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THEORY OF BERGMAN SPACES
IN THE UNIT BALL OF Cn

Ruhan Zhao, Kehe Zhu

Abstract. – There has been a great deal of work done in recent years on weighted
Bergman spaces Ap

α
on the unit ball Bn of Cn, where 0 < p < ∞ and α > −1.

We extend this study in a very natural way to the case where α is any real number
and 0 < p ≤ ∞. This unified treatment covers all classical Bergman spaces, Besov
spaces, Lipschitz spaces, the Bloch space, the Hardy space H2, and the so-called
Arveson space. Some of our results about integral representations, complex interpo-
lation, coefficient multipliers, and Carleson measures are new even for the ordinary
(unweighted) Bergman spaces of the unit disk.

Résumé (Théorie des espaces de Bergman dans la boule unité de Cn)
Ces dernières années il y a eu un grand nombre de travaux sur les espaces de

Bergman pondérés Ap

α
sur la boule unité Bn de Cn, où 0 < p < ∞ et α > −1.

Nous étendons cette étude, de manière très naturelle, au cas où α est un nombre réel
quelconque et 0 < p ≤ ∞. Ce traitement unifié couvre tous les espaces de Bergman
classiques, les espaces de Bésov, de Lipschitz, l’espace de Bloch, l’espace H2 de Hardy,
et celui appelé espace d’Arveson. Certains de nos résultats autour de la représentation
entière, de l’interpolation complexe, des multiplicateurs de coefficients et des mesures
de Carleson, sont nouveaux, y compris pour les espaces de Bergman ordinaires (non-
pondérés) sur le disque unité.

© Mémoires de la Société Mathématique de France 115, SMF 2008
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CHAPTER 1

INTRODUCTION

Throughout the paper we fix a positive integer n and let

Cn = C× · · · × C

denote the n dimensional complex Euclidean space. For z = (z1, · · · , zn) and w =

(w1, · · · , wn) in Cn we write

�z, w� = z1w1 + · · · + znwn, |z| =
�

|z1|2 + · · · + |zn|2.

The open unit ball in Cn is the set

Bn =
�
z ∈ Cn : |z| < 1

�
.

We use H(Bn) to denote the space of all holomorphic functions in Bn.
For any −∞ < α < ∞ we consider the positive measure

dvα(z) = (1− |z|2)αdv(z),

where dv is volume measure on Bn. It is easy to see that dvα is finite if and only
if α > −1. When α > −1, we normalize dvα so that it is a probability measure.

Bergman spaces with standard weights are defined as

Ap

α
= H(Bn) ∩ Lp(Bn, dvα),

where p > 0 and α > −1. Here the assumption that α > −1 is essential, be-
cause the space Lp(Bn, dvα) does not contain any holomorphic function other than 0

when α ≤ −1. When α = 0, we use Ap to denote the ordinary unweighted Bergman
spaces. Bergman spaces with standard weights on the unit ball have been studied
by numerous authors in recent years. See Aleksandrov [2], Beatrous-Burbea [11],
Coifman-Rochberg [21], Rochberg [46], Rudin [47], Stoll [57], and Zhu [71] for re-
sults and references.

In this paper we are going to extend the definition of Ap

α
to the case in which α

is any real number and develop a theory for the extended family of spaces. More
specifically, we study the following topics about the generalized spaces Ap

α
: various
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2 CHAPTER 1. INTRODUCTION

characterizations, integral representations, atomic decomposition, complex interpola-
tion, optimal pointwise estimates, duality, reproducing kernels when p = 2, Carleson
type measures, and various special cases. A few of these are straightforward conse-
quences or generalizations of known results in the case α > −1 (we included them
here with full proofs for the sake of a complete and coherent theory), thanks to the
isomorphism between Ap

α
and Ap via fractional integral and differential operators,

while most others require new techniques and reveal new properties. Several of our
results are new even in the case of ordinary Bergman spaces of the unit disk.

Our starting point is the observation that, for p > 0 and α > −1, a holomorphic
function f in Bn belongs to Ap

α
if and only if the function (1 − |z|2)Rf(z) belongs

to Lp(Bn, dvα), where

Rf(z) =
n�

k=1

zk

∂f

∂zk

(z)

is the radial derivative of f . This result is well known to experts in the field and is
sometimes referred to as a theorem of Hardy and Littlewood (especially in the one-
dimensional case). See Beatrous [9], Pavlovic [42], or Theorem 2.16 of Zhu [71]. More
generally, we can repeatedly apply this result and show that, for any positive integer k,
a holomorphic function f is in Ap

α
if and only if the function (1−|z|2)kRkf(z) belongs

to Lp(Bn, dvα).
Now for p > 0 and −∞ < α < ∞ we fix a nonnegative integer k with pk + α > −1

and define Ap

α
as the space of holomorphic functions f in Bn such that the function

(1− |z|2)kRkf(z) belongs to Lp(Bn, dvα). As was mentioned in the previous para-
graph, this definition of Ap

α
is consistent with the traditional definition when α > −1.

Also, it is easy to show (see Section 4) that the definition of Ap

α
is independent of the

integer k.
We also study a companion family of spaces defined using the sup-norm of a combi-

nation of powers of 1−|z|2 and partial derivatives of a holomorphic function f in Bn.
More specifically, for any real α we define Λα to be the space of holomorphic func-
tions f in Bn such that the function (1−|z|2)k−αRkf(z) is bounded in Bn, where k is
any nonnegative integer with k > α. We are going to call them holomorphic Lipschitz
spaces. Once again, it can be shown that the definition of Λα is independent of the
choice of the integer k.

The two families of spaces Ap

α
and Λα, with 0 < p < ∞ and α real, cover any

space (except H∞ and its equivalents) of holomorphic functions that is defined in
terms of membership in Lp(Bn, dv), 0 < p ≤ ∞, for any combination of partial
derivatives of f and powers of 1 − |z|2. These spaces have appeared before in the
literature under different names. For example, for any positive p and real s there is
the classical diagonal Besov space Bs

p
consisting of holomorphic functions f in Bn such

that (1−|z|2)k−sRkf(z) belongs to Lp(dv−1), where k is any positive integer greater

MÉMOIRES DE LA SMF 115



CHAPTER 1. INTRODUCTION 3

than s. It is clear that Bs

p
= Ap

α
with α = −(ps+1); and Ap

α
= Bs

p
with s = −(α+1)/p.

Thus our spaces Ap

α
are exactly the diagonal Besov spaces. See Ahern-Cohen [1],

Arazy-Fisher-Janson-Peetre [4], Arcozzi-Rochberg-Sawyer [7], Frazier-Jawerth [26],
Hahn-Youssfi [30], [29], Kaptanoglu [33], [34], Nowark [40], Peloso [44], and Zhu
[71] for some recent results on such Besov spaces and more references. In particular,
our spaces Ap

α
are the same as the spaces Bp

q
(with q = α) in Kaptanoglu [33],

although an unnecessary condition −qp + q > −1 was imposed in [33].

On the other hand, if s is a positive integer, p is positive, and α is real, then there
is the Sobolev space W p

s,α
consisting of holomorphic functions f in Bn such that the

partial derivatives of f of order up to N all belong to Lp(Bn, dvα). It is easy to see
that our generalized Bergman spaces are exactly the holomorphic Sobolev spaces.
See Ahern-Cohen [1], Aleksandrov [2], Beatrous-Burbea [11] for results and more
references.

Therefore, for those who are more familiar or more comfortable with Besov or
Sobolev spaces, our paper can be considered a unified theory for such spaces as well.
However, we believe that most people nowadays are familiar and comfortable with
the term “Bergman spaces”, and our theory here is almost identical to the theory
of ordinary Bergman spaces (as presented in Zhu [71] for example), so it is also
reasonable for us to call Ap

α
weighted Bergman spaces. We can stretch this a little

further. More specifically, there has been a sizable amount of work in the literature
about spaces of holomorphic functions satisfying the condition

sup
z∈Bn

�
1− |z|2

�t|f(z)| < ∞,

where t > 0. Such spaces are special cases of our Lipschitz spaces Λα and they have
been called Bergman spaces as well by some authors; see Seip [50], [49] for example.
Therefore, we do not feel guilty to use the term “Bergman spaces" to include all our
Lipschitz spaces Λα.

It is apparent that this work is a natural extension of the recent book [71]. There
is undoubtedly some overlapping between the two. In particular, the notation here
is identical to that used in [71], and several techniques developed in [71] are used
repeatedly in this paper. Since we are developing a more general theory here, complete
proofs are included for all but the obvious.

As was mentioned a little earlier, the spaces we study here are not new. There are
several papers in the literature that are very much related to this one, for example,
[11] and [33]. In fact, almost every result here has its origin somewhere else. There-
fore, in subsequent chapters, whenever a major theorem is proved, we will try to bring
the reader’s attention to these other sources where earlier versions or special cases of
the particular result can be found. These repetitive references may be annoying to the
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4 CHAPTER 1. INTRODUCTION

reader on the one hand, and on the other hand they may prove more offensive to au-
thors whose papers have somehow been overlooked or inaccurately quoted. Whatever
the case, we apologize in advance. It is not our intention to claim a known result ours.
We also greatly appreciate the referee’s complete understanding of this dilemma, as
well as his/her suggestions on how to improve the presentation of the paper.
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CHAPTER 2

VARIOUS SPECIAL CASES

In this chapter we spell out to the reader several special cases of the spaces Ap

α

and Λα. In particular, this partially shows the scope of the paper and gives an orien-
tation to those readers who are only concerned with certain special cases.

As was mentioned in the introduction, when α > −1, the spaces Ap

α
are tradition-

ally called weighted Bergman spaces. In this case, a holomorphic function f in Bn

belongs to Ap

α
(see Zhu [71]) if and only if

�

Bn

��f(z)
��p�1− |z|2

�α

dv(z) < ∞.

When α = −(n + 1), or n + α + 1 = 0, we have mentioned several times earlier
that the space Ap

α
is traditionally denoted by Bp and is called a diagonal Besov space.

Alternatively, a holomorphic function f in Bn belongs to the Besov space Bp if and
only if �

Bn

���1− |z|2
�k

Rkf(z)
��pdτ (z) < ∞,

where k is any positive integer with pk > n and

dτ(z) =
dv(z)

(1− |z|2)n+1

is the Möbius invariant measure on Bn. See Zhu [71].

When α = −1 and p = 2, the space Ap

α
coincides with the classical Hardy space H2.

See (20) later in the paper and (1.22) of Zhu [71]. Recall that Hp consists of holo-
morphic functions f in Bn such that

sup
0<r<1

�

Sn

��f(rζ)
��pdσ(ζ) < ∞,

where dσ is the normalized surface measure on the unit sphere Sn.
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6 CHAPTER 2. VARIOUS SPECIAL CASES

When α = −n and p = 2, the space Ap

α
is the so-called Arveson space, which is

usually defined as the Hilbert space of holomorphic functions in Bn whose reproducing
kernel is given by (see Theorem 41)

K(z, w) =
1

1− �z, w� ·

This space has attracted much attention lately in the study of multi-variable operator
theory. We mention Arveson’s [8] influential paper and the recent monograph [17] by
Chen and Guo.

When 0 < α < 1, the space Λα is the classical Lipschitz space of holomorphic
functions f in Bn satisfying the condition

sup

�
|f(z)− f(w)|

|z − w|α : z, w ∈ Bn, z �= w

�
< ∞.

See Section 6.4 of Rudin [47]. The space Λ1 is also called the Zygmund class, especially
in the case when n = 1.

When α = 0, the space Λα is just the classical Bloch space, consisting of functions
f ∈ H(Bn) such that

sup
z∈Bn

�
1− |z|2

���Rf(z)
�� < ∞.

When α < 0, the spaces Λα have appeared in the literature under the name of
growth spaces. In this case, a holomorphic function f in Bn belongs to Λα if and
only if

sup
z∈Bn

�
1− |z|2

�|α|��f(z)
�� < ∞.

The term “Bloch type spaces" or α-Bloch spaces can also be found in recent litera-
ture. More specifically, for any α > 0 the α-Bloch space is denoted by Bα and consists
of holomorphic functions f in Bn such that

sup
z∈Bn

�
1− |z|2

�α
��Rf(z)

�� < ∞.

It is then clear that the α-Bloch space Bα is the same as our generalized Lipschitz
space Λ1−α. See Zhu [71].
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CHAPTER 3

PRELIMINARIES

In this chapter we present preliminary material on Bergman kernel functions and
fractional differential and integral operators. This material will be heavily used in
later chapters.

� Throughout the paper we use

m = (m1, · · · , mn)

to denote an n-tuple of nonnegative integers. It is customary to write

|m| = m1 + · · · + mn and m! = m1! . . . mn! .

If z = (z1, · · · , zn) is a point in Cn, we write

zm = zm1
1 · · · zmn

n
.

The following multi-nomial formula will be used (implicitly) several times later on:

(1) �z, w�k =
�

|m|=k

k!

m!
zm wm.

� If f is a holomorphic function in Bn, it has a unique Taylor series,

f(z) =
�

m

amzm.

If we define
fk(z) =

�

|m|=k

amzm, k = 0, 1, 2, . . . ,

then each fk is a homogeneous polynomial of degree k, and we can rearrange the
Taylor series of f as follows:

f(z) =
∞�

k=0

fk(z).

This is called the homogeneous expansion of f .
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8 CHAPTER 3. PRELIMINARIES

� Using homogeneous expansion of f we can write the radial derivative Rf as

Rf(z) =
∞�

k=1

kfk(z).

More general, for any real number t, we can define the following fractional radial
derivative for a holomorphic function f in Bn:

Rtf(z) =
∞�

k=1

ktfk(z).

� When we work with partial derivatives, we will use the following notation,
where m is any n-tuple of nonnegative integers:

∂mf =
∂|m|f

∂zm1
1 · · · ∂zmn

n

·

� An important tool in the study of holomorphic function spaces is the notion of
fractional differential and integral operators. There are numerous types of fractional
differential and integral operators, we introduce one that is intimately related to and
interacts well with the Bergman kernel functions. More specifically, for any complex
parameters s and t with the property that neither n + s nor n + s + t is a negative
integer, we define two operators Rs,t and Rs,t on H(Bn) as follows. If

f(z) =
∞�

k=0

fk(z)

is the homogeneous expansion of a holomorphic function in Bn, we define

Rs,tf(z) =
∞�

k=0

Γ(n + 1 + s)Γ(n + 1 + k + s + t)

Γ(n + 1 + s + t)Γ(n + 1 + k + s)
fk(z).

If H(Bn) is equipped with the topology of “uniform convergence on compact sets", it is
easy to see that each Rs,t is a continuous invertible operator on H(Bn). We use Rs,t

to denote the inverse of Rs,t on H(Bn). Thus

Rs,tf(z) =
∞�

k=0

Γ(n + 1 + s + t)Γ(n + 1 + k + s)

Γ(n + 1 + s)Γ(n + 1 + k + s + t)
fk(z).

When s is real and t > 0, it follows from Stirling’s formula that
Γ(n + 1 + s)Γ(n + 1 + k + s + t)

Γ(n + 1 + s + t)Γ(n + 1 + k + s)
∼ kt

as k →∞. In this case, Rs,t is indeed a fractional radial differential operator of order t

and Rs,t is a fractional radial integral operator of order t.
The operators Rs,t and Rs,t seem to have first appeared in Peloso [44], and inde-

pendently in Zhu [68], [69], [70], as a way to define and study holomorphic function
spaces on the unit ball, and more generally, on bounded symmetric domains. This

MÉMOIRES DE LA SMF 115



CHAPTER 3. PRELIMINARIES 9

type of fractional differential and integral operators also became an important tool in
the books by Arcozzi-Rochberg-Sawyer [7] and Zhu [71].

Kaptanoglu [33], [34], [35] used these operators in a slightly more general way.
More specifically, the technical conditions that n + s and n + s + t should not be
negative integers can be removed if one is willing to make a separate definition for
Rs,t (and Rs,t) in this case. However, since these operators are meant to transform
the kernel function (1− �z, w�)−(n+1+s) to (1− �z, w�)−(n+1+s+t), it is clear that the
technical conditions mentioned above are natural. Otherwise, these functions would
become polynomials and the corresponding reproducing Hilbert spaces would become
finite dimensional. Besides, in all our applications, it always involves in choosing a
sufficiently large parameter s, and with the technical conditions imposed on s and
t, there is never a lack of s for such choices. Also, the use of complex parameters
does not present any extra difficulty and will be more convenient for us on several
occasions.

Lemma 1. – Suppose neither n + s nor n + s + t is a negative integer. Then

Rs,t = Rs+t,−t.

Proof. – This follows directly from the definition of these operators.

Lemma 2. – Suppose s, t, and λ are complex parameters such that none of n + λ,
n + λ + t, and n + λ + s + t is a negative integer. Then

Rλ,tRλ+t,s = Rλ,s+t.

Proof. – This also follows from the definition of these operators.

As was mentioned earlier, the main advantage of the operators Rs,t and Rs,t is
that they interact well with Bergman kernel functions. This is made precise by the
following result.

Proposition 3. – Suppose neither n + s nor n + s + t is a negative integer. Then

Rs,t
1

(1− �z, w�)n+1+s
=

1

(1− �z, w�)n+1+s+t
,

Rs,t

1

(1− �z, w�)n+1+s+t
=

1

(1− �z, w�)n+1+s
·

Furthermore, these relations uniquely determine the operators Rs,t and Rs,t on H(Bn).
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10 CHAPTER 3. PRELIMINARIES

Proof. – See Proposition 1.14 of [71]. The proof there is for the case when s and t

are real. But obviously the same proof works for complex parameters as well.

Most of the time we use the above proposition as follows. If a holomorphic func-
tion f in Bn has an integral representation

f(z) =

�

Bn

dµ(w)

(1− �z, w�)n+1+s
,

then
Rs,tf(z) =

�

Bn

dµ(w)

(1− �z, w�)n+1+s+t
·

In particular, if α > −1 and n + α + t is not a negative integer, then

Rα,tf(z) = lim
r→1−

�

Bn

f(rw)dvα(w)

(1− �z, w�)n+1+α+t

for every function f ∈ H(Bn). See Corollary 2.3 of [71].

Proposition 4. – Suppose N is a positive integer and s is a complex number such
that n + s is not a negative integer. Then the operator Rs,N is a linear partial differ-
ential operator on H(Bn) of order N with polynomial coefficients, that is,

Rs,Nf(z) =
�

|m|≤N

pm(z)∂mf(z),

where each pm is a polynomial.

Proof. – The proof of Proposition 1.15 of [71] works for complex parameters as well.

Proposition 5. – Suppose s and t are complex parameters such that neither n + s

nor n + s + t is a negative integer. If α = s + N for some positive integer N , then

Rs,t
1

(1− �z, w�)n+1+α
=

h(�z, w�)
(1− �z, w�)n+1+α+t

,

where h is a certain one-variable polynomial of degree N . Similarly, there exists a
one-variable polynomial q of degree N such that

Rs,t

1

(1− �z, w�)n+1+α+t
=

q(�z, w�)
(1− �z, w�)n+1+α

·

Proof. – See the proof of Lemma 2.18 of [71] for the result concerning Rs,t. Combining
this with Lemma 1, the result for Rs,t follows as well.

Alternatively, we can use Proposition 3 to write

Rs,t
1

(1− �z, w�)n+1+α
= Rs,tRs,N

1

(1− �z, w�)n+1+s
·
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Since Rs,N and Rs,t commute, another application of Proposition 3 gives

Rs,t
1

(1− �z, w�)n+1+α
= Rs,N

1

(1− �z, w�)n+1+s+t
·

The desired result then follows from Proposition 4.

We also include an easy but important fact concerning the radial derivative.

Lemma 6. – For any positive integer k the operator Rk is a kth order partial differ-
ential operator on H(Bn) with polynomial coefficients.

Proof. – Obvious.

We are going to need two integral estimates involving Bergman kernel functions.

Proposition 7. – Suppose s and t are real numbers with s > −1. Then the integral

I(z) =

�

Bn

(1− |w|2)sdv(w)

|1− �z, w�|n+1+s+t

has the following asymptotic behavior as |z| → 1−:

(a) If t < 0, then I(z) is continuous on Bn. In particular, I(z) is bounded for z ∈ Bn.
(b) If t > 0, then I(z) is comparable to (1− |z|2)−t.
(c) If t = 0, then I(z) is comparable to − log(1− |z|2).

Proof. – See Proposition 1.4.10 of Rudin [47].

Proposition 8. – Suppose a and b are complex parameters. If S and T are integral
operators defined by

Sf(z) =
�
1− |z|2

�a

�

Bn

(1− |w|2)bf(w)dv(w)

(1− �z, w�)n+1+a+b
,

Tf(z) =
�
1− |z|2

�a

�

Bn

(1− |w|2)bf(w)dv(w)

|1− �z, w�|n+1+a+b
,

then for any 1 ≤ p < ∞ and α real, the following conditions are equivalent:

(a) The operator S is bounded on Lp(Bn, dvα).
(b) The operator T is bounded on Lp(Bn, dvα).
(c) The parameters satisfy −pRe a < α + 1 < p(Re b + 1).
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Proof. – See [36] or Theorem 2.10 of [71]. Once again, those proofs are given for real
parameters, but the proof for the complex case is essentially the same. The only extra
attention to pay is this: when λ = u + iv is a complex constant, we have

�
1− �z, w�

�λ

=
��1− �z, w�

��λ exp(iuθ − vθ),

where θ is the argument of 1− �z, w�, say θ ∈ [0, 2π). It follows that
��(1− �z, w�

�λ| =
��1− �z, w�

��u exp(−vθ).

Since v is a constant and θ ∈ [0, 2π), we see that
��(1− �z, w�)λ

�� ∼
��1− �z, w�

��u =
��1− �z, w�

��Re λ

.

Note that certain special cases of the above proposition can be found in Forelli-
Rudin [25] and Rudin [47].

Proposition 9. – Suppose Re α > −1. Then there exists a constant cα such that

f(z) = cα

�

Bn

f(w)(1− |w|2)αdv(w)

(1− �z, w�)n+1+α
, z ∈ Bn,

where f is any holomorphic function in Bn such that
�

Bn

��f(z)
���1− |z|2

�α

dv(z) < ∞.

Proof. – See Theorem 7.1.4 of Rudin [47] or Theorem 2.2 of Zhu [71].
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CHAPTER 4

ISOMORPHISM OF BERGMAN SPACES

Our first main result shows that for fixed p, the spaces Ap

α
are all isomorphic.

A word of caution is necessary here: while the isomorphism among Ap

α
reduces the

topological structure of Ap

α
to that of the ordinary Bergman space Ap, it does not help

too much when the properties of individual functions are concerned. This is clear in
the Hilbert space case: the Hardy space H2, the Bergman space A2, and the Dirichlet
space B2 are all isomorphic as Hilbert spaces, but their respective function theories
behave much differently from one to another.

There is a good amount of overlap between the material in this and the next
chapter with the results in Beatrous-Burbea [10], [11], Kaptanoglu [34], and Peloso
[44]. We present independent proofs here in order to achieve a complete and coherent
theory. As was mentioned in the introduction, the spaces Bp

q
in Kaptanoglu [34] and

our spaces Ap

α
are actually the same (with the identification of α and q), while the

family of spaces Ap

q
in Beatrous-Burbea [11] covers ordinary Bergman spaces (our Ap

α

with α > −1) and Hardy spaces Hp.

Theorem 10. – Suppose p > 0 and α is real. If s is a complex parameter such that
neither n + s nor n + s + (α/p) is a negative integer, then a holomorphic function f

in Bn is in Ap

α
if and only if Rs,α/pf is in Ap. Equivalently, Rs,α/p is an invertible

operator from Ap

α
onto Ap.

Proof. – Recall that a holomorphic function f in Bn is in Ap

α
if and only if there exists

a nonnegative integer k with pk + α > −1 such that the function (1− |z|2)kRkf(z) is
in Lp(Bn, dvα). Obviously, this is equivalent to the condition that

(2) Rkf ∈ Lp(Bn, dvpk+α).

By Theorem 2.16 of [71], the condition that Rs,α/pf ∈ Ap is equivalent to
�
1− |z|2

�k

RkRs,α/pf(z) ∈ Lp(Bn, dv).
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Since Rk commutes with Rs,α/p, the above condition is equivalent to

Rs,α/pR
kf ∈ Lp(Bn, dvpk).

If α > 0, then by Theorem 2.19 of [71], the above condition is equivalent to
�
1− |z|2

�α/p

Rs,α/pRs,α/pR
kf ∈ Lp(Bn, dvpk).

Since Rs,α/p is the inverse of Rs,α/p, the above condition is equivalent to
�
1− |z|2

�α/p

Rkf ∈ Lp(Bn, dvpk),

which is the same as (2). This proves the theorem for α > 0.

If α = 0, the operator Rs,α/p becomes the identity operator, and the desired result
is trivial.

If α < 0, then by Lemma 1, we have Rs,α/pf ∈ Ap if and only if Rs+α/p,−α/pf ∈ Ap,
which, according to Theorem 2.16 of [71], is equivalent to

�
1− |z|2

�k

RkRs+α/p,−α/pf ∈ Lp(Bn, dv).

Since Rk commutes with Rs+α/p,−α/p, the above condition is equivalent to
Rs+α/p,−α/pRkf ∈ Lp(Bn, dvpk), or

�
1− |z|2

�−α/p

Rs+α/p,−α/pRkf ∈ Lp(Bn, dvpk+α).

Since α < 0, it follows from Theorem 2.19 of [71] that the above condition is equivalent
to (2). This proves the desired result for α < 0 and completes the proof of the
theorem.

As a consequence, we obtain the following result which shows that the definition
of Ap

α
is actually independent of the integer k used. This is of course a phenomenon

that has been well known to experts in the field.

Corollary 11. – Suppose p > 0 and α is real. Then the following conditions are
equivalent for holomorphic functions f in Bn:

(a) f ∈ Ap

α
, that is, for some positive integer k with kp + α > −1 the function

(1− |z|2)kRkf(z) is in Lp(Bn, dvα).
(b) For every positive integer k with kp + α > −1 the function (1− |z|2)kRkf(z) is

in Lp(Bn, dvα).

Proof. – This follows from the proof of Theorem 10. This also follows from the equiv-
alence of (a) and (d) in Theorem 2.16 of [71].
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Since the polynomials are dense in Ap, and since the operators Rs,t and Rs,t map
the set of polynomials onto the set of polynomials, we conclude from Theorem 10
that the polynomials are dense in each space Ap

α
.

The following result is a generalization of Theorem 10.

Theorem 12. – Suppose α is real, β is real, and p > 0. Let t = (α− β)/p and let s

be a complex parameter such that neither n + s nor n + s + t is a negative integer.
Then the operator Rs,t maps Ap

α
boundedly onto Ap

β
.

Proof. – We can approximate s by a sequence {sk} of complex numbers such that each
of the operators Rsk,t, Rsk+t,β/p, and Rsk,α/p is well defined. According to Lemmas 1
and 2, we have

Rsk,t = Rsk+t,β/pRsk,α/p.

Since Rsk+t,β/p is the inverse of Rsk+t,β/p, it follows from Theorem 10 that each Rsk,t

maps Ap

α
boundedly onto Ap

β
. Since Rs,t is well defined, an easy limit argument then

shows that Rs,t maps Ap

α
boundedly onto Ap

β
.

For any positive p and real α we let N be the smallest nonnegative integer such
that pN + α > −1 and define

(3) �f�p,α =
��f(0)

�� +
� �

Bn

�
1− |z|2

�pN
��RNf(z)

��pdvα(z)
�1/p

for f ∈ Ap

α
. Then Ap

α
becomes a Banach space when p ≥ 1. For 0 < p < 1 the

space Ap

α
is a topological vector space with a complete metric

(4) d(f, g) = �f − g�p

p,α
.

The metric d is invariant in the sense that

d(f, g) = d(f − g, 0).

In particular, Ap

α
is an F -space. One of the properties of an F -space that we will use

later is that the closed graph theorem is valid for it.
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CHAPTER 5

SEVERAL CHARACTERIZATIONS OF A
p
α

In this chapter we obtain various characterizations of Ap

α
in terms of fractional

differential operators and in terms of higher order derivatives.

Theorem 13. – Suppose p > 0 and α is real. Then the following conditions are
equivalent for holomorphic functions f in Bn.

(a) f ∈ Ap

α
.

(b) For some nonnegative integer k with kp + α > −1 the functions
�
1− |z|2

�|m|
∂mf(z),

where |m| = k, all belong to Lp(Bn, dvα).
(c) For every nonnegative integer k with kp + α > −1 the functions

�
1− |z|2

�|m|
∂mf(z),

where |m| = k, all belong to Lp(Bn, dvα).

Proof. – Fix a nonnegative integer k with pk + α > −1 and assume that
�
1− |z|2

�k

∂mf(z) ∈ Lp(Bn, dvα)

for all |m| = k, then
�
1− |z|2

�k

∂mf(z) ∈ Lp(Bn, dvα)

for all |m| ≤ k; see Theorem 2.17 of [71]. Since Rk is a linear partial differential
operator on H(Bn) with polynomial coefficients (see Lemma 6), we have

�
1− |z|2

�k

Rkf(z) ∈ Lp(Bn, dvα),

or f ∈ Ap

α
. This proves that condition (b) implies (a). That condition (c) implies (b)

is obvious.
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Next assume that f ∈ Ap

α
. Then by Theorem 10, the function g = Rβ,α/pf is in Ap,

where β is a sufficiently large (to be specified later) positive number. By Proposition 9,
we have

Rβ,α/pf(z) =

�

Bn

g(w)dvβ(w)

(1− �z, w�)n+1+β
·

Apply Rβ,α/p to both sides and use Proposition 3. We obtain

(5) f(z) =

�

Bn

g(w)dvβ(w)

(1− �z, w�)n+1+β+α/p
.

If p ≥ 1 and k is any nonnegative integer such that pk +α > −1, then we choose β

large enough so that

(6) − pk < α + 1 < p
�
β +

α

p

�
.

Rewrite the reproducing formula (5) as

f(z) =

�

Bn

(1− |w|2)β+α/ph(w)dv(w)

(1− �z, w�)n+1+β+α/p

,

where
h(z) =

�
1− |z|2

�−α/p

g(z).

Differentiating under the integral sign, we obtain a positive constant C (depending
on the parameters but not on f and z) such that

�
1− |z|2

�k
��∂mf(z)

�� ≤ C
�
1− |z|2

�k

�

Bn

(1− |w|2)β+α/p|h(w)|dv(w)

|1− �z, w�|n+k+1+β+α/p

,

where |m| = k. Since h ∈ Lp(Bn, dvα), it follows from (6) and Proposition 8 that the
functions (1− |z|2)k∂mf(z), where |m| = k, all belong to Lp(Bn, dvα).

The case 0 < p < 1 calls for a different proof. In this case, we differentiate under
the integral sign in (5) and obtain a constant C > 0 (depending on the parameters
but not on f and z) such that

�
1− |z|2

�k
��∂mf(z)

�� ≤ C
�
1− |z|2

�k

�

Bn

|g(w)|(1− |w|2)βdv(w)

|1− �z, w�|n+k+1+β+α/p

,

where |m| = k. We write

β =
n + 1 + β�

p
− (n + 1)

and assume that β is large enough so that β� > 0. Then we can apply Lemma 2.15
of [71] to show that the integral

�

Bn

|g(w)|(1− |w|2)βdv(w)

|1− �z, w�|n+k+1+β+α/p
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is less than or equal to a positive constant times
� �

Bn

���
g(w)

(1− �z, w�)n+k+1+β+α/p

���
p�

1− |w|2
�β
�

dv(w)
�1/p

.

It follows that there exists a positive constant C � such that
�
1− |z|2

�kp
��∂mf(z)

��p ≤ C �
�
1− |z|2

�kp

�

Bn

|g(w)|p(1− |w|2)β
�
dv(w)

|1− �z, w�|p(n+k+1+β)+α

,

where |m| = k. Integrate both sides against the measure dvα and apply Fubini’s
theorem. We see that the integral

�

Bn

�
1− |z|2

�kp
��∂mf(z)

��pdvα(z)

is less than or equal to C � times
�

Bn

��g(w)
��p�1− |w|2

�β
�

dv(w)

�

Bn

(1− |z|2)kp+αdv(z)

|1− �z, w�|p(n+k+1+β)+α
·

Estimating the inner integral above according to Proposition 7, we find another con-
stant C �� > 0 such that�

Bn

�
1− |z|2

�kp
��∂mf(z)

��pdvα(z) ≤ C ��
�

Bn

��g(w)
��pdv(w)

for all |m| = k. This proves that (a) implies (c), and completes the proof of the
theorem.

Note that several special cases of the above theorem are well known. See Beatrous-
Burbea [11] or Pavlovic [42] for example. In fact, any nontangential partial differential
operator of order k with C∞ coefficients may be used in place of Rk; see Peloso [44].
The proof above uses several techniques developed in Zhu [71].

Theorem 14. – Suppose p > 0, α is real, and f is holomorphic in Bn. Then the
following conditions are equivalent:

(a) f ∈ Ap

α
.

(b) There exists some real t with pt + α > −1 such that the function
�
1− |z|2

�t

Rs,tf(z)

is in Lp(Bn, dvα), where s is any real parameter such that neither n + s nor
n + s + t is a negative integer.

(c) For every real t with pt + α > −1 the function
�
1− |z|2

�t

Rs,tf(z)

is in Lp(Bn, dvα), where s is any real parameter such that neither n + s nor
n + s + t is a negative integer.
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Proof. – It is obvious that condition (c) implies (b). To show that condition (b)
implies (a), we fix a sufficiently large positive number β and apply Proposition 9 to
write

Rs,tf(z) = ct+β

�

Bn

Rs,tf(w)(1− |w|2)t+βdv(w)

(1− �z, w�)n+1+t+β
,

where ct+β is a positive constant such that ct+βdvβ is a probability measure on Bn.
Apply Rk to both sides, where k is a nonnegative integer such that kp + α > −1.
Then there exists a polynomial h of degree k such that

RkRs,tf(z) =

�

Bn

h(�z, w�)Rs,tf(w)dv t+β(w)

(1− �z, w�)n+1+k+t+β
·

If β is chosen so that β − s is a sufficiently large positive integer, we first write

h
�
�z, w�

�
=

k�

j=0

cj

�
1− �z, w�

�j

,

then apply the operator Rs,t to every term according to the second part of Proposi-
tion 5, and then combine the various terms. The result is that

Rs,tR
kRs,tf(z) =

�

Bn

g(z, w)Rs,tf(w)dv t+β(w)

(1− �z, w�)n+1+k+β
,

where g is a polynomial. Since the operators Rs,t, Rk, and Rs,t commute with each
other, and since Rs,t is the inverse of Rs,t, we obtain a constant C > 0 such that

�
1− |z|2

�k
��Rkf(z)

�� ≤ C
�
1− |z|2

�k

�

Bn

(1− |w|2)t|Rs,tf(w)|dvβ(w)

|1− �z, w�|n+1+k+β
·

We then follow the same arguments as in the proof of Theorem 13 to show that the
condition

�
1− |z|2

�t
��Rs,tf(z)

�� ∈ Lp(Bn, dvα)

implies
�
1− |z|2

�k

Rkf(z) ∈ Lp(Bn, dvα).

This proves that condition (b) implies (a).

To show that condition (a) implies (c), we fix a function f ∈ Ap

α
and choose a

sufficiently large positive number β such that the function g = Rβ,α/pf is in Ap. We
then follow the same arguments as in the proof of Theorem 13 to finish the proof. The
only adjustment to make here is this: instead of differentiating under the integral sign,
we apply the operator Rs,t inside the integral sign and take advantage of Proposition 5
(assuming that β is chosen so that β − s is a positive integer). We leave the details
to the interested reader.
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Several special cases of the above theorem have appeared before. See Kaptanoglu
[33], [34] and Peloso [44] for the case α = −(n+1), and Zhu [71] for the case α > −1.
The book [11] of Beatrous and Burbea also contains a version of the result for α > −1

which is based on a different family of fractional radial differential operators.
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CHAPTER 6

HOLOMORPHIC LIPSCHITZ SPACES

The classical Lipschitz space Λα, 0 < α < 1, consists of holomorphic functions f

in Bn such that
��f(z)− f(w)

�� ≤ C|z − w|α, z, w ∈ Bn,

where C is a positive constant depending on f . It is well known that a holomorphic
function f is in Λα if and only if there exists a positive constant C such that

�
1− |z|2

�1−α
��Rf(z)

�� ≤ C, z ∈ Bn.

See Rudin [47] and Zhu [71].

In this chapter we extend the theory of Lipschitz spaces Λα to the full range
−∞ < α < ∞. More specifically, for any real number α we let Λα denote the space
of holomorphic functions f in Bn such that for some nonnegative integer k > α the
function (1 − |z|2)k−αRkf(z) is bounded in Bn. We first prove that the definition
of Λα is independent of the integer k used.

Lemma 15. – Suppose f is holomorphic in Bn. Then the following conditions are
equivalent:

(a) There exists some nonnegative integer k > α such that the function
�
1− |z|2

�k−α

Rkf(z)

is bounded in Bn.
(b) For every nonnegative integer k > α the function

�
1− |z|2

�k−α

Rkf(z)

is bounded in Bn.
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Proof. – Suppose k is a nonnegative integer with k > α. Let N = k + 1.

If the function (1−|z|2)N−αRNf(z) is bounded in Bn, then an elementary integral
estimate based on the identity

Rkf(z)−Rkf(0) =

� 1

0

RNf(tz)

t
dt

shows that the function (1− |z|2)k−αRkf(z) is bounded in Bn.

Conversely, if the function (1 − |z|2)k−αRkf(z) is bounded, then there exists a
constant c > 0 such that

Rkf(z) = c

�

Bn

(1− |w|2)k−αRkf(w)dv(w)

(1− �z, w�)n+1+k−α
;

see Proposition 9. Taking the radial derivative on both sides, we get

RNf(z) = C

�

Bn

�z, w�(1− |w|2)k−αRkf(w)dv(w)

(1− �z, w�)n+1+N−α
,

where C = c(n+1+k−α). This combined with Proposition 7 shows that the function
(1− |z|2)N−αRNf(z) is bounded in Bn.

Therefore, the function (1 − |z|2)k−αRkf(z) is bounded if and only if the func-
tion (1− |z|2)k+1−αRk+1f(z) is bounded, where k is any nonnegative integer satisfy-
ing k > α. This clearly proves the desired result.

The above lemma is most likely known to experts in the field, although we could
not find a precise reference. In the case α > 0, the above result as well as everything
else in this chapter can be found in Zhu [71].

In what follows we let k be the smallest nonnegative integer greater than α and
define a norm on Λα by

�f�α =
��f(0)

�� + sup
z∈Bn

�
1− |z|2

�k−α
��Rkf(z)

��.

It is then easy to check that Λα becomes a nonseparable Banach space when equipped
with this norm.

We write B = Λ0. This is called the Bloch space. It is clear that f ∈ B if and
only if

sup
z∈Bn

�
1− |z|2

���Rf(z)
�� < ∞.

See [71] for more information about B. Our next result shows that all the spaces Λα

are isomorphic to the Bloch space.

Theorem 16. – Suppose s is complex and α is real such that neither n+s nor n+s+α

is a negative integer. Then the operator Rs,α maps Λα onto B.
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Proof. – Suppose f is holomorphic in Bn. Then Rs,αf is in the Bloch space if and
only if the function (1− |z|2)kRkRs,αf(z) is bounded in Bn, where k is any positive
integer. See Lemma 15 above.

If f ∈ Λα, then the function

g(z) =
�
1− |z|2

�k−α

Rkf(z)

is bounded in Bn, where k is any positive integer greater than α. Let N be a sufficiently
large positive integer such that the number β defined by

k − α + β = s + N

has real part greater than −1. Then we use Proposition 9 to write

Rkf(z) = c

�

Bn

g(w)dvβ(w)

(1− �z, w�)n+1+k−α+β
·

Applying Proposition 5, we obtain a polynomial h such that

Rs,αRkf(z) =

�

Bn

g(w)h(�z, w�)dvβ(w)

(1− �z, w�)n+1+k+β
·

By Proposition 7, the function
�
1− |z|2

�k

Rs,αRkf(z) =
�
1− |z|2

�k

RkRs,αf(z)

is bounded in Bn, so Rs,αf is in the Bloch space.

On the other hand, if Rs,αf is in the Bloch space, then by Lemma 1, the function
Rs+α,−αf is in the Bloch space. We fix a suffiently large positive integer N such
that β = N + s + α has real part greater than −1. By part (d) of Theorem 3.4 in [71]
(the result there was stated and proved for real β, it is clear that the complex case
holds as well), there exists a function g ∈ L∞(Bn) such that

Rs+α,−αf(z) =

�

Bn

g(w)dvβ(w)

(1− �z, w�)n+1+β
·

We apply the operator Rs+α,−α to both sides and use Proposition 5 to obtain

f(z) =

�

Bn

p(�z, w�)g(w)dvβ(w)

(1− �z, w�)n+1+β−α
,

where p is a polynomial. An easy computation then shows that

Rkf(z) =

�

Bn

q(�z, w�)g(w)dvβ(w)

(1− �z, w�)n+1+β+k−α
,

where k is any positive integer greater than α and q is another polynomial. By Propo-
sition 7, the function (1 − |z|2)k−αRkf(z) is bounded in Bn, namely, f ∈ Λα. This
completes the proof of the theorem.
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More generally, if s is any complex number such that neither n+s nor n+s+α−β is
a negative integer, then the operator Rs,α−β is a bounded invertible operator from Λα

onto Λβ . See the proof of Theorem 12.

Theorem 17. – Suppose f is holomorphic in Bn and α is real. If Re β > −1 and
n + β − α is not a negative integer, then f ∈ Λα if and only if there exists a function
g ∈ L∞(Bn) such that, for z ∈ Bn,

(7) f(z) =

�

Bn

g(w)dvβ(w)

(1− �z, w�)n+1+β−α
·

Proof. – If f admits the integral representation (7), then for any nonnegative inte-
ger k > α we have

Rkf(z) =

�

Bn

p(�z, w�)g(w)dvβ(w)

(1− �z, w�)n+1+β+k−α
,

where p(z) is a certain polynomial of degree k. An application of Proposition 7 shows
that the function (1− |z|2)k−αRkf(z) is bounded in Bn.

On the other hand, if f ∈ Λα, then by Theorem 16, the function Rβ−α,αf is in
the Bloch space. According to the classical integral representation of functions in the
Bloch space (see Choe [18] or part (d) of Theorem 3.4 in Zhu’s book [71]), there
exists a function g ∈ L∞(Bn) such that

Rβ−α,αf(z) =

�

Bn

g(w)dvβ(w)

(1− �z, w�)n+1+(β−α)+α
·

Applying the operator Rβ−α,α to both sides and using Proposition 3, we conclude
that

f(z) =

�

Bn

g(w)dvβ(w)

(1− �z, w�)n+1+β−α
·

This completes the proof of the theorem.

Since the proof of Theorem 3.4 in Zhu [71] is constructive, it follows that there
exists a bounded linear operator

L : Λα −→ L∞(Bn)

such that the integral representation in (7) can be given by choosing g = L(f).

Theorem 18. – Suppose α is real and k is a nonnegative integer greater than α.
Then a holomorphic function f in Bn belongs to Λα if and only if the functions

�
1− |z|2

�k−α

∂mf(z), |m| = k,

are all bounded in Bn.
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Proof. – If f ∈ Λα, we apply Theorem 17 to represent f in the form

f(z) =

�

Bn

g(w)dvβ(w)

(1− �z, w�)n+1+β−α
,

where g ∈ L∞(Bn), β > −1, and n + β − α is not a negative integer. Differen-
tiate under the integral sign and apply Proposition 7. We see that the functions
(1− |z|2)k−α∂mf(z), where |m| = k, are all bounded in Bn.

Conversely, if the function (1−|z|2)k−α∂mf(z) is bounded in Bn for every |m| = k,
then it is easy to see that the function (1− |z|2)k−α∂mf(z) is bounded in Bn for ev-
ery |m| ≤ k. Since Rk is a kth order linear partial differential operator on H(Bn) with
polynomial coefficients (see Lemma 6), we see that the function (1− |z|2)k−αRkf(z)

is bounded in Bn, namely, f ∈ Λα.

Various special cases (such as the Bloch space and the case α ∈ (0, 1)) of the above
theorem, as well as the next theorem, have been well known. See Aleksandrov [2],
Choe [18], Nowark [40], Ouyang-Yang-Zhao [41], Pavlovic [42], Peloso [44], and Zhu
[71] for related results.

Theorem 19. – Suppose α and t are real with t > α. If s is a complex parameter
such that neither n+s nor n+s+t is a negative integer, then a holomorphic function f

in Bn belongs to Λα if and only if the function (1−|z|2)t−αRs,tf(z) is bounded in Bn.

Proof. – First assume that the function

g(z) =
�
1− |z|2

�t−α

Rs,tf(z)

is bounded in Bn. By Proposition 9, there exists a positive constant c such that

Rs,tf(z) = c

�

Bn

g(w)dvβ(w)

(1− �z, w�)n+1+t+β−α
,

where β is a sufficiently large positive number with β − α = s + N for some positive
integer N . If k is a nonnegative integer greater than α, it is easy to see that there
exists a polynomial p of degree k such that

(8) RkRs,tf(z) =

�

Bn

p(�z, w�)g(w)dvβ(w)

(1− �z, w�)n+1+k+t+β−α
·

We decompose

p
�
�z, w�

�
=

k�

j=0

cj

�
1− �z, w�

�j

,

apply the operator Rs,t to both sides of (8), use Proposition 5, and combine the terms.
The result is that

Rs,tR
kRs,tf(z) =

�

Bn

h(z, w)g(w)dvβ(w)

(1− �z, w�)n+1+k+β−α
,
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where h is a certain polynomial. Since all radial differential operators commute, we
have

Rs,tR
kRs,t = Rk.

This together with Proposition 7 shows that
��Rkf(z)

�� ≤ C

(1− |z|2)k−α

for some constant C > 0, that is, f ∈ Λα.
Next assume that f ∈ Λα. Let N be a sufficiently large positive integer and write

β − α = s + N . By Theorem 17, there exists a function g ∈ L∞(Bn) such that

f(z) =

�

Bn

g(w)dvβ(w)

(1− �z, w�)n+1+β−α
·

According to Proposition 5, there exists a polynomial h such that

Rs,tf(z) =

�

Bn

h(z, w)g(w)dvβ(w)

(1− �z, w�)n+1+β−α+t
·

An application of Proposition 7 then shows that
��Rs,tf(z)

�� ≤ C

(1− |z|2)t−α

for some constant C > 0, that is, the function (1 − |z|2)t−αRs,tf(z) is bounded
in Bn.

All results in this chapter so far are in terms of a certain function being bounded in
Bn. We mention that these results remain true when the big oh conditions are replaced
by the corresponding little oh conditions. More specifically, for each real number α,
we let Λα,0 denote the space of holomorphic functions f in Bn such that there exists
a nonnegative integer k > α such that the function (1− |z|2)k−αRkf(z) is in C0(Bn).
Here C0(Bn) denotes the space of continuous functions f in Bn with the property that

lim
|z|→1−

f(z) = 0.

It can be shown that the definition of Λα,0 is independent of the integer k used. The
special case Λ0,0 is denoted by B0 and is called the little Bloch space of Bn. Clearly,
f ∈ B0 if and only if

lim
|z|→1−

�
1− |z|2

�
Rf(z) = 0.

An alternative description of Λα,0 is that it is the closure of the set of polynomials
in Λα, or the closure in Λα of the set of functions holomorphic on the closed unit ball.

It is then clear how to state and prove the little oh analogues of all results of this
chapter. It is also well known that when dealing with the little oh type results of this
chapter, the space C0(Bn) can be replaced by C(Bn), the space of functions that are
continuous on the closed unit ball. We leave out the routine details.
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POINTWISE ESTIMATES

We often need to know how fast a function in Ap

α
grows near the boundary. Using

results from the previous chapter, we obtain optimal pointwise estimates for functions
in Ap

α
.

Theorem 20. – Suppose p > 0 and n+1+α > 0. Then there exists a constant C > 0

(depending on p and α) such that, for all f ∈ Ap

α
and z ∈ Bn,

��f(z)
�� ≤ C�f�p,α

(1− |z|2)(n+α+1)/p
·

Proof. – Suppose f ∈ Ap

α
. Then RNf ∈ Ap

pN+α
, where pN +α > −1. By Theorem 2.1

of [71],
�
1− |z|2

�(n+1+pN+α)/p
��RNf(z)

�� ≤ C�f�p,α

for some positive constant C (depending only on α). Since
n + 1 + pN + α

p
= N +

n + 1 + α

p
,

it follows from Lemma 15 that there exists a constant C � > 0 (depending on p and
α) such that, for all z ∈ Bn.,

�
1− |z|2

�(n+1+α)/p
��f(z)

�� ≤ C ��f�p,α

In the case α > −1 the above theorem can be found in numerous papers in the
literature, including Beatrous-Burbea [11] and Vukotić [60].

It is not hard to see that the estimate given in Theorem 20 above is optimal,
namely, the exponent (n + α + 1)/p cannot be improved. However, using polynomial
approximations, we can show that

lim
|z|→1−

�
1− |z|2

�(n+α+1)/p

f(z) = 0
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whenever f ∈ Ap

α
with n + 1 + α > 0. Also, if α > −1, then the constant C can be

taken to be 1; see Theorem 2.1 in [71].

Theorem 21. – Suppose p > 0 and n + 1 + α < 0. Then every function in Ap

α
is

continuous on the closed unit ball and so is bounded in Bn.

Proof. – Given f ∈ Ap

α
, Theorem 10 tells us that we can find a function g ∈ Ap

such that f = Rs,α/pg, where s is any real parameter such that neither n + s nor
n + s + (α/p) is a negative integer. By Theorem 20 and the remark following it, the
function (1 − |z|2)(n+1)/pg(z) is in C0(Bn), which, according to the little oh version
of Lemma 15, is the same as g ∈ Λ−(n+1)/p,0. Let β be a sufficiently large positive
number such that

β +
n + 1

p
= s + N

for some positive integer N . We first apply the little oh version of Theorem 17 to find
a function h ∈ C0(Bn) such that

g(z) =

�

Bn

h(w)dvβ(w)

(1− �z, w�)n+1+β+(n+1)/p
·

We then apply the operator Rs,α/p to both sides and make use of Proposition 5. The
result is

f(z) =

�

Bn

p(z, w)h(w)dvβ(w)

(1− �z, w�)n+1+β+(n+1+α)/p

,

where p is a polynomial. By part (a) of Proposition 7, the integral above converges
uniformly for z ∈ Bn and so the function f(z) is continuous on the closed unit ball.

When n + 1 + α < 0, functions in Ap

α
are actually much better than just being

continuous on the closed unit ball. For example, it follows from Theorems 12, 19,
and 20 that every function in Ap

α
, n + 1 + α < 0, actually belongs to a Lipschitz

space Λβ for some β > 0. See Corollary 5.5 of Beatrous-Burbea [11] for a slightly
different version of this observation.

Theorems 20 and 21 also follow from Lemmas 5.4 and 5.6 of Beatrous-Burbea [11].
However, as our next result shows, the estimates in [11] for the remaining case
α = −(n + 1) do not seem to be optimal.

Theorem 22. – Suppose n + 1 + α = 0 and f ∈ Ap

α
.

(a) If 0 < p ≤ 1, then f(z) is continuous on the closed unit ball. In particular, f is
bounded in Bn.

(b) If 1 < p < ∞ and 1/p + 1/q = 1, then there exists a positive constant C

(depending on p) such that, for all z ∈ Bn,
��f(z)

�� ≤ C
�
log

2

1− |z|2
�1/q

.
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Proof. – Note that Ap

−(n+1) = Bp, the diagonal Besov spaces on Bn; see Chapter 7
of [71]. If 0 < p ≤ 1, the Besov space Bp is contained in B1 (this is well known, and
follows easily from Theorem 32 and the fact that lp ⊂ l1 for 0 < p ≤ 1). Since B1 is
contained in the ball algebra (see Theorem 6.8 of [71] for example), we conclude that
Bp is contained in the ball algebra whenever 0 < p ≤ 1.

If p > 1, we use Theorem 6.7 of [71] to find a function g ∈ Lp(Bn, dτ ) such that

f(z) =

�

Bn

g(w)dv(w)

(1− �z, w�)n+1
,

where
dτ (z) =

dv(z)

(1− |z|2)n+1

is the Möbius invariant measure on Bn. Rewrite the above integral representation as

f(z) =

�

Bn

�
1− |w|2

1− �z, w�

�n+1

g(w)dτ (w)

and apply Hölder’s inequality. We obtain
��f(z)

�� ≤
� �

Bn

|g(w)|pdτ (w)
� 1

p
� �

Bn

(1− |w|2)(n+1)(q−1)

|1− �z, w�|(n+1)q
dv(w)

� 1
q
.

An application of Proposition 7 to the last integral above yields the desired estimate
for f(z).
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CHAPTER 8

DUALITY

A linear functional F : Ap

α
→ C is said to be bounded if there exists a positive

constant C such that

(9)
��F (f)

�� ≤ C�f�p,α

for all f ∈ Ap

α
. The dual space of Ap

α
, denoted by (Ap

α
)∗, is the vector space of all

bounded linear functionals on Ap

α
. For any bounded linear functional F on Ap

α
we

use �F� to denote the smallest constant C satisfying (9). It is then easy to check
that (Ap

α
)∗ becomes a Banach space with this norm, regardless of p ≥ 1 or p < 1.

By results of the previous chapter, the point evaluation at any z ∈ Bn is a bounded
linear functional on Ap

α
. Therefore, (Ap

α
)∗ is a nontrivial Banach space for all p > 0

and all real α.

Results of this chapter for the case p > 1 are motivated by the well-known duality
relation (Ap)∗ = Aq for ordinary Bergman spaces under the ordinary volume integral
pairing. Results of this chapter in the case 0 < p ≤ 1 are motivated by and are gener-
alizations of various special cases obtained in the papers Duren-Romberg-Shields [24],
Rochberg [46], Shapiro [51], and Zhu [68]. We also mention that this chapter in spirit
overlaps with Section 7 of Kaptanoglu [34].

Theorem 23. – Suppose 1 < p < ∞, α is real, and β is real. If
1

p
+

1

q
= 1,

and if s1 and s2 are complex parameters such that both Rs1,α/p and Rs2,β/q are well-
defined operators, then (Ap

α
)∗ = Aq

β
(with equivalent norms) under the integral pairing

�f, g� =

�

Bn

Rs1,α/pf Rs2,β/qg dv,

where f ∈ Ap

α
and g ∈ Aq

β
.
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Proof. – This follows from the identities

Rs1,α/pAp = Ap

α
, Rs2,β/qAq = Aq

β
,

and the well-known duality (Ap)∗ = Aq under the integral pairing

�f, g� =

�

Bn

f ḡdv,

where f ∈ Ap

α
and g ∈ Aq

β
.

If α > −1 and β > −1, then the integral pairing
�

Bn

Rs1,α/pf Rs2,β/qgdv

can be replaced by the integral pairing
�

Bn

f ḡdvγ , f ∈ Ap

α
, g ∈ Aq

β
,

where

(10) γ =
α

p
+

β

q
·

See Theorem 2.12 of [71]. For arbitrary α and β, we can also use the integral pairing

lim
r→1−

�

Bn

Rs,γf(rz) g(rz)dv(z), f ∈ Ap

α
, g ∈ Aq

β
,

where γ is defined by (10) and s is any complex parameter such that the operator Rs,γ

is well defined.

More generally, if γ is given by (10) and if k is a sufficiently large positive integer,
then the duality (Ap

α
)∗ = Aq

β
can be realized with the following integral pairing

�f, g�γ = f(0) g(0) +

�

Bn

�
1− |z|2

�k

Rkf(z) (1− |z|2)kRkg(z)dvγ(z),

where f ∈ Ap

α
and g ∈ Aq

β
. Many other different, but equivalent, integral pairings are

possible.

Theorem 24. – Suppose 0 < p ≤ 1, α is real, and β is real. If s1 and s2 are complex
parameters such that the operators Rs1,α/p and Rs2,β are well-defined, then (Ap

α
)∗ =

Λβ under the integral pairing

�f, g� = lim
r→1−

�

Bn

Rs1,α/pf(rz) Rs2,βg(rz)dvγ(z),

where f ∈ Ap

α
, g ∈ Λβ, and γ = (n + 1)(1/p− 1).
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Proof. – This follows from the identities

Rs1,α/pAp = Ap

α
, Rs2,βΛβ = B,

and the well-known duality (Ap)∗ = B under the integral pairing

�f, g� = lim
r→1−

�

Bn

f(rz)g(rz)dvγ(z).

See Theorem 3.17 of [71].

Once again, it is easy to come up with other different (but equivalent) duality
pairings. We state two special cases.

Corollary 25. – For any real α we have (A1
α
)∗ = Λα (with equivalent norms) under

the integral pairing

�f, g� = lim
r→1−

�

Bn

f(rz)g(rz)dv(z),

where f ∈ A1
α

and g ∈ Λα.

Proof. – Simply choose s1 = s2, α = β, and p = 1 in the theorem.

Corollary 26. – Suppose α is real and s is any complex parameter such that Rs,α

is well defined. Then (A1
α
)∗ = B (with equivalent norms) under the integral pairing

�f, g� = lim
r→1−

�

Bn

Rs,αf(rz)g(rz)dv(z),

where f ∈ A1
α

and g ∈ B.

Proof. – Simply choose β = 0 in the theorem.

Theorem 27. – Suppose α and β are real. If s1 and s2 are complex parameters such
that the operators Rs1,α and Rs2,β are both well defined, then (Λβ,0)∗ = A1

α
(with

equivalent norms) under the integral pairing

�f, g� = lim
r→1−

�

Bn

Rs1,αf(rz) Rs2,βg(rz)dv(z),

where f ∈ A1
α

and g ∈ Λβ,0.

Proof. – See the proof of Theorem 24.

We also mention two special cases.

Corollary 28. – For any real α we have (Λα,0)∗ = A1
α

(with equivalent norms)
under the integral pairing

�f, g� = lim
r→1−

�

Bn

f(rz)g(rz)dv(z),

where f ∈ Λα,0 and g ∈ A1
α
.
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Proof. – See the proof of Corollary 25.

Corollary 29. – Suppose α is real and s is a complex parameter such that the
operator Rs,α is well defined. Then (B0)∗ = A1

α
(with equivalent norms) under the

integral pairing

�f, g� = lim
r→1−

�

Bn

Rs,αf(rz)g(rz)dv(z),

where f ∈ B0 and g ∈ A1
α
.

Proof. – Just set β = 0 in the theorem.
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INTEGRAL REPRESENTATIONS

In this chapter we focus on the case 1 ≤ p < ∞ and show that each space Ap

α
is a

quotient space of Lp(Bn, dvβ). We do this using Bergman type projections.

Integral representations of functions in Bergman spaces of Bn started in Forelli-
Rudin [25] and have seen several generalizations; see Choe [18], Kaptanoglu [34], and
Zhu [71]. The next result appears to be new even in the case of unweighted Bergman
spaces of the unit disk.

Theorem 30. – Suppose p ≥ 1 and α is real. If γ and λ are complex parameters
satisfying the two conditions,

(a) p(Re γ + 1) > Re λ + 1,
(b) n + γ + (α− λ)/p is not a negative integer,

then a holomorphic function f in Bn belongs to Ap

α
if and only if

(11) f(z) =

�

Bn

g(w)dvγ(w)

(1− �z, w�)n+1+γ+(α−λ)/p

for some g ∈ Lp(Bn, dvλ).

Proof. – Suppose that the parameters satisfy conditions (a) and (b). Let

β = γ − λ

p
·

Then λ = p(γ − β). Note that condition (a) is equivalent to p(Re β + 1) > 1. In
particular, Re β > −1 and n + β is not a negative integer. Also, condition (b) is
equivalent to the condition that n + (α/p) + β is not a negative integer. So the
operators Rβ,α/p and Rβ,α/p are well defined.
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If f ∈ Ap

α
, then by Theorem 10, the function Rβ,α/pf is in Ap. It follows from

Theorem 2.11 of [71] (note that the result there was stated and proved for real pa-
rameters, the case of complex parameters is proved in exactly the same way) and the
condition p(Re β + 1) > 1 that there exists a function h ∈ Lp(Bn, dv) such that

Rβ,α/pf(z) =

�

Bn

h(w)dvβ(w)

(1− �z, w�)n+1+β
·

Apply the operator Rβ,α/p to both sides and use Proposition 3. Then

f(z) =

�

Bn

h(w)dvβ(w)

(1− �z, w�)n+1+β+(α/p)
·

Let g(w) = (1− |w|2)β−γh(w). Then g ∈ Lp(Bn, dvλ) and

f(z) =

�

Bn

g(w)dvγ(w)

(1− �z, w�)n+1+γ+(α−λ)/p
·

The above arguments can be reversed. So any function represented by (11) is
necessarily a function in Ap

α
. This completes the proof of the theorem.

Once again, the proof of Theorem 2.11 of [71] is constructive. So there exists a
bounded linear operator

L : Ap

α
−→ Lp(Bn, dvλ)

such that the integral representation in (11) can be achieved with the choice g = L(f).

If condition (b) above is not satisfied, then
1

(1− �z, w�)n+1+γ+(α−λ)/p
=

�
1− �z, w�

�k

for some nonnegative integer k, and any function represented by (11) is a polynomial
of degree less than or equal to k. In this case, the integral representation (11) cannot
possibly give rise to all functions in Ap

α
. This shows that condition (b) is essential for

the theorem.
We can also show that condition (a) is essential. In fact, if every function g

in Lp(Bn, dvλ) gives rise to a function f in Ap

α
via the integral representation (11),

then we can apply the operator Rγ+(α−λ)/p,k to both sides of (11) and use Theorem 14
to infer that the operator

Tg(z) =
�
1− |z|2

�k

�

Bn

g(w)dvγ(w)

(1− �z, w�)n+1+k+γ+(α−λ)/p

maps Lp(Bn, dvλ) boundedly into Lp(Bn, dvα), where k is any nonnegative integer
such that pk + α > −1. Write

g(w) =
�
1− |w|2

�(α−λ)/p

h(w).
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Then g ∈ Lp(Bn, dvλ) if and only if h ∈ Lp(Bn, dvα). It follows that the operator

Sh(z) =
�
1− |z|2

�k

�

Bn

(1− |w|2)γ+(α−λ)/ph(w)dv(w)

(1− �z, w�)n+1+k+γ+(α−λ)/p

maps Lp(Bn, dvα) boundedly into Lp(Bn, dvα). By Proposition 8, the parameters
must satisfy the conditions

−pk < α + 1 < p Re
�
γ +

α− λ

p
+ 1

�
.

It is easy to see that these two conditions are the same as the two conditions

pk + α > −1 and p(Re γ + 1) > Re λ + 1.

Therefore, the conditions in Theorem 30 above are best possible.

Corollary 31. – Suppose p ≥ 1 and α is real. If β is any complex parameter such
that

(a) p(Re β + 1) > α + 1,
(b) n + β is not a negative integer,

then a holomorphic function f in Bn belongs to Ap

α
if and only if

f(z) =

�

Bn

g(w)dvβ(w)

(1− �z, w�)n+1+β

for some g ∈ Lp(Bn, dvα).

Proof. – Simply set γ = β and λ = α in the theorem.
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CHAPTER 10

ATOMIC DECOMPOSITION

Atomic decomposition for the Bergman spaces Ap

α
was first obtained in Coifman-

Rochberg [21] in the case α > −1. This turns out to be a powerful theorem in the
theory of Bergman spaces. We now generalize the result to all Ap

α
. We will also obtain

atomic decomposition for the generalized holomorphic Lipschitz spaces Λα.

Theorem 32. – Suppose p > 0, α is real, and b is real. If b is neither 0 nor a negative
integer, and

(12) b > n max
�
1,

1

p

�
+

α + 1

p
,

then there exists a sequence {ak} in Bn such that a holomorphic function f in Bn

belongs to Ap

α
if and only if, for some sequence {ck} ∈ �p,

(13) f(z) =
∞�

k=1

ck

(1− |ak|2)b−(n+1+α)/p

(1− �z, ak�)b
·

Proof. – Note that the condition in (12) implies that

b− α

p
> n max

�
1,

1

p

�
+

1

p
> n.

This, together with the assumption that b is neither 0 nor a negative integer, shows
that the operators Rs,α/p and Rs,α/p are well defined, where s is determined by

b = n + 1 + s +
α

p
·

Also note that the condition in (12) implies that

b� > n max
�
1,

1

p

�
+

1

p
,
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where b� = b− (α/p). By Theorem 2.30 of [71], there exists a sequence {ak} such that
f ∈ Ap if and only if, for some sequence {ck} ∈ �p,

(14) f(z) =
∞�

k=1

ck

(1− |ak|2)b
�−(n+1)/p

(1− �z, ak�)b�
·

If f is given by (13), then

Rs,α/pf(z) =
∞�

k=1

ck

(1− |ak|2)b−(n+1+α)/p

(1− �z, ak�)b−α/p

,

or

Rs,α/pf(z) =
∞�

k=1

ck

(1− |ak|2)b
�−(n+1)/p

(1− �z, ak�)b�
·

According to the previous paragraph, we have Rs,α/pf ∈ Ap. Combining this with
Theorem 10, we conclude that f ∈ Ap

α
.

The above arguments can be reversed, showing that every function f ∈ Ap

α
admits

an atomic decomposition (13). This completes the proof of the theorem.

Recall that when α = −(n+1), the resulting spaces Ap

α
are nothing but the diagonal

Besov spaces Bp. Atomic decompositions for Besov spaces have also been obtained in
Frazier-Jawerth [26] and Peloso [44].

It can be shown that the assumptions on the parameters in the above theorem are
optimal. It can also be shown that for f ∈ Ap

α
, we have

�f�p

p,α
∼ inf

∞�

k=1

|ck|p,

where the infimum is taken over all sequences {ck} satisfying the representation (13).

The atomic decomposition for functions in the Bloch space was first obtained in
Rochberg [46]. As a consequence of atomic decomposition for the Bloch space, we now
obtain an atomic decomposition for functions in the generalized Lipschitz spaces.

Theorem 33. – Suppose α and b are real parameters with the two properties:

(a) b + α > n,
(b) b is neither 0 nor a negative integer.

Then there exists a sequence {ak} in Bn such that a holomorphic function f in Bn

belongs to Λα if and only if, for some sequence {ck} ∈ �∞,

(15) f(z) =
∞�

k=1

ck

(1− |ak|2)b+α

(1− �z, ak�)b
·
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Proof. – Choose s so that b = n + 1 + s. Then the operators Rs,α and Rs,α are well
defined. Let b� = b + α. Then a function f is represented by (15) if and only if

Rs,αf(z) =
∞�

k=1

ck

(1− |ak|2)b
�

(1− �z, ak�)b�

for some {ck} ∈ �∞. Since Rs,αΛα = B, the desired result then follows from the
atomic decomposition for the Bloch space; see Theorem 3.23 of [71].

Once again, the assumptions on the parameters b and α in the above theorem are
best possible.

A little oh version of Theorem 33 also holds, giving the atomic decomposition for
the space Λα,0. The only adjustment to be made is to replace the sequence space �∞

by c0 (consisting of sequences that tend to 0). We omit the details.

As a corollary of atomic decomposition, we prove the following embedding
of weighted Bergman spaces which is well known and very useful in the spe-
cial case α > −1; see Aleksandrov [2], Beatrous-Burbea [11], Rochberg [46], and
Lemma 2.15 of Zhu [71].

Theorem 34. – Suppose 0 < p ≤ 1 and α is real. If

β =
n + 1 + α

p
− (n + 1),

then Ap

α
is continuously contained in A1

β
.

Proof. – Suppose 0 < p ≤ 1 and fix any positive integer b such that b > (n+1+α)/p.
If f ∈ Ap

α
, then there exists a sequence {ck} ∈ �p ⊂ �1 such that

f(z) =
∞�

k=1

ck

(1− |ak|2)b−(n+1+α)/p

(1− �z, ak�)b
,

where {ak} is a certain sequence in Bn. For any k ≥ 1 write

fk(z) =
1

(1− �z, ak�)b
·

Then

�f�1,β ≤
∞�

k=1

|ck|
�
1− |ak|2

�b−(n+1+α)/p�fk�1,β .

An easy computation shows that

RNfk(z) =
h(�z, ak�)

(1− �z, ak�)b+N
,
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where N is the smallest nonnegative integer with N + β > −1 and h is a polynomial
of degree N . It follows that

�

Bn

(1− |z|2)N |RNfk(z)|dvβ(z) ≤ C

�

Bn

(1− |z|2)N+βdv(z)

|1− �z, ak�|b+N
,

where C is a positive constant (independent of k). Estimating the second integral
above by Proposition 7, we obtain

�

Bn

(1− |z|2)N |RNfk(z)|dvβ(z) ≤ C �

(1− |ak|2)b−(n+1+α)/p

,

where C � is another positive constant independent of k. This shows that

�f�1,β ≤ C �
∞�

k=1

|ck| < ∞,

completing the proof of the theorem.

The above theorem can also be proved without appealing to atomic decomposi-
tion. In fact, if k is a sufficiently large positive integer (such that kp + α > −1 and
k + β > −1), then the condition f ∈ Ap

α
, 0 < p ≤ 1, implies that Rkf ∈ Ap

α� , where
α� = kp + α. By Lemma 2.15 of [71], we have Rkf ∈ A1

β� , where

β� =
n + 1 + α�

p
− (n + 1) = k +

n + 1 + α

p
− (n + 1) = k + β,

or equivalently, the function (1−|z|2)kRkf(z) belongs to L1(Bn, dvβ), that is, f ∈ A1
β
.

Theorem 35. – Suppose p > 0 and α is real. If q and r are positive numbers satis-
fying

1

p
=

1

q
+

1

r
,

then every function f ∈ Ap

α
admits a decomposition

f(z) =
∞�

k=1

gk(z)hk(z),

where each gk is in Aq

α
and each hk is in Ar

α
. Furthermore, if 0 < p ≤ 1, then

∞�

k=1

�gk�q,α�hk�r,α ≤ C�f�p,α,

where C is a positive constant independent of f .

Proof. – Consider the function

f(z) =
1

(1− �z, a�)b
,
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where a ∈ Bn and b is the constant from Theorem 32. We can write f = gh, where

g(z) =
1

(1− �z, a�)bp/q

, h(z) =
1

(1− �z, a�)bp/r
·

If k is a sufficiently large positive integer, then it follows from Proposition 7 that

�f�p,α ∼
� �

Bn

(1− |z|2)pkdvα(z)

|1− �z, a�|p(b+k)

�1/p

∼
� 1

(1− |a|2)pb−(n+1+α)

�1/p

=
1

(1− |a|2)b−(n+1+α)/p
·

Similar computations show that

�g�q,α ∼
1

(1− |a|2)(bp−n−1−α)/q
and �h�r,α ∼

1

(1− |a|2)(bp−n−1−α)/r
·

It follows that
�f�p,α ∼ �g�q,α�h�r,α.

The desired result then follows from Theorem 32 and the fact that
∞�

k=1

|ck| ≤ C
� ∞�

k=1

|ck|p
�1/p

when 0 < p ≤ 1. See the proof of Corollary 2.33 in [71] as well.

When α > −1, the above theorem can be found in Coifman-Rochberg [21] and
Rochberg [46].
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CHAPTER 11

COMPLEX INTERPOLATION

In this chapter we determine the complex interpolation space of two generalized
weighted Bergman spaces. We also determine the complex interpolation space between
a weighted Bergman space and a Lipschitz space.

Throughout this chapter we let

S =
�
z = x + iy ∈ C : 0 < x < 1

�
, S =

�
z = x + iy ∈ C : 0 ≤ x ≤ 1

�
.

Thus S is an open strip in the complex plane and S is its closure. We denote the two
boundary lines of S by

L(S) =
�
z = x + iy ∈ C : x = 0

�
, R(S) =

�
z = x + iy ∈ C : x = 1

�
.

The complex method of interpolation is based on Hadamard’s three lines theorem,
which states that if f is a function that is continuous on S, bounded on S, and analytic
in S, then for any θ ∈ (0, 1)

sup
Re z=θ

��f(z)
�� ≤

�
sup

Re z=0

��f(z)
���1−θ�

sup
Re z=1

��f(z)
���θ

.

Let X and Y be two Banach spaces of holomorphic functions in Bn. Then X + Y

becomes a Banach space with the norm

�f�X+Y = inf
�
�g�X + �h�Y

�
, f ∈ X + Y,

where the infimum is taken over all decompositions f = g+h with g ∈ X and h ∈ Y . If
θ ∈ (0, 1), the complex interpolation space [X,Y ]θ consists of holomorphic functions f

in Bn with the following properties:

1) There exists a function ζ �→ fζ from S into the Banach space X + Y that is
analytic in S, continuous on S, and bounded on S.

2) fθ = f .
3) The function ζ �→ fζ is bounded and continuous from L(S) into X.
4) The function ζ �→ fζ is bounded and continuous from R(S) into Y .
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The space [X,Y ]θ is a Banach space with the norm

�f�θ = inf max
�

sup
Re ζ=0

�fζ�X , sup
Re ζ=1

�fζ�Y

�
,

where the infimum is taken over all fζ satisfying conditions 1) through 4) above. See
Bergh-Löfström [14] and Bennett-Sharpley [13] for more information about complex
interpolation.

The complex method of interpolation spaces is functorial in the sense that if

T : X + Y −→ X � + Y �

is a linear operator with the property that T maps X boundedly into X � and T

maps Y boundedly into Y �, then T also maps [X,Y ]θ boundedly into [X �, Y �]θ for
each θ ∈ (0, 1).

The most classical example of complex interpolation spaces concerns Lp spaces
(over any measure space). More specifically, if 1 ≤ p0 < p1 ≤ ∞ and

1

p
=

1− θ

p0
+

θ

p1

for some 0 < θ < 1, then
[Lp0 , Lp1 ]

θ
= Lp

with equal norms.
More generally, if w0 and w1 are weight functions of a measure µ, and if 1 ≤ p0 <

p1 < ∞, then for any θ ∈ (0, 1) we have
�
Lp0(w0), L

p1(w1)
�
θ

= Lp(w)

with equal norms, provided that
1

p
=

1− θ

p0
+

θ

p1
and w

1
p = w

1−θ
p0

0 w
θ

p1
1 ·

This is usually referred to as the Stein-Weiss interpolation theorem. See Stein-
Weiss [55].

Theorem 36. – Suppose α and β are real. If 1 ≤ p0 ≤ p1 < ∞ and
1

p
=

1− θ

p0
+

θ

p1

for some θ ∈ (0, 1), then �
Ap0

α
, Ap1

β

�
θ

= Ap

γ

with equivalent norms, where γ is determined by
γ

p
=

α

p0
(1− θ) +

β

p1
θ.
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Proof. – It is clear that 1 ≤ p < ∞. We fix a large positive number s such that

(16) p(s + 1) > γ + 1, p0(s + 1) > α + 1, p1(s + 1) > β + 1.

Then by Corollary 31, the integral operator

Tg(z) =

�

Bn

g(w)dvs(w)

(1− �z, w�)n+1+s

maps Lp(Bn, dvγ) boundedly onto Ap

γ
; it maps Lp0(Bn, dvα) boundedly onto Ap0

α
; and

it maps Lp1(Bn, dvβ) boundedly onto Ap1

β
. It follows from the functorial property of

complex interpolation and the Stein-Weiss interpolation theorem that T maps the
space

�
Lp0(Bn, dvα), Lp1(Bn, dvβ)

�
θ

= Lp(Bn, dvγ)

boundedly into
�
Ap0

α
, Ap1

β

�

θ

. Since TLp(Bn, dvγ) = Ap

γ
, we conclude that

Ap

γ
⊂

�
Ap0

α
, Ap1

β

�
θ
,

and the inclusion is continuous.

On the other hand, if k is a sufficiently large positive integer, the operator L

defined by

L(f)(z) =
�
1− |z|2

�k

Rkf(z), f ∈ H(Bn),

maps Ap0
α

boundedly into Lp0(Bn, dvα); and it maps Ap1

β
boundedly into Lp1(Bn, dvβ).

By the functorial property of complex interpolation and the Stein-Weiss interpolation
theorem, the operator L also maps [Ap0

α
, Ap1

β
]θ boundedly into Lp(Bn, dvγ). Equiva-

lently, if f ∈ [Ap0
α

, Ap1

β
]θ, then the function (1− |z|2)kRkf(z) belongs to Lp(Bn, dvγ),

that is, f ∈ Ap

γ
. We conclude that

�
Ap0

α
, Ap1

β

�
θ
⊂ Ap

γ
,

and the inclusion is continuous. This completes the proof of the theorem.

Corollary 37. – Suppose α is real, β is real, 1 ≤ p < ∞, and 0 < θ < 1. Then
�
Ap

α
, Ap

β

�
θ

= Ap

γ
,

where γ = α(1− θ) + β θ.

Theorem 38. – Suppose α and β are real. If 1 ≤ p < ∞ and 0 < θ < 1, then
�
Ap

α
,Λβ

�
θ

= Aq

γ

with equivalent norms, where q = p/(1− θ) and γ = α− qβθ.
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Proof. – First we consider the linear operator

Tf(z) =

�

Bn

f(w)dvs+β(w)

(1− �z, w�)n+1+s
,

where s is a fixed and sufficiently large positive number. By Theorem 17 and Theo-
rem 30, the operator T maps L∞(Bn) boundedly onto Λβ ; and it maps Lp(Bn, dvα+pβ)

boundedly onto Ap

α
. Since

1

q
=

1− θ

p
+

θ

∞
,

it follows that T maps the space

Lq(Bn, dvα+pβ) =
�
Lp(Bn, dvα+pβ), L∞(Bn)

�
θ

boundedly into [Ap

α
,Λβ ]θ. But we have TLq(Bn, dvα+pβ) = Aq

γ
according again to

Theorem 30. So
Aq

γ
⊂

�
Ap

α
,Λβ

�
θ
,

and the inclusion is continuous.

Next we consider the linear operator

Lf(z) =
�
1− |z|2

�k−β

Rkf(z), f ∈ H(Bn),

where k is a fixed and sufficiently large positive integer. The operator L maps Ap

α

boundedly into Lp(Bn, dvα+pβ); and it maps Λβ boundedly into L∞(Bn). Therefore,
L also maps [Ap

α
,Λβ ]

θ
boundedly into Lq(Bn, dvα+pβ), that is, f ∈ [Ap

α
,Λβ ]θ implies

that the function (1− |z|2)k−βRkf(z) is in Lq(Bn, dvα+pβ), which is the same as the
function (1− |z|2)kRkf(z) being in Lq(Bn, dvγ), or f ∈ Aq

γ
. We conclude that

�
Ap

α
,Λβ

�
θ
⊂ Aq

γ
,

and the inclusion is continuous. This completes the proof of the theorem.

Theorem 39. – Suppose α is real, β is real, and 0 < θ < 1. Then
�
Λα,Λβ

�
θ

= Λγ

with equivalent norms, where γ = α(1− θ) + β θ.

Proof. – Fix a sufficiently large positive number s. If f ∈ Λγ , there exists a function
g ∈ L∞(Bn) such that

f(z) =

�

Bn

g(w)dvs(w)

(1− �z, w�)n+1+s−γ
;

see Theorem 17. For any ζ ∈ S we define

fζ(z) =

�

Bn

g(w)(1− |w|2)α(1−ζ)+βζ−γ dvs(w)

(1− �z, w�)n+1+s−γ
·

MÉMOIRES DE LA SMF 115



CHAPTER 11. COMPLEX INTERPOLATION 51

Let k be a sufficiently large positive integer. Then it follows easily from Proposition 7
that the map ζ �→ fζ is a bounded continuous function from S into

Λα + Λβ = Λmin(α,β),

and its restriction to S is analytic. Also, the map ζ �→ fζ is a bounded continuous
function from L(S) into Λα, and from R(S) into Λβ . Since fθ = f , we conclude from
the definition of complex interpolation that f ∈ [Λα,Λβ ]θ. This shows that

Λγ ⊂ [Λα,Λβ ]
θ

and the inclusion is continuous.
On the other hand, if f ∈ [Λα,Λβ ]

θ
, then there exists a family of functions fζ ,

where ζ ∈ S, such that
(a) ζ �→ fζ is a bounded continuous function from S into Λmin(α,β) whose restriction

to S is analytic;
(b) ζ �→ fζ is a bounded continuous function from L(S) into Λα;
(c) ζ �→ fζ is a bounded continuous function from R(S) into Λβ ;
(d) fθ = f .

Let k be a positive integer with k > max(α, β) and consider the functions

gζ(z) =
�
1− |z|2

�k−α(1−ζ)−βζ

Rkfζ(z), z ∈ Bn, ζ ∈ S.

By conditions (b) and (c) of the previous paragraph, there exist finite positive
constants M0 and M1 such that

(17) sup
z∈Bn

ζ∈L(S)

��gζ(z)
�� = M0, sup

z∈Bn

ζ∈R(S)

��gζ(z)
�� = M1.

For any fixed point z ∈ Bn, it follows from condition (a) of the previous paragraph that
the function F (ζ) = gζ(z) is a bounded continuous function on S whose restriction
to S is analytic. Moreover, it follows from (17) that |F (ζ)| ≤ M0 for ζ ∈ L(S) and
|F (ζ)| ≤ M1 for ζ ∈ R(S). By Hadamard’s three lines theorem, we must have

��F (θ)
�� ≤ M1−θ

0 Mθ

1 or
�
1− |z|2

�k−γ
��Rkf(z)

�� ≤ M1−θ

0 Mθ

1 .

Since the constant on the right-hand side is independent of z, we have shown that
f ∈ Λγ . Therefore,

[Λα,Λβ ]
θ
⊂ Λγ ,

and the inclusion is continuous. This completes the proof of the theorem.
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CHAPTER 12

REPRODUCING KERNELS

In this chapter we focus on the Hilbert space case p = 2. We are going to ob-
tain a characterization of A2

α
in terms of Taylor coefficients, and we are going to

define a canonical inner product on A2
α

so that the associated reproducing kernel can
be calculated in closed form.

Reproducing kernels for A2
α

are also calculated in Beatrous-Buebea [11] in terms
of a certain family of hypergeometric functions. Our approach here is different.
We wish to write the reproducing kernel of A2

α
as something that is as close to

(1− �z, w�)−(n+1+α) as possible.

Theorem 40. – Suppose α is real and

f(z) =
�

m

amzm.

Then f ∈ A2
α

if and only if its Taylor coefficients satisfy the condition

(18)
�

|m|>0

m! e|m|

|m|n+|m|+α+ 1
2

|am|2 < ∞.

Proof. – Fix a positive integer k such that 2k + α > −1. If f(z) =
�

m
amzm is the

Taylor series of f in Bn, then

Rkf(z) =
�

|m|>0

am|m|kzm.

It follows that the integral

Ik,α(f) =

�

Bn

��(1− |z|2)kRkf(z)
��2dvα(z)

is equal to
�

|m|>0

|am|2 · |m|2k

�

Bn

|zm|2
�
1− |z|2

�2k+α

dv(z).
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By integration in polar coordinates (see 1.4.3 of Rudin [47] or Lemma 1.11 of Zhu
[71]), there exists a constant C > 0 (independent of f) such that

Ik,α(f) = C
�

|m|>0

|m|2k m!

Γ(n + |m| + 2k + α + 1)
|am|2.

Since n, k, and α are all constants, an application of Stirling’s formula shows that

Γ(n + |m| + 2k + α + 1) ∼ |m|n+|m|+2k+α+ 1
2 e−|m|

as |m| → ∞. We conclude that the integral Ik,α(f) is finite if and only if the condition
in (18) holds, and the proof of the theorem is complete.

An immediate consequence of the condition in (18) is that the space A2
α

is inde-
pendent of the integer k used in the definition of A2

α
. Of course, we already knew this

from Section 4.

Theorem 41. – Suppose α > −(n + 1). Then A2
α

can be equipped with an inner
product such that the associated reproducing kernel is given by

(19) Kα(z, w) =
1

(1− �z, w�)n+1+α
·

Proof. – It follows from Stirling’s formula again that the condition in (18) is equivalent
to

(20)
�

m

m! Γ(n + 1 + α)

Γ(n + |m| + α + 1)
|am|2 < ∞.

Now define an inner product on A2
α

as follows:

�f, g�α =
�

m

m! Γ(n + 1 + α)

Γ(n + |m| + α + 1)
ambm,

where

f(z) =
�

m

amzm, g(z) =
�

m

bmzm.

Then A2
α

becomes a separable Hilbert space with the following functions forming an
orthonormal basis:

em(z) =

�
Γ(n + |m| + α + 1)

m! Γ(n + α + 1)
zm,
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where m runs over all n-tuples of nonnegative integers. It follows from the multinomial
formula (1) that the reproducing kernel of A2

α
is given by

Kα(z, w) =
�

m

em(z)em(w) =
�

m

Γ(n + |m| + α + 1)

m! Γ(n + α + 1)
zmwm

=
∞�

k=0

Γ(n + k + α + 1)

k! Γ(n + 1 + α)

�

|m|=k

k!

m!
zmwm

=
∞�

k=0

Γ(n + k + 1 + α)

k! Γ(n + α + 1)
�z, w�k =

1

(1− �z, w�)n+1+α
·

This proves the desired result.

When α > −1, the reproducing kernel for A2
α

is of course well known. See Rudin
[47] or Zhu [71]. When α ≤ −1, the point here is that you need to use an appropriate
inner product on A2

α
so that its reproducing kernel is computable in closed form.

Theorem 42. – Suppose α = −(n + 1). Then A2
α

can be equipped with an inner
product such that the associated reproducing kernel is

(21) K−(n+1)(z, w) = 1 + log
1

1− �z, w� ·

Proof. – If α = −(n + 1), then Theorem 40 tells us that a holomorphic function
f(z) =

�
m

amzm in Bn belongs to A2
−(n+1) if and only if

�

|m|>0

m! e|m|

|m||m|− 1
2

|am|2 < ∞,

which, according to Stirling’s formula, is equivalent to
�

|m|>0

|m| m!

|m|! |am|2 < ∞.

If we define an inner product on A2
−(n+1) by

(22) �f, g�−(n+1) = f(0)g(0) +
�

|m|>0

|m| m!

|m|! ambm,

where
f(z) =

�

m

amzm, g(z) =
�

m

bmzm,

then A2
−(n+1) becomes a separable Hilbert space with the following functions forming

an orthonormal basis:

1, em(z) =

�
|m|!

m!|m| zm,
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where m runs over all n-tuples of nonnegative integers with |m| > 0. It follows from (1)
that the reproducing kernel of A2

−(n+1) is given by

K−(n+1)(z, w) = 1 +
�

|m|>0

|m|!
m!|m| zmwm = 1 +

∞�

k=1

1

k

�

|m|=k

k!

m!
zmwm

= 1 +
∞�

k=1

�z, w�k

k
= 1 + log

1

1− �z, w�
,

completing the proof of the theorem.

The space A2
−(n+1) can be thought of as the high dimensional analog of the classical

Dirichlet space in the unit disk. It is the unique space of holomorphic functions in the
unit ball that can be equipped with a semi-inner product that is invariant under the
action of the automorphism group. See Zhu [67]. The formula in Theorem 42 above
also appeared in Peloso [44] and Zhu [67].

Theorem 43. – Suppose −N < n + 1 + α < −N + 1 for some positive integer N .
Then for any polynomial

Q(z, w) =
�

|m|≤N

ωmzmw m

with the property that

ωm > (−1)N+1 Γ(n + |m| + α + 1)

m! Γ(n + α + 1)
,

we can equip A2
α

with an inner product such that the associated reproducing kernel is
given by

(23) Kα(z, w) = Q(z, w) +
(−1)N

(1− �z, w�)n+1+α
·

Proof. – By Theorem 40 and Stirling’s formula again, a function f(z) =
�

m
amzm

is in A2
α

if and only if
�

|m|>0

���
m! Γ(n + 1 + α)

Γ(n + |m| + α + 1)

��� |am|2 < ∞.

If −N < n + 1 + α < −N + 1, it follows from the identity
Γ(n + α + 1)

Γ(n + |m| + α + 1)
=

1

(n + 1 + α)(n + 2 + α) · · · (n + |m| + α)

that for any |m| > N we have
���

Γ(n + α + 1)

Γ(n + |m| + α + 1)

��� = (−1)N
Γ(n + α + 1)

Γ(n + |m| + α + 1)
·
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Therefore, for any positive coefficients cm, where |m| ≤ N , we can define an inner
product on A2

α
as follows:

(24) �f, g�α =
�

|m|≤N

cmambm + (−1)N
�

|m|>N

m! Γ(n + α + 1)

Γ(n + |m| + α + 1)
ambm,

where
f(z) =

�

m

amzm, g(z) =
�

m

bmzm.

Then A2
α

becomes a separable Hilbert space with the following functions forming an
orthonormal basis:

em(z) =
1

√
cm

zm, |m| ≤ N,

and

em(z) =

�

(−1)N
Γ(n + |m| + α + 1)

m! Γ(n + α + 1)
zm, |m| > N.

Using the mutinomial formula (1), we find that the corresponding reproducing kernel
for A2

α
is given by

Kα(z, w) =
�

|m|≤N

em(z)em(w) +
�

|m|>N

em(z)em(w)

=
�

|m|≤N

1

cm

zmwm + (−1)N
�

|m|>N

Γ(n + |m| + α + 1)

m! Γ(n + α + 1)
zmwm

=
�

|m|≤N

ωmzmwm +
(−1)N

(1− �z, w�)n+1+α
,

where

ωm =
1

cm

− (−1)N
Γ(n + |m| + α + 1)

m! Γ(n + α + 1)
> (−1)N+1 Γ(n + |m| + α + 1)

m! Γ(n + α + 1)
·

This completes the proof of the theorem.

The appearance of the sign (−1)N in (23) is a little peculiar; we do not know if
there is any simple explanation for it. We also note in passing that the reproducing
kernel given by (23) is bounded.

It remains for us to consider the case in which n + 1 + α = −N is a negative
integer. The principal part of the reproducing kernel in this case will be shown to be
the function

(�z, w� − 1)N log
1

1− �z, w� ·

Thus for every positive integer N we consider the function

fN (z) = (z − 1)N log
1

1− z
, z ∈ D.
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It is clear that each fN is analytic in the unit disk D and

f �
N+1(z) = (N + 1)fN (z)− (z − 1)N .

In particular,
f (k+1)

N+1 (z) = (N + 1)f (k)
N

(z), k > N.

It follows from this and induction that f (k)
N

(0) > 0 for all k > N . Also observe that
the Nth derivative of fN is − log(1− z) plus a polynomial, so the Taylor coefficients
of fN has the property that, as k →∞,

f (k)
N

(0)

k!
∼ 1

kN+1
·

Theorem 44. – Suppose n + 1 + α = −N for some positive integer N and

(z − 1)N log
1

1− z
=

∞�

k=0

Akzk.

Then for any polynomial

Q(z, w) =
�

|m|≤N

ωmzmwm

with the property that

ωm > −
|m|!A|m|

m!
,

we can equip A2
α

with an inner product such that the associated reproducing kernel is

(25) Kα(z, w) = Q(z, w) + (�z, w� − 1)N log
1

1− �z, w� ·

Proof. – It follows from (18) and Stirling’s formula that a function f(z) =
�

m
amzm

belongs to A2
α

if and only if
�

m

|m|N+1 m!

|m|! |am|2 < ∞,

which is equivalent to
�

|m|>N

m!

|m|!A|m|
|am|2 < ∞.

If cm > 0 for |m| ≤ N , we can define an inner product on A2
α

as follows:

(26) �f, g�α =
�

|m|≤N

cmambm +
�

|m|>N

m!

|m|!A|m|
ambm.

where
f(z) =

�

m

amzm, g(z) =
�

m

bmzm.
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Then A2
α

becomes a separable Hilbert space and the following functions form an
orthonormal basis:

em(z) =
1

√
cm

zm, |m| ≤ N,

and

em(z) =

�
|m|!A|m|

m!
zm, |m| > N.

The associated reproducing kernel for A2
α

is given by

Kα(z, w) =
�

|m|≤N

em(z)em(w) +
�

|m|>N

em(z)em(w)

=
�

|m|≤N

zmwm

cm

+
�

|m|>N

|m|!A|m|

m!
zmwm

=
�

|m|≤N

� 1

cm

−
|m|!A|m|

m!

�
zmwm +

∞�

k=0

Ak

�

|m|=k

k!

m!
zmwm

=
�

|m|≤N

ωmzmwm +
∞�

k=0

Ak�z, w�k

= Q(z, w) + (�z, w� − 1)N log
1

1− �z, w�
,

where the coefficients of
Q(z, w) =

�

|m|≤N

ωmzmwm

satisfy

ωm =
1

cm

−
|m|!A|m|

m!
> −

|m|!A|m|

m!
·

This completes the proof of the theorem.

Once again, the reproducing kernel in (25) is bounded on Bn×Bn. Also notice that
we can rewrite the kernel in (25) as

Kα(z, w) = Q(z, w) + (−1)N
�
1− �z, w�

�N

log
1

1− �z, w�
,

which is probably a partial explanation for the sign (−1)N in (23).

It is clear that the reproducing kernel of a Hilbert space of holomorphic functions
depends on the inner product used for the space. We close this chapter by examining
the reproducing kernel of A2

α
that corresponds to the following natural inner product

which we have used in Chapter 7:

�f, g�α = f(0)g(0) +

�

Bn

Rkf(z)Rkg(z)dv2k+α(z),
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where k is any nonnegative integer with 2k + α > −1. This inner product gives rise
to the norm

�f�2,α =
�
|f(0)|2 +

�

Bn

��Rkf(z)
��2dv2k+α(z)

�1/2

for f ∈ A2
α
. For this inner product we can show that the corresponding reproducing

kernel for A2
α

is

Kα

w
(z) = Kα(z, w) = 1 + R−2k

� 1

(1− �z, w�)n+1+α+2k

�
.

The result is a simple consequence of the identity,

f(0)g(0) +

�

Bn

Rkf(z)R−kg(z)dv2k+α(z) =

�

Bn

f(z)g(z)dv2k+α(z),

which can easily be proved by the use of Taylor expansions. We leave the details to
the interested reader.
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CHAPTER 13

CARLESON TYPE MEASURES

The purpose of this chapter is to study Carleson type measures for the Bergman
spaces Ap

α
. Unlike most other chapters of the paper, the results here depend very

much on the various parameters.

The notion of Carleson measures was of course introduced by Carleson [15], [16]
for the unit disk. Carleson’s original definition works well in the theory of Hardy
spaces, and this can easily be seen in such classics as Duren [23] and Garnett [27].
The characterization of Carleson measures for the Hardy spaces of the unit ball can
be found in Hörmander [32] and Power [45].

Later, the notion of Carleson measures was extended to the context of Bergman
spaces. Earlier papers in this direction include Cima-Wogen [20], Hastings [31], Lueck-
ing [38], Zhu [66]. Also, Carleson type measures have been studied for holomorphic
Besov spaces (of which the Dirichlet space is a special case); see Arcozzi-Rochberg-
Sawyer [7], Kaptanoglu [35], Stegenga [54], and Wu [61]. In particular, our results of
this chapter contain several special cases that have been known before.

For any ζ ∈ Sn and r > 0 let

Qr(ζ) =
�
z ∈ Bn : |1− �z, ζ�| < r

�
.

These are the high dimensional analogues of Carleson squares in the unit disk. They
are also called nonisotropic metric balls. See Rudin [47] or Zhu [71] for more infor-
mation about the geometry of these nonisotropic balls.

Theorem 45. – Suppose n + 1 + α > 0 and µ is a positive Borel measure on Bn.
Then the following conditions are equivalent:

(a) There exists a constant C > 0 such that, for all ζ ∈ Sn and all r > 0,

(27) µ
�
Qr(ζ)

�
≤ Crn+1+α.
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(b) For each s > 0 there exists a constant C > 0 such that, for all z ∈ Bn,

(28)
�

Bn

(1− |z|2)sdµ(w)

|1− �z, w�|n+1+α+s
≤ C.

(c) For some s > 0 there exists a constant C > 0 such that the inequality in (28)
holds for all z ∈ Bn.

Proof. – It is obvious that condition (b) implies (c). Now assume that condition (c)
holds, that is, there exist positive constants s and C such that the inequality in (28)
holds. If ζ ∈ Sn and r ∈ (0, 1), then

(29)
�

Qr(ζ)

(1− |z|2)sdµ(w)

|1− �z, w�|n+1+α+s
≤ C

for all z ∈ Bn. If we choose z = (1− r)ζ, then

1− �z, w� = (1− r)
�
1− �ζ, w�

�
+ r

for all w ∈ Bn, so
��1− �z, w�

�� ≤ (1− r)r + r < 2r

for all w ∈ Qr(ζ), which gives

(1− |z|2)s

|1− �z, w�|n+1+α+s
≥ rs

(2r)n+1+α+s
=

2−(n+1+α+s)

rn+1+α

for all w ∈ Qr(ζ). Combining this with (29), we conclude that

µ
�
Qr(ζ)

�
≤ 2n+1+α+sCrn+1+α

for all ζ ∈ Sn and all r ∈ (0, 1). The case r ≥ 1 can be disposed of very easily. This
proves that condition (c) implies (a).

Next assume that condition (a) holds. In particular, µ is a finite measure, so

sup
|z|≤ 3

4

�

Bn

(1− |z|2)sdµ(w)

|1− �z, w�|n+1+α+s
< ∞

for each s > 0. We fix an arbitrary positive number s and proceed to show that the
inequality in (28) must hold for 3

4 < |z| < 1.

Fix some point z ∈ Bn with 3
4 < |z| < 1 and choose ζ = z/|z|. For any nonnegative

integer k let rk = 2k+1(1−|z|). We decompose the unit ball Bn into the disjoint union
of the sets

E0 = Qr0(ζ), Ek = Qrk(ζ)−Qrk−1(ζ), 1 ≤ k < ∞.

By condition (a), we have

µ(Ek) ≤ µ(Qrk(ζ)) ≤ 2(k+1)(n+1+α)
�
1− |z|

�n+1+α

C
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for all k ≥ 0. On the other hand, if k ≥ 1 and w ∈ Ek, then
��1− �z, w�

�� =
��(1− |z|) + |z|(1− �ζ, w�)

��

≥ |z| ·
��1− �ζ, w�

��−
�
1− |z|

�

≥ 3
4 × 2k

�
1− |z|

�
−

�
1− |z|

�
≥ 2k−1

�
1− |z|

�
.

This holds for k = 0 as well, because
��1− �z, w�

�� ≥ 1− |z| ≥ 1
2

�
1− |z|

�
.

It follows that
�

Bn

(1− |z|2)sdµ(w)

|1− �z, w�|n+1+α+s
=

∞�

k=0

�

Ek

(1− |z|2)sdµ(w)

|1− �z, w�|n+1+α+s

≤
∞�

k=0

(1− |z|2)sµ(Ek)

(2k−1(1− |z|))n+1+α+s

≤
∞�

k=0

2s+(k+1)(n+1+α)(1− |z|)n+1+α+sC

2(k−1)(n+1+α+s)(1− |z|)n+1+α+s
= C �

∞�

k=0

1

(2s)k
< ∞,

where C � is a positive constant independent of z. This completes the proof of the
theorem.

Our results are most complete when 0 < p ≤ 1. The following result settles the
case n + 1 + α > 0, and Proposition 49 deals with the cases n + 1 + α ≤ 0.

Theorem 46. – Suppose α > −(n+1), 0 < p ≤ 1, and µ is a positive Borel measure
on Bn. Then the following two conditions are equivalent:

(a) There exists a constant C > 0 such that, for all f ∈ Ap

α
,

(30)
�

Bn

��f(w)
��pdµ(w) ≤ C�f�p

p,α
.

(b) There exists a constant C > 0 such that, for all ζ ∈ Sn and all r ∈ (0, 1),

(31) µ
�
Qr(ζ)

�
≤ Crn+1+α.

Proof. – First assume that condition (a) holds. We consider the function

f(w) =
1

(1− �w, z�)(n+1+α+s)/p

, w ∈ Bn,

where s is positive and z ∈ Bn. If k is the smallest nonnegative integer such that
kp + α > −1, then an elementary calculation shows that

Rkf(w) =
Q(�w, z�)

(1− �w, z�)k+(n+1+α+s)/p

,
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where Q is a polynomial of degree k. It follows from Proposition 7 that there exists a
constant C > 0 (independent of z) such that

�

Bn

��(1− |w|2)kRkf(w)
��pdvα(w) ≤ C

(1− |z|2)s

for all z ∈ Bn. Combining this with condition (a), we conclude that
�

Bn

(1− |z|2)sdµ(w)

|1− �z, w�|n+1+α+s
≤ C

for all z ∈ Bn, which, according to Theorem 45, is equivalent to condition (b).
Next assume that condition (b) holds. Then condition (b) of Theorem 45 holds.

We proceed to prove the inequality in (30).
Given f ∈ Ap

α
, we use the atomic decomposition for Ap

α
(see Theorem 32) to write

f(z) =
∞�

k=1

ck

(1− |ak|2)b−(n+1+α)/p

(1− �z, ak�)b
,

where b is a sufficiently large positive number and
∞�

k=1

|ck|p ≤ C�f�p

p,α

for some positive constant C independent of f . Since 0 < p ≤ 1, we have
��f(z)

��p ≤
∞�

k=1

|ck|p
(1− |ak|2)pb−(n+1+α)

|1− �z, ak�|pb
,

and so
�

Bn

|f(z)|pdµ(z) ≤
∞�

k=1

|ck|p(1− |ak|2)pb−(n+1+α)

�

Bn

dµ(z)

|1− �z, ak�|pb
·

Apply condition (b) of Theorem 45 to the last integral above. We obtain C � > 0

(a constant independent of f) such that
�

Bn

��f(z)
��pdµ(z) ≤ C �

∞�

k=1

|ck|p ≤ CC ��f�p

p,α
.

This completes the proof of the theorem.

Corollary 47. – If α > −1 and p > 0, then the following two conditions are equiv-
alent for a positive Borel measure µ on Bn.

(a) There exists a constant C > 0 such that, for all f ∈ Ap

α
,

�

Bn

��f(z)
��pdµ(z) ≤ C

�

Bn

��f(z)
��pdvα(z).

(b) There exists a constant C > 0 such that, for all r > 0 and ζ ∈ Sn,

µ
�
Qr(ζ)

�
≤ Crn+1+α.

MÉMOIRES DE LA SMF 115



CHAPTER 13. CARLESON TYPE MEASURES 65

Proof. – That (a) implies (b) follows from the first part of the proof of Theorem 46.
Theorem 46 also tells us that (b) implies (a) when 0 < p ≤ 1.

Now assume that condition (b) holds and f ∈ Ap

α
for some p > 1. Then the function

g = fN belongs to Aq

α
, where N is any positive integer and q = p/N . We choose N

large enough so that 0 < q < 1. Then
�

Bn

��g(z)
��qdµ(z) ≤ C

�

Bn

��g(z)
��qdvα(z),

where C is a positive constant independent of g. This is the same as
�

Bn

��f(z)
��pdµ(z) ≤ C

�

Bn

��f(z)
��pdvα(z),

and the corollary is proved.

Let β(z, w) be the distance between z and w in the Bergman metric of Bn. For any
R > 0 and a ∈ Bn we write

D(a, R) =
�
z ∈ Bn : β(z, a) < R

�
.

When α > −1, the condition

µ
�
Qr(ζ)

�
≤ Crn+1+α, r > 0, ζ ∈ Sn,

is equivalent to the condition

µ
�
D(a, R)

�
≤ CR

�
1− |a|2

�n+1+α

, a ∈ Bn.

See Lemma 5.23 and Corollary 5.24 of [71] (note that the definition of Qr(ζ) in [71] is
different from its definition in this paper). It can be shown that these two conditions
are no longer equivalent when α ≤ −1. In fact, if f is a function in the Bloch space
that is not in BMOA, then the measure

dµ(z) =
��Rf(z)

��2�1− |z|2
�
dv(z)

satisfies

sup
r,ζ

µ(Qr(ζ))

rn
= ∞ and sup

a∈Bn

µ(D(a, R))

(1− |a|2)n
< ∞.

Recall that the Hardy space Hp, where 0 < p < ∞, consists of holomorphic func-
tions f in Bn such that

�f�p

p
= sup

0<r<1

�

Sn

��f(rζ)
��pdσ(ζ) < ∞,

where dσ is the normalized surface area measure on Sn. It is well known that every
function f ∈ Hp has a finite radial limit at almost every point on Sn. If we write

f(ζ) = lim
r→1−

f(rζ), ζ ∈ Sn,
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then we actually have

�f�p

p
=

�

Sn

|f(ζ)|pdσ(ζ).

It is known that the following two conditions are equivalent for a positive Borel
measure µ on Bn; see Hörmander [32], Power [45], or Zhu [71].

(a) There exists a constant C > 0 such that, for all f ∈ Hp,
�

Bn

��f(z)
��pdµ(z) ≤ C

�

Sn

��f(ζ)
��pdσ(ζ).

(b) There exists a constant C > 0 such that, for all r > 0 and ζ ∈ Sn,

µ
�
Qr(ζ)

�
≤ Crn.

Corollary 48. – Suppose α = −1, 0 < p ≤ 2, and µ is a positive Borel measure on
Bn. Then the following two conditions are equivalent.

(a) There exists a constant C > 0 such that, for all f ∈ Ap

α
,

�

Bn

��f(z)
��pdµ(z) ≤ C�f�p

p,α
.

(b) There exists a constant C > 0 such that, for all r > 0 and ζ ∈ Sn,

µ
�
Qr(ζ)

�
≤ Crn.

Proof. – That (a) implies (b) follows from the first part of the proof of Theorem 46.
To show that condition (b) implies (a), we notice that A2

−1 = H2, so the case p = 2

follows from the characterization of Carleson measures for Hardy spaces. The case
0 < p ≤ 1 follows from Theorem 46. The case of 1 ≤ p ≤ 2 then follows from complex
interpolation.

Proposition 49. – Let µ be a positive Borel measure on Bn. If n + 1 + α < 0 and
0 < p < ∞, or if n + 1 + α = 0 and 0 < p ≤ 1, then the following two conditions are
equivalent.

(a) There exists a constant C > 0 such that, for all f ∈ Ap

α
,

�

Bn

��f(z)
��pdµ(z) ≤ C�f�p

p,α
.

(b) The measure µ is finite.

Proof. – Since Ap

α
contains all constant functions, it is clear that condition (a) implies

(b). On the other hand, if µ is a finite positive Borel measure, it follows from The-
orems 21 and 22 that Ap

α
is contained in Lp(Bn, dµ). By the closed graph theorem,
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Ap

α
is continuously contained in Lp(Bn, dµ), so there exists a positive constant C > 0

such that, for all f ∈ Ap

α
, �

Bn

|f |pdµ ≤ C�f�p

p,α
.

As far as the condition�

Bn

��f(z)
��pdµ(z) ≤ C�f�p

p,α
, f ∈ Ap

α
,

is concerned, the most difficult case is probably when α = −(n + 1) and 1 < p < ∞.
This case is considered in Arcozzi-Rochberg-Sawyer [7] and complete results are ob-
tained in the range 1 < p < 2 + 1/(n − 1). Earlier results dealing with the Besov
spaces include Arcozzi [5], Arcozzi-Rochberg-Sawyer [6], Stegenga [54], and Wu [61].

Theorem 50. – Suppose 0 < p ≤ q < ∞, α is real, and µ is a positive Borel measure
on Bn. Then for any nonnegative integer k with α+kp > −1 the following conditions
are equivalent.

(a) There is a contant C > 0 such that, for all f ∈ Ap

α
,

�

Bn

|Rkf(w)|qdµ(w) ≤ C�f�q

p,α
.

(b) For each (or some) s > 0 there is a constant C > 0 such that, for all z ∈ Bn,
�

Bn

(1− |z|2)s

|1− �z, w�|s+(n+1+α+kp)q/p
dµ(w) ≤ C.

(c) There is a constant C > 0 such that, for all r > 0 and ζ ∈ (0, 1),

µ
�
Qr(ζ)

�
≤ Cr(n+1+α+kp)q/p.

(d) For each (or some) R > 0 there exists a constant C > 0 such that, for all
a ∈ Bn,

µ
�
D(a, R)

�
≤ C(1− |a|2)(n+1+α+kp)q/p.

Proof. – Suppose (a) holds. Applying (a) to the functions fk(z) = zk, 1 ≤ k ≤ n,
we see that µ is a finite measure. For a fixed z ∈ Bn let

hz(w) =
(1− |z|2)s/q

(1− �w, z�)s/q+(n+1+α+k)/p

and let fz(w) be an analytic function on Bn such that

Rkfz(w) = hz(w)− hz(0),

where hz(0) = (1− |z|2)s/q ≤ 1.
It follows from Proposition 7 that

sup
z∈Bn

�fz�p,α ≤ C.
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Applying (a) to fz yields
�

Bn

��hz(w)− hz(0)
��qdµ(w) ≤ C.

It follows from the elementary inequality
��hz(w)

��q ≤ 2q
�
|hz(w)− hz(0)|q + |hz(0)|q

�

that �

Bn

��hz(w)
��qdµ(w) ≤ 2q

�
C + µ(Bn)

�
,

which gives us (b).
Next assume that (b) holds. Recall that D(z, r) is the Bergman metric ball at z

with radius R. By Lemmas 2.24 and 2.20 of [71], we have

|Rkf(z)|p ≤ C

(1− |z|2)n+1+α+kp

�

D(z,r)

��Rkf(w)
��pdvα+kp(w)

≤ C

�

D(z,r)

|Rkf(w)|p(1− |w|2)sp/q+kp

|1− �w, z�|sp/q+n+1+α+kp
dvα(w)

≤ C

�

Bn

(1− |w|2)sp/qdλ(w)

|1− �z, w�|sp/q+n+1+α+kp

,

where
dλ(w) =

��Rkf(w)
��p�1− |w|2

�kp

dvα(w)

is a finite measure on Bn whenever f ∈ Ap

α
. In fact, λ(Bn) ≤ C�f�p

p,α
for some

constant independent of f .
If p = q, an application of Fubini’s theorem to the estimate in the previous para-

graph shows that (b) implies (a). If p < q, we write p� = q/p and 1/p�+1/q� = 1, and
apply Hölder’s inequality to the estimate in the previous paragraph. The result is

��Rkf(z)
��p ≤ C

� �

Bn

(1− |w|2)sdλ(w)

|1− �z, w�|s+(n+1+α+kp)q/p

�1/p
��

λ(Bn)
�1/q

�

.

It follows that
��Rkf(z)

��q ≤ C
�
λ(Bn)

�p
�
/q
�
�

Bn

(1− |w|2)sdλ(w)

|1− �z, w�|s+(n+1+α+kp)q/p
·

We now integrate against the measure dµ, apply Fubini’s theorem, and use condition
(b) to obtain �

Bn

��Rkf(z)
��qdµ(z) ≤ C

�
λ(Bn)

�1+p
�
/q
�

.

Since λ(Bn) ≤ C�f�p

p,α
, we get

�

Bn

��Rkf(z)
��qdµ(z) ≤ C�f�q

p,α
.

This shows that (b) implies (a).
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The equivalence of (b) and (c) has already been proved in Theorem 45. Since

(n + 1 + α + kp)q/p ≥ n + 1 + α + kp > n,

the equivalence of (c) and (d) follows from the remarks after Corollary 47. This
completes the proof of the theorem.

A similar result can be obtained in terms of fractional radial differential opera-
tors Rs,t instead of Rk above. We omit the details.

Once a certain result concerning Carleson measures is established, it is then rela-
tively easy to formulate and prove its little oh version. For example, with the same
assumptions in Theorem 50, we can show that the following four conditions are equiv-
alent.

(a) If {fj} is a bounded sequence in Ap

α
and fj(z) → 0 for every z ∈ Bn, then

lim
j→∞

�

Bn

��Rkfj(z)
��qdµ(z) = 0.

(b) For every (or some) s > 0 we have

lim
|z|→1−

�

Bn

(1− |z|2)sdµ(w)

|1− �z, w�|s+(n+1+α+kp)q/p
= 0.

(c) The following limit holds uniformly for ζ ∈ Sn:

lim
r→0+

µ(Qr(ζ))

r(n+1+α+kp)q/p
= 0.

(d) For every (or some) R > 0 we have

lim
|a|→1−

µ(D(a, R))

(1− |a|2)(n+1+α+kp)q/p
= 0.

The interested reader should have no trouble filling in the details.

As our next theorem shows, the assumption that p ≤ q is essential for Theorem 50.
To deal with the case p > q, we associate two functions to any positive Borel measure µ

on Bn. More specifically, for any real γ and s we define

Bs,γ(µ)(z) =

�

Bn

(1− |z|2)sdµ(w)

|1− �z, w�|n+1+s+γ
, z ∈ Bn,

and for any real γ and positive R we define

�µR,γ(z) =
µ(D(z, R))

(1− |z|2)n+1+γ
, z ∈ Bn.

If dµ(z) = h(z)dvγ(z), we use the convention that

Bs,γ(h)(z) = Bs,γ(µ), �hR,γ(z) = �µR,γ(z).

It is clear that Bs,γ(µ)(z) and �µR,γ(z) are certain averages of µ near the point z. The
function Bs,γ(µ) is sometimes called a Berezin transform of µ.
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Lemma 51. – Suppose µ is a positive Borel measure on Bn. If γ is real, p > 0, and
R > 0, then there exists a positive constant C such that

�

Bn

��g(z)
��pdµ(z) ≤ C

�

Bn

��g(z)
��p�µR,γ(z)dvγ(z)

for all holomorphic functions g in Bn.

Proof. – It follows from Lemma 2.20 and Corollary 2.21 of [71] that
�
1− |z|2

�n+1 ∼
�
1− |w|2

�n+1 ∼ v
�
D(z, R)

�
∼ v

�
D(w, R)

�

for w ∈ D(z, R). We use Lemma 2.24 of [71] and Fubini’s theorem to obtain
�

Bn

��g(z)
��pdµ(z) ≤ C1

�

Bn

dµ(z)

(1− |z|2)n+1

�

D(z,R)

��g(w)
��pdv(w)

≤ C2

�

Bn

dµ(z)

�

D(z,R)

|g(w)|pdvγ(w)

(1− |w|2)n+1+γ

= C2

�

Bn

|g(w)|pdvγ(w)

(1− |w|2)n+1+γ

�

D(w,R)
dµ(z)

= C3

�

Bn

|g(w)|p�µR,γ(w)dvγ(w),

which proves the desired estimate.

Lemma 52. – Let µ be a positive Borel measure on Bn. If γ is real, s is real, and
R > 0, then there exists a constant C > 0 such that Bs,γ(µ) ≤ CBs,γ(�µR,γ).

Proof. – For w ∈ Bn, apply Lemma 51 to the function

g(z) =
(1− |w|2)s

(1− �z, w�)n+1+s

with p = 1. The desired result follows.

Lemma 53. – Let µ be a positive Borel measure on Bn. If γ and s are real and R is
positive, then there exists a positive constant C such that �µR,γ ≤ CBs,γ(µ).

Proof. – Once again, we have 1 − |z|2 ∼ 1 − |w|2 ∼ |1 − �z, w�| for w ∈ D(z, R).
It follows that

�µR,γ(z) =
µ(D(z, R))

(1− |z|2)n+1+γ
≤ C

�

D(z,R)

(1− |z|2)sdµ(w)

|1− �z, w�|n+1+s+γ
≤ CBs,γ(µ)(z),

proving the desired estimate.

Theorem 54. – Let 0 < q < p < ∞ and α be any real number, and let µ be a
positive Borel measure on Bn. Then for any nonnegative integer k with α + kp > −1

the following conditions are equivalent.
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(a) There is a constant C > 0 such that, for all f ∈ Ap

α
,

�

Bn

��Rkf(w)
��qdµ(w) ≤ C�f�q

p,α
.

(b) For any bounded sequence {fj} in Ap

α
with fj(z) → 0 for every z ∈ Bn,

lim
j→∞

�

Bn

|Rkfj(w)|qdµ(w) = 0.

(c) For any fixed r > 0 the function �µr,γ is in Lp/(p−q)(Bn, dvγ), where γ = α+kp.
(d) For any fixed s > 0 the function Bs,γ(µ) is in Lp/(p−q)(Bn, dvγ), where γ =

α + kp.

Proof. – Let s > 0 satisfy s + α + kq > −1. It follows from Lemmas 2.24 and 2.20 of
[71] that

|Rkf(z)|q ≤ C

(1− |z|2)n+1+s+α+kq

�

D(z,r)

��Rkf(w)
��qdvs+α+kq(w)

≤ C

�

D(z,r)

|Rkf(w)|q(1− |w|2)s+kq

|1− �w, z�|n+1+s+α+kq
dvα(w)

= C

�

Bn

|Rkf(w)|q(1− |w|2)s+kq

|1− �w, z�|n+1+s+α+kq
χD(z,r)(w)dvα(w),

where χE(z) denotes the characteristic function of a set E. Integrate with respect to
dµ, apply Fubini’s theorem, and use Lemma 2.20 of [71]. We see that the integral

�

Bn

��Rkf(z)
��qdµ(z)

is dominated by
�

Bn

µ(D(w, r))

(1− |w|2)n+1+α+kq

��Rkf(w)
��q�1− |w|2

�kq

dvα(w).

If condition (c) holds, then an application of Hölder’s inequality yields
�

Bn

|Rkf |qdµ ≤ C�f�q

p,α

� �

Bn

� µ(D(w, r))

(1− |w|2)n+1+α+kq

�p/(p−q)
dvα

�1−q/p

= C�f�q

p,α

� �

Bn

� µ(D(w, r))

(1− |w|2)n+1+α+kp

�p/(p−q)
dvα+kp

�1−q/p

≤ C�f�q

p,α
.

This proves that (c) implies (a).

Since 1 − |z| ∼ 1 − |w| for z ∈ D(w, r) (see Lemma 2.20 of [71]), there exists a
constant δ > 0 such that

δ−1 ≤ 1− |z|2

1− |w|2 ≤ δ
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for all z ∈ D(w, r). For 0 < t < 1 let

At =
�
z ∈ Bn : 1− |z|2 < t

�
.

Then the conditions z ∈ At and w ∈ D(z, r) imply that w ∈ Aδt.

Let {fj} be a bounded sequence in Ap

α
with fj(z) → 0 for every z ∈ Bn. Then

a normal family argument shows that fj(z) → 0 uniformly on every compact subset
of Bn. Using the estimate from the first paragraph of this proof together with Fubini’s
theorem, we see that the integral

�

At

��Rkfj(z)
��qdµ(z)

is dominated by
�

Bn

��Rkfj(w)
��q�1− |w|2

�s+kq

dvα(w)

�

At

χD(w,r)dµ(z)

|1− �z, w�|n+1+s+α+kq
·

According to the previous paragraph,

χAt∩D(w,r)(z) = 0, z ∈ Bn,

unless w ∈ Aδt. It follows that the integral
�

At

|Rkfj(z)|qdµ(z)

is dominated by
�

Aδt

��Rkfj(w)
��q�1− |w|2

�s+kq

dvα(w)

�

At

χD(w,r)dµ(z)

|1− �z, w�|n+1+s+α+kq
·

Since |1− �z, w�| is comparable to 1− |w|2 whenever z ∈ D(w, r), we get
�

At

|Rkfj |qdµ ≤ C

�

Aδt

µ(D(w, r))

(1− |w|2)n+1+α+kq

��Rkfj(w)
��q�1− |w|2

�kq

dvα.

By Hölder’s inequlity,
�

At

|Rkfj |qdµ ≤ C�fj�q

p,α

� �

Aδt

� µ(D(w, r))

(1− |w|2)n+1+α+kp

� p
p−q

dvα+kp

�1−q/p

.

If the function
�µr,γ(z) =

µ(D(z, r))

(1− |z|2)n+1+α+kp

is in Lp/(p−q)(Bn, dvα+kp), then for any given � > 0 there is a t ∈ (0, 1) such that
�

Aδt

� µ(D(w, r))

(1− |w|2)n+1+α+kp

�p/(p−q)
dvα+kp(w) < �p/(p−q).

Thus for such t, �

At

��Rkfj(z)
��qdµ(z) ≤ C�.
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Since Bn \ At is a compact subset of Bn and fj → 0 uniformly on every compact
subset of Bn, we have

lim
j→∞

�

Bn\At

��Rkfj(z)
��qdµ(z) = 0.

Combining this with an earlier estimate we get

lim sup
j→∞

�

Bn

��Rkfj(z)
��qdµ(z) ≤ C�.

Since � is arbitrary, we must have

lim
j→∞

�

Bn

��Rkfj(z)
��qdµ(z) = 0.

This shows that (c) implies (b) as well.

The proof of that (b) implies (a) is standard. In fact, if (a) is not true, then there
is a sequence {fj} in Ap

α
such that �fj�p,α ≤ 1 and

(32) lim
j→∞

�

Bn

��Rkfj(w)
��qdµ(w) = ∞.

Since �fj�p,α ≤ 1, {fj} is uniformly bounded on compact subsets of Bn. By Montel’s
Theorem, there is a subsequence of {fj}, which we still denote by {fj}, that converges
uniformly on compact subsets of Bn to a holomorphic function f in Bn. It follows from
Fatou’s lemma that f ∈ Ap

α
with �f�p,α ≤ 1. In particular,

�fj − f�p,α ≤ max(2, 21/p)

and fj − f → 0 uniformly on compact subsets of Bn. If condition (b) holds, then

lim
j→∞

�

Bn

��Rkfj(w)−Rkf(w)
��qdµ(w) = 0,

which contradicts (32). This shows that (b) implies (a).

To prove that (a) implies (c), we follow the proof of Theorem 1 in Luecking [39].
Let {aj} be the sequence of points in Bn from Theorem 2.30 in [71]. Let b be a real
number such that

b > n max
�
1,

1

p

�
+

1 + α

p
.

Let

gj(z) =
(1− |aj |2)b−(n+1+α)/p

(1− �z, aj�)b+k
=

(1− |aj |2)(b+k)−(n+1+α+kp)/p

(1− �z, aj�)b+k
·

Let {cj} ∈ �p. Then by Theorem 2.30 of [71], we have
∞�

j=1

cjgj(z) ∈ Ap

α+kp
.
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Let

hj(z) = R−k
�
gj(z)− gj(0)

�
and f(z) =

∞�

j=1

cjhj(z).

Then

Rkf(z) =
∞�

j=1

cjR
khj(z) =

∞�

j=1

cj

�
gj(z)− gj(0)

�
.

It is clear that Rkf ∈ Ap

α+kp
, and so f ∈ Ap

α
. Moreover,

�f�p

p,α
≤ C

∞�

j=1

|cj |p,

where C is a positive constant independent of f . If condition (a) holds, then
�

Bn

��Rkf(z)
��qdµ(z) ≤ C�f�q

p,α
≤ C

� ∞�

j=1

|cj |p
�q/p

.

Therefore,
�

Bn

���
∞�

j=1

cjgj

���
q

dµ

≤ 2q

� �

Bn

���
∞�

j=1

cjgj −
∞�

j=1

cjgj(0)
���
q

dµ +

�

Bn

���
∞�

j=1

cjgj(0)
���
q

dµ
�

≤ 2q

�

Bn

��Rkf(z)
��qdµ(z) + 2qµ(Bn)

� ∞�

j=1

|cj |p
�q/p

≤ C
� ∞�

j=1

|cj |p
�q/p

Let rj(t) be a sequence of Rademacher functions (see page 336 of Luecking [39]). If we
replace cj by rj(t)cj , the above inequality is still true, so

�

Bn

���
∞�

j=1

rj(t)cjgj(z)
���
q

dµ(z) ≤ C
� ∞�

j=1

|cj |p
�q/p

.

Integrating with respect to t from 0 to 1, applying Fubini’s theorem, and invoking
Khinchine’s inequality (see Luecking [39]), we obtain

Aq

�

Bn

� ∞�

j=1

|cj |2|gj(z)|2
�q/2

dµ(z) ≤ C
� ∞�

j=1

|cj |p
�q/p

,

where Ap is the constant that appears in Khinchine’s inequality. The rest of the proof
is exactly the same as the one in Luecking [39].

The condition in (d) first appeared in Choe-Koo-Yi [19], where it was used for the
embedding of harmonic Bergman spaces into Lq(dµ). Our proof of the equivalence
of (c) and (d) follows the method in [19]. In fact, if �µr,γ is in Lp/(p−q)(Bn, dvγ),
then an application of Proposition 8 shows that the function Bs,γ(�µr,γ) is also in
Lp/(p−q)(Bn, dvγ). By Lemma 52, we must have Bs,γ(µ) ∈ Lp/(p−q)(Bn, dvγ). This
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proves that (c) implies (d). That (d) implies (c) is a direct consequence of Lemma 53.
The proof of the theorem is now complete.
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COEFFICIENT MULTIPLIERS

Recall from Theorem 12 that for t = (α−β)/p, the operator Rs,t maps Ap

α
bound-

edly onto Ap

β
. In terms of Taylor coefficients, we have

Rs,t

�
�

m

amzm

�
=

�

m

cmamzm,

where
cm =

Γ(n + 1 + s + t)Γ(n + 1 + |m| + s)

Γ(n + 1 + s)Γ(n + 1 + |m| + s + t)
·

Therefore, the operator Rs,t is just a coefficient multiplier on holomorphic functions
in Bn. When α and β are real, an application of Stirling’s formula shows that

cm ∼ 1

|m|t

as |m| → ∞. We are going to show that this result still holds if we replace the multi-
plier sequence {cm} above by the more explicit multiplier sequence {|m|(β−α)/p}. A
similar result will be proved for the generalized Lipschitz spaces Λα.

We introduce two methods, one based on complex interpolation and the other
based on atomic decomposition.

Lemma 55. – Suppose t is complex and k is a postive integer large enough so that
k + Re t > 0. There exists a constant c such that

� 1

0
Rkf(rz)

�
log

1

r

�t+k−1 dr

r
= c

�

|m|>0

|m|−tamzm

for all holomorphic f(z) =
�

m
amzm in Bn.

Proof. – Fix z ∈ Bn. We want to evaluate the integral

I(f, z) =

� 1

0
Rkf(rz)

�
log

1

r

�t+k−1 dr

r

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2008



78 CHAPTER 14. COEFFICIENT MULTIPLIERS

in terms of the Taylor expansion of f . If f(z) =
�

m
amzm, then

Rkf(z) =
�

|m|>0

|m|kamzm,

so

I(f, z) =
�

|m|>0

|m|kamzm

� 1

0
r|m|−1

�
log

1

r

�t+k−1
dr.

Making the change of variables r = e−s, we obtain

I(f, z) =
�

|m|>0

|m|kamzm

� ∞

0
e−|m|sst+k−1ds.

Let u = |m|s. Then
I(f, z) = c

�

|m|>0

|m|−tamzm,

where c =
�∞
0 e−uut+k−1du.

Given any real α and β, we are going to fix a sufficiently large positive integer k

and consider operators on H(Bn) of the form

Tζf(z) =

� 1

0
Rkf(rz)

�
log

1

r

�(α−β)(1−ζ)+k−1 dr

r
,

where 0 ≤ Re ζ ≤ 1.

Lemma 56. – If Re ζ = 0, the operator Tζ maps A1
α

boundedly into A1
β
.

Proof. – Let N be a sufficiently large positive integer. We have

RNTζf(z) =

� 1

0
RN+kf(rz)

�
log

1

r

�(α−β)(1−ζ)+k−1 dr

r
·

If Re ζ = 0, it follows from Fubini’s theorem that the integral

I =

�

Bn

|RNTζf(z)
��(1− |z|2

�N+β

dv(z)

does not exceed
� 1

0

�
log

1

r

�α−β+k−1 dr

r

�

Bn

��RN+kf(rz)
���1− |z|2

�N+β

dv(z).

Let w = rz in the inner integral. Then I does not exceed the integral
� 1

0

�
log

1

r

�α−β+k−1 dr

r2n+1

�

|w|<r

��RN+kf(w)
��
�
1− |w|2

r2

�N+β

dv(w).

Since 1− |w|2/r2 ≤ 1− |w|2 for all |w| < r, we have

I ≤
� 1

0

�
log

1

r

�α−β+k−1 dr

r2n+1

�

|w|<r

��RN+kf(w)
���1− |w|2

�N+β

dv(w).

MÉMOIRES DE LA SMF 115



CHAPTER 14. COEFFICIENT MULTIPLIERS 79

We interchange the order of integration and obtain

I ≤
�

Bn

|RN+kf(w)
��(1− |w|2

�N+β

dv(w)

� 1

|w|

�
log

1

r

�α−β+k−1 dr

r2n+1
·

It is easy to see that there exists a constant C > 0 such that
� 1

|w|

�
log

1

r

�α−β+k−1 dr

r2n+1
≤ C

(1− |w|2)α−β+k

|w|2n

for all w ∈ Bn, so

I ≤ C

�

Bn

��RN+kf(w)
���1− |w|2

�N+k+α dv(w)

|w|2n
·

Since |RN+kf(w)| ≤ C|w| near the origin and
�

Bn

dv(w)

|w|2n−1
< ∞

by polar coordinates, we can find another constant C � > 0, independent of f , such
that

I ≤ C

�

Bn

��RN+kf(w)
���1− |w|2

�N+k

dvα(w).

This completes the proof of the lemma.

Lemma 57. – If Re ζ = 1, the operator Tζ is bounded on the Bloch space B.

Proof. – We have

RTζf(z) =

� 1

0
Rk+1f(rz)

�
log

1

r

�(α−β)(1−ζ)+k−1 dr

r
·

If Re ζ = 1 and f ∈ B, then
��RTζf(z)

�� ≤
� 1

0

��Rk+1f(rz)
��
�

log
1

r

�k−1 dr

r

≤ C

� 1

0

�
1− r2|z|2

�−(k+1)
�

log
1

r

�k−1
dr ≤ C �

�
1− |z|2

�−1
,

where C and C � are positive constants independent of z. This shows that Tζf is in
the Bloch space.

Lemma 58. – Suppose s > −1, t is a positive integer, and

I(z) =

� 1

0

(1− x)sdx

(1− xz)s+t+1
, z ∈ D.

There exists a polynomial p(z) such that

I(z) =
p(z)

(1− z)t
, z ∈ D.
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Proof. – We compute the integral I(z) with the help of Taylor expansion.

I(z) =
∞�

k=0

Γ(k + s + t + 1)

k! Γ(s + t + 1)
zk

� 1

0
xk(1− x)sdx.

Since � 1

0
xk(1− x)sdx =

Γ(k + 1)Γ(s + 1)

Γ(k + s + 2)
,

we have

I(z) =
1

s + 1

∞�

k=0

Γ(s + 2)Γ(k + s + t + 1)

Γ(s + t + 1)Γ(k + s + 2)
zk

=
1

s + 1
Rs,t−1

∞�

k=0

zk =
1

s + 1
Rs,t−1 1

1− z
·

Since t is a positive integer, the operator Rs,t−1 is a linear differential operator of
order t − 1 on H(D) with polynomial coefficients (see Proposition 4). It follows that
there exists a polynomial p(z) such that

I(z) =
p(z)

(1− z)t
·

This completes the proof of the lemma.

We can now prove the first main result of the chapter.

Theorem 59. – Suppose α is real, β is real, and p > 0. Then the operator T defined
on H(Bn) by

Tf(z) = f(0) +
�

|m|>0

|m|(β−α)/pamzm, f(z) =
�

m

amzm,

maps Ap

α
boundedly onto Ap

β
.

Proof. – By switching the roles of α and β, it is enough for us to show that the
operator T maps Ap

α
into Ap

β
.

When p = 1, the desired result follows from Lemmas 55 and 56.
First suppose that 1 < p < ∞ with 1/p + 1/q = 1. Let θ = 1/q. Then

1

p
=

1− θ

1
+

θ

∞·

Because the dual space of Ap

β
can be identified with Aq

β
under the integral pairing

�f, g� =

�

Bn

(1− |z|2)NRs,Nf(z)(1− |z|2)NRs,Ng(z)dvβ(z),

where N is a sufficiently large positive number, it suffices for us to show that there
exists a constant C > 0, independent of f and g, such that

(33)
���Tf, g�

�� ≤ C�f�p,α�g�q,β
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for all f ∈ Ap

α
and g ∈ Aq

β
.

Fix a unit vector f in Ap

α
and fix a polynomial g that is a unit vector in Aq

β
(recall

that the polynomials are dense in Aq

β
). It follows from the complex interpolation

relation (see Theorems 38)
�
A1

α
, B

�
θ

= Ap

α
that there exist functions fζ , where ζ ∈ S,

such that

(a) fθ = f ;
(b) ζ �→ fζ is a bounded continuous function from S into A1

α
+ B whose restriction

to S is analytic;
(c) ζ �→ fζ is a bounded continuous function from L(S) into A1

α
with �fζ�1,α ≤ C;

(d) ζ �→ fζ is a bounded continuous function from R(S) into B with �fζ�B ≤ C.

Here C is a positive constant independent of f .
Consider the function

F (ζ) =

�

Bn

�
1− |z|2

�N

Rs,NTζfζ(z)gζ(z)dvβ(z),

where ζ ∈ S and

gζ(z) =
Rs,Ng(z)

|Rs,Ng(z)|
�
(1− |z|2)N |Rs,Ng(z)|

�qζ

.

Because g is a polynomial, the function F is bounded and continuous on S and its
restriction to S is analytic. When ζ = θ, it follows from Lemma 55 that F (θ) = �Tf, g�.

When Re ζ = 0, it follows from Lemma 56 that Tζ maps A1
α

boundedly into A1
β
,

so there exists a positive constant C0 such that

�Tζfζ�1,β ≤ C0�fζ�1,α ≤ C0C

for all Re ζ = 0. Thus there exists a constant M0 > 0 (independent of f , g, and ζ)
such that, for all Re ζ = 0,

��F (ζ)
�� ≤

�

Bn

�
1− |z|2

�N
��Rs,NTζfζ(z)

��dvβ(z) ≤ M0.

When Re ζ = 1, it follows from Lemma 57 that Tζ is bounded on the Bloch space,
so there exists a positive constant C1 such that, for all Re ζ = 1,

�Tζfζ�B ≤ C1�fζ�B ≤ C1C.

We can then find a positive constant M1 (independent of f , g, and ζ) such that, for
all Re ζ = 1,

��F (ζ)
�� ≤ C1

�

Bn

�
1− |z|2

�Nq
��Rs,Ng(z)

��qdvβ(z) ≤ M1.

It follows from Hadamard’s three lines theorem that
��F (θ)

�� ≤ M1−θ

0 Mθ

1 .
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Since M0 and M1 are independent of f and g, this yields the estimate (33) and proves
the theorem for 1 < p < ∞.

Next assume that 0 < p ≤ 1. By Theorem 32, there exists a positive number b (we
can choose b to be as large as we want) and a sequence {ak} in Bn such that every
function f ∈ Ap

α
can be written as

f(z) =
∞�

k=1

ckfk(z),

with
∞�

k=1

|ck|p ≤ C�f�p

p,α
,

where C is a positive constant independent of f and

fk(z) =
(1− |ak|2)b−(n+1+α)/p

(1− �z, ak�)b
·

By first considering finite sums and then taking a limit, we may assume that

Tf =
∞�

k=1

ckTfk.

Since 0 < p ≤ 1, we must have

�Tf�p

p,β
≤

∞�

k=1

|ck|p�Tfk�p

p,β
.

Since the sequence {fk} is bounded in Ap

α
, the proof of the theorem will be complete

if we can show that there exists a constant C > 0 such that

�Tf�p,β ≤ C�f�p,α

for functions of the form

(34) f(z) =
1

(1− �z, a�)b
, a ∈ Bn.

We fix a sufficiently large positive integer k and apply Lemma 55 to represent the
operator T as

Tf(z) = f(0) + c

� 1

0
Rkf(rz)

�
log

1

r

�k+(α−β)/p−1 dr

r
·

Write Rk = Rk−1R and take the factor Rk−1 out of the integral sign. Then

Tf(z) = f(0) + cRk−1

� 1

0

Rf(rz)

r

�
log

1

r

�k+(α−β)/p−1
dr.
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We assume that b is chosen so that b− k− (α− β)/p is a sufficiently large positive
integer. It is easy to see that

� log 1
r

1− r

�k+(α−β)/p−1
= 1 +

L�

j=1

bj(1− r)j + H(r),

where H(r) = O((1− r)L) as r → 1. It follows that

T = T0 + T1 + · · · + TL + TL+1,

where

T0f(z) = f(0) + cRk−1

� 1

0

Rf(rz)

r
(1− r)k+(α−β)−1dr,

and

Tjf(z) = cbjR
k−1

� 1

0

Rf(rz)

r
(1− r)k+j+(α−β)/p−1dr, 1 ≤ j ≤ L,

and

TL+1f(z) = c

� 1

0
Rkf(rz)(1− r)k+(α−β)/p−1H(r)

dr

r
·

It then follows from Lemma 58 that there exists a constant C > 0 such that

�Tjf�p,β ≤ C�f�p,α

for all 0 ≤ j ≤ L and all functions f given in (34). The same estimate holds for
the operator TL+1 as well, except this time we do not use Lemma 58, but use the
assumption that L is large enough so that

RNTL+1f(z) = c

� 1

0
RN+kf(rz)(1− r)k+(α−β)/p−1H(r)

dr

r

is bounded, where N is any nonnegative integer with pN + β > −1 and f is given
by (34). This proves the case 0 < p ≤ 1 and completes the proof of the theorem.

As the second main result of this chapter we establish an isomorphism between Λα

and Λβ by a simple coefficient multiplier.

Theorem 60. – Suppose α and β are real. Then the operator T defined by

f(z) =
�

m

amzm �→ Tf(z) = f(0) +
�

|m|>0

am|m|α−βzm

is an invertible operator from Λα onto Λβ.

Proof. – By reversing the role of α and β, it suffices for us to show that the operator T

maps Λα boundedly into Λβ .
Given f ∈ Λα, we fix a sufficiently large positive integer k and use Lemma 55 to

write

Tf(z) = f(0) + c

� 1

0
Rkf(rz)

�
log

1

r

�k−α+β−1 dr

r
·

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2008



84 CHAPTER 14. COEFFICIENT MULTIPLIERS

If N is another sufficiently large positive integer, then

RNTf(z) =

� 1

0
RN+kf(rz)

�
log

1

r

�k−α+β−1 dr

r
·

Since f ∈ Λα, it follows from Lemma 15 that

sup
z∈Bn

(1− |z|2)N+k−α|RN+kf(z)| < ∞.

But RN+kf(0) = 0, we must also have

sup
z∈Bn

(1− |z|2)N+k−α
|RN+kf(z)|

|z| < ∞.

So there exists a constant C > 0 such that
��RNTf(z)

�� ≤ C

� 1

0

�
log

1

r

�k−α+β−1 dr

(1− r2|z|2)N+k−α
·

Now the above integral clearly converges near r = 0. When r is away from 0, log 1
r

is
comparable to 1− r2. So there exists another constant C > 0 such that

��RNTf(z)
�� ≤ C

� 1

0

(1− r2)k−α+β−1dr

(1− r2|z|2)N+k−α
·

An elementary estimate then shows that
��RNTf(z)

�� ≤ C

(1− |z|2)N−β

for some constant C > 0 and all z ∈ Bn. This shows that Tf is in Λβ and completes
the proof of the theorem.

We mention that, at least in the case n = 1, the theorem above also follows from
Theorem 12 and the asymptotic expansion of a ratio of two gamma functions as given
in Tricomi-Erdelyi [58]. In fact, in the one-dimensional case, it is easy to see that if

f(z) =
∞�

k=0

akzk

is a function in Λα, then the sequence {kαak} is bounded. It is also easy to show
that if the sequence {kα+1ak} is bounded, then the function f is in Λα. This to-
gether with the main result of Tricomi-Erdelyi [58] easily gives Theorem 59 above.
Coefficients of functions in Bloch and Lipschitz spaces are also studied in Bennet-
Stegenga-Timoney [12].
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CHAPTER 15

LACUNARY SERIES

One way to construct concrete examples in certain spaces of analytic functions is
by using lacunary series. In this chapter we characterize lacunary series in weighted
Bergman spaces and Lipschitz spaces.

We say that an analytic function f on Bn has a lacunary homogeneous expansion
if its homogeneous expansion is of the form

f(z) =
∞�

k=1

fmk(z),

where mk satisfies the condition

inf
k

mk+1

mk

= λ > 1.

If n = 1, the lacunary homogeneous expansions are just lacunary series in the unit
disk. When n > 1, we say a lacunary homogeneous expansion is a lacunary series if
every homogeneous polynomial fmk consists of just one term.

Our first result characterizes a lacunary homogeneous expansion in Ap

α
.

Proposition 61. – Let 0 < p < ∞, α be any real number, and

f(z) =
∞�

k=1

fmk(z)

be a lacunary homogeneous expansion. Then f ∈ Ap

α
if and only if

∞�

k=1

m−1−α

k
�fmk�

p

Hp < ∞,

where

�f�Hp =
� �

Sn

|f(ζ)|pdσ(ζ)
�1/p

denotes the Hp-norm of f .
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Proof. – By Proposition 3 in Yang-Ouyang [64], if

g(z) =
∞�

k=1

gmk(z)

is a lacunary homogeneous expansion, then g ∈ Ap if and only if
∞�

k=1

m−1
k
�gmk�

p

Hp < ∞.

Let f ∈ Ap

α
. By Theorem 10, if s is a real number such that neither n + s

nor n + s + (α/p) is a negative integer, then f ∈ Ap

α
if and only if Rs,α/pf ∈ Ap,

which, by the above result, is equivalent to
∞�

k=1

m−1
k
�cmkfmk�

p

Hp < ∞,

where

cmk =
Γ(n + 1 + s + α/p)Γ(n + 1 + mk + s)

Γ(n + 1 + s)Γ(n + 1 + mk + s + α/p)
·

It follows from Stirling’s formula that

cmk ∼ m−α/p

k

as k →∞. Thus the above condition is equivalent to
∞�

k=1

m−1−α

k
�fmk�

p

Hp < ∞.

The proof is complete.

The next result characterizes a lacunary series in Ap

α
.

Proposition 62. – Let 0 < p < ∞, α be any real number, and

f(z) =
∞�

k=1

fmk(z)

be a lacunary series, where

fmk(z) = akz
mk1
1 · · · zmkn

n .

Then f ∈ Ap

α
if and ony if

∞�

k=1

|ak|p
�

n

i=1 Γ( 1
2mkip + 1)

m1+α

k
Γ( 1

2mkp + n)
< ∞.
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Proof. – Let ζm = ζm1
1 · · · ζmn

n
and |m| = m1 + · · ·mn. An easy modification of the

proof of Lemma 1.11 in [71] shows that

�ζm�p

Hp =
(n− 1)!

�
n

i=1 Γ( 1
2mip + 1)

Γ( 1
2 |m|p + n)

·

Combining this identity and Proposition 61, we get the desired result.

Proposition 63. – Let α be any real number, let

f(z) =
∞�

k=1

fmk(z)

be a lacunary homogeneous expansion, and denote by

�fmk�H∞ = sup
ζ∈Sn

|fmk(ζ)|.

Then

(a) f ∈ Λα if and only if

sup
k≥1

mα

k
�fmk�H∞ < ∞.

(b) f ∈ Λα,0 if and only if

lim
k→∞

mα

k
�fmk�H∞ = 0.

Proof. – The results follow easily from Theorem 16, the corresponding result for Λα,0,
and Propositions 2 and 3 in Wulan-Zhu [62]. We leave the details to the interested
reader.

Proposition 64. – Let α be any real number and

f(z) =
∞�

k=1

fmk(z)

be a lacunary series, where fmk(z) = akzm1
1 · · · zmkn

n . Then

(a) f ∈ Λα if and only if

sup
k≥1

mα

k
|ak|

�
m

mk1
k1

· · ·mmkn
kn

mmk
k

< ∞.

(b) f ∈ Λα,0 if and only if

lim
k→∞

mα

k
|ak|

�
m

mk1
k1

· · ·mmkn
kn

mmk
k

= 0.

Proof. – The results follow directly from Proposition 63 and Lemma 4 in Wulan-
Zhu [62].
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Several special cases of the main results of this chapter are known. For example,
lacunary series in the Bloch space of the unit disk are described in Anderson-Clunie-
Pommerenke [3], lacunary series in weighted Bergman spaces Ap

α
of the unit ball,

where α > −1, are described in Stević [56], and lacunary series in Bloch and certain
Lipschitz spaces of the unit ball are characterized in Wulan-Zhu [62].

MÉMOIRES DE LA SMF 115



CHAPTER 16

INCLUSION RELATIONS

In this chapter we study inclusion relations among weighted Bergman spaces and
Lipschitz spaces. From the definition and Proposition 64 it is very easy to see that
if α > β then Λα ⊂ Λβ , and the inclusion is strict.

The inclusion relations between weighted Bergman spaces are more complicated in
general. Several embedding theorems have been known before, and our results here
overlap with some of them; see Aleksandrov [2], Beatrous-Burbea [11], Graham [28],
Luecking [39], and Rochberg [46]. We begin with the following simple case.

Proposition 65. – Let 0 < p < ∞, and let α and β be any two real numbers satis-
fying α < β. Then

Ap

α
⊂ Ap

β
,

and the inclusion is strict.

Proof. – The inclusion is obvious. To prove that the inclusion is strict, we only need
to test functions of the form ft(z) = (1 − z1)t. See Yang-Ouyang [64] for a similar
argument.

To better describe the inclusion relations of Bergman spaces, we introduce the
notion of Lipschitz stretch first. More specifically, if X is a space of analytic functions,
we define the Lipschitz stretch of X as follows:

Λ(X) = inf
�
β − α : Λ−α ⊂ X ⊂ Λ−β

�
.

We also call the constants

α0 = sup
�
α : Λ−α ⊂ X

�
, β0 = inf

�
β : X ⊂ Λ−β

�

the lower and upper bounds of the Lipschitz stretch, respectively. A similar concept
using Bloch type spaces was introduced in Zhao [65] for spaces of analytic functions
in the unit disk.
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Theorem 66. – Let 0 < p < ∞ and let α be any real number. Then for any γ <

(1 + α)/p we have
Λ−γ ⊂ Ap

α
⊂ Λ−(n+1+α)/p.

Both inclusions are strict and best possible, where “best possible” means that, for each
p and α, the index γ of Λ−γ on the left-hand side cannot be replaced by a larger
number, and the index (n + 1 + α)/p on the right-hand side cannot be replaced by a
smaller one.

Proof. – Suppose f ∈ Ap

α
. Then Rkf ∈ Ap

pk+α
, where k is a nonnegative integer

satisfying pk + α > −1. By Theorem 20, there exists a positive constant C such that
�
1− |z|2

�k+(n+1+α)/p
��Rkf(z)

�� ≤ C

for all z ∈ Bn. This means f ∈ Λ−(n+1+α)/p, so Ap

α
⊂ Λ−(n+1+α)/p.

Next suppose γ < (1 + α)/p and f ∈ Λ−γ . Let k be a nonnegative integer such
that k + γ > 0. Then kp + α > −1 and α− pγ > −1, so

�

Bn

�
1− |z|2

�pk
��Rkf(z)

��pdvα(z)

≤ sup
z∈Bn

�
(1− |z|2)k+γ |Rkf(z)|

�p

�

Bn

�
1− |z|2

�−pγ

dvα(z)

≤ C sup
z∈Bn

�
(1− |z|2)k+γ |Rkf(z)|

�p

.

Thus Λ−γ ⊂ Ap

α
.

We only give a sketch of the rest of the proof since it is similar to the argument used
in Yang-Ouyang [64]. For t > 0 let k be a nonnegative integer such that k + γ > 0.
Since the radial derivative is an invertible operator on the space of holomorphic func-
tions in Bn that vanish at the origin, we can define a holomorphic function ft in Bn

by
ft(z) = R−k

�
(1− z1)

−t−k − 1
�
.

Then
Rkft(z) = (1− z1)

−t−k − 1,

so for any z ∈ Bn and t ≤ γ,
�
1− |z|2

�k+γ
��Rkft(z)

�� ≤
�
1− |z|2

�k+γ�
|1− z1|−t−k + 1

�
≤ C(1− |z|2)γ−t ≤ C.

On the other hand, if t > γ, then we take z = (x, 0, . . . , 0), where x is a real number
between 0 and 1, to obtain

�
1− |z|2

�k+γ
��Rkft(z)

�� = (1− x2)k+γ
�
(1− x)−t−k − 1

�
≥ (1− x)γ−t →∞

as x → 1. Thus

(35) ft ∈ Λ−γ if and only if t ≤ γ.
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By a similar computation as used in Yang-Ouyang [64], we see that

(36) ft ∈ Ap

α
when t <

n + 1 + α

p
,

and

(37) ft �∈ Ap

α
when t =

n + 1 + α

p
·

For any ε > 0 let t = (n + 1 + α)/p− ε/2. Then

(n + 1 + α)/p− ε < t < (n + 1 + α)/p.

By (36) and (35) we hav

ft ∈ Ap

α
but ft �∈ Λ−((n+1+α)/p−ε).

This shows that the inclusion Ap

α
⊂ Λ(n+1+α)/p is the best possible. At the same time

it also shows that the inclusion Λ−γ ⊂ Ap

α
is strict, since

Λ−γ ⊂ Λ−((n+1+α)/p−ε)

as ε ≤ n/p.

Let t = (n + 1 + α)/p. Then by (37) and (35), ft �∈ Ap

α
but ft ∈ Λ−(n+1+α)/p, so

the inclusion Ap

α
⊂ Λ−(n+1+α)/p is strict.

To show that the left inclusion is the best possible, we let

fp,α(z) =
∞�

k=1

fmk(z) =
∞�

k=1

2k(1+α)/pW2k(z),

where {W2k} is a sequence of polynomials with Hadamard gaps as in Theorem 1.2 of
Ryll-Wojtaszczyk [48] and Corollary 1 of Ullrich [59] with the properties

�W2k�H∞ = 1, �W2k�Hp > C(n, p),

where C(n, p) is a constant depending only on n and p.
From Proposition 63 and Proposition 61 we easily deduce that fp,α ∈ Λ−(1+α)/p but

fp,α �∈ Ap

α
. Thus the inclusion Λ−γ ⊂ Ap

α
is best possible. The proof is complete.

As a direct consequence we obtain the Lipschitz stretch of Ap

α
.

Corollary 67. – Let 0 < p < ∞ and let α be any real number. Then

Λ(Ap

α
) =

n

p

with lower bound (1 + α)/p and upper bound (n + 1 + α)/p.

Corollary 68. – All weighted Bergman spaces are different, that is, Ap

α
�= Aq

β
when-

ever (p, α) �= (q, β).
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Proof. – If p = q but α �= β, then by Proposition 65, Ap

α
and Aq

β
are different. If

p �= q, then Corollary 67 tells us that Λ(Ap

α
) = n/p, while Λ(Aq

β
) = n/q. Thus Ap

α

and Aq

β
have different Lipschitz stretchs, so they must be different.

The following two theorems completely describe the inclusion relations between
two weighted Bergman spaces.

Theorem 69. – Let 0 < p ≤ q < ∞. Then Ap

α
⊂ Aq

β
if and only if

n + 1 + α

p
≤ n + 1 + β

q
,

and in this case the inclusion is strict.

Proof. – Let 0 < p ≤ q < ∞ and f ∈ Ap

α
. Let k be a nonnegative integer such that

pk + α > −1 and kq + β > −1. It follows from the closed graph theorem that the
inclusion Ap

α
⊂ Aq

β
is equivalent to

(38)
�

Bn

��Rkf(z)
��qdvkq+β(z) ≤ C�f�q

p,α
.

Let s > 0 be a real number which is sufficiently large. By Theorem 50, the inequality
in (38) is equivalent to

sup
z∈Bn

�

Bn

(1− |z|2)s

|1− �z, w�|s+(n+1+α+kp)q/p
dvkq+β(w) < ∞,

or

sup
z∈Bn

(1− |z|2)s

�

Bn

(1− |w|2)kq+β

|1− �z, w�|s+kq+(n+1+α)q/p
dv(w) < ∞.

By Proposition 7, the inequality above holds if and only if

c = s + kq + (n + 1 + α)q/p− (n + 1)− (kq + β) ≤ s,

which is easily seen to be equivalent to

n + 1 + α

p
≤ n + 1 + β

q
·

In view of Corollary 68 the proof is now complete.

Theorem 70. – Let 0 < q < p < ∞. Then Ap

α
⊂ Aq

β
if and only if

1 + α

p
<

1 + β

q
,

and in this case the inclusion is strict.
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Proof. – Let 0 < q < p < ∞ and f ∈ Ap

α
. Let k be a nonnegative integer such that

pk + α > −1 and kq + β > −1. Once again, the closed graph theorem tells us that
the inclusion Ap

α
⊂ Aq

β
is equivalent to

(39)
�

Bn

��Rkf(z)
��qdvkq+β(z) ≤ C�f�q

p,α
.

Let s > 0 be a real number which is sufficiently large. By Theorem 54, the inequality
in (39) is equivalent to

(40) Bs,kp+α(vkq+β) ∈ Lp/(p−q)(Bn, dvkp+α).

If s is large enough, then by Proposition 7,

Bs,kp+α(vkq+β)(z) =

�

Bn

(1− |z|2)s(1− |w|2)kq+β

|1− �w, z�|n+1+s+kp+α
dv(w)

∼
�
1− |z|2

�−k(p−q)−(α−β)
,

as |z| approaches 1. Thus (40) is equivalent to
�

Bn

(1− |z|2)−(k(p−q)+(α−β))p/(p−q)+kp+αdv(z) < ∞,

which is equivalent to
1 + α

p
<

1 + β

q
·

This along with Corollary 68 finishes the proof.
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CHAPTER 17

FURTHER REMARKS

Unless p = 2, the space Ap

−1 is not the same as the Hardy space Hp, although in
many situations it is useful to think of Hp as the limit of Ap

α
as α approaches −1. One

particular problem here is to identify the complex interpolation space between Hp and
Ap

α
when α > −1 and p ≥ 1. It is also interesting to ask for the complex interpolation

space between Hp and Λα.
The spaces Ap

α
when α is a negative integer appear to be very special. It would be

interesting to see some “singular properties” of these spaces.
One of the interesting problems left open in the paper is whether or not Theorem 46

remains valid when 1 < p < ∞. This is certainly not an easy question, since an
affirmative answer would characterize Carleson measures for the Hardy space H2 as
a special case, and it is well known that the characterization of Carleson measures for
Hardy spaces is very technical. On the other hand, two special cases can be disposed
of easily: Corollary 47 covers the case α > −1 and p > 0, while Corollary 48 covers the
case α = −1 and 0 < p ≤ 2. In view of recent work by Arcozzi, Rochberg, and Sawyer
(see [5], [6], and [7]) concerning Carleson measures for the standard Besov spaces
Bp = Ap

−(n+1), the extension of Theorem 46 to the case p > 1 when α is arbitrary is
most likely a very challenging problem.

After the completion of this paper, several other interesting characterizations for
Bergman spaces have appeared. See [37], [43], and [63].

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2008





BIBLIOGRAPHY

[1] P. Ahern & W. Cohn – “Besov spaces, Sobolev spaces and Cauchy integrals”,
Michigan Math. J. 39 (1972), p. 239–261.

[2] A. Aleksandrov – Function theory in the unit ball, Several Complex Variables
II, G.M. Khenkin and A.G. Vitushkin, ed., Springer, 1994.

[3] J. Anderson, J. Clunie & C. Pommerenke – “On Bloch functions and normal
functions”, J. reine angew. Math. 270, p. 12–37.

[4] J. Arazy, S. Fisher, S. Janson & J. Peetre – “Membership of Hankel oper-
ators on the ball in unitary ideals”, J. London Math. Soc. 43 (1991), p. 485–508.

[5] N. Arcozzi – “Carleson measures for analytic Besov spaces: the upper triangle
case”„ J. Inequal. Pure Appl. Math., 6 (2005) no. 1, Art. 13.

[6] N. Arcozzi, R. Rochberg & E. Sawyer – “Carleson measures for analytic
Besov spaces”, Rev. Mat. Iberoamericana 18 (2002), p. 443–510.

[7] , Carleson measures and interpolating sequences for Besov spaces on com-
plex balls, Memoirs Amer. Math. Soc., vol. 859, 2006.

[8] W. Arveson – “Subalgebras of C∗-algebras III, multivariable operator theory”,
Acta Math. 181 (1998), p. 159–228.

[9] F. Beatrous – “Estimates for derivatives of holomorphic functions in pseudocon-
vex domains”, Math. Z. 191 (1986), p. 91–116.

[10] F. Beatrous & J. Burbea – “Characterizations of spaces of holomorphic func-
tions in the ball”, Kodai Math. J. 8 (1985), p. 36–51.

[11] , Holomorphic Sobolev spaces on the ball, Dissertationes Math., Warszawa,
vol. 276, 1989.

[12] J. Bennet, D. Stegenga & R. Timoney – “Coefficients of Bloch and Lipschitz
functions”, Illinois J. Math. 25 (1981), p. 520–531.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2008

http://smf.emath.fr/Publications/Panoramas/115/html/smf_pano_115_vi+.html#1
http://smf.emath.fr/Publications/Panoramas/115/html/smf_pano_115_vi+.html#2
http://smf.emath.fr/Publications/Panoramas/115/html/smf_pano_115_vi+.html#3
http://smf.emath.fr/Publications/Panoramas/115/html/smf_pano_115_vi+.html#4
http://smf.emath.fr/Publications/Panoramas/115/html/smf_pano_115_vi+.html#5
http://smf.emath.fr/Publications/Panoramas/115/html/smf_pano_115_vi+.html#6
http://smf.emath.fr/Publications/Panoramas/115/html/smf_pano_115_vi+.html#7
http://smf.emath.fr/Publications/Panoramas/115/html/smf_pano_115_vi+.html#8
http://smf.emath.fr/Publications/Panoramas/115/html/smf_pano_115_vi+.html#9
http://smf.emath.fr/Publications/Panoramas/115/html/smf_pano_115_vi+.html#10
http://smf.emath.fr/Publications/Panoramas/115/html/smf_pano_115_vi+.html#11
http://smf.emath.fr/Publications/Panoramas/115/html/smf_pano_115_vi+.html#12


98 BIBLIOGRAPHY

[13] C. Bennett & R. Sharpley – Interpolation of Operators, Academic Press,
New York, 1988.

[14] J. Bergh & J. Löfström – Interpolation Spaces: An Introduction,
Grundlehrem, vol. 223, Springer, Berlin, 1976.

[15] L. Carleson – “An interpolation problem for bounded analytic functions”,
Amer. J. Math. 80 (1958), p. 921–930.

[16] , “Interpolation by analytic functions and the corona problem”, Ann.
Math. 76 (1962), p. 547–559.

[17] X. Chen & K. Guo – Analytic Hilbert Modules, Chapman Hall/CRC Press,
Boca Raton, 2003.

[18] B. R. Choe – “Projections, the weighted Bergman spaces and the Bloch space”,
Proc. Amer. Math. Soc. 108 (1990), p. 127–136.

[19] B. R. Choe, H. Koo & H. Yi – “Positive Toeplitz operators between harmonic
Bergman spaces”, Potential Anal. 17 (2002), p. 307–335.

[20] J. Cima & W. Wogen – “A Carleson measure theorem for the Bergman space
of the ball”, J. Operator Theory 7 (1982), p. 157–165.

[21] R. Coifman & R. Rochberg – “Representation theorems for holomorphic and
harmonic functions”, Astérisque 77 (1980), p. 11–66.

[22] R. Coifman, R. Rochberg & G. Weiss – “Factorization theorems for Hardy
spaces of several complex variables”, Ann. Math. 103 (1976), p. 611–635.

[23] P. Duren – Theory of Hp Spaces, Academic Press, New York, 1970.

[24] P. Duren, B. Romberg & A. Shields – “Linear functionals on Hp spaces with
0 < p < 1”, J. reine angew. Math. 238 (1969), p. 32–60.

[25] F. Forelli & W. Rudin – “Projections on spaces of holomorphic functions on
balls”, Indiana Univ. Math. J. 24 (1974), p. 593–602.

[26] M. Frazier & B. Jawerth – “Decomposition of Besov spaces”, Indiana Univ.
Math. J. 34 (1985), p. 777–799.

[27] J. Garnett – Bounded Analytic Functions, Academic Press, New York, 1981.

[28] I. Graham – “The radial derivative, fractional integrals and the comparative
growth of means of holomorphic functions on the unit ball in Cn”, in Recent

MÉMOIRES DE LA SMF 115

http://smf.emath.fr/Publications/Panoramas/115/html/smf_pano_115_vi+.html#13
http://smf.emath.fr/Publications/Panoramas/115/html/smf_pano_115_vi+.html#14
http://smf.emath.fr/Publications/Panoramas/115/html/smf_pano_115_vi+.html#15
http://smf.emath.fr/Publications/Panoramas/115/html/smf_pano_115_vi+.html#16
http://smf.emath.fr/Publications/Panoramas/115/html/smf_pano_115_vi+.html#17
http://smf.emath.fr/Publications/Panoramas/115/html/smf_pano_115_vi+.html#18
http://smf.emath.fr/Publications/Panoramas/115/html/smf_pano_115_vi+.html#19
http://smf.emath.fr/Publications/Panoramas/115/html/smf_pano_115_vi+.html#20
http://smf.emath.fr/Publications/Panoramas/115/html/smf_pano_115_vi+.html#21
http://smf.emath.fr/Publications/Panoramas/115/html/smf_pano_115_vi+.html#22
http://smf.emath.fr/Publications/Panoramas/115/html/smf_pano_115_vi+.html#23
http://smf.emath.fr/Publications/Panoramas/115/html/smf_pano_115_vi+.html#24
http://smf.emath.fr/Publications/Panoramas/115/html/smf_pano_115_vi+.html#25
http://smf.emath.fr/Publications/Panoramas/115/html/smf_pano_115_vi+.html#26
http://smf.emath.fr/Publications/Panoramas/115/html/smf_pano_115_vi+.html#27
http://smf.emath.fr/Publications/Panoramas/115/html/smf_pano_115_vi+.html#28


BIBLIOGRAPHY 99

Developments in Several Complex Variables, vol. 100, Ann. Math. Studies, 1981,
p. 171–178.

[29] K. T. Hahn & E. H. Youssfi – “M-harmonic Besov spaces and Hankel opera-
tors on the Bergman space on ball of Cn”, Manuscripta Math. 71 (1991), p. 67–81.

[30] , “Möbius invariant Besov spaces and Hankel operators on the Bergman
spaces on the unit ball”, Complex Variables 17 (1991), p. 89–104.

[31] W. Hastings – “A Carleson measure theorem for Bergman spaces”, Proc. Amer.
Math. Soc. 52 (1975), p. 237–241.

[32] L. Hörmander – “Lp estimates for (pluri-)subharmonic functions”, Math.
Scand. 20 (1967), p. 65–78.

[33] T. Kaptanoglu – “Besov spaces and Bergman projections on the ball”, C.R.
Acad. Sci. Paris, Sér. I 335 (2002), p. 729–732.

[34] , “Bergman projections on Besov spaces on balls”, Illinois J. Math. 49

(2005), p. 385–403.

[35] , “Carleson measures for Besov spaces on the ball”, J. Funct. Anal. 250

(2007), p. 483–520.

[36] O. Kures & K. Zhu – “A class of integral operators on the unit ball of Cn”,
Integr. Equ. Oper. Theory 56 (2006), p. 71–82.

[37] S. Li, H. Wulan, R. Zhao & K. Zhu – “A characterization of Bergman spaces
on the unit ball of Cn”, 2007, to appear in Glasgow Math J.

[38] D. Luecking – “A technique for characterizing Carleson measures on Bergman
spaces”, Proc. Amer. Math. Soc. 87 (1983), p. 656–660.

[39] , “Embedding theorems for spaces of analytic functions via Khinchine’s
inequality”, Michigan Math. J. 40 (1993), p. 333–358.

[40] M. Nowark – “Bloch and Möbius invariant Besov spaces on the unit ball of
Cn”, Complex Variables 44 (2001), p. 1–12.

[41] C. Ouyang, W. Yang & R. Zhao – “Characterizations of Bergman spaces
and the Bloch space in the unit ball of Cn”, Trans. Amer. Math. Soc. 374 (1995),
p. 4301–4312.

[42] M. Pavlovic – “Inequalities for the gradient of eigenfunctions of the invariant
Laplacian in the unit ball”, Indag. Math. 2 (1991), p. 89–98.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2008

http://smf.emath.fr/Publications/Panoramas/115/html/smf_pano_115_vi+.html#29
http://smf.emath.fr/Publications/Panoramas/115/html/smf_pano_115_vi+.html#30
http://smf.emath.fr/Publications/Panoramas/115/html/smf_pano_115_vi+.html#31
http://smf.emath.fr/Publications/Panoramas/115/html/smf_pano_115_vi+.html#32
http://smf.emath.fr/Publications/Panoramas/115/html/smf_pano_115_vi+.html#33
http://smf.emath.fr/Publications/Panoramas/115/html/smf_pano_115_vi+.html#34
http://smf.emath.fr/Publications/Panoramas/115/html/smf_pano_115_vi+.html#35
http://smf.emath.fr/Publications/Panoramas/115/html/smf_pano_115_vi+.html#36
http://smf.emath.fr/Publications/Panoramas/115/html/smf_pano_115_vi+.html#37
http://smf.emath.fr/Publications/Panoramas/115/html/smf_pano_115_vi+.html#38
http://smf.emath.fr/Publications/Panoramas/115/html/smf_pano_115_vi+.html#39
http://smf.emath.fr/Publications/Panoramas/115/html/smf_pano_115_vi+.html#40
http://smf.emath.fr/Publications/Panoramas/115/html/smf_pano_115_vi+.html#41
http://smf.emath.fr/Publications/Panoramas/115/html/smf_pano_115_vi+.html#42


100 BIBLIOGRAPHY

[43] M. Pavlovic & K. Zhu – “New characterizations of Bergman spaces”, Ann.
Acad. Sci. Fen. 33 (2008), p. 87–99.

[44] M. Peloso – “Möbius invariant spaces on the unit ball”, Michigan Math. J. 39

(1992), p. 509–536.

[45] S. Power – “Hörmander’s Carleson theorem for the ball”, Glasg. Math. J. 26

(1985), p. 13–17.

[46] R. Rochberg – “Decomposition theorems for Bergman spaces and their appli-
cations”, in Operators and Function Theory, D. Reidel, 1985, p. 225–277.

[47] W. Rudin – Function Theory in the Unit Ball of Cn, Springer, New York, 1980.

[48] J. Ryll & P. Wojtaszczyk – “On homogeneous polynomials on a complex
ball”, Trans. Amer. Math. Soc. 276 (1983), p. 107–116.

[49] K. Seip – “Beurling type density theorems in the unit disk”, Invent. Math. 113

(1993), p. 21–39.

[50] , “Regular sets of sampling and interpolation for weighted Bergman
spaces”, Proc. Amer. Math. Soc. 117 (1993), p. 213–220.

[51] J. Shapiro – “Macey topologies, reproducing kernels and diagonal maps on
Hardy and Bergman spaces”, Duke Math. J. 43 (1976), p. 187–202.

[52] J. Shi – “Inequalities for integral means of holomorphic functions and their
derivatives in the unit ball of Cn”, Trans. Amer. Math. Soc. 328 (1991), p. 619–
632.

[53] A. Siskakis – “Weighted integrals of analytic functions”, Acta Sci. Math. 66

(2000), p. 651–664.

[54] D. Stegenga – “Multipliers of the Dirichlet space”, Illinois J. Math. 24 (1980),
p. 113–139.

[55] E. Stein & G. Weiss – “Interpolation of operators with change of measures”,
Trans. Amer. Math. Soc. 87 (1958), p. 159–172.

[56] S. Stević – “A generalization of a result of Choa on analytic functions with
Hadamard gaps”, J. Korean Math. Soc. 43 (2006), p. 579–591.

[57] M. Stoll – Invariant Potential Theory in the Unit Ball of Cn, Cambridge Univ.
Press, London, 1994.

MÉMOIRES DE LA SMF 115

http://smf.emath.fr/Publications/Panoramas/115/html/smf_pano_115_vi+.html#43
http://smf.emath.fr/Publications/Panoramas/115/html/smf_pano_115_vi+.html#44
http://smf.emath.fr/Publications/Panoramas/115/html/smf_pano_115_vi+.html#45
http://smf.emath.fr/Publications/Panoramas/115/html/smf_pano_115_vi+.html#46
http://smf.emath.fr/Publications/Panoramas/115/html/smf_pano_115_vi+.html#47
http://smf.emath.fr/Publications/Panoramas/115/html/smf_pano_115_vi+.html#48
http://smf.emath.fr/Publications/Panoramas/115/html/smf_pano_115_vi+.html#49
http://smf.emath.fr/Publications/Panoramas/115/html/smf_pano_115_vi+.html#50
http://smf.emath.fr/Publications/Panoramas/115/html/smf_pano_115_vi+.html#51
http://smf.emath.fr/Publications/Panoramas/115/html/smf_pano_115_vi+.html#52
http://smf.emath.fr/Publications/Panoramas/115/html/smf_pano_115_vi+.html#53
http://smf.emath.fr/Publications/Panoramas/115/html/smf_pano_115_vi+.html#54
http://smf.emath.fr/Publications/Panoramas/115/html/smf_pano_115_vi+.html#55
http://smf.emath.fr/Publications/Panoramas/115/html/smf_pano_115_vi+.html#56
http://smf.emath.fr/Publications/Panoramas/115/html/smf_pano_115_vi+.html#57


BIBLIOGRAPHY 101

[58] F. G. Tricomi & A. Erdelyi – “The asymptotic expansion of a ratio of gamma
functions”, Pacific J. Math. 1 (1951), p. 133–142.

[59] D. Ullrich – “Radial divergence in BMOA”, Proc. London Math. Soc. 68 (1994),
p. 145–160.

[60] D. Vukotić – “A sharp estimate for Ap

α
functions in Cn”, Proc. Amer. Math.

Soc. 117 (1993), p. 753–756.

[61] Z. Wu – “Carleson measures and multipliers for the Dirichlet space”, J. Funct.
Anal. 169 (1999), p. 148–163.

[62] H. Wulan & K. Zhu – “Bloch and BMO functions in the unit ball”, 53 (2008),
p. 1009–1019, Complex Variables.

[63] , “Lipschitz type characterizations of Bergman spaces”, to appear in Bull.
Canadian. Math. Soc.

[64] W. Yang & C. Ouyang – “Exact location of α-Bloch spaces in Lp

a
and Hp of

a complex unit ball”, Rocky Mountain J. Math. 30 (2000), p. 1151–1169.

[65] R. Zhao – On a general family of function spaces, vol. 105, Ann. Acad. Sci.
Fenn. Math. Dissertationes, 1996, 56 pp.

[66] K. Zhu – “Positive Toeplitz operators on weighted Bergman spaces of bounded
symmetric domains”, J. Operator Theory 20 (1988), p. 329–357.

[67] , “Möbius invariant Hilbert spaces of holomorphic functions in the unit
ball of Cn”, Trans. Amer. Math. Soc. 323 (1991), 823-842).

[68] , “Bergman and Hardy spaces with small exponents”, Pacific J. Math.
162 (1994), p. 189–199.

[69] , “Holomorphic Besov spaces on bounded symmetric domains”, Quart. J.
Math. Oxford 46 (1995), p. 239–256.

[70] , “Holomorphic Besov spaces on bounded symmetric domains II”, Indiana
Univ. Math. J. 44 (1995), p. 239–256.

[71] , Spaces of Holomorphic Functions in the Unit Ball, Springer, New York,
2005.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2008

http://smf.emath.fr/Publications/Panoramas/115/html/smf_pano_115_vi+.html#58
http://smf.emath.fr/Publications/Panoramas/115/html/smf_pano_115_vi+.html#59
http://smf.emath.fr/Publications/Panoramas/115/html/smf_pano_115_vi+.html#60
http://smf.emath.fr/Publications/Panoramas/115/html/smf_pano_115_vi+.html#61
http://smf.emath.fr/Publications/Panoramas/115/html/smf_pano_115_vi+.html#62
http://smf.emath.fr/Publications/Panoramas/115/html/smf_pano_115_vi+.html#63
http://smf.emath.fr/Publications/Panoramas/115/html/smf_pano_115_vi+.html#64
http://smf.emath.fr/Publications/Panoramas/115/html/smf_pano_115_vi+.html#65
http://smf.emath.fr/Publications/Panoramas/115/html/smf_pano_115_vi+.html#66
http://smf.emath.fr/Publications/Panoramas/115/html/smf_pano_115_vi+.html#67
http://smf.emath.fr/Publications/Panoramas/115/html/smf_pano_115_vi+.html#68
http://smf.emath.fr/Publications/Panoramas/115/html/smf_pano_115_vi+.html#69
http://smf.emath.fr/Publications/Panoramas/115/html/smf_pano_115_vi+.html#70
http://smf.emath.fr/Publications/Panoramas/115/html/smf_pano_115_vi+.html#71

	Chapter 1. Introduction
	Chapter 2. Various special cases
	Chapter 3. Preliminaries
	Chapter 4. Isomorphism of Bergman spaces
	Chapter 5. Several characterizations of Ap
	Chapter 6. Holomorphic Lipschitz spaces
	Chapter 7. Pointwise estimates
	Chapter 8. Duality
	Chapter 9. Integral representations
	Chapter 10. Atomic decomposition
	Chapter 11. Complex interpolation
	Chapter 12. Reproducing kernels
	Chapter 13. Carleson type measures
	Chapter 14. Coefficient multipliers
	Chapter 15. Lacunary series
	Chapter 16. Inclusion relations
	Chapter 17. Further remarks
	Bibliography

