi-finite faithful weight ¢ on A such that a[(Dy : D8),] = (Dy : Df),.
On the other hand, by definition of the dual weights, we have:

(D4 : DB), = a[(Dy : DO),]

From which we deduce that (Dy : D), = (D% : D), which gives the result. O

13.4. Theorem

Let & be a quantum measured groupoid, and (b, a) an action of & on a von Neumann
algebra A; let 1 be a normal faithful semi-finite weight on A, and let 1/; be the dual
weight constructed in 13.1 on the crossed product Ax,®; then, the linear set generated
by all the elements (1 b%a a)a(z), for allz € Ny, a € Ng. NNy, is a core for AJ;’ and

it is possible to identify the GNS representation of A x4 & associated to the weight 1)
with the natural representation on Hy y®q He by writing:
v

Ay (2) 180 Age(a) = Ag[(11@a a)a(@)]
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Moreover, using that identification, the linear set generated by the elements of the
form a(y*)(Ay () bt%a Az.(a)), for z,y in Ny, and a in Ng. NNy NNZ NN is a

core for SJ), and we have:

Spa(y”)(Ay(2) 1®a Age(a) = a(2”)(Ay(y) 1@ Ag.(a7))

Proof. — Thanks to 10.8(i) and (ii), the unitary V constructed in 10.1(ii) is equal to
the isometry V constructed in 9.11. So, using this unitary, we can identify H @ with
Hy ,®q He, which leads to the first result, using 11.5(i), 9.11 and 10.1(ii). The second

result comes then from 10.4. O

13.5. Proposition

Let & be a quantum measured groupoid, and (b, a) an action of & on a von Neumann
algebra A; let ¥ be a normal faithful semi-finite weight on A, and let ¢ be the dual
weight constructed in 13.1 on the crossed product A x, &; let us identify Hy with
Hy ,®q Hp as in 13.4. Then, the unitary U,Z from Hy Qg He onto Hy 1@ He

v o v

defined by:
Us =I5y o5 J5)

satisfies:

Ui (Jy 18a J5) = (U§)"(Jy a5 J3)
and we have:
(i) for ally € A:

a(y) = Ug(y «Ds D(Ug)*

(ii) for allbe M:

(1 b®a JobJo)U = Uj(1 «®p JabJg)
(iii) for allm € N:

Uy (b(n) a8 1) =14®a Bn)U}

US(1a®5 a(n) = (a(n) 480 DU
o N

Proof. — Using again 10.8(i) and 11.5(i), the first result is given by 10.2(iii); (i) is

given by 10.2(i), (ii) by 10.5. Applying (i) to y = b(n), we get the first result of (iii);

we get then the second result of (iii) by using U (Jy 1®a J5) = (Ug)*(Jypa®pJz). O
N Neo
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13.6. Lemma

Let & be a measured quantum groupoid, and (b, a) an action of & on a von Neumann
algebra A; let (1,®4 @g) be the action of & on Apxo, L(H) constructed in 11.6. Then,
N N

for all a in Nz, and X in AY, we have:
b,a b,a * *
TQ(PA&)C(G)X(/)A%C(Q)) ) = (1 b%a a)a(X)(l b%a a )
Proof. — Let us first remark that Az.(a) = JzAz(JzaJz) which belongs to
D(,Hg,v), by 2.2; on the other hand, let us suppose that A is acting on an
Hilbert space $; we verify straightforwardly that p?\’? (a)X (plj\’? (a))* commutes with
Be EX
all Y ,®, 1, with Y € A’, and, therefore, belongs to (A pxo L(H))™T.
N N
Let 1 in D($)s,v°); for all { in D((He)g,v°), we have, using 11.6:

b, b, *
< Tg(pA&)C(a)X(PAac(a)) )7w'r]b%a£ >=

<f>0(‘1)

. a,B * ,Q b,a *TA7* a,B
®[(wn b]’t]a id)(1 b(]%a (pg ) Wpy )a(X)(1 b‘l%a (pA@c(a)) w Pe )]

e

We know that (pi?‘ (a))*W*p?’ﬁ = (id*we A, (a))(W*) belongs to Ny, thanks to 9.11
3
applied to &, and that:

Ag ((id x we,n 5. (a) (W) = ag(wenz.(a) = 7€
and, therefore, we get that < TQ(PIX;(G)X(PI/’{;(Q))*%wmgaé > is equal to:
B((id 040 0)) () (1) () (5 0, 0)) (7)) =
= ((wn ba id)(X) Ao ((id * we a4 (a)) (WF)[ Ao (id * we a4, () (W)
= ((wy b*a id)(X)a"¢|a™¢)
and, finally, we get that:
< TalOR2 X (X2, () ) emzae >= (1180 )a(X) (11 a7) (180 )11 180 €)

from which we get the result. O

13.7. Theorem

Let & be a measured quantum groupoid, and (b, a) an action of & on a von Neumann
algebra A; let ¢ be a normal semi-finite faithful weight on A; let Ax,® be the crossed-
product, as defined in 9.1, and ¢ the dual weight, as defined in 13.1; let us consider
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the dual action, as defined in 9.4, the bicrossed-product and the bidual weight QZ We
have defined in 11.6 an isomorphism © such that:

O(a p*a id)(A pra L(Hgp)) = (A xq &) x5 6°
N N
We have then: 3
dip 0 O(a y*q id)
N
N A
dyp° P

Proof. — Let us remark that 1) o ©(a p%, id) is a normal semi-finite weight on
N
Apxo L(Hg), whose commutant is A’ ,®, 1, which is isomorphic to A’, and, therefore
N N

to A°. Therefore, the spatial derivative has a meaning. Let us write it h for simpli-
fication. By definition of this spatial derivative, for all E in D(Hy yQq He,9°), E
14
belongs to D(h'/?) if and only if #¥°(Z,Z) belongs to MT , and we have
YoO(ap*qid)
N
then:

[R2Z] = 0 O(a e id) (6" (2, 5))
which, using 11.6, gives that:
IR'2E|? = § o Tu(6¥" (2, E))
Let now z, y in Ny, and a in Nz N ‘ﬁ;c NNg N ‘ﬂ%; we have, for all z € Ny
(Jyz* Ty bDa 1)(a(z")(Ay(y) b Ageoy) = a(@)(Jypz"JyAy(y) b Az (o))
= a(@")(yJypAy(2) bQa Age(a)
yJyhy(2)

from which we get that a(z*)(Ay(y) s®a Ag.(,) belongs to D(Hy y®q He,9°), and
N v
that:

b,
= a(w*)PAgC(a)

$¢(a)

R (o) (A0 (9) 180 Ageg)) = a2, o

Therefore, for z,y in 9y, a in Nz N ‘ﬂ}c NNg N ‘ﬁ(’%, we get that:
0" (0(e") (Mo (1180 A )8 A (D)sBa A ) = 0™k v (2 )7 a(e)

B¢ (a) B¢ (a)

which, thanks to 13.6, belongs to EJJT}'a, and we have:

Tg(awo(a(w*)(Aw (y) b%a A.j;c(a))a u(x*)(AdJ (y) b%a Aff,c(a))) =

a(z")(1,®q a)a(yy™) (1 s®aq a*)a(z)
N N
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Using now 13.4, we get that this last operator belongs to 9, and, therefore,
that a(z”)(Ay(y) v®a Age(,) belongs to D(h'/2). And, by 13.4, we get that
N

a(y")(14a a*)a(x) belongs to N NN, and that:
§ o To(0" (a(e") (A0 (1) 180 A5 (a)),0(a") (A1) 190 g (a))
is equal to:
185(a")(1 620 a)a@)I? = IS5A0a(@") (1100 a(w)]?
= 18726 (Au®) 190 Age ()
Therefore, we get that:

112a(z") (A (1) 180 Age (@) = 18T a(") (Ao (y) 190 Ag. @)

and, using again 13.4, as the vectors a(z*)(Ay(y) 1®a Ag.(a)) are a core for Allzﬂ, we

have ||h!/2¢|| = ||A112}/2§|| for all £ in D(h'/?), from which we get that Aj C h, and,
as they are self-adjoint operators, we get the result. O

13.8. Theorem
Let & be a measured quantum groupoid, and (b, a) an action of & on a von Neumann
algebra A, Ax,® its crossed product; let (1b®aﬁ,g) be the action of  on Apxo,L(Ho)
N N

introduced in 11.6; then, the inclusion:

a(A) CAxg® C Apxy L(Hg)
N

is standard, and the operator-valued weight Ty from A pxo L(Hg) to A xq & is the
= N

basic construction made from the operator-valued weight Ty from A x4 & to a(A).

Proof. — Let ¢ be a normal semi-finite faithful weight on A, and % its dual weight on
A x4 8; let us represent the inclusion a(A) C A x4  on the Hilbert space H B which
had been identified (13.4) with Hy ,®, Hs, equipped with the natural representation

of the inclusion. We have then, using 13.5:

J,lz}a(A)JJ} = Jan(Aa]?Ogl)(Ui)*JJ)

(Jw a®s J&)(A a®p 1)(Jw b Qa J<i>)
Neo Neo N

= A R 1
N
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and, therefore, we get:
J&G(A)Ijtz = (Al b%a 1)’ =A b]tfa L(H@)

which gives that A %, L(Hg) is the standard construction made from the inclusion
N

a(A) C A xq .

Let T be the standard construction made from the operator-valued weight T;. By

definition (2.2), we have:

d'LZoT
dype _Ail)

which, thanks to 13.7, gives that ) o T = ’(Z o O(a p*q4 id), and, using 11.6, we have:
N

1/~)oT:1/~JoT5

from which we get that T' = T, which finishes the proof. O

13.9. Theorem

Let & be a measured quantum groupoid, and (b, a) an action of & on a von Neumann
algebra A, A x4, & its crossed product; then:
(i) the Jones’ tower associated to the inclusion a(A) C A x4 & is:

a(A) @51 C a(A xg B) C (A Xy B) x5 B° C (A %, ) 455 L(Hg)
Neo Ne°

(ii) moreover, the operator-valued weight T(z) from (A xq &) g% L(Hg) to
(o) o
(A x, B) x5 ®C is the operator-valued weight constructed by successive basic

constructions in this tower.
(iii) the derived tower is:

G(A xg BN a(A)) C (A xg8) x5 B°Na(A) sz L(Hg)
NO

C [A Xg BN Cl(A)/] a*g L(Hq;)
No

(iv) let us write B = A xq & Na(A), and b = a;5. Then (1,4 &,b) is an action of
N

&€ on B, and we have:

B xp 8° = (A x4 8) x5 6° N a(A) a%s L(Hg)
NO

(v) the inclusion a(A) C A x4 & is depth 2.
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Proof. — We have got in 13.8 that the inclusion:
a(A) CA XS C Apky L(Ho)
N

is standard. Let’s apply the isomorphism O(a p*, id) from A %, L(Hge) onto
N N
(A%, B) x5 ®¢ defined in 11.6; we then get the inclusion:

a(A) 4®51 C a(A xq 6) C (A xg B) x5 B
NO
of von Neumann algebras on Hy sQq He 6 ®g Ha; let’s apply now 13.8 to the inclusion:

G(A Xg B) C (A xq B) xg B°

We get that the basic construction made from this inclusion gives the von Neumann

algebra (A x4 ®) s*3 L(Hg), which gives (i).
NO
By 11.6 again, we see that the isomorphism O(a p*, id) sends the operator-valued
N

weight T, on T%. So, applying again 13.8 to this operator-valued weight, we get (ii).
Now, (iii) is just a corollary from (i), and (iv) is just an application of 12.5. So, we
get that the derived tower obtained in (iii) can be written as:

b(B) C B xp @c CcB a*p L(H@)
NO

which is standard, by 13.8 applied to the action b; which finishes the proof. O

13.10. Theorem

Let & be a measured quantum groupoid, and (b, a) an action of & on a von Neumann
algebra A, A x4 & its crossed product, a the action of & on A px, L(Hg) introduced
N

in 11.6. Then:
(i) for any x € M'T, 1,®, x belongs to A pxq L(Hg) Na(A), and we have:
N N

Tg(l R :L‘) =1,Qq TCO(JJ)
N N

(ii) the restriction of Ty to A pxq L(Hge) Na(A) is semi-finite;
N

(iii) the operator-valued weight Ty from A x4 & to a(A) is reqular in the sense of 2.2.

Proof. — Let x € M’; we have, using 3.11:

W1 sQqz)W* = (J;I; 8Qa Ja)W*(1 3 Jq>$Jq>)W(J$ 8Qa J3)
N N No N
= (‘]215 8®a J@)F(J@SEJ@)(J&; 8Qa Jq:.)
N N
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and, therefore, using 11.6:
a(15®q ) = (id p*a SN)(1 R0 [(J5 8®a Jo )T (JozJo)(J5 sQa Ja)])
N N N N N
from which we get, for x positive:

Tg(l e ) = 1,Q4 Jo(PoR B*a id)T(JoxJs)Js
N N N

= 1;®q J@RTR(J@ZL’J@)J@
N

= 1,®a T(x)
N

which is (i). Then, (ii) is just a corollary of (i).
Let us apply now (ii) to the action a, we get that the restriction of 7(z) to the von

Neumann algebra (A x4 &) a%3 L(Hgs) N G(A x4 &) is semi-finite, which, with (ii),
NO
gives (iii). O

13.11. Remark

The fact that the inclusion a(A4) C A x4 & is depth 2 (13.9(v)) had been obtained
in ([V2], 5.10) for actions of locally compact quantum groups in a somehow different
way.
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CHAPTER 14

THE MEASURED QUANTUM GROUPOID
ASSOCIATED TO AN ACTION

In this section, we apply the results of ([15], [8]), recalled in 3.15, 6.5 and 9.3, to
the depth 2 inclusion (13.9) a(A) C A x4 &, where (b, a) is an action of & on a von
Neumann algebra A. From such data, we therefore obtain a new quantum measured
groupoid &(a) (14.2), and we show that the dual action & of ¢ can be considered
as an action of &(a) (14.5). As the underlying von Neumann algebra of ®(a) is a
crossed-product of the relative commutant A x, & Na(A)’ by the restriction of the
action a of @C, we show that the initial measured quantum groupoid can be naturally
sent into &(a) (14.7), and, moreover, that, in the particular case when we are starting
with an outer action of a locally compact quantum group, we recover the initial locally
compact quantum group (14.9).

14.1. Theorem

Let & be a measured quantum groupoid, and (b, a) an action of & on a von Neumann
algebra A. Let v be a normal faithful semi-finite weight on A, and 1Z be the dual weight
on the crossed product A xq . Let us write B for A x, & Na(A)’, b for a5, and M
for A b;kva L(Hg)Na(A)'; then:

(i) let us write id for the inclusion of B into M, and j for the anti-x-homomorphism

j(x) = Jgz*Jy, which sends B into A pxq L(Ha) N (A xa &) (and, therefore, into
N

]\Zl) Then, there exists T, such that:
(B, M,id, j,T)
is a Hopf-bimodule.
(ii) let us write also j(x) = Jya*Jy the x-anti-automorphism of M then j is a co-
inverse for the coproduct constructed in (i).

(iil) let us write T for the restriction of T, to M then, T is a normal, semi-finite,
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faithful operator-valued weight from M onto B, which is left-invariant with respect to

the coproduct T.

(iv) the isomorphism ©(a yxo id) sends M onto B x, & and B onto b(B). Let us
N

denote ji the x-anti-automorphism of B Xy & obtained by transporting j wvia this
isomorphism, and Ty the coproduct obtained the same way. Then:

(B7B N 80) b7.7‘1 o bvfl)
is a Hopf-bimodule, isomorphic to the one obtained in (i), jy is a co-inverse, and Tj

is a left-invariant operator-valued weight.

Proof. — We had got in 13.9 that the inclusion a(A) C A x4 & is depth 2, and,
in 13.10, that the operator-valued weight Ty is regular. So, we can apply 3.15(i) and
(ii). As, by 13.8, the basic construction made from this inclusion gives the algebra
A b}t/a L(Hg), and the beginning of the derived tower is B C M, we get (i), (i) and

(iii). Using 13.9(iv), we get the beginning of (iv); moreover, using 11.2, we get that
this isomorphism sends the restriction of 7, on the restriction of 7%, which is 7. [

14.2. Theorem

Let us take the notations of 14.1. Let us suppose that there exists a normal semi-
finite faithful weight x on B, invariant under the modular automorphism group O';F a
then:

(B7M7id7j7f‘7faj OTOj,X) = (B7B Np é\sc’ bajl o byf‘lyTEajl OTE OjlyX)
is a measured quantum groupoid, we shall denote by &(a). Moreover, the dual action
——0

a satisfies the same hypothesis, and &(a) = G(a) .

Proof. — This is just 3.15 and 13.9. O

14.3. Theorem

Let us take the notations of 14.1 and 14.2; there exists an action (id,a) of &(a)
on A xq & (where id means the inclusion of B into A X4 &, which is a anti-x-
homomorphism of the basis B® of &(a)), such that (A x4 )% = a(A), and such that
the crossed-product (A x4 ) xg B(a) is isomorphic to A pxo L(Hg). More precisely,

N
there exists an isomorphism Iz from (A X, 8) xg 6(ad) onto A pxo L(Hs), such that:
N
(i) for any z € A x4 &, we have Iz(a(x)) = z;
(ii) for any y € Apxo L(Ho)Na(A)', we have Ig(1;4®j0by) = y, where j(z) = Jz2*Jg,
N Be

for all z € B Xy &e.
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Proof. — This is just 9.3 applied to 13.9 and 14.2. O

14.4. Theorem

Let us take the notations of 14.1, 14.2 and 14.3; then, the application defined, for
any € ‘ﬂ&, Yy € My, b € Ngoe N Nypoe by:

U[A () ia®job (Ax (¥) a®p Aaoc (b))] = Ay (yz) 6® g Agec(b)
XO VD VO
s a unitary from Hjiq®jop Hy onto H;a®pHg, such that, forall X € (Axq®) Na@c,

b%
we have:

UXU* = O o (ap*q id)I5(X)
N
and, in particular, for allY € A x4 6, c € M’, we have:
Ua(Y)U* = a(Y)

UL 4®j06 (16Qa 1a®pc))U" =1,Q414aQ@p ¢
Bo N No N Neo

Proof. — Thanks to 14.3 and 11.6, we get that © o (a p*, ¢d)Ig is an isomorphism
N
between (A X, B) Xz &(a) and (A X4 &) x5 ®¢, which verifies, for all Y and ¢:
O o (ap*q id) F(a(Y)) = a(Y)
N

© o (ap*q 1d)I5(1 14®j06 (16Qa 1a®p ) =18 1a®s ¢
N Be N Neo N Neo

On the other hand, let us put, for alln € N, b(n) = Jy&(n*)J;. We have, by definition
of U;, for all y € B:

)(b(y) = Jxb(y")Jx
= LUy 5?@ 1)(U2)* Jx
= S Jy &S%/B 1
= s(y) a®p 1
where s(y) = Jyy*Jy. Therefore, the identification of A ;(z) idx(%)s Ay (y) with Aj;(yz)

(2.3) gives the definition of U.
Let us write () for the dual weight of ¢ on (A x4 &) xg &(&). Using 13.4 applied to

the weight ¥, then to the weight (¢), we get that:
Aj () ia®job (Ax(y) a®p Agec (b)) = Ag() ia®jop Ag((1 b 1B b)b(y))
XO 1/0 Xo NO
= AL ia®g00 (16®a 1a®p b)b(y))a(z)]
Bo N No
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As we have a(y) = 1;4®;06 b(y), we finally get, using again 13.4 applied to the bidual
BO
weight 1/;:
UAG (T ia®je0 (1600 16@5 b))a(yz)] = A ((118a 1 4B b)alyz))
() Bo N No ¥ Ne
which we can write, using the isomorphism J = © o (a b*a id) Iz

UA=[(1 ia®job (1 6®a 1 a®p b))a(yz)] = A=(I[(1 ia®job (1 6®a 1 a®p b))a(yz)])
("l’) Be N No » Bo N No

Using 10.8(ii) applied to (¥) and to 1), we see that these elements are a core for,

respectively, A(AJ) and Ad:)’ and we finaly get that UA(’%(Z) = A;Z(j(z))’ for all
Z e ‘ﬂ(fd:v) From which one gets that:

UXU* = O o (a y#q id) I(X)
N

which finishes the proof. O

14.5. Corollary

Let us take the notations of 14.1, 14.2 and 14.3. If we make the identification of
Hyj id%job Hy with HJ by writing, for any x € Ny, y € Ny, b€ Ngoe N Npoe:

Aj(@) ia®job (Ax(y) a®p Aaoc (b)) = Aj(yz) 6®p Agoc(b)

XO
we then identify & with @, and, therefore, (id,a) (where id is the inclusion of B° into
A XqB) is an action of &(a) on A xq &.

Proof. — Clear by 14.4. U

14.6. Corollary

Let us use the notations of 14.1, 14.2, 14.3. Then, the dual action (ji o b, ﬁ) of
&(@) =(a) on (Axq®) x5 B can be, as well, be identified with the action (1,®4
N

1 &®5 B, 3) of 8°¢, and the action (1,Q4 ﬁ,g) of & on Apxo L(Hg) can be considered
N N

as well as an action (j,a) of B(a)°

Proof. — Left to the reader. U
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14.7. Proposition
Let us use the notations introduced in 14.1 and 14.4; let us define, for all x € M’,
() = 1,Qq z. We define this way an injective x-homomorphism from M’ into M.
N
Moreover, we have:
(i) for allz € M, j1(pu(z)) = w(R(x)); in particular, for alln € N, u(é&(n)) belongs
to N-and ji (u(6(n))) =148 ().
(ii) for all positive x € M'T, we have T,(p(z)) = p(T°¢(z)).
(iii) for allx € M’, we have:
B(u(2)) = (1 )T ()
Proof. — We have, using successively 13.5, 3.11(v) and 13.5(ii):
71(1y®a z) = J5(1s®az")Jy
N N
= Up(Jy 1®a J3)(16®a ) (Jy oa®p J5)(U)"
N N Neo
= Uj(1.®p R(2))(Uy)"
NO
= 1,®4 R(z)
N

which gives (i). Result (ii) is just a rewriting of 13.10(i).
Let us apply now 14.4 and 14.6 to 1 ,®, y, with y € M’; we get:
N

1,0a14®5T%(y) = (1,04 1a®p7Y)
N Neo N Neo

= 4(1,®,1 a®3Y)
N Neo

= 1y®a14®; I'(1p®qy)
N B N

which, up to the identifications, gives the result. U

14.8. Example

Let G be a locally compact quantum group,and let a be an action of G on a von
Neumann algebra A; by applying 6.4 and 14.6 to a, we can construct a measured
quantum groupoid &(a), whose underlying von Neumann algebra is the relative com-
mutant A ® L(Hg) Na(A)’, the basis being B = A x4 GNa(A)’; it can be described
also by looking at the restriction b of the dual action a of G¢ to B and looking at
the inclusion of b(B) into the crossed product B Xy éc, which is isomorphic to the
inclusion of B into A®L(Hg)Na(A)’. This example will be studied later on in another
article, and we need to compare this example with Vainerman’s construction made
in [38].
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14.9. Remark

Let us recall that an action a of a locally compact quantum group G on a von
Neumann algebra A is called outer when A x4, G Na(A4)’ = C (which means that the
inclusion a(A) C A X, G is irreducible). It was proven in ([12]) that any depth 2
irreducible inclusion of factors My C M; generates a locally compact quantum group
G, and an outer action a of G¢ on M, such that M7 = My, and that the crossed
product M7 x4 Ge is isomorphic to the basic construction made from the inclusion
My C My; conversely, Vaes proved ([36]) that, for any action a of a locally compact
quantum group G on a von Neumann algebra A, the inclusion a(A) C A x4, G is
depth 2.

Here, we have constructed from this depth 2 inclusion, a measured quantum groupoid
®(a); when the action a is outer, this measured quantum groupoid is a locally compact
quantum group ([12]), and we get (14.8) that this locally compact quantum group is
G°¢. This result was certainly known by specialists, but we were not able to find a
proof anywhere.

As Vaes ([37]) proved that any locally compact quantum group has an outer action
(on some type III; factor), this proves that any locally compact quantum group
comes from an irreducible depth 2 inclusion of factors, by the construction made in

([12]).
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APPENDIX A

COINVERSE AND SCALING GROUP
OF A MEASURED QUANTUM GROUPOID

In this chapter, we are dealing with a Hopf-bimodule (N,a, 3, M,T), equipped
with a left-invariant operator-valued weight T', and a right-invariant operator-valued
weight T". If v denotes a normal semi-finite faithful weight on the basis, let ® (resp. V)
be the lifted normal faithful semi-finite weight on M by T (resp. T'). Then, with the
additional hypothesis that the two modular automorphism groups associated to the
two weight ® and ¥ commute (we then say that v is relatively invariant with respect to
T and T' (3.7), we can construct a co-inverse, a scaling group and an antipod, using
slight generalizations of the constructions made in ([21],9) for “adapted measured
quantum groupoids".

A.1. Lemma

Let (N,a,8,M,T) be a Hopf-bimodule; let us suppose that there exist a left-
invariant operator-valued weight T, a right-invariant valued weight T’ and v a
normal semi-finite faithful weight on N, relatively invariant with respect to T and T’
in the sense of 3.7; we shall denote ® = voa toT and U =vo B 1 oT the two
lifted normal semi-finite weights on M. Let us denote & the modulus of ¥ with respect
to ® and X the scaling operator (2.6). We shall use the notations of 2.2.1. Then:

(i) let x € Ty and n € N and y = e, x, with the notations of 2.6; then y belongs to
Ny NNy, is analytical with respect to ¥, and the operator in/Q (y*)(Sl/2 is bounded,

and its closure Ufi/z (y*)61/2 belongs to Mg ; moreover, with the identifications made

in 2.6, we have:
A@(U?i/Q(y*)él/z) = J‘IIA\I/(y)

(ii) let E be the linear space generated by all such elements of the form UE’Z,/Q (y*)61/2,
for all x € Ty 1 and n € N; then E is a weakly dense subspace of Mg, and, for all
2 € B, Aa(2) € D((Ha)g,1°);

(iii) the linear set of all products < Ag(2),As(2") >po (for z, 2 in E) is a dense
subspace of N.
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Proof. — As e, is analytical with respect to ¥, y belongs to 91g N Ny, is analytical
with respect to ¥, and afi/Q(y*)él/z is bounded ([35], 1.2); as 6! is the modu-

lus of ® with respect to ¥, we get that orfi/Q(y"‘)&l/2 belongs to Ms; we identify
Ag (U?i/Q(y*)(Sl/z) with Aq;(O"IJi/2(y*)) = JyAy(y), which is (i).

The subspace E contains all elements of the form ¥ /2 (x*)él/Qafi/Q (en) (z € To, 1),

—i

and, by density of Ty 7/ in M, we get that the closure of E' contains all elements of

the form aen5—1/251/205’i/2(en) = aenafim(en), for all a € M; now, as enafi/z(en)
is converging to 1, we finally get that E is dense in M; as Ag(E) C JoAg (Dy NNr),
we get, by 2.2, that, for all z in F, Ag(z) belongs to D((Hg)g,v°); more precisely, we
have:

RAV (Aé(agli/z(x*)al/%fim(671))) = R’B’VO(szAzb(enx)) = Ar/(ent)

Therefore, the set of elements of the form < Ag(2), Ag(2’) >, contains all elements
of the form 81 o T'(z*en e, ), for all x in Jv, 77 and n € N; as we have:

T (z*enent) = A/ (enx)*Ari (enx) = Ari(x)*elen A ()

we get that its closure contains all elements of the form 37! o T"(x*x), and, therefore,
it contains =1 o T(M},), which finishes the proof. O

A.2. Definition
As in ([21], 9.2), we can define, for all A € C, a closed operator Aj a®p A}, with

natural values on elementary tensor products; it is possible also to define a unitary

antilinear operator Jg a®p Jo from Hg a®p Hg onto He 4®a Hg (whose inverse will
Ne Ne N
be Jg 49a Jo); by composition, we define then a closed antilinear operator S¢ a®p Sa,
N Ne
with natural values on elementary tensor products, whose adjoint will be Fg ;®a Fs.
N

A.3. Proposition

Let us use the notation of (|21|, 8.14). For all a, ¢ in (Mg NNr)*(Ng NNr/), b,
d in Ty and g, h in E, the following vector:

Ui (6" [Aa (k) 58 (V22 o (o)) Unty (Aa (@) 085 Aa((cd)"))]

14
belongs to D(Ss a®p S¢), and the value of o,(Ss a®p S¢) on this vector is equal to:
v* v*

Uiz D)Mo (9) 58a (V22 o go0))"Urt (A (€) 0®5 Aa((ab)*))]

Proof. — The proof is identical to ([21],9.9), thanks to A.1(ii). O
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A.4. Proposition

Let us use the notation of (|21], 8.14). There exists a closed densely defined anti-
linear operator G on Hg such that the linear span of:

(5% o ) Ut (B () ®5 A ((cd)))

v

with a, ¢ in Ne NNr)* My NNr), b, d in Ty 1, is a core of G, and we have:

G[()‘/B\f(a\fl(b*)))*Uqu (A\I/ (a’) a‘%ﬁ A‘I’((Cd)*))] = ()‘/ﬂ\f(a\fi(d*)))*UH\p (A\I’ (C) a(XO)B A@((ab)*))

14 14

Proof. — The proof is identical to ([21],9.10), thanks to A.1(iii). O

A.5. Theorem

Let (N,a,8,M,T) be a Hopf-bimodule; let us suppose that there exist a left-
mvariant operator-valued weight T, a right-invariant valued weight T' and v a
normal semi-finite faithful weight on N, relatively invariant with respect to T and
T’ in the sense of 3.7; we shall denote ® = voa toT and ¥ = voloT’
the two lifted normal semi-finite weights on M. Let G be the closed densely defined
antilinear operator defined in A.4, and let G = IDY/? its polar decomposition. Then,
the operator D is positive self-adjoint and non singular; there exists a one-parameter
automorphism group 7, on M defined, for x € M, by:

() = D~ "z D"
We have, for alln € N and t € R:
7i(a(n)) = a(di (n))
7(8(n)) = B(of (n))

which allows us to define T g*q Tt, Tt g*a af’ and Uf’ g*a T—t on M gxo M ; moreover,

N N N N
we have:
For = (1 g*a )T
N
Toof = (r B¥a ohr
N
Foo) = (0} p*a 7-o)T
N
Proof. — The proof is identical to [21], 9.12 to 9.28. O
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A.6. Theorem

Let (N,a,B,M,T") be a Hopf-bimodule; let us suppose that there exists a left-
invariant operator-valued weight T, a right-invariant valued weight T' and v a normal
semi-finite faithful weight on N, relatively invariant with respect to T and T’ in the
sense of 8.7; we shall denote ® = voa toT and ¥ = vo Lo T’ the two lifted
normal semi-finite weights on M. Let G be the closed densely defined antilinear op-
erator defined in A.4, and let G = ID/? its polar decomposition. Then, the operator
I is antilinear, isometric, surjective, and we have I = I* = I?; there exists a *-
antiautomorphism R on M defined, for x € M, by:

R(z) = Iz*I

such that, for allt € R, we get RoT, = 7,0 R and R? = id.
For any a, b in Ng NNy we have:

R((Wry Ay (a) pFa 1d)T(67D)) = (Wig Ay (b) p*a id)T(a"a)
N N

and for any c, d in Ng NNy, we have:

R((id g Wigre ()T (d"d)) = (id ot Wrans(a))L(c7C))

For all n € N, we have R(a(n)) = B(n), which allows us to define R gxq R from
N

M pgxq M onto M 4x3 M (whose inverse will be R 4*3 R), and we have:
N No Ne

I'oR =¢no(R g% R)T
N

Proof. — The proof is identical to [21], 9.38 to 9.42. O

A.7. Theorem

Let (N,a,B,M,T") be a Hopf-bimodule; let us suppose that there exists a left-
invariant operator-valued weight T, a Tight-invariant valued weight T and v a normal
semi-finite faithful weight on N, relatively invariant with respect to T and T’ in the
sense of 3.7; we shall denote ® = voa ™! oTy; then:

(i) M is the weak closure of the linear span of all elements of the form (w g*q 1d)I'(x),
N

for allz € M and w € M, such that there exists k > 0 with wo 8 < kv.
(if) M is the weak closure of the linear span of all elements of the form (idg*qw)T'(x),
N

for all z € M and w € M, such that there exists k > 0 with w o a < kv.
(iii) M is the weak closure of the linear span of all elements of the form (id*wy ) (W),
where v belongs to D(oHe,v) and w belongs to D((Ha)s,°).

Proof. — The proof is identical to [21], 9.25. O
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A.8. Definition

Let (N,a,8,M,T') be a Hopf-bimodule; let us suppose that there exists a left-
invariant operator-valued weight 7', a right-invariant valued weight 7" and v a normal
semi-finite faithful weight on N, relatively invariant with respect to T' and T” in
the sense of 3.7; we shall denote ® = voa ' oT and ¥ = v o 7! o T' the two
lifted normal semi-finite weights on M let 7; the one-parameter automorphism group
constructed in A.5 and let R be the involutive *-antiautomorphism constructed in A.6.
We shall call 7; the scaling group of (N,a,3, M,T',T,T',v) and R the coinverse of
(N,a,8,M,T,T,T',v). Thanks to A.6 and A.7, we see that, T and v being given, R
does not depend on the choice of the right-invariant operator-valued weight T".
Similarly, from A.5, one gets that, for all x in M, w € M, such that there exists k > 0
with wo a < kv, w’ € M, such that there exists & > 0 with w o 8 < kv, one has:

Tt ((3d g*q w)I'(x)) = (id g*q w © aft)Fcr?(x)
N N

(W' g*a id)T(2)) = (W' 0 0}’ ko id)To?,(z)
N N

So, T' and v being given, 7y does not depend on the choice of the right-invariant
operator-valued weight T".

A.9. Theorem

Let (N,a,B,M,T") be a Hopf-bimodule; let us suppose that there exists a left-
invariant operator-valued weight T, a right-invariant valued weight T’ and v a
normal semi-finite faithful weight on N, relatively invariant with respect to T and
T' in the sense of 3.7; we shall denote ® = v o a~! o T; then, for any &, n in
D(oHgo,v) N D((Ha)s,v°), (id * wey)(W) belongs to D(7i2), and, if we define
S = Rt;/3, we have:

S((id * we ) (W) = (id * wy ) (W)™
More generally, for any x in D(S) = D(7;/2), we get that S(x)* belongs to D(S) and
S(S(z)*)* = x; S will be called the antipod of the measured quantum groupoid, and,

therefore, the co-inverse and the scaling group, given by polar decomposition of the
antipod, rely only upon the pseudo-multiplicative W.

Proof. — 1t is proved similarly to [21] 9.35 and 9.36. O
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A.10. Proposition

Let (N,a,8,M,T) be a Hopf-bimodule, equipped with a left-invariant operator-
valued weight T, and a right-invariant valued weight T'; let v be a normal semi-
finite faithful weight on N, relatively invariant with respect to T and T’ in the sense
of 8.7; let 7y be the scaling group of (N,a, B, M,T',T,T',v) and R the coinverse of
(N,a,8, M, T, T, Tg,v); then:

(i) the operator-valued weight RT'R is left-invariant, the operator valued-weight RT R
is right-invariant, and v is relatively invariant with respect to RT'R and RTR.

(ii) 7 is the scaling group of (N,«, 8, M,I', RT'"R, RTR, V)

Proof. — Let ®=voa'oT and ¥ = v o 71 o T’ the two lifted normal semi-finite
weights on M by T and T”; the lifted weight by RT'R (resp. RTR) is then ¥ o R
(resp. ®o R). As 0/°F = Roo¥, 0 R and 02°F = Rod®_ o R, we get that 0¥°F and
o ®°F commute, which is (i).

From A.5 and A.6, we get that:

Foof*R =ToRooY oR=cye(Rpsa RT00% o R
N

=¢no(Ro o—ft oRa%g Rom 0o R)snT = (74 g*a U;I"’R)F
Ne N

from which we get that, for all z € M and w € M, such that there exists £ > 0 such
that w o a < kv, we have:
Tt ((id g*o w)I'(x)) = (id g*q w0 o VoM (o R (z))
N N
from which we get, by A.7, that 7; is the scaling group associated to RTrR, RT R
and v. O
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APPENDIX B

AUTOMORPHISM GROUPS ON THE BASIS OF A
MEASURED QUANTUM GROUPOID

In this section, with the same hypothesis as in appendix A, we construct two one-
parameter automorphism groups on the basis N (B.2), and we prove (B.7) that these
automorphisms leave invariant the quasi-invariant weight v. We prove also in B.7 that
the weight v is also quasi-invariant with respect to 7' and RT' R. We finish by proving
(B.8) that our axioms and Lesieur’s axioms are equivalent.

B.1. Lemma

Let (N,a,3,M,T) be a Hopf-bimodule, equipped with a left-invariant operator-
valued weight T, and a right-invariant valued weight T'; let v be a normal semi-finite
faithful weight on N, relatively invariant with respect to T and T" in the sense of 3.7.
Letz e MNa(N) andy € M NB(N)'. Then:

(i) = belongs to B(N) if and only if we have:

I(z)=1 Qo T
N

(ii) y belongs to a(N) if and only if we have:
I'(y) =y pQal
N

More generally, if 1, x2 are in M N a(N)' and such that T'(z1) = 1 3®q %2, then
N

x1 = x9 € B(N).

Proof. — The proof is given in [21], 4.4. O
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B.2. Proposition

Let (N,a,B,M,T") be a Hopf-bimodule; let us suppose that there exists a left-
wmvariant operator-valued weight T', a right-invariant valued weight T’ and v a normal
semi-finite faithful weight on N, relatively invariant with respect to T and T’ in the
sense of 8.7. Then, there exists a unique one-parameter group of automorphisms vtL
of N such that, for allt € R and n € N, we have:

o (B(n)) = B(7¢ (n))

o (a(n)) = a(vL,(n))
Moreover, the automorphism groups v~ and o¥ commute, and there exists a positive
self-adjoint non-singular operator hy, n Z(N) N N such that, for any x € N* and
t € R, we have:
v ot (@) = v(hla)
Using the operator-valued weights RT'R and RT R, we obtain another one-parameter
group of automorphisms v of N, such that we have:

o (B(n)) = B(r{(n))
ai (a(n)) = a(vF,(n))
and a positive self-adjoint non-singular operator hg n Z(N) NN"" such that we have:
vorfiz) = v(hya)
Proof. — The existence of 4 is given by [21], 4.5; moreover, from the formula
ol oa¥(B(n)) =ocf oof(B(n)), we obtain:
B 0 0¥ (n)) = B(o”, 07 (n))
which gives the commutation of v/ and o . The existence of hy, is then straightfor-

ward. The construction of ¥% and hp is just the application of the preceeding results
to RT'R, RTR and v. O

B.3. Proposition

Let (N,a,B,M,T") be a Hopf-bimodule; let us suppose that there exists a left-
invariant operator-valued weight T, a Tight-invariant valued weight T' and v a normal
semi-finite faithful weight on N, relatively invariant with respect to T and T’ in the
sense of 3.7. Let Ty, (resp. Tr) be another left (resp. right)-invariant operator-valued
weight; we shall denote ® = voa 'l oT, ® =voa'oT,, ¥ =vofB 'oT and
U’ =vof~toTg the lifted normal semi-finite weights on M ; then, we have:

B(hisY) = (D¥' oo : DV o 1),

a(h%?) = (D@ oo?, : D®' o1y),
where T is the scaling group constructed from T, T' and v as well from RT'R, RTR
and v (A.5 and A.10).
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Proof. — From A.5, we get, for allt € R, Too?7_; = (id g*o 0 7_;)T', and, therefore,
N

by the right-invariance of T, we get, for allx € EDTJTFR, that 7,02, Trof 7_i(z) = Tr(2);
let now z € M},; Tr(z) is an element of the positive extended part of 3(NN) which
can be written:

o0
/ Adey + (1 —p)oo
0
where p is a projection in S(NN), and ey is a resolution of p. As = belongs to 93?$,, it

is well known that p = 1, and Tg(z) = fooo Adey. There exists also a projection ¢ and
a resolution of ¢ such that:

702, Trodm_4(z) = / Adfy + (1 — ¢)oo
0
and, for all 4 € RT, we have, because e,ze, belongs to zm;R:

eu(/ Mfa)eu +eu(l—qlejoo = e,mo®,TrofT_i(z)e,
0

= T aqjtTRa?T_t (epxe,)

Tr(epzey,)

®
/ )\de>\
0

from which we infer that (1 — ¢)e, = 0, and, therefore, that ¢ = 1; then, we get that
e, 102, Tro27_4(z)e, is increasing with p towards Tg(z). Therefore, we get that:

70 TroPm_y(z) C Tr(x)
and, finally, the equality, for all z € 9T, :
10, Trof1_4(x) = Tr(x)
Moreover, as we have, for all n € N:
702, (B(n)) = Bloy 7Ly (n))
we get, using B.2, that, for all z € MT,:
V' (B(h; o ri(@)B(h; ")) = V()
and, therefore, that, for all z € M*:
V(B o1 (2)B(h"?)) < ¥'(2)
A similar calculation (with 7,0®, instead of o27_;) leads to:

V' (B(hY*)mol,(2)B(RY?)) < ¥'(x)
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which leads to the equality, from which we get the first result.
Applying this result to RTrR, RTL R and v, we get, using again A.10:

B(h%Y (D® o Rooy°f: D® o Roy),
= (D® o00¥,0R:D® o1, 0R),
= R[(D® 00?,: D® o1)_ )%
which leads to the result. O

B.4. Corollary

Let (N,a,B,M,T") be a Hopf-bimodule; let us suppose that there exists a left-
wnvariant operator-valued weight T', a right-invariant valued weight T and v a normal
semi-finite faithful weight on N, relatively invariant with respect to T and T’ in the
sense of 8.7. We shall denote ® = voa ™t oT and ¥ = vo 31 oT’ the two lifted
normal semi-finite weights on M, R the coinverse and T the scaling group constructed
in A.6 and A.5; we shall denote X the scaling operator of U with respect to ® (2.6),
hr and hg the operators constructed in B.2. Then, for all s, t in R:

(i) (DY : DV o 1y)s = A B(REY)
(ii) (D®: D® o1r)s = At (hls?)
(iii) (D® : D® 0 0297), = Nista(hish)a(hy ")
(iv) (DW : DU o o), = X' B(R!) B(hg"™).

Proof. — Applying B.3 with T = T", as (DWoop? : DU¥), = A\~%! (2.6), we obtain (i).
Applying B.3 with T;, = T, as (D® : D® o c?,), = A\***, we obtain (ii). Applying B.3
with Tr = RT R, we obtain:

B(hE') = (DPoRooy :DPoRom),
= (D(I)Oa?gROR:Dq)o'rtoR)s
= R((D®oo2®:Ddom),)

and, therefore a(h%?) = (D® 0 6297 : D® o 73)* | from which one gets:
a(hi®t) = (D® o o8 : DB o 1),
Using (ii), we get:
(D® : D® o 0277), = N a (bt a(hy ")

which is (iii). And applying B.3 with T, = RT'R, we obtain (iv). O
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B.5. Lemma

Let M be a von Neumann algebra, ® a normal semi-finite faithful weight on M,
0; a one parameter group of automorphisms of M. Let us suppose that there exists a
positive non singular operator p affiliated to M® such that, for all s, t in R, we have

(D® o8, : D®), = p'**

We have then, for all t € R, 0;(u) = p. Let us write p = fooo Adey the spectral
decomposition of u, and let us define f, = f{}n dey. We have then, for all a in Ny, t
in R, n in N:

WisAs(afn) © 0y = WipAe(0—t(a)fnut/?)

Proof. — Let us remark first that 6;(x) = p, and, therefore, 6:(f,) = fn. On the other
hand, for any a in M, we have:

0_020,(x) = o2 (2) = il ()
and then:
9,,50';1) (.’E) — MiStO';be,t(x)ﬂ_iSt

If now z is analytic with respect to ®, we get that 0_;(f,x f) is analytic with respect
to ® and that:

Fab—i08(@) i = B2 Fu0 (01 (2)) frnis?
Let us take now a in Mg, analytic with respect to ®; we have, for any y in M:
(0:(y) Ja Ao (frafm)| oA (frafm))
O:(v)Aa (fmo 2 /5(a*) fu) | Aa (fmoZ; o (a*) fn)
= CI’(fnU?}Q(a)fmet(y)fmaim(a*)fn)

which, using the preceeding remarks, is equal to:

D 0 0 (5 £ 085 (0-1(0)) Font it 2 frnr™ o (0-1(a*)) Fus™/?)

WigAe(frafm) ©0:(y) =

and, making now f,, increasing to 1, we get that w s, a4 (af,.) © 0:(y) is equal to:

(025 (0-1(0)) Frmt >yt 2 frnr®, (0—o(a*))
= (Ao (frut?0%, )y (0-1(a") [ Ao (frut/?0%, 5 (0_1(a")))
— (9JoAo (0_1(a) frnt/?) TuAa (6_s(a) frp’?))

from which we get the result. U
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B.6. Lemma

Let (N,a,8,M,T) be a Hopf-bimodule, equipped with a left-invariant operator-
valued weight T', and a right-invariant valued weight T'; let v be a normal semi-finite
faithful weight on N, relatively invariant with respect to T and T' in the sense of 3.7.
We shall denote ® = voa ' oT and ¥ = vo B~ L oT’ the two lifted normal semi-finite
weights on M, R the coinverse and 1, the scaling group constructed in A.6 and A.5.
Then, we have:

(i) there exists a positive non singular operator p, affiliated to M® and invariant un-
der 74, such that (D®ot; : D®), = utst; let us write p; = fooo Adey and f, = fln/n dey;

we have then, for alla in N, t MR, n in N and z in M+

wJ<I>A<P(Tt(a)fn) = wJ@A@(afnui/z) 0Tt

Tory(z) = oo} o™ (T(uy opy"'?)

(i) there exists a positive non singular operator uo affiliated to M® and invariant
under of %, such that (D® o o237 : D®), = pi; let us write pp = [ Ade}, and
Il = f{;n del ; we have then, for all b in Ng, t in R and n in N:

doR __
WisAa(bf}) © Tt = Wi A (a®9R(b) fLus )

T(U?;’R(u;tmxui/z)) =ao 'ytL o oz_l(T(ac))

Moreover, we have pi* = \"a(hp"), ub = pi*a(h¥), and pi®, ui*, a(hi) belong to
a(N) N M?®. The non-singular operators py, po and a(hr) commute two by two.

Proof. — By B.4(ii), we get that (D® o, : D®), = A"**a(hy"*"), as X is positive non
singular, affiliated to the center Z(M), and hg is positive non singular affiliated to
the center of N, we get there exists p; positive non singular, affiliated to M® such
that:
pit = A" a(hy ™) = (D® o 7, : DY),

We can then apply B.5 to 7 and 7¢(a) f,, (which belongs to 9s) to get the first formula
of (i). On the other hand, we get that a0 ¥, 0 a™! o T o 7; is a normal semi-finite
operator-valued weight which verify, for all z € M™

t/2 12
1/ z 1/ )

aoo’,oatoTor(z) =T (u/ zu

from which we get the second formula of (i).

By B.4(iii), we get that (D® o 0237 : D®), = A~ ta(h;*")a(h®t); with the same
arguments, we get that there exists ugs positive non singular, affiliated to M® such
that:

phst = )\_iSta(hEiSt)a(hft) = (D®o J?ER : D®),
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and we get the first formula of (ii) by applymg agam B.5 with o9,

On the other hand, using B.2, we get that aoyL,0a=1 0T 00?2 is an operator-valued
weight which verify, for all z € M *:

voytoaloT oo (z) = w(hy" a M (To®(x)h %)
= o(a(h; o2 (@)a(hy?)
= @00 la(h*)zalh;"?)
=y a(hy)za(hy*)uy?)
from which we get, because pq Y2 (hzt/z) commutes with a(N):
a0yt 007 0T oo (2) = T(uy *alhy*)za(hy**)u®)
or:
T(o% (@) = a0yl oo™ (T(u *zui/?))
from which we finish the proof. O

B.7. Proposition

Let (N,a,3,M,T) be a Hopf-bimodule, equipped with a left-invariant operator-
valued weight T', and a right-invariant valued weight T'; let v be a normal semi-finite
faithful weight on N, relatively invariant with respect to T and T' in the sense of 3.7.
We shall denote ® = voa ' oT and ¥ = vo Bt oT’ the two lifted normal semi-finite
weights on M, R the coinverse and 7; the scaling group constructed in A.6 and A.5;
let X be the scaling operator of U with respect to ® (2.6), v* and v* the two one-
parameter automorphism groups of N introduced in B.2; then:

(i) for allt € R, we have T o1, = (o B*Q o 2B\ = (R gx, 0¥,)T.
N

(ii) we have hy = hg =1, and v oy :l/O"yR:I/.

(iii) for all s, t in R, we have (D® : D® o1y)s = (DV : DY o 13)s = N,

(iv) for all s, t in R, we have (D® o o R : D®), = N5t

Therefore, the modular automorphism groups o2 and c®°f commute, the weight v is
relatively invariant with respect to ® and ® o R and X is the scaling operator of o R
with respect to ®; and we have T¢(A) = A, R(\) = \;

(v) there exists a non singular positive operator q affiliated to Z(N) such that A =
a(q) = B(q)-

Proof. — As, for all n € N, we have:
a22(a(n)) = Rof R(a(n)) = a(vf (n))

and, by definition, o (3(n)) = B(v£(n)), using a remark made in 2.4, we may consider
the automorphism aft B*a of"’R on M gxo M; let’s take a and b in Mg N Ny; let’s
N N
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write hy, = fgo )\def and let us write h, = flp/p def; moreover, let’s use the notations
of B.6; we get that:

(id p*a W1 AsGa(hy) 1)) (02 tﬁ* oM o 1y fua*afn)
N

is equal to:

(Zd 5* wJ@A@(ba(h )f' ) OO’t )FOTt(fna (J,fn)

which, thanks to B.6(ii), can be written, because a(h,) belongs to a(N)' N M?®, and
therefore ba(h,) belongs to No:

U?t(ld ﬁ;\‘[a wJ¢A¢(0¢°R(ba(h NFw —f/2 )F OTt(fna/ afn)
or:

RU?ORR(idﬁ*a wJ Ag (0298 (bau(hy)) fl, 11 7t/2 )FOTt(fna afn)
N p

By B.6 and 2.2.2, we know that afnu’i/2 belongs to Mg N MNp; using now B.6(i), we
get that :(af,) = 7¢(a)fn belongs to Ne NNy
On the other hand, by B.6 and 2.2.2, we know that ba(h,)f,, belongs to Me N Ny;
using now B.6(ii), we get that:
o t/2 o —t/2 t/2
o P2 (bar(hy) frupiy ) = 02O iy Pl hp) (B )

m

belongs to Mg N N7, and so, using again 2.2.2,

o —t/2 o 2 2 —t/2
2R 0) frutiz P alhy) = 0227 (0) frupy P a(hy)a(h Yl hy)a(hr )
belongs also to Mg N Ny ; therefore, we can use A.6, and we get it is equal to:
RoP*(id e wsomatruto 1)L (2 £y 25 b)) fruty )
which can be written, thanks to B.6(i):
o . —t/2 o * —t/2
Royp°f(id ﬁ;’\‘]a YisAs(afnut’?) T-1)T (kg t/ fra(hp)o 27 (0" b)) fra 2 Y )
or, a(hy), as well as u;t/Qﬂn, being invariant under o°%:

R gt 7_)T 0 022 (uy 2 11 a(hy b bar(hy) fropi %)

. do
R(id g;}a w, Aq}(afn#t/z))(at %

and using A.5, and again A.6, we get it is equal to:
. t/2 » —t/2
RI 5700, g2 13 s )by )

= (id o wJ@A@(ba(hp)fy/nN;tu))F(ui/2fna*afnui/2)
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Finally, we have proved that, for all a, b in Mg NNy, m,n,p in N, we have:

(id g%a Wigg Galhy) £1))(02; p*a 0F T 0 7(fra*afy) =
N N

. t/2
(id 5%a @ 1, py Gty 15/ T (i fua” afupi’®)

But, for all z,y € M, we have:
WipAp (ba(hy) ) (L) = Wig e () (@(hp) frn frio(hp))

@ oty 1 ¥) = Waana ) (@) frupiy Py flua(hy)

and, therefore, we get that:
(id p*a W ha(v))[(1 §®a ahp) f.) (02, p¥a Ot £ o 7 (fra*afn)(1 #®a fma(hy))]

is equal to:

(id g% wr 0 6)[(1 580 lhy) ] Footiy (Y faatafund (1 #®a s fha(hy))]

and, by density, we get that:
(1 5®a a(hy) f.)(02, g*a o)L 0 Ti(fra*afn)(1 5®a fr,a(hy))
N N N
is equal to:
(1 58 alhy) fruig 0 fua*afutl*) (1 60 3 Frnc(hy))
and, after making p going to oo, we obtain that:
(1 6®a )02 g*a o7 *F)T 0 Tu(fra*afu)(1 p®a fa)
N N N
is equal to (*):

(15®a fukz I fratafant >><1g®a uy P f)

Let’s now take a file a; in g NNy weakly converging to 1; going to the limit, we get
that:

(1580 £1)(0%, o oL 0 i) (10 f1) = (150 fruns "G fubll ) (180 1 217)

When n goes to co, then f, is increasing to 1, the first is increasing to 1 g®a fl., and

the second is increasing to (1 ,8®a s S L) (1 p®a pg ;2 f}.) which is therefore
N

bounded.
Taking now m going to oo, we get that the two non-singular operators I'(u}) and
1 3®q pb are equal. Using B.1, we get then that g is equal to ps (and is affiliated to

N
B(N)), from which we get, using B.6, that hy = 1. Applying all these calculations to
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(N,a,8,M,T,RT'R,T',v), we get that hg = 1, which is (ii).
Let’s come back to the equality () above; we obtain that:

(15®a f1) (02, pra o)L o Ty fra*afn)(1 s®a fr,)
N N N

is equal to:
(1 5®a fr)T(fra*afn)(1 6®a f1)
N N

So, when n and m go to co, we obtain:

(a?t B¥a O'ZI)OR)F omi(a*a) =T(a%a)
N

which, by density, gives the first formula of (i), the secong being given then by A.10.
From (ii) and B.4 (i) and (ii), we get (iii).

From (ii) and B.4(iii), we get that (D® o of°F® : D®), = \is!; therefore, as \ is
affiliated to Z(M), we get the commutation of the modular groups ¢® and o®°%.
Using 2.6, we get that there exists Ar positive non singular affiliated to Z(M) and

dr positive non singular affiliated to M such that (D® o R : D®); = 22/253'%’ and
the properties of R allows us to write that R(Ag) = Ag. But, on the other hand, the
formula (D® o o?°F : D®); = A\i' (2.6), gives that A\g = X and, therefore, we get
that R(A) = A. The formula 74(A\) = A comes from (iii), which finishes the proof of
(iv).

By (i), we have A = pu1 = ug, and, as we had proved that p; is affiliated to B(IN), we
get that X is affilated to B(NN); as R(A) = X by (iv), we get (v). O

B.8. Theorem

Let (N,M,a,3,T,T,T',v) be a measured quantum groupoid in the sense of 3.7,
and let us denote R (resp. T) the co-inverse (resp. the scaling group) constructed
in A.6 (resp. A.5). Then:

(i) (N,M,a,B8,T,T,RTR,v) (resp. (N,M,a,3,T,RT'R,T',v)) is a measured quan-
tum groupoid . Moreover, R (resp. 1) remains the co-inverse (resp. the scaling group)
of this measured quantum groupoid.

(ii)) (N,M,a,B8,T,T,R,7,v) is a measured quantum groupoid in the sense of [21],
41

(iii) conversely if (N,M,a, 3,0, T, R, T,v) is a measured quantum groupoid in the
sense of [21], 4.1, then (N, M,a,3,T,T, RTR,v) is a measured quantum groupoid in
the sense of 3.7.

Proof. — Result (i) is given by B.7(iv); (ii) is given by A.6, A.8 and B.7(ii); and (iii)
is given by [21], 5.3. O
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