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ENTROPY OF MEROMORPHIC MAPS AND
DYNAMICS OF BIRATIONAL MAPS

Henry De Thélin, Gabriel Vigny

Abstract. – We study the dynamics of meromorphic maps for a compact Kähler mani-
fold X. More precisely, we give a simple criterion that allows us to produce a measure
of maximal entropy. We can apply this result to bound the Lyapunov exponents.

Then, we study the particular case of a family of generic birational maps of Pk for
which we construct the Green currents and the equilibrium measure. We use for that
the theory of super-potentials. We show that the measure is mixing and gives no mass
to pluripolar sets. Using the criterion we get that the measure is of maximal entropy.
It implies finally that the measure is hyperbolic.

Résumé (Entropie des applications méromorphes et dynamique des applications bira-
tionnelles)

On étudie la dynamique des applications méromorphes sur les variétés kählériennes
compactes. Plus précisément, on donne un critère simple qui permet de produire des
mesures d’entropie maximale. On peut appliquer ce résultat pour borner les exposants
de Lyapounov.

Ensuite, on étudie le cas particulier d’une famille générique d’applications bira-
tionnelles de Pk pour laquelle on construit les courants de Green et la mesure d’équili-
bre. On utilise pour cela la théorie des super-potentiels. On montre que la mesure est
mélangeante et qu’elle n’a pas de masse sur les ensembles pluripolaires. En utilisant
le critère on obtient que la mesure est d’entropie maximale. Cela implique finalement
que la mesure est hyperbolique.

© Mémoires de la Société Mathématique de France 122, SMF 2010
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CHAPTER 1

INTRODUCTION

Let X be a complex compact Kähler manifold of complex dimension k endowed
with a Kähler form ω. We consider f : X → X a dominant meromorphic map and
we denote by I its indeterminacy set. We want to study the dynamics of f in other
words the behavior of the sequence of iterates (fn). We are particularly interested in
the study of the ergodic properties of f .

Such study often starts with computing the topological entropy which gives an
insight into how complicated the dynamics is. Classical objects in that case are ergodic
measures of maximal entropy. Indeed, the support of such measure µ is an invariant
set where the complexity of the dynamics is maximal. On this support, the dynamics
is well understood in a statistical sense by Birkhoff’s ergodic theorem as almost every
orbit is equidistributed for the measure µ. One can then study finer properties of the
measure: mixing, speed of mixing, dimension of the measure . . .

In order to understand more precisely the dynamics near a point x in the support
of the measure, one classicaly tries to compute the Lyapunov exponents. Roughly
speaking, if no Lyapunov exponent is zero, these are numbers which give a rate of
contraction and a rate of expansion in some stable and unstable manifolds. In other
words, on the stable manifold the orbit of a point tends to the orbit of x at a speed
given by some negative Lyapunov exponent and on the unstable manifold the back-
ward orbit of a point tends to the backward orbit of x at a speed given by some positive
Lyapunov exponent. When no Lyapunov exponent is zero, the measure is said to be
hyperbolic. Finding examples of hyperbolic measures is a central question in dynamics
and complex dynamics provides usually many of those (see [45] for definitions and
results on hyperbolic measures).

In the particular case of complex dynamics, the topological entropy is related to
the dynamical degrees. For l = 0 . . . k, we write:

λl(f) :=

�

X
f∗(ωl) ∧ ωk−l.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2010



2 CHAPTER 1. INTRODUCTION

The l-th dynamical degree of f is defined by (see [48] and [22]):

dl := lim
n→+∞

(λl(f
n))1/n.

The degree dl measures the asymptotic spectral radius of the action of f∗ on the
cohomology group H l,l(X). The last degree dk is the topological degree. It can be
shown that the sequence of degrees is increasing up to a rank s and then it is decreasing
(see [40]). These quantities are of algebraic nature and there is a bound from above
of the topological entropy by max0≤s≤k log ds (see [41] for the holomorphic case and
[25], [22] for the meromorphic case).

When one of the dynamical degree is strictly higher than the others, f is called
cohomologically hyperbolic. In that case, it is expected that there exists a measure
of maximal entropy max0≤s≤k log ds (see [43]). Such measure is expected to be
hyperbolic (and the saddle points are expected to be equidistributed along the
measure). Recall the first author’s result on Lyapunov exponents (Corollary 3 in
[11]) when f is cohomologically hyperbolic: if one can find a measure µ of entropy
max0≤s≤k log ds, then it is hyperbolic with estimates on the Lyapunov exponents
provided that log dist(x, I ∪ C) ∈ L1(µ) (I is the indeterminacy set of f and C the
critical set). In particular, in order to find hyperbolic measures, it is enough to find
measures of maximal entropy.

This will be our aim in the first part of this article (Chapter 2). Following Yomdin’s
approach ([55]), we give a criterion that allows us to produce invariant measures of
maximal entropy for a meromorphic map on a compact Kähler manifold X. In a second
part (Chapter 3), we study the more precise case of a family of birational maps of Pk

for which we construct the equilibrium measure. We show that it is mixing and using
the results of the first part we show that it is of maximal entropy. In particular the
measure is hyperbolic. Let us detail our results.

Let d denote the distance in X and recall that I is the indeterminacy set of f .
In Chapter 2, we do not assume that f is cohomologically hyperbolic. Chapter 2 is
devoted to the proof of the following theorem:

Theorem 1. – Consider the sequence of measures:

µn :=
1

n

n−1�

i=0

f i
∗

�
(fn)∗ωl ∧ ωk−l

λl(fn)

�
.

Assume that there exists a converging subsequence µψ(n) → µ with:

(H) : lim
n→+∞

�
log d(x, I)dµψ(n)(x) =

�
log d(x, I)dµ(x) > −∞.

Then µ is an invariant measure of metric entropy larger than or equal to log dl.

MÉMOIRES DE LA SMF 122



CHAPTER 1. INTRODUCTION 3

In the above theorem, when I = ∅, we define d(x, I) := 1 for all x ∈ X so
Hypothesis (H) is automatically satisfied for holomorphic mappings.

Proving the convergence of the sequence µn with the hypothesis (H) for l = s such
that ds is the highest dynamical degree gives measures of maximal entropy log ds. So,
as we explained before, Theorem 1 is particularly interesting when f is cohomologically
hyperbolic and l = s with ds the highest dynamical degree. In fact, in that case it is
likely that (µn) will always converge to a measure of maximal entropy because this is
the case in a lot of known cases (Henon maps [4] and [3], regular automorphisms of
Ck [50], endomorphisms of Pk [37], [36] and [38], some automorphisms on compact
Kähler manifolds [7] and [24], ...).

We discuss Hypothesis (H). First
�

log d(x, I)dµ(x) > −∞ is a natural hypothesis
in order to produce hyperbolic measure because it is necessary to define the Lya-
punov exponents ([11]). It would be a real improvement of Theorem 1 to prove the
same result under that weaker hypothesis. Nevertheless, it is not always satisfied by
meromorphic maps. Indeed, in [19] they are examples modifying Favre’s examples
(see [34]) for which log d(x, I) is not integrable with respect to the measure µ. On the
other hand, semi-continuity of the logarithm implies that

lim sup
n→+∞

�
log d(x, I)dµψ(n)(x) ≤

�
log d(x, I)dµ(x)

so there really is only the other inequality to prove.
We explain the main ideas of the proof of Theorem 1. If f is a Hénon map of C2,

Bedford and Smillie have shown in [4] that the Green measure of f is of maximal
entropy. Their proof is based on Yomdin’s theorem (see [55]) and also on the proof
of the variational principle. This approach has been used several times since then in
dynamics in order to bound from below the entropy of measures (e.g. [42], [10] and
[32]). In all these cases, one can use Yomdin’s theorem directly because the application
f is either holomorphic or when it is meromorphic everything takes place in a stable
open set where f is holomorphic.

The purpose of the first part is to quantify Bedford and Smillie’s approach. We will
need for that to modify the Bowen ball so that it takes into account the distance to
the indeterminacy set I and to quantify Yomdin’s theorem. This is the main difficulty.
We then use the proof of the variational principle to conclude.

Observe that the criterion can be extended to the case where (X,ω) is a compact
Hermitian manifold. In that case, we do not know if the limit:

dl := lim
n→+∞

(λl(f
n))1/n

exists, but it is sufficient to replace dl by lim supn(λl(fψ(n)))1/ψ(n) in the theorem.
In Chapter 3, we work in Pk endowed with the Fubini Study form ω. We study the

dynamics of some birational maps f of Pk, that is maps that are meromorphic and

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2010



4 CHAPTER 1. INTRODUCTION

biholomorphic outside some analytic sets. Choose some 1 ≤ s ≤ k − 1. We assume
that dim(I+) = k − s− 1 and dim(I−) = s− 1 where I± are the indeterminacy sets
of f± (for k = 2 the only possibility is s = 1 and I± are points). Let d and δ be the
algebraic degrees of f and f−1.

Let B0 be the set of these birational maps of Pk such that:
�

n≥0

f−nI+ ∩
�

n≥0

fnI− = ∅.

For such a map, we have λs(fn) = dsn and we can define Ln(ωs) := d−sn(fn)∗(ωs)

the sequence of normalized pull-backs and Λn(ωk−s) := d−sn(f−n)∗(ωk−s) the se-
quence of normalized push-forwards. The key point of our method is the use of super-
potentials introduced by Dinh and Sibony in [31]. We sum up the properties of the
super-potentials that we need in an appendix. Super-potentials are a generalization
of potentials to positive closed currents of bidegree higher than 1. Let C l be the set
of positive closed current of bidegree (l, l) and mass 1. Then for S ∈ C l, the super-
potential US of S is a function on Ck−l+1 that is uniquely determined by the condition
US(ωk−l+1) = 0.

Let ULn(ωs) and UΛn(ωk−s) be the super-potentials of Ln(ωs) and Λn(ωk−s). We
study the set B of map f ∈ B0 such that:

(1) lim
n

ULn(ωs)([I
−]nor) > −∞ and lim

n
UΛn(ωk−s)([I

+]nor) > −∞,

where [I±]nor := vol(I±)−1[I±] is the normalization of the current of integration on
I± (we use in fact a slightly different definition that turns out to be equivalent to (1)
by Corollary 3.2.5).

We prove in Theorem 3.2.8 below that (1) is implied by the more geometric con-
dition:

�

n≥0

�
1

d

�n

log dist(I+, fn(I−)) > −∞

and
�

n≥0

�
1

δ

�n

log dist(I−, f−n(I+)) > −∞.

This condition was in fact introduced by Bedford and Diller in [1] for the case of
projective surface and is equivalent to (1) in this case. Using that hypothesis, the
authors define the equilibrium measure and show that the potential of the Green
current is integrable for the measure. They proved that the measure is mixing and
hyperbolic. Using laminar currents, Dujardin computed the entropy and showed that
the measure is of maximal entropy [33]. Diller and Guedj extended some parts of

MÉMOIRES DE LA SMF 122



CHAPTER 1. INTRODUCTION 5

these results to a more general case in [19]. Note also the generalization of those ideas
to the case of meromorphic maps of a surface in the recent articles [16], [17], [18].

When k ≥ 3, the condition (1) is weaker than the geometric condition. This is due
to the fact that distance between supports is a good distance for measure but not for
current of higher bidimension. The interest of this condition is that it is generic in
the following sense:

Theorem 2. – Let Es be the set of birational maps f : Pk → Pk
such that I+

and

I− satisfy dim(I+) = k − s− 1 and dim(I−) = s− 1. Consider the group action:

Φ : PGL(k + 1, C)× Es → Es

(A, f) �→ A ◦ f.

Then outside a pluripolar set of the orbit Orb(f) of f ∈ Es, the maps of Orb(f) are

in B.

Section 3.3 is devoted to the proof of that statement. It is interesting to note that
the condition (1) is not generic in the set of birational maps (assuming one can give a
sense to that statement). Indeed, the condition dim(I+) = k−s−1 and dim(I−) = s−1

is true for k = 2 but does not need to be satisfied in higher dimension (see [44] and
[42] for examples).

We sum up our results. We will construct the Green current of order s and k− s of
f and f−1 for f ∈ B. More precisely, we have (see Theorems 3.2.1, 3.2.9 and 3.2.19):

Theorem 3. – Let f ∈ B, then the sequence Ln(ωs) is a well defined sequence of

currents which converges in the sense of currents to a positive closed current T+
s of

bidegree (s, s) and of mass 1.

The current T+
s satisfies f∗(T+

s ) = dsT+
s and is extremal in the set of positive

closed currents.

Then we define the intersection T+
s ∧T−k−s and we prove (Theorem 3.4.1, Proposition

3.4.4 and Theorem 3.4.15):

Theorem 4. – The wedge-product µ := T+
s ∧ T−k−s is a well defined invariant prob-

ability measure for which the potential of the Green current of order 1 is integrable.

The measure µ is mixing for f .

Using a space of test functions introduced by Dinh and Sibony in [26] and studied
by the second author [53], we prove that the measure gives no mass to pluripolar sets.
In particular, the measure gives no mass to analytic sets.

Then we use the results of Chapter 2 to prove that (Theorem 3.4.19, Theorem
3.4.21):

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2010



6 CHAPTER 1. INTRODUCTION

Theorem 5. – The measure µ is of maximal entropy log ds
and is hyperbolic. More

precisely, the Lyapunov exponents χ1 ≥ χ2 ≥ · · · ≥ χk of µ are well defined and we

have the estimates:

χ1 ≥ · · · ≥ χs ≥
1

2
log

ds

ds−1
=

1

2
log d > 0

0 > −1

2
log δ =

1

2
log

ds+1

ds
≥ χs+1 ≥ · · · ≥ χk.

Remark 1.0.1. – In these settings, it is natural to ask whether we have the equidis-
tribution of the saddle points for µ ([43]). In the case of P2, the author of [1] prove
the (weaker) result that the support of µ is contained in the closure of the saddle
periodic points and Dujardin proved the equidistribution in [33]. We do not know
how to prove such results in our case.

The main difficulty and novelty of that study is that in order to prove the conver-
gences, we deal directly with positive closed currents of bidegree (s, s). When s > 1,
the potentials U of a positive closed current S of bidegree (s, s) are no longer quasi-
plurisubharmonic (qpsh for short) functions but currents satisfying ddcU + ωs = S.
Two such potentials U and U � differ by a ddc closed current. Such object can be
singular. So we use the new theory of super-potential ([31] and also [32] for the Käh-
ler case). It provides a calculus on (s, s) positive closed currents. We sum up the
properties of super-potentials that we used in an appendix.

The two parts are fairly independent as we only use the results of Chapter 2 at the
end of Chapter 3. So they can be read in any order.

Acknowledgements. – We thank the referee for his remarks and in particular for
the simplification of the first point of the proof of proposition 2.3.8.

We also thank T.-C. Dinh for helping us constructing an example stable by per-
turbations in the proof of Theorem 3.1.11.
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CHAPTER 2

ENTROPY OF MEROMORPHIC MAPS

2.1. Push-forward of measures by meromorphic maps

Let (X,ω) be a compact Kähler manifold of dimension k. Modulo a normalization
of the distance, we can assume that the diameter of X is less than 1. Let f be a
dominating meromorphic map and let I be the indeterminacy set of f . Recall that
for l = 0 . . . k, we write:

λl(f) :=

�

X
f∗(ωl) ∧ ωk−l.

We recall first how to define the push-forward by f of a measure that gives no mass
to I. In all that follows, a measure will mean a finite positive Radon measure.

Let ν be such a measure. On X \ I, f is a measurable map. So we can define f∗ν

by the formula:

(f∗ν)(A) := ν({x ∈ X \ I with f(x) ∈ A}) = ν(f−1(A) ∩ (X \ I)).

When a measure ν gives no mass to the indeterminacy set, we have:
�

ϕ ◦ fdν =

�
ϕd(f∗ν)

for all ϕ ∈ L1(f∗ν). It is implicitly assumed that the integral is on X \I. The equality
follows from the approximation of function in L1 by characteristic functions.

The operator f∗ has the good property of continuity. Indeed, we have:

Lemma 2.1.1. – Let νn be a sequence of measures that give no mass to I. Then if

(νn) converges to ν and ν(I) = 0 then (f∗(νn)) converges to f∗ν.

Proof. – Let ϕ be a continuous function and let 0 ≤ χε ≤ 1 be a smooth function
equal to 0 in an ε-neighborhood Iε of I and equal to 1 outside a 2ε-neighborhood I2ε

of I. Then, we have:
�

ϕd(f∗νn) =

�
ϕ ◦ fdνn =

�
(1− χε)ϕ ◦ fdνn +

�
χεϕ ◦ fdνn.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2010



8 CHAPTER 2. ENTROPY OF MEROMORPHIC MAPS

The first term is bounded in absolute value by �ϕ�∞νn(I2ε) which can be taken
arbitrarily small by taking ε small then n large (because ν gives no mass to I). The
second term converges to

�
χεϕ ◦ fdν since χεϕ ◦ f is a continuous function. Finally,

if ε is small enough,
�

χεϕ ◦ fdν is as close as we want from
�

ϕ ◦ fdν since ν gives
no mass to I.

In this section, we consider in particular the push-forward of the measures

νn :=
(fn)∗ωl ∧ ωk−l

λl(fn)
.

The νn are well defined probability measures. Indeed, (fn)∗ωl is a form with coef-
ficients in L1 so it gives no mass to analytic sets of dimension < k. This implies
that

(fn)∗ωl ∧ ωk−l

λl(fn)

is a probability that gives no mass to ∪i∈Nf−i(I) (because f is dominating). So we
can push-forward this probability by f i and we get again a probability. We also make
the observation:

(f i)∗(f
j)∗

(fn)∗ωl ∧ ωk−l

λl(fn)
= (f i+j)∗

(fn)∗ωl ∧ ωk−l

λl(fn)
,

since (f j)−1(I) is at most a hypersurface. In particular, we have f i
∗νn = (f i)∗νn.

Now, we say that a measure µ that gives no mass to I is invariant (or f∗-invariant)
if f∗(µ) = µ. One has the following easy lemma:

Lemma 2.1.2. – Let µ be a measure that gives no mass to I. Then the following

properties are equivalent:

— µ is invariant.

— For any continuous function ϕ, we have:

�
ϕ ◦ fdµ =

�
ϕdµ

where the left-hand side integral is taken over X \ I.

When these properties are true, we even have:
�

ϕ ◦ fdµ =

�
ϕdµ

for any ϕ in L1(µ) (with the same abuse of notation for the left-hand side integral
that we will do in the whole section).
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2.2. YOMDIN’S THEOREM 9

Let us give some properties of meromorphic maps that will be useful in the proof
of Theorem 1. First recall that we denote:

µn :=
1

n

n−1�

i=0

f i
∗

�
(fn)∗ωl ∧ ωk−l

λl(fn)

�
.

We have seen that it is a well defined sequence of probabilities. Since f is dominating,
these measures give no mass to analytic sets of dimension < k so we can define their
push-forward.

We need an invariant measure to consider the metric entropy. So we will need the
following lemma:

Lemma 2.1.3. – If (µψ(n)) converges to a measure µ that gives no mass to I, then µ

is f∗-invariant.

Proof. – To simplify the notations, assume that (µn) converges to µ.
We can write f∗(µn) = µn + αn with αn going to zero. Using Lemma 2.1.1, f∗(µn)

converges to f∗µ and the lemma follows.

Now since we have an invariant probability measure that gives no mass to I, its
mass is 1 on Ω = X \ ∪i∈Nf−i(I). Since f(Ω) ⊂ Ω, we can define the metric entropy
of µ using partitions (see [43] and [45]).

We recall the following estimate that we use later:

Lemma 2.1.4. – (see [20] Lemma 2.1)

There exist constants K and p such that:

�Df(x)� ≤ Kd(x, I)−p.

2.2. Yomdin’s theorem

In this paragraph, we recall some facts on Yomdin’s theorem (see [55]) using Gro-
mov’s version (see [39] and [6]).

Let l be an integer between 1 and 2k. If Y is a subset of Ck (for example a
submanifold of real dimension l), we call Cr-size (with r ∈ N∗) of Y , the lower bound
of the numbers t ≥ 0 for which there exists a Cr-map of the unit l-cube into Ck,
h : [0, 1]l �→ Ck, with Y ⊂ h([0, 1]l) and �Drh� ≤ t. Here Drh is the vector assembled
of (the components of) the partial derivatives of h of order 1, . . . , r. The norm refers
to supremum over x ∈ [0, 1]l:

�Drh� = sup
x
�Drh(x)�.

We make some comments on Cr-size first.
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10 CHAPTER 2. ENTROPY OF MEROMORPHIC MAPS

First, the C1-size bounds the (real) l-dimensional volume of Y and its diameter.
More precisely

C1 − size of Y ≥ max((l-dimensional volume (Y ))1/l, l−1/2Diameter(Y )).

A process that we will use in what follows is the division of a set of Cr-size. If Y

is a set of Cr-size smaller than t, we can divide Y in jl pieces of Cr-size smaller
than t/j. For that it is sufficient to divide the l-cube [0, 1]l in jl equal pieces and
then to scale: for example R : [0, 1]l �→ [0, j−1]l and similarly for the jl − 1 other
cubes. The composition of h : [0, 1]l �→ Ck which covers Y with the scaling R satisfies
�Dr(h ◦R)� ≤ t/j and the union of the images of these jl maps covers Y .

Here is now the principal result of Gromov-Yomdin that we will need (see Lemma
3.4 in [39]).

Theorem 2.2.1 ([39]). – Let Y be an arbitrary subset in the graph Γg ⊂ [0, 1]l ×Ck

of a Cr
-map g : [0, 1]l �→ Ck

and take some positive number � ≤ 1. Then Y can be

divided into N ≤ C(k, l, r)�−l(1 + �∂rg�)l/r
sets of Cr

-size ≤ C(k, l, r)�Diameter(Y ),

where ∂rg denotes the vector assembled of the partial derivatives of g of order exactly

r and C(k, l, r) is a universal constant.

Here is the application of the above theorem that we will use: it is a small variation
of Corollary 3.5 in [39].

Proposition 2.2.2. – Let V be an open set of Ck
and f : V → Ck

a map of class

Cr
. Let Y0 ⊂ V be a set of Cr

-size smaller than 1 such that d(Y0, ∂V ) ≥
√

l. Then

the intersection of f(Y0) with a ball of Ck
of radius β can be divided into N ≤

C(k, l, r)
�
1 + �Drf�

β

�l/r
pieces of Cr

-size less than β.

Proof. – We want to divide f(Y0) ∩ B(a, β) into pieces of Cr-size ≤ β. If H(a, 1/β)

denotes the homothety of center a and ratio 1/β in Ck, it is equivalent to divide

H(a, 1/β)(f(Y0) ∩B(a, β)) = H(a, 1/β)(f(Y0)) ∩B(a, 1)

into sets of Cr-size less than 1.
By hypothesis, there exists a map h : [0, 1]l → Ck of class Cr with �Drh� ≤ 1 and

Y0 ⊂ h([0, 1]l). Define g := H(a, 1/β) ◦ f ◦ h. By the chain rule, we have

�Drg� ≤
C �(k, l, r)

β
�Drf�.

We apply now the previous theorem to Y the graph of g intersected with [0, 1]l ×
B(a, 1). So we have that we can cover Y by a number:

N ≤ C(k, l, r)

�
1 +

C �(k, l, r)

β
�Drf�

�l/r

≤ C(k, l, r)

�
1 +

�Drf�
β

�l/r
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2.3. PROOF OF THEOREM 1 11

sets of Cr-size ≤ 1 (changing the constant C(k, l, r) if necessary). Since the image of Y

by the projection [0, 1]l×Ck �→ Ck covers H(a, 1/β)(f(Y0))∩B(a, 1), the proposition
follows.

2.3. Proof of Theorem 1

Let d denote the distance in X normalized such that the diameter of X is less than
1 and recall that I is the indeterminacy set of f . In this paragraph, we prove the
following theorem:

Theorem. – Consider the sequence of measures:

µn :=
1

n

n−1�

i=0

f i
∗

�
(fn)∗ωl ∧ ωk−l

λl(fn)

�
.

Assume that there exists a converging subsequence µψ(n) → µ with:

(H) : lim
n→+∞

�
log d(x, I)dµψ(n)(x) =

�
log d(x, I)dµ(x) > −∞.

Then µ is an invariant measure of metric entropy larger than or equal to log dl.

In the above theorem, when I = ∅, we define d(x, I) := 1 for all x ∈ X so
Hypothesis (H) is automatically satisfied for holomorphic mappings.

Remark that the criterion can be extended to the case where (X,ω) is a compact
Hermitian manifold. In that case, we do not know if the limit:

dl := lim
n→+∞

(λl(f
n))1/n

exists, but it is sufficient to replace dl by lim supn(λl(fψ(n)))1/ψ(n) in the theorem.

We can also generalize the theorem in the following way: in the definition of µn, we
can put Ω1,l instead of ωl, Ω2,k−l instead of ωk−l and Λl(fn) =

�
(fn)∗Ω1,l ∧ Ω2,k−l

instead of λl(fn) with Ω1,l a (l, l) smooth form, Ω2,k−l a (k−l, k−l) smooth form such
that one of them is weakly positive, the other is strongly positive and Λl(fn) > 0.
Then, we have the same theorem by replacing dl by lim supn(Λl(fψ(n)))1/ψ(n).

In the previous theorem, it is possible to have that the metric entropy of µ is >

log dl. Indeed, if we take for f a Lattès of P1 of degree d ≥ 2 and l = 0 in the theorem,
we obtain on one hand that µn = 1

n

�n−1
i=0 f i

∗ω converges to the equilibrium measure µ

(by using the Birkhoff’s theorem since µ is equivalent to ω) which has metric entropy
equal to log d and on the other hand we have that that log d0 = log 1 = 0 < log d.

We begin by giving the ideas of the proof of the theorem.
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12 CHAPTER 2. ENTROPY OF MEROMORPHIC MAPS

2.3.1. Ideas of the proof. – Recall that we consider

νn =
(fn)∗ωl ∧ ωk−l

λl(fn)
and so µn =

1

n

n−1�

i=0

f i
∗

�
(fn)∗ωl ∧ ωk−l

λl(fn)

�
=

1

n

n−1�

i=0

f i
∗νn.

For the statement of the ideas, assume to simplify that µn converges to a measure
µ.

First, consider the case where f is holomorphic. As in the article of Bedford and
Smillie (see [4]), the proof is based in one hand on Yomdin’s theorem and in the other
hand on the Misiurewicz’s proof of the variational principle. We denote by Bn(x, �)

the dynamical ball (or Bowen ball):

Bn(x, �) = {y ∈ X , max
0≤i≤n−1

d(f i(x), f i(y)) ≤ �}.

For δ > 0, by using Yomdin’s theorem (see [55]), we can prove that νn(Bn(x, �)) ≤
enδ/λl(fn) by taking � small and then n large enough. This gives an estimation from
below for the metric entropy Hνn(P−n) where P−n = P∨f−1 P∨· · ·∨f−n+1 P with P
a finite partition of X with atoms of diameter less than �. Now, by using Misiurewicz’s
proof of the variational principle, it implies that 1

q Hµn(P−q) is bounded from below
by something similar to −2δ+ 1

n log λl(fn) for n large enough. Now, since the partition
P is finite and if µ puts no mass on its boundary, we obtain

1

q
Hµ(P−q) ≥ −2δ + log dl

and by taking q →∞, we have hµ(f) ≥ log dl, which is the inequality that we want.

Now, suppose that f is meromorphic. We want to apply the same strategy but the
problem is the indeterminacy set.

Namely, the previous estimate on νn(Bn(x, �)) uses Yomdin’s theorem and only
works for C∞ maps. The first idea to solve this problem is to use dynamical balls
which avoid the indeterminacy set, i.e. of the type

Bn(x) = {y ∈ X , d(f i(x), f i(y)) ≤ ρ(f i(x)) for i ∈ [0, n− 1]}

with ρ(x) << d(x, I). On these balls, the derivatives of f may be large, but we
have some estimates on them, and so, we will prove using Yomdin’s approach, that
νn(Bn(x)) ≤ enδ/λl(fn) for n large enough on a set of good points of mass almost 1

for νn.

This inequality implies a lower bound on Hνn(P−n) but for partitions P such that
the atom P(x) which contains x has diameter smaller than ρ(x). In particular these
partitions are countable. Using Misiurewicz’s method, we obtain more or less that
1
q Hµn(P−q) is bounded by below by something similar to −2δ + 1

n log λl(fn) for n
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2.3. PROOF OF THEOREM 1 13

large enough. To conclude, we have to let n goes to ∞: the problem is that P−q is
countable but by using the hypothesis

(H) : lim
n→+∞

�
log d(x, I)dµn(x) =

�
log d(x, I)dµ(x) > −∞,

we can overcome this difficulty and we obtain the lower bound
1

q
Hµ(P−q) ≥ −2δ + log dl.

Hypothesis (H) implies that the partition P has finite entropy, and so if we take the
limit q →∞, we obtain hµ(f) ≥ log dl, which is again the inequality that we want.

2.3.2. Proof of Theorem 1. – The hypothesis we made assure us that there exists
a subsequence (µψ(n)) which converges to a measure µ with:

(H) : lim
n→+∞

�
log d(x, I)dµψ(n)(x) =

�
log d(x, I)dµ(x) > −∞.

In order to clarify the exposition, we shall write ψ(n) = n. We start with the definition
of the dynamical ball Bn(x) that we will use.

If s(x) is a function on X with values in R+, we define (see [47]):

B(x, s, n, f) :=
�
y, d(f i(x), f i(y)) ≤ s(f i(x)) for i ∈ [0, n− 1]

�
.

We shall use these dynamical balls using for s(x) the particular functions ρ(x) and
η(x) where :

ρ(x) =

�
d(x, I)× · · · × d(fm−1(x), I)

Km

�p

(here K and p are the numbers defined at the end of Section 2.1 and m ∈ N∗ will be
chosen later) and:

η(x) =

�
d(x, I)

K

�p

.

When f is holomorphic (i.e. I = ∅), take d(x, I) := 1 and p = 2 in these expressions.

If n ∈ N is fixed, by the Euclidean algorithm, we write n = φ(n)m + r(n) with
0 ≤ r(n) < m. In what follows, we will consider the following dynamical balls:

Bn(x) := B(x, ρ, φ(n), fm) ∩ f−φ(n)m+m(B(fφ(n)m−m(x), η, r(n) + m, f)).

Now, as explained in the paragraph 2.3.1, we will prove that νn(Bn(x)) ≤
enδ/λl(fn) for n large enough on a set of good points of mass almost 1 for νn. In
particular, we will have a lot of dynamical balls. In a second paragraph, we will use
this fact to bound from below the entropy of µ.
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14 CHAPTER 2. ENTROPY OF MEROMORPHIC MAPS

2.3.3. Upper bound of νn(Bn(x)). – We give some notations first. First of all
we can put on X a family of chart (τx)x∈X such that τx(0) = x, τx is defined on
B(0, �0) ⊂ Ck with �0 > 0 independent of x and such that the norm of the derivatives
of order 1 of the τx is bounded from above by a constant independent of x. These
charts are obtained from a finite family (Ui, ψi) of charts of X by composing them
with translations. In Ck, we also consider π1, . . . , πi the projections from Ck onto the
vectorial subspaces of dimension k− l. In what follows, the choice of these coordinates
is supposed to be generic and βj denotes the standard volume form on πj(Ck).

Fix x ∈ X and:
Ω := (τx)∗(π

∗
1β1 + · · · + π∗i βi).

We want to compute :

νn(Bn(x)) =
(fn)∗ωl ∧ ωk−l

λl(fn)
(Bn(x)).

Taking K large enough, we can assume that Bn(x) ⊂ τx(B(0, �0)) so the previous
quantity is less than:

C(X)
(fn)∗ωl ∧ Ω

λl(fn)
(Bn(x)) = C(X)

i�

j=1

� �

Bn(x)∩τx(Yj(t))

(fn)∗ωl

λl(fn)
dt

where Yj(t) is equal to π−1
j (t) for t in the j-th subspace of dimension k − l and dt

stands for the Lebesgue measure on that space (we used Fubini theorem: see [8] p.
334). Remark that t lives in a ball B(0, �0).

So we have a upper bound of νn(Bn(x)) by:

C(X)

λl(fn)

i�

j=1

� �

fn(Bn(x)∩τx(Yj(t)))
ωldt.

To control this integral, we have to bound from above the 2l-dimensional volume of
fn(Bn(x) ∩ τx(Yj(t))) for some good points x of νn. In order to do that, we explain
first what are the good points for νn then we will bound the volume using Yomdin’s
approach and finally we will finish the bound of νn(Bn(x)).

Good points for the measure νn. – In what follows, we consider a constant L > 0 and
an integer n0 such that: �

log d(x, I)dµn(x) ≥ −L,

for n ≥ n0. The existence of these constants follows easily from Hypothesis (H).

Let δ > 0. Our goal is to show that the entropy of µ is greater than log dl − δ. We
choose a constant C0 large enough (1/C0 � δ).
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2.3. PROOF OF THEOREM 1 15

We are going to show that Hypothesis (H) implies that the orbits of generic points
of the measure νn = (fn)∗ωl∧ωk−l

λl(fn) are not close to the indeterminacy set I. They are
going to be the good points.

Lemma 2.3.1. – For n ≥ n0, there exists a set An of νn-measure greater or equal to

1− C−1
0 whose points x ∈ An satisfy:

�

i∈[0,n−1]

d(f i(x), I) ≥ e−C0Ln.

Proof. – We have

1

n

�
log




�

i∈[0,n−1]

d(f i(x), I)



 dνn(x) =
1

n

� n−1�

i=0

log d(f i(x), I)dνn(x).

Since µn = 1
n

�n−1
i=0 (f i)∗νn:

1

n

�
log




�

i∈[0,n−1]

d(f i(x), I)



 dνn(x) =

�
log d(x, I)dµn(x).

Thanks to our hypothesis, this last integral is ≥ −L.

Now, if we denote h(x) = 1
n log

��
i∈[0,n−1] d(f i(x), I)

�
and An := {x, h(x) ≥

−C0L}, we have:
�

An

h(x)dνn(x) +

�

X\An

h(x)dνn(x) ≥ −L.

But
�

An
h(x)dνn(x) ≤ 0 and

�
X\An

h(x)dνn(x) ≤ −C0Lνn(X \ An).

This implies that νn(X \ An) ≤ 1/C0.

The set An is indeed of measure ≥ 1− C−1
0 and if x ∈ An then:

�

i∈[0,n−1]

d(f i(x), I) ≥ e−C0Ln,

which is what we wanted.

The orbit of points in An are not too close to I. These are the good points for the
measure νn.

We now prove the upper bound of the volume.
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16 CHAPTER 2. ENTROPY OF MEROMORPHIC MAPS

Upper bound for the volume of fn(Bn(x)∩τx(Yj(t))) for x ∈ An. – Let Y0 denote one
of the τx(Yj(t)) (where Yj(t) is the fiber of πj with t in the j-th subspace of dimension
k − l). Our aim is to prove:

Proposition 2.3.2. – The 2l-dimensional volume of fn(Y0 ∩Bn(x)) is less or equal

to:

C(X, l, r)n/m+2m ×K
2npl

r + 4mpl
r ×

�

0≤i≤n−1

d(f i(x), I)
−4pl

r .

Here C(X, l, r) is a constant that depends only on X, of the complex dimension l of

Y0 and the regularity r that we chose. The constants K = K(f) and p = p(f) are

those of paragraph 2.1.

Observe that the upper bound does not depend on the fiber Yj(t) that we consider.
Before proving the proposition, we give the upper bound of the 2l-dimensional

volume of fn(Bn(x) ∩ τx(Yj(t))) that follows from the proposition.
Recall that we fixed δ and C0. Now, let r be such that 1

r log K < δ and C0L
r < δ.

Then, we choose m so that 1
m log(C(X, l, r)) < δ where C(X, l, r) is the constant

from the previous proposition. Reformulating the previous proposition we have that
the 2l-dimensional volume of fn(Y0 ∩Bn(x)) is bounded by:

C(X, l, r, m, p, K)eδn × e2δnpl ×
�

0≤i≤n−1

d(f i(x), I)
−4pl

r .

Finally, if x is in An (i.e. if x is a good point for the measure νn), the 2l-dimensional
volume of fn(Y0 ∩Bn(x)) is bounded from above by (see Lemma 2.3.1):

e4δnple
4plC0Ln

r ≤ e8δnpl,

if n is large (independently of x ∈ An).
It is this upper bound that we use now to finish the upper bound of νn(Bn(x)) for

x ∈ An.

End of the proof of the upper bound of νn(Bn(x)) for x ∈ An

Recall that we have bounded νn(Bn(x)) by:

C(X)

λl(fn)

i�

j=1

� �

fn(Bn(x)∩τx(Yj(t)))
ωldt.

Now, if x ∈ An, we get:

(2) νn(Bn(x)) ≤ e10δnpl

λl(fn)
,

for n large enough which does not depend on x ∈ An. This quantity is approximately
d−n

l and it stands for x ∈ An which is a set of measure ≥ 1 − 1
C0

for νn. This is the
upper bound that we wanted and it will allow us to bound the entropy of µ.
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It remains to prove Proposition 2.3.2, which is the purpose of rest of this section.

Proof of Proposition 2.3.2. – Consider g = fa an iterate of f and let x ∈ X. We
define gx = τ−1

g(x) ◦ g ◦ τx. We also define gx,s(x) = h(0, 1
s(x) ) ◦ gx ◦ h(0, s(x)) where

h(0, t) is the homothety of center 0 and ratio t in Ck. Here, s(x) is defined by:

s(x) = sa(x) =

�
d(x, I)× · · · × d(fa−1(x), I)

Ka

�p

.

We will consider later the particular cases a = 1 (i.e. s(x) = η(x)) and a = m (i.e.
s(x) = ρ(x)).

In what follows, we are going to consider Cr-sizes associated to 2l (i.e. sets that
will be cover by some h([0, 1]2l) with h ∈ Cr). First, we prove the following lemma
by induction:

Lemma 2.3.3. – Let Z0 be a set of complex dimension l such that the Cr
-size of

τ−1
x (Z0 ∩B(x, s(x))) is ≤ s(x). Let B(x, s, j, g) be the dynamical ball:

B(x, s, j, g) = {y, d(gi(x), gi(y)) ≤ s(gi(x)) for i ∈ [0, j − 1]}.

Then, for j ≥ 1, we can cover gj−1(Z0 ∩ B(x, s, j, g)) by a union of Nj sets Z for

which the Cr
-size of τ−1

gj−1(x)(Z) is ≤ s(gj−1(x)) and Nj is bounded from above by :

C(X, l, r)j−1
�

0≤i≤j−1

s(gi(x))−2l/r.

Proof. – For j = 1, the lemma stands by hypothesis.

Assume now that the induction assumption stands for j − 1.

Observe that:

gj−1(Z0 ∩B(x, s, j, g)) = g(gj−2(Z0 ∩B(x, s, j − 1, g))) ∩B(gj−1(x), s(gj−1(x))).

This is true since B(x, s, j, g) = B(x, s, j − 1, g) ∩ g−j+1B(gj−1(x), s(gj−1(x))) and
ϕ(A ∩ ϕ−1(B)) = ϕ(A) ∩B for any map ϕ and any sets A and B.

Let Z be one of the Nj−1 sets whose union covers gj−2(Z0∩B(x, s, j−1, g)). The Cr-
size of τ−1

gj−2(x)(Z) is ≤ s(gj−2(x)) by the induction assumption. To prove the lemma,
we bound from above the numbers of sets Y which cover g(Z)∩B(gj−1(x), s(gj−1(x)))

for which the Cr-size of τ−1
gj−1(x)(Y ) is ≤ s(gj−1(x)).

We consider �Z = h(0, 1/s(gj−2(x)))◦τ−1
gj−2(x)(Z). The Cr-size of �Z is≤ s(gj−2(x))×

1
s(gj−2(x)) = 1. Furthermore, since Z is in the ball B(gj−2(x), s(gj−2(x))) (else we only
consider the part of Z that is in the ball and we still denote it Z), �Z is in the ball
B(0, C(X)) (where C(X) is a constant that depends only on X). Using Proposition
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18 CHAPTER 2. ENTROPY OF MEROMORPHIC MAPS

2.2.2 of Section 2.2 with f = ggj−2(x),s(gj−2(x)) and Y0 = �Z we get that we can cover
ggj−2(x),s(gj−2(x))( �Z) ∩B(0, β) (we take β = C(X) s(gj−1(x))

s(gj−2(x)) ) by

C(X, l, r)

�
1 +

�Drggj−2(x),s(gj−2(x))�
β

�2l/r

sets �Y of Cr-size ≤ C(X) s(gj−1(x))
s(gj−2(x)) . Here the norm �.� is taken over the ball

B(0, C(X) +
√

2l). The images Y of the �Y by τgj−1(x) ◦ h(0, s(gj−2(x))) cover

τgj−1(x) ◦ h(0, s(gj−2(x)))(ggj−2(x),s(gj−2(x))( �Z) ∩B(0, β))

= g(Z) ∩ τgj−1(x) ◦ h(0, s(gj−2(x)))(B(0, β))

which contains
g(Z) ∩B(gj−1(x), s(gj−1(x))).

This is the set we wanted to cover and τ−1
gj−1(x)(Y ) = h(0, s(gj−2(x)))(�Y ) is of Cr-size

≤ s(gj−1(x)) up to dividing it into C(X)2l pieces as in Section 2.2 (this multiplies Nj

by a universal constant).
To finish the proof, we have to count the number of pieces Y that we constructed

for which the Cr-size of τ−1
gj−1(x)(Y ) is bounded from above by s(gj−1(x)). Indeed, the

union of those sets covers gj−1(Z0 ∩B(x, s, j, g)).
To control Nj , we need a control of the norm �Drggj−2(x),s(gj−2(x))� on the ball

B(0, C(X) +
√

2l).
We admit temporarily that this norm is ≤ C(X, l, r)s(gj−2(x))−1.
Then:

Nj ≤ Nj−1C(X, l, r)

�
1 +

�Drggj−2(x),s(gj−2(x))�s(gj−2(x))

s(gj−1(x))

�2l/r

,

which is smaller than:

Nj−1C(X, l, r)

�
2C(X, l, r)

s(gj−1(x))

�2l/r

≤ Nj−1C(X, l, r)s(gj−1(x))−2l/r

up to changing C(X, l, r). This concludes the proof of the lemma up to the upper
bound of the norm of �Drggj−2(x),s(gj−2(x))� on the ball B(0, C(X) +

√
2l).

Upper bound of the norm �Drggj−2(x),s(gj−2(x))� on B(0, C(X) +
√

2l). – Since

ggj−2(x),s(gj−2(x)) = h(0,
1

s(gj−2(x))
) ◦ ggj−2(x) ◦ h(0, s(gj−2(x))),

�∂rggj−2(x),s(gj−2(x))� is equal to s(gj−2(x))r−1�∂rggj−2(x)� where that last norm is
taken over the ball

B(0, s(gj−2(x))(C(X) +
√

2l))

(see Section 2.2 for notations).
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To prove the upper bound of the norm, we are going to prove that:

ggj−2(x)(B(0, 2s(gj−2(x))(C(X) +
√

2l)))

is contained in the ball B(0, 1). We will then deduce the upper bound of �∂rggj−2(x)�
on B(0, s(gj−2(x))(C(X) +

√
2l)) by C(X, r)(s(gj−2(x))(C(X) +

√
2l))−r thanks to

Cauchy inequalities. This gives exactly the upper bound that we want.

If we let y = gj−2(x), we have:

ggj−2(x)(B(0, 2s(gj−2(x))(C(X) +
√

2l))) = gy(B(0, 2s(y)(C(X) +
√

2l)))

which is equal to:

τ−1
fa(y) ◦ fa ◦ τy(B(0, 2s(y)(C(X) +

√
2l)))

because g = fa. Furthermore:

τ−1
fa(y) ◦ fa ◦ τy = ffa−1(y) ◦ · · · ◦ fy,

with fx := τ−1
f(x) ◦ f ◦ τx.

Now we use Lemma 2.1.4 of Section 2.1 to control the differential of fy on
B(0, 2s(y)(C(X) +

√
2l)).

If z is a point of the ball B(0, 2s(y)(C(X)+
√

2l)) then the distance between τy(z)

and I is ≥ d(y, I) − 2s(y)C(X)(C(X) +
√

2l). But that last quantity is ≥ d(y,I)
2

since by definition of s(y), we have s(y) ≤ d(y,I)
K and we can assume that K is

large compared to the constants that depend only on X and l (recall that l is the
complex dimension of Z0: it is between 0 and k, so in particular they are only a finite
number of such quantities). Using Lemma 2.1.4, we get an upper bound of �Dfy� on
the ball B(0, 2s(y)(C(X) +

√
2l)) by KC(X)2pd(y, I)−p. Using the control over the

differential, this implies that the image of B(0, 2s(y)(C(X)+
√

2l)) by fy is contained
in B(0, KC(X)2pd(y, I)−p2s(y)(C(X) +

√
2l)). But since:

s(y) =

�
d(y, I)× · · · × d(fa−1(y), I)

Ka

�p

,

we have:

KC(X)2pd(y, I)−p2s(y)(C(X) +
√

2l) ≤
�

d(f(y), I)× · · · × d(fa−1(y), I)

Ka−1

�p

,

since we can assume that K is large compared to the C(X).

So we have proved that the image of B(0, 2s(y)(C(X) +
√

2l)) by fy is contained
in

B

�
0,

�
d(f(y), I)× · · · × d(fa−1(y), I)

Ka−1

�p�
.
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Now, if we do again what we just did for f(y) instead of y, we get that the image by
ff(y) ◦ fy of the ball B(0, 2s(y)(C(X) +

√
2l)) is contained in the ball:

B

�
0,

�
d(f2(y), I)× · · · × d(fa−1(y), I)

Ka−2

�p�
,

and so on. At the end, we have that the image of the ball B(0, 2s(y)(C(X) +
√

2l))

by ffa−1(y) ◦ · · · ◦ fy = τ−1
fa(y) ◦ fa ◦ τy is contained in the ball:

B

�
0, KC(X)2pd(fa−1(y), I)−p

�
d(fa−1(y), I)

K

�p�
,

which is contained in B(0, 1) for K large enough (observe that such K does not depend
on a as the only requirement is K−p+1C(X)2p ≤ 1 where p ≥ 2).

This concludes the proof of the upper bound of the norm �Drggj−2(x),s(gj−2(x))� on
the ball B(0, C(X) +

√
2l) and that concludes the proof of the lemma.

Now we will use that lemma to prove Proposition 2.3.2. Recall some notations first.
The set Y0 is one the fiber τx(Yj(t)), n = mφ(n) + r(n) with 0 ≤ r(n) < m,

ρ(x) =

�
d(x, I)× · · · × d(fm−1(x), I)

Km

�p

and

η(x) =

�
d(x, I)

K

�p

.

Recall that:

Bn(x) = B(x, ρ, φ(n), fm) ∩ f−φ(n)m+m(B(fφ(n)m−m(x), η, r(n) + m, f)).

Applying the previous lemma for g = fm (and thus s(x) = ρ(x)), j = φ(n) and Z0 =

Y0 ∩B(x, ρ(x)) (whose image by τ−1
x is of Cr-size ≤ ρ(x) up to dividing into C(X)2l

pieces because Yj(t) is a linear subspace), we get that we can cover fm(φ(n)−1)(Y0 ∩
B(x, ρ, φ(n), g)) by a number Nφ(n) of sets Z for which the Cr-size of τ−1

gφ(n)−1(x)
(Z) =

τ−1
fm(φ(n)−1)(x)

(Z) is ≤ ρ(gφ(n)−1(x)) and Nφ(n) bounded from above by:

C(X, l, r)φ(n)
�

0≤i≤φ(n)−1

ρ(gi(x))−2l/r.

So we went up to fm(φ(n)−1)(x) and we still have to go to fn(x).

For that, we use the above lemma again with for Z0 one of the Nφ(n) pieces
Z, g = f (so now s(x) = η(x)), j = n − m(φ(n) − 1) = r(n) + m and
x = fm(φ(n)−1)(x). We can do that because the Cr-size of τ−1

fm(φ(n)−1)(x)
(Z0) is

≤ ρ(fm(φ(n)−1)(x)) ≤ η(fm(φ(n)−1)(x)). So we get that we can cover fr(n)+m−1(Z ∩
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B(fm(φ(n)−1)(x), η, r(n) + m, f)) by a union of M sets Y for which the Cr-size of
τ−1
fn−1(x)(Y ) is ≤ η(fn−1(x)) and M is less than:

C(X, l, r)m+r(n)−1
�

1≤i≤m+r(n)

η(fn−i(x))−2l/r.

The sets Y that we constructed belong to (up to keeping the part that lies in it):

B(fr(n)+m−1+m(φ(n)−1)(x), η(fr(n)+m−1+m(φ(n)−1)(x))) = B(fn−1(x), η(fn−1(x))).

The C1-size of these Y is smaller than C(X)η(fn−1(x)) which implies that the di-
ameter of h([0, 1]2l) (where h is the map in Cr associated to Y ) is smaller than
C(X, l)η(fn−1(x)). So, the set h([0, 1]2l) is contained in

B

�
fn−1(x),

d(fn−1(x), I)

2

�
.

Since the differential of f in this last ball is bounded by

K2pd(fn−1(x), I)−p

using Lemma 2.1.4, one gets that the images by f of those Y are of C1-size bounded
by C(X)η(fn−1(x))K2pd(fn−1(x), I)−p. So their 2l-dimensional volume is ≤ 1.

Summing up, we have covered

fr(n)+m(fm(φ(n)−1)(Y0 ∩B(x, ρ, φ(n), g)) ∩B(fm(φ(n)−1)(x), η, r(n) + m, f))

which contains fn(Bn(x) ∩ Y0) by a number N of sets Y of volume ≤ 1 with:

N ≤ C(X, l, r)φ(n)+2m
�

0≤i≤φ(n)−1

ρ(gi(x))−2l/r
�

1≤i≤m+r(n)

η(fn−i(x))−2l/r.

Using now the fact that:

ρ(y) =

�
d(y, I)× · · · × d(fm−1(y), I)

Km

�p

,

and

η(y) =

�
d(y, I)

K

�p

,

we have:
�

0≤i≤φ(n)−1

ρ(gi(x))−2l/r ≤ K
2mφ(n)pl

r

�

0≤i≤φ(n)m−1

d(f i(x), I)
−2pl

r ,

and �

1≤i≤m+r(n)

η(fn−i(x))−2l/r ≤ K
4mpl

r

�

1≤i≤m+r(n)

d(fn−i(x), I)
−2pl

r .

Finally, we have covered fn(Bn(x)∩Y0) by a number N of sets Y of volume ≤ 1 with:

N ≤ C(X, l, r)n/m+2mK
2npl

r + 4mpl
r

�

0≤i≤n−1

d(f i(x), I)
−4pl

r .
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That concludes the proof of Proposition 2.3.2.

2.3.4. Lower bound for the entropy of µ. – Recall that we consider a cluster
value µ of the sequence

µn =
1

n

n−1�

i=0

f i
∗

�
(fn)∗ωl ∧ ωk−l

λl(fn)

�

and that in order to simplify the notations we assume that (µn) converges to µ. By
assumption, µ gives no mass to the indeterminacy set I and it is invariant by Lemma
2.1.3. The aim of this section is to prove that the metric entropy hµ(f) is ≥ log dl− δ.
This implies Theorem 1 by letting δ → 0.

So we have to bound hµ(f). Here is the plan of this section: first we will con-
struct partitions of finite entropy for µ that will be used latter with the proof of the
variational principle to get the lower bound of the entropy that we want.

2.3.4.1. Construction of the partitions. – The proof is the one of Mañé (see Lemma 2

in [47]). We give his proof since we will use it in what follows. We consider a function
s(x) comprised between 0 and 1. Later, we will take the values ρ(x) or η(x) for s(x).

Proposition 2.3.4. – (Mañé)

We can construct a countable partition P of X \ {s = 0} such that:

1. If x ∈ X \ {s = 0}, then diam P(x) < s(y) for all y ∈ P(x) (here P(x) denotes

the atom of the partition that contains x).

2. For any probability measure ν such that
�

log s(x)dν(x) > −∞, we have

Hν(P) < +∞. Here Hν(P) denotes the entropy of the partition P for the

measure ν.

Before proving the proposition, we give a multi-index version of Mañé’s lemma
(see Lemma 1 in [47]). We thank the referee for explaining to us this lemma which
simplifies the proof of Proposition 2.3.8.

Lemma 2.3.5. – For all q ∈ N∗, there exists a constant C(q) such that:

For all family (xs) of real numbers 0 ≤ xs ≤ 1 indexed by s = (s0, . . . , sq−1) ∈ Nq

and for all A ∈ N we have:

�

|s|≥A

xs log(1/xs) ≤
�

|s|≥A

|s|xs + C(q)e−
A
2q

with the convention that xs log(1/xs) = 0 when xs = 0 and |s| = s0 + · · · + sq−1.
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Proof of Lemma 2.3.5. – The proof is the same that Mañé’s one.

Let S be the set of multi-indexes s ∈ Nq for which xs �= 0 and log(1/xs) ≤ |s|. If
s /∈ S then xs ≤ e−|s|. Furthermore:

�

|s|≥A

xs log(1/xs) ≤
�

|s|≥A, s∈ S

|s|xs +
�

|s|≥A, s/∈ S

(
√

xs)(
√

xs) log(1/xs).

But since (
√

t) log(1/t) ≤ 2e−1 for all t ≥ 0, we have:
�

|s|≥A

xs log(1/xs) ≤
�

|s|≥A

|s|xs + 2e−1
�

|s|≥A, s/∈ S

√
xs

which is less than: �

|s|≥A

|s|xs + 2e−1
�

|s|≥A

e−|s|/2.

Now, {s, |s| ≥ A} ⊂ ∪q−1
i=0 {s, si ≥ A/q}, so

�
|s|≥A e−|s|/2 is less than

q−1�

i=0

�

{s, si≥A/q}

e−s0/2−···−sq−1/2 ≤ q

�
1

1− e−1/2

�q

e−
A
2q .

That gives the lemma.

Proof of Proposition 2.3.4. – Here is Mañé’s proof.

First of all, there are constants C > 0 and r0 > 0 such that for 0 < r ≤ r0, there
exists a partition Pr of X whose elements have a diameter ≤ r and such that the
number of elements of the partition |Pr| is ≤ C(1/r)2k.

Now, we define Vn := {x, e−(n+1) < s(x) ≤ e−n} for n ≥ 0. Since the function s is
less than 1, we have that X \ {s = 0} = ∪n≥0Vn.

Let P be the partition defined as follows: for n fixed, we consider the sets Q∩Vn for
Q ∈ Prn with rn = e−(n+1). This defines a partition of Vn. Now, we get the partition
P of X \ {s = 0} by taking all the n between 0 and +∞.

If x /∈ {s = 0}, then x ∈ Vn for some n ≥ 0 and then the atom P(x) of P containing
x, is contained in an atom of Prn , so we have:

diamP(x) ≤ e−(n+1) < s(y)

for all y ∈ P(x) ⊂ Vn. This proves the first point of Proposition 2.3.4.

We now consider a measure ν such that
�

log s(x)dν(x) > −∞. We want to show
that Hν(P) < +∞. We have:

Hν(P) =
+∞�

n=0



−
�

P∈ P, P⊂Vn

ν(P ) log ν(P )



 .
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Using the inequality:

−
m0�

i=1

xi log xi ≤
�

m0�

i=1

xi

� �
log m0 − log

m0�

i=1

xi

�

which comes from the convexity of the function φ(x) = x log(x) for x ≥ 0, we get:

Hν(P) ≤
+∞�

n=0

ν(Vn)(log |Prn | − log ν(Vn)).

Since the number |Prn | of elements of Prn is less than Ce2k(n+1), we have:

Hν(P) ≤ log C + 2k
+∞�

n=0

(n + 1)ν(Vn) +
+∞�

n=0

ν(Vn) log

�
1

ν(Vn)

�
.

By assumption:
�

log s(x)dν(x) =

�

∪n≥0Vn

log s(x)dν(x) > −∞.

This implies that:
+∞�

n=0

nν(Vn) < +∞,

and the proposition is then deduced from Lemma 2.3.5 with q = 1 and A = 0.

2.3.4.2. Lower bound for the entropy of µ. – In what follows, we denote P (resp.
Q) the partition previously constructed for s(x) = ρ(x) (resp. s(x) = η(x)). Notice
that Hµ(P) and Hµ( Q) are finite by using the previous Proposition since log d(x, I) ∈
L1(µ) and µ is invariant. We consider the restriction of P and Q to Ω = X\∪i≥0f−i(I)

(that we still denote P and Q). They are partitions of Ω. The advantage of those
partitions over Ω is that the f i are well-defined on them. In particular, we can define
for example the partition f−i(P): its atoms are the f−i(P ) := {x ∈ Ω with f i(x) ∈ P}
where the P are the atoms of P. Since f(Ω) ⊂ Ω, we get a partition of Ω. The
measures that we consider (νn, µn or µ) have mass 1 on Ω. The parts of X that
we drop are of mass 0 for them. We remark that with our convention, we have:
f−a(f−b(P )) = f−a−b(P ) = {x ∈ Ω with fa+b(x) ∈ P}. Recall that we denote:

νn =
(fn)∗ωl ∧ ωk−l

λl(fn)

and that νn(An) ≥ 1− 1
C0

(see Lemma 2.3.1).

In what follows, we denote ν�n :=
νn|An

νn(An) (i.e. ν�n(B) = νn(B∩An)
νn(An) ).

Define the joint partition P−n of the partitions P and Q by (recall that n =

φ(n)m + r(n) with 0 ≤ r(n) < m):

P−n := P ∨ f−1(P) ∨ · · · ∨ f−φ(n)m+m(P) ∨ f−φ(n)m+m−1( Q) ∨ · · · ∨ f−n+1( Q).
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First, we have the lemma:

Lemma 2.3.6. – If n is large enough, then

ν�n(P−n(x)) ≤ e10δnlp

λl(fn)

1

1− 1
C0

.

for every atom P−n(x) of P−n.

Proof. – Recall that:

Bn(x) = B(x, ρ, φ(n), fm) ∩ f−φ(n)m+m(B(fφ(n)m−m(x), η, r(n) + m, f)).

We have shown in the previous paragraph that if n is large enough then for every
x ∈ An (see (2)):

νn(Bn(x)) ≤ e10δnpl

λl(fn)
.

Let n be large enough so that the previous property is satisfied. If P−n(x) does not
contain any points of An then ν�n(P−n(x)) = 0 and the lemma is true. So we can
assume that there exists y ∈ P−n(x) ∩An.

By definition of the joint partition, we have P−n(x) which is equal to:

P(x) ∩ · · · ∩ f−φ(n)m+m(P(fφ(n)m−m(x)))

∩ f−φ(n)m+m−1( Q(fφ(n)m−m+1(x))) ∩ · · · ∩ f−n+1( Q(fn−1(x))).

In particular, f i(y) ∈ P(f i(x)) for i = 0 . . . φ(n)m − m and then f i(y) ∈ Q(f i(x))

for i = φ(n)m − m + 1 . . . n − 1. By Proposition 2.3.4, the diameter of P(f i(x)) is
≤ ρ(f i(y)) for i = 0 . . . φ(n)m − m and the diameter of Q(f i(x)) is ≤ η(f i(y)) for
i = φ(n)m−m + 1 . . . n− 1 which means:

P−n(x) ⊂ Bn(y).

The lemma follows then first from the estimation of the previous paragraph since
y ∈ An and secondly from the fact that νn(An) is ≥ 1− 1

C0
.

Thanks to this estimation on ν�n(P−n(x)), we can bound the entropy of µ using a
variation of the proof of the variational principle. We refer the reader to [54] p.188-190
for the proof of the principle and to [4], [10] or [42] for its use to bound from below
the entropies of measures in holomorphic or meromorphic dynamics.

Let q be an integer 2m < q < n (with m from the above paragraph). For 0 ≤ j ≤
q − 1, we let a(j) =

�
n−j

q

�
and then

{0, 1, . . . , n− 1} = {j + rq + i, 0 ≤ r ≤ a(j)− 2, 0 ≤ i ≤ q − 1} ∪ S(j)

where S(j) = {0, 1, . . . , j−1, j+(a(j)−1)q, j+(a(j)−1)q+1, . . . , n−1} is of cardinality
less than 3q since j+(a(j)−1)q ≥ j+

�
n−j

q − 2
�

q = n−2q. We took the indexes r up
to a(j)−2 so that S(j) contains n−q . . . n−1 and so in particular φ(n)m−m+1 . . . n−1
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(we take q large with respect to m). We denote S1(j) the elements of S(j) other than
φ(n)m−m + 1 . . . n− 1 and S2(j) the elements φ(n)m−m + 1 . . . n− 1.

Now, we have (see for example Proposition 4.3.3 of [45]):

Hν�n(P−n) ≥ − log( sup
P∈ P−n

ν�n(P )) ≥ −10δnlp + log λl(f
n) + log

�
1− 1

C0

�
,

by the previous lemma.

On the other hand, by the proof of the variational principle for 0 ≤ j ≤ q − 1, we
have:

P−n =

a(j)−2�

r=0

�
f−(rq+j)

q−1�

i=0

f−i P

�
∨

�

t∈S1(j)

f−t P ∨
�

t∈S2(j)

f−t Q.

So, (again by Proposition 4.3.3 in [45]):

Hν�n(P−n) ≤
a(j)−2�

r=0

Hν�n(f−(rq+j)
q−1�

i=0

f−i P) +
�

t∈S1(j)

Hν�n(f−t P) +
�

t∈S2(j)

Hν�n(f−t Q)

which is equal to:
a(j)−2�

r=0

Hfrq+j
∗ ν�n

(
q−1�

i=0

f−i P) +
�

t∈S1(j)

Hν�n(f−t P) +
�

t∈S2(j)

Hν�n(f−t Q)

Summing this relation for j = 0 . . . q − 1, we get:

q

�
−10δnlp + log λl(f

n) + log

�
1− 1

C0

��

≤
q−1�

j=0

a(j)−2�

r=0

Hfrq+j
∗ ν�n

(
q−1�

i=0

f−i P) +
q−1�

j=0




�

t∈S1(j)

Hν�n(f−t P) +
�

t∈S2(j)

Hν�n(f−t Q)



 .

The integers j+rq for 0 ≤ j ≤ q−1 and 0 ≤ r ≤ a(j)−2 are all distinct and ≤ n−2q.
So we have that (using the convexity of the function Φ(x) = x log(x) for x > 0):

(I):
q

n− 2q + 1

�
−10δnlp + log λl(f

n) + log

�
1− 1

C0

��

which is less than:

H 1
n−2q+1

�n−2q
p=0 fp

∗ ν�n
(
q−1�

i=0

f−i P) +
q−1�

j=0




�

t∈S1(j)

Hν�n(f−t P)

n− 2q + 1
+

�

t∈S2(j)

Hν�n(f−t Q)

n− 2q + 1



 .

Here is the plan of the rest of the proof. In a first time, we deduce from that inequality
a lower bound of 1

q H 1
n−2q+1

�n−2q
p=0 fp

∗ νn
(
�q−1

i=0 f−i P). Then we will pass to the limit in
that inequality.
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1) Lower bound of
1
q H 1

n−2q+1

�n−2q
p=0 fp

∗ νn
(
�q−1

i=0 f−i P). – By definition, ν�n :=
νn|An

νn(An) .
In particular, ν�n ≤ νn

1− 1
C0

and

1

n− 2q + 1

n−2q�

p=0

fp
∗ ν�n ≤

1

(1− 1
C0

)(n− 2q + 1)

n−2q�

p=0

fp
∗ νn.

In order to control 1
q H 1

n−2q+1

�n−2q
p=0 fp

∗ νn
(
�q−1

i=0 f−i P) with the inequality (I), we are
going to use the following lemma:

Lemma 2.3.7. – Let ν and ν� be two probabilities such that ν� ≤ βν for some β > 1.

Then for any partition Q, we have:

Hν�( Q) ≤ β(Hν( Q) + 1).

We assume temporarily this lemma and we continue the proof.
Now, since:

ν�n ≤ βνn

with β = 1
1− 1

C0

, the previous lemma gives that (I) is less than

1

1− 1
C0

[H 1
n−2q+1

�n−2q
p=0 fp

∗ νn
(
q−1�

i=0

f−i P) + 1

+
q−1�

j=0




�

t∈S1(j)

Hνn(f−t P)

n− 2q + 1
+

�

t∈S2(j)

Hνn(f−t Q)

n− 2q + 1



 +
3q2

n− 2q + 1
]

(since the cardinality of S(j) is ≤ 3q).
This implies a lower bound of 1

q H 1
n−2q+1

�n−2q
p=0 fp

∗ νn
(
�q−1

i=0 f−i P) by
�

1− 1

C0

� �
1

n− 2q + 1

�
−10δnlp + log λl(f

n) + log

�
1− 1

C0

���

− 1

q
− 1

q




q−1�

j=0

�

t∈S1(j)

Hνn(f−t P)

n− 2q + 1
+

q−1�

j=0

�

t∈S2(j)

Hνn(f−t Q)

n− 2q + 1



− 3q

n− 2q + 1
.

It remains now to take the limit of that inequality when n goes to ∞.

2) Pass to the limit n → +∞. – First:

1

n− 2q + 1

�
−10δnlp + log λl(f

n) + log

�
1− 1

C0

��

goes to −10δlp + log dl when n →∞. Now, we need the following proposition.

Proposition 2.3.8. – We have:
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1. For all q > 2m,

H 1
n−2q+1

�n−2q
p=0 fp

∗ νn
(
q−1�

i=0

f−i P)

converges to Hµ(
�q−1

i=0 f−i P) when n →∞.

2. For q > 2m:

1

q

q−1�

j=0

�

t∈S1(j)

Hνn(f−t P)

n− 2q + 1

converges to 0 when n →∞.

3. For q > 2m:

1

q

q−1�

j=0

�

t∈S2(j)

Hνn(f−t Q)

n− 2q + 1

converges to 0 when n →∞.

End of the proof of Theorem 1. – We assume temporarily that the proposition
is true. We finish the lower bound of the entropy of µ.

If we pass to the limit in the inequality of the previous paragraph, we get:

1

q
Hµ(

q−1�

i=0

f−i P) ≥
�

1− 1

C0

�
(−10δlp + log dl)−

1

q
.

If we let q go to ∞, we have:

hµ(f) ≥
�

1− 1

C0

�
(−10δlp + log dl)

because the entropy of P is finite for µ.
This proves the theorem by letting C0 go to ∞ then by letting δ go to 0.
Up to the proof of Lemma 2.3.7 and Proposition 2.3.8, we have proved Theorem 1.

Proof of Lemma 2.3.7. – The function Φ(x) = −x log(x) is increasing on [0, e−1] and
decreasing on [e−1, 1]. So we have:

Hν�( Q) =
�

Q∈ Q

−ν�(Q) log ν�(Q)

=
�

Q∈ Q, ν(Q)≤ e−1
β

−ν�(Q) log ν�(Q) +
�

Q∈ Q, ν(Q)> e−1
β

−ν�(Q) log ν�(Q)

which is less than:
�

Q∈ Q, ν(Q)≤ e−1
β

−βν(Q) log(βν(Q)) +
�

Q∈ Q, ν(Q)> e−1
β

−ν�(Q) log ν�(Q).
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Since they are at most β
e−1 of Q ∈ Q with ν(Q) > e−1

β and because on the interval
[0, 1], the function Φ(x) is non negative and bounded by e−1, we have:

Hν�( Q) ≤ βHν( Q) + β.

Proof of Proposition 2.3.8. – In order to simplify the notations, we denote:

µ�n =
1

n− 2q + 1

n−2q�

p=0

fp
∗ νn.

For the proof of the three points of the proposition, we will use the following lemma:

Lemma 2.3.9. – For i, j = 0 . . . q − 1, we have

0 ≥
�

{ρ◦fi≤�}
log ρ ◦ f j dµ�n ≥ −δ(�)

if n is large enough. Here δ(�) goes to 0 when � goes to 0.

Moreover, we have the same lemma with µ instead of µ�n.

Proof. – We give the proof for µ�n. It is the same for µ.

First step. – We show first that for j = 0 . . . 2q − 1, we have

0 ≥
�

{d(fj(x),I)≤�}
log d(f j(x), I) dµ�n(x) ≥ −δ�(�)

for n large enough. Here δ�(�) goes to 0 when � goes to 0.
The last integral is equal to A =

�
{d(x,I)≤�} log d(x, I) d((f j)∗µ�n)(x). But (f j)∗µ�n

is smaller that n
n−2q+1µn for j = 0 . . . 2q − 1. So, we have

A ≥ n

n− 2q + 1

�

{d(x,I)≤�}
log d(x, I) dµn(x).

Now,
�
{d(x,I)≤�} log d(x, I) dµn(x) converges to

�
{d(x,I)≤�} log d(x, I) dµ(x). Indeed,

on one hand we have that: �
log d(x, I) dµn(x)

converges to
�

log d(x, I) dµ(x) by Hypothesis (H). On the other hand:
�

{d(x,I)>�}
log d(x, I) dµn(x)

converges to
�
{d(x,I)>�} log d(x, I) dµ(x) up to choosing � generic so that µ gives no

mass to {x, d(x, I) = �}.
Finally, since

�
{d(x,I)≤�} log d(x, I) dµ(x) goes to 0 when � converges to 0 by dom-

inated convergence, the first step follows.
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Second step. – Here, we prove that for i, j = 0 . . . 2q − 1, we have

0 ≥
�

{d(fi(x),I)≤�}
log d(f j(x), I) dµ�n(x) ≥ −δ��(�)

for n large enough. Here δ��(�) goes to 0 when � goes to 0.

For that, we split this integral into two parts:
�

{d(fi(x),I)≤�}∩{d(fj(x),I)≤δ�(�)}
log d(f j(x), I) dµ�n(x)

+

�

{d(fi(x),I)≤�}∩{d(fj(x),I)>δ�(�)}
log d(f j(x), I) dµ�n(x).

The first term is larger than
�

{d(fj(x),I)≤δ�(�)}
log d(f j(x), I) dµ�n(x)

and this term is bounded by below by −δ�(δ�(�)) if n is large enough by using the first
step. That quantity goes to 0 when � goes to 0.

The second term is larger than (if � ≤ e−1 and δ�(�) ≤ 1)
�

{d(fi(x),I)≤�}
log δ�(�) dµ�n(x)

≥ − log δ�(�)

�

{d(fi(x),I)≤�}
log d(f i(x), I) dµ�n(x) ≥ δ�(�) log δ�(�)

if n is large enough by using the first step. That quantity goes to 0 when � goes to 0.

Third step. – Now, we prove the lemma. Recall that:

ρ(x) =

�
d(x, I)× · · · × d(fm−1(x), I)

Km

�p

.

In particular, we have:

{x, ρ ◦ f i(x) ≤ �} ⊂ {x, d(f i(x), I) ≤ �
1

mp K} ∪ · · · ∪ {x, d(f i+m−1(x), I) ≤ �
1

mp K}.

So, for i, j = 0 . . . q − 1, we have

0 ≥
�

{ρ◦fi≤�}
log ρ ◦ f j dµ�n

which is larger than
m−1�

l=0

�

{d(f l+i(x),I)≤�
1

mp K}
log ρ ◦ f j dµ�n.
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Now, for l between 0 and m− 1,
�

{d(f l+i(x),I)≤�
1

mp K}
log ρ ◦ f j dµ�n =

m−1�

s=0

�
p

�

{d(f l+i(x),I)≤�
1

mp K}
log d(fs+j(x), I)dµ�n(x)

− p log K

�

{d(f l+i(x),I)≤�
1

mp K}
dµ�n(x)

�

≥ −mpδ��(�
1

mp K) + mp log K

�

{d(f l+i(x),I)≤�
1

mp K}
log d(f l+i(x), I)dµ�n(x)

for � small enough so that �
1

mp K ≤ e−1 and n large enough by using the second step
(recall that m < q).

Finally this term is larger than −2mp log Kδ��(�
1

mp K) for n large enough and it
was the inequality that we were looking for.

First point of the proposition 2.3.8. – We thank the referee for the simplification of
the proof of this point.

We recall that in this paragraph, we consider the partition P which is constructed
as in Proposition 2.3.4 with s(x) = ρ(x). In particular, we have Vj := {x, e−(j+1) <

ρ(x) ≤ e−j} for j ∈ N.

For a multi-index s = (s0, . . . , sq−1) ∈ Nq, we denote by Ws = Vs0∩· · ·∩f−q+1Vsq−1 .
When P ∈

�q−1
i=0 f−i P, then P is in some Ws for some multi-index s. Moreover, the

number of P ∈
�q−1

i=0 f−i P which are in Ws is bounded from above by Cqe2kqe2k|s| =

Cq
0e2k|s| with |s| = s0 + · · · + sq−1.

Now, for A ∈ N∗, we have

Hµ�n(
q−1�

i=0

f−i P) =
�

s∈Nq

�

P∈
�q−1

i=0 f−i P, P⊂Ws

−µ�n(P ) log µ�n(P )

that we divide as:

�

|s|≥A

�

P∈
�q−1

i=0 f−i P, P⊂Ws

−µ�n(P ) log µ�n(P )+
�

|s|<A

�

P∈
�q−1

i=0 f−i P, P⊂Ws

−µ�n(P ) log µ�n(P ).
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We begin with the first term. We use the notations and the ideas of the proof of
Proposition 2.3.4.

R1(A) =
�

|s|≥A

�

P∈
�q−1

i=0 f−i P, P⊂Ws

−µ�n(P ) log µ�n(P )

≤
�

|s|≥A

µ�n(Ws)(log(#{P ∈
q−1�

i=0

f−i P , P ⊂ Ws})− log µ�n(Ws))

≤ log Cq
0

�

|s|≥A

µ�n(Ws) + 2k
�

|s|≥A

|s|µ�n(Ws) +
�

|s|≥A

µ�n(Ws) log
1

µ�n(Ws)
.

Now, by using Lemma 2.3.5, this is less than

C(q)e−
A
2q + (log Cq

0 + 2k + 1)
�

|s|≥A

|s|µ�n(Ws).

On Ws, we have −
�q−1

j=0 log ρ ◦ f j ≥ |s|. Moreover, the Ws are pairwise disjoints
and

∪|s|≥AWs ⊂ ∪q−1
i=0 ∪{s∈Nq , si≥A

q } Ws ⊂ ∪q−1
i=0 {ρ ◦ f i ≤ e−

A
q },

so,

R1(A) ≤ C(q)e−
A
2q + (log Cq

0 + 2k + 1)
q−1�

j=0

�

|s|≥A

�

Ws

− log ρ ◦ f j(x)dµ�n(x)

≤ C(q)e−
A
2q + (log Cq

0 + 2k + 1)
q−1�

j=0

q−1�

i=0

�

{ρ◦fi(x)≤e
−A

q }
− log ρ ◦ f j(x)dµ�n(x)

which is as small that we want if we take A large and then n large enough by using
the previous lemma. The same thing is true if we replace µ�n by µ in R1(A): it is as
small as we want if we take A large enough by using the previous lemma.

We now consider the second term
�

|s|<A

�

P∈
�q−1

i=0 f−i P, P⊂Ws

−µ�n(P ) log µ�n(P ).

Up to moving slightly the boundaries of the partition P, we can assume that µ gives
no mass to the boundary of its elements. In particular, the above term converges to:

�

|s|<A

�

P∈
�q−1

i=0 f−i P, P⊂Ws

−µ(P ) log µ(P ),

when n goes to infinity since we only consider a finite number of elements and µ�n
converges to µ.

In particular, this implies that Hµ�n(
�q−1

i=0 f−i P) converges to Hµ(
�q−1

i=0 f−i P).
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Second point of Proposition 2.3.8. – We show that:

1

q

q−1�

j=0

�

t∈S1(j)

Hνn(f−t P)

n− 2q + 1

converges to 0 when n goes to ∞.

First, we consider Hνn(f−t P). We have

Hνn(f−t P) =
+∞�

s=0

−
�

P∈ P, P⊂Vs

((f t)∗νn)(P ) log((f t)∗νn)(P )

which is less than (see the proof of Proposition 2.3.4)

+∞�

s=0

((f t)∗νn)(Vs)(log |Prs | − log((f t)∗νn)(Vs))

≤ log C + 2k
+∞�

s=0

(s + 1)((f t)∗νn)(Vs) +
+∞�

s=0

((f t)∗νn)(Vs) log
1

((f t)∗νn)(Vs)

≤ log C + 2k + (2k + 1)
+∞�

s=0

s((f t)∗νn)(Vs) + C(1)

= log C + 2k + (2k + 1)
s0−1�

s=0

s((f t)∗νn)(Vs) + (2k + 1)
+∞�

s=s0

s((f t)∗νn)(Vs) + C(1).

The last inequality comes from Lemma 2.3.5 with q = 1 and A = 0.

So, to prove the second point, it is sufficient to show that

1

q

q−1�

j=0

�

t∈S1(j)

�+∞
s=s0

s((f t)∗νn)(Vs)

n− 2q + 1

is as small as we want for s0 large and then n large enough because the cardinality
of S1(j) is smaller than 3q.

This last term is less than

− 1

q(n− 2q + 1)

q−1�

j=0

�

t∈S1(j)

�

{ρ≤e−s0}
log ρ d(f t)∗νn.

But:
�

t∈S1(j)

(f t)∗νn ≤ (φ(n)m−m + 1)µ��n

with µ��n = 1
φ(n)m−m+1

�φ(n)m−m
p=0 fp

∗ νn.
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Following Lemma 2.3.9 with µ��n instead of µ�n and i = j = 0 (this is indeed possible
because the indexes p in µ��n goes to φ(n)m−m which is ≤ n−1− (m−1)), we deduce
that:

1

q(n− 2q + 1)

q−1�

j=0

�

t∈S1(j)

+∞�

s=s0

s((f t)∗νn)(Vs)

is as small as we want by taking s0 large enough and then n large enough.
This gives the second point of Proposition 2.3.8.

Third point of Proposition 2.3.8. — The proof is the same than for the second point
by replacing S1(j) by S2(j), P by Q and ρ by η.

At the end, we have to bound from above:

1

q(n− 2q + 1)

q−1�

j=0

�

t∈S2(j)

+∞�

s=s0

s((f t)∗νn)(Vs),

(here the Vs correspond to the partition Q and to the function η).
That term is less than

− 1

q(n− 2q + 1)

q−1�

j=0

�

t∈S2(j)

�

{η≤e−s0}
log η d(f t)∗νn.

Finally: �

t∈S2(j)

(f t)∗νn ≤ nµn

and since
�
{η≤e−s0} log ηdµn converges to

�
{η≤e−s0} log ηdµ, it is also as small as we

want if s0 is large enough then n is large enough. This gives the third point of Propo-
sition 2.3.8, and the proposition follows.
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CHAPTER 3

DYNAMICS OF BIRATIONAL MAPS OF Pk

3.1. A family of birational maps

The purpose of this section is to introduce the family of birational maps B.

Recall that a meromorphic map f : Pk → Pk is holomorphic outside an analytic
subset I(f) of codimension ≥ 2 in Pk. It can be written in homogeneous coordinates
as [P0 : . . . : Pk] where the Pi are homogeneous polynomials of algebraic degree d in
the (z0, . . . , zk) variable, with gcdi(Pi) = 1.

Let Γ denote the closure of the graph of the restriction of f to Pk \ I(f). This is
an irreducible analytic set of dimension k in Pk × Pk.

Let π1 and π2 denote the canonical projections of Pk × Pk on its factors. The
indeterminacy locus I(f) (or indeterminacy set) of f is the set of points z ∈ Pk such
that dim π−1

1 (z) ∩ Γ ≥ 1. It is also the common zeros of the Pi: I(f) = {Pi = 0}.

We assume that f is dominant, that is, π2(Γ) = Pk. If A is a subset of Pk, define

f(A) := π2(π
−1
1 (A) ∩ Γ) and f−1(A) := π1(π

−1
2 (A) ∩ Γ).

Define formally for a current S on Pk, not necessarily positive or closed, the pull-back
f∗(S) by

(3) f∗(S) := (π1)∗
�
π∗2(S) ∧ [Γ]

�

where [Γ] is the current of integration on Γ.

Similarly, the operator f∗ is formally defined by

(4) f∗(R) := (π2)∗
�
π∗1(R) ∧ [Γ]

�
.

Here, we consider a birational map f of algebraic degree d ≥ 2. That is a map such
that #f−1(z) = 1 for z generic. Let δ be the algebraic degree of f−1. We denote
I+ := I(f) and I− = I(f−1) the indeterminacy sets of f and f−1.
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We also consider the critical sets C+ (or C(f)) and C− (or C(f−1)) defined by:

C+ := f−1(I−)

C− := (f−1)−1(I+).

Write f = [P0 : . . . : Pk] where the Pi are homogeneous polynomials of degree d. Let
F = (P0, . . . , Pk) be the induced map on Ck+1. Similarly, write f−1 = [Q0 : . . . : Qk]

where the Qi are homogeneous polynomials of degree δ and let F−1 = (Q0, . . . , Qk).
There is of course an abuse of notation since F ◦ F−1 �= Id. Instead, we have that:

F ◦ F−1 = P (z0, . . . , zk)× (z0, . . . , zk) ,

where P is a homogeneous polynomial of degree dδ − 1 equal to 0 in π−1( C− ∪ I−)

where π : Ck+1 → Pk is the canonical projection. That implies that the critical set
C− is an analytic set of codimension 1 and that I− ⊂ C−. Similarly, we have that
C+ is of codimension 1 and I+ ⊂ C+ (see also Proposition 3.3 in [15] and [50]). So,
f : Pk\ C+ → Pk\ C− is a biholomorphism.

For 0 ≤ q ≤ k and n > 0, define λq(fn) as the degree of (fn)−1(L) for L a generic
linear subspace of codimension q. The number λq(fn) gives a size for the action of fn

on the cohomology group Hq,q(Pk). Since the quantity λq(fn) is cohomological, we
have:

λq(f
n) = �(fn)∗(ωq)� =

�

Pk

(fn)∗(ωq) ∧ ωk−q

= �(fn)∗(ω
k−q)� =

�

Pk

(fn)∗(ω
k−q) ∧ ωq.(5)

We have in particular that λ1(f) = d is the algebraic degree and that λk(fn) the

topological degree of fn is equal to #(fn)−1(z) for z generic. In particular, λk(fn) = 1

since f is birational.
We define the dynamical degree of order q of f by:

dq := lim
n→∞

(λq(f
n))

1
n(6)

These limits always exist and dq ≤ dq
1 [25]. The last degree λk(f) = dk is equal to 1.

A result by Gromov [40, Theorem 1.6] implies that q �→ log dq is concave in q. In
particular, there exists a q0 such that:

1 = d0 ≤ d1 ≤ · · · ≤ dq0 ≥ · · · ≥ dk = 1.

Denote for f−1, λ−q (fn) and d−q the quantities previously defined for f .
In order to work with the currents in cohomology, we need a hypothesis on the

indeterminacy sets so that (fn)∗ = (f∗)n on the cohomology group Hq,q(Pk). If so,
we say that the map is algebraically q-stable (see [50] and [31]). For that purpose, we
will consider the following class of mappings.
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Definition 3.1.1. – Let B0 be the set of birational maps of Pk
such that there exist

an integer 0 < s < k and two integers d, δ > 1 such that ds = δk−s
and for all n ≥ 1:

— for all linear subspaces of codimension q ≤ s, deg (f−nL) = dqn
;

— for all linear subspaces of codimension q ≤ k − s, deg (fnL) = δqn
.

Of course, the fact that ds = δk−s can be deduced from the rest of the definition
but we keep it there for simplicity. If a map f is in B0, then f is algebraically q-stable
for q ≤ s and f−1 is algebraically q-stable for q ≤ k−s. The following classical lemmas
will help us in producing a more geometric characterisation of B0.

Lemma 3.1.2. – Let f be a birational map of algebraic degree d such that dim(I+) =

k − s− 1 then λq(f) = dq
for all q ≤ s and λs+1(f) < ds+1

.

Proof. – Let f be as above and let q ≤ s. Then λq(f) is the mass of the current
f∗(ωq) which is a form with L1 coefficients. In particular, f∗(ωq) gives no mass to
I+. On the other hand f∗(ωq) = f∗(ω)q outside I+. But the current f∗(ω)q is a well
defined positive closed current of bidimension (k− q, k− q) of mass dq (see Corollary
4.11 in [14, Chapter III]), and it cannot charge I+ since k− s−1 < k− q. So we have
the equality f∗(ωq) = f∗(ω)q on Pk and both currents have the same mass dq.

Now the same argument will give that λs+1(f) < ds+1 if f∗(ω)s+1 gives some mass
to I+ (Corollary 4.11 in [14, Chapter III] still implies that f∗(ω)s+1 is well defined).
Let u be a potential of f∗(ω) that is ddcu + dω = f∗(ω). We will see in Lemma 3.2.4
below that:

u(x) ≤ A� log dist(x, I+) + B�.

In particular, since log dist(x, I+) ≤ log dist(x, y) for y ∈ I+, Theorem 7.8 in [14,
Chapter III] shows the current f∗(ω)s+1 has its Lelong numbers > c > 0 on I+ for
some c. Siu’s theorem [51] implies that this current is greater than c[I+]. In particular,
it gives some mass to [I+].

Applying the previous lemma to a map f ∈ B0 shows that necessarily dim(I+) =

k − s− 1 and dim(I−) = s− 1. We now prove:

Lemma 3.1.3. – If a map f is in B0 with s as above, then for any q ≤ s, no algebraic

set of codimension q is sent to I+
by some iterate fn

of f .

Proof. – Assume that there exist f ∈ B0 and an algebraic set A of codimension q ≤ s

sent to I+ by fn. To simplify the proof, assume that n = 1 and take the smallest q

such that the above property is satisfied. Let f = [P0 : P1 . . . : Pk] where the Pi are
homogeneous polynomials of algebraic degree d with no common factors. That way,
I+ = {P0 = · · · = Pk = 0}. Let π : Ck+1 → Pk be the canonical projection and let
F = (P0, . . . , Pk).
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For an element Z = (z0, . . . , zk) ∈ Ck+1, we write |Z|2 = |z0|2 + · · · + |zk|2. Then,
we have that:

f∗(ω)− dω = ddc(log |F |2 − d log |Z|2).
Applying f∗ again gives:

f∗(f∗(ω))− df∗(ω) = ddc(log |F 2|2 − d log |F |2).

So, taking the sum gives:

f∗(f∗(ω))− d2ω = ddc(log |F 2|2 − d2 log |Z|2).

The singularities of the qpsh function ϕ := log |F 2|2−d2 log |Z|2 are exactly on the set
A ∪ I+ (assuming A is the largest algebraic set sent to I+) so we have the inequality
ϕ ≤ C log dist(x,A ∪ I+) + C for some C > 0.

Again, Corollary 4.11 in [14, Chapter III] implies that f∗(f∗(ω))q is well defined
and Theorem 7.8 in [14, Chapter III] shows that the current (f∗(f∗(ω)))q has its
Lelong numbers > c > 0 on A for some c. Siu’s theorem [51] implies that it gives
positive mass to A. But f∗(f∗(ω))q is of mass d2q and f∗(f∗(ω))q = (f2)∗(ω)q outside
A ∪ I+. Since the current (f2)∗(ωq) gives no mass to analytic set we have λq(f2) <

λq(f)2, a contradiction.

This leads to the lemma:

Lemma 3.1.4. – Let f be a birational map with dim(I+) = k− s− 1 and dim(I−) =

s− 1. Then the fact that no algebraic set of codimension q ≤ s is sent to I+
by some

iterate fn
of f is equivalent to the condition:

�

n≥0

f−nI(f) ∩
�

n≥0

fnI(f−1) = ∅.(7)

Proof. – Assume that there exists some A sent to I+ by fn. Then we have that A ⊂
C(fn) since A is contracted and so fn(A) ⊂ I(f−n). Since I(f−n) ⊂

�n−1
0 f jI(f−1)

we have that the intersection (7) is not empty.
Now assume that the intersection (7) is not empty. Formal manipulations show

that (7) is equivalent to:
I− ∩

�

n≥0

f−nI(f) = ∅.

Hence we can assume that there exists some point y ∈ I− ∩ f−nI(f). The map
f : C+ → I− is meromorphic and surjective, in particular, the dimension dim(f−1(x))

is upper semi continuous hence ≥ k − s at every point. In particular, the set f−1(y)

is of codimension ≤ s and it is sent by fn+1 to I(f). This concludes the proof.

This leads to the characterisation of B0:
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Proposition 3.1.5. – Let f be a birational map with dim(I+) = k − s − 1 and

dim(I−) = s− 1, then f ∈ B0 if and only if f satisfies (7).

Proof. – The previous lemmas already give the first implication.
Take f a birational map with dim(I+) = k − s − 1 and dim(I−) = s − 1 which

satisfies (7). Lemma 3.1.2 gives that λq(f) = dq for q ≤ s and λq(f−1) = δq for
q ≤ k − s where d is the algebraic degree of f and δ is the algebraic degree of f−1.
The proof follows from the following lemma.

We introduce some notations first. Let C s denote the convex compact set of
(strongly) positive closed currents S of bidegree (s, s) on Pk and of mass 1, i.e.
�S� := �S, ωk−s� = 1. For a positive closed current T of mass m(T ) > 0, we denote
by Tnor the renormalization of T (that is Tnor = m(T )−1T ). Denote for simplicity
L := λq(f)−1f∗ and Λ := (λk−q)−1f∗ = (λ−q (f))−1f∗ which are well defined opera-
tors on the elements of C q which are smooth near I− (resp. I+). We make an abuse of
notations and write L instead of Lq, this is not a problem since in what follows L(S)

will always be the current f∗(S)nor. The theory of super-potentials (see the appendix)
allows us to extend the operator L (resp. Λ) to the currents in C q such that their
super-potentials are finite at one point of the form Λ(S) for S ∈ Ck−q+1 smooth near
I+ (resp. at one point of the form L(S) for S ∈ Ck−q+1 smooth near I−).

Now we show that a map which satisfies (7) is in fact algebraically q-stable for all
q. That is to say no mass is lost on the indeterminacy set by pull-back. More precisely,
we have the proposition that uses the theory of super-potential:

Lemma 3.1.6. – Let f be a birational map satisfying (7). Then for all 0 ≤ q ≤ k,

λq(fn) = (λq(f))n
for all n and so dq = λq(f) for all q.

Proof. – We have to compute the integral:

λq(f
n) = �(fn)∗(ωq)� =

�

Pk

(fn)∗(ωq) ∧ ωk−q.

The proof is by induction on n: (fn−1)∗(ωq) is a form in L1 smooth near I− by (7).
So we can define its pull-back by f which is of mass λq(f)λq(fn−1). On the other
hand, ωq is smooth near I(f−n) so it is (fn)∗-admissible and the mass of (fn)∗(ωq)

is λq(fn).
We will now prove that f∗((fn−1)∗(ωq)) = (fn)∗(ωq).
Let π1|Γ and π2|Γ be the restriction of π1 and π2 to the graph Γ of f . That

way, f∗(S) = (π1)∗(π2|Γ)∗(S) where S ∈ C q is smooth near I−. We will take
S = (fn−1)∗(ωq)nor.

Let V be a small neighborhood of I− such that S is smooth here. Outside π2
−1(V )∩

Γ, π2|Γ is a finite map, hence π2
∗(S)∧ [Γ] is well defined and depends continuously of

S here by Theorem 1.1 in [29]. Furthermore, if S|Pk\V does not give mass to a Borel
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set A then (π2|Γ)∗(S) does not give mass to (π2|Γ)−1(A) outside π−1
2 (V )∩Γ. Since π1

is holomorphic, the same is true for f∗(S|Pk\V ). On V , S is smooth, hence f∗(S|V ) is
a form in L1 (see e.g. [25]).

We consider S = (fn−1)∗(ωq): (fn−1)∗(ωq) is a form in L1 hence it does not give
mass to algebraic sets of dimension ≤ k−1; so f∗((fn−1)∗(ωq)) is a current that does
not give mass to algebraic sets of dimension ≤ k − 1. We get that f∗((fn−1)∗(ωq))

and (fn)∗(ωq) are equal wherever they are smooth that is outside analytic sets of
dimension ≤ k−1. We deduce that they are equal hence they have the same mass.

The following corollary of the previous proof will be used later:

Corollary 3.1.7. – Let R ∈ C q be a smooth form and f in B0. Then for all i, j ≥ 0,

we have that (f i)∗(R) is (f j)∗-admissible and (f j)∗((f i)∗(R)) = (f i+j)∗(R).

Let j ≥ 0 and q ≤ k. Let f in B0. For a current S ∈ C q which is (f j)∗-admissible,
we can define Lj(S) as (λq(f j))−1(f j)∗(S) (similarly we define Λj). By Proposition
3.1.6, we have that λq(f j) = λq(f)j so we can also write Lj(S) = λq(f)−j(f j)∗(S).
From Corollary 3.1.7, we have that Lj(S) = Lj(S) on smooth forms, the question
is: does it also stand for (f j)∗-admissible currents ? The following lemma answers
positively:

Lemma 3.1.8. – Let S ∈ C q for q ≤ k. Let n > 0 such that S is (fn)∗-admissible

then for all j with 0 ≤ j ≤ n− 1, Lj(S) is well defined, f∗-admissible and Lj+1(S) =

Lj+1(S). In particular, Ln(S) = Ln(S).

Proof. – Let S be as above, then a super-potential of S is finite at Λn(ωk−q+1) by
hypothesis. Since f satisfies (7), we have that Λ(ωk−q+1) is smooth near I(fn−1), the
previous corollary implies that

Λn(ωk−q+1) = Λn−1(Λ(ωk−q+1)).

So the super-potentials of S are finite at the image by Λn−1 of a current smooth near
I(fn−1): it is (fn−1)∗-admissible (see the appendix). An immediate induction gives
that S is (f j)∗-admissible for j ≤ n.

Now we prove by induction on j that Lj(S) is f∗-admissible and that Lj+1(S) =

Lj+1(S). In order to do that, we show that both currents have the same super-
potential and conclude by Proposition A.1.3.

For j = 0, it is just the fact that S is f∗-admissible. Now, assume the property
holds up to the rank j. A super-potential of Lj(S) = Lj(S) is by Proposition A.1.18:

ULj(S) = ULj(ωq) +
λq−1(f j)

λq(f j)
US ◦ Λj

MÉMOIRES DE LA SMF 122



3.1. A FAMILY OF BIRATIONAL MAPS 41

on forms smooth near I(f j). Taking the value at Λ(ωk−q+1) (which is smooth near
I(f j)) gives:

ULj(S)(Λ(ωk−q+1)) = ULj(ωq)(Λ(ωk−q+1)) +
λq−1(f j)

λq(f j)
US(Λj(Λ(ωk−q+1))).

The current Lj(ωq) = Lj(ωq) is f∗-admissible since it is smooth near I−, that implies
that ULj(ωq)(Λ(ωk−q+1)) is finite. Similarly, applying the previous corollary to f−1

gives that Λj(Λ(ωk−q+1)) = Λj+1(ωk−q+1) and since S is (f j+1)∗-admissible then
US(Λj(Λ(ωk−q+1))) is also finite.

That gives that ULj(S)(Λ(ωk−q+1)) is finite so Lj(S) is f∗-admissible. We can now
apply Proposition A.1.18 to Lj(S):

ULj+1(S) = UL(ωq) +
λq−1(f)

λq(f)
ULj(S) ◦ Λ

= UL(ωq) +
λq−1(f)

λq(f)
(ULj(ωq) +

λq−1(f j)

λq(f j)
US ◦ Λj) ◦ Λ

on smooth forms. Since UL(ωq) + λq−1(f)
λq(f) ULj(ωq) ◦ Λ = ULj+1(ωq) on smooth forms,

and since Λj ◦ Λ = Λj+1 on smooth forms, we deduce from Proposition 3.1.6 that:

ULj+1(S) = ULj+1(S)

on smooth forms, hence Lj+1(S) = Lj+1(S) by Proposition A.1.3. That gives the
lemma.

Summing up what we proved, we have that for an element f ∈ B0 the dynamical
degrees are ordered as follows:

d0 < d1 < d2 < . . . < ds > . . . > dk−2 > dk−1 > dk

� � � � � � �

1 < d < d2 < . . . < ds = δk−s > . . . > δ2 > δ > 1.

Let f ∈ B0. Recall that a quasi-potential of a current T ∈ C q is a current U of
bidegree (q − 1, q − 1) such that T = ωq + ddcU . We know from the appendix that it
is always possible to take U negative. In what follows, for an irreducible analytic set
A, we define [f(A)] as the current of integration over f(A) counting the multiplicity
of f at A and if A is not irreducible, we decompose it into irreducible components
(Ai) and we define [f(A)] as

�
i[f(Ai)].

Since f satisfies (7), we have that I+ ∩ f j(I−) = ∅ for j ≤ n. So, fn(I−) is well
defined and the form UL(ω)L(ωs−1) is smooth in fn(I−) so the following integral is
well defined: �

[fn(I−)]
UL(ω)L(ωs−1).
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The terms (vol(I−))−1 and (vol(I+))−1 in the following hypothesis are just here to
normalize the integrals. We are going to restrict the study to the subset B of B0 given
by the following definition:

Definition 3.1.9. – Let UL(ω) be a negative quasi-potential of L(ω) and let UΛ(ω) be

a negative quasi-potential of Λ(ω). The set B is the set of elements f ∈ B0 such that:

∞�

n=0

�
1

ds

�n

(vol(I−))−1

�

fn(I−)
UL(ω)L(ωs−1) > −∞

and

∞�

n=0

�
1

δk−s

�n

(vol(I+))−1

�

f−n(I+)
UΛ(ω)Λ(ωk−s−1) > −∞.

As usual, for two sets E and F , we denote infx∈E,y∈F dist(x, y) by dist(E,F ). In
[1], the authors asked for a quantitative and stronger version of (7) similar to:

Hypothesis 3.1.10. – The birational mapping f satisfies dim(I+) = k − s − 1,

dim(I−) = s− 1 and:

∞�

n=0

�
1

d

�n

log dist(I+, fn(I−)) > −∞

and

∞�

n=0

�
1

δ

�n

log dist(I−, f−n(I+)) > −∞.

In P2, the convergence of the series
�∞

n=0 d−n log dist(I+, fn(I−)) > −∞ and�∞
n=0 δ−n log dist(I−, f−n(I+)) > −∞ are equivalent (see [15]), it has no reason to

be true in higher dimension.
In the case of P2, a map is in B if and only if it satisfies Hypothesis 3.1.10 (see [1,

Theorem 4.3] and Theorem 3.2.1 below). That is because the distance between the
supports of the currents is a good distance for Dirac masses but not for currents of
higher bidimension. We will see in Theorem 3.2.8 that Hypothesis 3.1.10 implies that
a map is in B.

We will see in Theorem 3.2.1 that the convergence of the series in Definition 3.1.9
has a clear interpretation in term of super-potentials : it means exactly that the
super-potentials of the Green current of order s are finite at [I−]nor.

Generalizing [1] to the case of higher dimension is the main goal of this chapter. The
class B contains the regular automorphisms of Ck since those satisfy fn(I−) = I−,
f−n(I+) = I+ and I+ ∩ I− = ∅ (see [50]). It also contains the regular birational

maps of Pk ([23]), in this case the indeterminacy sets of I+ and I− are trapped in
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some stable disjoint open sets. The interest of B is that it is generic in the following
sense:

Theorem 3.1.11. – Let Es be the set of birational maps f : Pk → Pk
such that I+

and I− satisfy dim(I+) = k− s− 1 and dim(I−) = s− 1. Consider the group action:

Φ : PGL(k + 1, C)× Es → Es

(A, f) �→ A ◦ f.

Then outside a pluripolar set of the orbit Orb(f) of f ∈ Es, the maps of Orb(f) are

in B.

This provides us with many new examples: start with a regular polynomial auto-
morphism of Ck or a regular birational map in Pk then consider its orbit under the
action of PGL(k + 1, C). Section 3.3 is devoted to the proof of the previous theorem.

Other families of polynomial automorphisms were studied in [44] and [42]. In these
papers, the authors replace the set I− by the set f(L∞\I+) in the condition I+∩I− =

∅. Those mappings are not always in B since the conditions dim(I+) = k− s− 1 and
dim(I−) = s− 1 no longer need to be satisfied.

3.2. Construction of the Green currents

Take f ∈ B. Let s be such that dim(I+) = k − s − 1 and dim(I−) = s − 1. The
following theorem is the main result of this section.

Theorem 3.2.1. – Let f ∈ B, then the sequence (Lm(ωs)) converges in the Hartogs’

sense to the Green current of order s of f that we denote by T+
s .

To prove the theorem, we need the following computation of the super-potential of
Lm(ωq) for q ≤ s,

Lemma 3.2.2. – A super-potential of Lm(ωq) is given on R ∈ Ck−q+1 which is

(fm)∗-admissible by:

(8)
m−1�

n=0

�
1

d

�n

UL(ωq) ◦ Λn(R).

Proof. – Recall that for q ≤ s, we have λq(fn) = (dq)n for all n and so dq = dq.
Recall that for S ∈ C q which is f∗-admissible, L(S) is the element of C q defined as
d−qf∗(S). Furthermore, any current smooth in a neighborhood of I− is f∗-admissible.
By Corollary 3.1.7, Ln−1(ωq) is f∗-admissible since f satisfies (7) so we can define
Ln(ωq).

Now, let UL(ωq) denote a negative super-potential of L(ωq) (it is always possible
by Proposition A.1.1). Assume first that R ∈ Ck−q+1 is smooth. So, we have that
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by Proposition A.1.18 that a super-potential of Lm(ωq) = L(Lm−1(ωq)) is given on
currents in Ck−q+1 smooth in a neighborhood of I+ by:

UL(ωq) +
1

d
ULm−1(ωq) ◦ Λ.

So, by induction, for a smooth element R ∈ Ck−q+1, we have that a super-potential
of Lm(ωq) is given on R by:

(9)
m−1�

n=0

�
1

d

�n

UL(ωq) ◦ Λn(R).

So we have proved the lemma for R ∈ Ck−q+1 smooth. In particular, for such an R,
Corollary 3.1.7 gives that a super-potential of Lm(ωq) is given on R by:

m−1�

n=0

�
1

d

�n

UL(ωq) ◦ Λn(R).

Now, assume R is only (fm)∗-admissible. Lemma 3.1.8 implies that R is (fn)∗-
admissible then for all n with 0 ≤ n ≤ m. We consider a sequence of smooth current
(Rj) of Ck−q+1 converging to R in the Hartogs’ sense. Then Λn(Rj) is smooth near
I+ for 0 ≤ n ≤ m − 1 by (7) and every term in the super-potential of Lm(ωq) is
continuous for the Hartogs’ convergence, that gives that:

ULm(ωq)(R) =
m−1�

n=0

�
1

d

�n

UL(ωq) ◦ Λn(R).

Again, Lemma 3.1.8 gives that Λn(R) = Λn(R) for all n ≤ m − 1 if R is (fm)∗-
admissible so the lemma is proved.

Remark 3.2.3. – The equality (8) also stands for any current R ∈ Ck−q+1 such
that Λn(R) is smooth near I+ for 0 ≤ n ≤ m − 1. Indeed such currents are (fm)∗-
admissible: every term of the form UL(ωq) ◦Λn(R) is finite for n ≤ m−1 and depends
continuously on R for the Hartogs’ convergence, so we have by (8) that a super-
potential of Lm(ωq) is finite at R this means by symmetry of the super-potential that
a super-potential of R is finite at Lm(ωq) hence R is (fm)∗-admissible.

Since the sequence of super-potential of (Lm(ωs)) given by (8) is decreasing, it is
enough to show that it does not converge uniformly to −∞ to show that it converges
in the Hartogs’ sense (see Proposition A.1.8). In [31], the authors prove that fact
in the algebraically q-stable case with an additional assumption on the size of C+

(that fails in our case) using the fact that the sequence is bounded from below by the
super-potential of any weak limit of the Cesarò mean of (Lm(ωq)). Here the idea is
to show that the convergence holds at the point [I−]nor.

We need the following estimate of UL(ω) for that. It is similar to Proposition 1.3
in [1] though our proof is simpler taking advantage of the fact that we are in Pk.
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Lemma 3.2.4. – Let UL(ω) be a quasi-potential of L(ω). Then there exist constants

A > 0, B, A� > 0, B�
such that:

(10) A log dist(x, I+)−B ≤ UL(ω)(x) ≤ A� log dist(x, I+) + B�,

for all x.

Proof of the lemma. – Let P1, . . . , Pk+1 be homogeneous polynomials of degree d with
no common factors such that f = [P1 : . . . : Pk+1]. That way, I+ = {P1 = · · · =

Pk+1 = 0}. For an element Z = (z1, . . . , zk+1) ∈ Ck+1, we write |Z|2 = |z1|2 +

· · · + |zk+1|2. Let π : Ck+1 → Pk denote the canonical projection and we write
F = (P1, . . . , Pk+1). Then, we have that:

π∗(L(ω)− ω) = ddc(
1

d
log |F |2 − log |Z|2).

Observe that the qpsh function d−1 log |F |2−log |Z|2 is well defined on Pk since it does
not depend on the choice of coordinates. So we can write that UL(ω) = d−1 log |F |2 −
log |Z|2. So in Pk, the singularities of UL(ω) come from the terms in log |F |2. In the
open set of Ck+1 defined by 1 − ε < |Z| < 1 + ε, we have that the map F (Z) is
equal to (0, . . . , 0) ∈ Ck+1 exactly in π−1(I+). Using Łojasiewicz Theorem (Chapter
IV Theorem 7 in [46]), that provide us with two constants α > 0 and C > 0 such
that on |Z| = 1 we have:

|F (Z)| ≥ C(dist(Z, π−1(I+)))α.

Now from the fact that the projection π is Lipschitz in |Z| = 1 and the above bound,
we have constants A > 0, B such that:

UL(ω) ≥ A log dist(. , I+)−B.

For the other inequality, we work in a chart of Pk where we let z be the coordinate.
Let V be a relatively compact open set in the chart. Observe that it is sufficient
to prove the upper bound in V . For y ∈ I+ in the chart, we have that |F (z)|2 =

||F (z)|2−|F (y)|2| is less than C �dist(z, y). Taking the infimum over all such y, we get
that |F (z)|2 is less than C �dist(z, I+). Taking the logarithm gives the estimate in V

and the lemma follows.

Proof of the theorem. – Since f satisfies (7), Λn([I−]nor) ∈ Ck−s+1 is smooth in
a neighborhood of I+ for all n (hence [I−]nor is (fn)∗-admissible for all n). So
Λn([I−]nor) = [fn(I−)]nor (counting the multiplicity). Hence a super-potential of
Lm(ωs) is given on [I−]nor by (8):

ULm(ωs)([I
−]nor) =

m−1�

n=0

�
1

d

�n

UL(ωs)(Λ
n([I−]nor)).
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In other words:

ULm(ωs)([I
−]nor) =

m−1�

n=0

�
1

d

�n

UL(ωs)([f
n(I−)]nor).

Recall again that L(ωs) = L(ωs−1)∧L(ω) in the sense of current by Corollary 4.11
in [14, Chapter III]. So, in particular by Lemma A.2.1, a super-potential of UL(ωs) is
given by:

UL(ωs)(R) = UL(ω)(L(ωs−1) ∧R) + UL(ωs−1)(ω ∧R)

on currents R ∈ Ck−s+1 such that L(ωs−1) and R are wedgeable. A straightforward
induction gives that a super-potential of L(ωs) is given by:

�

0≤j≤s−1

UL(ω)(ω
j ∧ L(ω)s−1−j ∧R),(11)

on currents R ∈ Ck−s+1 such that L(ωs−1) and R are wedgeable (since ωj∧L(ωs−1−j)

is more H-regular than L(ωs−1), we have that ωj∧L(ω)s−1−j and R are wedgeable by
Lemma A.1.14). In particular, L(ωs−1) and Λn([I−]nor) are wedgeable by Definition
3.1.9 ((7) is enough for that since L(ωs−1) is smooth near fn(I−)) so we can take
R = Λn([I−]nor) in the previous formula.

We want to show that for 0 ≤ j ≤ s− 1, the following series is convergent:
�

n≥0

�
1

d

�n

UL(ω)(ω
j ∧ L(ω)s−1−j ∧ Λn([I−]nor)).

By Lemma A.1.16, the term of the series can be rewritten as:

(12) aj,n = vol(I−)−1 1

dsn

�

fn(I−)
UL(ω)ω

j ∧ L(ω)s−1−j ,

since Λn([I−]nor) = [fn(I−)]nor = vol(I−)−1d−(s−1)n[fn(I−)] (observe that the form
UL(ω)ω

j ∧L(ω)s−1−j is smooth on fn(I−) so this integral makes sense). So in partic-
ular, Definition 3.1.9 is equivalent to the fact that the series converges for j = 0. We
prove that the series converges for j > 0 by induction.

So let j > 0 be given such that the above series converges for j − 1. Using L(ω) =

ddcUL(ω) + ω, we write:

ωj−1 ∧ L(ω)s−j = ωj ∧ L(ω)s−1−j + ddcUL(ω) ∧ ωj−1 ∧ L(ω)s−1−j .

So replacing in (12), we see that:

aj−1,n = aj,n + vol(I−)−1 1

dsn

�

fn(I−)
UL(ω)ddcUL(ω) ∧ ωj−1 ∧ L(ω)s−1−j .

By Stokes, we have that the last integral is equal to:

−
�

fn(I−)
dUL(ω) ∧ dcUL(ω) ∧ ωj−1 ∧ L(ω)s−1−j ,
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which is non positive because ωj−1 ∧ L(ω)s−1−j is positive. That means that:

aj−1,n ≤ aj,n.

Since aj,n < 0 (because UL(ω) < 0), we have the convergence of the series for j. That
concludes the induction.

Proposition A.1.8 gives the convergence in the Hartogs’ sense to T+
s .

The previous proof gives in fact the corollary:

Corollary 3.2.5. – The convergence of the series giving UT+
s

([I−]nor) is equivalent

to the convergence of the first series in 3.1.9:

�

n

�
1

ds

�n

(vol(I−))−1

�

fn(I−)
UL(ω)L(ωs−1) > −∞.

Remark 3.2.6. – Using the same argument for fn(I−) instead of I− shows that the
super-potentials of the current T+

s are in fact finite at every [fn(I−)]nor.
Observe also that the Green current T+

s (fn) of fn is well defined and equal to T+
s .

Remark 3.2.7. – We will see in the next section how to construct the Green current

of order q for q ≤ s as T+
q = lim Ln(ωq) (see Proposition 3.4.6). We will need to

construct the equilibrium measure for that first.

We now prove that if a map satisfies Hypothesis 3.1.10 then it is in B. In fact, for
such a map, we can construct directly the Green currents of order ≤ s, in the general
case, such result will only be proved in Section 3.4.

Theorem 3.2.8. – Any map satisfying Hypothesis 3.1.10 is in B. For those maps,

we have for q ≤ s that (Lm(ωq)) converges in the Hartogs’ sense to the Green current
of order q of f that we denote by T+

q .

Proof. – Take f satisfying Hypothesis 3.1.10 and let q ≤ s. We consider RI− ∈
Ck−q+1 any positive closed current with support in I− (for example ωs−q ∧ [I−]nor).
Then Λj(R) is smooth near I+ for all j ≤ m − 1 (it is zero there), so we can apply
(8):

ULm(ωq)(RI−) =
m−1�

n=0

�
1

d

�n

UL(ωq)(Λ
n(RI−)).

Using (11), we see that

UL(ωq)(Λ
n(RI−)) = �UL(ω), Sq ∧ Λn(RI−)�,

where Sq =
�

0≤j≤q−1 ωj ∧ L(ω)q−1−j is smooth near fn(I−) and is of mass q. The
measure Sq ∧ Λn(RI−) is of mass q with support in fn(I−). By Lemma 3.2.4, the
function UL(ω) is greater than A log dist(I+, fn(I−))−B on fn(I−). Hypothesis 3.1.10
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implies exactly the convergence of the series giving ULm(ωq)(RI−). That concludes the
proof by Proposition A.1.8.

Theorem 3.2.9. – The current T+
s is f∗-invariant, that is L(T+

s ) is well defined and

equal to T+
s .

Furthermore, T+
s is the most H-regular current which is f∗-invariant in C s. In

particular, T+
s is extremal in the set of f∗-invariant currents of C s.

Proof. – Recall from the appendix that a current T is f∗-admissible if there exists a
current R0 which is smooth on a neighborhood of I+ such that the super-potentials
of T are finite at Λ(R0). For such T , f∗(T ) is well defined and if (Tn) is a sequence
of current converging in the Hartogs’ sense to T then Tn is f∗-admissible and f∗(Tn)

converges to f∗(T ) in the Hartogs’ sense.
In our case, we take for R0 the current [I−]nor which is smooth near I+. Then

by Remark 3.2.6, the super-potentials of T+
s are finite at Λ([I−]nor) = [f(I−)]nor. So

the current L(T+
s ) is well defined. Now, we have that (Ln+1(ωs))n = (L(Ln(ωs)))n

converges in the Hartogs’ sense to T+
s and to L(T+

s ) so that T+
s is indeed invariant.

Let UT+
s

be the super-potential of T+
s defined as:

(13) UT+
s

=
∞�

n=0

�
1

d

�n

UL(ωs) ◦ Λn,

on smooth forms in Ck−s+1. Then composing (13) with Λ gives that on smooth forms
in Ck−s+1:

UT+
s

= d−1 UT+
s
◦ Λ + UL(ωs).

By iteration, we have that on smooth forms in Ck−s+1:

UT+
s

=
m−1�

n=0

�
1

d

�n

UL(ωs) ◦ Λn +

�
1

d

�m

UT+
s
◦ Λm.

By Theorem 3.2.1, that implies by difference that:
�

1

d

�m

UT+
s
◦ Λm

goes to zero on smooth forms in Ck−s+1.
Now, let S be a f∗-invariant current in C s such that there are constants A > 0

and B satisfying AUT+
s

+ B ≤ US < 0 for some super-potential US . Then on smooth
forms in Ck−s+1, a super-potential ULm(S) of Lm(S) = S is given by:

m−1�

n=0

�
1

d

�n

UL(ωs) ◦ Λn +

�
1

d

�m

US ◦ Λm.
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Since
�

1
d

�m UT+
s
◦Λm goes to zero on smooth forms in Ck−s+1, our hypothesis implies

that
�

1
d

�m US ◦ Λm also goes to zero on smooth forms in Ck−s+1. In particular, a
super-potential of S is given on smooth forms in Ck−s+1 by:

∞�

n=0

�
1

d

�n

UL(ωs) ◦ Λn.

Now, using the fact that two currents having the same super-potential on smooth
forms are in fact equal we deduce that T+

s = S.
In particular, for A = 1, we obtain that T+

s is the most H-regular current which
is f∗-invariant. It is extremal in the set of f∗-invariant currents of C s since if not
we could write T+

s = tS1 + (1 − t)S2 with S1 and S2 two f∗-invariant currents in
C s. Take M small enough so that the super-potentials U1, U2 and UT+

s
of S1, S2

and T+
s of same mean M are negative. Observe that UT+

s
= tU1 + (1− t)U2 so that

t−1 UT+
s
≤ U1. Then we can apply the previous result for A = t−1 and it follows that

S1 = T (similarly S2 = T ).

In the previous proof, we have obtained:

Corollary 3.2.10. – Let UT+
s

be the super-potential of T+
s defined on smooth forms

by:

UT+
s

=
∞�

n=0

�
1

d

�n

UL(ωs) ◦ Λn.

Then we have that: �
1

d

�m

UT+
s
◦ Λm

goes to zero on smooth forms.

The current L(ω)s+1 is a well defined element of C s+1 and we have that

ddcUL(ω) ∧ L(ω)s + ω ∧ L(ω)s = L(ω)s+1

by Corollary 4.11 Chapter III in [14]. Observe that it is not true though that
L(ωs+1) = L(ω)s+1. Indeed, f∗(ωs+1) is a well defined form (of mass δk−s−1) which
is in L1 hence that does not give mass to algebraic sets of dimension ≤ k − 1. But
f∗(ω)s+1 is a smooth form outside I+ which coincides with f∗(ωs+1) there. So we
have by Siu’s Theorem that:

f∗(ω)s+1 =
�

i

ai[I
+
i ] + f∗(ωs+1)

where the sum goes over all the irreducible components I+
i of I+ and where the ai

are positive numbers. Observe that this formula is related to King’s formula (see [14]
Chapter III proposition 8.18). In particular, one has that:

f∗(ω)s+1 ≤ C[I+] + f∗(ωs+1)
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for C > 0 large enough. Similarly, one has that f∗(ω)k−s+1 is well defined and satisfies:

f∗(ω)k−s+1 ≤ C[I−] + f∗(ω
k−s+1).

The following proposition is useful in the construction of the equilibrium measure.

Proposition 3.2.11. – The super-potentials of T+
s are finite at ωj ∧ Λ(ω)k−s+1−j

for all k − s + 1 ≥ j ≥ 0.

Proof. – If two currents S1 and S2 in C r satisfies S1 ≤ cS2 for a constant c > 0 then
the super-potentials of S1 and S2 of mean 0 satifies US1 ≥ cUS2 +c� for some constant
c�. In particular, the super-potentials of S1 are finite wherever US2 is.

Now, we have that the super-potentials of T+
s are finite at [I−]nor. Since T+

s is
f∗-admissible, its super-potential are finite at every point of the form Λ(S) for S ∈
Ck−s+1 smooth near I+. So they are also finite at Λ(ωk−s+1). The affinity of the
super-potentials of T+

s implies that they are finite at (C[I−] + f∗(ωk−s+1))nor. So
the super-potential of T+

s are finite at (f∗(ω)k−s+1)nor. Since for j ≥ 0, the current
ωj∧Λ(ω)k−s+1−j is more H-regular than Λ(ω)k−s+1, we have that the super-potentials
of T+

s are finite at ωj ∧ Λ(ω)k−s+1−j (we use the symmetry of the super-potential :
UT+

s
(ωj ∧ Λ(ω)k−s+1−j) = Uωj∧Λ(ω)k−s+1−j (T+

s )).

Corollary 3.2.12. – The current T+
s gives no mass to I− (nor I+

by dimension’s

argument).

Proof. – From above, the super-potentials of T+
s are finite at Λ(ω)∧ωk−s ∈ Ck−s+1.

Observe that for two currents R and S in C r and C s with r + s ≤ k, then:

UR(S ∧ ωk+1−r−s) = UR∧ωk+1−r−s(S) = US(R ∧ ωk+1−r−s)

where all the super-potentials are of same mean.
So for R = T+

s and S = Λ(ω), we get that the super-potentials of Λ(ω) are finite at
T+

s ∧ ωk−s. This is equivalent to the fact that the quasi-potential UΛ(ω) is integrable
with respect to the measure T+

s ∧ ωk−s. In other words:
�

UΛ(ω)ω
k−s ∧ T+

s

is finite. Applying Lemma 3.2.4 to f−1 shows that the singularities of UΛ(ω) are in
log dist(x, I−) so T+

s gives no mass to I−.

Remark 3.2.13. – The quantity UT+
s

([I−]nor) is related to a generalized Lelong
number ([13], see also [9] for generalized Lelong numbers in dynamics). Let us explain
this point. From the previous proposition, we have that the super-potentials of T+

s

are finite at Λ(ω)k−s+1.
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We define the Lelong number of T+
s associated to the function UΛ(ω) as:

ν(T+
s , UΛ(ω)) = lim

r→−∞

�

{UΛ(ω)<r}
T+

s ∧ Λ(ω)k−s.

The previous current is well defined by the theory of super-potentials: the super-
potentials of T+

s are finite at ω ∧ Λ(ω)k−s which means that T+
s and Λ(ω)k−s are

wedgeable and their wedge product is well defined by Definition A.1.13.

As in formula (11), we have that a super-potential of Λ(ω)k−s+1 is given by:
�

0≤j≤k−s

UΛ(ω)(ω
j ∧ Λ(ω)k−s−j ∧R),

on currents R ∈ C s such that Λ(ω)k−s and R are wedgeable, so in particular for
R = T+

s by the previous proposition. Since the super-potentials of T+
s are finite at

Λ(ω)k−s+1, that implies that every term in the previous sum is finite. So we have in
particular that:

UΛ(ω)(Λ(ω)k−s ∧ T+
s )

is finite. That means that the quasi-potential UΛ(ω) is integrable with respect to the
measure Λ(ω)k−s ∧ T+

s . So we can use the bound:
�

{UΛ(ω)<r}
T+

s ∧ Λ(ω)k−s ≤ 1

r

�

{UΛ(ω)<r}
UΛ(ω)T

+
s ∧ Λ(ω)k−s

≤ 1

r

�

Pk

UΛ(ω)T
+
s ∧ Λ(ω)k−s.

So we have that:

ν(T+
s , UΛ(ω)) = 0.

This is a generalization of the fact that a psh function finite at the point x has zero
Lelong number at x.

A classical question in complex dynamics is to ask by what ωs can be replaced. In
other words, what are the currents T in C s such that Lm(T ) → T+

s ? The following
proposition and theorem give partial results toward this direction.

Proposition 3.2.14. – Let (Tm) ∈ C s be a sequence of currents such that a super-

potential UTm of Tm satisfies �UTm�∞ = o(dm). Then Lm(Tm) → T+
s in the Hartogs’

sense.

Proof. – Recall first that if T ∈ C s has bounded super-potential it is (fn)∗-admissible
(its super-potential is in particular bounded at the point Λn(ωk−s+1)). So the sequence
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of pull-back is well defined by Lemma 3.1.8. Using Proposition A.1.18 and (8), a super-
potential of Lm(Tm) is given on smooth currents in Ck−s+1 by:

ULm(Tm) =
m−1�

n=0

�
1

d

�n

UL(ωs) ◦ Λn +

�
1

d

�m

UTm ◦ Λm.

By Theorem 3.2.1 we know that the series
�m−1

n=0

�
1
d

�n UL(ωs) ◦ Λn converges in the
Hartogs’ sense to UT+

s
. The hypothesis on (Tm) implies that

�
1
d

�m UTm ◦ Λm = o(1)

goes to 0 uniformly on smooth form. Since the control is uniform we have that
(|ULm(Tm) − ULm(ωs)| → 0), and the convergence is in the Hartogs’ sense and we
can conclude by Proposition A.1.7.

We also have the following result. We believe the proof is of interest although the
result is essentially already known. We refer the reader to [50] for the case q = 1 and
also [27] for the general case. See the Appendix for the notion of super-polarity.

Theorem 3.2.15. – There exists a super-polar set P of C s such that for S ∈ C s\P ,

Lm(S) is well defined and converges to T+
s .

Proof. – The set of currents S ∈ C s such that S is not (fm)∗-admissible is super-
polar since it is contained in the set of currents such that US(Λm(ωk−s+1)) = −∞.
Now, since a countable union of super-polar set is super-polar, we have that outside a
super-polar set of C s, S is (fm)∗-admissible and so Lm(S) is well defined by Lemma
3.1.8.

As above, a super-potential ULm(S) of Lm(S) is given on smooth forms by:

m−1�

n=0

�
1

d

�n

UL(ωs) ◦ Λn +

�
1

d

�m

US ◦ Λm,

where US is a super-potential of S. For Ω ∈ Ck−s+1 smooth, consider the current
R(Ω) ∈ Ck−s+1 defined by R(Ω) := (

�
m

�
1
d

�m
Λm(Ω))nor. Let P be the set of cur-

rents S in C s such that US(R(ωk−s+1)) = −∞, then P is super-polar by defini-
tion. Observe that for Ω ∈ Ck−s+1 smooth, we have a constant cΩ > 0 such that
R(Ω) ≤ cΩR(ωk−s+1). In particular, for S /∈ P , we have that US(R(Ω)) > −∞.

That implies that for any Ω smooth and S /∈ P , the sequence ULm(S)(Ω) converges
to the value UT+

s
(Ω). Indeed, the fact that US(R(Ω)) is finite gives that:

�
1

d

�m

US ◦ Λm(Ω)

goes to 0. So ULm(S)(Ω) converges to UT+
s

(Ω). Then Proposition A.1.7 gives us that
the sequence Lm(S) converges in fact to T+

s (maybe not in the Hartogs’ sense).
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Of course, the above theorem is not optimal and it is conjectured that for T the
current of integration on a (very) generic algebraic set of dimension k−s, Lm(T ) goes
to T+

s (see in the endomorphisms case [5] and [21] for the case of measures and see
[35] for the case of bidegree (1, 1) in P2 and [30] in Pk). That is beyond the scope of
this study.

Recall that we consider the critical sets C+ (or C(f)) and C− (or C(f−1)) defined
by:

C+ := f−1(I−)

C− := (f−1)−1(I+).

We have the proposition:

Proposition 3.2.16. – The current T+
s does not give mass to the critical sets C−

and C+
. In particular, the current T+

s satisfies the equation:

f∗(T
+
s ) =

1

ds
T+

s ,

in Pk \ C−.

We first need the following lemma:

Lemma 3.2.17. – Let ϕ be a smooth function. Then f∗(ϕ) is in L1(T+
s ∧ Λ(ωk−s))

and we have the identity:

�
ϕT+

s ∧ ωk−s =

�
f∗(ϕ)T+

s ∧ Λ(ωk−s)

Proof of the lemma. – First ϕ is in L1(T+
s ∧ ωk−s) and the quantity:

�
ϕT+

s ∧ ωk−s

depends continuously on T+
s in the sense of currents.

On the other hand, f∗(ϕ) is in L1(T+
s ∧Λ(ωk−s)) since it is smooth and uniformly

bounded outside I− which has no mass for T+
s ∧Λ(ωk−s) (see Remark 3.2.13). Recall

that T+
s ∧Λ(ω)k−s is f∗-admissible by Remark 3.2.13 (hence UΛ(ω)(Λ(ω)k−s ∧T+

s ) is
finite). So we have that

�
f∗(ϕ)T+

s ∧ Λ(ωk−s) =

�
ϕL(T+

s ∧ Λ(ωk−s)),

as this stands if T+
s ∧ Λ(ωk−s) was smooth and we can conclude by Hartogs’ conver-

gence. Now, applying Lemma A.2.2 to f−1 and the invariance of T+
s , we have that

L(T+
s ∧ Λ(ωk−s)) = T+

s ∧ ωk−s.
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Proof of the proposition. – We consider C+ first. Let Vε be a small neighborhood of
I+. Since T+

s gives no mass to I+ we can assume that the mass of Vε for T+
s is

arbitrarily small. Let Wα be a small neighborhood of C+. Let 0 ≤ ϕ ≤ 1 be a smooth
function such that ϕ = 1 in Wα\Vε, ϕ = 0 in V2−1ε and ϕ = 0 outside W2α.

Then by the previous lemma:

�Wα\Vε�T+
s
≤

�
ϕT+

s ∧ ωk−s

≤
�

f∗(ϕ)T+
s ∧ Λ(ωk−s)

≤
�

f(W2α\V2−1ε)
T+

s ∧ Λ(ωk−s)

Now, f(W2α\V2−1ε) is a neighborhood W of I− that can be taken arbitrarily small
by taking ε and α small enough. We have seen in Remark 3.2.13 that the quantity�

W T+
s ∧ Λ(ω)k−s goes to the Lelong number ν(T+

s , UΛ(ω)) which is equal to zero.
Thus C+ has no mass for T+

s .
For C−, we write T+

s = T C− + T � where T C− is a positive closed current with
support in C− and T � is a positive closed current with no mass on C− ([52]). Both
currents are f∗-admissible since T+

s is. But f∗(T C−) has support in C+ which means
it is equal to zero since T+

s = d−1
s (f∗(T C−) + f∗(T �)) gives no mass to C+. That

implies that T C− = 0 hence T+
s has no mass on C−.

Now f : Pk \ C+ → Pk \ C− is a proper biholomorphism that we denote by f1. If
Θ is a smooth form in Pk \ C− then using the invariance of T+

s :

�(f1)∗(T
+
s ),Θ� = �T+

s , (f1)
∗(Θ)�

= � 1

ds
f∗(T+

s ), (f1)
∗(Θ)�

= � 1

ds
T+

s , f∗((f1)
∗(Θ))�.

But f∗(f1)∗ = (f1)∗(f1)∗ = id so f∗((f1)∗(Θ)) = Θ and the result follows.

Remark 3.2.18. – In order to define Λ(T+
s ), we need to add to the equation

(f1)∗(T
+
s ) =

1

ds
T+

s

a term with mass dk−s− d−1
s and support in C− in order to obtain a current of mass

dk−s. For example, in the case of Hénon maps, we need to add a multiple of the
current of integration on the line at infinity. In general, such choice is not clear as the
hypersurface C− carries many positive closed currents of bidimension (k − s, k − s)

and they might be no way to add a current to the equation (f1)∗(T+
s ) = 1

ds
T+

s in a
continuous way.

MÉMOIRES DE LA SMF 122



3.2. CONSTRUCTION OF THE GREEN CURRENTS 55

The previous corollary implies that the Green current is meaningful. For example,
in the case of Hénon maps in P2, the set C− and C+ are in fact L∞ (the line at
infinity) which is totally invariant and the Green current T+ gives no mass to L∞.

We can now prove the following stronger result of extremality which implies strong
ergodic properties (see Theorem 3.4.15). The inequalities between currents in C s have
to be understood in the strong sense.

Theorem 3.2.19. – The current T+
s is extremal in C s, that is if there exists a c > 0

and S ∈ C s such that S ≤ cT+
s then S = T+

s .

Proof. – Applying the previous results to fn gives that T+
s gives no mass to the

indeterminacy sets I(f±n) and critical sets C±n of fn and f−n (recall that T+
s is also

the Green current of fn). Let S be as above, in particular S gives no mass to the sets
I(f±n) and C(f±n) and S is (fn)∗-admissible for all n. By Lemma 3.1.8, Ln(S) is
well defined for all n and equal to Ln(S) (Ln and Λn are the normalized pull-pack
and push-forward associated to fn).

For n > 0, we denote by Λ�n the push forward operator (fn)∗ from Pk \ C(fn) to
Pk \ C(f−n).

The operator (Λ�n) is positive. That and the previous proposition applied to fn

imply that (ds)n(Λ�n)(S) ≤ cT+
s in Pk \ C(f−n). We denote by Sn the trivial extension

of (ds)n(Λ�n)(S) over Pk : it does exist since the current (ds)n(Λ�n)(S) is of bounded
mass. We have Sn ≤ cT+

s in Pk. In particular, Sn is (f∗)n-admissible. Using the same
argument as in the previous proposition, we see that:

(fn)∗(Sn) = (ds)
nS,

outside C(fn). Now S has no mass on C(fn) and (fn)∗(Sn) is less than c(ds)nT+
s

(by positivity of the operator (fn)∗) which implies that (fn)∗(Sn) also has no mass
on I(fn) ∪ C(fn). So we have:

(fn)∗(Sn) = (ds)
nS,

on Pk. In particular, Sn has mass 1. We have that Ln(Sn) = S and since Sn is
(f∗)n-admissible we have Ln(Sn) = Ln(Sn) by Lemma 3.1.8.

For R ∈ Ck−s+1 smooth, let USn , UT+
s ,0 and UΛj(R) be the super-potential of Sn,

T+
s and Λj(R) of mean 0. We have from Proposition A.1.18 and (8) that a super-

potential ULn(Sn) of Ln(Sn) = S on smooth forms is given by:
n−1�

j=0

�
1

d

�j

UL(ωs) ◦ Λj +

�
1

d

�n

USn ◦ Λn.

Recall that there exists a M > 0 that does not depend on neither R nor n such
that UΛn(R) − M is negative and USn ≤ M . More precisely, by Proposition A.1.1,
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there exists a quasi-potential UΛn(R) of Λn(R) such that UΛn(R)−Mωk−s is negative
(UΛn(R) is a quasi-potential of Λn(R) of mean 0). Then, we have that:

(UΛn(R) −M)(Sn) ≥ c(UΛn(R) −M)(T+
s ).

Indeed if Sn and T+
s were smooth, it would follow from the fact that UΛn(R)−Mωk−s

is negative and that Sn ≤ cT+
s . The result follows then by Hartogs’ convergence:

observe that the regularization is obtained by a mean of the composition over the
automorphisms of Pk thus the approximations S�n and T �+s of Sn and T+

s also satisfy
S�n ≤ cT �+s .

So we have the estimates:

USn(Λn(R)) = UΛn(R)(Sn)

= (UΛn(R) −M)(Sn) + �Sn, Mωk−s�

≥ c(UΛn(R) −M)(T+
s ) + �Sn, Mωk−s�

≥ cUT+
s ,0(Λ

n(R)) + �Sn − cT+
s , Mωk−s�

≥ cUT+
s ,0(Λ

n(R)) + M(1− c).

The last term multiplied by d−n goes to zero by Corollary 3.2.10. So the super-
potential ULn(Sn) converges to a super-potential of T+

s on smooth forms. By Propo-
sition A.1.7, that implies that S = T+

s .

The results of this section remain valid for f−1. So we can construct the Green
current of order k − s for f−1 that we denote by T−k−s.

3.3. Proof of the genericity (Theorem 3.1.11)

This section is devoted to the proof of Theorem 3.1.11, it is independent from the
rest of the paper. The statement of Theorem 3.1.11 is similar to Proposition 4.5 in
[1]. In addition, we show here that the genericity stands in any orbit. The idea of the
proof is to construct in any orbit an element in B and then to show that the series in
Definition 3.1.9 vary as a difference of psh functions (dsh) along the orbit.

Construction of an example stable by perturbations. – Take f ∈ Es.
We have that:

I(A ◦ f) = I(f)

and
I(f−1 ◦A−1) = AI(f−1).

In particular, for A generic, we can assume that I+ ∩ I− = ∅. Remark also that the
dimension of these indeterminacy sets does not depend on A.
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Consider a projective linear subspace E of Pk of dimension s such that E∩I(f) = ∅.
Let V be a neighborhood of E such that V ∩ I(f) = ∅.

Choose the coordinates [z0 : . . . : zk] in Pk such that E is given by z0 = · · · =

zk−s−1 = 0 and so that if E� = {zk−s = · · · = zk = 0} then E� ∩ I(f−1) = ∅,
E� ∩ V = ∅ and E� ∩ f(V ) = ∅ (this is always possible). Consider the element A0

of PGL(k + 1, C) defined by A0([z0 : . . . : zk]) = [λz0 : . . . : λzk−s−1 : zk−s : . . . : zk]

with λ > 0. We take λ small enough so that:

— A0(I(f−1)) ⊂ V ;
— A0(f(V )) ⊂ V .

Consider the element fA0 defined by fA0 = A0 ◦ f . Now, I(fA0) = I(f) and
I((fA0)

−1) = A0(I(f−1)) ⊂ V . We have the inclusion:

fA0(I((fA0)
−1)) = fA0A0(I(f−1)) ⊂ (A0 ◦ f)(V ) ⊂ V.

An immediate induction gives that (fA0)
n(I((fA0)

−1)) ⊂ V . So the element fA0

satisfies the first half of Hypothesis 3.1.10 since

dist(I(fA0), f
n
A0

(I(f−1
A0

))) ≥ dist(I(f), V ) > 0.

For each n, m ∈ N, the condition fn(I(f−1)) ∩ f−m(I(f)) �= ∅ is algebraic (and
not always satisfied by the above), so (7) is satisfied outside a countable union of
subvarieties of PGL(k + 1, C). Wherever all these conditions are satisfied, namely
wherever (7) holds the dynamical degrees are given by Proposition 3.1.6 so they are
constant.

We want to show that we can perturbate that example. Fix E and V as above. If
Φ(f) := A ◦ f with A close to A0, then we still have I(Φ(f)−1) = AI(f−1) ⊂ V and
A ◦ f(V ) ⊂ V . Thus Φ(f)n(I(Φ(f)−1)) ⊂ V and I(Φ(f)) = I(f).

This implies that there exists some α > 0 such that for every A in a small neigh-
borhood W �

0 of A0 and every n ∈ N, we have:

dist(I(Φ(f)),Φ(f)n(I(Φ(f)−1))) ≥ α.

Since B and Hypothesis 3.1.10 are invariant by conjugaison and since taking the
inverse is a biholomorphism on PGL(k + 1, C), it is equivalent to prove that the set
of linear map A ∈ PGL(k + 1, C) such that f ◦A /∈ B is pluripolar. By the above, we
know that there exists a small open set W �

0 in PGL(k + 1, C) where the first series in
the definition of B converges.

Now we prove the genericity. In what follows, C denotes a constant independent
of n that may change from line to line. Let W := PGL(k + 1, C). It is a Zariski dense
open set in the projective space �W = Pl where l = (k + 1)2 − 1. Let c denote the
homogeneous coordinate on �W . When c ∈ W , we write fc instead of f ◦ c. We can
extend this notation for c ∈ �W . Of course, in this case fc is not a birational map.
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Consider the rational map:

�Fn : �W × Pk → �W × Pk

(c, z) �→ (c, fn
c (z)).

Let Πi denote the canonical projections of �W ×Pk to its factor for i = 1, 2. In �W ×Pk,
let ωi := Π∗i (ωFS) be the pull-back of the Fubini-Study form by the projection for
i = 1, 2. That way, ω1 + ω2 is a Kähler form on �W × Pk.

Action of �F ∗
n on the cohomology. – We study the action of �F ∗

n on ω2. Write c =

[c1 : . . . : cl+1]. First we have �Fn(c, z) = (c, fn
c (z)) where the second coordinate is a

polynomial of degree dn in the zi, of degree ≤ Cdn in the ci. We compute the mass
of �F ∗

n(ω2). For that, we test against (ω1 + ω2)k+l−1. We expand (ω1 + ω2)k+l−1:

(ω1 + ω2)
k+l−1 =

k+l−1�

i=0

�
k + l − 1

i

�
ωi

1 ∧ ωk+l−1−i
2 .

We have that ωi
1 = 0 for i > l and ωk+l−1−i

2 = 0 for k + l − 1− i > k thus i < l − 1.
So there are only two terms in the previous sum: for i = l − 1 and for i = l:

� �F ∗
n(ω2), ω

l−1
1 ∧ ωk

2 � and � �F ∗
n(ω2), ω

l
1 ∧ ωk−1

2 �.

By Bézout’s theorem, those two terms are ≤ Cdn (the terms can be computed in
cohomology so we replace their factors by analytic sets). Here, we use that �Fn(c, z) is
a polynomial of degree dn in the zi and of degree ≤ Cdn in the ci.

As a result, we have that:

� �F ∗
n(ω2)� ≤ Cdn.

and consequently:

� �F ∗
n(ωs

2)� ≤ Cdsn.

We also remark that:

�F ∗
n(ω1) = ω1

since �Fn acts as the identity on �W .

Recall that a map in B needs to satisfies the condition:

(14)
∞�

n=0

�
1

ds

�n

(vol(I−))−1

�

fn(I−)
UL(ω)L(ωs−1) > −∞
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Construction of a function g that test the convergence of (14). – We can write �F ∗
1 (ωs

2)

in cohomology:
�F ∗
1 (ωs

2) =
�

i1+i2=s

ai1,i2ω
i1
1 ∧ ωi2

2 + ddc U

where U is a negative (s− 1, s− 1) current, which is C1 where �F ∗
1 (ωs

2) is smooth (see
Proposition 2.3.1 in [31] and observe that �W × Pk is homogeneous). We also denote
�Ω =

�
i1+i2=s ai1,i2ω

i1
1 ∧ωi2

2 the smooth form cohomologous to �F ∗
1 (ωs

2). Testing against
ωa

1 ∧ωb
2 for a+ b = l+k− s gives that ai1,i2 ≥ 0. In what follows, we take a particular

U. We explain now its construction.

Lemma 3.3.1. – The indeterminacy set of �F1 has dimension l + k − s− 1.

Proof. – The lemma is clear in W ×Pk. In (�W \W )×Pk, we use a stratification with
the dimension of the kernel of c.

Indeed, let Fj be the set of A ∈ �W such that dim(Ker(A)) = j in Ck+1. Then, Fj

is an analytic set of dimension (k +1)2− j2− 1 (choose k +1− j independant vectors
in Ck+1 then choose j vectors colinear to the first ones and then project to Pl). The
indeterminacy set of �F1 is given by Ker(A) ∪A−1(I(f)).

Now, dim(A−1(I(f))) ≤ k− s− 1 + j so dim(Ker(A)∪A−1(I(f))) ≤ k− s− 1 + j

and the dimension of the indeterminacy set of �F1 restricted to Fj is of dimension
≤ (k + 1)2 − j2 − 1 + k − s− 1 + j ≤ (k + 1)2 − 1 + k − s− 1 = l + k − s− 1.

In particular, by Theorem 4.5 in [14, Chapter III], we have that
�F ∗
1 (ωs

2) = ( �F ∗
1 (ω2))

s.

Since �W × Pk is a product of projective spaces, then the positive form �F ∗
1 (ω2) is

cohomologous to a positive form β. Let u be a quasi-potential of �F ∗
1 (ω2). In other

words, �F ∗
1 (ω2) = β + ddcu. We can write U as in the proof of Theorem 3.2.1, that is:

U =
s−1�

j=0

u �F ∗
1 (ω2)

s−1−j ∧ βj .

In this case �Ω = βs.
We define I− := �W × I−. It is an analytic set of �W × Pk of dimension l + s − 1

such that for c ∈ W , I− ∩ {c} × Pk = I−(fc) = I−.
Let [ I−] denote the current of integration on I−, it is of bidimension (l+ s−1, l+

s− 1). Consider the set

Vn := {c ∈ �W, f−n
c (I+(fc)) ∩ I− = ∅},

it is a Zariski dense open set in �W .

Lemma 3.3.2. – The codimension of V c
n = �W \ Vn is ≥ 2.
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Proof. – Let E� ⊂ E be two linear projective subspaces of Pk with dim(E�) = s − 1

and dim(E) = s. Assume that E ∩ I+(f) = ∅. Choose some projective coordinates
[z0 : . . . : zk] such that:

E� = {zs = · · · = zk = 0}, E = {zs+1 = · · · = zk = 0}.

We denote:

F � = {z0 = · · · = zs−1 = 0}, F = {z0 = · · · = zs = 0}.

In particular, dim(F �) = k − s and dim(F ) = k − s − 1. Changing the coordinate if
necessary, we can assume that F ∩ f(E) = ∅ and F � ∩ f(E�) = ∅ and I− ∩ F � = ∅
(thus I− ∩ F = ∅). Now we consider the following elements of �W :

A� := [z0 : . . . : zk] �→ [z0 : . . . : zs−1 : 0 : . . . : 0]

A := [z0 : . . . : zk] �→ [z0 : . . . : zs : 0 : . . . : 0].

Then observe that f ◦A(Pk \F ) = f(E) and that f ◦A is holomorphic on f(E) with
f ◦A(f(E)) ⊂ f(E); in particular I((f ◦A)n) = F . Similarly f ◦A�(Pk \F �) = f(E�),
f ◦A� is holomorphic on f(E�) with f ◦A�(f(E�)) ⊂ f(E�); in particular I((f ◦A�)n) =

F �. We deduce that A, A� /∈ V c
n .

Now consider the compactification �PGL(E, C) ⊂ �W where the inclusion is given
by the map B �→ B ◦ A (with obvious notations). Then �PGL(E, C) is an analytic
set of �W of dimension (s + 1)2 − 1. First, if B ∈ PGL(E, C) then f ◦ B ◦ A has the
same indeterminacy set than f ◦A and the same image, so B ◦A /∈ V c

n . Now consider
�PGL(E, C) \ PGL(E, C), this set is an algebraic irreducible set of codimension 1. Its

intersection with V c
n is not everything since A� /∈ V c

n . In particular, V c
n ∩ �PGL(E, C) is

an analytic set of codimension ≥ 2. This implies that V c
n is not of codimension 1.

Now, consider on ∩n+1
i=0 Vi:

ϕn := (Π1)∗(
s−1�

j=0

�F ∗
nu �F ∗

n+1(ω2)
s−1−j ∧ �F ∗

n(β)j ∧ [ I−]).

In other words, ϕn = (Π1)∗( �F ∗
n(U) ∧ [ I−]).

On the set ∩n+1
i=0 Vi, ϕn is continuous since Π1 restricted to I− is a submersion so

the push-forward of a continuous form is continuous. Finally, we define on ∩N+1
n=0 Vn,

gN :=
N�

n=0

d−snϕn.
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Computation of ddcgN . – First, we compute ddcgN on ∩N+1
n=0 Vn. We have that:

ddcgN = (Π1)∗




N�

n=0

d−sn
s−1�

j=0

ddc �F ∗
nu ∧ �F ∗

n+1(ω2)
s−1−j ∧ �F ∗

n(β)j ∧ [ I−]



 .

Recall that ddcu = �F ∗
1 (ω2)− β. So, near I−

ddc �F ∗
nu = �F ∗

n+1(ω2)− �F ∗
n(β).

We obtain

ddcgN =

(Π1)∗




N�

n=0

d−sn
s−1�

j=0

( �F ∗
n+1(ω2)

s−j ∧ �F ∗
n(β)j − �F ∗

n+1(ω2)
s−1−j ∧ �F ∗

n(β)j+1) ∧ [ I−]





which is equal to

ddcgN = (Π1)∗

�
N�

n=0

d−sn( �F ∗
n+1(ω

s
2)− �F ∗

n(βs)) ∧ [ I−]

�
.

Recall that βs = �Ω =
�

i1+i2=s ai1,i2ω
i1
1 ∧ ωi2

2 . We show now that a0,s = ds. First
we have that:

��Ω, ωk−s
2 ∧ ωl

1� = a0,s.

Since �Ω and �F ∗
1 (ωs

2) are cohomologous, we deduce:

� �F ∗
1 (ωs

2), ω
k−s
2 ∧ ωl

1� = a0,s.

So, we want to compute: �
�F ∗
1 (ωs

2) ∧ ωk−s
2 ∧ ωl

1.

This can be done in cohomology. If Lk−s is a generic analytic subspace of dimension
k − s in Pk and Ls is a generic analytic subspace of dimension s in Pk and {c} × Pk

is a slice, then the previous quantity is the number of intersections of f−1
c (Lk−s)∩Ls

on the slice. This is equal to ds since the degree ds of fc is ds on W which is a Zariski
open set in �W , so we have indeed that ds = a0,s.

We have the equality:
�F ∗
n(�Ω) = ds �F ∗

n(ωs
2) +

�

i1+i2=s, i2 �=s

ai1,i2
�F ∗
n(ωi1

1 ∧ ωi2
2 ).

We denote the second term on the right-hand side by Sn. Since �F ∗
n(ω1) = ω1, we can

bound the mass of Sn by:

�Sn� ≤
�

i1+i2=s, i2 �=s

ai1,i2�ω
i1
1 ∧ �F ∗

n(ωi2
2 )�

≤ Cdn(s−1)
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since � �F ∗
n(ωj

2)� ≤ Cdjn for j ≤ s. So replacing in ddcgN , we have:

ddcgN =(Π1)∗

�
N�

n=0

d−sn( �F ∗
n+1(ω

s
2)− ds �F ∗

n(ωs
2)) ∧ [ I−]

�

− (Π1)∗

�
N�

n=0

d−snSn ∧ [ I−]

�
.

The second term in the right-hand side is a positive closed current with mass
uniformly bounded in N by the above. We now control the first term. Reorganizing
the sum, we see that it is equal to:

(Π1)∗((d
−sN �F ∗

N+1(ω
s
2)− dsωs

2) ∧ [ I−]).

Using the fact that the mass of the positive closed current �F ∗
N+1(ω

s
2) is bounded by

Cds(N+1) gives that, on ∩N+1
n=0 Vn:

ddcgN = Ω+
1,N − Ω+

2,N

where Ω+
i,N is a positive closed current of bidegree (1, 1) on ∩N+1

n=0 Vn with mass less
than a constant C (C is independent of N). So, the current Ω+

i,N has an extension to

a positive closed current �Ω+
i,N with ��Ω+

i,N� ≤ C. Now, we prove that the function gN

is in L1(�W ) and that ddcgN = �Ω+
1,N − �Ω+

2,N in the sense of currents of �W . Take an

open set U in �W biholomorphic to a polydisk. On U , we have �Ω+
i,N = ddcui,N where

ui,N is a negative psh function. So, on U ∩ (∩N+1
n=0 Vn),

gN + u2,N = u1,N + hN

with hN a harmonic function. The equality stands almost everywhere but since gN

is continuous on ∩N+1
n=0 Vn, the equality is true on U ∩ (∩N+1

n=0 Vn) (see the proof of the
inequality g −m ≥ ψ1 − ψ2 below). Since gN is non positive, the function u1,N + hN

has a psh extension �u1,N + hN to U . So gN has an extension �gN = �u1,N + hN − u2,N

to U . In particular, gN is in L1(�W ) and ddcgN has a sense globally. Moreover, since
the codimension of V c

n is larger than 2, we have on U (in the sense of currents):

ddcgN = ddc �gN = ddc �u1,N + hN − ddcu2,N = �Ω+
1,N − �Ω+

2,N .

In particular, we have ddcgN = �Ω+
1,N − �Ω+

2,N globally on �W .
Now, we write

�Ω+
i,N = ai,Nω1 + ddcψi,N

with ai,N smaller than C.
We say that a measure is PLB if the qpsh functions are integrable for that measure.

Any measure given by a smooth distribution is PLB. In particular, we can find a PLB
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probability measure that we denote ν with support in the W �
0 defined previously. We

have the following lemma (see Proposition 2.4 in [27]):

Lemma 3.3.3. – The family of qpsh functions in �W such that ddcψ ≥ −ω1 and one

of the two following conditions:

max
�W

ψ = 0 or

�
ψdν = 0

is bounded in L1(ν) and is bounded from above.

In particular, in the writing
�Ω+

i,N = ai,Nω1 + ddcψi,N

we take the normalization
�

ψi,Ndν = 0.

Link with Definition 3.1.9. – Let c ∈ W ∩ (∩i≤n+1Vi), then we want to show that:

ϕn(c) =

�

fn
c (I−(fc))

Uc

where (fc)∗(ωs
2) = dsωs

2 + ddcUc. First, when c ∈ W ∩ (∩i≤n+1Vi), we have:

ϕn(c) =

�

I−(fc)

�F ∗
n(U)|{c}×Pk .

Here, �F ∗
n(U)|{c}×Pk is the restriction of �F ∗

n(U) on {c}×Pk which is well defined because
�F ∗
n(U) is continuous near {c}×I−(fc). But �F ∗

n(U)|{c}×Pk is equal to (fn
c )∗(U|{c}×Pk),

so
ϕn(c) =

�

fn
c (I−(fc))

U|{c}×Pk .

Recall that

U =
s−1�

j=0

u �F ∗
1 (ω2)

s−1−j ∧ βj .

In particular, U|{c}×Pk near fn
c (I−(fc)) can be written

Uc :=
s−1�

j=0

u|{c}×Pkf∗c (ω2)
s−1−j ∧ djωj

2

because the coefficient of β in ω2 is d (β = dω2 + . . . ). We show now that ddcUc =

(fc)∗(ωs
2)− dsωs

2.
The singularities of u|{c}×Pk are in I+(fc), so by Theorem 4.5 in [14, Chapter III],

we have that Uc and ddcUc =
�s−1

j=0 ddc(u|{c}×Pk)∧f∗c (ω2)s−1−j∧djωj
2 are well defined

in all Pk. Taking the restriction of the equation �F ∗
1 (ω2) = β + ddcu on {c} × Pk, we

obtain
f∗c (ω2) = dω2 + (ddcu)|{c}×Pk = dω2 + ddc(u|{c}×Pk)
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since it is true outside I+(fc) and f∗c (ω2) or ddc(u|{c}×Pk) have no mass on this set of
dimension k− s− 1. Moreover u is a qpsh function, so it takes a value at every point.

Finally,

ddcUc =
s−1�

j=0

(f∗c (ω2)− dω2) ∧ f∗c (ω2)
s−1−j ∧ djωj

2 = (fc)
∗(ωs

2)− dsωs
2.

Proof of the genericity. – Recall that ϕn is continuous on ∩i≤n+1Vi. It implies that
gN is continuous on ∩i≤N+1Vi and it decreases to a function g on ∩i≥0Vi with g usc on
∩i≥0Vi. It means that for every point x in Λ = ∩i≥0Vi, we have lim supy→x, y∈Λ g(y) ≤
g(x).

Let mN =
�

gNdν. We can write on �W , gN−mN = ψ1,N−ψ2,N . Here the equality is
true on a set of full Lebesgue measure in �W . But, since gN is continuous on ∩i≤N+1Vi

and the ψi,N are qpsh, the equality is true for every point in ∩i≤N+1Vi (see below the
proof of the inequality g −m ≥ ψ1 − ψ2).

We apply the previous lemma to the sequences ψi,N and we have that these se-
quences are uniformly bounded from above and bounded in L1(ν). So we can extract
converging subsequences to some limit points ψ1 and ψ2 in L1. The sequence mN is
bounded thanks to the definitions of W �

0 and ν. So mN converges to m by monotone
convergence. In particular, g −m = ψ1 − ψ2 up to a set of zero Lebesgue measure in
�W . We want to show now that we have

g −m ≥ ψ1 − ψ2

for every point in Λ = ∩i≥0Vi. Indeed, assume there is a point x ∈ Λ such that
(g + ψ2)(x) < m + ψ1(x)− ε. On a chart which contains x, we can write ψ1 = λ1 + ξ1

with λ1 smooth and ξ1 psh.
Since g and ψ2 are usc on Λ, so is their sum and so (g + ψ2)(y) < m + ψ1(x)− ε/2

on a small ball B(x, r) centered at x and of radius r (for y ∈ Λ). For a function
h, we denote by mB(x,r)(h) the mean value of h on the ball B(x, r). We have that
that mB(x,r)(g + ψ2) = mB(x,r)(m + λ1 + ξ1) since both functions are equal a.e. and
mB(x,r)(ξ1) ≥ ξ1(x) since ξ1 is psh, so

m + ψ1(x)− ε/2 ≥ mB(x,r)(g + ψ2) ≥ mB(x,r)(λ1) + m + ξ1(x)

which is false if we take r small enough to have mB(x,r)(λ1) near λ1(x).
In particular, the set of points where g = −∞ is pluripolar since it is included in

the set of points where ψ1 is −∞. By the proof of Theorem 3.2.1, we see that g �= −∞
is equivalent to the fact that the first half of Definition 3.1.9 is satisfied.

We do the same thing for the second half of Definition 3.1.9 and we conclude since
the intersection of two pluripolar sets is pluripolar.
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3.4. The equilibrium measure

3.4.1. Construction of the measure. – We want to define the equilibrium mea-
sure µ as T+

s ∧ T−k−s. In [1], the authors used an approach based on the energy. More
precisely, they show that the potential of the Green current is in the Hilbert space
HT− defined by the closure of the smooth forms for the norm

��
dϕ ∧ dcϕ ∧ T−.

They deduced from that fact that the measure T+ ∧ T− is well defined and that the
potential of the Green current is integrable with respect to that measure.

That approach cannot be adapted here since the super-potential is not a function
defined on Pk but a function defined on Ck−s+1. Instead, we will use the formalism
of super-potential. See Definition A.1.13 for the definition of wedgeability. We prove
the theorem:

Theorem 3.4.1. – The current T+
s and T−k−s are wedgeable. So the intersection T+

s ∧
T−k−s is a well defined probability measure µ and the quasi-potential of the Green

current of order 1 is integrable with respect to this measure.

Recall that T+ := T+
1 is a well defined invariant current in C1 ([50]) and that it

admits the quasi-potential:

(15) G :=
�

n

(
1

d
f∗)nu

where u < 0 is a quasi-potential of the current d−1f∗(ω) (we write u instead of UL(ω)

in order to simplify the notations). We denote as before Ln and Λn the normalized
pull-pack and push-forward associated to fn. In what follows, for q ≤ s, ULm(ωq)

denotes the super-potential of Lm(ωq) given by (8) in Lemma 3.2.2, that is:

ULm(ωq) =
m−1�

n=0

1

dn
UL(ωq) ◦ Λn,

on (fm)∗-admissible currents in Ck−q+1.
We need the following lemma to construct the measure.

Lemma 3.4.2. – The current ωs−q ∧ Ln(ωq) and T−k−s are wedgeable for all n ≥ 0

and 0 ≤ q ≤ s. Furthermore, for all integers n and n� and 1 ≤ q ≤ s + 1 we have that

ULn(ω)q (Ln�(ω)s−q+1 ∧ T−k−s) is finite.

Proof. – We have seen in Proposition 3.2.11 that ωs−q∧L(ω)q and T−k−s are wedgeable
for q ≤ s and that the super-potentials of T−k−s are finite at L(ω)s+1. So applying that
to fn instead of f , we have that ωs−q ∧Ln(ω)q and T−k−s are wedgeable for all n ≥ 0

and that the super-potentials of T−k−s are finite at Ln(ω)s+1.
The case where q = s + 1 is already known so we assume 1 ≤ q ≤ s. The current

L(ω)s+1−q and L(ω)q are wedgeable and their wedge-product is L(ω)s+1 (it follows
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from Corollary 4.11 Chapter III in [14] and Lemma A.1.16). So using Lemma A.2.1
we have that a super-potential of L(ω)s+1 is given by:

UL(ω)q (L(ω)s−q+1 ∧R) + UL(ω)s−q+1(ωq ∧R),

on current R ∈ Ck−s such that R and L(ω)s−q+1 are wedgeable. In particular, we
can take R = T−k−s at which point the super-potential of L(ω)s+1 is finite. A super-
potential of L(ω)s−q+1 ∧ ωq is given by:

UL(ω)s−q+1(ωq ∧ �).

So by difference,
UL(ω)q (L(ω)s−q+1 ∧ T−k−s)

is well defined in the sense of super-potentials (that is it is continuous for the Hartogs’
convergence) and is finite.

So we have proved the lemma for n = n� = 1.

Applying the result to fn gives the lemma for n = n�. Now, let n ≤ n�. Then
Ln(ω)q is more H-regular than Ln�(ω)q. The super-potentials of Ln�(ω)q are finite at
Ln�(ω)s−q+1 ∧T−k−s so the super-potentials of Ln(ω)q are also finite at Ln�(ω)s−q+1 ∧
T−k−s.

Similarly, let n ≥ n�. Then Ln�(ω)s−q+1 is more H-regular than Ln(ω)s−q+1 and so
Lemma A.1.14 implies that Ln�(ω)s−q+1 ∧T−k−s is more H-regular than Ln(ω)s−q+1 ∧
T−k−s. The super-potentials of Ln(ω)q are finite at Ln(ω)s−q+1∧T−k−s, which means by
symmetry of the super-potentials that the super-potentials of Ln(ω)s−q+1 ∧ T−k−s are
finite at Ln(ω)q. Hence the super-potentials of Ln�(ω)s−q+1∧T−k−s are finite at Ln(ω)q

which means that the super-potentials of Ln(ω)q are finite at Ln�(ω)s−q+1∧T−k−s. That
gives the lemma.

Proof of Theorem 3.4.1. – By the above lemma, we have that Ln(ωs) ∧ T−k−s is
(fn)∗-admissible since it is finite at ULn(ω). Hence by Lemma 3.1.8, we have that
Λn(Ln(ωs) ∧ T−k−s) is well defined and equal to Λn(Ln(ωs) ∧ T−k−s) (recall that
Corollary 3.1.7 gives Ln(ωs) = Ln(ωs)).

We consider:
1

dn
UL(ω)(Λn(Ln(ωs) ∧ T−k−s)).

It is finite since by Lemma A.2.2 applied to fn and the invariance ot T−k−s, it is equal
to

1

dn
UL(ω)(ω

s ∧ T−k−s),

and the previous lemma assures us that this is finite.
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We use Lemma A.2.3 for fn instead of f with S1 = L(ω), S2 = ωs and S3 = T−k−s.
So we see that the previous quantity is equal to:

ULn(ωs)(L
n+1(ω) ∧ T−k−s)− ULn(ωs)(L

n(ω) ∧ T−k−s) +

�
1

d

�n

UL(ω)(Λn(ωs ∧ T−k−s)).

We now perform some sort of Abel transform. We sum from 0 to N and we regroup
the terms in Ln(ω) ∧ T−k−s (observe for the first term that Uωs = 0):

N�

n=0

1

dn
UL(ω)(ω

s ∧ T−k−s) =
N�

n=1

(−ULn(ωs) + ULn−1(ωs))(L
n(ω) ∧ T−k−s)

(16)

+ ULN (ωs)(L
N+1(ω) ∧ T−k−s) +

N�

n=0

1

dn
UL(ω)(Λn(ωs ∧ T−k−s))

Now, ULn−1(ωs) − ULn(ωs) = −d−n+1 UL(ωs) ◦ Λn−1 on (fn)∗-admissible currents
by Lemma 3.2.2. In particular, we consider the current Ln(ω) ∧ T−k−s which is (fn)∗-
admissible by the previous lemma. So using again Lemma A.2.2 for fn−1 gives:

(ULn−1(ωs) − ULn(ωs))(L
n(ω) ∧ T−k−s) = −d−n+1 UL(ωs)(Λn−1(L

n(ω) ∧ T−k−s))

= −d−n+1 UL(ωs)(Λn−1(Ln−1(L(ω)) ∧ T−k−s))

= −d−n+1 UL(ωs)(L(ω) ∧ T−k−s).

So the series
�N

n=1(−ULn(ωs) + ULn−1(ωs))(L
n(ω) ∧ T−k−s) is also convergent thanks

to the previous lemma. We also have that ULN (ωs)(L
N+1(ω)∧T−k−s) is negative since

ULN (ωs) is negative. Thus, letting N go to ∞:



�

n≥0

1

dn



 UL(ω)(ω
s ∧ T−k−s) +




�

n≥1

d−n+1



 UL(ωs)(L(ω) ∧ T−k−s)

≤
�

n≥0

1

dn
UL(ω)(Λ

n(ωs ∧ T−k−s)).

We recognize by (8) that the right-hand side is in fact UT+(ωs ∧T−k−s) which in term
of quasi-potential is

�
Gωs ∧ T−k−s (recall that T+ is the Green current of order 1).

Thus by Hartogs’ convergence, we have that UT+(ωs ∧ T−k−s) is finite (we could also
conclude by monotone convergence that G ∈ L1(ωs ∧ T−k−s), both properties being
equivalent).

Observe now that in (16) every term converge. In particular,

(ULN (ωs)(L
N+1(ω) ∧ T−k−s))N
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converges to a finite value. Using Lemma A.2.4, we have the identity:

ULN (ωs)(L
N+1(ω) ∧ T−k−s) = ULN+1(ω)(L

N (ωs) ∧ T−k−s)

− ULN+1(ω)(ω
s ∧ T−k−s) + ULN (ωs)(ω ∧ T−k−s).

On the right-hand side, the first and third terms are negative, the third term is
decreasing and we just proved that the second term converges to UT+(ωs ∧ T−k−s)

which is finite. That implies that every term is in fact convergent.
In particular, we have the convergence of ULN (ωs)(ω ∧ T−k−s). Since LN (ωs) → T+

s

in the Hartogs’ sense, that means that UT+
s

(ω∧T−k−s) is finite. Hence the current T+
s

and T−k−s are wedgeable and their intersection is a well defined probability measure
µ (we could also have deduced that from the convergence of the first term but this is
more natural).

Now, recall that the function (R,S) → U(R,S) := UR(S) = US(R) for R and S

in C q and Ck−q (UR and US being the super-potentials of mean 0) is upper semi-
continuous. The convergence of U(LN+1(ω), LN (ωs)∧T−k−s) implies that U(T+, T+

s ∧
T−k−s) is finite which means exactly that the quasi-potential of the Green current is
integrable with respect to µ.

Of course, the measure µ also integrate the potential of the Green current of order
1 of f−1.

Corollary 3.4.3. – The measure µ gives no mass to the indeterminacy sets I+
and

I−. Furthermore, L(µ) = f∗(µ) and Λ(µ) = f∗(µ) are well defined in the sense of

super-potentials.

Proof. – The fact that µ is f∗-admissible follows from Theorem 3.4.1 since its super-
potentials are finite at the point L(T+) = T+ and so they are finite at the point L(ω)

which is more H-regular than L(T+). Since the potential of T+ is equal to −∞ on I+

and is in L1(µ) (in fact log dist(x, I+) ∈ L1(µ)) we have that µ gives no mass to the
indeterminacy set I+, similarly for I−.

Proposition 3.4.4. – The measure µ is invariant, that is f∗(µ) and f∗(µ) are equal

to µ.

Proof. – The currents Ln(ωs) and Λm(ωk−s) are wedgeable for m and n in N since
they are more H-regular than T+

s and T−k−s. So let µn := Ln(ωs) ∧ Λn(ωk−s) (resp.
µ�n := Ln−1(ωs) ∧ Λn+1(ωk−s)). Now since Ln(ωs) and Λn(ωk−s) converge in the
Hartogs’ sense to T+

s and T−k−s which are wedgeable, we have that µn (resp. µ�n)
converges to µ in Hartogs’ sense (Proposition A.1.15).

By Lemma A.2.2, we have that µ�n = Λ(Ln(ωs)∧Λn(ωk−s)) = Λ(µn) (observe that
Ln(ωs) ∧ Λn(ωk−s) is f∗ admissible since it is more H-regular than T+

s ∧ T−k−s which
is f∗-admissible).
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So, since µ is f∗-admissible, we have that µ�n converges in the Hartogs’ sense to
Λ(µ) = µ which is what we wanted.

Corollary 3.4.5. – The measure µ gives no mass to the indeterminacy sets I(f±n)

and the critical sets C(f±n).

Proof. – We already know that the indeterminacy sets have no mass for µ so using
the invariance of µ, we have that µ( C(f)) = µ(f−1(I−)) = µ(I−) = 0.

3.4.2. Green currents of order 1 ≤ q ≤ s. – The purpose of this paragraph is to
construct the Green currents of order q for q ≤ s. This will allow us to prove that T+

s

can be written as (T+)s. As an application, we show that the equilibrium measure
gives no mass to the pluripolar sets.

Using the same arguments than in Theorem 3.4.1, we construct the Green currents
T+

q of order q for q ≤ s:

Proposition 3.4.6. – For 1 ≤ q ≤ s, the sequence (Ln(ωq))n converges in the Har-

togs’ sense to T+
q the Green current of order q and the Green currents T+

q and T−k−s

are wedgeable. Furthermore, any super-potential UT+
q

of T+
q satisfies

UT+
q

(T+
s−q+1 ∧ T−k−s) > −∞.

Proof. – Observe that the roles of q and s− q + 1 are symmetric, so anything proved
for q stands for s − q + 1. The current Ln(ωs−q+1) ∧ T−k−s is (fn)∗ admissible by
Lemma 3.4.2. Lemma 3.1.8 implies that Λn(Ln(ωs−q+1) ∧ T−k−s) is well defined and
equal to Λn(Ln(ωs−q+1) ∧ T−k−s). So we consider this time:

1

dn
UL(ωq)(Λn(Ln(ωs−q+1) ∧ T−k−s)).

By Lemma A.2.2 and the invariance ot T−k−s, it is equal to
1

dn
UL(ωq)(ω

s−q+1 ∧ T−k−s),

and Lemma 3.4.2 assures us that this is finite.
Using Lemma A.2.3, performing the same Abel transform and using again Lemma

A.2.2, we obtain similarly that:

�
N�

n=0

1

dn

�
UL(ωq)(ω

s−q+1 ∧ T−k−s) =

�
N�

n=1

−d−n+1

�
UL(ωs−q+1)(L(ωq) ∧ T−k−s)

(17)

+ ULN (ωs−q+1)(L
N+1(ωq) ∧ T−k−s)

+
N�

n=0

1

dn
UL(ωq)(Λ

n(ωs−q+1 ∧ T−k−s))
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We have again that ULN (ωs−q+1)(L
N+1(ωq) ∧ T−k−s) is negative since ULN (ωs−q+1) is

negative. Thus, letting N go to ∞:



�

n≥0

d−n



 UL(ωq)(ω
s−q+1 ∧ T−k−s) +




�

n≥1

d−n+1



 UL(ωs−q+1)(L(ωq) ∧ T−k−s)

≤
�

n≥0

1

dn
UL(ωq)(Λn(ωs−q+1 ∧ T−k−s)).

Again, by Proposition A.1.8, we have that the sequence of super-potential of Ln(ωq)

is decreasing thus to have the convergence in the Hartogs’ sense, it is sufficient to have
the convergence at one point. We recognize by (8) that the right-hand side gives in fact
the convergence at the point ωs−q+1 ∧ T−k−s (again ωs−q+1 ∧ T−k−s is (fn)∗-admissible
so Λn(ωs−q+1 ∧ T−k−s) = Λn(ωs−q+1 ∧ T−k−s)). So we have that UT+

q
(ωs−q+1 ∧ T−k−s)

is finite and Ln(ωq) converges to T+
q in the Hartogs’ sense.

In (17) every term converges. In particular,

(ULN (ωs−q+1)(L
N+1(ωq) ∧ T−k−s))N

converges to a finite value. Using Lemma A.2.4, we have the identity:

ULN (ωs−q+1)(L
N+1(ωq) ∧ T−k−s) = ULN+1(ωq)(L

N (ωs−q+1) ∧ T−k−s)

− ULN+1(ωq)(ω
s−q+1 ∧ T−k−s)

+ ULN (ωs−q+1)(ω
q ∧ T−k−s).

As above, every term converges to a finite value. In particular, that means that
UT+

s−q+1
(ωq ∧ T−k−s) is finite (which is already known by exchanging the role of q

and s−q+1). Finally the convergence of ULN+1(ωq)(L
N (ωs−q+1)∧T−k−s) implies that

U(T+
q , T+

s−q+1 ∧ T−k−s) is finite.

We prove that T+
q is invariant.

Lemma 3.4.7. – For 1 ≤ q ≤ s, the Green current T+
q is f∗-admissible and satisfies

T+
q = L(T+

q ). Furthermore, T+
q is the most H-regular current which is f∗-invariant

in C q. In particular, T+
q is extremal in the set of f∗-invariant currents of C q.

Proof. – For q = s, this is Theorem 3.2.9. So take q < s. We have that Ln(ωq)

converges in the Hartogs’ sense to T+
q . So this means that at the point ωk−q+1 we

have the convergence of the series:
�

n≥0

d−n UL(ωq)(Λ
n(ωk−q+1)).
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In particular, dropping the first term and multiplying by d, we have the convergence
of the series: �

n≥0

d−n UL(ωq)(Λ
n(Λ(ωk−q+1))).

We recognize UT+
q

(Λ(ωk−q+1)) > −∞ hence T+
q is f∗-admissible.

By Theorem A.1.17, we see that L(Ln(ωq)) converges to L(T+
q ) and to T+

q . So we
have proved the first part of the lemma. The rest is exactly as in Theorem 3.2.9.

Now, we also want to consider the intersection T+
q ∧ T−k−s for q < s. First, we

have that these intersections are well defined elements of Ck−s+q from Proposition
3.4.6 (T+

q and T−k−s are wedgeable). Furthermore, it is f∗-admissible since we have by
Proposition 3.4.6 that

UT+
s−q+1

(T+
q ∧ T−k−s) > −∞

and since L(ωs−q+1) is more H-regular than T+
s−q+1 = L(T+

s−q+1), we see that:

UL(ωs−q+1)(T
+
q ∧ T−k−s) > −∞,

which means that T+
q ∧T−k−s is f∗-admissible since by symmetry of the super-potential,

its super-potentials are finite at the point L(ωs−q+1).
Using the same argument than in the proof of the invariance of the measure µ, one

has:

Proposition 3.4.8. – The current T+
q ∧ T−k−s ∈ Ck−s+q is f∗-invariant, that is:

Λ(T+
q ∧ T−k−s) = T+

q ∧ T−k−s.

Proof. – This follows from the fact that Ln(ωq) and Λm(ωk−s) converge in the Har-
togs’ sense to T+

q and T−k−s which are wedgeable and we use Proposition A.2.2.

Now, we use the same arguments than in the proof of Theorem 3.4.1, but we replace
T−k−s by T+

q ∧ T−k−s. Our purpose is to show that T+
s = (T+)s. We need the following

lemma first:

Lemma 3.4.9. – Let q1 ≥ 1 and q2 such that q1 +q2 = s−q+1. Then the current T+
q2

and T+
q ∧T−k−s are wedgeable and we have that a super-potential UT+

q1
of T+

q1
satisfies:

UT+
q1

(T+
q2
∧ T+

q ∧ T−k−s) > −∞.

The proof is essentially the same as the one of Theorem 3.4.1. We need the equiv-
alent of Lemma 3.4.2 first:

Lemma 3.4.10. – Let q1 ≥ 1 and q2 such that q1 +q2 = s−q+1 and let n ∈ N. Then

the currents Ln(ωq2) and T+
q ∧ T−k−s are wedgeable. Furthermore, for n� ∈ N:

ULn� (ωq1 )(L
n(ωq2) ∧ T+

q ∧ T−k−s) > −∞.
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Proof. – We can assume that q2 ≥ 1 (else it is just Proposition 3.4.6). The super-
potentials of the current T+

q ∧T−k−s are finite at L(ωq1+q2) = L(ωq1)∧L(ωq2) which is
less H-regular than ωq1 ∧L(ωq2). Hence the super-potentials of the current T+

q ∧T−k−s

are finite at ωq1 ∧ L(ωq2). This means that the currents L(ωq2) and T+
q ∧ T−k−s are

wedgeable.
On the other hand, UL(ωq1+q2 )(T

+
q ∧ T−k−s) is finite. We can use Lemma A.2.1 and

we have that:

UL(ωq1+q2 )(T
+
q ∧ T−k−s) = UL(ωq2 )(ω

q1 ∧ T+
q ∧ T−k−s) + UL(ωq1 )(L(ωq2) ∧ T+

q ∧ T−k−s).

Again taking the difference with UL(ωq2 )(ω
q1 ∧ T+

q ∧ T−k−s), we have that:

UL(ωq1 )(L(ωq2) ∧ T+
q ∧ T−k−s)

is well defined in the sense of super-potentials and is finite. We have proved the lemma
for n = n� = 1. The rest follows as in Lemma 3.4.2.

Proof of Lemma 3.4.9. – We replace T−k−s by T+
q ∧T−k−s and we do the same compu-

tations. Lemma A.2.2, A.2.3 and A.2.4 still apply for T+
q ∧ T−k−s.

We can now prove the following corollary. Observe that if a sequence Sn converges
in the Hartogs’ sense to S and a sequence Rn converges in the Hartogs’ sense to R

with Rn ∧ Sn wedgeable converging in the Hartogs’ sense to a current T , we cannot
claim a priori that S and R are wedgeable and that T = R ∧ S. But if S and R are
wedgeable, then we do have T = R ∧ S.

Corollary 3.4.11. – The current T+
s satisfies T+

s = (T+)s
. Consequently, one has

µ = (T+)s ∧ (T−)k−s
where T±

is the Green current of order 1 of f±
.

Proof. – Applying the previous lemma to q = 1, q1 = 1 and q2 = s− 1 gives that

UT+(T+
s−1 ∧ T+ ∧ T−k−s) > −∞.

Since ωk−s+1 is more H-regular than T+ ∧ T−k−s that implies that:

UT+(T+
s−1 ∧ ωk−s+1) > −∞.

In particular that T+ and T+
s−1 are wedgeable. Since Ln(ω) and Ln(ωs−1) converges

in the Hartogs’ sense to T+ and T+
s−1 and Ln(ωs) converges in the Hartogs’ sense to

T+
s , Proposition A.1.15 implies that T+ ∧ T+

s−1 = T+
s . An easy induction gives the

result for T+
s and the result follows for µ.

Remark 3.4.12. – We do not know how to prove the previous result without con-
structing T−k−s first. In the case where f satisfies Hypothesis 3.1.10, the result was
proved directly (see Theorem 3.2.8). This illustrates the difference between Hypothe-
ses 3.1.10 and Definition 3.1.9. For a map satisfying Hypotheses 3.1.10, we have that
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the potential of T+ is finite at every point of I−, if it is only in B, we can only say
that

�
I− UT+ωs−1 is finite since T+ ∧ ωs−1 is more H-regular than T+

s = (T+)s.

Now, we improve the previous results and we show that the measure µ gives no mass
to pluripolar sets (hence analytic sets). The proof relies on a space of test functions
introduced by Dinh and Sibony in [26] and studied by the second author in [53].
Recall that the space W 1,2(Pk) is the set of functions in L2 whose differential in the
sense of currents can be represented by a form in L2. The space W ∗(Pk) is the set of
functions ϕ in W 1,2(Pk) such that there exists a positive closed current Sϕ of bidegree
(1, 1) satisfying:

(18) dϕ ∧ dcϕ ≤ Sϕ.

For ϕ ∈ W ∗, we define the norm:

�ϕ�2∗ = �ϕ�2L2 + inf
�

m(S), S closed, satisfying (18)
�

.

Let ψ be a qpsh function in W ∗(Pk). Consider the regularization ψn of ψ obtained
through an approximation of the identity in PGL(k + 1, C). Let S be minimal in
(18) for ψ and let Sn be the smooth regularization of S obtained through the same
approximation of the identity. Using Lemma 5 in [53], we have

— ψn “decreases” to ψ.
— dψn ∧ dcψn ≤ Sn, and m(Sn) → m(S) thus lim �ψn�∗ = �ψ�∗.

If ϕ is a qpsh function in Pk with ϕ ≤ −2, then ψ := − log−ϕ is in W ∗(Pk), thus
for every pluripolar set in Pk there exists a qpsh function in W ∗(Pk) equal to −∞ on
that set (see Example 1 p. 253 in [53]). In particular, if the qpsh functions in W ∗(Pk)

are integrable for a measure, the measure cannot give mass to the pluripolar sets. We
can now state the theorem:

Theorem 3.4.13. – The measure µ gives no mass to pluripolar sets (hence analytic

sets). More precisely, there exists C > 0 such that for ψ < 0 a qpsh function in

W ∗(Pk), we have that:

|µ(ψ)| ≤ C�ψ�∗.

Proof. – Let ψ and ψn be as above. Recall that G is the potential of T+. Let T+
m

and T−m be sequence of smooth currents in C1 converging to T+ and T− in the
Hartogs’ sense. Then µm = (T+

m)s ∧ (T−m)k−s converges to µ in the Hartogs’ sense by
Proposition A.1.15. Let Gm be the associated potential of T+

m . Using Stokes’ formula
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and Cauchy-Schwarz inequality, we have that:
����
�

ψndµm

���� =

����
�

ψn(ddcGm + ω) ∧ (T+
m)s−1 ∧ (T−m)k−s

����

≤
����
�

dψn ∧ dcGm ∧ (T+
m)s−1 ∧ (T−m)k−s

����

+

����
�

ψnω ∧ (T+
m)s−1 ∧ (T−m)k−s

����

≤
��

dψn ∧ dcψn ∧ (T+
m)s−1 ∧ (T−m)k−s

� 1
2

×
��

dGm ∧ dcGm ∧ (T+
m)s−1 ∧ (T−m)k−s

� 1
2

+

����
�

ψnω ∧ (T+
m)s−1 ∧ (T−m)k−s

���� .

Let Sn be the positive closed current of bidegree (1, 1) such that dψn ∧ dcψn ≤ Sn.
Using again Stokes’ formula for the second term of the product yields:

����
�

ψndµm

���� ≤
��

Sn ∧ (T+
m)s−1 ∧ (T−m)k−s

� 1
2

×
�
−

�
GmddcGm ∧ (T+

m)s−1 ∧ (T−m)k−s

� 1
2

+

����
�

ψnω ∧ (T+
m)s−1 ∧ (T−m)k−s

���� .

We let m go to ∞, we have that
��� ψndµm

�� converges to
��� ψndµ

��,
��

Sn ∧ (T+
m)s−1 ∧ (T−m)k−s

�

converges to
��

Sn ∧ T+
s−1 ∧ T−k−s

�
, and

��� ψnω ∧ (T+
m)s−1 ∧ (T−m)k−s

�� converges to��� ψnω ∧ T+
s−1 ∧ T−k−s

��. The term:
�

GmddcGm ∧ (T+
m)s−1 ∧ (T−m)k−s =

�
Gm(T+

m)s ∧ (T−m)k−s

−
�

Gmω ∧ (T+
m)s−1 ∧ (T−m)k−s

can be rewritten as:

U1(T
+
m , (T+

m)s ∧ (T−m)k−s)− U1(T
+
m , ω ∧ (T+

m)s−1 ∧ (T−m)k−s)

which by Hartogs’ convergence goes with m to:

U1(T
+, µ)− U1(T

+, ω ∧ T+
s−1 ∧ T−k−s)
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which is finite by Theorem 3.4.1 (observe that ω∧T+
s−1∧T−k−s is more H-regular than

µ). So we have that:
����
�

ψndµ

���� ≤ C

��
Sn ∧ T+

s−1 ∧ T−k−s

� 1
2

+

����
�

ψnω ∧ T+
s−1 ∧ T−k−s

���� ,

where C2 = |U1(T+, µ)− U1(T+, ω ∧ T+
s−1 ∧ T−k−s)| is a constant.

The term
��

Sn ∧ T+
s−1 ∧ T−k−s

� 1
2 is controlled by �ψ�∗ + ε for n large enough be-

cause Sn is smooth so that wedge-product is well defined and the mass can be com-
puted in cohomology.

We use an induction to control in the same way the term
��� ψnω ∧ T+

s−1 ∧ T−k−s

��
(at the last step, we have a term in

�
−ψnωk). Since for n large enough we have

�ψn�∗ ≤ �ψ�∗ + ε (ε > 0), we have proved that:
����
�

ψndµ

���� ≤ C(�ψ�∗ + ε).

By monotone convergence and letting ε → 0, we have the theorem.

3.4.3. Mixing, entropy and hyperbolicity of µ. – We now prove that µ is
mixing, that is limn→∞ µ(ϕψ ◦ fn) = µ(ϕ)µ(ψ) for ϕ and ψ smooth functions on Pk.
Here the function ψ ◦ fn is not smooth, so by definition µ(ϕψ ◦ fn) is the integral of
ϕψ ◦ fn on Pk \ I(fn) for the measure µ which gives no mass to I(fn). Recall that
I(fn) ⊂ C(fn).

We need the classical lemma ([50] and [42]):

Lemma 3.4.14. – Let ψ be smooth function on Pk
, then the sequence of currents

(ψ◦fnT+
s )n converges to cT+

s where c = µ(ψ). Moreover, we have that �d(ψ◦fnT+
s )�

and �ddc(ψ ◦ fnT+
s )� go to zero.

Proof. – The norm �d(ψ ◦ fnT+
s )� is the operator’s norm on the space of smooth

forms.
We can assume that 0 ≤ ψ ≤ 1. Then, the sequence (ψ ◦ fnT+

s )n is bounded so we
can extract a subsequence converging in the sense of currents to S ≥ 0 which satisfies
S ≤ T+

s . In order to show that S is closed and that �d(ψ ◦ fnT+
s )� → 0, we only need

to show that for every smooth (0, 1)-form θ we have that |�ψ ◦ fnT+
s , ∂(θ ∧ωk−s−1)�|

goes to 0 uniformly on θ (see [12] p. 3 for details). In other words, we want to compute
the limit of: �

Pk\I(fn)
ψ ◦ fnT+

s ∧ ∂(θ) ∧ ωk−s−1.

We are going to use the technics of [49]. Let v < 0 be a qpsh function equal to
−∞ on C(fn) and smooth outside C(fn). Let max� be a smooth convex increasing
function approximating the function max+ := max(x, 0) such that its derivative is less
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than 1. Let vj = max�(v/j + 1). Then (vj) is an increasing sequence of smooth qpsh
(i∂∂̄vj + ω ≥ 0) functions with 0 ≤ vj ≤ 1 converging uniformly to 1 on the compact
sets of Pk\ C(fn) and equal to 0 on some neighborhood of C(fn). Let α : [0, 1] → [0, 1]

be a smooth function equal to 0 in [0, 1/3] and to 1 in [2/3, 1]. Then the sequence
of functions v�j := α ◦ vj is equal to 1 on the compact sets of Pk\ C(fn) for j large
enough and is equal to 0 on some neighborhood of C(fn).

Since T+
s gives no mass to C(fn), the previous quantity is the limit when j goes

to ∞ of:
�v�jψ ◦ fnT+

s , ∂(θ) ∧ ωk−s−1�.
By Stokes’ formula, it is equal to:

−�v�j∂(ψ ◦ fn) ∧ T+
s , θ ∧ ωk−s−1� − �ψ ◦ fn∂(v�j) ∧ T+

s , θ ∧ ωk−s−1�.

We apply Cauchy-Schwarz inequality for the first term of the sum, we bound the
absolute value of the first term of the previous quantity by:

�(v�j)2i∂ψ ◦ fn ∧ ∂̄ψ ◦ fn ∧ T+
s , ωk−s−1� 1

2 × �iθ ∧ θ ∧ T+
s , ωk−s−1� 1

2 .

The second term of the product is bounded and does not depend on j and n (uniformly
in �θ�). For the first term, observe that :

i∂ψ ◦ fn ∧ ∂̄ψ ◦ fn ∧ T+
s = d−sn(fn)∗(i∂ψ ∧ ∂̄ψ ∧ T+

s )

in the integral since fn is smooth on the support of v�j and one can multiply a positive
closed current by a smooth form and take the pull-back by a smooth function. So,
assuming that i∂ψ ∧ ∂̄ψ ≤ ω, we have that the first term is less than:

�d−sn(fn)∗(ω ∧ T+
s ), ωk−s−1� 1

2 = (δ−(k−s)nδ(k−s−1)n)
1
2 = δ−n/2

which goes to 0 when n goes to ∞ independtly of j.
Now we have to control the term:

�∂(v�j)ψ ◦ fn ∧ T+
s , θ ∧ ωk−s−1�.

We have that ∂(v�j) = α�(vj)∂vj and observe that the sequence of functions (α�(vj))

is bounded and converges uniformly to 0 on the compact sets of Pk\ C(fn). We apply
Cauchy-Schwarz inequality and we get that:

�∂(v�j)ψ ◦ fn ∧ T+
s , θ ∧ ωk−s−1�2 ≤

�i∂(vj) ∧ ∂̄(vj) ∧ T+
s , ωk−s−1��i(α�(vj))

2θ ∧ θ ∧ T+
s , ωk−s−1�.

The first term of the product is equal by Stokes’ formula to:

�−vj ∧ i∂∂̄(vj) ∧ T+
s , ωk−s−1�

Since 0 ≤ vj ≤ 1 and i∂∂̄vj + ω ≥ 0, it is less than:

�vjω ∧ T+
s , ωk−s−1� ≤ �ω ∧ T+

s , ωk−s−1�
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which is bounded independently of n and j. The second term of the product goes to
0 when j →∞ uniformly on θ by dominated convergence since T+

s gives no mass to
C(fn). So letting j →∞ first, we see that:

�ψ ◦ fnT+
s , ∂(θ) ∧ ωk−s−1�

goes to 0 when n →∞ uniformly on �θ�.
By Theorem 3.2.19, this shows that S = cT+

s . To compute c, consider �ψ ◦
fnT+

s , ωk−s�. It is equal to �T+
s ∧ Λn(ωk−s), ψ�: replace T+

s by a smooth approxi-
mation T+

m , then ψ ◦ fnLn(T+
m) = d−ns(fn)∗(ψT+

m), so

�ψ ◦ fnLn(T+
m), ωk−s� = �T+

m ∧ Λn(ωk−s), ψ�

and let m go to ∞. So we have �ψ ◦ fnT+
s , ωk−s� = �T+

s ∧ Λn(ωk−s), ψ� because
T+

s ∧ ωk−s gives no mass to I(fn).
By Theorem 3.4.1, we have that T+

s ∧ Λn(ωk−s) converges (in the Hartogs’ sense
hence in the sense of currents) to µ which means that c = µ(ψ). In particular, c does
not depend on the choice of S and the first part of the lemma follows.

Now we show that �ddc(ψ ◦ fnT+
s )� goes to zero. Let Θ be a test form of bidegree

(k − s − 1, k − s − 1). Again, we consider a smooth approximation of T+
s that we

denote T+
m . Using the fact that (ψ ◦ fn)Ln(T+

m) = d−sn(fn)∗(ψT+
m), we compute:

�ψ ◦ fnLn(T+
m), ddcΘ� = �d−sn(fn)∗(ψT+

m), ddcΘ)�

= �d−sn(fn)∗(ddc(ψ) ∧ T+
m),Θ�.

Writing Θ = Θ+−Θ− we can assume that Θ is positive (so Θ ≤ Bωk−s−1 with B > 0

large enough which depends only on �Θ�). Let A > 0 be such that −Aω ≤ ddcψ ≤ Aω.
It is sufficient to control:

�d−sn(fn)∗(ω ∧ T+
m), ωk−s−1�.

We recognize that this is equal by definition to dn
s+1d

−sn = δ−n. We let m go to ∞
and we have that �ddc(ψ ◦ fn ∧ T+

s ),Θ� goes to 0 with n uniformly on �Θ�.

Theorem 3.4.15. – The measure µ is mixing.

Proof. – Let ψ and ϕ be real smooth functions on Pk. We can assume without loss
of generality that 0 ≤ ψ,ϕ ≤ 1. Then for S in Ck−s smooth, we have by the above
lemma that:

�(ϕψ ◦ fn)T+
s , S�

converges to:
µ(ψ)�ϕT+

s , S�.
We consider a sequence (T−m) of smooth currents in C1 converging in the Hartogs’
sense to T− (the Green current of order 1 of f−1). Then let m = (m1, m2, . . . ,mk−s)
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and m� = (m�
1, m

�
2, . . . ,m

�
k−s) in Nk−s. We have that T−m1

∧ · · · ∧ T−mk−s
converges to

T−k−s in the Hartogs’ sense when the mi go to ∞. We decompose:

T−m1
∧ · · · ∧ T−mk−s

− T−m�
1
∧ · · · ∧ T−m�

k−s

as:

(T−m1
− T−m�

1
) ∧ T−m2

∧ · · · ∧ T−mk−s
+

T−m�
1
∧ (T−m2

− T−m�
2
) ∧ · · · ∧ T−mk−s

+

. . .

T−m�
1
∧ · · · ∧ T−m�

k−s−1
∧ (T−mk−s

− T−m�
k−s

).

As in the previous lemma, let (vj) be an increasing sequence of smooth qpsh (i∂∂̄vj +

ω ≥ 0) functions with 0 ≤ vj ≤ 1 converging uniformly to 1 on the compact sets of
Pk\ C(fn) and equal to 0 on some neighborhood of C(fn).

We also define v�j := α ◦ vj with α : [0, 1] → [0, 1] a smooth function equal to 0 in
[0, 1/3] and to 1 in [2/3, 1] so that the sequence of functions v�j is equal to 1 on the
compact sets of Pk\ C(fn) for j large enough and is equal to 0 on some neighborhood
of C(fn).

We consider the quantity �v�jϕψ ◦ fnT+
s , (T−m1

− T−m�
1
) ∧ · · · ∧ T−mk−s

�. Write T−i =

ω + ddcgi where the gi are decreasing. By Stokes’ formula, we have that:

�v�jϕψ ◦ fnT+
s , (T−m1

− T−m�
1
) ∧ · · · ∧ T−mk−s

� =

−�(ϕψ ◦ fndv�j + v�jψ ◦ fndϕ + v�jϕdψ ◦ fn) ∧ T+
s , dc(gm1 − gm�

1
) ∧ · · · ∧ T−mk−s

�.

Write the last sum I + II + III with obvious notations. Using Cauchy Schwarz
inequality for the first term, we have that:

|I|2 ≤ �dvj ∧ dcvj ∧ T+
s , T−m2

∧ · · · ∧ T−mk−s
�×

�(α�(vj))
2d(gm1 − gm�

1
) ∧ dc(gm1 − gm�

1
) ∧ T+

s , T−m2
∧ · · · ∧ T−mk−s

�.

As in the proof of the previous lemma, we have that this term goes to zero when
j →∞ since α�(vj) converges uniformly to 0 on the compact sets of Pk\ C(fn).

Now for II, we use Cauchy Schwarz inequality and we have that:

|II|2 ≤�dϕ ∧ dcϕ ∧ T+
s , T−m2

∧ · · · ∧ T−mk−s
�

�d(gm1 − gm�
1
) ∧ dc(gm1 − gm�

1
) ∧ T+

s , T−m2
∧ · · · ∧ T−mk−s

�.
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The first term of the product is bounded as it converges to
�

dϕ∧dcϕ∧T+
s ∧(T−)s−1.

By Stokes, we recognize that the second term is equal to

�−(gm1 − gm�
1
) ∧ ddc(gm1 − gm�

1
) ∧ T+

s , T−m2
∧ · · · ∧ T−mk−s

� =

�−(gm1 − gm�
1
) ∧ (T−m1

− T−m�
1
) ∧ T+

s , T−m2
∧ · · · ∧ T−mk−s

� =

UT−m1
(T+

s ∧ T−m�
1
∧ T−m2

∧ · · · ∧ T−mk−s
)− UT−

m�
1

(T+
s ∧ T−m�

1
∧ T−m2

∧ · · · ∧ T−mk−s
)+

UT−
m�

1

(T+
s ∧ T−m1

∧ T−m2
∧ · · · ∧ T−mk−s

)− UT−m1
(T+

s ∧ T−m1
∧ T−m2

∧ · · · ∧ T−mk−s
).

Observe that this term goes to 0 when the mi, m�
i are large enough. Indeed recall that

U1(S, T ) is continuous for the Hartogs’ convergence (Lemma A.1.11), so:

UT−m1
(T+

s ∧ T−m�
1
∧ T−m2

∧ · · · ∧ T−mk−s
)

converges to UT−(µ) which is finite and so does the other terms in the majoration of
II (the convergence is uniform else we could extract a subsequence which does not
converge).

Now we bound III. Applying Cauchy-Schwarz inequality gives:

|III|2 ≤�|v�j |2dψ ◦ fn ∧ dcψ ◦ fn ∧ T+
s , T−m2

∧ · · · ∧ T−mk−s
�

�d(gm1 − gm�
1
) ∧ dc(gm1 − gm�

1
) ∧ T+

s , T−m2
∧ · · · ∧ T−mk−s

�

Observe that the second integral is the same than in the bound of II so it goes to
zero. For the first term of the product, we use that fn is smooth in the support of
v�j and thus dψ ◦ fn ∧ dcψ ◦ fn = (fn)∗(dψ ∧ dcψ) in the integral. We can assume
that dψ ∧ dcψ ≤ ω. Using the invariance of T+

s and the fact that v�j is equal to 0 near
C(fn), we have that (fn)∗(ω) ∧ T+

s = d−sn(fn)∗(ω ∧ T+
s ) in the integral, so the first

term in the bound of III is less than:
1

dsn
�(fn)∗(ω ∧ T+

s ), T−m2
∧ · · · ∧ T−mk−s

�.

That last term can be computed cohomologically and is equal to δn(k−s−1)

dns < 1. So as
for II, we have that III goes to 0 uniformly in n.

Letting j go to ∞, we have that

�ϕψ ◦ fnT+
s , T−m1

∧ · · · ∧ T−mk−s
− T−m�

1
∧ · · · ∧ T−m�

k−s
�

converges uniformly to 0. In particular, we can interchange the limit in:

lim
m

lim
n
�(ϕψ ◦ fn)T+

s , T−m1
∧ · · · ∧ T−mk−s

�

which gives limn µ(ϕψ ◦ fn) = µ(ϕ)µ(ψ) hence the mixing.
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We now show that the measure µ satisfies the hypothesis of Chapter 2 and we
deduce from that a bound of its entropy. Recall that we denote by µn the sequence
of probabilities:

µn :=
1

n

n−1�

i=0

f i
∗

�
(fn)∗ωs ∧ ωk−s

λs(fn)

�
.

In our case, using Lemma A.2.2 and hypothesis (H), we can write it as:

µn =
1

n

n−1�

i=0

Ln−i(ωs) ∧ Λi(ωk−s).

We consider the hypothesis (H): there exists a subsequence µψ(n) of µn converging
to a measure µ� such that:

(H) : lim
n→+∞

�
log d(x, I)dµψ(n)(x) =

�
log d(x, I)dµ�(x) > −∞.

In here, we do not need to take a subsequence:

Proposition 3.4.16. – The sequence (µn) converges to µ and satisfies the hypothesis

(H).

Proof. – Let ϕ be a smooth test function. Choose ε > 0. By Theorem 3.4.1, since
Ln−i(ωs) and Λi(ωk−s) converge in the Hartogs’ sense, Proposition A.1.15 assures
us that Ln−i(ωs) ∧ Λi(ωk−s) converges in the Hartogs’ sense to µ. So we have for√

n ≤ i ≤ n−
√

n and n large enough that|Ln−i(ωs) ∧ Λi(ωk−s)(ϕ)− µ(ϕ)| ≤ ε. The
fact that (µn) goes to µ follows since they are o(n) terms for which the estimation
does not stand.

Now, by Lemma A.2.5, we see that there exist constants Ai,n ≥ 0 such that
ULn−i(ωs)∧Λi(ωk−s) ≥ Uµ − Ai,n with Ai,n uniformly bounded from above by C and
arbitrarily close to zero for i and n large enough. We consider super-potentials of
mean 0. In particular:

Uµn ≥ Uµ −
1

n

n−1�

i=0

Ai,n.

So we have that the sequence µn is more H-regular than µ for all n. We also have
the convergence in the Hartogs’ sense to µ since 1

n

�n−1
i=0 Ai,n goes to 0 when n → +∞.

Thus µn(G) → µ(G) which is finite by Theorem 3.4.1 where G is a negative poten-
tial of the Green current of order 1 that we denote T+. Since T+ is less H-regular than
L(ω), we have that if UL(ω) is a quasi-potential of L(ω) then µn(UL(ω)) → µ(UL(ω))

which is also finite. By Lemma 3.2.4, we have that:

AUL(ω)(x) < log dist(x, I+)
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for A > 0 large enough. We denote ϕ := log dist(x, I+). Since µ gives no mass to I+

that means that AUL(ω)(x) ≤ ϕ ≤ 0 for µ a.e point, so we have that ϕ ∈ L1(µ). We
have the classical lemma:

Lemma 3.4.17. – Let νn be a sequence of measures converging to ν in the sense of

measures. Then for v an upper semi-continuous function, we have that

lim sup νn(v) ≤ ν(v).

Proof. – Recall that an usc function can be written as the limit of a decreasing se-
quence of continuous functions. So for some small α > 0 we can take v� ≥ v a
continuous function such that

�
v�dν ≤

�
vdν + α by monotone convergence. In par-

ticular: �
vdνn ≤

�
v�dνn →

�
v�dν ≤

�
vdν + α.

And the result follows by letting α → 0.

End of the proof of the proposition. – Now, ϕ is upper semi-continuous, so:

lim supµn(ϕ) ≤ µ(ϕ)

We also have that (A + 1)UL(ω) −ϕ is upper semi-continuous (we use the fact that it
is equal to −∞ on I+). That and µn(UL(ω)) → µ(UL(ω)) give:

lim inf µn(ϕ) ≥ µ(ϕ).

This is exactly the fact that µ satisfies Hypothesis (H).

We can now apply Theorem 1 to get the proposition:

Theorem 3.4.18. – The topological entropy of f is greater than log ds = s log d.

More precisely, the entropy of µ is greater than s log d.

On the other hand, the topological entropy is always bounded by max0≤s≤k log ds

(see [25] for the projective case and [22] for the Kähler case). So we have the funda-
mental result:

Theorem 3.4.19. – The topological entropy of f is equal to log ds. Moreover, the

entropy of µ is equal to s log d so µ is a measure of maximal entropy.

Remark 3.4.20. – A very natural question asked by the referee is whether µ is
unique. To answer such a question one often use some sort of control on the size
of the stable and unstable manifolds that seems very difficult to get here (see for
example [2] in the case of Hénon maps).
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This allows us to use the first author’s estimate of the Lyapunov exponents (Corol-
lary 3 in [11]). To apply that result, we need to have that log(dist(x, C+)) is integrable
with respect to µ. For that observe that the function UL(ω) is integrable with respect
to µ. By invariance, f∗(UL(ω)) is also integrable. Write UL(ω) as in Lemma 3.2.4:

UL(ω) = d−1 log |F |2 − log |Z|2,

where f = [P1 : . . . : Pk+1] and F = (P1, . . . , Pk+1). Write f−1 = [Q1 : . . . :

Qk+1] where the Qi are homogeneous polynomials of degree δ and write F−1 =

(Q1, . . . , Qk+1). There is of course an abuse of notation since F ◦ F−1 �= Id instead,
we have that:

F ◦ F−1 = P (z1, . . . , zk+1)× (z1, . . . , zk+1) ,

where P is an homogeneous polynomial of degree dδ − 1 equal to 0 in π−1( C−) and
π : Ck+1 → Pk is the canonical projection. Then, we have that:

f∗(
1

d
log |F |2 − log |Z|2) =

1

d
log |F ◦ F−1|2 − log |F−1(Z)|2.

We recognize d−1 log |F ◦ F−1|2 − δ log |Z|2 + δ log |Z|2 − log |F−1(Z)|2. But

δ log |Z|2 − log |F−1(Z)|2 = −δUΛ(ω)

is in L1(µ) and by difference, so is d−1 log |F ◦F−1|2− δ log |Z|2. As in Lemma 3.2.4,
we then have that log dist(., C−) is in L1(µ). Similarly, log dist(., C+) is in L1(µ).

Theorem 3.4.21. – The Lyapunov exponents χ1 ≥ χ2 ≥ · · · ≥ χk of µ are well

defined and we have the estimates:

χ1 ≥ · · · ≥ χs ≥
1

2
log

ds

ds−1
=

1

2
log d > 0

0 > −1

2
log δ =

1

2
log

ds+1

ds
≥ χs+1 ≥ · · · ≥ χk.

In particular, the measure µ is hyperbolic.
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APPENDIX A

SUPER-POTENTIALS

A.1. Definitions and properties of super-potentials

We recall here the facts and definitions we use on super-potentials. Everything in
this section was taken from [31] so we refer the reader to this paper for proofs and
details.

Recall that C s is the convex compact set of (strongly) positive closed currents S of
bidegree (s, s) on Pk and of mass 1. To develop the calculus, we have to consider C s

as an infinite dimensional space with special families of currents that we parametrize
by the unit disc ∆ in C. We call these families special structural discs of currents.
The notion of structural varieties of C s was introduced in [28]. In some sense, we
consider C s as a space of infinite dimension admitting "complex subvarieties" of
finite dimension. For S in C s, it is always possible to construct a special structural
variety ϕ : ∆ → C s such that ϕ(0) = S and ϕ(z) is a smooth form for z �= 0. The
points of the structural disk centered at R are defined as the regularization of R by
an approximation of the identity in Aut(Pk); the structural disk can be seen as a
positive closed current in ∆× Pk and the points of the disks are the vertical slices of
that current.

Let S be a current in C s with s ≥ 1. If U is a (s − 1, s − 1)-current such that
ddcU = S−ωs, we say that U is a quasi-potential of S. The integral �U, ωk−s+1� is the

mean of U . Observe that such quasi-potential is defined up to a ddc-closed current. For
s = 1 such functions are constant a.e., but in the general case, they can be singular
currents. Nevertheless, we have the proposition:

Proposition A.1.1. – Let S be a current in C s. Then, there is a negative quasi-

potential U of S depending linearly on S such that for every r with 1 ≤ r < k/(k− 1)

and for 1 ≤ ρ < 2k/(2k − 1)

�U� Lr ≤ cr and �dU� Lρ ≤ cρ
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for some positive constants cr, cρ independent of S. Moreover, U depends continuously

on S with respect to the Lr
topology on U and the weak topology on S.

We are going to introduce a super-potential associated to S. It is an affine upper
semi-continuous function US defined on Ck−s+1 with values in R ∪ {−∞}. For R ∈
Ck−s+1 smooth, we define the super-potential of mean M of S by US(R) := �S, UR�
where UR is a quasi-potential of R of mean �UR, ωs� = M . The integral �S, UR�
does not depend on the choice of UR with a fixed mean M . If S is smooth, we have
US(R) = �US , R� where US is a quasi-potential of S of mean M . Now assume that
R is not smooth. Consider the above special structural variety ϕ : ∆ → Ck−s+1

associated to R ∈ Ck−s+1 and write Rθ for ϕ(θ). Then the function u(θ) := US(Rθ)

defined on ∆∗ can be extended as a quasi-subharmonic function on ∆. Let (Sθ) and
let (Rθ) be special structural disks associated to S ∈ C s and R ∈ Ck−s+1. Then we
have the proposition:

Proposition A.1.2. – The function US can be extended in a unique way to an affine

upper semi continuous function on Ck−s+1 with values in R∪{−∞}, also denoted by

US, such that

US(R) = lim
θ→0

USθ (R) = lim
θ→0

US(Rθ).

In particular, we have

US(R) = lim sup
R�→R

US(R�) with R� smooth.

Moreover, there is a constant c ≥ 0 independent of S such that if US is the super-

potential of mean m of S, then US ≤ m + c everywhere.

Super-potentials determine the current, more precisely, we have the proposition:

Proposition A.1.3. – Let I be a compact subset in Pk
with (2k − 2s)-dimensional

Hausdorff measure 0. Let S, S� be currents in C s and US, US� be super-potentials of

S, S�. If US = US� on smooth forms in Ck−s+1 with compact support in Pk \ I, then

S = S�.

For I = ∅, this tells us that the values of the super-potential on smooth forms
determine uniquely the current.

A crucial notion to prove the convergence of currents is the following:

Definition A.1.4. – Let (Sn) be a sequence in C s converging to a current S. Let

USn (resp. US) be the super-potential of mean Mn (resp. M) of Sn (resp. S). Assume

that Mn converge to M . If USn ≥ US for every n, we say that (Sn) converge to S

in the Hartogs’ sense. If a current S� in C s admits a super-potential US� such that

US� ≥ US we say that S� is more H-regular than S.
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Smooth currents are dense for the Hartog’s convergence, more precisely:

Proposition A.1.5. – Let S ∈ C s and let U be a super-potential of S of mean M .

There is a sequence of smooth forms (Sn) in C s with super-potentials Un of mean Mn

such that

• supp(Sn) converge to supp(S);

• Sn converge to S and Mn → M ;

• (Un) decreases to U.

We have the following convergence theorem:

Proposition A.1.6. – Let (Sn) be a sequence in C s converging to a current S. Let

USn (resp. US) be the super-potential of mean Mn (resp. M) of Sn (resp. S). Assume

that Mn converge to M . Let U be a continuous function on a compact subset K of

Ck−s+1 such that US < U on K. Then, for n large enough we have USn < U on K.

In particular, we have lim sup USn ≤ US on Ck−s+1. Furthermore, if Sn → S in the

Hartogs’ sense, then USn → US pointwise.

In Ck−s+1, they are points which are more “regular” than other, namely smooth
forms. This is a difference with psh functions. In particular, it is often easier to obtain
the convergence at such points:

Proposition A.1.7. – Let (Sn) be a sequence in C s and USn be super-potentials of

mean Mn of Sn. Assume that (USn) converges to a finite function U on smooth forms

in Ck−s+1. Then, (Mn) converges to a constant M , (Sn) converges to a current S

and U is equal to the super-potential of mean M of S on smooth forms in Ck−s+1.

The following is the main argument to get the convergence of the Green current:

Proposition A.1.8. – Let USn be super-potentials of mean Mn of Sn. Assume that

USn decrease to a function U �= −∞. Then, (Sn) converges to a current S, (Mn)

converges to a constant M and U is the super-potential of mean M of S.

In particular, the convergence at one point of the super-potentials gives the conver-
gence of the currents in the Hartogs’ sense in the case of decreasing super-potentials.

An interesting symmetry result is that if US and UR are super-potentials of the
same mean M of R and S respectively, then US(R) = UR(S).

There is a notion of super-polarity for Borel subsets E of Ck−s+1. This notion does
not describe “small” sets E but rather how singular are the currents in E.

Definition A.1.9. – We say that E is super-polar in Ck−s+1 if there is a super-
potential US of a current S in C s such that E ⊂ {US = −∞}.
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Denote by �E the set of currents cR + (1 − c)R� with R ∈ �E, R� ∈ Ck−s+1 and
0 < c ≤ 1, and �E the barycentric hull of E, i.e. the set of currents

�
Rdν(R) where ν

is a probability measure on Ck−s+1 such that ν(E) = 1. Then, �E and �E are convex.

Proposition A.1.10. – The following properties are equivalent

1. E is super-polar in Ck−s+1.

2. �E is super-polar in Ck−s+1.

3. �E is super-polar in Ck−s+1.

Moreover, a countable union of super-polar sets is super-polar.

One of the purposes of super-potentials is to define the wedge product of current
(see Section 4 in [31]). We define a universal function Us on C s × Ck−s+1 by

Us(S, R) := US(R) = UR(S)

where US and UR are super-potentials of mean 0 of S and R. The function Us is is
u.s.c. on C s × Ck−s+1. It even enjoys a nice continuity for the Hartogs’ convergence:

Lemma A.1.11. – Let (Sn)n≥0 and (Rn)n≥0 be sequences of currents in C s and

Ck−s+1 converging in the Hartogs’ sense to S and R respectively. Then, Us(Sn, Rn)

converge to Us(S, R). Moreover, if Us(S, R) is finite, then Us(Sn, Rn) is finite for

every n.

We have the proposition:

Proposition A.1.12. – Let s1 ∈ N∗ and s2 ∈ N∗ with s1 + s2 ≤ k. The following

conditions are equivalent and are symmetric on R1 ∈ C s1 and R2 ∈ C s2 :

1. Us1(R1, R2 ∧ Ω) is finite for at least one smooth form Ω in Ck−s1−s2+1.

2. Us1(R1, R2 ∧ Ω) is finite for every smooth form Ω in Ck−s1−s2+1.

3. There are sequences (Ri,n)n≥0 in C si converging to Ri and a smooth form Ω in

Ck−s1−s2+1 such that Us1(R1,n, R2,n ∧ Ω) is bounded.

Definition A.1.13. – We say that R1 and R2 are wedgeable if they satisfy the con-

ditions in Proposition A.1.12.

Assume that R1 ∈ C s1 and R2 ∈ C s2 are wedgeable. For every smooth real form ϕ

of bidegree (k− s1− s2, k− s1− s2), write ddcϕ = c(Ω+−Ω−) where Ω± are smooth
forms in Ck−s1−s2+1 and c is a positive constant. We define the wedge-product (or
the intersection) R1 ∧R2 by its action on the smooth forms by:

(19) �R1 ∧R2, ϕ� := �R2, ω
s1 ∧ ϕ�+ cUs1(R1, R2 ∧ Ω+)− cUs1(R1, R2 ∧ Ω−).

The right hand side of (19) is independent of the choice of c, Ω± and depends linearly
on ϕ. Moreover, R1 ∧ R2 defines a positive closed (s1 + s2, s1 + s2)-current of mass
1 with support in supp(R1) ∩ supp(R2) which depends linearly on each Ri and is
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symmetric with respect to the variables. The notion of wedgeability behave well with
the notion of H-regularity:

Lemma A.1.14. – Let Ri and R�i be currents in C si . Assume that R1 and R2 are

wedgeable. If R�i is more H-regular than Ri for i = 1, 2, then R�1 and R�2 are wedgeable

and R�1 ∧R�2 is more H-regular than R1 ∧R2.

We will use the following proposition in the construction of the equilibrium mea-
sure:

Proposition A.1.15. – Let R1, R2 be wedgeable currents as above and Ri,n be cur-

rents in C si converging to Ri in the Hartogs’ sense. Then, R1,n, R2,n are wedgeable

and R1,n ∧R2,n converge to R1 ∧R2 in the Hartogs’ sense.

For several currents (more than 2), the notion of wedgeability is defined by induc-
tion: that is R1, R2 and R3 are wedgeable if R1 and R2 are wedgeable and R1 ∧ R2

and R3 are wedgeable. One shows that this definition is in fact symmetric in the Ri

and we have Proposition A.1.15 for several currents.
An interesting subcase is when we consider currents R1, . . . , Rl such that Ri is of

bidegree (1, 1) for i ≥ 2. For 2 ≤ i ≤ l, there is a quasi-psh function ui on Pk such
that

ddcui = Ri − ω.

Lemma A.1.16. – The currents R1, . . . , Rl are wedgeable if and only if for every

2 ≤ i ≤ l, ui is integrable with respect to the trace measure of R1 ∧ · · · ∧ Ri−1. In

particular, the last condition is symmetric with respect to R2, . . . , Rl.

If R2 has a quasi-potential integrable with respect to R1, it is classical to define
the wedge-product R1 ∧R2 by

R1 ∧R2 := ddc(u2R1) + ω ∧R1.

One defines R1 ∧ · · · ∧Rl by induction. These two definitions coincide.
The other use of super-potentials is to define pull-back and push-forward of current

by meromorphic maps (see section 5.1 in [31]). We state the result in the case where
f is birational although the results are true in the case where f is just meromorphic.
Recall that pull-back and push-forward of a current are defined formally by formulae
(3) and (4) of the previous section:

f∗(S) := (π1)∗
�
π∗2(S) ∧ [Γ]

�

f∗(R) := (π2)∗
�
π∗1(R) ∧ [Γ]

�
,

where [Γ] is the current of integration of Γ. We denote by I+ := I(f) and I− =

I �(f) = I(f−1) the indeterminacy sets of f and f−1.
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In particular, for a current in R ∈ Ck−s+1 smooth near I+ the push-forward is a
well defined positive closed (k − s + 1, k − s + 1)-current and the mass λs−1 of f∗(R)

does not depend on R. Similarly, for a current S in Cs smooth near I− the pull-back
is a well defined positive closed (s, s)-current and the mass of f∗(S) is equal to λs. So
as above we define for these currents Λ(R) = λ−1

s−1f∗(R) and L(S) = λ−1
s f∗(S) (the

normalized push-forward and pull-back).
Using the theory of super-potentials we can extend these definitions to other cur-

rents. Namely, we say that a current S ∈ C s is f∗-admissible if there exists a current
R0 ∈ Ck−s+1 which is smooth on a neighborhood of I+ such that the super-potentials
of S are finite at Λ(R0). For such S, if (Sn) is a sequence of currents converging in the
Hartogs’ sense to S then Sn is f∗-admissible and (λs)−1f∗(Sn) converges in the Har-
togs’ sense to a limit independent on the choice of (Sn) that we denote (λs)−1f∗(S)

(in particular f∗(S) is of mass λs). In other words, we have the continuity result:

Theorem A.1.17. – Let S be an f∗ admissible current. Let Sn be a sequence con-

verging to S in the Hartogs’ sense, then Sn is f∗-admissible and L(Sn) converges in

the Hartogs’ sense to L(S).

We say that S is invariant under f∗ or that S is f∗-invariant if S is f∗-admissible
and L(S) = S.

Proposition A.1.18. – Let S be an f∗-admissible current in C s. Let US, UL(ωs) be

super-potentials of S and L(ωs). Then λ−1
s λs−1 US ◦ Λ + UL(ωs) is equal to a super-

potential of L(S) on R ∈ Ck−s+1, smooth in a neighbourhood of I+
.

Similarly, one define push-forward of currents. We remark that an element S ∈
C s smooth near I− is f∗-admissible and that the two available definitions of L(S)

coincide.

A.2. Additional properties

We state now some properties of the super-potentials that we need. Recall that
f ∈ B and that s is such that dim(I+) = k − s− 1 and dim(I−) = s− 1.

Lemma A.2.1. – Let S1 ∈ C r1 and S2 ∈ C r2 be wedgeable currents with r1 + r2 ≤ k.

There exist super-potentials US1∧S2 , US1 and US2 of S1 ∧ S2, S1 and S2 such that:

US1∧S2(R) = US1(R ∧ S2) + US2(R ∧ ωr1)

for all R ∈ Ck−r1−r2+1 such that R and S2 are wedgeable.
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Proof. – Let S1,n and S2,m be sequence of smooth currents in C r1 and C r2 converging
to S1 and S2 in the Hartogs’ sense. If US1,n and US2,m are smooth quasi-potentials of
S1,n and S2,m, then:

S1,n ∧ S2,m = ddc(US1,n ∧ S2,m + US2,m ∧ ωr1) + ωr1+r2 .

So, if US1,n∧S2,m , US1,n and US2,m are super-potentials of mean 0 of the currents, we
have for any R in Ck−r1−r2+1:

US1,n∧S2,m(R) = US1,n(S2,m ∧R) + US2,m(ωr1 ∧R)− US1,n(S2,m ∧ ωk−r1−r2+1).

Now, we take R such that R and S2 are wedgeable. We let n → ∞. By Proposition
A.1.15, S1,n ∧ S2,m converges in the Hartogs’ sense to S1 ∧ S2,m. So by Proposition
A.1.6, we have that:

US1∧S2,m(R) = US1(S2,m ∧R) + US2,m(ωr1 ∧R)− US1(S2,m ∧ ωk−r1−r2+1),

where the super-potentials are of mean 0. Similarly, we let m → ∞. Recall that
S2,m∧R converges to S2∧R in the Hartogs’ sense, hence US1(S2,m∧R) = US2,m∧R(S1)

converges to US2∧R(S1) . So we have indeed:

US1∧S2(R) = US1(S2 ∧R) + US2(ω
r1 ∧R)− US1(S2 ∧ ωk−r1−r2+1).

Since US1(S2∧ωk−r1−r2+1) does not depend on R and is finite because S1 and S2 are
wedgeable, we can add it to US1∧S2 (this just change the mean of the super-potentials)
and we have the lemma.

Lemma A.2.2. – Let T1 ∈ C r1 be an f∗-admissible current with r1 ≥ k − s. Let

T2 ∈ C r2 be an f∗-admissible current with r1 + r2 ≤ k such that L(T2) and T1

are wedgeable and L(T2) ∧ T1 is f∗-admissible. Assume also that T2 and Λ(T1) are

wedgeable. Then:

Λ(L(T2) ∧ T1) = T2 ∧ Λ(T1).

Proof. – Assume first that T2 is smooth. Let T1,n and L2,m be sequences in C r1 and
C r2 converging in the Hartogs’ sense to T1 and L(T2). Let Θ be a smooth current of
bidegree k − r1 − r2. We want to show that:

�T2 ∧ Λ(T1),Θ� = �Λ(L(T2) ∧ T1),Θ�

for all Θ smooth.
First assume that Θ is closed and (strongly) positive. Up to a multiplicative con-

stant, we assume that Θ ∈ Ck−r1−r2 . Since everything is smooth:

�Λ(L2,m ∧ T1,n),Θ� = �L2,m ∧ T1,n, L(Θ)�
= �T1,n, L2,m ∧ L(Θ)�.

Since L2,m converges to L(T2), we have that L2,m ∧ L(Θ) converges to L(T2 ∧ Θ)

in the sense of currents. Indeed, the sequence (L2,m ∧ L(Θ))m is of mass 1. We can
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extract a converging subsequence (in the sense of currents). Observe that its limit is
less than L(T2) ∧ L(ωk−r1−r2) which gives no mass to I+ by dimension’s arguments.
So its limit gives no mass to I+ either. But outside I+, L2,m ∧L(Θ) converges to the
smooth form L(T2) ∧ L(Θ). That implies that L2,m ∧ L(Θ) converges to the trivial
extension of L(T2) ∧ L(Θ). This extension is equal to the form L(T2 ∧ Θ) since it
has coefficients in L1 (as in Lemma 2.1.1 test the convergence against a smooth form
Ψ and write it ξΨ + (1 − ξ)Ψ where ξ is a cut-off function equal to 1 in a small
neighborhood of I+).

So, letting m →∞ and using the fact that T2 ∧Θ is smooth give:

lim
m→∞

�Λ(L2,m ∧ T1,n),Θ� = �T1,n, L(T2 ∧Θ)� = �Λ(T1,n), T2 ∧Θ�

= �T2 ∧ Λ(T1,n),Θ�.

Now, we let n → ∞, Λ(T1,n) converges to Λ(T1) in the Hartogs’ sense (Proposition
A.1.17) hence Proposition A.1.15 gives that T2 ∧ Λ(T1,n) converges to T2 ∧ Λ(T1) in
the sense of currents. On the other hand, when n and m go to ∞, Λ(L2,m ∧ T1,n)

converge to Λ(L(T2)∧T1) in the sense of currents by Propositions A.1.15 and A.1.17.

So we have indeed that:

�T2 ∧ Λ(T1),Θ� = �Λ(L(T2) ∧ T1),Θ�

for Θ closed.

Now, for Θ not necessarily closed, we can assume that Θ is positive and Θ ≤
Cωk−r1−r2 for C large enough. Again, we have that

�Λ(L2,m ∧ T1,n),Θ� = �T1,n, L2,m ∧ L(Θ)�.

The positive current L2,m∧L(Θ) is less than CL2,m∧L(ωk−r1−r2) so it is of mass less
than C. We can extract a converging subsequence (in the sense of currents). Observe
that its limit is less than CL(T2)∧L(ωk−r1−r2) = CL(T2 ∧ ωk−r1−r2) which gives no
mass to I+ by dimension’s arguments. So its limit gives no mass to I+ either. Again
outside I+, L2,m ∧ L(Θ) converges to the smooth form L(T2) ∧ L(Θ). That implies
that L2,m ∧L(Θ) converges to the trivial extension of L(T2)∧L(Θ) which is equal to
the form L(T2 ∧Θ) which has coefficients in L1. We have again that:

�T1,n, L(T2 ∧Θ)� = �T2 ∧ Λ(T1,n),Θ�.

That gives the conclusion as before.

Now, for T2 not necessarily smooth, we can approximate T2 by a sequence of smooth
currents converging in the Hartogs’ sense to T2. Since both members of the equality:

Λ(L(T2) ∧ T1) = T2 ∧ Λ(T1),
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depend continuously on T2 for the Hartogs’ convergence (wedge-product, pull-pack
and push-forward are continuous for the Hartogs’ convergence) we get the lemma
from the smooth case.

Some of the hypothesis of the following lemma are not necessary, but the following
version is enough for our purpose:

Lemma A.2.3. – Let S1, S2 and S3 in C r1 , C r2 and C r3 with r1 + r2 + r3 = k +

1. Assume that S2 is smooth and that L(S2) and S3 are wedgeable. Assume that

L(S2) ∧ S3 is f∗-admissible. Assume also that the super-potential US1 of S1 is finite

at Λ(L(S2)∧S3). Finally, we also assume that S1 is f∗-admissible, that S3 and L(S1)

are wedgeable and that their wedge product is finite at the super-potential UL(S2) of

L(S2). Then we have the formula:

US1 (Λ (L (S2) ∧ S3)) =

�
λr1

λr1−1

� �
UL(S2) (S3 ∧ L (S1))− UL(S2) (S3 ∧ L (ωr1))

�

+ US1 (Λ (ωr2 ∧ S3))

Proof. – First, observe that ωr1 is more H-regular than S1 hence L(ωr1) is more H-
regular than L(S1). So, we have that S3 and L(ωr1) are wedgeable and S3 ∧L(ωr1) is
more H-regular than S3∧L(S1). In particular, UL(S2)(S3∧L(ωr1)) is finite. Similarly,
the expression US1(Λ(ωr2 ∧ S3)) is finite and everything is well defined in it.

Let S1,m1 , L2,m2 and S3,m3 be sequences of smooth currents converging in the
Hartogs’ sense to S1, L(S2) and S3. Let U1,m1 and U2,m2 be smooth quasi-potential
of S1,m1 and L2,m2 . For smooth currents, we have the identity:

US1,m1
(Λ(L2,m2 ∧ S3,m3)) = �U1,m1 ,Λ(L2,m2 ∧ S3,m3)�

= �(λr1−1(f))−1f∗(U1,m1), L2,m2 ∧ S3,m3�.

By Stokes, we recognize:

�(λr1−1(f))−1f∗(U1,m1), ω
r2 ∧ S3,m3�+ �ddc((λr1−1(f))−1f∗(U1,m1)), U2,m2 ∧ S3,m3�.

Since f∗ commutes with ddc, we have that

ddc((λr1−1(f))−1f∗(U1,m1)) = (λr1−1(f))−1f∗(S1,m1 − ωr1)

=

�
λr1

λr1−1

�
(L(S1,m1)− L(ωr1)) .

The lemma follows then by letting m1 then m2 then m3 go to ∞ and using the
continuity of the wedge product, the pull-back, push-forward and value at a point for
the super-potential for the Hartogs’ convergence.

We also have the following integration by parts lemma:
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Lemma A.2.4. – Let S1, S2 and S3 in C r1 , C r2 and C r3 with r1 + r2 + r3 = k + 1.

Assume that the Si are two by two wedgeable. Then if US1 and US2 are super-potentials

of S1 and S2 finite at S2 ∧ S3 and S1 ∧ S3:

US1(S2 ∧ S3)− US1(ω
r2 ∧ S3) = US2(S1 ∧ S3)− US2(ω

r1 ∧ S3)

Proof. – First observe that ωr2 ∧ S3 and ωr1 ∧ S3 are more H-regular than S2 ∧ S3

and S1 ∧ S3 so every term is finite.

Now, if every term is smooth, we write US1 and US2 quasi-potentials of S1 and S2.
By Stokes:

US1(S2 ∧ S3)− US1(ω
r2 ∧ S3) = �US1 , S2 ∧ S3 − ωr2 ∧ S3� = �US1 , ddcU2 ∧ S3�

= �ddcUS1 , U2 ∧ S3� = �S1, U2 ∧ S3� − �ωr1 , U2 ∧ S3�
= US2(S1 ∧ S3)− US2(ω

r1 ∧ S3).

So the result follows in the general case by Hartogs’ convergence.

We also have the following refinement of Lemma A.1.14 whose proof is similar:

Lemma A.2.5. – Let R1,n and R2,m be sequence of currents in Cp1 and Cp2 con-

verging in the Hartogs’ sense to R1 and R2 which are wedgeable. Then there exists a

constant An,m > 0 such that

UR1,n∧R2,m ≥ UR1∧R2 −An,m

where the super-potentials are of mean 0 and where An,m is uniformly bounded from

above in n and m and is arbitrarily small for n and m large enough.

Proof. – By Lemma A.1.14, R1,n and R2,m are wedgeable.

The symbols U and U below denote quasi-potentials and super-potentials of mean
0. Assume first that all the terms are smooth. By hypothesis, there is a constant a

such that UR1,n +a ≥ UR1 and UR2,m +a ≥ UR2 . Write r = k−p1−p2 +1. Consider
a smooth form R in C r and choose UR smooth. We have the computation:

UR1,n∧R2,m(R) = �R1,n ∧R2,m, UR� = �R2,m, ωp1 ∧ UR�+ �R1,n − ωp1 , R2,m ∧ UR�
= �R2,m, ωp1 ∧ UR�+ �ddcUR1,n , R2,m ∧ UR�
= �R2,m, ωp1 ∧ UR�+ �UR1,n , R2,m ∧ ddcUR�
= �R2,m, ωp1 ∧ UR�+ UR1,n(R2,m ∧R)− UR1,n(R2,m ∧ ωr).

= UR(R2,m ∧ ωp1) + UR1,n(R2,m ∧R)− UR1,n(R2,m ∧ ωr).
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That identity also holds when the currents are not smooth by Hartogs’ convergence.
We have the same identity for R1 ∧R2,m and R1 ∧R2. By difference, we have:

UR1,n∧R2,m(R)− UR1∧R2,m(R) + UR1∧R2,m(R)− UR1∧R2(R) =

UR1,n(R2,m ∧R)− UR1(R2,m ∧R)− UR1,n(R2,m ∧ ωr) + UR1(R2,m ∧ ωr)

+UR2,m(R1 ∧R)− UR2(R1 ∧R)− UR2,m(R1 ∧ ωr) + UR2(R1 ∧ ωr).

So:

UR1,n∧R2,m(R)− UR1∧R2(R) ≥
−2a− UR1,n(R2,m ∧ ωr) + UR1(R2,m ∧ ωr)− UR2,m(R1 ∧ ωr) + UR2(R1 ∧ ωr).

The last quantity does not depend on R and is uniformly bounded from below: the
terms with a minus sign are greater than −M since the super-potentials are of mean
0, and since R2,m ∧ ωr converges to R2 ∧ ωr in the Hartogs’ sense and UR1(R2 ∧ ωr)

is finite, we have that UR1(R2,m∧ωr) and UR2(R1∧ωr) are uniformly bounded from
below.

This gives that the constant An,m of the lemma is uniformly bounded from above
in n and m. Now, we can choose An,m going to zero by Proposition A.1.15: if not, we
can extract subsequences such that Ani,mi ≥ ε > 0 and it contradicts the fact that
R1,ni ∧R2,mi converges in the Hartogs’ sense to R1 ∧R2.
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