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UNCERTAINTY PRINCIPLES ASSOCIATED TO
NON-DEGENERATE QUADRATIC FORMS

Bruno Demange

Abstract. – This volume is devoted to several generalisations of the classical Hardy
uncertainty principle on Euclidian spaces. Instead of comparing functions and their
Fourier transforms a Gaussian, we compare them to the exponential of general non-
degenerate quadratic forms, like for example the Lorentz form. Using the Bargmann
transform, we translate the problem into the description of several classes of analytic
functions of several variables, and at the same time simplify and unify proofs of results
presented in several previous papers.

Résumé (Principes d’incertitude associés à des formes quadratiques non dégénérées)
Ce volume est consacré a des géneralisations du principe d’incertitude classique de

Hardy dans les espaces Euclidiens. Au lieu de comparer les fonctions à des gaussi-
ennes, nous les comparons a l’exponentielle de formes quadratiques non dégénérées,
par exemple à la forme de Lorentz. Nous transformons ces problèmes à l’aide de la
transformée de Bargmann, en des problèmes de description de certaines classes de
fonctions entières de plusieurs variables. Ces méthode améliorent et simplifient des
résultats publiés dans des travaux précédents.
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INTRODUCTION

This volume concerns certain forms of the uncertainty principle in harmonic anal-
ysis. The uncertainty principle is a general term for theorems that show that if a
function f on Rd and its Fourier transform �f approximate g and �g, then they must
be equal.

The history of the uncertainty principle goes back to Heisenberg inequality of
quantum mechanics, namely

�
|x|2| �f(x)|2 dx×

�
|ξ|2| �f(ξ)|2 dξ ≥ d2

16π2
�f�4

L2 ,

where d is the dimension, and �f(y) =
�

f(x) exp(−2iπxy) dx. This inequality is well
known as the fact that the product of uncertainties of the position and the momentum
is bounded below by an explicit constant, that involves the Planck constant. Equality
occurs only for the Gaussian functions f(x) = C exp(−t|x|2), t > 0.

The Hardy uncertainty principle [13] precised this unique property of Gaussian
functions: if γ is a Gaussian function, there is no function f such that |f | ≤ γ and
| �f | ≤ �γ, except for the function γ itself (or its multiples). Variants of this results were
proved by Morgan [22], Cowling-Price [10], not to mention the work that has been
done on Lie Groups. This was illustrated more recently by a lost result of Beurling [16]:

�

R
|f(x)|| �f(y)| exp(2π|xy|) dx dy < ∞

implies that f = 0, while Gaussian functions make this integral finite when 2π is
replaced by a smaller constant. This has been completed in [7], and one actually has,
as a corollary, the following version of Hardy uncertainty principle: if

|f(x) �f(y)| ≤ exp(−2π|xy|)

then f is a Gaussian function. In this example, we see that we can ask functions to
decrease exponentially in some directions, and not in other, and still get an uncertainty
principle.

This paper is essentially about the study of functions satisfying estimates of the
form

(0.1) |f(x)| ≤ exp(−π|q(x)|), | �f(ξ)| ≤ exp(−π|q�(ξ)|),

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2009



8 INTRODUCTION

where q and q� are two quadratic forms. We ask for an exponential decrease in some
directions, but not in regions close to the isotropic sets of the forms, where they
vanish. The classical Hardy uncertainty principle corresponds to positive quadratic
forms. Take for example as previously the case of quadratic forms on R2 defined by
q(x, y) = 2xy and q�(ξ, η) = 2ξη. We ask for

(0.2) |f(x, y)| ≤ exp(−2π|xy|), | �f(ξ, η)| ≤ exp(−2π|ξη|).

Here q and q� are not positive, and we cannot expect solutions to be integrable. Take
for example

f(x, y) = sgn(x) exp(−2π|xy|).

It is not in any Lp space except L∞. However, in the distribution sense, we have

�f(ξ, η) = −isgn(ξ) exp(−2π|ξη|),

so that (0.2) is satisfied.
We see with this example that studying solutions of (0.1) requires to work on the

level of distribution. In this setting, (0.1) can be rewritten in the following: study
distributions f in the Schwartz space S� so that

(0.3) f(·) exp(±πq(·)) ∈ S�, �f(·) exp(±πq�(·)) ∈ S�.

When q and q� are both positive quadratic forms, this corresponds to the classical
Hardy uncertainty principle, except that it is stated in a distributional setting. In the
simplest case, the conditions are

(0.4) f(·) exp(π| · |2) ∈ S�, �f(·) exp(π| · |2) ∈ S�.

To solve this problem, we had to work with more regular objects than distributions.
We do this using the Bargmann transform, which is essentially a convolution with
a Gaussian function. If f is a tempered distribution, its Bargmann transform is the
entire function defined by

B(f)(z) = exp
�π

2
z2

�
f � γ(z),

where γ(x) = exp(−π|x|2). It has been introduced by Bargmann in [3, 4].
We already used the Bargmann transform in [7], even if not explicitly. There we

studied functions satisfying Beurling type conditions, of the form

(0.5) (1 + |x| + |y|)−Nf(x) �f(y) exp(2π|xy|) ∈ L1.

Even if it was the scheme of Hörmander’s proof for Beurling theorem, regularity of f
is not a direct consequence of (0.5), while Hardy’s conditions imply directly that f
extends to an entire function of order 2. Our trick was to convolve f with γ. Since f
has to be a Hermite function, so does g = f � γ. We showed that the new function g
satisfies also (0.5). This is the Bargmann transform of f , up to a factor.
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INTRODUCTION 9

We go back to (0.4). We show in the first chapter that f is necessarily a Hermite
function, namely f(x) = P (x) exp(−π|x|2), where P is a polynomial. Equivalently, we
prove that the Bargmann transform of f is a polynomial. This is done in two stages.
First we show that (0.4) is equivalent to an estimate on the Bargmann transform of
f . Then we conclude using a version of Phragmèn-Lindelöf principle. This is a scheme
for all our proofs. This distributional version of Hardy uncertainty principle allows
to recover known variants, including the result of Cowling-Price [10]. We exploit the
Bargmann transform to have a distributional version of other uncertainty principles,
including the one of Morgan, Beurling (generalizing the results of [7]), as well as
directional uncertainty principle, mainly in one dimension, where conditions are stated
only on the positive numbers axis for example. Let us mention, in this context, a
characterization of Bargmann transforms of distributions which are tempered on one
side.

When q(x) = a|x|2, q�(ξ) = b|ξ|2, with ab > 1 it follows that there are no solution
for ab > 1, there are only Gaussian or Hermite solutions when ab = 1. The case when
ab < 1 had partially been studied before (see for example [17]). We give here the
structure of the distributions satisfying

f(·) exp(πa| · |2) ∈ S�, �f(·) exp(πb| · |2) ∈ S�, ab < 1,

which are actually the members of a space of Gelfand and Shilov. Many Gaussian
functions satisfy these estimates, including complex Gaussian functions, and it is
easy to characterize them. We show that any other distribution with this property is
an average of such Gaussian functions.

This is actually a phenomenon that will happen through the whole paper when
considering other pairs of quadratic forms. We will study in general the space G (q, q�)
of tempered distributions f satisfying (0.3), given two quadratic forms, that we assume
to be non degenerated. As for the case of positive forms, three cases will occur.
When there are no Gaussian elements, we call the pair (q, q�) a super-critical pair. We
expect then G (q, q�) to be small in some sense. We give sufficient conditions so that
G (q, q�) = {0}, and so that it does not contain certain classes of integrable functions.
When there are non-real Gaussian elements, we call the pair sub-critical, and critical
in the other cases. We give precise characterizations of those pairs in terms of the
spectral properties of the matrices of the two quadratic forms.

The case that will be of most interest to us is the critical case. The Gaussian
elements of G (q, q�) are then all real, and parameterized by a Group of matrices
naturally associated to the quadratic forms. This leads to a natural conjecture on
the structure of the elements of G (q, q�): are all off them generated by the Gaussian
functions, using averages as above? This conjecture seems even more natural when
we have translated the problem on the level of entire functions, using the Bargmann
transform. Such a result is established when one of the forms is positive, this is actually
deduced from the one dimensional case of Hardy uncertainty principle. However when
the two forms have a signature, this is not so simple, and we will not be able to
conclude in general. The issue is that they may not be diagonalized in the same basis.
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10 INTRODUCTION

In extreme cases, not only they may not be diagonalized simultaneously, but the group
that parametrizes the Gaussian functions contains only one element. This is the case
for example when q(x) = x2

1 − x2
2 and q�(ξ) = 2ξ1ξ2 on R2. Then the conjecture is

that any distribution f such that

f(x) exp(±π(x2
1 − x2

2)) ∈ S�, �f(ξ) exp(±2πξ1ξ2) ∈ S�

is a Hermite function f(x) = P (x) exp(−π|x|2). We could not conclude up to now.
If we take q(x, y) = 2xy and q�(ξ, η) = 2ξη on R2, the space G (q, q�) contains the

functions satisfying (0.2). The Gaussian functions in this case are

γt(x, y) = exp
�
− πtx2 − π

t
y2

�
.

We show that any element of G (q, q�) can be built up using the γt. For the example
above we have

sgn(x) exp(−2π|xy|) = x

� ∞

0
γt(x, y)

dt√
πt

.

Now take the distribution f(x, y) = 1(x) ⊗ δ(y), where δ is the Dirac mass. It is an
element of G (q, q�), since �f(ξ, η) = δ(ξ)1(η). It is actually the limiting case of γt as
t → 0. If F 2 is the Fourier transform with respect to the second variable, we have

F 2f(x, y) = 1 = exp(−π(x2 + y2)) + π(x2 + y2)

� 1

0
exp(−πt(x2 + y2)) dt

hence we can express f in terms of the γt:

f(x, y) = γ1(x, y) + πx2

� 1

0
γt(x, y)

�
π

t
dt− ∂2

y

� 1

0
γt(x, y)

dt

4
√

πt
.

We prove more generally that any element of G (q, q�) can be decomposed in the
following way:

(0.6) f(x, y) =
�

k

Pk(x, y, ∂x, ∂y)

�
γt(x, y) dµk(t),

where the sum is finite, Pk are polynomials in x, y and in the partial differential
operators ∂x, ∂y, and µk are finite measures on ]0,∞[. Since we take derivatives,
(0.6) is a distribution in general. However we show that it is regular away from the
coordinate axis. Indeed, f(x, y) defined by (0.6) is a real analytic function away from
the axis, and satisfies an estimate of the form

|f(x, y)| ≤ Cε(1 + |x| + |y|)N exp(−2π|xy|)
whenever |xy| > ε > 0, as well as its Fourier transform. As shown by the example
above, there are non zero solutions that vanish for xy �= 0. They are exactly linear
combinations of distributions of the form

δ(k)(x)⊗ yl, or xk ⊗ δ(l)(y).

Our main results come when considering the analogue of the quadratic forms 2xy or
x2−y2 in higher dimensions. The Lorentz form is defined by q(x, y) = x2

1+· · ·+x2
d
−y2,

x ∈ Rd, y ∈ R. We are able to prove the same structure property as in (0.6) for the
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INTRODUCTION 11

elements of G (q, q), except that the integrals are over the Lorentz group of matrices.
The solutions have the property that they are real analytic inside the Lorentz cone,
while they can be singular outside. We prove that no element of G (q, q) is supported
in the set {q = 0}, unlike in dimension 1. However we exhibit distributions that vanish
inside the cone, as well as their Fourier transforms, without vanishing completely. We
prove similar results when considering pairs (q, q�) where q is the Lorentz form and q�

is any form of the type q�(ξ, η) = a1ξ2
1 + · · · + adξ2

d
+ aη2, with ai, a �= 0.

We do realize that this volume asks more questions than it solves. We organize
it as follows. We begin with an history of uncertainty principles of Hardy type, and
their different generalizations. We show how the use of the Bargmann transform sig-
nificantly simplifies their proofs and unifies the results. We mainly focus on results of
Hardy, Morgan, Beurling. In the second chapter we go further in details to get richer
results, including the aforementioned Hardy uncertainty principle in the sub-critical
case. We prove various uncertainty principles where any function or distribution satis-
fying the conditions is an average of Gaussian functions satisfying the same estimates.
In the next chapter we start the study of Hardy uncertainty principle when considering
non positive forms. This leads to a classification into critical, sub- and super-critical
pairs. The critical pairs will be studied in more details in the fourth chapter. We state
there the main conjectures on the structure of the spaces G (q, q�), and the equivalent
problems that arise on the level of entire functions. We then prove the main result
when we have a Lorentz quadratic form, and variants.
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CHAPTER 1

HARDY’S UNCERTAINTY PRINCIPLE
AND ITS GENERALIZATIONS

1.1. Hardy’s uncertainty principle

Throughout this text we will use the following terminology.

Definition 1.1.1. – Let A be a real symmetric matrix. It is positive if

�Ax, x� > 0

whenever x �= 0. It is semi-positive if �Ax, x� ≥ 0 for all x.

A symmetric matrix A is positive if and only if its eigenvalues are positive. It
is semi-positive if and only if its eigenvalues are non-negative. We denote by I the
identity matrix.

Definition 1.1.2. – A Gaussian function is a function of the form

f(x) = exp(−π�Ax, x�),

where A is a positive symmetric matrix. The Fourier transform of f is det(A)−1/2

exp(−π
�
A−1x, x

�
). A Hermite function is a function of the form

f(x) = P (x) exp(−π�Ax, x�),

where P is a polynomial. The Fourier transform of f has the form

Q(x) exp(−π
�
A−1x, x

�
),

where Q is a polynomial of the same degree as P .

The standard Gaussian function is

γ(x) = exp(−π|x|2).

We have γ = �γ.
Hardy’s uncertainty principle is the following, see [14].
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14 CHAPTER 1. HARDY’S UNCERTAINTY PRINCIPLE AND ITS GENERALIZATIONS

Theorem 1.1.3. – Let A, B be two positive matrices, and N ∈ R. Let f ∈ L2(Rd)
such that, for almost all x, ξ ∈ Rd

,

|f(x)| ≤ C(1 + |x|)N exp(−π�Ax, x�),(1.1)

| �f(ξ)| ≤ C(1 + |ξ|)N exp(−π�Bξ, ξ�).(1.2)

If A − B−1
has a positive eigenvalue, then f = 0. If A = B−1

, then there exists a

polynomial P , of degree at most N , such that

f(x) = P (x) exp(−π�Ax, x�).

When f = 0 is the only possible conclusion, we will speak of the weak Hardy’s

uncertainty principle, and of strong Hardy’s uncertainty principle when A = B−1 and
N ≥ 0.

Many generalizations of Theorem 1.1.3 in different directions have been given.
In [10], the following result is obtained:

Theorem 1.1.4. – Let a, b > 0 with ab ≥ 1, and f ∈ S�(R). Let 1 ≤ p, q ≤ ∞.

Assume that

f(·) exp(πa| · |2) ∈ Lp(R), �f(·) exp(πb| · |2) ∈ Lq.

Then f = 0 unless p = q = ∞ and ab = 1.

The condition is optimal since the Gaussian function f(x) = exp(−πax2) is a solu-
tion for ab = 1 and p = q = ∞. The corresponding statement for Rd was first obtained
in [7]. Functions satisfying close conditions are proved to be Hermite functions:

Theorem 1.1.5. – Let N ∈ R and f ∈ L2(Rd). Assume that

(1 + |x|)−Nf(x) exp(π|x|2) ∈ L1(Rd), (1 + |ξ|)−N �f(ξ) exp(π|ξ|2) ∈ L1(Rd).

Then f(x) = P (x) exp(−π|x|2), where P is a polynomial of degree less than N − d.

Theorem 1.1.4 is a consequence of Theorem 1.1.5. We have stated Theorem 1.1.5 for
the standard Gaussian function exp(−π|x|2). The general formulation, with matrices
A and B as in Hardy’s uncertainty principle, can be done in the same way (see
Theorem 1.3.5).

Morgan gave in [22] the following version of the uncertainty principle, where the
Gaussian functions have been replaced by a more general family.

Theorem 1.1.6. – Let 1 < p < 2, q be the conjugate exponent, and a, b > 0. Let

f ∈ L2(R) such that for almost all x, ξ ∈ R,

|f(x)| ≤ C exp(−2πp−1ap|x|p), | �f(ξ)| ≤ C exp(−2πq−1bq|ξ|q).

If ab > | cos(pπ

2 )|1/p
, then f = 0.
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This is an intermediate result between Paley-Wiener-Schwartz’s Theorem, corre-
sponding to p = 1, and Hardy’s uncertainty principle. Morgan gives a family of
solutions when ab = | cos(pπ

2 )|1/p. The characterization of all possible solutions may
be difficult, since he shows the following: given any N ∈ R and ab = | cos(pπ

2 )|1/p, one
can find a nonzero f ∈ L2(R) and M ∈ R such that

|f(x)| ≤ (1 + |x|)N exp(−2πp−1ap|x|p), | �f(ξ)| ≤ (1 + |ξ|)M exp(−2πq−1bq|ξ|q)

Unlike Theorem 1.1.3, N may take negative values. Another version of Theorem 1.1.6
has been given in [7]:

Theorem 1.1.7. – Let 1 < p < 2, q be the conjugate exponent, and a, b > 0. Let

f ∈ L2(R) such that

�

R
|f(x)| exp(2πp−1ap|x|p) dx < ∞,

�

R
| �f(ξ)| exp(2πq−1bq|ξ|q) dξ < ∞.

If ab > | cos(pπ

2 )|1/p
, then f = 0.

The proofs of Theorems 1.1.3, 1.1.4, 1.1.6 and 1.1.7 are very similar and rely on
Phragmèn-Lindelöf principle, which can be stated as follows.

Lemma 1.1.8 (Phragmèn-Lindelöf). – Let α ≥ 1. Let F be an analytic function of

order α in a domain delimited by two lines forming an angle less than
π

α
. Assume that

F is continuous on the closure of the domain, and has polynomial growth of order N
on each line of the boundary. Then it has polynomial growth of order N in the whole

domain.

See [14] for details. One can sketch the original proofs of Hardy’s and Morgan’s
uncertainty principles as follows: first observe that the conditions given on f and �f
enable us to extend them to entire functions. Then one tries to apply Lemma 1.1.8 or
its numerous variants (see [18, 27]) to f . The proof of Theorem 1.1.5 is slightly dif-
ferent, since we apply Phragmèn-Lindelöf principle to an auxiliary function, obtained
by convolution of f with a Gaussian function.

In the next section we will introduce the Bargmann transform, a tool that will be
used throughout this paper. We will show that it can be used to unify these proofs
and give further generalizations of Theorems 1.1.5 and 1.1.7.

1.2. The Bargmann transform

As mentioned before, the auxiliary function used in the proof of Theorem 1.1.5 is
a convolution of f by a Gaussian function. This is almost the classical tool known as
the Bargmann transform of f . We still denote by γ the standard Gaussian function
γ(x) = exp(−π|x|2).
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Definition 1.2.1. – The Bargmann transform of a tempered distribution f ∈ S�(Rd)
is defined, for z ∈ Cd

, by

(1.3) B(f)(z) = exp
�π

2
z2

�
f � γ(z).

Here, z2 = z2
1 + · · · + z2

d
.

We denote by � � the duality bracket between the Schwartz space S(Rd) and the
tempered distributions S�(Rd). Many properties of B are shown in [3, 4]. For example
it is injective. More generally we have the following Lemma, that will be useful later
on:

Lemma 1.2.2. – Let t > 0 and f ∈ S�(Rd). Assume that for all polynomial P we

have

(1.4)
�
f, P (·) exp(−t| · |2)

�
= 0.

Then f = 0.

Proof. – After a change of variables we may assume that t = π. Relation (1.4) is
equivalent to B(f) = 0. Hence f � γ = 0, or �fγ = 0, and consequently f = 0.

The Bargmann transform was initially used as an isomorphism from S�(Rd) into
the Fock Space F , that is defined as follows.

Definition 1.2.3. – The Fock space F is the space of entire functions F on Cd
,

such that there exists C and N > 0, such that for all z ∈ Cd
,

(1.5) |F (z)| ≤ C(1 + |z|)N exp
�π

2
|z|2

�
.

Definition 1.2.4. – The space F0 is the space of entire functions F on Cd
, such

that for all N > 0, there exists CN , such that for all z ∈ Cd
,

(1.6) |F (z)| ≤ CN (1 + |z|)−N exp
�π

2
|z|2

�
.

Consider the topology on F0 given by the semi-norms

QN (F ) = sup
z

|F (z)|(1 + |z|)N exp
�
− π

2
|z|2

�
.

Then the dual space of F0 can be identified with F : any continuous linear form on
F0 can be written as

F −→
�

Cd

F (z)G(z) exp(−π|z|2) dV (z),

for a uniquely determined G ∈ F . Here dV (z) is a renormalization of the Lebesgue
measure on Cd. Recall that the topology of S(Rd) is defined by the semi-norms

(1.7) PN (φ) = sup
|α|≤N,x∈Rd

(1 + |x|)N |∂αφ(x)|.

Proposition 1.2.5. – The Bargmann transform is a homeomorphism from the space

S�(Rd) into F , and from S(Rd) into F0.
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The inverse Bargmann transform is given by the following identity, which is the
fundamental isometry relation for the Bargmann transform:

Proposition 1.2.6. – Let f ∈ S�(Rd), and φ ∈ S(Rd). Then

(1.8)
�
f, φ

�
=

�

Cd

B(f)(z)B(φ)(z) exp(−π|z|2) dV (z).

Another useful property is the following analogue of Parseval’s Identity.

Proposition 1.2.7. – Let f ∈ S�(Rd). For all z ∈ Cd
, we have

(1.9) B(f)(z) = B( �f)(iz).

1.3. Hardy’s Theorem on S�

1.3.1. Dimension one. – A simple computation shows that the Bargmann trans-
form maps the space of Hermite functions of the form P (x) exp(−πx2) into the space
of polynomials. Thus Theorem 1.1.5 amounts to showing that the Bargmann trans-
form of such a function is a polynomial. We can prove a more general version of
Theorem 1.1.5:

Theorem 1.3.1. – Let f ∈ S�(R). Then

(1.10) f(·) exp(π(·)2) ∈ S�(R), �f(·) exp(π(·)2) ∈ S�(R)

if and only if there exists a polynomial P such that for all x ∈ R, f(x) =
P (x) exp(−πx2).

Proof of Theorem 1.3.1. – Let F be the Bargmann transform of f . Since f(·) exp(π| ·
|2) ∈ S�(Rd), there exists N such that for all φ ∈ S(R),

���f exp(π(·)2), φ(·)
��� ≤ CPN (φ).

If we write F (z) as the action of the distribution f(·) exp(π(·)2) on the test function

φz(x) = exp
�
− 2πx2 + 2πxz − π

2
z2

�
,

we obtain

|F (z)| ≤ CPN (φz)

≤ C sup
x∈Rd

(1 + |x| + |z|)2N exp
�
− 2π|x|2 + 2π|x|| Re(z)| − π

2
Re(z2)

�
.

≤ C sup
r>0

(1 + r + |z|)2N exp
�
− 2π(r − Re(z)/2)2 +

π

2
| Im(z)|2

�
,

and thus

(1.11) |F (z)| ≤ C(1 + |z|)2N exp
�π

2
| Im(z)|2

�
.
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18 CHAPTER 1. HARDY’S UNCERTAINTY PRINCIPLE AND ITS GENERALIZATIONS

If we use now the hypothesis on �f and Formula (1.9), we obtain

(1.12) |F (z)| ≤ C(1 + |z|)2M exp
�π

2
| Re(z)|2

�

for some positive integer M . We conclude that F is a polynomial using the following
lemma and Liouville’s Theorem.

Lemma 1.3.2. – Let F be a continuous function on Ω = {z; Re(z) ≥ 0, Im(z) ≥ 0},
holomorphic in the interior. Assume that there exist C, N > 0 such that for all z ∈ Ω,

|F (z)| ≤ C(1 + |z|)N exp
�
| Im(z)|2

�
.

Assume moreover that |F (ix)| ≤ C(1 + |x|)N
for x ≥ 0. Then

|F (z)| ≤ C(1 + |z|)N

for all z ∈ Ω.

Proof. – Consider, for ε > 0, the function Fε(z) = exp
�

i

2εz2
�
F (z). By assumption,

it has a polynomial growth of order N on iR+ and on the half-line {(x, y) ∈ R2
+;x =

ε−1y}, with constants independent of ε. Lemma 1.1.8 implies that this estimate is
true between the lines, and thus |F (z)| ≤ C(1 + |z|)N in Ω.

Theorem 1.3.1 corresponds to the critical case of Theorem 1.1.3. The super critical
case is a corollary:

Theorem 1.3.3. – Let f ∈ S�(R). Let a, b ∈ R. Let G (a, b) be the space of tempered

distributions f such that

(1.13) f(·) exp(πa(·)2) ∈ S�(R), �f(·) exp(πb(·)2) ∈ S�(R).

If ab > 1 then G (a, b) = {0}. If ab = 1 then any element of G (a, b) can be written as

P (x) exp(−πax2) for some polynomial P .

1.3.2. Higher dimensions. – We will now give a distributional version of The-
orem 1.1.3 in any dimension. For that purpose we need the following result which
proves that a too fast Gaussian decay on one direction of Rd is impossible, except for
the zero distribution.

Theorem 1.3.4. – Let a > 1 and f ∈ S�(Rd). Assume that

(1.14) f(x) exp(πx2
1) ∈ S�(Rd), �f(ξ) exp(aπξ2

1) ∈ S�(Rd).

Then f = 0.

Proof. – Let ψ ∈ S(Rd−1). Consider the distribution Tψ ∈ S�(R) defined by

�Tψ, φ� = �f, φ⊗ ψ�,

where (φ ⊗ ψ)(x) = φ(x1)ψ(x2, . . . , xd). Then (1.14) implies that Tψ(·) exp(π| · |2) ∈
S�(R) and �Tψ(·) exp(aπ| · |2) ∈ S�(R). Theorem 1.3.3 implies that Tψ = 0. This is true
for all ψ ∈ S(Rd−1), and we conclude that f = 0.
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Theorem 1.3.5. – Let A, B be two symmetric matrices, with A positive and B in-

vertible. Let f ∈ S�(Rd) such that

(1.15) f(·) exp(π�A·, ·�) ∈ S�(Rd), �f(·) exp(±π�B·, ·�) ∈ S�(Rd).

If AB has an eigenvalue λ such that |λ| > 1, then f = 0. If all its eigenvalues are 1
or −1, then

f(x) = P (x) exp(−π�Ax, x�),
where P is a polynomial.

Here I is the identity matrix.

Proof. – Note that AB is conjugated to the symmetric matrix A1/2BA1/2, and hence
it is diagonalizable. Let Q ∈ On(R) such that tQA1/2BA1/2Q is diagonal, with diag-
onal coefficients b1, . . . , bn. Put P = A−1/2Q, and g(x) = f(Px).

We are lead to characterize g such that

(1.16) g(·) exp(π| · |2) ∈ S�(Rd), �g(ξ) exp(±π(b1ξ
2
1 + · + bdξ

2
d)) ∈ S�(Rd),

where bi ∈ R \ {0} are the eigenvalues of AB.
Assume that maxi |bi| > 1. Suppose for simplicity that |b1| > 1. Let ψ be a fixed

and compactly supported function on Rd−1. Let Tψ be the element of S�(R) defined
by

�Tψ, φ� =
�
g, φ⊗ �ψ

�
.

Its Fourier transform is defined by
�

�Tψ, φ
�

= ��g, φ⊗ ψ�.

We first use the fact that g(x) exp(πx2
1) ∈ S�(Rd), and we obtain

(1.17) Tψ(·) exp(π| · |2) ∈ S�(R).

Next we use the inequality |b1ξ2
1 + · + bdξ2

d
| ≥ |b1|ξ2

1 − |
�

i>1 biξ2
i
|, and the fact that

ψ is compactly supported. We obtain

(1.18) �Tψ(·) exp(π|b1|ξ2
1) ∈ S�(R).

Since |b1| > 1, Theorem 1.3.4 implies that Tψ = 0. Since ψ is arbitrary, we conclude
that g = 0.

Assume now that |bi| = 1 for all i. Equations (1.17), (1.18), and Theorem 1.3.1
imply that

Tψ(x1) = Pψ(x1) exp(−πx2
1),

where P is a polynomial. The degree of P depends only on the orders of g and �g, not
on the choice of ψ. Hence one can write

g(x) =
N�

k=0

xk

1 exp(−πx2
1)⊗ gk(x2, . . . , xd),
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where the gk are tempered distributions, and N depends only on the orders of g and
�g. Now (1.16) implies that for all k,

fk(x2, . . . , xd) exp(π(x2
2 + · · · + x2

d)) ∈ S�(Rd−1),

�fk(ξ2, . . . , ξd) exp(±π(b2ξ
2
2 + · · · + bdξ

2
d)) ∈ S�(Rd−1).

The result follows by induction.

Remark 1.3.6. – Theorems 1.1.3, 1.1.4 and 1.1.5 are direct corollaries of Theo-
rem 1.3.5. Our proof simplifies all their classical proofs.

1.4. Morgan’s uncertainty principle on S�(R)

In order to sate Morgan’s Theorem in the distribution setting, we need cutoff
functions. Throughout this paper, the letter χ will denote a smooth function on R,
vanishing in a neighborhood of the origin, and equal to 1 outside a compact set.
Similarly, the letter χ+ will denote a a smooth function equal to 1 in a neighborhood
of +∞, and vanishing on ]−∞, 1].

Theorem 1.4.1. – Let 1 < p < 2, q be the conjugate exponent, and a, b > 0. Let

f ∈ S�(R). Assume that

(1.19) f(·)χ(·) exp(2πp−1ap| · |p) ∈ S�(R), �f(·)χ(·) exp(2πq−1bq| · |q) ∈ S�(R),

and that ab > | cos(pπ

2 )|1/p
. Then f = 0.

Note that condition (1.19) is independent of the particular choice of χ. We have
to formulate the hypotheses in this way, since the functions | · |p and | · |q are not
smooth on R. Recall that the constant | cos(pπ

2 )|1/p is optimal as shown by Morgan’s
examples in [22].

Proof of Theorem 1.4.1. – We consider the function F (z) = f � γ(z) rather than the
Bargmann transform itself. We have, by Proposition 1.2.7,

F (z) =
�

�f, ψz

�
,

with ψz(ξ) = exp(−πξ2 + 2iπξz). We argue then as in the proof of Theorem 1.3.1,
and estimate the semi-norms of the test functions involved.

Take the cut-off function χ such that χ(r) = 1 for |r| > 2, and χ(r) = 0 for |r| < 1.
First use the fact that �f ∈ S�(R), so that there exists n, such that

���
�

�f, (1− χ)ψz

���� ≤ CPn((1− χ)ψz)

≤ C sup
0<r<2

(1 + r + |z|)2n exp(−πr2 + 2πr| Im(z)|).
(1.20)
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Now we use the fact that �f(·)χ(·) exp(2πq−1bq| · |q) ∈ S�(R). One can thus find some
m > 0, such that

���
�

�f, χψz

���� ≤ CPm

�
χψz exp(−2πq−1bq| · |q)

�

≤ C sup
r>1

(1 + r + |z|)2m exp(−πr2 + 2πr| Im(z)| − 2πq−1bqrq).
(1.21)

Combining (1.20) and (1.21), we finally find that there exist C, N > 0 such that

|F (z)| ≤ C sup
r>0

(1 + r + |z|)N exp(−πr2 + 2πr| Im(z)| − 2πq−1bqrq).

Then we use the identity r| Im(z)| ≤ p−1b−p| Im(z)|p + q−1bqrq, and obtain

(1.22) |F (z)| ≤ C(1 + |z|)N exp(2πp−1b−p| Im(z)|p).

We will show that for ε small enough, and ξ ∈ R,

(1.23) |F (ξ)| ≤ C(ε) exp(−2πp−1(a− ε)p|ξ|p).

We will choose ε so that (a − ε)b > | cos(pπ

2 )|1/p. Then, by a standard argument
already used in [7, 22, 23], it will follow from (1.22) and (1.23) that F = 0.

So we now prove Inequality (1.23). We argue as in the proof of Inequality 1.22.
Writing F (ξ) as the action of f on the test function x → γ(x − ξ), we can prove as
well that

|F (ξ)| ≤ C sup
r>0

(1 + r + |ξ|)N exp(−π(r − |ξ|)2 − 2πp−1aprp).

In order to estimate the right hand side, we use the following identity: whenever
0 < s < t and η > 0, there exists a constant C(a, η) depending only on a and η, such
that

2p−1ap(tp − sp) ≤ C(a, η) + (t− s)2 + ηsp.

Indeed, the left hand side is bounded by 2ap(t− s)tp−1 ≤ (t− s)2 + a2pt2p−2, which
allows to conclude for s > t/2 (remember that p < 2); otherwise, we write 2p−1aptp ≤
C(a) + 1

4 t2 ≤ C(a) + (t− s)2.
Hence, for r ≤ |ξ|,

(1 + r + |ξ|)N exp(−π(r − |ξ|)2 − 2πp−1aprp)

≤ C(a, ε)(1 + |ξ|)N exp(−2πp−1(a− ε)p|ξ|p).

For r ≥ |ξ|, we write

(1 + r + |ξ|)N exp(−π(r − |ξ|)2 − 2πp−1aprp)

≤ (1 + r + |ξ|)N exp(−π(r − |ξ|)2) exp(−2πp−1ap|ξ|p)

≤ C(1 + |ξ|)N exp(−2πp−1ap|ξ|p),

and (1.23) follows. This proves that F = 0, and hence f = 0.
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1.5. Beurling’s uncertainty principle

A particularly elegant generalization of Theorem 1.1.3 has been given by Beurling.
The proof was first forgotten, and then Hörmander published one in [13]. The original
statement is the following:

Theorem 1.5.1. – Let f ∈ L2(R). Then

(1.24)
��

R2

|f(x) �f(y)| exp(2π|xy|) dxy < ∞

if and only if f = 0.

This implies Hardy’s uncertainty principle (on R, when A = B−1 and N < −1).
in [7], we obtained a complete analogue of Beurling’s Theorem, with a characterization
of Hermite functions, in any dimension. We found then a bilinear version of this result
in [11], which can be stated as follows.

Theorem 1.5.2. – Let f, g ∈ L2(Rd), and N ∈ R. Assume that

(1.25)
��

R2d

|f(x)�g(y)| + | �f(y)||g(x)|
(1 + |x| + |y|)N

exp(2π|�x, y�|) dxy < ∞.

Then either f = 0, or g = 0, or f and g are Hermite functions,

f(x) = P (x) exp(−π�Ax, x�), g(x) = Q(x) exp(−π�Ax, x�),

where A is a positive matrix and P,Q are polynomials such that deg(P ) + deg(Q) <
N − d.

Here we encountered a difficulty: the quadratic form in the exponential is not
positive or negative definite. Hence f and �f are not automatically entire functions,
so we cannot apply a Phragmèn-Lindelöf principle to f or �f . Let us remark that in
dimension 1, Hörmander could do it in [13], using a specificity of Formula (1.24), and
a tedious version of Phragmèn-Lindelöf principle.

We could overcome this difficulty in [7] by considering a convolution of f with a
Gaussian function, instead of f itself. This is a natural choice since this new function
has still to be a Hermite function. We showed that it also satisfies (1.25). It seems
that this is the first use of the Bargmann transform in uncertainty principles.

Here we will show that the Bargmann transform can be used to get a generalization
of Theorem 1.5.2 to the setting of distributions. The conditions are given on the tensor
products f ⊗ �g and g ⊗ �f :

Theorem 1.5.3. – Let f, g ∈ S�(Rd). Assume that

(1.26) f ⊗ �g exp(±2π�x, y�) ∈ S�(R2d), �f ⊗ g exp(±2π�x, y�) ∈ S�(R2d).

Then either f = 0, g = 0, or there exists an orthogonal decomposition of Rd
, that is

Rd = E� ⊕ E��
, such that the distributions f and g may be written as

(1.27) f(x) = P (x�, ∂x��) exp(−π�Ax�, x��), g(x) = Q(x�, ∂x��) exp(−π�Ax�, x��),
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where A is a real semi-positive symmetric matrix and P and Q are polynomials. Here

x� and x�� are the orthogonal projections of x on E�
and E��

.

Proof. – Let us emphasize that now, in a distribution context, degenerate matrices
A are allowed, as well as derivatives of Dirac masses. We may assume that f �= 0
and g �= 0. Denote by F and G the Bargmann transforms of f and g. We can write
F (z1)G(−iz2) as

(1.28) exp(
π

2
(z2

1 + z2
2))

�
f(x)⊗ �g(y), exp(−π(x− z1)

2 − π(y − z2))
�
.

We will show as in [7, 11] that F (z)G(−iz) is a polynomial. We use the same trick as in
the proofs of Theorems 1.3.1 and 1.4.1, writing (1.28) as the action of the distribution
f(x)⊗ �g(y) exp(2π|�x, y�|) against some test function. One actually distinguishes the
cases |�x, y�| ≤ 1 and |�x, y�| ≥ 1 to avoid differentiability issues. Let z1, z2 ∈ C. We
find

|F (z1)G(−iz2)| ≤ C sup
x,y∈Rd

(1 + |x| + |y| + |z1| + |z2|)N

× exp(−π(|x|2 + |y|2 + 2|�x, y�|))

× exp
�
2π�x, Re(z1)�+ 2π�y, Re(z2)� −

π

2
Re(z2

1 + z2
2)

�
.

Put R2 = |x|2 + |y|2 + 2|�x, y�| = max(|x + y|2, |x− y|2). Then

|F (z1)G(−iz2)| ≤ C sup
R>0

(1 + R + |z1| + |z2|)N exp(−πR2)

× exp
�
πR(| Re(z1 + z2)| + | Re(z1 − z2)|)−

π

2
Re(z2

1 + z2
2)

�

≤ C(1 + |z1| + |z2|)N

× exp
�π

2
| Re(z1 − z2)|| Re(z1 + z2)| +

π

2
| Im(z1, z2)|2

�
.

(1.29)

Using the hypothesis on �f ⊗ g, we can prove as well that

|F (z1)G(−iz2)| ≤ C(1 + |z1| + |z2|)N

× exp
�π

2
| Im(z1 + z2)|| Im(z1 − z2)| +

π

2
| Re(z1, z2)|2

�
.

(1.30)

Next, apply Lemma 1.3.2 to the function F (z)G(−iz). We have

|F (z)G(−iz)| ≤ C(1 + |z|)N exp(π min(| Re(z)|2, | Im(z)|2)),

and hence F (z)G(−iz) is a polynomial in z.
We conclude as is [7, 11], using a standard argument for entire functions of order

2, that F and G have the form

(1.31) F (z) = P (z) exp(
π

2
�Bz, z�), G(z) = Q(z) exp(

π

2
�Bz, z�),

where B is a symmetric complex matrix, and P,Q are polynomials.
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It follows from homogeneity and (1.29) that for all z, ζ ∈ Cd,

| Re �Bz, ζ�| ≤ | Re(z)|| Re(ζ)| + 1

2
(| Im(z)|2 + | Im(ζ)|2).

Taking z real and ζ imaginary yields Im(B) = 0. While if we take both real, we get
that I − B I + B are semi-positive. Put E�� = Ker(I + B) , E� = E��⊥, and let B��

be the restriction of B to E��. The inverse Bargmann transform gives (1.27), with
A = (I + B��)−1(I −B��).

As a corollary, one can give a more precise result than Theorem 1.3.1, in view of
the degrees of the polynomials involved.

Theorem 1.5.4. – Let f, g ∈ S�(Rd), and N > 0. Assume that

f ⊗ �g exp(±2π�x, y�) ∈ S�(R2d)

and

(1 + |x| + |y|)−N |g(x) �f(y)| exp(2π|�x, y�|) ∈ L1(R2d).

Then either f = 0, g = 0, or f and g can be written as

f(x) = P (x) exp(−π�Ax, x�), g(x) = Q(x) exp(−π�Ax, x�),

where A is a real positive symmetric matrix, and P and Q are polynomials such that

deg(P ) + deg(Q) < N − d. In particular f = 0 or g = 0 as soon as N ≤ d.

The difference with Theorem 1.5.2 is that only one condition of integrability is
sufficient to characterize Hermite functions.

1.6. One-directional conditions

In this section we discuss other versions of Theorems 1.3.1, 1.4.1 and 1.5.3. Either
the proofs can be done as in the previous section, or they are just corollaries of those
theorems.

We can state one-directional versions of Hardy’s uncertainty principle.

Theorem 1.6.1. – Let f ∈ S�(Rd). Assume that

f(x) exp(πx2
1) ∈ S�(Rd) and �f(ξ) exp(πξ2

1) ∈ S�(Rd).

Then there exists an integer N ≥ 0 and distributions fk ∈ S�(Rd−1) such that f may

be written as

f(x) =
N�

k=0

xk

1 exp(−πx2
1)⊗ fk(x2, . . . , xd).
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Proof. – We proceed as in the proof of Theorem 1.3.4. Let ψ ∈ S�(Rd−1) and define
the distribution Tψ on S(R) by

�Tψ, φ� = �f, φ⊗ ψ�.

We have Tψ(·) exp(π| · |2) ∈ S�(R) and �Tψ(·) exp(π| · |2) ∈ S�(R). It follows from
Theorem 1.3.1 that Tψ is a Hermite function. Since the order of Tψ depends only on
the order of f , this polynomial has a degree N independent of ψ. Hence we can write

T (x) =
N�

k=0

xk exp(−π|x|2)ak(ψ).

We immediately see that the ak are tempered distributions of Rd−1, and the result
follows.

In particular we have the following.

Corollary 1.6.2. – Let f ∈ S�(Rd). Assume that

f(x) exp(πx2
i ) ∈ S�(Rd), �f(ξ) exp(πξ2

i ) ∈ S�(Rd),

for all i = 1, . . . , d. Then f(x) = P (x) exp(−π|x|2) for some polynomial P .

We obtain an analogue for Morgan’s Theorem:

Theorem 1.6.3. – Let 1 < p < 2 and q be the conjugate exponent. Let a, b > 0.
Assume that

f(x)χ(x1) exp(2πp−1ap|x1|p) ∈ S�(Rd). �f(ξ)χ(ξ1) exp(2πq−1bq|ξ1|q) ∈ S�(Rd).

If ab > | cos(pπ

2 )|1/p
, then f = 0.

Remark 1.6.4. – The conclusions of Theorems 1.6.1 and 1.6.3 are false if the con-
ditions given do not hold on the same coordinate for the function and the Fourier
transform. A counter-example is given the function ψ(x1) �ψ(x2) on R2, where ψ is
compactly supported.

Nazarov gave in [23] an interesting analogue of Theorem 1.1.6, which can be called
a one-sided uncertainty principle. It only asks for Morgan’s conditions on one half-
line. We can generalize this to the setting of tempered distributions. Recall that χ+

is a smooth function vanishing on ]−∞, 1] and equal to 1 on a neighborhood of +∞.

Theorem 1.6.5. – Let 1 < p < 2 and q be the conjugate exponent. Let a, b > 0 and

f ∈ S�(Rd). Assume that

f(x) exp(2πp−1ap|x1|p)χ+(x1) ∈ S�(Rd),

�f(ξ) exp(2πq−1bq|x1|q)χ+(ξ1) ∈ S�(Rd).
(1.32)

If ab > sin(π

p
), then f = 0.
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Proof. – We can assume that d = 1. We consider the entire function F (z) = f � γ(z).
We have, by Proposition 1.2.7, F (z) =

�
�f, φz

�
, with φz(ξ) = exp(−πξ2 + 2iπξz).

Write
F (z) =

�
�f, (1− χ+)φz

�
+

�
�f, χ+φz

�
.

We will show that for Im(z) < 0,

(1.33) |F (z)| ≤ C(1 + |z|)N exp(2πp−1b−p| Im(z)|p).

Indeed, since f ∈ S�(R), we can find M such that
���
�

�f, φ
���� ≤ CPM (φ) for all Schwartz

function φ. Hence
���
�

�f, (1− χ+)φz

���� ≤ CPM ((1− χ)φz)

≤ C sup
r≤2

(1 + |r| + |z|)2M exp(−πr2 − 2πr Im(z))

≤ C(1 + |z|)2M exp(4π| Im(z)|).

This is smaller than (1.33) since p > 1. As in the proof of Theorem 1.4.1, we have as
well ���

�
�f, χ+φz

���� ≤ C(1 + |z|)N exp(2πp−1b−p| Im(z)|p).
We show now that for ξ > 0,

(1.34) |F (ξ)| ≤ C(ε) exp(−2πp−1(a− ε)p|ξ|p),
for arbitrary small ε. Let γξ(x) = exp(−π(x − ξ)2). In the same way, one can prove
that

|�f, (1− χ+)γξ�| ≤ C(1 + |ξ|)M exp(−π(|ξ| − 2)2),

which is smaller than (1.34), since p < 2. The estimate on �f, χγξ� is done in the same
way as in the proof of Theorem 1.4.1.

Finally, we use Phragmèn-Lindelöf principle to show that the estimates (1.33) and
(1.34) imply that f = 0, as long as we choose ε so that (a − ε)b > sin(π

p
). Details

on this last point may be found in [23], but let us repeat briefly the argument.
Choose ε > 0 and A > 0 such that (a − ε)b > A > sin(π/p). Consider the function
G(z) = F (z1/p) exp(2πp−1b−pApz). It is analytic for Im(z) < 0 and continuous to the
boundary. Moreover, (1.33) and (1.34) imply that G(Reiθ) is exponentially decreasing
for θ = 0 and θ = −π+η, with η > 0 small enough. By Lemma 1.1.8, G is in particular
bounded for Im(z) ≤ 0. But the exponential decay on the boundary implies that

�

R

log |G(x)|
1 + x2

dx = −∞.

Hence Jensen’s condition is not satisfied, unless G = 0 (see [8, 18]).

Unlike the case of Morgan’s Theorem, we do not know examples of solutions for
ab = sin(π/p). Nazarov gives in [23] an entire function f on C, for which there exist
constants δ, α > 0, such that

|f(z)| ≤ exp(2πp−1| Im(z)|p + o(| Im(z)|p))
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for all z ∈ C (not only Im(z) < 0), |f(x)| ≤ exp(−2πp−1 sin(π/p)p|x|p + o(|x|p)) for
x ≥ 0, and f(x + iy) = O(exp(−δ|x|p)) for |x| ≥ α|y|. The following lemma, which
links the growth of f on the imaginary axis with decay of the Fourier transform,
proves that this example gives a solution for any ab < sin(π/p).

Lemma 1.6.6. – Let f be an entire function on C such that, for all z ∈ C,

(1.35) |f(z)| ≤ exp(2πp−1| Im(z)|p + o(| Im(z)|p))

Assume that there exist δ, α > 0 such that f(x + iy) = O(exp(−δ|x|p)) for |x| ≥ α|y|.
Then

| �f(ξ)| ≤ exp(−2πq−1|ξ|q + o(|ξ|q))
as ξ → ±∞, where p−1 + q−1 = 1.

Proof. – We first show that for any y ∈ R, R > 0 and n ∈ N,

(1.36) | �f(ξ)| ≤ n!

(2π|ξ|)n
R−n exp

�
2πp−1Rp + o(Rp)

�
.

Indeed, by Cauchy formula,

|f (n)(x)| ≤ n!R−n sup
|z−x|=R

|f(z)|.

When |x| > (1 + α)R, we use the exponential decay of f to find C, δ� > 0 such that

|f (n)(x)| ≤ Cn!R−n exp(−δ�|x|p).

For |x| ≤ (1 + α)R we use (1.35) and find

|f (n)(x)| ≤ n!R−n exp(2πp−1Rp + o(Rp)).

Both inequalities yield
�

R
|f (n)(x)| dx ≤ n!R−n exp(2πp−1Rp + o(Rp)),

which also gives (1.36). Now we just have to minimize (1.36) with respect to R and n.
This is done taking Rp =

n

2π
and n of the order 2π|ξ|q, where q is the conjugate

exponent of p. This gives the required decay for �f .

We show now that we have analogues of Theorem 1.6.5 for Hardy’s uncertainty
principle. This corresponds to Theorem 1.6.5 for p = 2.

Theorem 1.6.7. – Let f ∈ S�(Rd) and a, b > 0 such that ab > 1. Assume that

(1.37) f(x)χ+(x1) exp(πa|x1|2) ∈ S�(Rd), �f(ξ1)χ+(ξ1) exp(πb|ξ1|2) ∈ S�(Rd).

Then f = 0.
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Proof. – We may assume that a = b > 1, and d = 1. Let F be the Bargmann
transform of f . We proceed as in the proof of Theorem 1.6.5. The hypothesis on �f
implies that

(1.38) |F (z)| ≤ C(1 + |z|)N exp
�π(1− a)

2(1 + a)
| Im(z)|2 +

π

2
| Re(z)|2

�

for Im(z) < 0, while the hypothesis on f implies that

(1.39) |F (ξ)| ≤ C exp
�π(1− a)

2(1 + a)
ξ2

�

for ξ > 0. Since a > 1, we have |F (z)| ≤ C exp(−δ|z|2) for z ∈ R+ or z ∈ iR−,
for some δ > 0. The function H(z) = F (

√
z) is analytic on the lower half-plane,

continuous on the boundary, and satisfies
�

R

log |H(x)|dx

1 + x2
= −∞.

We conclude as before that f = 0.

The condition ab > 1 is sharp since the standard Gaussian function satisfies these
conditions for ab = 1. However the same is valid for

(1.40) fα,β(x) = exp(−π(x + α)2 − 2iπβx),

where α, β are non-negative parameters. Its Fourier transform is given by
�fα,β(ξ) = exp(−π(ξ + β)2 + 2iπα(ξ + β)).

Hence we see that fα,β(x) exp(πx2) and �fα,β(ξ) exp(πξ2) are bounded for x > 0 and
ξ > 0.

We can give a precise result in the critical case, when the condition on the Fourier
space is two-sided, and when it is one-sided on f .

Theorem 1.6.8. – Let f ∈ S�(R). Assume that

(1.41) f(·)χ+(·) exp(π| · |2) ∈ S�(R), �f(·) exp(π| · |2) ∈ S�(R).

Then there exists a tempered distribution µ with support in ]−∞, 0], such that f = µ�γ.

Conversely, every such function satisfies (1.41).

Proof. – Define µ by �µ = �f(·) exp(π| · |2). By assumption, µ ∈ S�(R), and f = µ � γ.
We have to show that µ is supported by the negative axis. The distribution f , which
is a function, extends to an entire function of order 2, since µ � γ does. However we
will not be able to exploit the condition given on f directly . Consider instead F , the
Bargmann transform of f . We have F (z) = exp

�
π

2 z2
�
µ � γ � γ(z), hence

F (z) = �µ, φz�,

where φz(t) = 1/
√

2 exp
�
− π

2 t2 + πtz
�
. The function F is the Laplace transform of

the distribution ν = 1/
√

2µ(·) exp
�
− π

2 | · |
2
�
.
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As in the proof of Theorem 1.6.7, we have the estimate

|F (z)| ≤ C(1 + |z|)N exp
�π

2
| Im z|2

�

for Re z > 0. The assumption on �f implies that

|F (z)| ≤ C(1 + |z|)N exp
�π

2
| Re(z)|2

�

for all z ∈ C. Now we use Lemma 1.3.2 to find that

|F (z)| ≤ C(1 + |z|)N

for Re(z) > 0. Classical results on the Laplace transform (see [15], p 191) imply then
that ν is supported in the negative axis. This proves that µ is supported by ]−∞, 0].

Remark 1.6.9. – All functions of the form f = γ � µ are entire functions of order 2
on C, and if µ is supported in ]−∞, 0], we have

|f(x)| ≤ C(1 + x)N exp(−πx2)

when x ≥ 0, and
|f(x)| ≤ C(1 + |x|)N

when x ≤ 0. So the conditions on f can be restated as in Hardy’s Theorem as a
polynomial growth property. But we can not do the same on the Fourier transform
side, since �µ may not be a function (take for example the function µ equal to 1 on R−
and 0 on R+). If we take µ ∈ L1 supported in ]−∞,−1], we have non zero f ∈ S�(R)
such that

�f(·) exp(π| · |2) ∈ L∞(R), f(·) exp(π| · |2) ∈ Lp(0,∞),

for any value of p ∈ [1,∞]. Compare this to Theorem 1.1.4.

We end with remarks on distributions satisfying

(1.42) f(x)χ+(·) exp(π| · |2) ∈ S�(R), �f(·)χ+(·) exp(π| · |2) ∈ S�(R).

All linear combinations of the form

(1.43) fµ(x) =

�
fα,β(x)µ(α, β) dα dβ

satisfy(1.42), as long as µ is, for example, a compactly supported distribution, with
support inside the set Γ = {α ≥ 0, β ≥ 0}.

We will use a very interesting property of the Bargmann transform, which can be
called a one-sided estimate for the Bargmann transform. Let f be a general distri-
bution, and assume that its Bargmann transform is well defined. This is the case for
example when f(·) exp(−πδ| · |2) ∈ S�(Rd), for some 0 ≤ δ < 1. Proposition 1.2.5
states that f is tempered if and only if there exist C, N > 0 such that for all z ∈ Cd,

|B(f)(z)| ≤ C(1 + |z|)N exp
�π

2
|z|2

�
.

We will show that the Bargmann transform characterizes the distributions f whose
restriction to a half-line is tempered.
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Lemma 1.6.10 (One-sided estimates for the Bargmann transform). – Let f ∈ D �(R)
be a distribution. Assume that f(·) exp

�
− π

2 | · |
2
�
∈ S�(R), so that the Bargmann

transform of f is well defined. Then fχ+(·) is a tempered distribution if and only if

|B(f)(z)| ≤ C(1 + |z|)N exp
�π

2
|z|2

�
,

whenever Re(z) ≥ 0.

Proof. – The necessity of the condition is immediate, using semi-norms like previously.
We want to show that the relation

(1.44)
�
f, φ

�
= C0

�

Cd

B(f)(z)B(φ)(z) exp(−π|z|2) dV (z)

is true whenever φ is a smooth function compactly supported in an interval [a, b], with
a > 0. Note that this is true for any tempered distribution and any Schwartz function
φ, by Proposition 1.2.6.

Let G be the function defined by

G(δ) =
C0

1 + δ

�

C
B(fδ)(z)B(φδ)(z) exp(−π|z|2) dV (z),

where fδ(x) = f(x
√

1 + δ) exp(−πδx2) and φδ(x) = φ(x
√

1 + δ) exp(+πδx2). By as-
sumption, for δ ≥ 1, fδ ∈ S�(R), hence

G(δ) =

�
fδ, φδ

�

1 + δ
=

�
f, φ

�

(1 + δ)3/2
.

We will show that G is real-analytic on ]0, 2], continuous at 0, and (1.44) will follow.
Consider the function

G(δ, z) =

� b

a

φ(x) exp
�
− π

1− δ

1 + δ
x2 + 2πx

z√
1 + δ

− π

2
z2

�
dx.

For δ ≥ 1, we have, after a change of variable,

(1.45) G(δ) =

�

C
B(f)

� z√
1 + δ

�
exp

�
− πδ

2(1 + δ)
z2

�
G(δ, z) exp(−π|z|2) dV (z).

We first show that this is a well defined expression when 0 ≤ δ ≤ 2. When Re(z) ≥ 0,
we have by assumption

����B(f)
� z√

1 + δ

�
exp

�
− πδ

2(1 + δ)
z2

�����

≤ C(1 + |z|)N exp
�π(1− δ)

2(1 + δ)
| Re(z)|2 +

π

2
| Im(z)|2

�
.

(1.46)

Using integrations by parts, and the fact that φ is compactly supported, for any M ,
there exists a constant CM such that for all z,

(1.47) |G(δ, z)| ≤ CM (1 + |z|)−M exp
�2πb| Re(z)|√

1 + δ
− π

2
| Re(z)|2 +

π

2
| Im(z)|2

�
.
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Combining this with (1.46), we get
����B(f)

� z√
1 + δ

�
exp

�
− πδ

2(1 + δ)
z2

����� exp(−π|z|2)|G(δ, z)|

≤ C(1 + |z|)N−M exp
�
− π(1 + 2δ)

(1 + δ)
| Re(z)|2 + 2πb| Re(z)|

�

≤ C(1 + |z|)N−M .

Here C depends on b. Hence, choosing M big enough, we see that (1.45) is an abso-
lutely convergent integral for Re(z) ≥ 0, and defines a real-analytic and continuous
function for 0 ≤ δ ≤ 2.

We now use the hypothesis f exp(−π/2| · |2) ∈ S�. We write the expression
B(f)( z√

1+δ
) exp(− πδ

2(1+δ)z
2) as

�
f exp

�
− π/2| · |2

�
, ψ(·, z)

�
, where

ψ(x, z) = exp
�
− π/2x2 + 2πx

z√
1 + δ

− π

2
z2

�
.

We find the estimate
���B(f)

� z√
1 + δ

�
exp

�
− πδ

2(1 + δ)
z2

����

≤ C(1 + |z|)N
�
exp

�π(3− δ)

2(1 + δ)
| Re(z)|2 +

π

2
| Im(z)|2

�
,

(1.48)

that we will use for Re(z) ≤ 0. For G(δ, z), we use the fact that when a ≤ x ≤ b and
Re(z) ≤ 0, we have x Re(z) ≤ 0. We obtain, for every M > 0, a constant CM such
that for all z with Re(z) ≤ 0,

(1.49) |G(δ, z)| ≤ CM (1 + |z|)−M exp
�
− π

2
| Re(z)|2 +

π

2
| Im(z)|2).

If we combine this with (1.48), we get
����B(f)

� z√
1 + δ

�
exp

�
− πδ

2(1 + δ)
z2

����� exp(−π|z|2)|G(δ, z)|

≤ C(1 + |z|)N
�−M exp

�
− 2πδ

(1 + δ)
| Re(z)|2

�
.

≤ C(1 + |z|)N
�−M .

We conclude that G(δ) defined by (1.45) is continuous on [0, 2], and real-analytic
on ]0, 2[.

It follows that
G(0) =

�
f, φ

�
.

We now look more carefully at the estimate (1.47) when δ = 0. Using integrations by
parts, for any M , there exists a seminorm PM � on S(R), such that for Re(z) ≥ 0,

|G(0, z)| ≤ CPM �(φ)(1 + |z|)−M exp
�π

2
|z|2

�
.
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Here C does not depend on b and a. Recall that the constant appearing in (1.49)
depends only on a seminorm of φ. This proves that there exists M � and C, such that

���f, φ
��� = |G(0)| ≤ CPM �(φ),

and hence fχ+ is a tempered distribution.

Theorem 1.6.11. – Let f ∈ S�(R), and F be the Bargmann transform of f . Then

(1.50) f(·)χ+(·) exp(π| · |2) ∈ S�(R), �f(·)χ+(·) exp(π| · |2) ∈ S�(R).

if and only if there exist C, N > 0 such that for all z ∈ C with Re(z) ≥ 0,

|F (z)| ≤ C(1 + |z|)N exp(
π

2
| Im(z)|2),

and for all z ∈ C with Im(z) ≤ 0,

|F (z)| ≤ C(1 + |z|)N exp(
π

2
| Re(z)|2).

Proof. – The necessity of the estimates can be established as in the proof of Theo-
rem 1.6.7. Assume now that the Bargmann transform of F has these properties.

Consider the distribution g defined by g(x) = 1/
√

2f(x/
√

2) exp
�

π

2 x2
�
. We have

B(g)(z) = F (
√

2z) exp
�

π

2 z2
�
. Hence

|B(g)(z)| ≤ C(1 + |z|)N exp
�π

2
|z|2

�

whenever Re(z) ≥ 0. We also have g(·) exp
�
− π

2 | · |
2
�

= f(·/
√

2) ∈ S�(R). By
Lemma 1.6.10, we have gχ ∈ S�(R), and hence f(·)χ(·) exp(π| · |2) ∈ S�(R). We
apply the same method for �f .

Remark 1.6.12. – It still remains open to characterize the entire functions F that
satisfy both estimates (1.50).
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CHAPTER 2

FURTHER RESULTS

This chapter is devoted to further extensions of theorems stated in the previous
chapter. Hardy’s uncertainty principle, as stated in the distribution case, does not
give information on the structure of the solutions in the the case that we will call
sub-critical, when there are a lot of solutions, including non Gaussian. This is when
ab < 1 in Theorem 1.3.3. We show that in dimension 1, the solutions are linear and
continuous combinations of the Gaussian solutions. We will encounter this situation
a lot in the next chapters, where we study more general versions of Hardy Theorem.
We cannot obtain such a precise result in higher dimensions, but we still prove that
the solutions can also be built with Gaussian functions. All that is proved with the
use of the Bargmann transform introduced in the previous chapter. This tool allows
us to state and solve an equivalent problem on entire functions of order 2. At the
end of the chapter we study also the one-sided Hardy conditions with the Bargmann
transform, and state the conjecture on the form of the solutions.

2.1. Hardy’s uncertainty principle in the sub-critical case, dimension 1

We consider here the case ab < 1 of Theorem 1.3.3. This amounts in this case to
characterize the space G (a, b) of distributions f such that

f(·) exp(aπ(·)2) ∈ S�(R), �f(·) exp(bπ(·)2) ∈ S�(R).

By Fourier inversion, G (a, b) is made of entire functions of order 2. We can actually
prove the following:

Proposition 2.1.1. – Let f ∈ G (a, b). Then f and �f satisfy pointwise estimates of

the form

(2.1) |f(x)| ≤ C(1 + |x|)N exp(−πax2), | �f(ξ)| ≤ C(1 + |ξ|)N exp(−πbξ2),

where C and N are constants depending only on f .

We see that we do not get any new elements in G(a, b) by giving conditions in S�(R)
instead of L∞ conditions as in (2.1). However we will see that it is not true in higher
dimensions. We need a lemma before proceeding to the proof of Proposition 2.1.1.
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Lemma 2.1.2. – Let f ∈ G (a, b). Then f and �f extend to entire functions such that

(2.2) |f(z)| ≤ C(1 + |z|)N exp(
π

b
| Im(z)|2), | �f(z)| ≤ C(1 + |z|)N exp(

π

a
| Im(z)|2),

where C and N depend only on f . Moreover, there exist ε, δ > 0 such that for all

x, y ∈ R with |y| ≤ ε|x|,

(2.3) |f(x + iy)| ≤ C exp(−δx2), | �f(x + iy)| ≤ C exp(−δx2).

Proof of Proposition 2.1.1, assuming Lemma 2.1.2. – We have

| �f(z)| ≤ C(1 + |z|)N exp
�π

a
| Im(z)|2

�
, | �f(x + iy)| ≤ C exp(−δx2)

when |y| ≤ ε|x|. As in the proof of Lemma 1.6.6, we have

|f(x)| ≤ C
n!

(2π|x|R)n
RM exp

�π

a
R2

�
,

where M is an integer depending on N . Minimizing over n and R amounts to take
2πR2 = an and for n the integer part of 2aπx2. We find

|f(x)| ≤ C(1 + |x|)M
�
exp(−πax2)

for some M � > M . The estimate for �f is obtained in the same way.

Proof of Lemma 2.1.2. – By Fourier inversion, we have

f(x) =
�

�f exp(πb| · |2), φx

�
,

where φx(ξ) = exp(−πbξ2 +2iπxξ). The right hand side extends to an entire function
(replacing x by any complex number). Let N be the order of T = f exp(πb| · |2). We
have

|�T, φz�| ≤ CNpN (φz),

where the semi-norm pN is defined in (1.7). Hence

|f(z)| ≤ C sup
ξ

(1 + |ξ| + |z|)N exp(−πbξ2 + 2π|ξ|| Im(z)|)

≤ C �(1 + |z|)N exp(π/b| Im(z)|2).

The corresponding estimate for �f is obtained in the same way.
We now prove (2.3). Let f1(z) = f(z) exp(aπz2). The restriction of f1 to the real

axis is in S�(R). Hence there exist a function g and n such that g(n) = f1, and g has
polynomial growth. The function g extends, as f , to an entire function of order 2.
Apply Phragmèn-Lindelöf principle to g(z) exp(iCz2), for large C, in the domain
|y| ≤ |x|. We get

|g(x + iy)| ≤ C(1 + |x| + |y|)m exp(2C|xy|).
By Cauchy formula, we obtain for f(z) = g(n)(z) exp(−aπz2) the following estimate:

|f(x + iy)| ≤ C(1 + |x| + |y|)m
�
exp(−aπx2 + aπy2 + 2C|xy|)

for |y| ≤ |x|/2. Then, if ε is small enough and we take |y| ≤ ε|x|, we get (2.3).
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Estimates (2.2) do not seem to characterize elements of G (a, b), since we actually
need (2.3) to get (2.1). In order to characterize the elements of G (a, b), we need an
equivalent definition in terms of an entire function. For that purpose, we will use the
Bargmann transform introduced in Chapter 1.

Lemma 2.1.3. – Let f ∈ S�(R), and a ≥ 0. Let F be the Bargmann transform of f .

Then f(·) exp(aπ(·)2) ∈ S�(R) if and only if there exist C, N > 0 such that for all

z ∈ C,

(2.4) |F (z)| ≤ C(1 + |z|)N exp
�π

2

1− a

1 + a
| Re(z)|2 +

π

2
| Im(z)|2

�
.

Proof. – Since f(·) exp(aπ| · |2) ∈ S�(R), there exist C > 0, N ∈ N, such that

|�f, φ�| ≤ CPN (exp(−aπ(·)2)φ(·))

for all Schwartz function φ. We apply this to φ(x) = exp(−π(x − z)2 + π

2 z2), and
obtain (2.4).

Now assume that F satisfies (2.4). This is equivalent to

(2.5) |F (
√

1 + az) exp
�π

2
az2

�
| ≤ C(1 + |z|)2N exp

�π

2
|z|2

�
,

and by Proposition 1.2.5, the function G(z) = F (
√

1 + az) exp
�

π

2 az2
�

is the
Bargmann transform of a tempered distribution T . But identifying the Bargmann
transforms, we see that f(x) exp(πax2) = (1 + a)1/2T ((1 + a)1/2x), and hence
f(·) exp(aπ(·)2) ∈ S�(R).

Using dilations, it is sufficient to study G (a, b) for a = b < 1. It follows from
Lemma 2.1.3 that the elements of G (a, a) are characterized by two conditions on
their Bargmann transform F :

(2.6) |F (z)| ≤ C(1 + |z|)N exp
�π

2

1− a

1 + a
| Re(z)|2 +

π

2
| Im(z)|2

�
.

and

(2.7) |F (z)| ≤ C(1 + |z|)N exp
�π

2

1− a

1 + a
| Im(z)|2 +

π

2
| Re(z)|2

�
.

We note here that (2.6) and (2.7) imply that

(2.8) |F (z)| ≤ Cδ exp(
π

2
δ|z|2)

for some δ < 1. in [17], it was already established that (2.8) characterizes the functions
f such that

f(x) = O(exp(−πλx2)), �f(ξ) = O(exp(−πλξ2))

for some λ > 0. Our point here is to show that (2.6) and (2.7) are a lot more precise,
and enable a characterization for fixed λ.
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Put w = π

2(1+a)z
2. By considering the odd and even parts of F , we are lead to

characterize the entire functions H on C for which there exist C, N such that for all
w ∈ C,

(2.9) |H(w)| ≤ C(1 + |w|)N exp(|w| − a| Re(w)|).

Theorem 1.3.3 basically proves that for a = 1, only the polynomials satisfy this
estimate, and for a > 1, only the zero function satisfies it.

Assume now that a < 1. There are many entire functions satisfying (2.9), including
exponential functions. Namely, exp(αz) satisfies (2.9) if and only if α ∈ Ka, with

(2.10) Ka = {α ∈ C; |α + a| ≤ 1 , |α− a| ≤ 1}.

There are many results on the description of the classes of entire function of or-
der 1 satisfying estimate similar to (2.9), where the function in the exponential is
1-homogeneous and convex. Here |w| − a| Re(w)| is not convex in w, since the set
{w; |w| − a| Re(w)| ≤ 1} is the union of two ellipses. The natural convex function
associated to our problem is the support function of Ka, defined by

φ(w) = sup
α∈Ka

Re(αw).

An explicit formula for φ is

φ(w) =

�
|w| − a| Re(w)| for | Re(w)| ≥ a√

1−a2 | Im(w)|
√

1− a2| Im(w)| else.

Note that φ(w) ≤ |w| − a| Re(w)|.

Proposition 2.1.4. – Let H be an entire function satisfying (2.9). Then there exists

C � > 0 such that for all w ∈ C,

(2.11) |H(w)| ≤ C �(1 + |w|)N exp(φ(w)).

Proof. – We need to prove this better estimate for | Re(w)| ≤ a√
1−a2 | Im(w)|.

Consider the entire function H1(w) = H(w) exp(i
√

1− a2w). By (2.9), we have
|H(w)| ≤ C(1 + |w|)N on the two half-lines defined by | Re(w)| = a√

1−a2 | Im(w)| and
Im(w) ≥ 0. By Phragmèn-Lindelöf principle, this bound is valid inside the angle, and
we get the required estimate. A similar argument works for Im(z) ≤ 0.

Proposition 2.1.5. – Let H be an entire function. It satisfies (2.11) for some C �

and N if and only if there exists a distribution µ ∈ S�(R2), supported by ∂Ka, such

that

(2.12) H(w) =

�
exp(αw) dµ(α).
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Proof. – We will use Paley-Wiener type results of [20, 21]. There the authors char-
acterize the entire functions H that can be written as

H(w) =

�

∂Ka

exp(αw)g(α) dσ(α),

where g is square integrable on ∂Ka with respect to the arc-length measure dσ. For
that, it is necessary and sufficient that H(w) exp(−φ(w)) is square integrable with
respect to a measure on C naturally associated to Ka. In particular, any H such that

(2.13) |H(w)| ≤ C(1 + |w|)−M exp(φ(w))

can be represented this way, if M is large enough.
Assume that H satisfies (2.11). We can write, for any M ,

H(w) = PM (w) + wMHM (w),

where PM is a polynomial and HM satisfies (2.13). By [20], wMHM (w) can be repre-
sented as (2.12), where µ is a M -th order derivative of an element of L2(∂Ka). Finally,
Cauchy Formula yields

wk =
k!

2iπ

�

∂Ka

exp(αw)
dα

αk+1

for any k ≥ 0, so that PM (w) can also be represented this way.

We come back to the description of G (a, a). For any t ∈ C with Re(t) > 0, the
Bargmann transform of x → exp(−πtx2) is z → (1 + t)−1/2 exp

�
π

2
1−t

1+t
z2

�
. The ho-

mography C (t) = 1−t

1+t
is also called the Cayley transform. It maps the half plane

{t; Re(t) > 0} onto the open unit ball {α; |α| < 1}. Let

D(a, b) = {t ∈ C; Re(t) ≥ a, Re(t−1) ≥ b}.

For ab < 1, it is a compact, convex domain, delimited by a circular arc and a line. For
ab = 1, D(a, b) = {a}, and for ab > 1, D(a, b) = ∅. We can now give the following
complement to Theorem 1.3.3.

Theorem 2.1.6. – Let f ∈ S�(R) and a, b > 0. Then f ∈ G (a, b) if and only if there

exist distributions ν1, ν2 on R2
, supported by ∂D(a, b), such that

(2.14) f(x) =

�
exp(−πtx2) dν1(t) + x

�
exp(−πtx2) dν2(t).

Proof. – The case ab ≥ 1 is covered by Theorem 1.3.3. Assume that ab < 1. After a
change of variables, we can always assume that a = b < 1. Let f ∈ G (a, a), and let F
be its Bargmann transform. By (2.6) and (2.7), we can write

F (z) = H1

� π

2(1 + a)
z2

�
+ zH2

� π

2(1 + a)
z2

�
,

where each Hi satisfies (2.9) for some C, N > 0. By Proposition 2.1.5, we can write

F (z) =

�
exp(

πα

2(1 + a)
z2) dµ1(α) + z

�
exp(

πα

2(1 + a)
z2) dµ2(α),
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where µ1 and µ2 are distributions supported by ∂Ka. Note that t ∈ ∂D(a, a) if and
only if (1 + a)C (t) ∈ ∂Ka. Hence we can also write

F (z) =

�
(1 + t)−1/2 exp(

π

2
C (t)z2) dν1(t) + z

�
(1 + t)−1/2 exp(

π

2
C (t)z2) dν2(t),

where νi are supported by ∂D(a, a). Formula (2.14) follows by taking inverse Barg-
mann transform.

Remark 2.1.7. – Since any function f(x) = exp(−πtx2), for t ∈ D(a, b), satisfies
|f(x)| ≤ exp(−πax2) and | �f(ξ)| ≤ C exp(−πbx2), (2.14) gives directly Proposi-
tion 2.1.1. Formula (2.14) states that any element of G (a, b) is an average of Hermite
functions belonging to G (a, b). Indeed, any distribution ν supported by ∂D(a, b) can
be decomposed as a sum of partial derivatives of finite measures on ∂D(a, b): there
exist finite measures m1, . . . ,mN on ∂D(a, b) such that for all x ∈ R,

f(x) =
N�

k=1

xk

�

∂D(a,b)
exp(−πtx2) dmk(t).

2.2. Hardy’s uncertainty principle in the sub-critical case, dimension d

We now discuss the sub-critical case of Theorem 1.3.5. Define by G (A, B) the space
of tempered distributions satisfying (1.15). If both are non positive, we cannot expect
in general solutions to be entire functions, as will be shown in the next chapter. Unlike
dimension 1, it is not obvious that the elements of G (A, B) are entire functions of
order 2 if A is positive and B non positive. However, when A and B are positive, we
can prove the analogue of Proposition 2.1.1:

Proposition 2.2.1. – Let f ∈ G (A, B), where A, B are positive matrices. Then we

have a pointwise estimate

|f(x)| ≤ C(1 + |x|)N exp(−π�Ax, x�), | �f(ξ)| ≤ C(1 + |ξ|)N exp(−π�Bξ, ξ�),

where C and N depend only on f .

Proof. – Do a change of variables so that A and B are diagonal. First prove esti-
mates as in Lemma 2.1.2, then argue as in the proof of Proposition 2.1.1, proving the
estimates for each variable.

Let A, B corresponding to the sub-critical case of Theorem 1.3.5. We can assume
that I − |B| is positive, doing a dilation if necessary. The Bargmann transform gives
also a characterization of G (A, B):
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Proposition 2.2.2. – Let A, B be as above. Let f ∈ S�(Rd), and F its Bargmann

transform. Then f ∈ G (A, B) if and only if there exist C, N > 0 such that for all

z ∈ Cd
,

(2.15) |F (z)| ≤ C(1 + |z|)N exp
�π

2
�C (A) Re(z), Re(z)�+

π

2
| Im(z)|2

�

and

(2.16) |F (z)| ≤ C(1 + |z|)N exp
�π

2
�C (εB) Im(z), Im(z)�+

π

2
| Re(z)|2

�
,

for ε = 1,−1.

Here C stands for the Cayley transform,

C (M) = (I −M)(I + M)−1.

This is proved as for Lemma 2.1.3. We point here that the condition on I − |B| is
technical. In the next chapter, where we consider critical pairs, we will see what C (B)
should be replaced by, when |A| = |B| = I (Corollary 3.3.4).

If A and B are both positive, Proposition 2.2.2 is true without assumptions on
B, since C (B) is then well defined. Moreover, there exists 0 < δ < 1 such that
�C (A)x, x� ≤ (1 − δ)|x|2 and �C (B)ξ, ξ� ≤ (1 − δ)|ξ|2. Combining (2.15) and (2.16),
we see that

(2.17) |F (z)| ≤ C(1 + |z|)2 exp(
π

2
(1− δ/2)|z|2).

The inverse Bargmann transform gives then that f and �f are entire functions of order
2, as in Proposition 2.2.1, see [3, 17]. We will get here a more precise result, similar
to Theorem 2.1.6, but less precise.

Define, for A, B positive,

D(A, B) = {M ∈ Sd(C); Re(M) ≥ A, Re(M−1) ≥ B},
where Sd(C) is the set of complex symmetric matrices with positive real part.

Theorem 2.2.3. – Let A, B be two positive matrices. Let f ∈ G (A, B). There ex-

ist finite measures µ1, · · · , µN on Sd(C), whose support in compact, polynomials

P1, . . . , PN , such that

(2.18) f(x) =
N�

i=1

Pk(x)

�
exp(−π�Mx, x�) dµi(M).

Here N depends only on f . Conversely, any entire function defined by (2.18) belongs

to some space G (A, B), with A, B positive.

Proof. – Let F be the Bargmann transform of f . Consider, for 0 < δ < 1,

Kδ = {M ∈ Sn(C); |�C (M)z, z�| ≤ (1− δ/2)|z|2 ∀z ∈ Cd}.
It is a compact subset of Sd(C). By estimate (2.17), D(A, B) ⊂ Kδ, for some
δ > 0. Taking Bargmann transforms of both sides of (2.18), we are lead to the
characterization of entire functions F on Cd, satisfying an estimate like |F (w)| ≤
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C(1+ |w|)N exp(|w|2). We can consider the odd and even parts in each variables, and
it suffices to characterize entire functions satisfying

|F (w)| ≤ C(1 + |w|)N exp(|w1| + · · · + |wd|)

in terms of the exponentials exp(λw), λ ∈ Cd. We claim that any such function can
be represented as

(2.19) F (w) =

�

[0,1]d
exp

�
eiθ1w1 + · · · eiθdwd

�
dν(θ),

where ν is a distribution defined on [0, 1]d. Indeed, when we develop both sides into
power series, we get

�ν(n) = F (n)(0).

But the estimate on F implies, by Cauchy Formula, that

|F (n)(0)| ≤ Cn1! · · ·nd!R
N−n1−···−nd exp(R1 + · · · + Rd)

for any Ri > 0. When Ri = ni, we find

|F (n)(0)| ≤ C(1 + |n|)N+1/2.

It follows that the series
�

n
F (n)(0)einθ converges to a distribution. This completes

the proof of (2.19). Going back to the Bargmann transform of f , this proves that it
can be written as

(2.20)
N�

i=1

Pi(z)

�

[0,1]d
exp

�π(1− δ/2)

2
(eiθ1z2

1 + · · · + eiθdz2
d)

�
dνi(θ),

with distributions νi defined on [0, 1]d. After applying inverse Bargmann transform,
we get (2.18), with distributions supported in Kδ. The distributions are actually
supported by the set of M such that

C (M) = Diag(α1, . . . , αd),

|αi| = 1− δ/2, which is much smaller that ∂Kδ.

Remark 2.2.4. – We used in the proof of Theorem 2.2.3 a simple Paley-Wiener type
result for entire functions of order 1, just like in the proof of Theorem 2.1.6. But this
time it can be solved easily with Fourier series. Theorem 2.2.3 basically proves that any
element of G (A, B) can be represented as an average of complex Hermite functions.
Remember that when AB has an eigenvalue λ such that |λ| > 1, then f = 0, and that
the measures above are Dirac masses at M = A when the eigenvalues of AB are 1 or
−1, by Theorem 1.3.5.

This result is not as precise as Theorem 2.1.6, since this time we do not have control
over the support of the measures. The issue is that (2.17) is stronger than (2.15) and
(2.16). We are interested in the case where all eigenvalues of AB are in ]0, 1], one of
them being in ]0, 1[. Do a change of variables so that A and B are diagonal and equal.
This is possible since A and B are positive. The diagonal coefficients ai are such that
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0 < ai ≤ 1, and we can assume that a1 < 1. Just as (2.9), equations (2.15) and (2.16)
can be rewritten as

(2.21) |F (z)| ≤ C(1 + |z|)N exp
�π

2

�

i

|z2
i
|

1 + ai

− π

2

��
� ai Re(z2

i
)

1 + ai

���.

Thus we are lead to characterize the entire functions satisfying the estimate

(2.22) |H(w)| ≤ C(1 + |w|)N exp
� �

i

|wi| −
��
�

ai Re(wi)
���.

An exponential function exp(α1w1 + · · · + αdwd) satisfies (2.22) if and only if

(α1, . . . , αd) ∈ Ka1 × · · · ×Kad ,

where Ka is defined by (2.10). The indicator function of Ka1 × · · · ×Kad is ψ(w) =
φa1(w1) + · · · + φad(wd), where φai is the indicator of Kai . We do not know if there
is a Paley-Wiener Theorem for functions satisfying estimates (2.22). If they can be
represented as an average of the exponential exp(αz), for α ∈ Ka1 × · · · ×Kad , then
the measures in Theorem 2.2.3 are necessary supported by D(A, B), and actually
by a subset of ∂D(A, B). There is probably a relation with this set and the Shilov
boundary of ∂D(A, B).

So first we would like to have the convex, 1-homogeneous function ψ in the expo-
nential in (2.22).

Conjecture 2.2.5. – Let the entire function H satisfy (2.22). Then

|H(w)| ≤ C �(1 + |w|)N
�
exp(ψ(w))

In dimension 1, it was proved using Phragmèn-Lindelöf principle. The same
method does not seem to work. Now observe that ψ(w) ≤

�
|wi| − ai| Re(wi)|, so by

Phragmèn-Lindelöf principle, Conjecture 2.2.5 is equivalent to:

Conjecture 2.2.6. – Let the entire function H satisfy (2.22). Then

|H(w)| ≤ C �(1 + |w|)N
�
exp(

�
|wi| − ai| Re(wi)|).

The last issue is that very few is known about Paley-Wiener results for functions
satisfying the estimate of Conjecture 2.2.5, when d ≥ 2. We refer to [19] for recent
results. Note that [20, 21] only consider the case d = 1.

The problem is more complicated when considering matrices A, B that are not
positive. Assume that A is positive and B invertible, as in Theorem 1.3.5. Then one
can assume that A and B are diagonal, with coefficients ai and bi, and that |bi| < 1.
We could assume that ai = |bi| ≤ 1, but then I − |B| could be non positive. The
estimates of Proposition 2.2.2 can be rewritten as

(2.23) |F (z)| ≤ C(1 + |z|)N exp
�π

2

�

i

1− ai

1 + ai

| Re(zi)|2 +
π

2
| Im(z)|2

�
,
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and

(2.24) |F (z)| ≤ C(1 + |z|)N exp
�π

2

�

i

1− εbi

1 + εbi

| Im(zi)|2 +
π

2
| Re(z)|2

�
,

for ε = 1,−1. Recall that Proposition 2.2.1 was established only when A and B are
positive. In the general case, we do not even know if f extends to an entire function.
Since A is positive, �f does. This would be the case if we had the following:

Conjecture 2.2.7. – Let the entire function F satisfy (2.23) and (2.24). Then there

exists 0 < δ < 1 such that

|F (z)| ≤ C �(1 + |z|)N
�
exp

�π

2
(1− δ)|z|2

�
.

Note that this estimate is true for δ = 0.

2.3. One-sided Hardy’s uncertainty principle.

We conclude this chapter with a discussion on Theorem 1.6.11. We do not have
a description of the distributions satisfying (1.50). We would like a description in
terms of averages of simple function satisfying these conditions, like in Theorems 2.1.6
and 2.2.3. The simplest functions we think about are defined by (1.40). We have

B(fα,β)(z) =
1√
2

exp(−πz(α + iβ) +
π

2
(α + iβ)2).

For simplicity we will rather take the functions defined by

B(gw)(z) = exp
�
− π

2
|w|2 − πwz

�
,

so that gα+iβ is proportional to fα,β .

Proposition 2.3.1. – Let µ be a tempered distribution on C = R2
, supported by

∆ = {w ∈ C; Re(w) ≥ 0, Im(w) ≥ 0}. The expression

(2.25) B(gµ)(z) =

�
exp

�
− π

2
|w|2 − πzw

�
dµ(w)

defines an element of S�(R) satisfying (1.50).

Proof. – Let φz(w) = exp(−π/2|w|2−πzw)). Since µ ∈ S�(R2), there exist C, N such
that ����

�
exp

�
− π

2
|w|2 − πzw

�
dµ(w)

���� ≤ CpN (φz) ≤ C(1 + |z|)N exp
�π

2
|z|2

�
.

By Proposition 1.2.5, gµ is a well defined element of S�(R). Note that when µ is a
compactly supported measure,

gµ(x) =
√

2

�
exp(−π(x + a)2 − iπab− 2iπbx) dµ(a + ib),

and we see directly that it satisfies (1.50).
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When µ is any distribution, we prove that F (z) = B(gµ)(z) satisfies the estimates
of Theorem 1.6.11. Let χ be a smooth function, equal to 1 on ∆, and to 0 on ∆−(1+i).
Put χz(w) = χ(ηw), with η = (1 + |z|)−1. We have

|F (z)| =

����
�

χz(w)φz(w) dµ(w)

���� ≤ Cp(χzφz)N

≤ C sup
w

(1 + |w| + |z|)N exp
�
− π

2
|w|2 − π Re(zw)

�
,

where the supremum is taken over w such that Re(w) ≥ −η, Im(w) ≥ −η. If Re(z) ≥ 0
then Re(zw) ≥ −η Re(w)− Im(z) Im(w) ≥ −| Im(z)|| Im(w)| −O(1), so that

|F (z)| ≤ C sup
w

(1 + |w| + |z|)N exp(−π/2|w|2 − | Im(z)|| Im(w)|)

≤ C(1 + |z)N exp(π/2| Im(z)|2).
The other estimate is obtained in the same way.

Conjecture 2.3.2. – Assume that f ∈ S�(R) satisfies (1.50). Then there exists a

tempered distribution µ on R2
, supported by ∆, such that f = gµ.

We note that the distribution µ is not uniquely defined. Indeed, we have the re-
producing formula of the Bargmann space,

F (z) =

�

C
F (w) exp(−π|w|2 + πzw) dV (w),

where dV is the normalized Lebesgue measure in C = R2. So we have f = gµ, given
any f ∈ S�(R), taking dµ(w) = F (w) exp(−π/2|w|2). This is indeed a tempered
distribution, since

|F (w)| ≤ C(1 + |w|)N exp(π/2|w|2).
In view of (2.25), Conjecture (2.3.2) amounts to prove a Paley-Wiener type theorem
for entire functions satisfying the estimates of Theorem 1.6.11, namely that they are
Laplace transforms of distributions ν supported by ∆, such that exp(π/2| · |2) dν ∈ S�.
This is another type of Paley-Wiener result, for entire functions of order 2, and with
an unbounded support.
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CHAPTER 3

CRITICAL AND NON CRITICAL PAIRS

In this chapter we introduce the space G (q, q�) of the distributions satisfying Hardy
conditions, when the quadratic forms are not necessary positive. As in the case of the
classical Hardy Theorem, the Gaussian functions play a crucial role. We show that
there are three kinds of pairs of quadratic forms: the super-critical, critical and sub-
critical pairs. We give practical characterizations of them in terms of spectral prop-
erties of their matrices. The most interesting case is the critical one, where we show
that the Gaussian elements of G (q, q�) are parameterized by the groups of matrices
associated to the two forms. This will help us state the conjecture on the structure
of those spaces in the next chapter. In the last part of the chapter we give sufficient
conditions so that the space G (q, q�) does not contain any non zero element, like in
Hardy Theorem in the super-critical case.

3.1. Introduction and definitions

Definition 3.1.1. – Let q and q� be two non degenerate quadratic forms on Rd
. We

call G (q, q�) the space of the distributions f ∈ S�(Rd) such that

(3.1) f(·) exp(±πq(·)) ∈ S�(Rd), �f(·) exp(±πq�(·)) ∈ S�(Rd).

Proposition 3.1.2. – The space G (q, q�) is stable by differentiation and multiplica-

tion by polynomials.

This proposition is elementary.

3.1.1. Gaussian solutions. – In this section we will be interested in Gaussian
elements in G (q, q�). We also consider complex Gaussian functions as follows:

Definition 3.1.3. – A complex Gaussian function is a function of the form

f(x) = exp(−π�Ax, x�),

x ∈ Rd
, where A is a complex symmetric matrix, whose real part is positive.
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If A = B + iC, with B,C real, symmetric, and B positive, then A is invertible, and

A−1 = (B + CB−1C)−1 − iB−1C(B + CB−1C)−1.

We see that Re(A−1) ≤ Re(A)−1.

Definition 3.1.4. – Let q, q� be two non degenerate quadratic forms. We will call

the pair (q, q�) a sub-critical pair if G (q, q�) contains a non real Gaussian element. A

super-critical pair will be a pair such that G (q, q�) does not contain Gaussian functions.

A critical pair will be any other pair, i.e., a pair such that the Gaussian elements of

G (q, q�) exist and are all real.

In the sub-critical case, there is a lot of complex Gaussian functions in G (q, q�).
Indeed, if exp(−π�Ax, x�) is one of them, then all gaussian functions of the form
exp(−π�A�x, x�), with Re(A) = Re(A�), are also elements of G (q, q�).

Proposition 3.1.5. – Let q, q� be two non degenerate quadratic forms. Then G (q, q�)
contains a Gaussian function if and only if there exists an invertible matrix P such

that |q(Px)| ≤ |x|2, |q�(tP−1ξ)| ≤ |ξ|2 for all x, ξ.

Proof. – If |q(Px)| ≤ |x|2, |q�(tP−1ξ)| ≤ |ξ|2 for all x, ξ, then the Gaussian func-
tion exp(−π|P−1x|2) is in G (q, q�). Conversely assume that the Gaussian function
exp(−π�Ax, x�) is in G (q, q�), with A complex symmetric, and Re(A) positive. Then

|q(x)| ≤ �Re(A)x, x�, |q�(ξ)| ≤
�
Re(A−1)ξ, ξ

�

for all x, ξ. We have Re(A−1) ≤ Re(A)−1, and we conclude taking P = (Re(A))−1/2.

Proposition 3.1.5 implies that if the space G (q, q�) contains a complex Gaussian
function f , then |f | ∈ G (q, q�).

Proposition 3.1.6. – Let q, q� be two quadratic forms. Assume that G (q, q�) contains

a Gaussian function. The pair (q, q�) is critical if and only if |det(q) det(q�)| = 1, and

sub-critical if and only if |det(q) det(q�)| < 1.

Proof. – Using Proposition 3.1.5 and a change of variables, we may assume that

|q(x)| ≤ |x|2, |q�(ξ)| ≤ |ξ|2,

so that G (q, q�) contains the standard Gaussian function γ(x) = exp(−π|x|2).
It follows that |det(q)| ≤ 1 and |det(q�)| ≤ 1. If |det(q) det(q�)| < 1, we may assume

for example that q� has an eigenvalue λ such that |λ| < 1. Let eλ be an associated
eigenvector. Choose b > 0 such that |λ| = (1 + b2)−1, and define B by B(eλ) = beλ,
B(x) = 0 for x ∈ e⊥

λ
. Then the non real Gaussian function

f(x) = exp(−π�(I + iB)x, x�)

belongs to G (q, q�).
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Assume now that G (q, q�) contains a non real Gaussian function. We show that
|det(q) det(q�)| < 1. Let

f(x) = exp(−π�(α + iβ)x, x�)

belong to G (q, q�), with α positive and β a non zero real symmetric matrix. We have
Re(α + iβ)−1 = (α + βα−1β)−1, and hence

|q(x)| ≤ �αx, x�, |q�(ξ)| ≤
�
(α + βα−1β)−1ξ, ξ

�

for all x, ξ. It follows that

|det(q) det(q�)| ≤ detα det((α + βα−1β)−1) < det(α) det(α−1) = 1.

This completes the proof.

We now give a precise characterization of critical, sub-critical and super-critical
pairs. We begin with an algebraic one. A contraction is a matrix M such that tMM ≤
I, which means that |Mx| ≤ |x| for all x ∈ R, where | · | stands for the Euclidean
norm.

Theorem 3.1.7. – Let q(x) = �Ax, x�, q�(ξ) = �A�ξ, ξ� be two non degenerate

quadratic forms. The pair (q, q�) is critical if and only if AA� is conjugated to an

orthogonal matrix. It is sub-critical if and only if it is conjugated to a contraction

that is not orthogonal. It is super-critical in any other case.

Proof. – Assume that (q, q�) is not super-critical. Let P be given by Proposition 3.1.5.
Put B =t PAP and B� = P−1A�tP−1. The eigenvalues of B and B� are in [−1, 1].
Hence |BB�x| ≤ |x| for all x, where | · | stands for the Euclidean norm. We see
that AA� is conjugated to a contraction. Assume moreover that (q, q�) is critical.
Then |det(B) det(B�)| = 1 by Proposition 3.1.6, so we see that B and B� have their
eigenvalues of modulus 1. It follows that B and B� are orthogonal and symmetric,
and hence BB� is orthogonal. If (q, q�) is sub-critical, then one of the eigenvalues of
B or B� is in ]−1, 1[, and there exists x such that |BB�x| < |x|.

Assume now that there exists Q such that Q−1AA�Q is a contraction. Put B =
Q−1AtQ−1 and B� =t QA�Q. By the polar decomposition, |B|B� is a contraction.
The symmetric matrix |B|1/2B�|B|1/2 is conjugated to a contraction, hence it is itself
a contraction. Let P =t Q−1|B|−1/2. Then tPAP is orthogonal and P−1A�tP−1 is a
contraction, so that G (q, q�) contains a Gaussian function. Now use Proposition 3.1.6.
If Q−1AA�Q is an isometry, then |det(AA�)| = 1, and the pair (q, q�) is critical. Else,
we have |det(AA�)| < 1, so the pair is sub-critical.

Theorem 3.1.7 characterizes critical and sub-critical pairs in a rather inexplicit way.
We give now an explicit description in terms of the spectral properties of AA�. The
proof is left to the reader.
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Theorem 3.1.8. – Let q(x) = �Ax, x�, q�(ξ) = �A�ξ, ξ� be two non degenerate

quadratic forms. Then the pair (q, q�) is critical if and only if AA� is diagonalizable

over C, with eigenvalues of modulus 1. The pair (q, q�) is sub-critical if and only if

AA� has a complex eigenvalue µ such that |µ| < 1, all its other eigenvalues have

modulus less than or equal to 1, and the restriction of AA� to the direct sum of the

characteristic spaces associated to eigenvalues of modulus 1 is diagonalizable. The

pair (q, q�) is super-critical in any other case.

Remark 3.1.9. – In other words, (q, q�) is critical if and only if the minimal poly-
nomial of AA� has the form Π(X) =

�
λ∈Λ(X − λ), with |λ| = 1 for λ ∈ Λ. It is

sub-critical if and only if it has the form Π(X) =
�

λ∈Λ(X − λ)nλ , with |λ| ≤ 1 for
λ ∈ Λ, nλ = 1 for |λ| = 1, and |µ| < 1 for some µ ∈ Λ. The pair (q, q�) is super-critical
if and only if Π(X) =

�
λ∈Λ(X−λ)nλ , with Λ containing λ such that |λ| > 1, or such

that |λ| = 1 and nλ ≥ 2.

As a corollary we have:

Corollary 3.1.10. – Let q(x) = �Ax, x� and q�(ξ) = �A�ξ, ξ� be two non degenerate

quadratic forms. Assume that |det(AA�)| > 1, or more generally that AA� has a

complex eigenvalue λ such that |λ| > 1. Then (q, q�) is super-critical.

Given a non degenerate quadratic form q, define the group

(3.2) O(q) = {P ∈ GLd(R); q(Px) = q(x) ∀x ∈ Rd}.

If A is an invertible matrix, we define also

(3.3) O(A) = {P ∈ GLd(R); tPAP = A}.

When (q, q�) is critical, all Gaussian elements of G (q, q�) are real. We will describe
them. After a change of variable, we may assume that the associated matrices A and
A� are orthogonal and symmetric.

Theorem 3.1.11. – Let q(x) = �Ax, x�, q�(ξ) = �A�ξ, ξ�, with matrices A, A� or-

thogonal and symmetric. The Gaussian elements of G (q, q�) are precisely given by the

functions

exp(−π|g(x)|2),
where the matrix g belongs to the group O(q) ∩O(q�).

The Cayley transform of a complex matrix M is defined by

C (M) = (I −M)(I + M)−1.

The Cayley transform appeared in the proof of Theorem 1.3.1, as naturally involved
in the computation of Bargmann transforms of Gaussian functions. Indeed, if f(x) =
exp(−π�Mx, x�), with Re(M) positive, then

(3.4) B(f)(z) = det(I + M)−1 exp
�π

2
�C (M)z, z�

�
.

MÉMOIRES DE LA SMF 119



3.1. INTRODUCTION AND DEFINITIONS 49

We see immediately that positive matrices M are transformed through C in matrices
N such that I−N tN is positive. We have also C 2(M) = M and C (M−1) = −C (M).

Theorem 3.1.11 relies on pure bilinear algebra. It is a direct consequence of the
following.

Theorem 3.1.12. – Let A, A� be two orthogonal symmetric matrices. Let M be a

positive matrix. Then

(3.5) |�Ax, x�| ≤ �Mx, x� ∀x ∈ Rd, |�A�x, x�| ≤
�
M−1ξ, ξ

�
∀ξ ∈ Rd

if and only if
√

M ∈ O(A) ∩O(A�).

Lemma 3.1.13. – Let k1, k2 ∈ N such that k1 + k2 = d. Denote any x ∈ Rd
by

x = (x1, x2), with xi ∈ Rki . Put q(x) = |x1|2 − |x2|2. Let M be a positive matrix. Let

N = C (M). Then |q(x)| ≤ �Mx, x� for all x if and only if

(3.6) �Nx, x� ≤ 2|x1||x2|

for all x ∈ Rd
.

Proof. – We will use the conjugate function of a convex function φ, which is given by
its Legendre transform φ∗(x) = supx� 2�x, x�� − φ(x�). We have

sup
x�

�
2�x, x�� − �Mx�, x�� − |x�|2

�
− |x|2/2 =

1

2
�Nx, x�.

Hence
1

2
�Nx, x� ≤ sup

x�

�
2�x, x�� − 2 max(|x�1|2, |x�2|2)

�
− |x|2/2

= (|x1| + |x2|)2/2− |x|2/2 = |x1||x2|.

For the converse, recall that C (N) = M . Hence
1

2
�Mx, x� = sup

x�

�
2�x, x�� − �Nx�, x�� − |x�|2

�
− |x|2/2

≥ sup
x�

�
2�x, x�� − 2|x�1||x�2| − |x�|2

�
− |x|2/2

= |q(x)|/2,

which completes the proof.

We will prove Theorems 3.1.12 and 3.1.11 in different steps. Let us take notations.
Let M be a positive matrix. Let N be the Cayley transform of M , E1 = Ker(A− I),
E�

1 = Ker(A� − I) , E2 = Ker(A + I) and E�
2 = Ker(A� + I). We have the orthogonal

decompositions
Rd = E1 ⊕ E2 = E�

1 ⊕ E�
2.

By Lemma 3.1.13, (3.5) is equivalent to

(3.7) − 2|x�1||x�2| ≤ �Nx, x� ≤ 2|x1||x2|,
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where x1, x2, x�1, x
�
2 are the components of x in the orthogonal decompositions given

above. Theorem 3.1.12 amounts to show that under Conditions (3.7), M1/2 ∈ O(A)∩
O(A�).

We will first consider the case where A and A� commute.

Proposition 3.1.14. – Let A, A� be two orthogonal and symmetric matrices. Assume

that A and A� commute. Let M be a positive matrix such that N = C (M) satisfies

(3.7). Then M1/2 ∈ O(A) ∩O(A�).

Proof. – A fundamental example is when

A = A� =

�
1 0

0 −1

�
.

We have
|�Nx, x�| ≤ 2|x1||x2|

for all x = (x1, x2) ∈ R2. It follows from homogeneity that

N =

�
0 v

v 0

�
,

for some v ∈]− 1, 1[ (recall that I −tNN is positive). Then we can compute

M =
1

1− v2

�
1 + v2 −2v

−2v 1 + v2

�
, M1/2 =

1

2

�
t + t−1 t− t−1

t− t−1 t + t−1

�
,

with t = ( 1−v

1+v
)1/2. We clearly have M1/2 ∈ O(A).

Assume now that A = A� and d ≥ 2. The matrix N satisfies

|�Nx, x�| ≤ 2|x1||x2|,
hence, in the orthogonal decomposition Rd = E1 ⊕ E2, N has a bloc form

N =

�
0 v
tv 0

�
,

for some matrix v, with d1 lines and d2 columns, such that I − tvv is positive. There
exist ki ∈ O(di) such that k−1

1 vk2 is a quasidiagonal matrix, with zero entries in last
position, if any. Since the matrix

�
k1 0

0 k2

�

belongs to O(A), we can assume that v is such a quasidiagonal matrix. Then N has
a bloc decomposition, whose diagonal blocs are either 0, or given by 2-dimensional
matrices of the form �

0 vi

vi 0

�
,

with |vi| < 1, and the result follows from the first part.
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In the general case where A and A� commute, there is a common orthonormal basis
of eigenvectors of both A and A�. We may assume that the space Rd is decomposed
so that for x = (x1, x2, x3, x4), xi ∈ Rdi , we have

Ax = x1 + x2 − x3 − x4, A�ξ = ξ1 − ξ2 + ξ3 − ξ4.

By assumption,

(3.8) − 2|(x1, x3)||(x2, x4)| ≤ �Nx, x� ≤ 2|(x1, x2)||(x3, x4)|

for all x ∈ Rd. We will show that N has the form

N =





0 0 0 v

0 0 w 0

0 tw 0 0
tv 0 0 0




,

where v is a matrix with d4 columns and d1 lines, and w has d2 lines and d3 columns.
Hence |�Nx, x�| ≤ 2|(x1, x2)||(x3, x4)| and |�Nx, x�| ≤ 2|(x1, x3)||(x2, x4)|, so that we
can conclude from the previous case.

Consider the canonical basis (e1, . . . , ed) of Rd. When we apply (3.8) to x = ei, we
obtain

(3.9) �Nei, ei� = 0.

Moreover, taking x1 = x2 = 0, we get

(3.10) �N(0, 0, x3, x4), (0, 0, x3, x4)� ≤ 0

for all x3, x4. The quadratic form on Rd3+d4 defined by (3.10) is semi-negative,
and the trace of its representative matrix is equal to zero by (3.9). Hence
�N(0, 0, x3, x4), (0, 0, x3, x4)� = 0. A similar argument shows that

�N(x1, x2, 0, 0), (x1, x2, 0, 0)� = �N(0, x2, 0, x4), (0, x2, 0, x4)�
= �N(x1, 0, x3, 0), (x1, 0, x3, 0)� = 0

for all x1, x2, x3, x4.
Hence N has the required form, with v and w such that I − tvv and I −t ww

are positive. It follows that |�Nx, x�| ≤ 2|(x1, x2)||(x3, x4)| and |�Nx, x�| ≤
2|(x1, x3)||(x2, x4)|, for all x ∈ Rd. We conclude using the case A = A�.

We still take the notations given before Proposition 3.1.14. It is easy to check that
A and A� commute if and only if the eigenvalues of AA� are all real (assuming A, A�

are both orthogonal and symmetric matrices). We now consider the opposite case,
namely the case where AA� has no real eigenvalue. This happens exactly when the
spaces E1, E2, E�

1, E
�
2 do not intersect each other.

Proposition 3.1.15. – Assume that AA� has no real eigenvalue. If (3.7) is satisfied,

then M1/2 ∈ O(A) ∩O(A�).
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Proof. – In this case the dimension d is even, and E1, E2, E�
1, and E�

2 have dimension
d/2. Doing a rotation if necessary, we may assume that E1 = {(x1, 0);x1 ∈ Rd/2},
E2 = {(0, x2);x2 ∈ Rd/2}. Denote by x�1 and x�2 the orthogonal projections of x on E�

1

and E�
2 respectively, and write x = (x1, x2), x1, x2 ∈ Rd/2. Then the spaces E�

1, E
�
2 are

given by a graph in the decomposition Rd = Rd/2 × Rd/2: there exists an invertible
matrix ∆ such that

E�
1 = {x ∈ Rd;x2 = ∆x1}, E�

2 = {x ∈ Rd;−t∆x2 = x1}.
Doing further independent rotations in the x1 and x2 variables if necessary, we are
lead to the case where ∆ is diagonal, with positive eigenvalues. Let δ1, . . . , δd/2 be its
diagonal entries.

Put x2 = 0 in Relation (3.7): we obtain �N(x1, 0), (x1, 0)� ≤ 0 for all x1 ∈
Rd/2. We also have �N(0, x2), (0, x2)� ≤ 0, �N(x1,∆x1), (x1,∆x1)� ≥ 0, and
�N(−t∆x2, x2), (−t∆x2, x2)� ≥ 0. Let (ei) be the canonical basis of Rd/2, so
that ∆ei = δiei. Taking x1 = x2 = ei, we obtain �N(ei, ei), (ei, ei)� ≥ 0 and
�N(−ei, ei), (−ei, ei)� ≥ 0. Summing the two quantities, we see that

0 ≤ �N(ei, ei), (ei, ei)�+ �N(−ei, ei), (−ei, ei)�
= 2�N(ei, 0), (ei, 0)�+ 2�N(0, ei), (0, ei)� ≤ 0.

This gives �N(ei, 0), (ei, 0)� = 0. But since �N(x1, 0), (x1, 0)� ≤ 0 for all x1, we must
have �N(x1, 0), (x1, 0)� = 0. We can prove in the same way that �N(0, x2), (0, x2)� = 0
for all x2. It follows that there exists a matrix v such that

N =

�
0 v
tv 0

�
.

By Proposition 3.1.14, we have M1/2 ∈ O(A). By symmetry, we also have M1/2 ∈
O(A�), which concludes the proof.

We still take the notations given before Proposition 3.1.14.

Lemma 3.1.16. – Let A, A� be two orthogonal symmetric matrices, and

F = Ker(AA� − I)⊕Ker(AA� + I).

Then F is the space spanned by the common eigenvectors to A and A�.

Proof. – If x ∈ Ker(AA� − I), we have AA�x = x = A�Ax, since (AA�)−1 = A�A,
hence AA�Ax = Ax and Ax ∈ Ker(AA� − I). We see that Ker(AA� ± I) are stable
by A and A�. It follows that F is spanned by eigenvectors of A belonging to either
Ker(AA� − I) or Ker(AA� + I). Let x ∈ F be such an element. We have AA�x = εx
and Ax = µx, with ε, µ ∈ {−1, 1}. It follows that A�x = εµx, and we see that F is
spanned by common eigenvector to A and A�. Now any common eigenvector to A and
A� belongs to F , so the result follows.

Proposition 3.1.17. – Let A, A� be any orthogonal symmetric matrices. If (3.7) is

satisfied, then M1/2 ∈ O(A) ∩O(A�).
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Proof. – Denote by F the space generated by the common eigenvectors to A and A�.
The spaces F, F⊥ are stable by A and A�. We show now that they are stable by N ,
i.e., �Nf, g� = 0 for all f ∈ F and g ∈ F⊥.

Given any x ∈ Rd, let x1, x2 be the projections of x on E1 and E2, and x�1, x
�
2 be

the projection of x on E�
1, E

�
2. By assumption,

(3.11) − 2|x�1||x�2| ≤ �Nx, x� ≤ 2|x1||x2|.

Let f ∈ F be a common eigenvector to A and A�. We assume for example that
f ∈ E1 ∩ E�

1.
The spaces F⊥ ∩E1, F⊥ ∩E2, F⊥ ∩E�

1 and F⊥ ∩E�
2 intersect pairwise on the null

space by definition of F . As in the proof of Proposition 3.1.15, we see that they have
the same dimension, equal to dim(F⊥)/2, and in particular

F⊥ = F⊥ ∩ E1 ⊕ F⊥ ∩ E�
1.

Take g ∈ F⊥ ∩ E1. Relation (3.11) gives �Nf, f� = 0 and for all t ∈ R,

�N(tf + g), tf + g� = �Ng, g�+ 2t�Nf, g� ≤ 0.

Hence �Nf, g� = 0. The same is true when g ∈ F⊥ ∩ E�
1, since then for all t ∈ R,

�N(tf + g), tf + g� = �Ng, g�+ 2t�Nf, g� ≥ 0.

We showed that N stabilizes F and F⊥. We conclude with Propositions 3.1.14
and 3.1.15, considering the restrictions of A, A�, N to F and F⊥, respectively.

Proposition 3.1.17 and Lemma 3.1.13 imply Theorem 3.1.12. We proved that the
Gaussian elements of G (q, q�) are parameterized by the group of matrices G = O(q)∩
O(q�). Let K = O(d) ∩ G. Since |g(x)| = |kg(x)| for all x ∈ Rd, g ∈ G and k ∈ K,
those Gaussian elements are actually parameterized by the symmetric space G/K. The
proof of Theorem 3.1.11 gives then an interesting description of the Cayley transform
of G/K. It can happen that G = K. In that case, there is only one Gaussian element
in G (q, q�). The condition when this occurs is given by the next Theorem:

Theorem 3.1.18. – Let q(x) = �Ax, x� and q�(ξ) = �A�ξ, ξ� be two non degener-

ate quadratic forms, with A and A� symmetric and orthogonal matrices. Let F =
Ker(AA� − I)⊕Ker(AA� + I). Then G (q, q�) contains only one Gaussian function if

and only if the non real eigenvalues of AA� have multiplicity 1 in the characteristic

polynomial of AA�, and A or A� restricted to F is the identity matrix I or −I.

Proof. – By Lemma 3.1.16, F and F⊥ are stable by A and A�. Moreover the proof of
Proposition 3.1.17 shows that any matrix N satisfying (3.7) has a bloc decomposition
according to the decomposition Rd = F ⊕F⊥. Hence is suffices to consider separately
the cases F = Rd and F = {0}.

Assume that F = Rd. All the eigenvalues of AA� are real. After a change of vari-
ables, we can assume that A and A� are diagonal, with diagonal coefficients a1, . . . , an
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and a�1, . . . , a
�
n equal to 1 or −1. If A and A� are not equal to I or −I, there exist

i �= j such that ai �= aj and a�
i
�= a�

j
, and any Gaussian function of the form

exp
�
− π

�

k �=i,j

x2
k − π|g(xi, xj)|2

�
,

with g ∈ O(1, 1), belongs to G (q, q�). If A or A� is I or −I, then Theorem 1.3.5 shows
that G (q, q�) contains only the standard Gaussian function.

Assume now that F = {0}, so that all eigenvalues of AA� are non real. Take
the notations of the proof of Proposition 3.1.15. We can assume that the matrix ∆
introduced there is diagonal, with positive coefficients. Let N satisfy (3.7). Then by
the proof of Proposition 3.1.15, we have

�Nx, x� = 0

for all x in E1 or E2. Hence N has the form

N =

�
0 v
tv 0

�
.

But by symmetry we have �Nx, x� = 0 for x in E�
1 and E�

2. It follows that v∆ and ∆v
are antisymmetric. We have the relations vi,jδj = −δivj,i and vi,jδi = −δjvj,i on the
coefficients of v. Hence v = 0 is the only choice if and only if all the δi are different.
To conclude the proof, note that the eigenvalues of AA� are exactly the d numbers

(3.12)
1− δ2

k

1 + δ2
k

± 2iδk

1 + δ2
k

.

Indeed, in the orthonormal basis e1, . . . , ed we chose, AA� has a representative matrix
given by �

C (t∆∆) 2(I +t∆∆)−1t∆

−2(I + ∆t∆)−1∆ C (∆t∆)

�
,

where C is the Cayley transform. In the basis e1, ed/2+1, . . . , ed/2, ed, AA� will have a
representative matrix which is bloc diagonal, with blocs of size 2 equal to




1−δ

2
i

1+δ2
i

2δi

1+δ2
i

− 2δi

1+δ2
i

1−δ
2
i

1+δ2
i



 .

Hence the eigenvalues of AA� are given by (3.12).

Unlike Theorem 3.1.8, the condition does not depend on the matrix AA� itself, so
that it is difficult to give a condition when (q, q�) is a critical pair, without A and A�

being orthogonal symmetries. Nevertheless, we have the following sufficient condition:

Corollary 3.1.19. – Let q(x) = �Ax, x� and q�(ξ) = �A�ξ, ξ�, where A and A� are

symmetric invertible matrices. If AA� has d distinct eigenvalues of modulus 1, then

G (q, q�) contains only one Gaussian function.
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Proof. – As before, we can assume that the eigenvalues of AA� are all real or all non
real. If they are all non real, Theorem 3.1.18 gives the result. Now assume that the
eigenvalues of AA� are equal to 1 or −1. Then d ≤ 2. The case d = 1 follows from
Theorem 1.3.3. Assume that d = 2, and that 1 and −1 are its eigenvalues. Make a
change of variables so that A and A� are diagonal, with eigenvalues a1, a2, a�1, a

�
2 equal

to 1 or −1. We have a1 = a�1 and a2 = −a�2, or a1 = −a�1 and a2 = a�2. It follows that
A or A� is equal to I or −I, and we conclude with Theorem 1.3.5.

3.1.2. Remarks. – In the sub-critical case, there are real and non real Gaussian el-
ements in G (q, q�). It still seems difficult to give a precise description of them. However
Theorem 2.1.6 gives the answer in dimension one. The general idea of our analysis
is to show that in the super-critical case, G (q, q�) does not contain a lot of solutions.
We will give singular examples where G (q, q�) contains only singular distributions.
We will show that, for many super-critical pairs (q, q�), G (q, q�) does not contain any
function. Then we will try in some cases to describe completely G (q, q�) when (q, q�) is
a critical pair. The conjecture that we formulate after our study is that the Gaussian
elements of G (q, q�) generate all its elements, using averages, differentiation and mul-
tiplication by polynomials (see Proposition 3.1.2). For example, when (q, q�) satisfies
the conditions of Theorem 3.1.18, we expect the space G (q, q�) to be exactly the space
of Hermite functions associated to its unique Gaussian element. We will not be able
to show this fact, unless q or q� is positive. For example we do not know if it is true
for q(x) = 2x1x2 and q�(ξ) = ξ2

1 − ξ2
2 on R2.

3.1.3. Annihilating pairs of quadratic forms

Definition 3.1.20. – The pair (q, q�) of non degenerate quadratic forms on Rd
is

called an annihilating pair if G (q, q�) = {0}.

An annihilating pair is necessarily super-critical. If (q, q�) is annihilating, then any
f ∈ L2(Rd) such that, for |x|, |ξ| → ∞,

f(x) = O(exp(−π|q(x)|)), �f(ξ) = O(exp(−π|q�(ξ)|)),

is equal to 0. Such a property is an analogue of Hardy’s uncertainty principle for non
degenerate quadratic forms. Theorem 1.3.5 gives the annihilating pairs (q, q�), when
q or q� is positive:

Proposition 3.1.21. – Let A and A� be two symmetric matrices, with A positive. Let

q, q� be the quadratic forms associated to A and A�. Then the pair (q, q�) is annihilating

if and only if the matrix AA� has an eigenvalue λ such that |λ| > 1.

We call a pair having this property an annihilating pair by reference to annihilating
pairs of sets, as defined in [14].
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Definition 3.1.22. – Let E,F ⊂ Rd
be two measurable sets. The pair (E,F ) is

called a weakly annihilating pair if any f ∈ L2
with support in E and spectrum in F ,

is equal to zero. The pair is strongly annihilating if there exists 0 ≤ c < 1 such that

for all f ∈ L2(Rd), with support in E,

�

F

| �f(ξ)|2 dξ ≤ c�f�2
L2(Rd).

The link between Definitions 3.1.22 and 3.1.20 is the following.

Theorem 3.1.23. – Assume that the pair (q, q�) of non degenerate quadratic forms

is annihilating. Let C, C � > 0, and define the sets

E = {x ∈ Rd; |q(x)| ≤ C}, F = {ξ ∈ Rd; |q�(ξ)| ≤ C �}.

Then any tempered distribution f with support in E and spectrum in F is equal to

zero. In particular, (E,F ) is weakly annihilating for L2
functions.

Note that the notions of strongly/weakly annihilating pairs of sets was defined for
functions in L2. It can as well be defined for functions in Lp spaces. Classical examples
of strongly annihilating pairs are pairs of sets of finite measure [1]. It is proved in [25]
that the pairs (E,F ), with

E = {x ∈ Rd; |q(x)| ≤ C}, F = {ξ ∈ Rd; |q�(ξ)| ≤ C �},

are strongly annihilating, provided the product CC � is small enough (q and q� are here
any non degenerate quadratic forms). We believe that those pairs (E,F ) are weakly
and strongly annihilating without restriction on C, C �. There are trivial counter-
examples when one of the form is degenerated.

Note, however, that particular cases can be proved using the following, which is
a corollary of the classical proof for pairs of finite measure ([1, 14]. An elementary
proof can be found in [6]:

Proposition 3.1.24. – Assume that the subsets E and F of Rd
have the following

property: for almost every x ∈ Rd
, the lattice x+Zd

intersects E and F on finite sets.

Then the pair (E,F ) is weakly annihilating.

Corollary 3.1.25. – The pair of sets (E,F ), with

E = {(x, y) ∈ R2; |xy| ≤ C}, F = {(ξ, η) ∈ R2; |ξη| ≤ C �},

is weakly annihilating, for any value of C and C �
.

Note that we can also translate and take rotations of the sets above. Moreover, we
can take finite unions of such sets.
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3.1.4. Examples in dimension 2. – Assume that q is positive. After a change of
variables, we write

q(x, y) = x2 + y2, q�(ξ, η) = aξ2 + bη2,

with a, b ∈ R \ {0}. Then the pair is annihilating if and only if max(|a|, |b|) > 1, by
Theorem 1.3.5.

Assume now that neither q nor q� is positive. The issue is that they may not have
a common basis of reduction as above (see Proposition 3.2.1 below). So we assume
moreover that q and q� can be put, after a change of variable, in the form

q(x, y) = x2 − y2, q�(ξ, η) = aξ2 − bη2,

with a, b > 0. The difference with the previous case is that G (q, q�) �= {0} when
a = b > 1. It does not contain any Gaussian function, since |det(q) det(q�)| = a2 > 1,
but the distribution δ(x− y) defined by

(3.13) �δ(x− y), φ� =

�
φ(x, x) dx

belongs to G (q, q�).

Theorem 3.1.26. – Let a, b > 0, and q(x, y) = x2 − y2
, q�(ξ, η) = aξ2 − bη2

. Then

G (q, q�) = {0} if and only if max(a, b) > 1 and a �= b.

Proof. – When max(a, b) ≤ 1, G (q, q�) contains a Gaussian function, by Theo-
rem 3.1.8. When a = b ≥ 1, (3.13) gives a non zero element of G (q, q�).

Assume now that a > b and a > 1. If we divide q� by a suitable constant, we can
assume that a > 1 > b > 0. Let f ∈ G (q, q�). Fix a polynomial P on R and b < t < 1.
Consider the tempered distribution TP defined on S(R) by

�TP , φ� = �f, φ⊗ Pγt�,

where φ ⊗ Pγt(x, y) = φ(x)P (y) exp(−π/t|y|2). Let Q be the polynomial such that
Pγt is the Fourier transform of Qγ1/t. We have

�
�TP , φ

�
=

�
�f, φ⊗Qγ1/t

�
.

Using the inequality x2 − 1/ty2 ≤ |x2 − y2| − (1/t − 1)y2, the fact that t < 1 and
f exp(±πq) ∈ S�(R2), we find TP (·) exp(π| · |2) ∈ S�(R). In the same way, using the
fact that t > b, we get �TP (·) exp(πa| · |2) ∈ S�(R). Theorem (1.3.4) gives then TP = 0.
Since it is true for any polynomial P , Lemma 1.2.2 gives f = 0.

Remark 3.1.27. – Theorem 5.3.2 will describe the elements of G (q, q�) when a =
b > 1, while Theorem 5.1.6 describes G (q, q�) for a = b = 1. We do not have any
analogue of Theorem 2.1.6 for the case max(a, b) ≤ 1.
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3.2. Annihilating pairs when d ≥ 2

Let q and q� be two quadratic forms defined by

q(x) = �Ax, x�, q�(ξ) = �A�ξ, ξ�,

with A, A� real symmetric and invertible matrices. The nature of the space G (q, q�) is
unchanged by a linear change of variable, so G (q, q�) is conjugated to G (q̃, q̃�), where
q̃(x) = q(Px), q̃�(ξ) = q(tP−1ξ), and P is an invertible matrix. We will focus our
attention to the case where P can be chosen so that q̃ and q̃� are diagonal:

Proposition 3.2.1. – Let A and A� be two symmetric matrices. Then there exists

an invertible matrix P such that
tPAP and P−1A�tP−1

are diagonal if and only if

AA� is diagonalizable over R.

Proof. – If P exists, then the matrix tPAA�tP−1 is diagonal. Conversely, if
tPAA�tP−1 is diagonal, then the two matrices tPAP and P−1A�tP−1 commute, so
that they can be diagonalized by the same orthogonal matrix Q. Put R = PQ. Then
tRAR and R−1A�tR−1 are diagonal.

Remark 3.2.2. – The matrix AA� is diagonalizable over R for example when A or
A� is positive, or when A and A� commute.

We are reduced to quadratic forms defined by

(3.14) q(x) =
d�

i=1

εix
2
i , q�(ξ) =

d�

i=1

λiξ
2
i ,

where εi ∈ {−1,+1} and λi ∈ R∗.
As a consequence of Proposition 3.1.21, the following is true.

Theorem 3.2.3. – Assume that εi = 1 for all i. Then G (q, q�) = {0} if and only if

maxi |λi| > 1.

Without assumption on q, we can establish the following result.

Theorem 3.2.4. – Let I = {i; |λi| = maxk |λk|}. Assume that all the λi, for i ∈ I,
have the same sign, and that maxk |λk| > 1. Then G (q, q�) = {0}.

Proof. – The proof follows the lines of the one of Theorem 3.1.26. We can assume
that q� has the form

q�(ξ) = a
d0�

i=1

ξ2
k +

�

i>d0

λiξ
2
i ,

with a > 1 and |λi| < 1 for i > d0. Choose t such that 1 > t > maxi>d0 |λi|. Let
f ∈ G (q, q�). Define the distribution TP on Rd0 by

�TP , φ� = �f, φ⊗ Pγt�,
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where P is a polynomial and γt(·) = exp(−π/t| · |2). Since f ∈ G (q, q�), we have
TP ∈ G (q0, q�0), with

q0(x) =
d0�

i=1

εix
2
i , q�0(ξ) = a|ξ|2.

Proposition 3.1.21 implies that TP = 0 (since a > 1), for all polynomial P , and
Lemma 1.2.2 gives f = 0.

Remark 3.2.5. – The condition given in Theorem 3.2.4 is not necessary in general,
unless d = 1 or d = 2, see Theorem 3.1.26. When one of the quadratic forms is the
Lorentz form, the necessary and sufficient condition will be given in Theorem 5.3.1.

Corollary 3.2.6. – Let q(x) =
�

i
εix2

i
, with εi = ±1, and q�(ξ) =

�d

i=1 λiξ2
i
,

with λi �= 0. If there exists i such that |λi| > |λj | for all j �= i, and |λi| > 1. Then

G (q, q�) = {0}.

3.3. Annihilating pairs for functions

The space G (q, q�), with q(x) = q�(x) = 2ax1x2 on R2 (a > 1), is a singular case,
as shown by Theorem 3.1.26. It does not contain any Gaussian function, but still
contains a non zero element. We will show here in particular that it does not contain
any function. Note that this is a consequence of Theorem 5.3.2.

Definition 3.3.1. – Let F (q, q�) be the space of distributions f ∈ S�(Rd) such that

f(·) exp(±πq(·)) ∈ L1(Rd), �f(·) exp(±πq�(·)) ∈ S�(Rd).

This is made of integrable functions, so that the Fourier transform is taken in the
usual sense. We can prove the following.

Theorem 3.3.2. – Let q(x) = �Ax, x� and q�(ξ) = �A�ξ, ξ�, where A and A� are

two symmetric, invertible matrices. Assume that AA� is diagonalizable over R. Then

F (q, q�) = {0} if only if AA� has an eigenvalue λ such that |λ| ≥ 1.

For the proof, we do as usual a change of variable so that q and q� are given by
(3.14). We will show that F (q, q�) = {0} if if only if maxi |λi| ≥ 1. We will use the
following estimate, which is fundamental for the remaining of the text. It is a limiting
case of the estimates of Proposition 2.2.2.

Lemma 3.3.3. – Let d1, d2 ∈ N such that d = d1 + d2. For x ∈ Rd
, we write x =

(x1, x2), x1 ∈ Rd1 , x2 ∈ Rd2 . Let q be the quadratic form q(x) = |x1|2 − |x2|2. Let

N > 0. Then there exists C > 0 such that for all z ∈ Cd
,

sup
x∈Rd

(1 + |x| + |z|)N exp
�
− π(|x|2 + |q(x)|) + 2π�x, Re(z)� − π

2
Re(z2)

�

≤ C(1 + |z|)N exp
�
π| Re(z1)|| Re(z2)| +

π

2
| Im(z)|2

�
.
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Proof. – Assume first that q(x) ≥ 0. Then |x1| ≤ |x2|. We have

(1 + |x| + |z|)N exp
�
− π(|x|2 + |q(x)|) + 2π�x, Re(z)� − π

2
Re(z2)

�

≤ C(1 + |x+| + |z|)N

× exp
�
− 2π|x1|2 + 2π|x1|(| Re(z1)| + | Re(z2)|)−

π

2
Re(z2)

�

≤ C(1 + |z|)N exp
�π

2
(| Re(z1)| + | Re(z2)|)2 −

π

2
Re(z2)

�

= C(1 + |z|)N exp
�
π| Re(z1)|| Re(z2)| +

π

2
| Im(z)|2

�
.

The same estimate holds for q(x) ≤ 0 by symmetry.

Corollary 3.3.4. – We keep the notations of Lemma 3.3.3. Let f ∈ S�(Rd). Then

f(·) exp(±πq(·)) ∈ S�(Rd) if and only of there exist C, N > 0 such that for all z ∈ Cd
,

|B(f)(z)| ≤ C(1 + |z|)N exp
�
π| Re(z1)|| Re(z2)| +

π

2
| Im(z)|2

�
.

Recall that the Bargmann transform is defined by (1.3). Compare this with
Lemma 3.1.13.

Proof. – Let χ be a smooth, compactly supported function on R such that χ(t) = 1
for |t| ≤ 1, and χ(t) = 0 for |t| ≥ 2. Let

φ(z, x) = exp
�
− π|x|2 + 2π�x, z� − π

2
z2

�
.

We have B(f)(z) = �f, (χ ◦ q)φ(z, ·)�+ �f, (1− χ ◦ q)φ(z, ·)�.
Since f ∈ S�(Rd), we can find C, M > 0 such that

|�f, φ�| ≤ CPM (φ)

for all Schwartz function φ. The semi-norm PM was defined by (1.7). Hence
|�f, (χ ◦ q)φ(z, ·)�| ≤ CPM ((χ ◦ q)φ(z, ·))

≤ C sup
|q(x)|≤2

(1 + |x| + |z|)2M exp(−π|x|2 + 2π�x, Re(z)� − π

2
Re(z2))

≤ C sup
x∈Rd

(1 + |x| + |z|)2M exp(−π(|x|2 + |q(x)|) + 2π�x, Re(z)� − π

2
Re(z2))

≤ C(1 + |z|)2M exp
�
π| Re(z1)|| Re(z2)| +

π

2
| Im(z)|2

�
.

We used Lemma 3.3.3 for the last inequality.
Now we use the fact that f(·)χ ◦ q(·) exp(π|q(·)|) ∈ S�(Rd). There exist C, N > 0

such that for all z ∈ Cd,

|�f, (1− χ ◦ q)φ(z, ·)�| ≤ CPN ((1− χ ◦ q)e−π|q(·)|φ(z, ·))

≤ C sup
x∈Rd

(1 + |x| + |z|)2M exp(−π(|x|2 + |q(x)|) + 2π�x, Re(z)� − π

2
Re(z2))

≤ C(1 + |z|)2N exp
�
π| Re(z1)|| Re(z2)| +

π

2
| Im(z)|2

�
,
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using Lemma 3.3.3 again.
Conversely, assume that

|B(f)(z)| ≤ C(1 + |z|)N exp
�
π| Re(z1)|| Re(z2)| +

π

2
| Im(z)|2

�

for all z ∈ Cd. Put F (z) = B(f)(z), and consider the entire function

G(z) =

�

Rd−
F (
√

2z1, iy) exp
�π

2
z2
1 −

π

2
y2 − π(y − z2)

2 +
π

2
z2
2

�
dy.

It is the Bargmann transform, with respect to the variable y, of the function
F (
√

2z1, iy) exp
�

π

2 z2
1 − π

2 y2
�
. The integral is absolutely convergent and we have

|G(z)| ≤ C(1 + |z|)N exp
�π

2
|z|2

�
.

By Proposition 1.2.5, there exists a tempered distribution g ∈ S�(Rd) whose
Bargmann transform is G. Let F 2 denote the Fourier transform with respect to Rd2 .
It follows by identification of the Bargmann transforms that

( F 2g)(
√

2x1, x2) = f(x) exp(π(|x1|2 − |x2|2)),

and we conclude that f exp(πq) ∈ S�(Rd). We can as well prove that f exp(−πq) ∈
S�(Rd), and the proof is complete.

We are now in position to prove Theorem 3.3.2.

Proof of Theorem 3.3.2. – If maxi |λi| < 1, choose t such that maxi |λi| < t < 1.
Then the Gaussian function γt(x) = exp(−π/t|x|2) belongs to F (q, q�).

Assume now that λ = maxi |λi| ≥ 1. We first divide q� by a constant λ ≥ 1 so that
maxi |λi| = 1. Then we separate the λi such that |λi| < 1, and tensorize with Hermite
functions as in the proof of Theorem 3.2.4. So we will assume that all the λi are equal
to 1 or −1. Up to a permutation of the variables, we can decompose the space Rd as
Rd = Rd1 × Rd2 × Rd3 × Rd4 , with d1 + · · · + d4 = d, so that

q(x) = |x1|2 + |x2|2 − |x3|2 − |x4|2, q�(ξ) = |ξ1|2 − |ξ2|2 + |ξ3|2 − |ξ4|2.

We apply Corollary 3.3.4 and find C, N > 0 such that for all z ∈ Cd,

(3.15) |B(f)(z)| ≤ C(1 + |z|)N exp
�
π| Im(z1, z3)|| Im(z2, z4)| +

π

2
| Re(z)|2

�
.

If we use the hypothesis on f we have

|B(f)(z)| ≤
�

Rd

|f(x)| exp(π|q(x)|)K(x, z) dx,

where
K(x, z) = exp

�
− π(|x|2 + |q(x)|) + 2π�x, Re(z)� − π

2
Re(z2)

�
.

Using Lemma 3.3.3 we have

|K(x, z)| ≤ C exp
�
π| Re(z1, z3)|| Re(z2, z4)| +

π

2
| Im(z)|2

�
,
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and hence

(3.16) |B(f)(z)| ≤ C exp
�
π| Re(z1, z2)|| Re(z3, z4)| +

π

2
| Im(z)|2

�
.

Put F (z) = B(f)(z). We fix z2 real, z3 imaginary, and z4 = 0. Apply Lemma 1.1.8
to F (z) as a function of z1 ∈ Cd1 . Estimates (3.15) and (3.16) imply that F (z) is
constant, as a function of z1. Then notice that when z1 is real, we have

K(x, z) ≤ C, lim
z1→∞

K(x, z) = 0.

Lebesgue’s Dominated Convergence Theorem implies that

lim
z1→∞

F (z) = 0,

and hence F (z) = 0.
We can prove in a similar way that, given any partial differential operator D of

order n ∈ N, DF (z) is a polynomial in z1, of degree at most n − 1, provided that
z4 = 0, z3 is imaginary and z2 real.

We apply this to D = ∂n4
z4

, given any n4 ∈ Nd4 . Then ∂n1
z1

∂n4
z4

F (z) = 0 provided
|n1| ≥ |n4|. If we take extra derivatives in z2, z3, and put z = 0, we obtain

∂n

z F (0) = 0

for all n ∈ Nd such that |n1| ≥ |n4|. By symmetry, this is also true when |n1| ≤ |n4|,
and hence all derivatives of F at 0 are equal to 0. It follows that F and f are identically
zero.

3.3.1. Other subspaces of F (q, q�). – We show in this paragraph that we can
extend Theorem 3.3.2 to another class of functions.

We will consider quadratic forms defined by

(3.17) q(x) =
�

i

εix
2
i , q�(ξ) =

�

i

µiξ
2
i ,

with εi, µi ∈ {−1,+1}.

Theorem 3.3.5. – Let q, q� be defined by (3.17). There exists an integer N ≥ 1 such

that every tempered distribution f satisfying

(1 + |x|2)−N/2f(·) exp(±πq(·)) ∈ L1(Rd), �f(·) exp(±πq�(·)) ∈ S�(Rd)

is identically zero.

Proof. – As in the proof of Theorem 3.3.2, write

q(x) = |x1|2 + |x2|2 − |x3|2 − |x4|2, q�(ξ) = |ξ1|2 − |ξ2|2 + |ξ3|2 − |ξ4|2,

according to the decomposition Rd = Rd1 ×Rd2 ×Rd3 ×Rd4 . Let F be the Bargmann
transform of f . We can as well prove that for any partial differential operator D of
order n, DF (z) is a polynomial in z1, as soon as z4 = 0, z3 is imaginary and z2 real.
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Let D = ∂n4
z4

. By analyticity, DF (z) it is still a polynomial in z1 when z2, z3 are
arbitrary, and z4 = 0. Let α be its degree in z1. We will show that

(3.18) α < N + |n4| − d1.

Fix now z4 = 0, and z2, z3 imaginary. We also take z1 of the form z1 = iξ1, ξ1 ∈ Rd1 .
There exists a polynomial Q of degree |n4| such that

∂n4
z4

��
z4=0

�
e−π(x4−z4)

2+ π
2 z

2
4

�
= Q(x4)e

−πx
2
4 .

The quantity exp
�

π

2 (−ξ2
1 + z2

2 + z2
3)

�
∂n4

z4

��
z4=0

F (z) is equal to
�

Rd

f(x)Q(x4) exp(−πx2
1 + 2iπx1ξ1 − π(x2 − z2)

2 − π(x3 − z3)
2 − πx2

4) dx.

Taking the inverse Fourier transform in ξ1, we find
�

Q(x4) exp(−π(x2 − z2)
2 − π(x3 − z3)

2 − πx2
4)f(x) dx2 dx3 dx4 = P (x1)e

−πx
2
1 ,

where P is a polynomial of degree α, depending on the fixed z2, z3. In order to show
(3.18), we prove that �

Rd1

|P (x1)|dx1

(1 + |x1|)N+|n4| < ∞.

Indeed,
�

Rd1

|P (x1)|dx1

(1 + |x1|)N+|n4| ≤ C(z2, z3)

�

Rd

|f(x)Q(x4)|eπ(x2
1−x

2
2−x

2
3−x

2
4) dx

(1 + |x1|)N+|n4| .

When x2
1 ≥ 1

2 (x2
3 + x2

4), we have

|Q(x4)|eπ(x2
1−x

2
2−x

2
3−x

2
4)

(1 + |x1|)N+|n4| ≤ C
exp(πq(x)− 2πx2

2)

(1 + |x1| + |x3| + |x4|)N

≤ C
exp(π|q(x)|)
(1 + |x|)N

.

An if x2
1 ≤ 1

2 (x2
3 + x2

4), we have

|Q(x4)|eπ(x2
1−x

2
2−x

2
3−x

2
4)

(1 + |x1|)N+|n4| ≤ C
exp(−π/3(x2

2 + x2
3 + x2

4))

(1 + |x1|)N+|n4|

≤ C(1 + |x|)−N ≤ C
exp(π|q(x)|)
(1 + |x|)N

.

Hence we have
�

Rd1

|P (x1)|dx1

(1 + |x1|)N+|n4| ≤ C(z2, z3)

�

Rd

|f(x)|eπ|q(x)|dx

(1 + |x|)N
< ∞,

and (3.18) follows. Thus
∂n

z F (0) = 0
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for any n ∈ Nd such that |n1| ≥ N + |n4| − d1. By symmetry, this is true whenever
one of the following conditions is satisfied:

|n1| ≥ N − d1 + |n4|, |n4| ≥ N − d4 + |n1|
|n2| ≥ N − d2 + |n3|, |n3| ≥ N − d3 + |n2|.

(3.19)

Take for N the integer part of

(3.20) max
�d1 + d4 + 1

2
,
d2 + d3 + 1

2

�
.

We claim that for any n ∈ Nd, one of the conditions (3.19) is satisfied. Indeed, if this
is not the case, we have

2 ≤ 2N − (d1 + d4), 2 ≤ 2N − (d3 + d4),

which is a contradiction. Since all the partial derivatives of F at 0 vanish, we have
f = 0.

Remark 3.3.6. – A possible value of N is given by (3.20). Note that we have indeed
N ≥ 1. Assume that q = q�. Then N is the smallest integer such that N ≥ d/2.
Theorem 3.3.5 is sharp when q = q�, d = 2k, and q has signature (k, k) on R2k.
Indeed, the standard Gaussian function satisfies

(1 + |x| + |y|)−Nf(x, y) exp(±π(|x|2 − |y|2)) ∈ L1(R2k)

whenever N > k. This value is also optimal form a form of signature (k + 1, k) or
(k, k + 1) on R2k+1. We think that, in the general case, the sharpest constant is
N = max(k, l), where (k, l) is the signature of q, since a Gaussian function satisfies
the conditions if and only if N > max(k, l).

Corollary 3.3.7. – Let f ∈ S�(R2). Assume that

f(x, y) = O
�
exp(−2aπ|xy|)

�
, �f(ξ, η) = O

�
exp(−2bπ|ξη|)

�
.

If ab > 1, then f = 0.

Proof. – We can assume that a > 1 and b = 1. Hence
�f(ξ, η) exp(±2πξη) ∈ L∞

and
� |f(x, y)| exp(2π|xy|)

1 + |x| + |y| dx dy ≤ C

�
exp(−2π(a− 1)|xy|)

1 + |x| + |y| dx dy

≤ C

�

x∈R

�

|y|≤|x|

exp(−2π(a− 1)|xy|)
1 + |x| dy dx

≤ C

�

x∈R

dx

(1 + |x|)2 < ∞.(3.21)

The value given by (3.20) is N = 1, we can use Theorem 3.3.5, and we find f = 0.
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Remark 3.3.8. – Corollary 3.3.7 is an analogue of Hardy’s uncertainty principle for
the non degenerate quadratic form 2xy, which is the one appearing in Beurling’s
uncertainty principle. The condition is sharp, since the standard Gaussian function
satisfies the hypotheses when a = b = 1.

We give the following corollary concerning annihilating pairs of sets.

Corollary 3.3.9. – We take the notations of Theorem 3.3.5. Let 1 ≤ p, q ≤ ∞,

such that p−1 + q−1 = 1. Assume that q > d−2
N

, that f ∈ Lp(Rd) is supported in

{x; |q(x)| ≤ C}, and that �f is supported in {ξ; |q�(ξ)| ≤ C �}, where C and C �
are two

fixed constants. Then f = 0.

Proof. – Recall that for any t ≥ 0, the function equal to (1 + |x|)−t when |q(x)| ≤ C,
and to 0 when |q(x)| > C, is in the space L1(Rd) if and only if t > d − 2. Since f is
supported in {x; |q(x)| ≤ C},

�

Rd

|f(x)| exp(π|q(x)|)
(1 + |x|)N

dx ≤ C�f�
Lp

��

|q(x)|≤C

(1 + |x|)−Nq

�1/q

< ∞.

Since moreover �f exp(±πq�) ∈ S�(Rd), Theorem 3.3.5 gives f = 0.

Remark 3.3.10. – If d = 2, Corollary 3.3.9 applies for any values of p, even p = ∞.
When d = 3, it applies for 1 ≤ p < ∞.
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CHAPTER 4

CRITICAL PAIRS

We study in this chapter the elements of G (q, q�) when the pair is critical. We give
necessary and sufficient condition on their Bargmann transform, and we state three
conjectures on the form of the elements of G (q, q�).

4.1. Introduction

Take the two quadratic forms defined by

q(x) = �Ax, x�, q�(ξ) = �A�ξ, ξ�,

where A, A� are symmetric invertible matrices. We will assume throughout in this
chapter that the pair (q, q�) is critical, which means that AA� is diagonalizable over
C, with eigenvalues of modulus 1. We can always make a change of variables so that
A and A� are orthogonal and symmetric matrices. Recall that the Gaussian functions
in the space G (q, q�) are all real, and are characterized by Theorem 3.1.11.

We will use the Bargmann transform, introduced in the first chapter. We will
show that it characterizes the elements of G (q, q�) by the growth of their Bargmann
transform.

We now introduce useful operators linked to the Bargmann transform. The anni-
hilation and creation operators from quantum mechanics (see [3, 12]), are defined as
follows.

Definition 4.1.1. – The creation operators are defined on S�(Rd) by

(4.1) zi(f) = xif −
1

2π
∂xif.

The annihilation operators are

(4.2) z
∗
i (f) = xif +

1

2π
∂xif.

The annihilation operators are the formal adjoints of the creation operators. The

creation operators commute, and the same is true for the annihilation operators.
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Proposition 4.1.2. – For all f ∈ S�(Rd) and z ∈ Cd
, we have

zi B(f)(z) = B(zif)(z),(4.3)
∂zi B(f)(z) = B(z∗i f)(z).(4.4)

Moreover

(−2π)k
z

k

i g(x) = eπx
2
i ∂k

xi
[e−πx

2
i g(x)],(4.5)

(−2π)k
z
∗k
i g(x) = e−πx

2
i ∂k

xi
[eπx

2
i g(x)],(4.6)

for any g ∈ S�(Rd).

4.2. Characterization of G (q, q�)

Assume for simplicity that we have already made a change of variables, so that A
and A� are orthogonal and symmetric. Let

E1 = Ker(A− I), E2 = Ker(A + I)

and
E�

1 = Ker(A� − I), E�
2 = Ker(A� + I)

be the eigenspaces associated to A and A�. For x ∈ Rd, let x1 and x2 the projections
of x on E1 and E2, respectively. Let x�1 and x�2 be the projections of x on E�

1 and E�
2.

For our analysis, we will use the fundamental estimate of Lemma 3.3.3 and Corol-
lary 3.3.4. The following is an immediate consequence.

Theorem 4.2.1. – Let f ∈ S�(Rd). Then f ∈ G (q, q�) if and only if there exist

C, N > 0 such that for all z ∈ Cd
,

|B(f)(z)| ≤ C(1 + |z|)N exp
�
π| Re(z1)|| Re(z2)| +

π

2
| Im(z)|2

�

|B(f)(z)| ≤ C(1 + |z|)N exp
�
π| Im(z�1)|| Im(z�2)| +

π

2
| Re(z)|2

�
.

(4.7)

So our initial problem has been translated into the characterization of a subspace
of the Fock space.

When A = A�, we can give a more precise result. We can do a rotation in the
variables, so that

(4.8) q(x) = q�(x) = |x1|2 − |x2|2,

with x = (x1, x2), x1 ∈ Rd1 and x2 ∈ Rd2 (d1 + d2 = d).

Theorem 4.2.2. – Let q be a quadratic form given by (4.8). Let f ∈ S�(Rd). Then

f ∈ G (q, q) if and only if there exist C, N > 0, such that for all z ∈ Cd
,

(4.9) |B(f)(z)| ≤ C(1 + |z|)N exp(π| Re(z1)|| Re(z2)| + π| Im(z1)|| Im(z2)|)
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Proof. – Fix z1 ∈ Rd1 , and z2 ∈ Rd2 . Consider the analytic function G defined on C∗
by

G(t) = B(f)(tz1, t
−1z2).

It follows from Theorem 4.2.1 that there exist constants C, A, depending on the fixed
z1, z2, such that for all t ∈ C∗,

|G(t)| ≤ C(1 + |t| + |t|−1)N exp(A(| Re(t)|2 + | Re(t−1)|2))

and
|G(t)| ≤ C(1 + |t| + |t|−1)N exp(A(| Im(t)|2 + | Im(t−1)|2)).

From Lemma 1.3.2, we conclude that

|G(t)| ≤ C �(1 + |t| + |t|−1)N

for all t ∈ C∗. Hence G is a polynomial in t and t−1, and we can write

B(f)(tz1, t
−1z2) =

N�

k=−N

tkFk(z),

where Fk are entire functions on Cd.
We will show that (4.9) holds for each of the Fk, for some constants C, N > 0. We

have
FN (z) = ∂2N

t B(f)(tz1, t
−1z2)

for any t ∈ C∗, z ∈ Cd. Propositions 3.1.2, 4.1.2 and Theorem 4.2.1 imply that there
exist C, M > 0 such that for all z, ζ, t,

|FN (z)| ≤ C(1 + |z| + |t| + |t|−1)M

× exp
�
π| Re(z1)|| Re(z2)| +

π

2
(| Im(tz1)|2 + | Im(z2/t)|2)

�
.

If we minimize this estimate over t, we find C, M � > 0 such that for all z ∈ Cd,

|FN (z)| ≤ C(1 + |z| + |ζ|)M
�
exp

�
π| Re(z1)|| Re(z2)| + π| Im(z1)|| Im(z2)|

�
.

We obtain by induction similar estimates for all the Fk.

When A and A� commute, we can make a change of variables so that

(4.10) q(x) = |x1|2 + |x2|2 − |x3|2 − |x4|2, q�(ξ) = |ξ1|2 − |ξ2|2 + |ξ3|2 − |ξ4|2,

with xi, ξi ∈ Rdi and d1 + · · · + d4 = d.

Theorem 4.2.3. – Let q, q� be defined by (4.10). Let f ∈ S�(Rd). Then f ∈ G (q, q�)
if and only if there exist C, N > 0 such that for all z ∈ Cd

,

|B(f)(z)| ≤ C(1 + |z|)N exp
�
π| Re(z1, z2)|| Re(z3, z4)| +

π

2
| Im(z)|2

�

|B(f)(z)| ≤ C(1 + |z|)N exp
�
π| Im(z1, z3)|| Im(z2, z4)| +

π

2
| Re(z)|2

�
.

(4.11)
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This is a reformulation of Theorem 4.2.1. When d4 = 0, we have a more precise
version (which includes Theorem 4.2.2). Here

q(x1, x2, x3) = |x1|2 + |x2|2 − |x3|2, q�(ξ1, ξ2, ξ3) = |ξ1|2 − |ξ2|2 + |ξ3|2.
Put

q0(x2, x3) = |x2|2 − |x3|2.
It is a non degenerate quadratic forms on Rd2+d3 . We will give a description of the
elements of G (q, q�) in terms of G (q0, q0).

Theorem 4.2.4. – Let f ∈ S�(Rd). Then f ∈ G (q, q�) if and only if there exist

N ∈ N, distributions fk ∈ G (q0, q0), such that

f(x1, x2, x3) =
�

k∈Nd1 ;|k|≤N

xk

1 exp(−π|x1|2)fk(x2, x3).

Proof. – Such distributions belong clearly to G (q, q�). Let f ∈ G (q, q�), and F its
Bargmann transform. By Theorem 4.2.3, there exist C, N > 0 such that for all z ∈ Cd,

|F (z)| ≤ C(1 + |z|)N exp
�
π| Re(z1, z2)|| Re(z3)| +

π

2
| Im(z)|2

�

and
|F (z)| ≤ C(1 + |z|)N exp

�
π| Im(z1, z3)|| Im(z2)| +

π

2
| Re(z)|2

�
.

Fix z2 ∈ Rd2 and z3 ∈ iRd3 . By Lemma 1.3.2, we see that F (z1, z2, z3) is a polynomial
in z1. Hence

F (z) =
�

|k|≤N

zk

1Fk(z2, z3),

where the Fk are entire functions depending only on z2, z3. We can express each
function Fk(z2, z3) as a polynomial in ∂zi applied to F (z1, z2, z3):

Fk(z2, z3) = Pk(∂zi)F (0, z2, z3).

It follows from Propositions 3.1.2, 4.1.2 and Theorem 4.2.3 that there exist C, N > 0,
such that for all (z2, z3) ∈ Cd2+d3 ,

|Fk(z2, z3)| ≤ C(1 + |z2| + |z3|)N exp
�
π| Re z2|| Re z3| +

π

2
| Im(z2, z3)|2

�

and

|Fk(z2, z3)| ≤ C(1 + |z2| + |z3|)N exp
�
π| Im z2|| Im z3| +

π

2
| Re(z2, z3)|2

�
.

Using Theorem 4.2.3 again, we see that Fk = B(fk), with fk ∈ G (q0, q0). Hence

B(f)(z) =
�

|k|≤N

zk

1 B(fk)(z2, z3),

which is equivalent to
f(x) =

�

|k|≤N

z
k

1γ(x1)fk(x2, x3),

with γ(x1) = exp(−π|x1|2). This completes the proof.
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4.3. Gaussian solutions revisited

Theorem 4.2.1 can be used to obtain the results of Theorem 3.1.11. Indeed, if

f(x) = exp(−π�Mx, x�)
is an element of G (q, q�), where M is a symmetric complex matrix whose real part is
positive, then

B(f)(z) = det(I + M)−1/2 exp
�π

2
�C (M)z, z�

�
,

where C (M) is the Cayley transform of M . The Gaussian elements are then charac-
terized by their Bargmann transforms, which has the form

exp
�π

2
�Nz, z�

�
,

where N is a real symmetric matrix such that

(4.12) − 2|x�1||x�2| ≤ �Nx, x� ≤ 2|x1||x2|
for all x ∈ Rd. Recall that x1, x2, x�1, x

�
2 denote the different orthogonal projections of

x on the eigenspaces of the matrices A and A�.

Definition 4.3.1. – Call by B(q, q�) the open convex set made of the symmetric ma-

trices N satisfying (4.12), and such that I − tNN is positive.

When A and A� commute, N has a simple form. We can assume that

(4.13) q(x) = |x1|2 + |x2|2 − |x3|2 − |x4|2, q�(ξ) = |ξ1|2 − |ξ2|2 + |ξ3|2 − |ξ4|2

as above.

Proposition 4.3.2. – A matrix N belongs to B(q, q�), with (q, q�) given by (4.13), if

and only if there exists a real matrix v with d1 lines and d4 columns, a matrix w with

d2 lines and d3 columns, such that I − tvv and I −t ww are positive, and such that

N =





0 0 0 v

0 0 w 0

0 tw 0 0
tv 0 0 0




.

This follows actually from the proof of Proposition 3.1.14. We could also give a
description of B(q, q�) in the cases of Propositions 3.1.15 and 3.1.17, but we will not
use it.

The spaces G (q, q�) are linear. Hence averages of solutions are still solutions. This
enables us to give non Gaussian elements of G (q, q�).

Definition 4.3.3. – Let µ be a finite measure on O(q) ∩O(q�). Define

(4.14) Gµ(x) =

�

O(q)∩O(q�)
exp(−π|g(x)|2) dµ(g).

This belongs to G (q, q�) by Theorem 3.1.11 and Proposition 3.1.2.
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Proposition 4.3.4. – The function defined by (4.14) is a bounded continuous func-

tion. The Fourier transform of Gµ is given by Gν , where ν is the symmetric measure

of µ, defined by
�

φ(g) dν(g) =
�

φ(tg−1) dµ(g). We have Gµ ∈ G (q, q�).

We can build other elements of G (q, q�) using Proposition 3.1.2.

Theorem 4.3.5. – Let N ≥ 1, µ1, . . . , µN be finite measures on O(q) ∩ O(q�). Let

P1, . . . , PN be polynomials in x and in the partial derivatives with respect to x. Then

the tempered distribution defined by

(4.15) f =
N�

k=1

Pk(x, ∂x)Gµk

belongs to G (q, q�).

Remark 4.3.6. – Although Gµ is a continuous and well defined function, the distri-
butions defined by (4.15) are not functions in general.

When the quadratic forms we consider are not of Lorentz type, or not positive, we
have not been able to prove the converse of Theorem 4.3.5, and we state this as a
conjecture.

Conjecture 4.3.7. – Let q(x) = �Ax, x�, q�(ξ) = �A�ξ, ξ�, where A, A� are orthogo-

nal and symmetric. Any element of G (q, q�) can be written in the form (4.15).

In the next chapter we will show that this is true for the Lorentz quadratic form.
Now this can be stated in a simpler way when G (q, q�) contains only one Gaussian
element (see Theorem 3.1.18).

Conjecture 4.3.8. – Let (q, q�) be a critical pair satisfying the hypotheses of The-

orem 3.1.18. Let γ be its unique Gaussian element. Any f ∈ G (q, q�) is a Hermite

function of the form

f(x) = P (x)γ(x),

where P is a polynomial.

As mentioned earlier, we can take q(x, y) = x2− y2 and q�(ξ, η) = 2ξη on R2 as an
example. In this case, Conjecture 4.3.8 becomes:

Conjecture 4.3.9. – Le F be an entire function on C2
satisfying the estimates

|F (z)| ≤ C(1 + |z|)N exp
�
2| Re(z1)|| Re(z2)| + | Im(z)|2

�

and

|F (z)| ≤ C(1 + |z|)N exp
�
|( Im z1)

2 − ( Im z2)
2| + | Re(z)|2

�
.

Then F a polynomial.
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CHAPTER 5

LORENTZ QUADRATIC FORM

This chapter is devoted to the proof of Conjecture 4.3.7 in some cases. The main
result is the description of G (q, q�) when q is the Lorentz form defined on Rd+1 by

q(x, y) = x2
1 + · · · + x2

d − y2,

where x = (x1, . . . , xd) ∈ Rd and y ∈ R, and when q� is any quadratic form defined
by

q�(ξ, η) = ε1ξ
2
1 + · · · + εdξ

2
d + εη2,

where ξ ∈ Rd and η ∈ R and ε, εi = ±1.
We first prove Conjecture 4.3.7 when q and q� are equal to the Lorentz form. In

this case the elements of G (q, q�) have very interesting properties. We show that they
are smooth inside the Lorentz cone, while they can be singular outside. We point
out examples that vanish inside the Lorentz cone, as well as their Fourier transforms,
without vanishing identically. As a corollary we obtain the main result mentioned
above. We will complete Theorem 3.2.4 and give the exact conditions on q and q� so
that G (q, q�) = {0}, when q is the Lorentz form and q� has only diagonal terms.

5.1. The Bargmann transform of G (q, q)

Theorem 4.2.2 characterizes the Bargmann transform of the elements of G (q, q).
In this section we will describe this space, which is the space of entire functions F on
Cd+1, for which there exist C, N > 0, such that for all (z, ζ) ∈ Cd × C,

(5.1) |F (z, ζ)| ≤ C(1 + |z| + |ζ|)N exp(π| Re(z)|| Re(ζ)| + π| Im(z)|| Im(ζ)|).

Recall that in the whole chapter, the letters C and N denote constants that may vary
from line to line.

Lemma 5.1.1. – Let F be an entire function satisfying (5.1). There exists a decom-

position F =
�N

k=−N
Fk, with entire functions Fk satisfying the estimate

(5.2) |Fk(z, ζ)| ≤ C(1 + |z| + |ζ|)N exp(π| Re(ζz)|),
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and the homogeneity condition

(5.3) Fk(tz, t−1ζ) = tkFk(z, ζ), (t ∈ C∗, −N ≤ k ≤ N).

Proof. – We proceed as in the proof of Theorem 4.2.2. We showed that there exist
entire functions Fk on Cd+1 such that

B(f)(tz, t−1ζ) =
N�

k=−N

tkFk(z, ζ).

Each of the Fk satisfies (5.1).
Relations (5.3) are obtained by taking partial derivatives at t = 0. We prove now

(5.2). Because of (5.3), taking t = ζ−1,

Fk(z, ζ) = ζ−kFk(ζz, 1).

Using (5.1), we find M,C > 0 such that for all z, ζ,

|Fk(z, ζ)| ≤ C|ζ|−k(1 + |z| + |ζ|)Meπ| Re(ζz)|.

This gives (5.2) for k ≤ 0, and for |ζ| ≥ |z|−1 when k > 0. If k > 0 and |ζ||z| ≤ 1,
write

(5.4) |Fk(z, ζ)| = |z|k|Fk(|z|−1z, |z|ζ)| ≤ C|z|k

and (5.2) is proved.

Let B be the open unit ball of Rd, and B its closure. Let S�
B

be the space of
distributions on Rd supported by B.

Theorem 5.1.2. – Let F be an entire function on Cd
. Then it satisfies (5.1) for some

C and N , if and only if there exist M ≥ 0, distributions µi ∈ S�
B
, and polynomials

Pi, such that for all z ∈ Cd
and ζ ∈ C,

(5.5) F (z, ζ) =
M�

i=1

Pi(z, ζ)

�
exp(π�v, ζz�) dµi(v).

Proof. – Use the decomposition of F as in Lemma 5.1.1. Since

|Fk(z, 1)| ≤ C(1 + |z|)N exp(π| Re(z)|),

we can apply Paley-Wiener-Schwartz Theorem. Hence Fk(·, 1) is the Laplace trans-
form of a distribution νk ∈ S�

B
. It follows that

Fk(z, ζ) = ζ−k

�
exp(π�v, ζz�) dνk(v).

When k > 0, all the moments of νk of order up to k − 1 vanish, since Fk is an entire
function. It follows that for k > 0, νk can be written as

νk =
�

|α|=k

∂α

v νk,α,
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where νk,α ∈ S�
B

. Integrations by parts give then (5.5). Conversely, any entire function
defined by (5.5) satisfies (5.1) for some constants C and N .

5.1.1. Description of G (q, q). – We now describe the space G (q, q) itself.

Definition 5.1.3. – We define for k ≥ 0 the injective operator Tk(µ) from S�B into

S�(Rd) by

B(Tk(µ))(z, ζ) = ζk

�
exp(π�v, ζz�) dµ(v).

This can also be done for k < 0. Define by S�B,k
be the space of distributions on Rd

supported by B, that vanish on all polynomials of degree less that |k|.

Definition 5.1.4. – Let k < 0. Define the injective operator Tk from S�B,k
to

S�(Rd+1) by

B(Tk(µ)) = ζk

�
exp(π�v, ζz�) dµ(v).

These operators are well defined by Proposition 1.2.5. Indeed, in each case, the
expression

ζk

�
eπζvz dµ(v)

defines an element of F . Theorems 5.1.2 and 4.2.2 give actually the following.

Proposition 5.1.5. – If k ≥ 0, Tk maps S�B into G (q, q). If k < 0, it maps S�B,k
into

G (q, q).

Theorem 5.1.6. – Any element of G (q, q) can be written as a finite sum

f =
�

k

Pk(x, y, ∂x, ∂y)Gµk ,

where Pk are polynomials, and µk are finite measures on the Lorentz group O(d, 1).

The functions Gµk were defined in Definition 4.3.3. We will use the following fact
on the structure of the elements of S�B:

Lemma 5.1.7. – Every µ ∈ S�B can be decomposed as a finite sum of derivatives of

finite measures µk supported by B, that satisfy

(5.6)
�

B

|dµk(v)|
(1− |v|2)1/2

< ∞.
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Proof. – It is a standard fact that every distribution on the ball may be written as a
finite sum of partial derivatives of finite measures on the closed ball (see [24], chapter
III). Hence it is sufficient to decompose a finite measure as in the statement of the
lemma.

To do so, we choose local coordinates inside B, around a point v0. When the point
is inside the ball, the measure (1− |v|2)−1/2 dµ(v) is clearly finite in a neighborhood
of v0. So we have only to consider the case |v0| = 1. Changing coordinates, we have
to show that any finite measure dµ(t) supported by [0, 1]d is a sum of derivatives of
measures dν(t) supported by [0, 1]d such that t−1/2

1 dν(t) is finite. Write
�

φ(t) dµ(t) =

�

[0,1]d

�
φ(1/2, t�) +

� t1

1/2
∂s1φ(s1, t

�)ds1

�
dµ(t1, t

�)

=

�
φ dµ1 +

�
∂s1φ(s1, s

�) dν(s),

where the measure dµ1 is supported by the set {t1 = 1/2} ∩ [0, 1]d, and thus satisfies
the required conclusion, and the measure dν satisfies by definition

�

[0,1]d
t−1/2
1 |dν(t)| ≤

�

[0,1]d

�����

� t1

1/2
s−1/2
1 ds1

����� |dµ(t1, t
�)|

≤
�

[0,1]d
2(
√

t1 +
�

1/2)|dµ(t)| ≤ 4|µ| < ∞,

from which we conclude for the lemma.

Proof of Theorem 5.1.6. – Theorems 5.1.2 and 4.2.2 imply that any f ∈ G (q, q) can
be written as a finite sum

f =
�

k

Tk(µk),

where µk ∈ S�
B

. Hence it suffices to prove that each Tk(µ) can be put in this form,
given any µ ∈ S�

B
.

Define the Gaussian function γv, for v ∈ B, so that B(γv)(z, ζ) is proportional to
exp(π�v, ζz�). By Proposition 4.3.2, every Gaussian element of G (q, q) is equal to γv,
for some v. A simple computation shows that

(5.7) γv(x, y) = exp
�
− π(x2

1 + · · · + x2
d − y2 +

2

1− |v|2 (y − �v, x�)2)
�
,

and that
B(γv)(z, ζ) =

1

2
(1− |v|2)1/2 exp(π�v, ζz�).

For any finite measure ν on B, define

G̃µ(x, y) =

�

B
γv(x, y) dν(v).
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There exists at least one finite measure ν̃ on O(d, 1) such that G̃ν = Gν̃ . We have

B(G̃ν)(z, ζ) =
1

2

�

B
exp(π�v, ζz�)(1− |v|2)1/2 dν(v).

Let k ≥ 0 and µ ∈ S�
B

. By Lemma 5.1.7, there exists a decomposition

µ =
1

2

�

α

(−1)α∂α

v

�
(1− |v|2)1/2νk(v)

�
,

where each νk is a finite measure on B. If we use the creation and annihilation operators
of Definition 4.1.1, we have

B(Tk(µ))(z, ζ) =
1

2

�

α

π|α|ζk(ζz)α B(T0(
�

1− |v|2νk))(z, ζ)

=
�

α

π|α| B
�
ζk(ζz)α

G̃νk

�
(z, ζ),

from which it follows that

(5.8) Tk(µ) =
�

α

π|α|ζk(ζz)α
G̃νk .

This gives the result in this case.
Assume now that k < 0. Here µ ∈ S�

B,k
, hence there exists a decomposition

µ =
�

|α|=|k|

∂α

v µα,k,

with µα,k ∈ S�B. It follows that

B(Tk(µ))(z, ζ) =
�

|α|=|k|

(−πz)α B(T0(µα,k)),

and hence Tk(µ) =
�

|α|=|k|(−πz)αT0(µα,k). By the previous case, Tk(µ) has also the
required form.

5.1.2. Properties of the elements of G (q, q). – When d = 1, the description of
G (q, q) is simpler. After a rotation, we can assume that

q(x, y) = q�(x, y) = 2xy,

with (x, y) ∈ R2. Then the group SO(q) is made of the matrices of the form

gτ =

�
τ 0

0 τ−1

�
,

where τ ∈ R∗. Putting t = τ2, we have:

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2009



78 CHAPTER 5. LORENTZ QUADRATIC FORM

Theorem 5.1.8. – Let f ∈ S�(R2). Then f ∈ G (q, q) if and only if there exist N > 0,
finite measures µk on R∗+ and polynomials Pk such that

f(x, y) =
N�

k=1

Pk(x, y, ∂x, ∂y)

�

R∗
+

exp(−πtx2 − π/ty2) dµk(t).

A particular example was mentioned in the introduction. It is the function given
by f(x, y) = sgn(x) exp(−2π|xy|). We actually have

(5.9) f(x, y) =

� ∞

0
xe−πtx

2−π
t y

2

t−1/2 dt,

see Formula (5.14) below. It is not of the required form, because the measure t−1/2 dt
is not finite. But cutting the integral at t = 1, we write:

f(x, y) = x

� 1

0
e−πtx

2−π
t y

2

t−1/2 dt− 1

2π
∂x

� ∞

1
e−πtx

2−π
t y

2

t−3/2 dt.

Another example is the distribution f(x, y) = δ(x)1(y), see Theorem 3.1.26. We
can also put it in that form using integrations by parts.

We now give properties of the elements of G (q, q), when q is the Lorentz form
on Rd+1.

Theorem 5.1.9. – Let f ∈ G (q, q). Then f is a real-analytic function when y2 >
|x|2. Moreover, there exist C, M, m ≥ 0 such that for all (x, y) with y2 > |x|2,

|f(x, y)| ≤ C(1 + |x| + |y|)M
��|x|2 − y2

��−m
e−π||x|2−y

2|.

If d = 1, this is true for any (x, y) such that x2 �= y2
.

Remark 5.1.10. – Even though the conditions on the elements f of G (q, q) are given
in a distribution sense, f satisfies in the Lorentz cone a pointwise estimate analogous
to Hardy’s uncertainty principle.

Proof. – When taking formally derivatives of Gµ with respect to x and y under the
integral, a singularity at |v| = 1 appears. It is of the form (1− |v|2)−m, with m ≥ 0.
We will prove that the integral is still absolutely convergent provided |y| > |x|. Note
that we have the estimate

(5.10) (1− |v|2)−me
−2π(|x|2−y

2)− 2π(y−�v,x�)2

1−|v|2 ≤ C(1 + |y|)2m(|y| − |x|)−2m

for all v ∈ B. The real part of

|x|2 − y2 +
1

1− |v|2 (y − �v, x�)2

is non negative, whenever (x, y) is in a complex neighborhood of some point (x0, y0)
such that |y0|2 > |x0|2. We conclude with Lebesgue’s Theorem that Gµ is real analytic
for y2 > |x|2. So is f by Theorem 5.1.6.

The following is a corollary of this proof.
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Corollary 5.1.11. – Let µ ∈ S�
B
, and k ≥ 0. Then for any (x, y) such that y2 >

|x|2, we have

Tk(µ)(x, y) = 2

�
ζkγv(x, y)(1− |v|2)−1/2 dµ(v).

Here ζ is the creation operator associated to the variable y.

Proof. – Note that this makes sense since the function

ζkγv(x, y)(1− |v|2)−1/2,

extended by 0 for |v| ≥ 1, is smooth and compactly supported by B, as soon as
y2 > |x|2. We can decompose µ as a finite sum

µ =
1

2

�

α

(−1)α∂α

v

�
(1− |v|2)1/2µα(v)

�
,

where each µα is a finite measure on B. We have B(γv)(z, ζ) = 1
2 (1 − |v|2)1/2

exp(π�v, ζz�). Put fv = 1
2 (1−|v|2)1/2γv. For any α, we have also 1

2 (1−|v|2)1/2∂α
v fv =

(πζz)αγv. Indeed, the Bargmann transform of both functions coincide. It follows that

B(Tk(µ))(z, ζ) = ζk

�
exp(π�v, ζz�) dµ(v)

=
1

2
ζk

�

α

�
∂α

v

�
exp(π�v, ζz�)

�
(1− |v|2)1/2 dµα(v)

=
�

α

B(ζk(πζz)α
Gµα)(z, ζ).

Hence Tk(µ) =
�

α
ζk(πζz)α

Gµα . In the proof of Theorem 5.1.9, we showed that
we can compute the derivatives under the integral defining Gµα , provided y2 > |x|2.
Hence

Tk(µ) =
�

α

�

B
ζk(πζz)αγv dµα(v)

=
�

α

�

B
ζk

1

2
(1− |v|2)1/2∂α

v fv dµα(v)

=

�

B
ζkfv dµ(v),

as required.

Recall that Theorem 5.1.6 establishes that any f ∈ G (q, q) can be decomposed as
a finite sum

f =
�

k

Tk(µk),

where µk ∈ S�
B

for k ≥ 0, and µk ∈ S�
B,k

when k < 0. The following lemma, that we
will use later, proves that this decomposition is unique.
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Lemma 5.1.12. – Write

f =
N�

k=−N

Tk(µk).

For any k, Tk+N (µk) can be expressed as a polynomial in the annihilation and creation

operators, applied to f .

Proof. – Using Proposition 4.1.2, we obtain

ζNf =
N�

k=−N

Tk+N (µk) =
2N�

k=0

Tk(µk−N ).

Taking the Bargmann Transforms, we find that for any a > 0,

B(ζNf)(a−1z, aζ) =
2N�

k=0

akζk

�
eπ�v,ζz� dµk−N (v).

We conclude by taking derivatives at a = 1, and induction on k.

5.2. Vanishing elements of G (q, q)

In this section, q is still the Lorentz form on Rd+1. We want to show that the
elements of G (q, q) cannot vanish on large sets. Let C be the light cone, defined by
C = {q = 0}. The Lorentz cone is {(x, y); y2 > |x|2}.

By Theorem 5.1.9, all distributions vanishing in an open subset of the Lorentz cone
vanishes in one connected component of it. We will first exhibit non trivial elements
of G (q, q) that vanish for y2 > |x|2, and characterize them.

5.2.1. Examples of vanishing solutions. – For θ in the unit sphere Sd−1 of Rd,
let

Eθ(x, y) =
√

2e−π(|x|2−y
2)δy=�x,θ�.

It is a measure defined by �Eθ, φ� =
√

2
�

Rd e−π|x−�x,θ�θ|2φ(x, �x, θ�)dx. The support
of Eθ is exactly the hyperplane Hθ of equation y = �x, θ�, which is tangent to the
light cone C, and contained in the complementary of the Lorentz cone. When d = 1,
its support is the line y = θx, θ ∈ {±1}, which is on the light cone. Also �Eθ = E−θ.
In fact Eθ can be seen as the weak limit as r → 1 of frθ defined in the proof of
Corollary 5.1.11. Hence its Bargmann Transform is

(5.11) B(Eθ)(z, ζ) = eπ�θ,ζz�.

From this expression we see that Eθ = T0(δθ), so it is a particular element of G (q, q),
vanishing on the Lorentz cone, as well as its Fourier transform.
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The aim of this section is to prove that every element of G (q, q) vanishing in one
connected component the Lorentz cone arises as a (continuous) linear combination of
the Eθ:

(5.12)
k0�

k=1

Pk(x, y, ∂x, ∂y)Emk

where Pk are polynomials, mk distributions on Sd−1. Here, if m is a distribution on
Sd−1, Em is defined by

�Em, φ� =

�

Sd−1

�

Rd

φ(x, �x, θ�)e−π|x|2+π�x,θ�2 dx dm(θ),

which will be formally denoted by

Em =

�

Sd−1

Eθ(x, y) dm(θ).

In particular, if a solution vanishes in one component of C+, it vanishes in the whole
cone C+, as well as its Fourier Transform. The idea of the proof is to show that any
µk arising in the decomposition

f =
�

k

Tk(µk)

is supported by the unit sphere Sd−1 instead of B.

5.2.2. Characterization of vanishing solutions. – We define for |v| < 1 the
function φv(x, y):

φv(x, y) = e
−2π

(y−�v,x�)2

1−|v|2 (1− |v|2)−1/2.

Note that v → φv(x, y), extended by 0 when |v| ≥ 1, is a smooth function with
support equal to B, as long as |y| > |x|, since then (y − �v, x�)2 ≥ (|y| − |x|)2.

We first begin with a proposition of independent interest.

Proposition 5.2.1. – Let µ ∈ S�B, and k ≥ 0. Assume that

(5.13) Tk(µ)(x, y) = 0

for any y > |x|. Then the distribution µ is supported by the unit sphere Sd−1.

Proof. – First consider the case k = 0. By assumption,
�

(1− |v|2)−1/2e
− 2π(y−�v,x�)2

1−|v|2 dµ(v) = 0

for all y > |x| (see Lemma 5.1.11). We want first to replace the integrated term

e
− 2π(y−�v,x�)2

1−|v|2 by the more suitable e
− (y−�v,x�)

(1−|v|2)1/2 . We will use a classical formula, which
is linked to the principle of subordination ([26], p46):

(5.14) e−|β| =
1√
π

� ∞

0
e−ue−

β2

4u u−1/2 du.
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We will show that

(5.15)
�

e
− y−�v,x�√

1−|v|2 (1− |v|2)−1/2 dµ(v) = 0

for all y > |x|, which makes sense since we test the distribution µ on a smooth function
in v, as long as y > |x|.

Put β(x, y, v) = y−�v,x�√
1−|v|2

. We remark that the double integral
��

(1− |v|2)−N
e−u

√
u

e−
β(x,y,v)2

4u du dν(v)

is absolutely convergent whenever N ≥ 0, y > |x|, and for any finite measure dν.
Hence a direct use of Fubini’s Theorem yields (5.15) when µ is a measure. Otherwise
we write µ as a finite sum of derivatives of finite measures supported by B (see [24],
chapter III), integrate by parts, and exchange derivatives and integration in v, and
still obtain (5.15).

Now we take derivatives with respect to x in (5.15), and let x = 0. For any poly-
nomial P on Rd,

(5.16)
�

P

�
v

(1− |v|2)1/2

�
e−y(1−|v|2)−1/2

(1− |v|2)−1/2 dµ(v) = 0.

To conclude it is sufficient to show that (1 − |v|2)Nd µ(v) = 0, for N big enough,
depending on the order of the distribution µ. By density of the polynomials, it is
sufficient to show that

(5.17)
�

Q(v)(1− |v|2)N dµ(v) = 0

for any homogeneous polynomial Q and N big enough, but fixed. We want to deduce
(5.17) from (5.16), with P defined by

P

�
v�

1− |v|2

�
=

Q(v)

(1− |v|2)k/2
,

and k = deg(Q). We use the fact that

(5.18)
� ∞

0
e−y(1−|v|2)−1/2

y2N+kdy = C(1− |v|2)N+(k+1)/2.

We remark that the double integral
��

|Q(v)|
�

1− |v|2
−N0−k−1

e−y(1−|v|2)−1/2

y2N+k dy dν(v)

is absolutely convergent for any N, N0 such that N ≥ N0, and any finite measure ν.
Hence, when µ is a finite measure, the exchange of integrations in y and v is a

consequence of Fubini’s Theorem, taking N = 1 for example, and we get (5.17). For
a general distribution, we write µ as a sum of derivatives of order up to N0 of finite
measures dν of S�B. We conclude that (1 − |v|2)N dµ(v) = 0, for any N ≥ N0, which
proves that dµ is supported by Sd−1.
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Consider now the case k > 0. By Proposition 4.1.2, we have

B(T0(∂
k

v1
µ)) = (−πζz1)

k

�
eπζvz dµ(v)

= (−πz1)
k B(Tk(µ))(z, ζ)

= B
�
(−πz1)

kTk(µ)
�
(z, ζ).

Since Tk(µ)(x, y) = 0 for y > |x|, the same is true for (−πz1)kTk(µ). Hence
T0(∂k

v1
µ))(x, y) = 0 for y > |x|. By the previous case, ∂k

v1
µ = 0 in B. This is actually

true for any derivative in v of order k, and we conclude that µ is given by a polynomial
inside the ball.

We are thus lead to prove that if dµ(v) = P (v) dv, where P is a polynomial, and
if Tk(µ) vanishes for y > |x|, then P = 0. But if this is the case, we have, using
Lemma 5.1.11, and Formula (4.5), for all y > |x|,

�
(1− |v|2)−1/2∂k

y

�
e
−2π

2π(y−�v,x�)2

1−|v|2

�
P (v) dv = 0.

We conclude as before, using Relation (5.14), that
�

(1− |v|2)−(k+1)/2e
− y−�v,x�√

1−|v|2 P (v) dv = 0.

Then we take derivatives in x, let x = 0, use (5.18), and find finally that (5.17) holds
for dµ(v) = P (v) dv. Hence P = 0.

Theorem 5.2.2. – Suppose that f ∈ G (q, q) vanishes on an open subset of the

Lorentz cone. Then it is can be written as (5.12).

Proof. – By real analyticity of the solutions (see Theorem 5.1.9), f vanishes is a
connected component of C+, for example in the set {y > |x|}. We know that f can
be put in the form

f =
k0�

k=−k0

Tk(µk).

We want to show that every µk is a distribution supported by the unit sphere Sd−1.
By Lemma 5.1.12, there exist polynomials Pk such that

Tk+k0(µk) = Pk(z, z∗, ζ, ζ∗)f.

Hence Tk+k0(µk) vanishes on the cone, and by Proposition 5.2.1, we obtain that µk

is supported by Sd−1. The structure of distributions supported by Sd−1 is known
(see [24], chapter III). It follows that B(f) has the form

B(f)(z, ζ) =
�

α,k

zαζk

�

Sd−1

eπζzθ dmα,k(θ)
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where each mα,k is a distribution defined on the sphere. But this is the Bargmann
Transform of

(5.19)
�

α,k

z
αζkEmα,k ,

hence f is equal to (5.19).

5.2.3. Weak uncertainty principles for Lorentz form. – Let us consider more
precisely the case d = 1. The unit sphere is reduced to {−1, 1}. All the distributions
of the form Em are in this case combinations of δy=x and δy=−x. We do a rotation
in the variables so that we consider the form 2xy instead of y2 − x2. The following is
true.

Theorem 5.2.3. – Let f ∈ G (q, q). If f vanishes on an open set, then it is a finite

linear combination of the distributions

xk ⊗ δ(l)(y), δ(k)(x)⊗ yl.

Proof. – It is easy to see that these distributions are those of type (5.12). We can
assume, since the four quadrants are equivalent, that f vanishes in a subset of {x >
0, y > 0}. We conclude using Theorem 5.2.2.

Theorem 5.2.2 is rather restrictive. Nevertheless a lot of solutions can be put in the
form (5.12). Some solutions are even locally integrable functions. For example take
σ equal to the surface measure on the unit sphere when d > 1. Up to a constant we
have

(5.20) Eσ(x, y) =

�

Sd−1

e−π(|x|2−y
2)δy=�x,θ� dσ(θ).

As an average of measures, it is a measure. It is actually locally integrable since an
easy computation shows that

(5.21) Eσ(x, y) = C(d)
1

|x|

�
1− y2

|x|2

� d−3
2

e−π(|x|2−y
2)χ−|x|<y<|x|.

It has the following properties, due to (5.20) and (5.21):

Proposition 5.2.4. – The function Eσ defined by (5.21) is a slowly increasing func-

tion on Rd+1
, and is in particular locally integrable. It is its own Fourier Transform,

and vanishes exactly when y2 > |x|2. Moreover, when d ≥ 3, Eσ is in Lp(Rd+1) for p
in the range

d−1
d−2 < p < d + 1. In particular, when d ≥ 4, Eσ ∈ L2(Rd+1).

It is not obvious at first glance that �Eσ = Eσ if we look at the formula (5.21). To
prove it one has to use (5.20) and the fact that �Eθ = E−θ.

Before giving weak uncertainty principles associated to the Lorentz Form, we begin
by a lemma which will be useful.
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Lemma 5.2.5. – Let m be a distribution on the sphere such that

�

Sd−1

ψ(�θ�, θ�) dm(θ) = 0

for all smooth ψ supported by a subinterval J ⊂ ]0, 1[ and θ� ∈ Sd−1. Then m = 0.

Proof. – We first prove the lemma when d = 2. Using polar coordinates in the complex
plane, the hypothesis is rewritten as

�

T
ψ(cos(θ − θ�)) dm(θ) = 0

for all smooth ψ supported in J . Here m is a distribution on the torus T. Using the
function cos−1 and changing variables, we can as well assume that

�

T
[ψ(θ − θ�) + ψ(θ� − θ)] dm(θ) = 0

for any smooth function ψ supported by a fixed subinterval J̃ of ]0, π/2[. Take for ψ
an approximate identity converging to the Dirac mass at a ∈ J̃ . The first term tends
to the translate of m by −a, and the second one to the translate by a. The Fourier
coefficients of the sum, that is cos(ak)�m(k) vanish for a in a small interval. Hence
�m(k) = 0 for all k. We conclude that m = 0.

The general case is done in the same way, using the harmonic analysis on the
sphere. The operator Lψ defined by

Lψ(m)(θ�) =

�

Sd−1

ψ(�θ�, θ�) dm(θ)

maps distributions defined on Sd−1 (and hence polynomials) into the space of contin-
uous functions. Moreover it commutes with the action of the orthogonal group SO(d)
on Sd−1. In fact it is a generalized convolution operator on Sd−1. It follows (see [9],
Chapter II.4) that if a distribution m(θ) is decomposed as

m =
�

k

mk

where mk is a harmonic polynomial of order k, and the sum converges in the distri-
bution sense, then

Lψ(m) =
�

ck(ψ)mk,

where the coefficients ck(ψ) are the Fourier coefficients of the operator Lψ. Since
Lψ(m) = 0 it follows that

ck(ψ)mk = 0

for any k and ψ supported in J . So it suffices to prove that for any k, there exists ψ
such that ck(ψ) �= 0.
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The coefficient ck(ψ) is given by the scalar product of the zonal function ψ(�θ, ed�)
with the zonal polynomial of order k, Zk(�θ, ed�), where ed = (0, . . . , 0, 1). The zonal
polynomial is given up to a constant by the Gegenbauer polynomial

Zk(t) = (1− t2)−(d−3)/2∂k

t (1− t2)(d−3+2k)/2.

It follows that

ck(ψ) =

� 1

−1
ψ(t)Zk(t)(1− t2)(d−3)/2 dt.

Since Zk does not vanish, there exists a smooth ψ supported in J such that Ck(ψ) �= 0.

We now give sufficient conditions so that the elements of G (q, q) vanish everywhere.
Let us insist on the fact that the next theorem is not true for d = 1.

Theorem 5.2.6. – Let d > 1. Let f ∈ G (q, q). Suppose that f vanishes on an open

subset of the Lorentz cone, and on an open subset of the complementary invariant by

rotations in the x variable. Then f = 0.

Proof. – By assumption f vanishes in a connected component of the cone. The dis-
tribution f may be written as

f =
k0�

k=−k0

Tk(µk)

and we can express each Tk+k0(µk) as a polynomial in the creation and annihilation
operators applied to f by Lemma 5.1.12. Hence Tk+k0(µk) vanishes on the same
set, and it suffices to consider the case f = Tk(µ), where k ≥ 0 and µ ∈ S�B. We
want to show that µ = 0. As in the proof of Proposition 5.2.1, it suffices to consider
the case k = 0. By Proposition 5.2.1, µ is supported by Sd−1. Write

B(T0(µ))(z, ζ) =

�
eπζvz dµ(v).

The distribution µ is a finite sum of radial derivatives at r = 1 of extensions to a
neighborhood of Sd−1 of distributions defined on Sd−1 (see [24], chapter III). Hence

B(T0(µ))(z, ζ) =
L�

l=0

�
πl(ζ�θ, z�)leπ�v,ζz� dml(θ)

=
L�

l=0

ζl∂l

ζ B(Eml)(z, ζ),

where each distribution ml is defined on Sd−1. Then

T0(µ) =
L�

l=0

ζlζ∗lEml .

We will prove that mL = 0 and conclude by induction.
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What we know is that f vanishes on an open set of the form Ω = {(x, y); |x| ∈
I , y/|x| ∈ J}, where I is a subinterval of ]0,∞[ and J a subinterval of ]−1, 1[.
We can assume that J does not contain 0. It follows that �T0(µ), φ� = 0 whenever
φ ∈ S�(Rd+1) is supported in Ω.

We take φ of the form φ1(|x|)φ2(x/|x|)ψ(y/|x|) where φ1 is smooth and supported
on I and ψ is smooth supported on J , and φ2 is a smooth function defined on Sd−1.
If we denote by ψ|x| the function ψ|x|(y) = ψ(y/|x|), we have

0 =
L�

l=0

�

Sd−1

�

Rd

φ1(|x|)φ2(x/|x|)e−π|x|2+π(�x,θ�)2ζlζ∗lψ|x|(�x, θ�) dx dml(θ).

Remark that

ζlζ∗lψ|x|(y) =
2L�

k=−2L

|x|kψk(y/|x|)

with smooth ψk supported in J , and ψ2L(y) = y2Lψ(y). So if we take φ1 such that

(5.22)
� ∞

0
rd−1+kφ1(r)e

−πr
2

dr = 0

for any k = −2L, . . . , 2L− 1, and

(5.23)
�

Rd

rd−1+2Lφ1(r)e
−πr

2

dr = 1,

we see that the only remaining term is

0 =

�

Sd−1

�

Rd

φ1(|x|)φ2(x/|x|)e−π|x|2+π(�x,θ�)2(�x, θ�)2Lψ(�x/|x|, θ�) dx dmL(θ)

=

�

Sd−1

� ∞

0

�

Sd−1

φ1(r)φ2(θ
�)r2L+d−1�θ�, θ�2L

ψ(�θ�, θ�) dr dσ(θ�) dmL(θ)

=

�

Sd−1

�

Sd−1

φ2(θ
�)�θ�, θ�2L

ψ(�θ�, θ�) dσ(θ�) dmL(θ).

Replace ψ(t) by t−2Lψ(t) (recall that ψ is supported away from 0). Since φ2 is arbi-
trary, we get �

Sd−1

ψ(�θ�, θ�) dmL(θ) = 0

for all θ� ∈ Sd−1 and ψ supported in J . Note that the last quantity is a smooth
function of θ�. To conclude that mL = 0 we use Lemma 5.2.5.

Remark 5.2.7. – The rotation invariance of the set is fundamental. If we use (5.12)
with measures mk supported on small caps of the sphere, then the corresponding
solution vanish on an open subset of the complementary of the cone.

Corollary 5.2.8. – Let d ≥ 1. Assume that an element f of G (q, q) vanishes on

{y > a|x|} with 0 < a < 1. Then f = 0.
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Corollary 5.2.9. – Let d > 1. If a distribution f is supported in the set {||x|2 −
y2| < A}, and �f is supported in {||ξ|2 − η2| < B}, for two constants A and B, then

f = 0. Hence these two sets form an annihilating pair for distributions. In particular,

unlike the case d = 1, there is no distribution f such that both f and �f are supported

by the light cone.

This is an interesting complement of Theorem 3.1.23. Note that the pair (q, q) is
not annihilating in the sense of Definition 3.1.20.

5.3. The supercritical case with Lorentz form

We give here a complement to Theorem 3.2.4 in the case of a Lorentz quadratic
form. Let q be the Lorentz form, and

(5.24) q�(x, y) = a1x
2
1 + · · · + adx

2
d − by2,

where ai, b ∈ R \ {0}. We can assume that b > 0, changing q to −q if necessary. Let
a = maxi |ai|. Then according to Theorem 3.2.4, the space of tempered distributions
f such that

(5.25) f(·) exp(±πq) ∈ S�(Rd+1), �f(·) exp(±πq�) ∈ S�(Rd+1)

is reduced to zero whenever max(a, b) > 1, a �= b and ai > 0 for all i. We will complete
Theorem 3.2.4 and characterize the pairs for which this is the case.

Theorem 5.3.1. – Let q be the Lorentz quadratic form on Rd+1
, and define q� by

(5.24). Let I+ = {i; ai = a}, I− = {i; ai = −a} and J = {j; |aj | < a}. Then the space

G (q, q�) of distributions satisfying (5.25) is reduced to zero if and only if one of the

four following conditions is satisfied:

1. max(a, b) > 1 and a �= b,
2. a = b > 1 and I− �= ∅
3. a = b > 1, I− = ∅ and card(I+) > 1,
4. a = b > 1, I− = ∅, card(I+) = 1, and maxj∈J |aj | > 1.

As mentioned in the remark following Theorem 3.2.4, the key point to establish
such a result is the description of the solutions in the critical case (ai = b = 1), which
is done in Theorem 5.1.6. A particular case of Theorem 5.3.1 is when ai = a = b > 1:

Theorem 5.3.2. – Let q(x, y) = |x|2−y2
, x ∈ Rd

, y ∈ R, and q�(x, y) = a(|x|2−y2),
with a > 1. If d ≥ 2, then G (q, q�) = {0}. If d = 1, then G (q, q�) is made of the

distributions f of the form

f(x, y) =
�

k

Pk(x)δ(k)(x− y) +
�

k

Qk(x)δ(k)(x + y),

where Pk, Qk are polynomials, and δ is the Dirac measure.

We also mention here without proof an immediate corollary of Theorem 4.2.4:
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Theorem 5.3.3. – Let n1 ≥ 1, n2, n3 ≥ 0, such that n = n1 + n2 + n3. For x =
(x1, x2, x3) ∈ Rn1+n2+n3 , and a > 1, put q(x) = |x1|2 + |x2|2 − |x3|2 and q�(ξ) =
a(−|ξ1|2 + |ξ2|2 − |ξ3|2). Then G (q, q�) = {0}.

Proof of Theorem 5.3.1 assuming Theorem 5.3.2. – Assume that case (1) is satisfied.
When b > a, we use Theorem (3.2.4). When a > b, the ai such that |ai| = a may
have different signs. We can give a direct proof in that case. Arguing as is the proof
of Theorem (3.2.4), we can eliminate the variables y and xj , for j ∈ J . We are lead to
the case q = x2

1 + · · ·+x2
d

and q� = a1x2
1 + · · ·+adx2

d
, with |ai| = a > 1. Theorem 1.3.5

allows to conclude. In cases (2) and (3), we reduce as well to the case where J = ∅.
We conclude with Theorem 5.3.3 in case (2) and Theorem 5.3.2 in case (3).

We consider now case (4). Let f ∈ G (q, q�). We have for example I+ = {1}. Here
J �= ∅. Choose λ such that a > λ > max{|aj |; j = 2, . . . , d} > 1 and put q�� = λ−1q.
Let t such that λ−1 max{|aj |; j = 2, . . . , d} < t < 1. For any polynomial P in the
variables xj , j = 2, . . . , d, consider the tempered distribution TP on R2 defined by

�TP , φ� =
�
f, φ(x1, y)⊗ P exp(−πt−1| · |2)

�
.

Since f ∈ G (q, q��), we have TP ∈ G (x2
1 − y2, a/λ(x2

1 − y2)). Theorem 5.3.2 gives
in particular that there exists n depending only on the order of f such that (x2

1 −
y2)nTP (x1, y) = 0. Take

φ(x, y) = (x2
1 − y2)nQ(x1, y) exp(−πt−1(x2

1 + y2)),

where Q is a polynomial, and use Lemma 1.2.2 to conclude that (x2
1 − y2)nf = 0.

Hence
f(x, y) exp(π

�

j∈J

x2
j ) ∈ S�(Rd+1).

For the same reason,
�f(ξ, η) exp(±π(a2ξ

2
2 + · · · + adξ

2
d)) ∈ S�(Rd+1).

Theorem 1.3.5 gives f = 0, since max{|aj |, j = 2, . . . , d} > 1.
In the remaining cases, there is always a non zero element in G (q, q�). Indeed, when

max(a, b) ≤ 1, the standard Gaussian function is a solution. And if a = b > 1, I− = ∅,
I+ = {1}, and maxj∈J aj ≤ 1, we can take f equal to

δ(x1 − y)⊗ γ(x2, . . . , xd),

where γ is the standard Gaussian function.

We prove now Theorem 5.3.2.

Proof. – We first consider the case d ≥ 2. Let f ∈ G (q, q�). We will use the fact that
for any 1 ≤ α ≤ a, f( ·√

α
) ∈ G (q, q). The distribution f itself belongs to G (q, q).

Theorems 5.1.2 and 4.2.2 imply that f can be uniquely written as a finite sum

f =
�

k

Tk(µk),
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where µk ∈ S�
B

. We will prove by induction on k that µk = 0. By Lemma 5.1.12, and
the formula

(−π)k
z

k

1Tk(µ) = T0(∂
k

1µ).

we only have to consider the case f = T0(µ).
Redefine the Gaussian function γε, for ε > 0, by

γε(x, y) = ε−d/2 exp(−π

ε
(x2

1 + · · · + x2
d + y2)).

We have f � γ1 � γε = f � γ1+ε, or equivalently
�

B(f)(x, y) exp
�
− π

2
(|x|2 + y2)− π

ε
((x− z)2 + (y − ζ)2)

�
dx dy

= B(fε)((1 + ε)−1/2(z, ζ)) exp(−π(z2 + ζ2)

2(1 + ε)
),

where fε(·) = ε−d/2f(
√

1 + ε·). By assumption on f , fε ∈ G (q, q) for ε small enough.
For |v| < 1, call φv,ε(z, ζ) the expression

�
exp(π�v, xy�) exp

�
− π

2
(x2 + y2)− π

ε
((x− z)2 + (y − ζ)2) +

π(z2 + ζ2)

2(1 + ε)

�
dx dy,

so that
B(fε)((1 + ε)−1/2(z, ζ)) =

�
φv,ε(z, ζ) dµ(v).

An straightforward computation shows that

φv,ε(0, ζ) =
C(ε)�

2 + ε(1− |v|2)
exp(

π

2
τ(v, ε)ζ2)

with τ(v, ε) ≈ ε 1−|v|2
4 as ε → 0. Theorem 5.1.2 implies that B(fε)(0, ζ) is a polyno-

mial. Take derivatives with respect to ζ, and the limit at ε = 0. We get
�

(1− |v|2)n dµ(v) = 0

for n large enough. Hence µ is supported by Sd−1.
In the same way, we have

φv,ε(z, 0) =
C(ε)

κ(v, ε)
exp(−π�M(v, ε)z, z�),

with κ(v, ε) ≈ 1 as ε → 0. Here M(v, ε) is a real matrix such that

�M(v, ε)z, z� ≈ ε(z2 − �v, z�2)
4

as ε → 0. Since B(fε)(z, 0) is a polynomial in z, we see that
�

(z2 − �v, z�2)n dµ(v) = 0
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for n large enough. This is also true for a partial derivative of µ, since T0(∂1v)(µ) can
be expressed as a polynomial in the creation and annihilation operators applied to
T0(µ). Hence �

(z2 − �v, z�2)nP (�v, z�) dµ(v) = 0

for any polynomial P , and n large enough. It follows that

(5.26)
�

(z2 − �v, z�2)n exp(π�v, ζz�) dµ(v) = 0

for large n, ζ ∈ C and z ∈ Cd.
We prove now that (5.26) implies that µ = 0. The distribution µ may be written

as a finite sum

µ =
N�

k=0

∂k

r mk

of radial derivatives of distributions mk on the unit sphere Sd−1. Relation (5.26) may
be rewritten as

0 =
�
z2 +

1

4π2
∂2

ζ

�n

N�

k=0

(−1)kζk∂k

ζ

�

Sd−1

exp(2iπ�θ, zζ�) dmk(θ).

Take real z, ζ, and take a Fourier transform with respect to ζ. We find

0 = (x2
1 + · · · + x2

d − y2)n

N�

k=0

(−1)k∂k

y yk

�

Sd−1

δy=�x,θ� dmk(θ).

Hence the distribution

g(x, y) = exp(−π(|x|2 − y2))
N�

k=0

(−1)k∂k

y yk

�

Sd−1

δy=�x,θ� dmk(θ)

vanishes for |x|2−y2 �= 0. Since it belongs to G (q, q) by (5.12), Theorem 5.2.6 implies
that g = 0, and hence µ = 0. This conclude the proof when d ≥ 2.

When d = 1, the previous argument may be adapted, but one has to be more
careful in the reduction of the problem, since non zero distributions µ are allowed.
We give a simpler proof. We can assume that the two quadratic forms are given by

q(x, y) = 2xy, q�(ξ, η) = 2aξη,

with a > 1. Then any element of G (q, q) can be decomposed as in Theorem 5.1.8. Let
f ∈ G (q, q�). We will use the fact that fa(x, y) = f(x, ya−1) belongs to G (q, q). Let g
be the Fourier transform of f with respect to the variable y. Theorem 5.1.8 implies
that g(x, y), for (x, y) �= 0, can be decomposed as

g(x, y) =
�

k,l

xkylgk,l(x
2 + y2),
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where the sum is finite, and gk,l are real analytic functions on R+
∗ . Since fa ∈ G (q, q),

we also have
g(x, y) =

�

k,l

xkylhk,l(x
2 + y2/a2),

where the sum is finite, and hk,l are real analytic functions on R+
∗ . These two expres-

sions cannot occur simultaneously, unless g is given by a polynomial for (x, y) �= 0.
It follows that g is a sum of a polynomial, and a distribution supported by the origin
(which is a sum of derivatives of Dirac measures). The result follows.

5.4. Description of other spaces G (q, q�)

Theorem 5.4.1. – Let q be the Lorentz form on Rd
, and q� given by

q�(ξ) =
d�

i=1

ε�iξ
2
i ,

with ε�
i
∈ {−1,+1}. Then any element of f of G (q, q�) can be written as

f(x) =
N�

k=1

Pk(x, ∂x)

�

O(q)∩O(q�)
exp(−π|g(x)|2) dµk(g),

where Pk are polynomials and µk are finite measures on the group O(q) ∩O(q�).

Proof. – We may write, changing the sign of q� if necessary,

q(x) = |x1|2 + |x2|2 − |x3|2, q�(ξ) = |ξ1|2 − |ξ2|2 + |ξ3|2,

with xi, ξi ∈ Rdi , d3 = 1, and d1 + d2 + d3 = d. We apply Theorem 4.2.4, and then
Theorem 5.1.6 to the form |x2|2−|x3|2. It gives the required form for f , once we have
noticed that any matrix of the form

�
I 0

0 g0

�
,

with g0 ∈ O(d2, 1), belongs to O(q) ∩O(q�).

We now give two generalizations of Theorem 5.1.8. The proofs are very similar to
the one of Theorem 5.1.6, and we will skip them.

We will first describe the space of distributions f on R2d such that

(5.27) f(x, y) exp(π
�

i

εixiyi) ∈ S�(R2d), �f(ξ, η) exp(π
�

i

ε�ixiyi) ∈ S�(R2d),

for all choices of εi, ε�i ∈ {−1,+1}. Particular examples are the distributions f such
that,

f(x, y) = O
�
exp(−2π

�
|xiyi|)

�
,

�f(ξ, η) = O
�
exp(−2π

�
|ξiηi|)

�
.
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In view of Theorem 5.1.8, every function of the form

Hµ(x, y) =

�

(R∗
+)d

exp(−π
�

i

[tix
2
i + y2

i /ti]) dµ(t1, . . . , td)

is a solution, when µ is a finite measure on (R∗+)d.

Theorem 5.4.2. – Let f ∈ S�(R2d). Then f satisfies (5.27) if and only if there exist

polynomials Pk, k = 1, . . . , N , finite measures µk on (R∗+)d
, such that

f(x, y) =
�

k

Pk(x, y, ∂x, ∂y)Hµk(x, y).

Sketch of the proof. – Let F be the Bargmann transform of f , and

G(z, ζ) = F

�
z + ζ√

2
,
z − ζ√

2

�
.

We can show as in the proof of Theorem 5.1.6 that

|G(z, ζ)| ≤ C(1 + |z| + |ζ|)N exp(π
�

i

| Re(zi)|| Re(ζi)| + | Im(zi)|| Im(ζi)|.)

We conclude with Paley-Wiener-Schwartz’s Theorem.

We can as well prove the following generalization of Theorem 5.1.8. Let χ be a
smooth function, equal to 0 in a neighborhood of the origin, and to 1 in the comple-
ment of some compact set. We consider the distributions f ∈ S�(Rd) such that

(5.28)

�
χ(|x||y|)f(x, y) exp(2π|x||y|) ∈ S�(Rd),

χ(|ξ||η|) �f(ξ, η) exp(2π|ξ||η|) ∈ S�(Rd).

Again, we use a cutoff function because the norm is not smooth at the origin. Examples
are distributions satisfying

f(x, y) = O
�
exp(−2π|x||y|)

�
,

�f(ξ, η) = O
�
exp(−2π|ξ||η|)

�
.

It is not necessary for x and y to have the same number of components. We choose
(x, y) ∈ Rd, with x ∈ Rk and y ∈ Rl, k + l = d.

Theorem 5.4.3. – Let f ∈ S�(Rd). Then f satisfies (5.28) if and only if there exist

polynomials Pk, finite measures µk on R∗+, such that for all x, y,

f(x, y) =
�

k

Pk(x, y, ∂x, ∂y)

�

R∗
+

exp(−πt|x|2 − π|y|2/t) dµk(t).

Sketch of the proof. – Let F be the Bargmann transform of f . Then it can be shown,
as when d = 1, that there exist C, N > 0 such that for all z, ζ,

|F (z, ζ)| ≤ C(1 + |z| + |ζ|)N exp(π| Re(z2 − ζ2)|).
This is done as in the proof of Lemma 5.1.1. We conclude with Paley-Wiener-
Schwartz’s Theorem.
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