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THE OVERCONVERGENT SITE

Bernard Le Stum

Abstract. — We prove that rigid cohomology can be computed as the cohomology
of a site analogous to the crystalline site. Berthelot designed rigid cohomology as a
common generalization of crystalline and Monsky-Washnitzer cohomology. Unfortu-
nately, unlike the former, the functoriality of the theory is not built-in. We define the
“overconvergent site” which is functorially attached to an algebraic variety. We prove
that the category of modules of finite presentation on this ringed site is equivalent to
the category of overconvergent isocrystals on the variety. We also prove that their
cohomology coincides.

Résumé (Le site surconvergent). — Nous montrons que la cohomologie rigide peut se
calculer comme la cohomologie d'un site analogue au site cristallin. Berthelot a concu
la cohomologie rigide comme une généralisation commune de la cohomologie cristalline
et de la cohomologie de Monsky-Washnitzer. Malheureusement, contrairement & ce
qui se passe en cohomologie cristalline, la fonctorialité de la théorie ne résulte pas
directement des définitions. Nous introduisons donc le « site surconvergent » qui est
fonctoriellement attaché & une variété algébrique. Nous montrons que la catégorie
des modules de présentation finie sur ce site annelé est équivalent a la catégorie des
isocristaux surconvergents sur la variété. Nous montrons aussi que leurs cohomologies
coincident.

(© Mémoires de la Société Mathématique de France 127, SMF 2011
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CHAPTER 1

INTRODUCTION

In order to give an algebraic description of Betti cohomology, one can use de Rham
cohomology which can then be interpreted as the cohomology of the infinitesimal site
(see [21]). The category of coefficients, locally trivial families of finite dimensional vec-
tor spaces, is replaced successively by coherent modules with integrable connections,
and then, by modules of finite presentation. In the positive characteristic situation,
there is no exact equivalent to Betti cohomology and de Rham cohomology has to
be replaced by rigid cohomology (and modules with integrable connections by over-
convergent isocrystals). We will define here the overconvergent site which plays in
positive characteristic the role that the infinitesimal site plays in characteristic zero.
A first hint at this approach is already in Berthelot’s fundamental article (see [10],
2.3.2.ii) and this is actually the way I liked to define overconvergent isocrystals in my
Ph.D. Thesis (see also [18], section 1.1 or [23], definition 7.1.1). Note that Arthur
Ogus introduced the convergent site in [25] which is a satisfying solution as long as
we are only interested in proper varieties. Of course, for proper smooth varieties, we
can also use the crystalline site of Pierre Berthelot [7].

Beside its intrinsic interest, there are many reasons to look for such an interpreta-
tion of rigid cohomology. For example, we will get for free a Leray spectral sequence
giving the overconvergence of the Gauss-Manin connection. Also, our setting should
be well-suited to describe Besser’s integration (see [11]), Chiarellotto-Tsuzuki’s de-
scent theory (see [16]) or the results of Atsushi Shiho on relative rigid cohomology.
Finally, replacing schemes by log-schemes should give a comparison theorem with log-
crystalline cohomology. Note that David Brown, who is a student of Bjorn Poonen,
makes an essential use of the overconvergent site in his study of rigid cohomology
of algebraic stacks (see [14]). In order to avoid technical complications, we will not
consider étale cohomology nor log-schemes (or algebraic stacks) here.

In our presentation, we will systematically replace rigid geometry with analytic
geometry in the sense of Berkovich. I understand that it is unpleasant for those



2 CHAPTER 1. INTRODUCTION

who are accustomed to Tate’s theory and feel uncomfortable with Berkovich’s. But
there are several reasons for this choice. First of all, I really think that classical
Tate’s theory should be seen as a part of Berkovich theory (using rigid points and
Grothendieck topology). Moreover, most young mathematicians start directly with
Berkovich’s approach. There is also a specific reason here: in the construction of
rigid geometry, strict neighborhoods play an essential role; in Berkovich theory those
are just usual neighborhoods. Finally, the notion of generic point that is central in
Dwork’s theory has a very natural interpretation using Berkovich theory (see [15]).

Of course, this article owes much to Berthelot’s previous work on rigid cohomology
(see [9], [10], [8]). We only want to rewrite his theory with a slightly different ap-
proach. The reader should note however that we do not make any use of Berthelot’s
results and that, for this purpose, the article is totally self-contained. In particular,
the reader needs not know anything about rigid cohomology. However, since the main
results are comparison theorems, I should briefly recall how it works.

Rigid cohomology is a cohomological theory for algebraic varieties over a field k
of positive characteristic p with values in vector spaces over a p-adic field K whose
residue field is k. The idea is to embed the given variety X into a proper variety Y
and then Y into a smooth formal scheme P over the valuation ring V of K. Then,
one considers the limit de Rham cohomology on (strict) neighborhoods of the tube
of X inside the generic fiber of P. The hard part in the theory is to show that
the cohomological spaces obtained this way are independent of the choices (and that
they glue when there exists no embedding as above). There is a relative theory and
one may also add coefficients. The coefficients are those of the de Rham theory,
namely modules with integrable connections, on a neighborhood of the tube of X,
with the extra condition that the connection must be overconvergent (overconvergent
isocrystals). Here again, this is a local definition and one must show that it does not
depend on the choices. It is also important to remark that glueing is the only solution
when there is no global embedding as described above. And this is unfortunately the
case in general even if it can be avoided in practice.

I want however to emphasize the fact that rigid cohomology was designed as a
functorial theory from the beginning and that the purpose of the present article is not
to fill a possible gap in the original theory. Since this is not completely understood
in the mathematical community, it might be necessary to recall how this works. For
simplicity, I will only consider the case of absolute cohomology without coefficient
of “realizable” varieties (say quasi-projective, if you wish). The general case is more
technical but works exactly the same. First of all, rigid cohomology is functorial in
triples X C Y C P made of an open embedding into a variety and a closed embedding
into a formal scheme. Thus we can define Hi;, (X C Y C P) and if we are given a
morphism u : P’ — P that induces g : Y/ — Y and f : X’ — X, we can define H;, (u).
This should be clear. The fundamental theorem of the theory tells us that if f is an
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CHAPTER 1. INTRODUCTION 3

isomorphism, g is proper and u is smooth, we obtain an isomorphism on cohomology.
This being said, here is how you define your functor on the category of (realizable)
varieties: given X, you choose an open embedding of X into Y proper as well as a
closed embedding of Y into P smooth and define Hj;,(X) as the cohomology of this
triple. You do the same thing with another variety X’ and introduce Y’ and P’. Now,
if you are given a morphism f : X’ — X, you consider the graph X' C Y” C P’ x P,
where Y denotes the algebraic closure of X’ into Y xY”’. Then, you consider the maps

of triples defined by the projections p; and ps and define Hiig( f) as the composite

Hio(X' CY' CP) «—H, (X' CY'"CP' xP) — Hy (X CY CP)

(the first map is an isomorphism thanks to the fundamental theorem). It is an exercise
to check that this actually defines a functor.

Let us now present more precisely the content of this article. There are three
chapters (and an appendix). In the first one, we define and study the overconver-
gent site. In the second one, we show that finitely presented modules correspond to
overconvergent isocrystals. In the third one, we prove that cohomology coincides.

Chapter 1 (Geometry). — If we want to do some analytic geometry over a field k
of characteristic zero, the first step consists in embedding k into a complete valued
field K (the field C of complex numbers for example). Then, we may consider all
analytic varieties V that appear as an open subset of some X3 where X is an algebraic
variety over k. In other words, an object should be a pair (X, V') made of an algebraic
variety X over k, an analytic variety V' over K and an open immersion A : V — X3
In order to get more flexibility, it is simpler to allow any such map A and not only
open immersions (big site).

We can mimic this in characteristic p > 0. We cannot embed £ into a complete
ultrametric field of characteristic zero but we can find a complete ultrametric field K
of characteristic zero with residue field k. We then use formal schemes over the
valuation ring V of K as a bridge between algebraic varieties over k£ and analytic
varieties over K. More precisely, we may embed an algebraic variety X into a formal
V-scheme P and consider open subsets V' of the generic fiber P of P (which is an
analytic variety over K). In other words, an overconvergent variety will be a diagram
(X < P <+ Pg < V) with alocally closed embedding X < P and an open immersion
AV — Pg. Again, we will actually allow any map A but this does not matter at
this point. Actually, the formal scheme P should play a secondary role and we will
usually write (X, V') as above.

Morphisms of overconvergent varieties are defined in two steps. We first consider
formal morphisms as compatible triples of morphisms (algebraic level, formal level
and analytic level). This way, we obtain a category An()) which is way too rigid.
In order to define “true” morphisms, we need to introduce the tube | X[, of X in V
which is simply the inverse image of X in V' (through specialization and ). We will

SOCIETE MATHEMATIQUE DE FRANCE 2011



4 CHAPTER 1. INTRODUCTION

then allow the replacement of the formal scheme by another one as long as the tube
does not change. We will also allow the replacement of the analytic variety by any
neighborhood of the tube. This is done through the fancy language of category of
fraction. Then, we obtain the category An'(V) and we endow it with the topology
that comes from the topology of analytic varieties (completely discarding the topology
on the algebraic side).

The main result of this first chapter is the local section theorem (theorem 2.5.11)
that T will try to explain now. Assume that we are given an overconvergent variety
(X < P <+ V) as above, an embedding of X in another formal scheme P’ and a
morphism P’ — P of formal schemes that is proper and smooth (at X). Then, we
may consider the overconvergent variety (X,V’) obtained by base extension. The
theorem says that the morphism (X, V') — (X, V) has locally a a section in An(V).
This invariance result will be the key tool in the proof of the main theorem of the
second chapter, namely the equivalence of category between overconvergent modules
of finite presentation and overconvergent isocrystals. However, it will not be powerful
enough to prove compatibility at the cohomology level: in the third chapter, we will
need to prove a fibration theorem that is only local for the Zariski topology on X and
the Grothendieck topology on V' (as this is the case in rigid cohomology).

At this point, I must mention a complication due to the use of Berkovich theory
instead of Tate’s. In Berkovich original theory [2], analytic varieties were locally affi-
noid. Unfortunately, this definition happens to be too restrictive because the generic
fiber of a formal scheme, for example, does not always fulfill this condition. Conse-
quently, the category had to be enlarged in [3] and the original analytic varieties are
henceforth called good. Note that his condition should be simply seen as a separation
condition and it appears in many situations. For example, for bad varieties, the no-
tion of coherent sheaf is not compatible with the analog notion on the rigid analytic
underlying variety, therefore there is not much hope to obtain a comparison theorem
between our theory and Berthelot’s if we do not restrict to good analytic varieties.

Chapter 2 (Coefficients). — Let me first recall the original definition of the cat-
egory of overconvergent isocrystals (see [10]). We fix a formal scheme S and an
algebraic variety X over Si. We assume that there exists some open embedding of X
into a proper algebraic variety Y over Sy and a closed embedding of Y into a for-
mal scheme P over S which is smooth in the neighborhood of X. We consider the
generic fiber of P as a rigid analytic variety, as well as the admissible open subsets | X[
and |Y[. Tt is then necessary to introduce the functor j' of sections defined on a strict
neighborhood of ] X[ on |Y[. An overconvergent isocrystal on X is a coherent j'O1y -
module E with an integrable connection which is “overconvergent”. The point is to
show that this definition does not depend on the choices.

In this article (as we actually did in [23]), we work in the opposite direction: we
define a category of coefficients and show that they can be interpreted as modules
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CHAPTER 1. INTRODUCTION 5

with integrable connection in nice geometric situations. Recall that we introduced
above the overconvergent site An' (V). We turn it into a ringed site with the following
definition

L((X,V),0") =T(1X[y,ix'Ov)

where ix : |]X[, < V denotes the embedding. Recall that, since we work with
Berkovich theory, the tube is an analytic domain which is not open in general and
the ring on the right hand side consists of functions that are defined on some open
neighborhood.

Actually, if we fix an overconvergent variety (C' < S < Sk < O) and a morphism
of algebraic varieties X — C, we may consider all overconvergent varieties (U, V)
over (C,0) with a factorization of U — X — C. We obtain a ringed site An(X/0).
Our main result in the second chapter of this article (theorem3.5.9) states that,
if we are given a proper smooth morphism P — S (at X) and let V' denote the
inverse image of O, there is an equivalence F — (Ex v, V) between (’); /o-modules
of finite presentation and coherent i)}l Oy-modules with an overconvergent integrable
connection. If we apply this to the particular case C' = S; and O = Sk, we easily
obtain that the category of O; /S5 -modules of finite presentation is equivalent to the
category of overconvergent isocrystals on X/S.

We can be a little more precise. With the same notations, we may consider the
ringed site An'(Xy /O) of all overconvergent varieties (X', V') over (C,0) with a
fixed factorization of X’ — X that extends to some factorization (X', V') — (X, V).
It follows from the main theorem of the first chapter that this site is equivalent
to An'(X/0). Then we are reduced to showing that (’);(V Jo-modules of finite presen-
tation are equivalent to coherent i)}l Oyp-modules with an overconvergent integrable
connection. And we can use, as we usually do in such a situation, the bridge provided
by modules with stratification.

Note that in this chapter also, it is necessary to work only with good analytic
varieties at some point.

Chapter 3 (Cohomology). — What is the original definition of rigid cohomology?
As before, we fix a formal scheme S and a morphism of algebraic varieties p : X — Sk.
We assume that there exists an open embedding of X into a proper algebraic variety
Y over Sy and a closed embedding of Y into a formal scheme P over S which is smooth
in the neighborhood of X. The rigid cohomology of an overconvergent isocrystal £
on X/S is its de Rham cohomology:

RprigE2 = Rpjy (/i< (E ®01v Qy(/s,)-

Again, one has to show that this is independent on the choices and it is even harder
than the analog problem for coefficients — not to mention the glueing question
(see [16] and private notes from Berthelot in [8]).

SOCIETE MATHEMATIQUE DE FRANCE 2011



6 CHAPTER 1. INTRODUCTION

How does it work on the overconvergent site? If (C — S < Sk < O) is an
overconvergent variety and p : X — C a morphism of algebraic varieties, there is a
canonical morphism of toposes

(X/O)awt —2%= (IC15),e X/O" +—1Clo-

The cohomology of an OL /O—module E is simply Rpx/0.E. Assume now that p
extends to a morphism of formal schemes P — S that is proper and smooth (at X') and
let V be the inverse image of O. The main result of this third chapter (theorem 4.5.3)
states there is a canonical isomorphism

Rpx/0+E ~ Rpjx[,«(Ex,v ®iioy ix'Q0)
on ]C[,. As a consequence, we see that if £ is an overconvergent isocrystal on X/S,
then
(Rprig )™ = Rpx /s« E
(the exponent “an” denote the move from rigid to Berkovich topology). For example,

in the simplest geometric situation, we obtain that if X is any separated algebraic
variety of finite type over k, we have for all i € N,

Hyig (X/K) = H'((X/V) g, OF).

rig

In order to prove our main theorem, we will use linearization of differential op-
erators as in Grothendieck’s original article [21]. If one tries to mimic the classical
arguments, one keeps stumbling. There is no such thing as a projection morphism.
The linearization does not give rise to crystals. Linearization is not even local on X.
The coefficients do not get out of the de Rham complex. Some important functors are
not exact anymore. Nevertheless, the method works and we get what we want in the
end. The main ideas are to use derived linearization and the Grothendieck topology.
Again, we need to restrict to good analytic varieties in order to obtain the last results.

We finish this chapter with a section on Zariski localization that allow us to state
the main comparison theorem 4.6.7.

Appendix. — For the convenience or the reader, we added two sections at the end
of the article. The first one recalls the basic results on topos theory that are used
here and the second one is a brief introduction to Berkovich theory. It gives us the
opportunity to fix the notations and some vocabulary.
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Conventions

> Finite presentation for a formal scheme will be a little weaker than the usual
convention (in the non-noetherian case) because we allow usual schemes of finite
presentation on the reduction as well.

> Locally of finite type means that there exists a locally finite open covering by
object of finite type, and not just any open covering. This will apply to schemes and
formal schemes.

> Algebraic varieties are just assumed to be locally of finite type and not necessarily
separated, quasi-compact or reduced for example.

> Analytic varieties are meant in Berkovich sense and denote strictly analytic
spaces (locally defined by strictly affinoid algebras as in rigid geometry) defined on
the base field (and not just after some isometric extension).

> Formally smooth is used instead of rig-smooth or quasi-smooth in Berkovich
theory. And the same convention applies to étale morphisms.

> Boundaryless is used for closed in the sense of Berkovich.

> Locally compact spaces are not assumed to be Hausdorfl' (they are only locally
Hausdorfl).

> Complexes are always assumed to be bounded below.

Notations

Throughout this paper, K is a non trivial complete ultrametric field with valuation
ring 1V, maximal ideal m and residue field k.

We usually use X,Y, Z,U,C, D, ... to denote algebraic varieties, P,@, R, .S, ... for
formal schemes and V, W, ... for analytic varieties.

As usual, we write A™ and P" for the affine and projective spaces of dimension n.
We also use B"(0, A*) for the open or closed polydisc of dimension n and radius \.
When n = 1, we write D(0, A\¥).

We denote by K(z) the complete residue field at a point of an analytic variety
over K (which is usually written H(x)).
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CHAPTER 2

GEOMETRY

In section 1, we fix some notations and vocabulary that will be used throughout
the paper. In particular, we introduce the notion of formal embedding. We recall
the relation between algebraic varieties over k, formal schemes over V and analytic
varieties over K.

The objects of the overconvergent site, the overconvergent varieties, are introduced
in section 2. We also define formal morphisms between them leading to an interme-
diate category An(V). We endow this category with a topology that comes from the
analytic side.

The category An'(V) of overconvergent varieties is introduced in section 3 as the
category of fractions of An(V) with respect to strict neighborhoods that we define
there. We give a more down-to-earth description of this category as well as some
standard properties.

In section 4, we endow An'(V) with the topology coming from An(V) and derive
some of its properties. Then we use the general notion of restriction of a site to
a presheaf (usually called localization) in order to introduce relative overconvergent
sites.

The hard work starts in section 5. The point is to prove invariance theorems
under proper smooth maps and derive some consequences for the overconvergent sites.
In order to do so, one studies successively how some properties of formal schemes in
the “neighborhood” of a subvariety translate into properties of the generic fiber in the
neighborhood of the tube.

2.1. Formal embeddings

We mostly fix the notations and vocabulary here.



10 CHAPTER 2. GEOMETRY

2.1.1. Formal schemes. — Recall that we fixed a non trivial complete ultrametric
field K with valuation ring ¥V, maximal ideal m and residue field k. We denote by

VTy,...\ T} = {Z%Ti Lag €V, lag| — 0}

i>0

the ring of convergent power series over V. A formal V-scheme will always be assumed
to have a locally finite open covering by formal affine schemes Spf(A) where A is a
quotient of V{T1,...,T,} by an ideal of the form I + aV{Ti,...,T,}, where I is an
ideal of finite type and a an ideal in V. We will denote by FSch(}V) the category of
formal V-schemes. Traditionally, a formal scheme is said to be admissible if it is V-flat
or, in other words, if it has no torsion.

The introduction of the ideal a above is only necessary when the valuation is not
discrete in order to recover algebraic varieties over k as particular cases of formal
schemes over V. Also, the locally finite condition is necessary in order to define the
generic fiber in Berkovich sense.

We will make an extensive use of the notion restriction of a category (usually
called localization). Namely, if T is a object in a category C, we will consider the
restricted category C,p whose objects are morphisms X — 7" in C' and morphisms
are simply morphism Y — X in C' compatible with the structural morphisms ¥ — T
and X — T.

For example, if S is a formal V-scheme, we will consider the category FSch(S) of
formal schemes over S, which is just the restricted category

FSch(S) := FSch(V),s.

In section 2.5, we will need some geometric properties of formal schemes that we
introduce now. If P is a formal V-scheme and X is a subset of P, we will denote
by X or simply X, the Zariski closure of X in P with its reduced structure.

DEFINITION 2.1.1. — Letv : P’ — P be a morphism of formal schemes and x' € P’.

Then, v is said to be

1) flat (resp. smooth, étale) at 2’ if u is flat (resp. smooth, étale) in the neighbor-
hood of x';

2) (relatively) separated (resp. (relatively) proper, (relatively) finite) at 2’ € Pj
if the induced map {7’} — Py, is separated (resp. proper, finite).

Finally, note that if K < K’ is an isometric embedding of complete ultrametric
fields, and V' denotes the valuation ring of K’, there exists an extension functor

FSch(V) —» FSch(V'), P+ Py

with Py = Spf(V'®yA) when P = Spf(A).

MEMOIRES DE LA SMF 127



2.1. FORMAL EMBEDDINGS 11

2.1.2. Formal embeddings. — If X is any scheme, we denote by Sch(X) the
category of schemes over X that have a locally finite open covering by schemes of
finite presentation over X. In the case X = SpecR, we will write Sch(R). If k denotes
the residue field of K, the category Sch(k) may (and will) be seen as a full subcategory
of FSch(V) and its objects will be called algebraic varieties over k. Moreover, the
embedding Sch(k) — FSch(V) has a right adjoint

FSch(V) —s Sch(k), P+ Py

sending a formal scheme to its special fiber. Recall that the adjunction map P, — P
is a homeomorphism and we will use it to identify the underlying topological spaces.
We recall the following from section 2.2 of [23]:

DEFINITION 2.1.2. — A formal embedding X < P (or X C P for short) is a (locally
closed) immersion over V of a k-variety into a formal V-scheme. A morphism of
formal embeddings

(fcov): (X' CcP)— (XCP)
is a pair of morphisms (over k and V respectively)
(f: X'—> X,v: P = P),

such that the diagram
X —— P

b

X —— P

is commutative. When X' = X and f is the identity of X, we will just say that v is a
morphism of formal embeddings of X.

Note that the morphism f is uniquely determined by v.

Example. — In order to connect our construction to Monsky-Washnitzer’s, we may
consider the following situation: we let A be a V-algebra of finite type; the choice of
a presentation of A defines an embedding

Spec(A) — A c PYY

which can be used to embed X := Spec(Ay) into the formal completion P := f’—{y
of Pg . This is a formal embedding.

ProprOSITION 2.1.3. — We have the following results:

1) With obvious composition, formal embeddings (X C P) form a category Fmb(V)
with finite inverse limits.

SOCIETE MATHEMATIQUE DE FRANCE 2011



12 CHAPTER 2. GEOMETRY

2) The forgetful functor
Fmb(V) — FSch(V), (X CcP)+— P
is exact and has an adjoint on the right
FSch(V) — Fmb(V), P+— (P, C P).
3) The forgetful functor
Fmb(V) — Sch(k), (X CP)+— X
is left exact and has an adjoint on the left
Sch(k) — Fmb(V), X +— (X C X).

Proof. — Tt should be clear that Fmb(V) is indeed a category. The first adjointness
assertion simply says that, if X C P is a formal embedding, any morphism of formal
V-schemes P — @ sends X into Q. The other adjointness assertion is trivial. Finally,
we have to check that, if we are given a finite diagram (X; C P;), it has an inverse
limit which is just (@1 X; C l&an) But this again should be clear. O

The principle of diagonal embedding will prove to be crucial in many situations:

PROPOSITION 2.1.4. — If (X C P) and (X' C P’) are two formal embeddings, any
morphism f : X' — X may be inserted in a diagram of formal embeddings
X' ——s P

|

X/ P//

b

X —— P

Proof. — We may identify X’ with the graph of f inside X’ x X and embed this
product into P” = P’ x P. Then, we take v = ps and w = p;. O

Note that the morphism P” — P’ will inherit any universal property of P.

We extend definition 2.1.1 to formal embeddings as follows:

DEFINITION 2.1.5. — A morphism of formal embeddings
(fvv) : (YaQ) — (XaP)

is said to be flat (resp. smooth, étale, separated, proper, finite) if v is flat (resp.
smooth, étale, separated, proper, finite) at ally € Y. We might also say that v is flat
(resp. smooth, étale, separated, proper, finite) at Y.
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2.1. FORMAL EMBEDDINGS 13

Note that v is separated at Y if and only if Y is separated over P,. Moreover,
v is proper (resp. finite) at Y if and only if the restriction of v to any irreducible
component of Y is proper (resp. finite) over P. When Y is quasi-compact, this just
means that Y itself is proper (resp. finite) over Pj.

Finally, note that if K < K’ is an isometric embedding of complete ultrametric
fields, V' denotes the valuation ring of K’ and &’ its residue field, there exists an
extension functor

Fmb(V) — Fmb(V'), (X C P)+— (Xp C Pyr).

2.1.3. Tubes. — As already mentioned, we will consider K-analytic spaces in the
sense of Berkovich (see for example section 1 of [3] or appendix 5.2). We assume that
they are strictly analytic and call them analytic varieties over K. We will denote
by An(K) the category of analytic varieties over K, and more generally, if V' is an
analytic variety over K, we will denote by An(V') := An(K) - the category of analytic
varieties over V.
As shown in [4], section 1, there is a generic fiber functor
FSch(V) — An(K), P+— Pg
which is easily seen to be left exact; when P = Spf(A), we simply have Px = M(Akg).
If P is a formal V-scheme, there is a natural specialization map
Px =2, P, x+— T

when P = Spf(A), any # € Pk induces a continuous morphism Ax — K(z) which
reduces to a morphism Ay — k(x) whose kernel is T € P, (whose underlying space is
identified with that of P). Note that specialization is anticontinuous when FSch(V) is
endowed with its Zariski topology and An(K) is endowed with its analytic topology.
More precisely, the inverse image of an open subset is a closed analytic domain and the
inverse image of a closed subset is an open subset (as the next local description shows).
In fact, this will not be a problem for us because we will implicitly endow FSch(V)
with the coarse topology (all presheaves are sheaves).

If X C P is a formal embedding, we will consider the tube
[ X[p:=sp '(X)

of X in P. This definition will be generalized later on. When P = Spf(A) and

X = {xe P; Yie{l,...,r}, fi(x)=0, 3j € {1,...,s}, g;(x) 740},
we have

[ X[p={zePx; Vie{l,....;r}, |fiz) <1, Fj € {1,...,s}, |g;(z)] = 1},
Note that if P’ denotes the maximal admissible formal subscheme of P, then
IX 1P, = X,

This is why, in practice, we may generally work with admissible formal schemes.
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14 CHAPTER 2. GEOMETRY

Recall also that if X is an algebraic variety over K, we may consider its ana-
lytification X2 which is an analytic variety over K. Now, if Y is a locally finitely
presented scheme over V, we may consider its completion Y and there is a canonical

~

map (Y)xg — (Yx)*. It is not difficult to check that this is an open immersion
when Y is separated and even an isomorphism when Y is proper.

Example. — In Monsky-Washnitzer’s situation (example following definition 2.1.2),
we could derive from a presentation of a smooth affine V-algebra A, a formal embed-
ding -
X := Spec(Ax) C P:=P{.
We have P, = P} and Px = P%’an and specialization map
pen 2 PN (3., an) — (Fo.....0N)

whenever max |z;| = 1. If we set V := SpecA%?, one easily checks that

|X[p = M(Ag) =V BN (0,1%).
PrOPOSITION 2.1.6. — The functor

Fmb(V) — An(K), (X CP)— |X[p

is left exact.

Proof. — Clearly, this functor sends the final object (Speck C SpfV) of Fmb(V) to
the final object M(K) of An(K). Assume now that we are given two morphisms
(XCP)—=(ZCR)and (Y CQ)— (Z C R). We want to show that

X xz Y[PXRQ = ]X[P X1Z[r ]Y[Q'
We have
X xzY = (P XRY)Q(X XRQ),
IX[P[¥z1, Yo = (Px xRk [Yg) N (1X[p Xrx @x)-

Since the tube is just an inverse image, it commutes with intersection and we are
therefore reduced to showing that

]X X Ry, Qk[PxRQ = ]X[P X Rk Qx
which follows for example from the local description of the tube. O
The last proposition describes the analytic counterpart of the notion of separate-
ness and properness introduced in definition 2.1.5. We simply recall that locally

separated means that the diagonal embedding is an immersion and send the reader
to appendix 5.2 for the notion of interior.

PROPOSITION 2.1.7. — Let v : P’ — P be a morphism of formal schemes and X' a
subvariety of P'.
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2.2. OVERCONVERGENT VARIETIES 15

1) If v is separated at X', then |X'[p, has a locally separated neighborhood V'
in Pj; relative to Pk .

2) If v is proper at X', then | X'[p, is contained in the interior of Py relative to
Px.

And the converse is also true when the formal schemes are admissible.

Proof. — Both results directly follow from Temkin’s work: when the formal schemes
are admissible, they follow from proposition 2.5 and theorem 4.1 of [27] (see also
remark 5.8 of [28]). In general, we may replace P and P’ by their maximal admissible
formal subschemes. O

2.2. Overconvergent varieties

The category of formal embeddings in not rich enough for our purpose. We need
some analytic structure. This leads to the notion of overconvergent variety that we
introduce here. Note that the definition of morphisms that we will consider now will
have to be weakened in the future. We call them formal morphisms.

DEFINITION 2.2.1. — An overconvergent variety is a pair made of a formal embed-
ding X C P over V and a morphism of analytic varieties A : V. — Py over K. The
tube of X in V is

An overconvergent variety can be represented by the diagram

A

X « P <2 py 1%

and we will denote the inclusion map by
iX7V : ]X[V — V.

We will usually write (X C P < V). We might also forget A or sp in the notations
and just write

sp:V—P or ANV —P

in which case we will write
]X[V = Spil(X) or ]X[V = )‘71(X)

Also, if x € X[, we will write # = sp(A(z)). Finally, when no confusion should
arise, we will simply call 7x, ¢,y or even ¢ the inclusion map.
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16 CHAPTER 2. GEOMETRY

Example. — In the Monsky-Washnitzer situation (example following definition
2.1.2), we saw that there is a formal embedding

X := Spec(A) C P := @
We may also consider the inclusion morphism
V i= Spec(Ag )™ < ( PY)™ = (PY)x = Pr.
in order to get an overconvergent variety
XCP << Pg V.
Actually, for each A > 1, we may set
Va:=BYN0,\)NV
and we get another overconvergent variety
XcP <& Pg W
Note that V) is affinoid so that we can write V) = M(A,). Actually, we have
lim Ay = Al € Ag

where AT denotes of the weak completion of A (see the original article [24] for the
notion of weak completion).

We now come to the definition of morphisms. As already mentioned, we will
consider, later on, another category with the same objects but more maps.

DEFINITION 2.2.2. — A formal morphism of overconvergent analytic varieties is a
commutative diagram

N

X' < P <2 _pj

R

X - P2 pe Xy

where f is a morphism of algebraic varieties, v is a morphism of formal schemes and
u s a morphism of analytic varieties.

We will usually write
(fCuu): (X' cP 2V —(XcP v

The following result is straightforward but very useful in practice because it gener-
ally allows us to split some questions into two simpler ones: working on the formal
embeddings side or on the analytic varieties side.

MEMOIRES DE LA SMF 127



2.2. OVERCONVERGENT VARIETIES 17

PROPOSITION 2.2.3. — Any formal morphism of overconvergent varieties is the com-
position of a morphism of the form

(fColdy): (X' CP «V)— (XCP+ V).
and a morphism of the form

(Idx C Idp,u): (X CP« V') — (X C P« V).

Proof. — Any morphism as above splits as
X s P 2 pr Ny
K
el D
X —— P <2 p Ay O
X —— P 2 pe v
PROPOSITION 2.2.4. — We have the following results:

1) With obvious composition, overconvergent varieties and formal morphisms form
a category An(V) with finite inverse limits. Moreover, if K < K’ is an isomet-
ric embedding, there is a natural base extension functor An(V) — An()’).

2) The forgetful functor
An(V) — An(K), (X CP+V)—V
is exact with fully faithful right adjoint
An(K) — An(V), V — (Spec(k) C Spf(V) «+ V).
3) The forgetful functor
An(V) — Fmb(V), (X CP<«+V)—XCP
is exact with left adjoint
Fmb(V) — An(V), X CP+— (X C P+ 9)
and right adjoint
Fmb(V) — An(V), X CP+— (X C P+ Pxk).
Moreover, both adjoints are fully faithful.

Proof. — All these assertions are easily checked. More precisely, it is clear that we
do have a category and the existence of the base extension should also be clear. The
existence of the finite inverse limits as well as the left exactness of the functors mean
that the inverse limit of a diagram

sp Ai
Xi— P «— P g <V,
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18 CHAPTER 2. GEOMETRY

indexed by some finite set I is simply

. . . Ai 1.

lm X; ——lim P = lim P, «~~lim V;.
And this is quite obvious. It remains to verify the adjointness and full faithfulness
properties which is an easy exercise. O

A formal morphism of overconvergent varieties
(fCou): (X' CP +V)—(XCP<«+V).
will induce a morphism
Il s X'l — 1XTy
between the tubes: we have a commutative diagram

s N
X'« P 2 _pj %4 > )X [

R N R

X P2 peed vy > X[

Since ] f[,, is just the morphism induced by u, we will sometimes write
w: X'y, — Xy
Also, when u = Idy, we will write |f[, : | X'[,, = ] X[y .
ProproSITION 2.2.5. — The functor
An(V) — An(K), (X CP<«+V)— X[,
is left exact.
Proof. — Our assertion follows from proposition 2.1.6 since pull back is left exact. [

Let us fix some vocabulary and notations for the rest of this article (see also ap-
pendix 5.1).

A contravariant functor on a category C' will be called a presheaf on C. Unless
otherwise specified, the target category will always be the category Sets of sets. Also,
a natural transformation between contravariant functors will be called a morphisms of
presheaves. We will denote by C the category of presheaves of sets on C. It is possible
that C is endowed with a topology (often generated by a pretopology) in which case
we call it a site. And then, a presheaf that satisfies a suitable glueing property will
be called a sheaf (see appendix 5.1 for a more precise formulation). We will denote
by C the category of sheaves of sets on C. This a full subcategory of C. This is the
topos associated to C.

For example, we will endow An(K) with the analytic topology. This is the (big)
analytic site of K whose topology is generated by the pretopology made of open
coverings. The corresponding topos will be denoted Ka,,. An object F of Kp, is given
by a usual sheaf (of sets) Fy on each analytic variety V' and a family of compatible
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2.2. OVERCONVERGENT VARIETIES 19

maps u~ ' Fy — Fw for each morphism u : W — V such that (]—'V)‘W = Fw whenever
W is an open subset of V.

In general, if we are given a functor g : ¢’ — C, the induced functor
g':C—C, T—Tog

has a right adjoint g, (and also a left adjoint). If both C' and C’ are actually sites
and g, preserves sheaves, then we say that g is cocontinuous. Quite often, this condi-
tion can be checked by considerations on coverings (see appendix 5.1 again for some
details).

DEFINITION 2.2.6. — The analytic topology on An(V) is the coarsest topology mak-
ing cocontinuous the forgetful functor

An(V) — An(K), (X CP<«+V)—VW

We might sometimes denote by Va, the corresponding topos. There is a very
simple description of this topology:

PROPOSITION 2.2.7. — The analytic topology on An(V) is generated by the following
pretopology: families {(X C P+ V;) = (X C P + V)}iel where V- = J,; V; is an
open covering.

Proof. — Note first that such families do define a pretopology. We may therefore use
the following criterion: the forgetful functor is cocontinuous if whenever {V; — V},;cr
is a covering, the family of all

(X'CP «V)—(XCcP+V)

such that V' — V factors through some V;, is a covering. This condition is equivalent
to (X' C P/« V') = (X C P« V) factoring through some (X C P « V;). Thus,
we see that the forgetful functor is cocontinuous if and only if whenever {V; — V},cr
is a covering, so is

{XcP«V) —=(XCP«V)}._, O
Recall that a site is standard if it has finite inverse limits and the topology is
coarser than the canonical topology. This last condition simply means that for any

objet X € C, the presheaf Y — Hom(Y, X) is a sheaf. This is a very pleasant situation
because it allows us to consider C' as a full subcategory of C.

COROLLARY 2.2.8. — The site An(V) is a standard site.

Proof. — We have to show that the analytic topology is coarser than the canonical
topology on An(V). We take any (X C P «+ V) € An(V) and we have to prove that
the presheaf

(X' CP' +V)r—Hom((X'CP « V'), (X CP<«+V))
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20 CHAPTER 2. GEOMETRY

is a sheaf. Thus, we are given a covering
V' = U %4
and a compatible family of morphisms
{(fCou): (X' CP V)= (XCP+V)} .

As Berkovich showed (see proposition 1.3.2 of [3] for example), the analytic topology
is coarser than the canonical topology on An(K), and it follows that the u}s glue to
a morphism u : V! — V. It is clear that (f,u) is a morphism. O

Unless otherwise specified, categories of schemes and formal schemes are always
endowed with the coarse topology — and not the Zariski topology.

Recall that a cocontinuous functor g : C' — C gives rise to a morphism of toposes
g: ' —C
(a functor g, : C’ — C with exact left adjoint g~ : C' — 5’) A functor g : C' — C
may also be continuous: it means that g—! preserves sheaves. The induced functor
that we may denote by f. : C — C’ (so that f. denotes the restriction of g~!) has a
left adjoint f~!. If this adjoint is exact, we obtain a morphism of topos f : C — C’.
We will also say that we have a morphism of sites

f:C—cC'.
Note that f~! extends g; this is why we usually do not use the letter g and write from
the beginning f~!: C' — C.
PROPOSITION 2.2.9. — We have the following results:
1) The forgetful functor
An(V) — An(K), (XCP+V)—V

is left exact, continuous and cocontinuous, giving rise to a morphism of sites
and of toposes

An(K) —s An(V), An(V) — An(K).
2) The forgetful functor
An(V) — Fmb(V), (X CP<+V)—XCP
is exact, continuous and cocontinuous, giving rise to a morphism of sites
An(V) — Fmb(V).

and another one in the other direction Fmb(V) — An(V) which is a section of
the former.
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2.3. STRICT NEIGHBORHOODS 21

3) The tube functor
An(V) — An(K), (X,V)— X[,
is left exact and continuous, giving rise to a morphism of sites An(K) — An(V).

Proof. — All exactness properties follow from propositions 2.2.4 and 2.2.5. When
a left exact functor preserves covering families (for given pretopologies) it is auto-
matically continuous. All continuity assertion therefore easily follow from propo-
sition 2.2.7. Since Fmb(V) is endowed with the coarse topology the functor in the
first assertion is automatically cocontinuous. Finally, the functor of the second asser-
tion is cocontinuous by definition. O

2.3. Strict neighborhoods

We just defined overconvergent varieties (X C P < V') but the notion of formal
morphism is too rigid. We are actually only interested in what happens in a neigh-
borhood of | X[, in V. Moreover, we want that, in the Monsky-Washnitzer situation
(see example after definition 2.2.1), any morphism on the weak completions of the
rings induces a morphism on the corresponding overconvergent varieties. In order to
do that, we need more flexibility. Thus, we will introduce the notion of strict neigh-
borhood and make them invertible in order to obtain the category of overconvergent
varieties.

Let (X C P+ V) be an overconvergent variety and W an analytic domain in V.
If W is a neighborhood of | X[, in V', we will say that W is a neighborhood of X in V.
The relation with Berthelot’s definition of strict neighborhood is highlighted by the
next result.

Recall (see appendix 5.2 for details) that an analytic variety V over K has a
Grothendieck topology which is finer than the usual one (consisting of analytic do-
mains). We will denote by Vg the corresponding space. We will call a covering of V/
admissible if it is admissible for this Grothendieck topology. For example, a cover-
ing V.= V5 UV, by two analytic domains will be admissible if and only if 1} is a
neighborhood of the points which are not in V5 and conversely.

PROPOSITION 2.3.1. — Let (X C P + V) be an overconvergent variety and W an
analytic domain in V. Recall that X denotes the Zariski closure of X in P. Then W
is a neighborhood of X in V if and only if the covering

])?[V = ])_([WU ]X\X[V
1s admissible. Actually, it will have an open refinement.

Proof. — Assume first that W is a neighborhood of X in V. Replacing W by some
open neighborhood, we may assume that W is open in V. In this case, the above
covering is simply an open covering and we are done. Conversely, if the covering is

SOCIETE MATHEMATIQUE DE FRANCE 2011



22 CHAPTER 2. GEOMETRY

admissible and = € ] X[y, then = € | X[}, but = ¢ |X\X[y,. It follows that ]X[}; is a

neighborhood of z in | X[, and a fortiori that W is a neighborhood of z in V. O

Recall that if V' is a Hausdorff analytic variety over K, the set V| of rigid points
of V inherits the structure of a rigid analytic variety. The inclusion Vj — V induces
an isomorphism of toposes % o~ ‘7& (see appendix 5.2 again).

Recall also (see definition 3.1.1 of [23]) that, if X C P is a formal embedding, a
strict neighborhood of ] X [p, in ]X|[p, is an admissible open subset Vg of ] X[, such
that the covering

[X[pg = Vo U JX\X[pg
is admissible. We will also say that Vj is a strict neighborhood of X in P.

COROLLARY 2.3.2. — If X is quasi-compact and X C P is a formal embedding, there
ezists a cofinal family of paracompact neighborhoods V' of X in P such that the family
of all Viy is a cofinal family of strict neighborhoods of X in P.

Proof. — The proposition tells us that V' C ] X[, is a neighborhood of X in P if and
only if the covering
[ X[p=VUIX\X[p

is admissible. This characterization is quite similar to the definition of strict neigh-
borhoods above. Recall now that Berthelot defined what he calls standard strict
neighborhoods (see [23], definition 3.4.3). One easily checks that their definition
makes sense in Berkovich theory as well and that they are paracompact. In rigid ge-
ometry, it is shown in [23], proposition 3.4.1, that they define a cofinal system of strict
neighborhoods. The analog result holds with the same proof in Berkovich theory. [

DEFINITION 2.3.3. — A formal morphism
X s p 2o pr Ny
I |
X P2 ped v

of overconvergent varieties is a strict neighborhood if w is the inclusion of a neigh-
borhood of X in'V and | X[, = |X|, .

Note that there is no explicit condition on the morphism v. As the next proposition
shows, strict neighborhoods act at two different levels: they will allow the replacement
of P by some other formal scheme and the replacement of V' by a neighborhood of X
inV.

PROPOSITION 2.3.4. — Any strict neighborhood of overconvergent varieties is the
composition of a formal morphism

(Idx C v,Idy) 1 (X C P« V') — (X C P+ V)

MEMOIRES DE LA SMF 127



2.3. STRICT NEIGHBORHOODS 23

that induces an equality on the tubes, and a formal morphism of the form
(Idy CcIdp,u): (X C P+ V)— (X CP<+V).
where u is the inclusion of a neighborhood V' of X in V.
Proof. — Follows from proposition 2.2.3. O

More precisely, a strict neighborhood splits as

X « P <2 pj %4 1X [y
I
X < P <2 pg %4 > )X [y
[ N
X « P 2 Py 1% > X[y

LEMMA 2.3.5. — We have the following results:
1) Any identity map is a strict neighborhood in An(V).
2) Any composition of strict neighborhoods is a strict neighborhood in An(V).
3) Any diagram
(X C P« V)
e

YCcQ+«W)— (XCP<+V)

in An(V), where v is a strict neighborhood, can be completed into a commutative

square
YcCcQ «W)—(XCcP «V)

ol e

YCQ«W) — (XCP«V)

where w is a strict neighborhood.
4) Any diagram
(YCQeW)é;(XcP%—V’)L%XCPeV)
Vo
where v is a strict neighborhood and v ouy; = v ouy can be extended on the left
as
YCQ «W)—“s3(YCQeW) —=3(X C P« V)
vo

where u is a strict neighborhood such that v o u = vg o u.

Proof. — First and second assertion are trivial. For the third one, we may simply
choose the fibered product and for the last one, the equalizer. It is easily checked that
these constructions do give strict neighborhoods as expected. O
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PROPOSITION 2.3.6. — The category An(V) admits calculus of right fractions with
respect to strict neighborhoods.

Proof. — The lemma shows that all the conditions of [19], I, 2.2.2, are satisfied. O

DEFINITION 2.3.7. — The category of fractions An'(V) of An(V) with respect to
strict neighborhoods is the category of overconvergent varieties over V.

Thus, a morphism from an overconvergent variety (X’ C P’ + V') to an overcon-
vergent variety (X C P < V) is a commutative diagram

X —5pP +—V

T 1

X/ P// W/

2 N

X —— P «—V

where the upper map is a strict neighborhood.

In particular, we see that any morphism defines a morphism of algebraic varieties
f: X’ — X and a morphism of analytic varieties u : W/ — V defined on some neigh-
borhood of X’ in V'. We will show that this pair satisfies a compatibility condition
that is due to A. Besser (see definition 4.4 of [12]):

DEFINITION 2.3.8. — Let (X C P & V) and (X' C P’ & V') be two over-
convergent varieties. Let f : X' — X be a morphism of algebraic varieties, W' a
neighborhood of X' in V' and u : W' — V a morphism of analytic varieties. The pair
(f,u) is pointwise compatible if

va' € 1X',  Au(@))) = fF(N(2)).
It is said to be geometrically pointwise compatible if this property still holds after any
isometric extension of K.

Now we can state the next result that gives a more down-to-earth description of
the category An'(V):

PROPOSITION 2.3.9. — Let (X C P & V) and (X' C P’ & V') be two overcon-
vergent varieties. Then any morphism between them induces a pair of geometrically
pointwise compatible morphisms (f,u). Conversely, let f : X' — X be a morphism
of algebraic varieties, W' a neighborhood of X' in V' and u : W' — V a morphism
of analytic varieties. If (f,u) is geometrically pointwise compatible, it comes from a
unique morphism of overconvergent varieties.
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2.3. STRICT NEIGHBORHOODS 25

Proof. — As we saw above, a morphism is a commutative diagram
/ / N /
X — P +—V

T

X s p 2y

I

X —s P2 vy

where the upper map is a strict neighborhood. In particular, we have | X'[;,, = ] X[,
If ' € ] X[, then commutativity downstairs implies that f(\’(z') = A(u(z')) and

commutativity upstairs gives M (z’) = A’(z’). Thus we obtain pointwise compatibility.
If we are given any isometric extension K — K’, we can extend the whole situation
and geometric pointwise compatibility follows.

Conversely, assume that we are given a geometrically pointwise compatible pair of
morphisms (f,u) with f : X’ — X and u : W/ — V. If we consider the diagonal
embedding of X’ into P’ x P and similarly embed W’ diagonally into Py x Pk, we
obtain a commutative diagram

X/ P/ oy V/

|- !

1"

X' P xP W

1Al

X —5 P <2 v

We want to show that the upper morphism is a strict neighborhood. In other words,
we have to check that | X'[;,, = |X'[,,,. Since the first one sits as an analytic domain
inside the second, it is sufficient to show that the induced map | X[, — | X[, is
surjective. Thus, we are given 2’ € ]X'[;, and we want to show that it comes from
some (unique) 3’ € | X'[y.

First of all, since W' is a neighborhood of X’ in V', we know that x’ comes from a

unique y" € W’ and we want to show that y’ € ] X[}, or in other words that A" (y’) is
an element of X’. We may extend the basis to the residue field K(y’) and assume that

y' is rational so that A(y’) is determined by its projections onto P’ and P. Then, it
follows from pointwise compatibility that

N (y') = (/\’(m’),f(/\’(x’)) c X' O

Note that it is possible that a non trivial embedding of an analytic domain induces
a bijection on all rigid points: simply remove one non rigid point. This is why it does
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not seem reasonable to expect the above proposition to hold without the “geometric”
compatibility.

This proposition shows that the formal schemes play a secondary role and we will
therefore generally simply write (X, V') for an overconvergent variety and

(fou): (X", V') — (X,V)

for a morphism. We will also generally assume that u is actually defined on V' since
we may always replace it by a smaller neighborhood of X’. In general, there will not
be any problem either in assuming that we actually have a formal morphism.

Example. — Back again to our Monsky-Washnitzer situation (see the example
following definition 2.2.1). We assume now that we are given two finitely presented
algebras A and A’ over V and we use the same notations as above. A morphism
f X’ — X corresponds to an algebra homomorphism Ay — A). If A is smooth, this
homomorphism lifts to a homomorphism A" — A’f which induces Ay — Ait for A and
1 close enough to 1 and therefore gives a morphism w : V;: — Vi C V. Geometric
pointwise compatibility is easily checked and we do get a morphism

(fvu) : (X/a V/) — (Xa V)
which in general is not a formal morphism.

PROPOSITION 2.3.10. — Finite inverse limits exist in An'(V) and the canonical
functor

An(V) — An' (V)

1s left exact.

Proof. — Apply proposition 3.1 of [19] and its first corollary. O

In practice, the inverse limit of a diagram
sp i
Xi == Pis——Pig +——V;
indexed by some finite set [ is simply
. Aiq.
lim X; — [P =[] Pire <~ lim Vi,

Of course, if the maps in the diagram are formal morphisms, we may use inverse limits
instead of products in the middle.

PROPOSITION 2.3.11. — 1) The following functor is left exact

Fmb(V) — Anf(V), (X c P)+— (X, Px).
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2) The forgetful functor
An'(V) — Sch(k), (X,V)r— X
is left exact and has a fully faithful left adjoint
Sch(k) — An'(V), X+ (X, @)
3) The tube functor
An'(V) — An(K), (X,V)+— X[,
is left exact.

Proof. — The first assertion is obtained by composition. The second one follows from
the fact that @ is an initial object. Finally, the last assertion follows from the above
description of finite inverse limits. O

It is also important to remark that the assignments
(XCP<«+V)~(XCP)
as well as
(XCP+ V)~V

are not functorial anymore.

PRrROPOSITION 2.3.12. — A morphism
(fvu) : (X/avl) — (Xa V)

is an isomorphism in AnT(V) if and only if f is an isomorphism, u induces an isomor-
phism between neighborhoods of X' in V' and X in V, respectively, and the induced
map |f[, : 1X'[,, = | X[y is surjective. If this is the case, then |f[, is actually an
isomorphism.

Proof. — If (f,u) is an isomorphism, there exists an inverse (g,v) for (f,u) and it
follows from proposition 2.3.9 that f is an isomorphism and that u induces an isomor-
phism between neighborhoods. Conversely, if f is an isomorphism and u induces an
isomorphism between neighborhoods, they induce an embedding of analytic domains

Wl = 1X Ty = 1X Ty

We may assume that u itself is bijective. Then it is clear that the inverse g of f and
the inverse v of w define a morphism if and only if |f[, is an isomorphism, which
happens exactly when it is surjective. O

COROLLARY 2.3.13. — If

X s P peed v
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is an overconvergent variety and X factors through Py, where P is a formal subscheme
of P containing X, we get an isomorphism

(XCP +V)~(XCP+V)
in An' (V). O

Example. — In the Monsky-Washnitzer situation (example after definition 2.2.1),

we can replace P := P{J with the completion P’ of the Zariski closure of Spec(A) in
P{}f and get an isomorphic overconvergent variety. We see that X is open in P, and
V is open in Pj;. This is a more pleasant situation to work with.

Recall that a formal blowing up induces an isomorphism on the generic fibers.

COROLLARY 2.3.14. — If (X C P + V) is an overconvergent variety and P' — P
18 a formal blowing up centered outside X, then the induced morphism

(XCP +V)—(XCP<+V)
is an isomorphism in An'(V). O

COROLLARY 2.3.15. — Any overconvergent variety is isomorphic in AnT(V) to some
overconvergent variety (X C P < V) where, if we denote as usual by X the Zariski
closure of X in P, X\X is a divisor in X and | X[, =V. O

2.4. The overconvergent site

We introduced in the previous section the category of overconvergent varieties by
making strict neighborhoods invertible. This category inherits a topology that we
study now.

Recall that if C’ is a site and g : C' — C is any functor, the image topology on C
is the coarsest topology that makes g continuous.

DEFINITION 2.4.1. — The analytic topology on An'(V) is the image of the analytic
topology of An(V). The site is called the overconvergent site, the corresponding topos
Vant 15 the overconvergent topos and its objects are called overconvergent sheaves.

PROPOSITION 2.4.2. — The analytic topology on AnT(V) is defined by the following
pretopology: families of formal morphisms

{(XCcPh«V)—(XCP«V)},

where {Vi}ier is a an open covering of a neighborhood of X in'V and | X[, = U] X[y, .
Moreover, up to isomorphism, any such covering is a covering for the pretopology

of An(V).
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Proof. — The last assertion follows from the fact that such a family is isomorphic in
An'(V) to the family

{(XcP«V) > (XCP«V)},,
with V' = JV;.

Let us verify now that our families do define a pretopology. It is clear that the
identity has this form. Moreover, transitivity is satisfied as one easily checks. We need
to verify that base change is satisfied and this is done in two steps. First of all, base
change by a formal morphism clearly gives a family of the same type: this follows
from left exactness of our functors. Also, composition on the right with a strict
neighborhood also has the same type.

Finally, since up to isomorphism in An'(V), any such family is a covering for the
pretopology of An(V), it follows that our pretopology generates the coarsest topology
making the canonical functor An(V) — An'(V) continuous. O

PROPOSITION 2.4.3. — The canonical functor
An(V) — An'(V)

1s the inverse image for an embedding of sites
An'(V) — An(V).

This embedding induces an equivalence between V. i and the full subcategory of
sheaves F on An(V) such that

FXcPV)=FXcP,V)
whenever (X C P, V') — (X C P, V) is a strict neighborhood.
Proof. — Since the functor is left exact and continuous, it provides a morphism of
sites An' (V) = An(V). Moreover, the universal property of the category of fractions

tells us that this embedding induces an equivalence between AnT(V) and the full
subcategory of presheaves F such that F(X C P, V)= F(X’' C P', V') whenever

(X' cP,V))— (X CPV)

is a strict neighborhood. Thus, it only remains to show that a presheaf F on An' (V) is
a sheaf if and only if its image in An()) is a sheaf. This follows from the fact that, up
to isomorphism, any covering for the pretopology of An' (V) isacoveringin An(V). O

PROPOSITION 2.4.4. — The site An' (V) is a standard site.

Proof. — Tt follows from proposition 2.3.10 that our site has fibered products and it
remains to show that the topology is coarser than the canonical topology. We use
the description of proposition 2.3.9. We let (X, V) € An'(V) and we show that the
presheaf

(X',V") — Hom((X', V"), (X, V))
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is a sheaf on An'(V). So we assume that we are given a covering

{(X" V) = (X V) } e,

for our pretopology and a compatible family of morphisms
{(fa ul) : (X7 ‘/1/) - (Xa V)}iel'

Up to isomorphism, we may assume that V' = UV and glue the u;’s. O

We recall again that categories of schemes and formal schemes are endowed with
the coarse topology (which makes specialization continuous).

PROPOSITION 2.4.5. — 1) The functor
Fmb(V) — Anf(V), (X C P)+— (X C P« Pg)
is left exact and continuous, giving rise to a morphism of sites
sp : Anf(V) — Fmb(V).
2) The forgetful functor
An'(V) — Sch(k), (X,V)— X
is left exact and continuous, giving rise to a morphism of sites
I :Sch(k) — An'(V).
3) The tube functor
An'(V) — An(K), (X,V)+— |X][,

is left exact and continuous, giving rise to a morphism An(K) — AnT(V) of
sites.

Proof. — Exactness properties were shown in proposition 2.3.11. Using proposition
2.4.3, the continuity assertions follow from proposition 2.2.9. O

PROPOSITION 2.4.6. — Let K < K’ be an isometric embedding and V', k' denote
the valuation ring and residue field of K' respectively. Then there is an extension
functor

An'(V) — An'(V), (X C P« V) (Xp C Py Vir)
which is left exact and continuous, giving rise to a morphism of sites

Anf(V') — An'(V).

Proof. — Follows directly from our definitions. O
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Note that the analogous statement for An()V) is also true.

When T is a presheaf on a category C, we may consider the restricted category Cr
whose objects are pairs (X, u) where X is an object of C and v € T'(X). A morphism
(X', u') = (X,u) is a morphism f : X’ — X such that T(f)(u) = /. Of course,
when T is a representable presheaf identified with the object that it represents, this
definition is compatible with the previous one.

DEFINITION 2.4.7. — An overconvergent presheaf is a presheaf T on AnT(V), An
overconvergent variety over T is an object of An'(T) := An'(V) T

We will give some examples below.

Recall that if C is a site and g : C' — C any functor, then the induced topology
on C' is the finest topology that makes g continuous. Note that when g is left exact
and C’ has fibered products, a family in C’ is a covering family for the induced
topology if and only if its image in C' is a covering family. This applies in particular
to the case of a restriction functor €y — C where C is a site and T" a presheaf on C'.

DEFINITION 2.4.8. — IfT is an overconvergent presheaf, then AnT(T), endowed with
the induced topology, is the overconvergent site over T'. The corresponding topos Ty,
is the overconvergent topos over T and its objects are called overconvergent sheaves
onT.

It is a general fact that any morphism of overconvergent presheaves f : T/ — T
will induce a morphism of toposes

. /
fAnJr . TAn‘r sznJr .

Note that if T’ denotes the sheaf associated with T, we obtain a canonical isomorphism
Tant = TAnT- In practice however, it is more convenient to work with presheaves
whose descriptions are generally simpler.

As a first example of overconvergent presheaf, we can consider the case of an
overconvergent variety (C,O) identified with the sheaf that it represents. We obtain
the category of overconvergent varieties over (C,0). An object is simply a morphism
(X,V) = (C,0) and a morphism in An'(C,0) is simply a usual morphism that
commutes with the given ones. Of course, any morphism of overconvergent varieties
(f,u): (C",0") = (C,0) will induce a morphism of toposes

Upnt + (C1,0") ant — (C,0) api
with
u, L (X, V)= (C" xe X,0" xo V).
As a particular case, if S is a formal V-scheme, we will call

An'(S) := An'(S}, Sk)

SOCIETE MATHEMATIQUE DE FRANCE 2011



32 CHAPTER 2. GEOMETRY

the category of overconvergent varieties over S. By functoriality, any morphism of
formal V-schemes v : S’ — S provides us with a morphism of toposes
'UAnT . SAIAnT — SAnT'

The next proposition shows that we could replace everywhere Spf) by some formal
scheme S and get a relative theory. But we will not do that because it sounds simpler
to see the relative situation as a particular instance of the restriction process.

PROPOSITION 2.4.9. — Let S be a formal V-scheme. Then, up to isomorphism, an
overconvergent variety over S is a pair made of a formal embedding X C P over S
and a morphism of analytic varieties A : V — Pk over Sk. And a morphism is just a
formal morphism (f C v,u): (X' C P, V') = (X C P,V) of overconvergent varieties
which is defined over S.

Proof. — We know that, up to isomorphism, any morphism of overconvergent vari-
eties is a formal morphism. For example, if (X < P <« V) is an overconvergent
variety over S, we can embed X in P x S and V in (P x S)g in order to get another
overconvergent variety (X < P x S < V) over S which is isomorphic to the original
one. Everything else follows. O

If (C,0) is an overconvergent variety, the functor I : Sch(k) — An'(V) that ap-
peared in proposition 2.4.5 extends formally to a morphism of sites

Ic.o : Sch(C) — An'(C,0)
with I 5(X,V) = X.

PROPOSITION 2.4.10. — If (C,O) is an overconvergent variety, the functor

o —

Ic,04 : Sch(C) — (C,0) ppt

s continuous and left exact, giving rise to a morphism of topos
Uc.o : (C,0)ani — Sch(C).

And we have a sequence of adjoint functors
Ico, lco«=Ugp Ucos

with Uc,0 © Ic,0 = 1d. In particular, Ic o is an embedding of topos.

Proof. — The functor I o« being a direct image of morphism of sites is automatically
left exact. Moreover, it is also automatically continuous since we have the coarse
topology on the left hand side. And one checks directly that I o« is fully faithful. O

We will define now for a given overconvergent variety (C,0O) and an algebraic
variety X over C the overconvergent sheaf X/O as well as the corresponding site and
topos. We will use the restriction morphism

jC7O : (Ca O)AnT — VAnT'
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DEFINITION 2.4.11. — If (C,0) is an overconvergent variety and X an algebraic
variety over C, then
X/0 :=jcolco+X

is the overconvergent sheaf of overconvergent varieties over X above (C,O).

Thus, we may consider the category Anf(X/O) of overconvergent varieties
over X/O and the topos (X/O)a,t. We decided not to mention C' in the notations
because it plays a non significant role but we must not forget that it is also a part
of the data. If S is a formal V-scheme and X is an Si-scheme, we will also write
X/S := X/Sk. Thus, we obtain the category An'(X/S) of overconvergent varieties
over X/S and the corresponding topos (X/S)a,t- Actually, if S = SpecR, we will
write X/R or X/Rk.

It should be remarked that any C-morphism f : X’ — X induces, by functoriality,
a morphism of overconvergent sheaves X’/O — X/O and therefore also a morphism
of toposes

fant  (X'/O) ant — (X/O) ant-
In the particular case of the structural morphism, since I 0.C = (C,O), we get a
morphism of presheaves X/O — (C,O) giving rise to a canonical map

Jx/0 + (X/O)ant — (C,0) apt-

For further use, note that the functor X — X/O is left exact as composite of two
left exact functors. It means that if X; and X5 are two algebraic varieties over X,
we have

(X1 XX XQ)/O = Xl/O XX/O XZ/O

PROPOSITION 2.4.12. — Let (C,O) be an overconvergent variety and X an algebraic
variety over C. We have an equivalence of categories

An'(X/0) ~ Sch(X) xgen(cy An'(C, 0).
Proof. — We denote by jc .o the morphism induced by jo,0 on presheaves and con-
sider the presheaf
X/0 :=Jc,0c,0+X.
We will prove that

Anf(X/0) ~ Sch(X) xsan(c) An'(C,0).

As a consequence, one easily sees that )?/\O is actually a sheaf so that X/O = )?/\O
and the proof is finished. More precisely, this follows from the fact that the presheaf
associated to the object (C,0) is a sheaf (the topology is coarser than the canonical
topology) and the description of the pretopology in proposition 2.4.2.

By definition, an overconvergent variety over )?/\O is given by an object (U, V) of
An' (V) and a section of the presheaf jc,01lc,0+X on this object. Using the explicit
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description of the functor jc 01 (see appendix 5.1 for example), we see that such a
section is given by some structural morphism

(U, V) — (C,0)

and a section of Ic o.X on (U,V). By definition, this section corresponds to a
morphism from U to X over C'. Summarizing, we get an overconvergent variety
(U, V) over (C,0) and a morphism U — X which is a factorization of the structural
morphism U — C' through X. O

Said differently, we see that, up to isomorphism, an overconvergent variety over

X/O is a pair of morphisms
U—=X,V—-0)
such that the composite
U—-X—->CV—=O0)

is a morphism of overconvergent varieties. Then, a morphism (U’, V') — (U, V) of
overconvergent varieties over X/O is a pair made of a morphism f : U — U of
algebraic varieties over X and a morphism u : V' — V of analytic varieties over O
such that (f,u) is a morphism of overconvergent varieties over (C, O).

It also follows from the proposition that, given any overconvergent variety (X, V)
over (C,0), there is a canonical morphism of presheaves (X,V) — X/O giving rise
to a morphism of sites

(X, V)ant — (X/O) ant-

PROPOSITION 2.4.13. — Let (C',0") — (C,0) be a morphism of overconvergent
varieties. Then,

1) If X' = C’ is any morphism of algebraic varieties, we have
X')0"'~X"/]O x¢cij0 (C',0).

2) If X — C is any morphism and X' := X x¢ C’, we have
X'/0" ~ X/O x(c,0) (C",0).

Proof. — The first assertion easily follows from the proposition. For the second one,
we write
X//O/ = X//O X¢crjo (Cl, O/) = (X Xc C/)/O Xcgr/o (O/, O/)
= X/O X(c,0) CI/O Xcrjo (CI,OI) = X/O X (c,0) (C/,O/). O

PROPOSITION 2.4.14. — Let (C,0) be an overconvergent variety, f : Y — X be
a morphism of algebraic varieties over C and (X', V') an overconvergent variety
over X/O. Then,

fam (X1 V) =Y/0 xx0 (X', V') = (Y xx X)/V".
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Proof. — We have
Y/O Xx/0 (X/,V/) = Y/O Xx/0 X//O XXx1/0 (X/,V/)
=Y xx X")/O XX//O(X',V’):(Y xx X)/V'. O

As an example, we can give a description of inverse image with respect to an
immersion of algebraic varieties.

COROLLARY 2.4.15. — Let (C,0) be an overconvergent variety and o :' Y — X an
immersion of algebraic varieties over C. Then, if (X', V') € An'(X/0), we have

a, L (XL V) =, V)
where Y' is the inverse image of Y inside X'.
Proof. — Since Y is a subvariety of X', we have Y'/V' = (Y, V). O

We will also need a modified version of our sheaf X/O.

If (X,V) — (C,0) is a morphism of overconvergent varieties, we denote by Xy /O
the image presheaf of the canonical morphism (X, V') — X/O of overconvergent (pre-)
sheaves. When V = Pk, we will write Xp instead of Xy . Thus, by definition, the
category An'(Xy/O) is essentially the full subcategory of An'(X/O) consisting of
all (X', V') such that the canonical map X’ — X lifts to some morphism (X', V') —
(X, V). In other words, it is the category of overconvergent varieties over (C, O) that
factors through a specific X’ — X and through a possible V' — V. Another way to
see it is to think of objects living in An'(X, V) with morphisms being in An'(X/0).

Of course, any morphism (f,u) : (X', V') — (X,V) of overconvergent varieties
over (C,0) induces a morphism of analytic presheaves f, : X{,,/O — Xy /O which
in turn gives a morphism of toposes

qunT : ()(\//'//O)AUJr — (XV/O)AHJV'

We will need the following:

ProrosITION 2.4.16. — If
(X/a V/) — (Clv O/)
is a cartesian diagram, there is a canonical isomorphism
X‘////O/ ~ Xv/O X(c,0) (C/, O/)

Proof. — By definition, Xy /O is the presheaf image of the canonical morphism
X/0 — (C,0). Thus if we extend the basis, we obtain, thanks the second part of
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proposition 2.4.13, that Xy /O x (¢ 0y (C’,0’) is the presheaf image of the canonical
morphism

X'/0" ~ X/O x(c,0) (C",0") = (C",0)
which is exactly X{, /O’. O

2.5. The local section theorem

We show in this section that, under geometric conditions (properness and smooth-
ness), a formal morphism is locally left invertible in Anf(V). In other words, it is
a covering morphism in the overconvergent site. We derive some important conse-
quences. Unfortunately, we will need a result that is only valid for good analytic
varieties. Thus, we make the following definition:

DEFINITION 2.5.1. — An overconvergent variety (X C P < V) is said to be good
if any point of | X[, has an affinoid neighborhood in V. We will say that a formal
embedding X C P is good if the overconvergent variety (X, Pk) is.

We send the reader to the last part of appendix 5.2 for a review of standard
properties of morphisms in Berkovich theory.

Recall that an analytic variety is said to be good if it is locally affinoid. The
condition in the proposition therefore says that V' is good in a neighborhood of X.

Example. — In the Monsky-Washnitzer situation (example following definition
2.2.1), we do get a good overconvergent variety because V := (SpecAk)®" is alge-
braic and an algebraic variety is always good.

Recall that we call a morphism boundaryless if it is closed in the sense of Berkovich.
This notion is local for the Grothendieck topology.

PROPOSITION 2.5.2. — Let (X C P + V) be an overconvergent variety,
(f,v): (X' CcP)— (X CP)

a proper morphism of formal embeddings and V' a neighborhood of X in Py, xp, V.
Then v induces a boundaryless morphism between neighborhoods of X' and X in V'
and V respectively. Moreover, if (X C P «+ V) is good, so is (X' C P' < V’).

Proof. — Shrinking V' if necessary, we may assume that it is open in Py xp, V.
It follows from proposition 2.1.7 that v induces a boundaryless morphism from a
neighborhood of X’ in P’ to a neighborhood of X in P. Pulling back to V and
intersecting with V’/, we obtain a boundaryless morphism between neighborhoods
of X’ and X in V' and V respectively.

If (X C P« V) is good, we may assume that V itself is good and that the
morphism V' — V is boundaryless. It follows that V"’ is good and therefore, that the
overconvergent variety (X’ C P’ + V') is good. O
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Recall that a morphism W — V between two analytic varieties is universally flat if
it is, locally for the Grothendieck topology of V' and W, of the form M(B) — M(A)
with A — B flat (note that this is equivalent to the usual definition of being flat and
staying flat after any base extension).

PROPOSITION 2.5.3. — Let (X C P & V') be an overconvergent variety,
(f,v): (X'CcP)— (XCP)

a flat morphism of formal embeddings and V' a neighborhood of X in Py Xp. V.
Then v induces a universally flat morphism between neighborhoods of X' and X in V'
and V , respectively.

Proof. — Our condition means that v is flat in a neighborhood of X’. Thus, given
any ' € ]X'[,,, we can find affine neighborhoods Q" of ’ in P" and @ of f(z') in P
such that v induces a flat morphism Q' — Q:

~/

T ——Q — P

I

f@) — Q — P.

The corresponding morphism Q% — Qx is automatically universally flat. If we pull
back along A : V' — Pk and intersect with V'’ upstairs, we obtain a universally flat

morphism W’ — W between analytic domains inside V' and V:

x/ WI VI

I

v(@') —— W —— V.

It follows that u : V/ — V is universally flat at z’. Since this is true for all points
of ]X'[p, and that universal flatness is a local notion (even Zariski local, unpublished
result of Ducros), we may shrink again V' and V' in order to get a universally flat
morphism V' — V. O

Recall that a morphism W — V of analytic varieties is formally smooth (resp.
formally étale) if, locally for the Grothendieck topology, it satisfies the usual lifting
condition (this is equivalent to quasi-smooth or rig-smooth).

LEMMA 2.5.4. — Let X C P be a smooth (resp. étale) a formal embedding. Then,
there exists a formally smooth (resp. formally étale) neighborhood V' of X in Pk.

Proof. — Let z be a point of | X[, and @ a smooth affine neighborhood of Z in P.
Since Q, is locally free (resp. 0), so is g, and it follows from proposition 6.23
of [17] that Qk is formally smooth (resp. formally étale). Then, V N Qg is also
formally smooth (resp. formally étale) and we see that V is formally smooth (resp.
formally étale) at . This is true for any point z in | X[, and it follows that V is
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formally smooth (resp. formally étale) at each € |X[p. Since formal smoothness
(resp. formal étaleness) is a local notion, we may shrink V' a little bit in order to get
a formally smooth (resp. formally étale) neighborhood of | X[, in Pk. O

PROPOSITION 2.5.5. — Let (X C P «+ V) be an overconvergent variety,
(f,v): (X' cP)— (XCP)

a smooth (resp. étale) morphism of formal embeddings and V' a neighborhood of X'
in Py xp, V. Then v induces a formally smooth (resp. formally étale) morphism
between neighborhoods of X' and X in V' and V, respectively.

Proof. — Thanks to proposition 2.5.3, we may assume that v induces a universally flat
morphism V' — V between neighborhoods of X’ and X in V' and Pk, respectively.
Using proposition 6.27 of [17], we may therefore assume that (X C P < V) is reduced
to the point (Speck C SpfV < M(K)), in which case, this is just the assertion
of Lemma 2.5.4. O

Recall that a morphism of analytic varieties is smooth (resp. étale) if it is formally
smooth (resp. formally étale) and boundaryless. Again, this notion is local for the
Grothendieck topology.

COROLLARY 2.5.6. — Let (X C P <+ V) be an overconvergent variety,
(f,v): (X' CcP)— (X CP)

a proper smooth (resp. finite étale) morphism of formal embeddings and V' a neigh-
borhood of X' in Py X p, V. Then v induces a smooth (resp. étale) morphism between
neighborhoods of X' and X in V' and V', respectively.

Proof. — Since a smooth (resp. étale) morphism is simply a formally smooth (resp.
formally étale) boundaryless morphism, this assertion follows from propositions 2.5.2
and 2.5.5. O

We can now state the weak fibration theorem:

PROPOSITION 2.5.7 (weak fibration theorem). — Let (X C P < V) be an overcon-
vergent variety, v : P’ — P be a morphism of formal embeddings of X and V' a
neighborhood of X' in Py, xp, V. If v is smooth (resp. étale) at X, the fibers of the
induced morphism | X[, — X[, are strict open polydiscs (resp. | X[, ~ |X[y,).

Proof. — Let € ]X[, and V(x) be the ring of integers of K(x), the completed
residue field at . We may extend scalars by Spf(V(z)) — P and therefore assume
that P = Spf(V), V = M(K) and X = Spec(k). We have to show that |z[p, is
an open polydisc. We may replace P’ by any open neighborhood of Z and therefore
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assume that there is an étale morphism P’ — A\‘é sending = to 0. It follows from
Lemma 4.4 of [6] that this morphism induces an isomorphism

17 pr =~ ]O[Kg =B4(0,17). O

LEMMA 2.5.8. — Let (X C P « V) be an overconvergent variety and v : P’ — P
be a morphism of formal embeddings of X that is separated at X. Then, there exists
a neighborhood V' of X' in Pj X p, V such that, if u: V' — V denotes the induced
map, then for all x € X[, we have

ufl(]f[v) NV =1z[.
In particular, we have

u (X[, NV =X,

Proof. — Recall that our assumption means that the induced map X' — X7 is
separated. We take V' := | XF' [P;(XPKV' It is therefore sufficient to show that
v HE) N XY = {3}
and then pull back. Thus, we are led to check that the dense open immersion
X — v {(xX)nX"
is bijective. But the projection
X)) NXY — X
is separated as a pull-back of a separated map. A dense open immersion that admits

a separated section is necessarily an isomorphism. O

We will need the following lemma which is inspired from proposition 3.7.5 of [3]
(where the varieties are implicitly assumed to be good).

LEMMA 2.5.9. — Let

w: (V,2') — (V,x)
be a smooth morphism of germs of good analytic varieties over K. Any isomorphism
of germs

0o (u M (2),2) ~ (A%(gc),O)
over K(z) extends over (V,z) to an isomorphism of germs

(V' ') ~ (A“i,, (O,m)).

Proof. — We may assume that u comes from a morphism of affinoid algebras A — A’
and that our isomorphism comes from a morphism

of K(@){T1/R, ..., Ts/R} — K(z)@4A".

for R big enough. Since the image of Oy, ®4 A’ is dense in lC(x)@AA’, there exist
©1,...,p4 In Oy ®a A’ such that ||k (T;) — ;| < R.
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After an automorphism of K(z){T1/R,...,T4/R}, we may assume that

ox(Ti) = 2.
Moreover, shrinking V' (and consequently V') if necessary, we may also assume that
©1,---,0a € A" and we can consider the induced morphism ¢ : V' — A¢. By

construction, it induces the inclusion ¢, between the fibers at x. It follows from
lemma 3.7.7 of [3] that this is an isomorphism in a neighborhood of z'. O

It will be convenient to make the following definition:

DEFINITION 2.5.10. — Let (X C P + V) be an overconvergent variety and f : X' —
X a morphism of algebraic varieties. A geometric realization of f over V' is a formal
morphism of overconvergent varieties

X —P+—V

ol

X — P<+—V

where v is proper smooth at X' and V' is a neighborhood of X' in Pj; xp, V. We
will then say that f is (geometrically) realizable.

Note that, up to isomorphism, and unless we need special properties of V', we
may always assume that V' = P}, xp, V. In particular, a geometric realization is
completely determined by the morphism of formal schemes v : P’ — P. Finally,
note that corollary 2.5.6 above says that a geometric realization induces a smooth
morphism between a neighborhood of X’ in V' and a neighborhood of X in V.

THEOREM 2.5.11. — If(X,V) is a good overconvergent variety, any geometric real-
ization (X, V') — (X, V) of Idx has locally a section in Anf(V).

Proof. — Shrinking V' and V’ if necessary we may assume that they are good and,
thanks to corollary 2.5.6, that v induces a smooth morphism u : V/ — V. Shrinking
them a little more, we may assume thanks to lemma 2.5.8 that u='(]y[y,) = ]yl for
all y € ]X[;,. In particular, any local section of u will define a local section in An' (V).

Since u™(]X[;,) = |X[;, it follows from proposition 2.5.7 that there exists for

each z € ] X[, an isomorphism
Pz * u_l(x) = B%(r)(ov 1_)

We set 2’ := ¢, 1(0). It follows from lemma 2.5.9 that there exists a neighborhood W’
of 2/ in V' such that ¢, extends to some open immersion ¢ : W’ < A%. We may
then chose for s the zero section of A{. a

If (C, O) is an overconvergent variety and X is an algebraic variety over C, we intro-
duced in definition 2.4.11 the sheaf X /O of overconvergent varieties on X over (C, O).
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If (X,V) — (C,0O) is a morphism of overconvergent varieties, there is a canonical mor-
phism of overconvergent sheaves (X,V) — X/O and we defined Xy /O as the image
presheaf of the canonical morphism (X, V) — X/O of overconvergent (pre-) sheaves.

COROLLARY 2.5.12. — With the assumptions and notations of the theorem, given a
morphism (X, V) — (C,O) of overconvergent varieties, we have an isomorphism

(Xv1/O)ant = (Xv/O) pnt-

Proof. — Tt follows from the theorem that the morphism (X, V') — (/)_(\,_l/ ) is agg_;i—
morphism of overconvergent sheaves. It follows that the morphism Xy//O < Xy /O
induced on their sheaf images inside X/O, which is a monomorphism, is actually an
isomorphism of sheaves. Therefore, we get an equivalence on toposes (recall that if T

is an overconvergent presheaf, we always have T+ = Tapt)- O

DEFINITION 2.5.13. — IfT is any overconvergent presheaf, the good overconvergent
site Ang(T) over T is the full subcategory of An' (T') consisting of good overconvergent
varieties, endowed with the induced topology.

We will denote by T', + the corresponding good overconvergent topos. Note that
g
the inclusion functor

An{(T) < An"(T)

is left exact, continuous and cocontinuous. If 7" is an overconvergent presheaf, we will
denote by Ty its restriction to An; (V). Then, there is an isomorphism of sites

Anf(V),r, ~ An}/(T).

PROPOSITION 2.5.14. — Let (C,0) be a good overconvergent variety and X an al-
gebraic variety over C. If (X, V) — (C,0) is a geometric realization of X over O,
then (X,V) is a covering of X/O in An;(V).

Proof. — We must show that, given any good overconvergent variety (Y C Q « W)
over X /O, there exists locally, a morphism to (X C P+ V):

We may assume that the map (Y, W) — (C, O) is formal and introduce the graph
(YCQI :ZQX3P<—WI :ZWXQKPK)
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and the corresponding projections:

Y —Q+— W

T

Y «——Q +— W

Ll

X —P«+—V

1]

C — S <«+~— 0.

By construction, the upper morphism satisfies the hypothesis of theorem 2.5.11.
Therefore, it has locally a section and we are done.

O

COROLLARY 2.5.15. — With the assumptions and notations of the proposition, there

is an equivalence of toposes

(XV/O)An_]; = (X/O)An;-

Proof. — Tt follows from proposition 2.5.14 that (Xyv/O), is a covering of (X/0),

and therefore, the sheaf associated to (Xyv/0), is exactly (X/0)q.
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CHAPTER 3

COEFFICIENTS

In section 1, we define the realizations of an overconvergent sheaf and explain how
one can recover an overconvergent sheaf from its realizations. These realizations live
on the tubes and not on some neighborhood.

In section 2, we study the notion of coherence in a neighborhood of a subspace of
a locally compact topological space and apply the results to overconvergent varieties.

In section 3, we introduce the sheaf of overconvergent functions and the notion of
overconvergent crystal. We prove some standard properties of these crystals.

Section 4 is devoted to a comparison theorem between overconvergent stratifications
(that will correspond to overconvergent crystals) and usual stratifications (that will
correspond to modules with integrable connections). We show that the forgetful
functor is fully faithful when we stick to coherent objects.

In section 5, we put together the results of chapter 1 and those of section 3 in order
to connect overconvergent crystals to modules with connection. We will show that
finitely presented overconvergent modules correspond to modules with overconvergent
integrable connections. As a corollary, we get the equivalence between overconvergent
modules of finite presentation and overconvergent isocrystals in the sense of Berthelot.

3.1. Realization of sheaves

It is always convenient to see a crystal as a family of usual sheaves with transition
maps. We show here that the overconvergent sheaves admit such a description.

Let V be a topological space and T a subset of V. An inclusion V" C V' of open
subsets of V' is called a T-isomorphism if V' NT = V" NT. A family V/ of open
subsets of V is called an open T'-covering of an open subset V' if for each ¢, we have
V/!NT c V' and also V'NT c Y, V.

LEMMA 3.1.1. — Let V be a topological space and T a subset of V. Then
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1) The category Open(V) of open subsets of V' admits calculus of right fractions
with respect to T-isomorphisms.

2) The image topology on the category of fractions Open(V)r is generated by the
pretopology of open T -coverings.

3) When T is equipped with the induced topology, the inclusion T C V induces an
equivalence of sites

Open(V)r ~ Open(T).

Proof. — 1t is clear that T-isomorphisms form a subcategory which is stable by inter-
section with an open subset. The first assertion formally follows. Now, the inclusion
T C V clearly induces an equivalence of categories

Open(V)r =~ Open(T).

And open T-coverings in Open(V') correspond to open coverings in 7. O

Any analytic variety V over K will be endowed with its analytic topology and we
will denote by V,, the small topos of sheaves on V.

PROPOSITION 3.1.2. — Let (X, V) be an overconvergent variety. The obvious functor
V'~ (X, V') on Open(V) induces a functor

Open(V)x[, — An'(X, V).

which is continuous, cocontinuous and left exact.

Proof. — It is clear that if V' C V" is an | X[;,-isomorphism, then (X, V') — (X, V")
is a strict neighborhood. Moreover, it follows directly from our definitions that the
induced functor is continuous and cocontinuous: any open X[ -covering of some
open subset V' C V gives rise to an analytic open covering of (X, V’) and conversely.
It is also clearly left exact. O

COROLLARY 3.1.3. — If (X,V) is an overconvergent variety, the functor V'
(X, V") defines a morphism of sites

oxv:An (X, V) — Open(V)) x|, ~ Open(]X[y).
and a morphism of toposes
xv i [ X [yan — (X V) ant
giving rise to a sequence of adjoint functors at the topos level:

=) -1
Oxv, exve =VUxy, Ux v U
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ProposITION 3.1.4. — If(f,u) : (X', V') = (X, V) is a morphism of overconvergent
varieties, the following diagram is commutative:

Px’ v/

(X/v V/)Anf _—

l l /L.

(Xv V)An* % ]X[Van'

Proof. — This follows from the fact (f,u)~Y(X, W) = (X',u~1(W)), if W is an open
subset of V. O

COROLLARY 3.1.5. — If (f,u) : (X', V') = (X, V) is a morphism of overconvergent
varieties and F any sheaf on | X[, one has

L((X' V), oxy F) = DX [y 1A, ) 0
PROPOSITION 3.1.6. — If (X, V) is an overconvergent variety, we have

ex,vovxy =Id

In particular, V¥x v is an embedding of toposes.
Proof. — We have
(ox,v 0o ¥xv) U (F) = ¥kl (px'v F) = ox ve(px'v F)-
Thus, if V'’ is an open subset of V, we see that
(X[ (exv o xv) H(F)) = T(1 X[y, ex.valox v F))
=D((X, V), exvF) =L(1X[y. 7). O
For further use, we introduce the following terminology:

DEFINITION 3.1.7. — Let T be an overconvergent presheaf over an overconvergent
variety (C,0), then the projection of Th,+ onto |C|, is the canonical morphism of
toposes
pr TAHT — (C, O)AnT — ]C[Oan'
Deriving this functor will give the absolute overconvergent cohomology.

‘We now turn to the definition of the realizations.

DEFINITION 3.1.8. — Let (X, V) be an overconvergent variety and F an overconver-
gent sheaf on (X, V). Then the the realization of F on | X[, is the sheaf

Fxyv i=pxvF.

If T is an overconvergent presheaf, (X, V) an overconvergent variety over T and F an
overconvergent sheaf on T, the realization Fx v of F on (X, V) is defined as follows:
we first take the inverse image of F by the restriction morphism

(X7 V)AnT - T‘AnJr
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and then, its realization on (X, V).

We will often write Fy instead of Fx v. In the case V = Pk, we will write Fxcp
or Fp and call it the realization of F on X C P or P.

There is a very simple description of the realization of an overconvergent sheaf F
on (X, V): note first that, since the topology of | X[, is induced by the topology of V,
any open subset of | X[, is of the form | X[, with V' open in V. Then, we simply
have

F(]X[Vufx,v) =F(X, V).

Also, using realizations, it is not difficult to describe the morphism ¢ x . Of course,
by definition, for any overconvergent sheaf F on (X,V), we have px v.F = Fx,v.
But also, if F is a sheaf on | X[, and (f,u) : (X',V’) — (X,V) is a morphism of
overconvergent varieties, then

(exvF)xr v = 1L Fxv

Now, if T is an overconvergent presheaf, (f,u) : (X', V') — (X,V) a morphism of
overconvergent varieties over 1" and F € T+, functoriality gives us a morphism

dru: 1L Fxy — Fraw

on |X'[,,. Of course the morphisms ¢y, satisfy the usual compatibility condition.
These data uniquely determine F as the following proposition states.

PRrROPOSITION 3.1.9. — If T s an overconvergent presheaf, the cateqory Th,i s
equivalent to the following category:

1) An object is a collection of sheaves Fx v on | X[, for each (X,V) € An'(T)
and morphisms ¢, r ]f[;l]-"x,v — Fxr v foreach (f,u) : (X', V') = (X,V),
satisfying the usual cocycle condition and (Fx,v )y = Fx,v» when V' is an open
subset of V.

2) A morphism is a collection of morphisms Fx v — Gx,v compatible with the
morphisms ¢,,.

Proof. — This is completely standard. O

PROPOSITION 3.1.10. — If T is an overconvergent presheaf, the topos Ta,+ has
enough points. More precisely, if (X,V) € AnT(T) and x € X[y, then the functor
F = Fy,z 15 a fiber functor and they form a conservative family.

Proof. — The point x € ] X[, defines a point of the topos | X[y, and composition
with 9 x,y followed by the structural morphism (X, V) s+ — Ta,t gives a point of our
topos. We have to show that this family of points is conservative. Since the points of
a topological space form a conservative family, it is sufficient to note that the “family”
of realization functors {F = Fx v} x,v)eant (1) is faithful. O

Finally, we consider the case of an immersion of algebraic varieties.
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PROPOSITION 3.1.11. — Let (C,0) be an overconvergent variety, o : Y — X an
immersion over C, and (X', V') € An'(X/O). Let Y’ be the inverse image of Y in
X' and o :Y' < X' the inclusion map. If F is a sheaf on An'(X/0), then

(O[An**F)V/ = ]O/[*]:V"
Proof. — We saw in corollary 2.4.15 that a;rlﬁ (X', V') = (Y, V'), and it follows that
(apnt  F)U, V) = F(Y' V). And the same is true for any open subset of V. Thus
we see that
Z.X’*(O‘Anhﬁ]:)v/ =idynJyr = iX/*]O/[*FV/'

Pulling back by ix/ gives the result. O

Surprisingly enough, we obtain the following corollary (heuristically, we expect
exactness for closed immersions):

COROLLARY 3.1.12. — With the assumptions and notations of the proposition, if
a:Y — X is an open immersion, then ap,t, S exact.

Proof. — In this case ][, is the inclusion of a closed subset. O

*

3.2. Coherent sheaves

We prove here some general results about coherent sheaves on locally compact
spaces and we apply them to Berkovich analytic varieties.

We first need to make clear some terminology. A topological space is said to be
compact if it is quasi-compact and Hausdorff. A topological space is said to be locally
compact if any point has a compact neighborhood. A locally compact space need
not be Hausdorff but nevertheless, any point has a basis of compact neighborhoods.
Recall that a topological space is paracompact (resp. countable at infinity) if it is
Hausdorff and any open covering has a locally finite open refinement (resp. if it is a
countable union of compact subsets). Locally compact spaces that are countable at
infinity are always paracompact.

PROPOSITION 3.2.1. — Let (V,Oy) be a ringed space and i : T — V the inclusion
of a subspace. Assume either that V is paracompact or that V is Hausdorff and T
is compact. If F is an Oy -module of finite presentation and G any Oy -module, the
canonical map

lig Homo,, (Fjv+, Gjv+) — Hom;-10, (i 7' F,i7'G),
where V' runs through all open neighborhoods of T', is an isomorphism.

Proof. — Since F is finitely presented, we have

i ' Homo,, (F,G) = Hom;-10,, (i ' F,i 'G)
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and therefore,
Hom;-1, (i ' F,i7'G) = I'(T,i" "Homoe, (F,G)).
With our hypothesis, it follows from [22], proposition 2.5, that
L (T,i""*Homo, (F,G)) = lim I'(V', Homo, (F,G)v)
and we know that local hom commute with localization. O

COROLLARY 3.2.2. — With the assumptions and notations of the proposition, if F
and G are two Oy -modules of finite presentation such that i ' F = i~1G, there exists
an open neighborhood V' of T in V' such that Fy» = Gy. O

PROPOSITION 3.2.3. — Let (V,Ov) be a locally compact ringed space and i : T — V
the inclusion of a locally closed subspace. If Oy is a coherent ring, then i 'Oy is
also a coherent ring.

Proof. — After replacing V' by an open subset, we may assume that T is closed in V.
We have to show that if W is an open subset of V and m : i 'O, — i71Ow a
morphism, then kerm is of finite type. Since V is locally compact, given any = € T,
there exists an open subset U of V' and a compact subset K of V' such that x belongs
tod C K C W. Since K NT is compact, it follows from proposition 3.2.1 that there
exists an open neighborhood U’ of KNT in W and a morphism n : Of), — Oy whose
restriction to K NT coincides with the restriction of m. The same thing is obviously
true over Y N'T. Since Oy is coherent, the kernel of n is of finite type. Since pull
back is exact, the kernel of the restriction of m to & NT is also of finite type. And
we are done. O

PROPOSITION 3.2.4. — Let (V,Ov) be a locally compact ringed space and i : T — V
the inclusion of a closed subspace. Assume that V is countable at infinity or that T is
compact. If F is an i~ Oy -module of finite presentation, there exists an open neigh-
borhood V' of T in V' and an Oy -module of finite presentation G such that F = z‘_,,lg

Proof. — Let F be an i~'Oy-module of finite presentation. By local compactness,
for each © € T, there exists a sequence © € U C K C W with U, W open in V
and K compact and a morphism m : i7'O}, — i~'O§, with Flywnr = coker(m).
Of course, we may assume that W is Hausdorff. Since K N T is compact, it follows
from proposition 3.2.1 that there exists an open neighborhood U’ of K N'T in V and
a morphism n : O}, — O;,, whose restriction to K N7T" coincides with the restriction
of m. Let G’ := cokern. We may replace U with & NU’ in order to have U C U’. If
we set G := Gj;/, we have i™'G = Funr-

Thus, if we assume that 7' is compact, we can find a finite open covering {Ux}7_;
of T in V, and for each k an Oy, module of finite presentation Gi such that
iT1GL = Flu,nr- More precisely, there exists for each k an open subset U, of V' with
U, C U], a compact subset Kj of V with K NT C U}, and a finitely presented
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module Q,’~C on Z/{,fC whose restriction to K NT coincides with the restriction of F. In
particular, the restrictions of G; and G, to K N K, N T coincide. It follows from
Corollary 3.2.2 that there exists an open neighborhood U} , of Ky N Ky, NT in V
such that (g,;)wj = (gé)‘u];l. Now, since there are only a finite number of them,
we may shrink each U, in order to have U; NU; C U, for each pair (k,£). We
can then, for each k, replace Uy, by Uy N U, and still get a covering of 7. We have
(Gr) v, = (Ge)uru, for each pair (k,£). It follows that the Gy glue together in
order to give a finitely presented Oy -module G such that F = i‘_/,lg.

We now consider the second case, namely we assume that V' is countable at infinity.
In other words, we assume that V' is an increasing union of compact subsets K,,,n € N.
Since T'N K, is compact in K, for each n € N, it follows from the first case that the
restriction of our finitely presented i ~! Oy -module F to K,NT extends to some finitely
presented module G,, on some open neighborhood V,, of K,, C T in V. By induction,
we may assume that V,, C V,,41 and, using Corollary 3.2.2 again, that G, v, = Gn
so that they glue in order to give a finitely presented module G on V' = |JV,. O

If Oy is a sheaf of rings on some topological space V, we write Coh(Oy ) for the
category of coherent Oy -modules on V.

COROLLARY 3.2.5. — Let (V,0v) be a locally compact ringed space with Oy coher-
ent. Leti:T < V be the inclusion of a closed subspace. Assume that V is countable
at infinity or that V is Hausdorff and T compact. Then, the restriction functors
Coh(Oy+) — Coh(i~tOv) where V' runs trough all inclusions of open neighborhoods
of T in V induce an equivalence of categories

hﬂ COh(Ov/) ~ COh(i_lov).

Proof. — Using the previous proposition, this is an immediate consequence of propo-
sition 3.2.1. O

We will now apply these results to our overconvergent varieties. Such an object
is made of a locally closed immersion X < P of an algebraic variety into a formal
scheme and a morphism A : V — Pk of analytic varieties. We are mainly interested
in the inclusion of the tube

We have the first fundamental result:

PROPOSITION 3.2.6. — If (X, V) is an overconvergent variety, then i)_(lOV s a co-
herent ring.

Proof. — Since an analytic variety is locally compact, this is a direct application of
proposition 3.2.3. O
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In order to study coherent modules, we need to introduce now some topological
properties of overconvergent varieties.

DEFINITION 3.2.7. — An overconvergent variety (X, V') is said to be
1) paracompact (resp. countable at infinity), if there exists a neighborhood V' of X
in V' which is paracompact (resp. countable at infinity) with | X[, closed in V.
2) Hausdorff (resp. compact) if there exists a neighborhood V' of X in V which is
Hausdorff (resp. compact).
We will need the notion of closed tube of radius n < 1 with n € y/|K*| for a given
overconvergent variety X < P < V. When P = Spf(A) and

X:={zeP;Vie{l,...,r}, filz) =0, 3j € {1,...,s}, gj(z) #0},
we have
Xlvy={zeV;Vvie{l,...;r}, |fi(A@))] <n, Fj €{1,...5}, l[g;(Mx))| = 1}.
This is not independent of the description of X but these closed tubes glue for n close
to 1 when (X, V) is compact (see proposition 2.3.2 of [23] for the rigid analog).

PROPOSITION 3.2.8. — Any compact overconvergent variety is countable at infinity.

Proof. — We may assume that V itself is compact. We have ] X[, closed in | X[,

and ]X[,, open in V. It is therefore sufficient to remark that the tube | X[, is the

increasing union of the closed tubes [X ]y, that these closed tubes are closed subsets
of V', which is compact, and are therefore compact themselves. Of course, there exists
a countable cofinal subfamily. O

COROLLARY 3.2.9. — 1) If X C P is a formal embedding with X quasi-compact,
the associated overconvergent variety (X, Px) is countable at infinity.

2) Locally, any overconvergent variety (X,V) is countable at infinity.

Proof. — For the first assertion, we may replace P with a quasi-compact neighbor-
hood of X and assume that P itself is quasi-compact in which case, Px is compact.
For the second one, it is sufficient to use the fact that V is locally compact. O

The next step consists in applying the results of corollary 3.2.5.

PROPOSITION 3.2.10. — If (X, V) is an overconvergent variety which is countable at
infinity, we have an equivalence of categories

lim Coh(Oy) = Coh(iy'Ov)
when V' runs trough all inclusions of open neighborhoods of X in V.

Proof. — This is a particular case of corollary 3.2.5. O
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With the use of Berkovich theory, we do not really need Berthelot’s 5 construction
because strict neighborhoods are replaced with standard neighborhoods. We make
this more precise now.

LEMMA 3.2.11. — Leti: T < V be the inclusion of a closed subset into a topological
space whose points are all closed. If F is any sheaf on V', we have

hgj’*j’—lf = ix. i F,
where j' runs through all immersions of neighborhoods of T in V.

Proof. — In a topological space whose points are closed, any subset is an intersection
of open subsets. Then, the assertion easily follows by looking at the stalks. O

PROPOSITION 3.2.12. — Let (X,V) be an overconvergent variety and F any sheaf
on V. If | X[, is closed in V', we have

lim j'j ' F = ixaiy F
where j' runs through all immersions of neighborhoods of X in V.

Proof. — Use lemma 3.2.11. O

Note that the condition in the proposition is really mild because we may always
replace V with | X[, and that ] X[y, is closed in | X[y .

We consider now the functor j' of Berthelot (see proposition 5.1.2 of [23]) that we
will denote by jg: if X C P is a formal embedding, Vj a strict neighborhood of | X[,

in |X[p, and F is any sheaf on V, we set
GoF = lim o jo ' F
where jj runs through all immersions of strict neighborhoods of | X[, in V.

COROLLARY 3.2.13. — If X C P be a good formal embedding with X quasi-compact,
there is a canonical equivalence of categories

Coh(ix' Opy ) ~ Coh(jk,O1x1..)

PO

Proof. — We showed in corollary 2.3.2 that neighborhoods of ] X[, contained in | X[,
correspond essentially to strict neighborhoods. Using theorem 5.4.4 of [23] and propo-
sition 3.2.10, we are reduced to showing that if V' is a neighborhood of X in P, then

COh(Ov) ~ COh(OVO).

Since we may replace Vy by Vi on the right and assume that V' is good, this follows
from proposition 1.3.4 of [3]. O

The reader who knows about rigid cohomology should be convinced now that
i}l Oy is the correct sheaf of ring that we should study now.
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3.3. Crystals

We introduce now the ring of overconvergent function as well as the notion of
overconvergent crystal.

PROPOSITION 3.3.1. — Any morphism (f,u) : (X', V') = (X, V) of overconvergent
varieties induces a morphism of ringed spaces

(0 W) : (X Ty 150 0vr) — (IXTy 5 Ov).
and we have for all i;(l(’)v -modules F,
fLF = ixiutix, F.
Proof. — Pulling back by ix- the canonical map u= 'Oy — Oy gives
LN Ov = ixtutOy — ixi Oy
and we get a morphism of ringed spaces as asserted. If F is a sheaf on | X[;,, we have
VFIF = 1f1 it F = igru Yixa F.

Thus, if Fis a i)}l(’)v—module, we see that
LF =i 0v ®, 1,010, ixiu tix.F
= Z)_(}(OV/ Qu-10y uilix*}—) = Z)_(}’LL*ZX*}— O
Actually, in practice, we will often write u' and w, instead of |f [L and |f[,,. On
the other hand, when v = Idy, we will write ]f[;f, and |f[y,.

For further use, note the following:

COROLLARY 3.3.2. — Let (X, V) be an overconvergent variety, F a i;(l(’)v—module
and oY — X the inclusion of a subvariety, then

Jo[y F = Jaf,' F.
Proof. — We have
Jafl, F = ixtix.F = lafy ixtix.F = |af, ' F. O

The next result also follows from the proposition:

COROLLARY 3.3.3. — The presheaf of rings

O+ (X, V) == D (IXy,ix'Ov)
is a sheaf on An'(V). O
DEFINITION 3.3.4. — The sheaf (’)L is the sheaf of overconvergent functions. If T is

an overconvergent presheaf, the restriction (91} of (’)L to An' (T) is the sheaf of over-

convergent functions on 7. An (’);-module will be called an overconvergent module
onT.
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The realization of (’)L on some overconvergent variety (X,V) is just i)_(l(’)v by
definition. Note also that if f : T/ — T is a morphism of analytic presheaves, we have
-1t _ i
JantOr = Or.

If E is an overconvergent module on (X, V), then Fy is a iy'Oy-module and for all
morphisms
(fyu): (X', V') — (X,V),

the morphism ¢, : ]f[;lEv — Ey: on | X[, extends to a i}}(’)v,—linear map
QSLE : ]f[LEV — EV/.

PROPOSITION 3.3.5. — Let (X, V) be an overconvergent variety. Then,

1) There is a canonical morphism of ringed spaces
(¢xveoxva) : (Anf(X, V)’OIX,V)) — (1X[yix'Ov).

2) If F is any iy Ovy-module and (f,u) : (X',V') — (X,V) is any morphism,
then the realization of p% F on (X', V') is ]f[L]-'

3) If E is an overconvergent module on (X,V), then the realization of the ad-
junction map O v ox v« — E along some (f,u) : (X', V') — (X, V) is the
transition map

QSLE : ]f[LEV — EV"
Proof. — We know that

i;{lov = SDXvV*OzX,V)'
By adjunction, we obtain a map

-1 -1 T
Pxvix Ov — Oix vy

and the first assertion formally follows. By definition, we will have
* —1
ex v F = Olxv) Coxtvixtov Px v

Since realization on (X', V') is the the pull-back by ¢ x- v, it commutes with tensor
products and we see that

* e —1
(QDX’V.F)X’,V’ = ZX:}OV’ ®]f[;17/)_(10v ]f[u f: ]f[Lf
The case F = Ey gives the last result. O

ProrosIiTION 3.3.6. — If T is an overconvergent presheaf, the category of overcon-
vergent modules on T is equivalent to the following category:

1) An object is a collection of iy'Oy-modules Ex,y on |X|[, for each (X,V)
mn AnT(T) and i)}}(’)v/-lmear maps (b}uE : ]f[TuEXy — Ex/ v+ for each mor-
phism

(fou) : (X V') — (X, V)
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of overconvergent varieties over T, satisfying the usual cocycle conditions and
such that (Ex v )y, = Ex v whenever V' is an open subset of V.

2) A morphism is a collection of iy Oy -linear maps Exy — E y, compatible
with the morphisms ¢}u

Proof. — As usual. O

DEFINITION 3.3.7. — Let T be an overconvergent presheaf. An overconvergent mod-
ule E on T is an overconvergent crystal if all the transition maps ¢}u g are isomor-
phisms.

We denote this full subcategory by Crys'(T'). Note that an overconvergent module
E on T is a crystal if and only if for all (X, V) € An'(T), E/(x,v) is an overconvergent
crystal on (X, V). It is actually sufficient to check it for some covering {(X;, V;)}ier
of T.
We should also remark that any morphism of analytic presheaves f : T/ — T
provides a functor
Fuki  Crysl(T7) — Crys'(T).

PROPOSITION 3.3.8. — If (X,V) is an overconvergent variety, the functors Yx v
and px v« nduce an equivalence of categories between CrysT (X, V) and the category
of ix' Ov-modules on 1X[,,. In particular, Crys' (X, V) is an abelian category with
tensor product, internal hom and enough injectives.

Proof. — Tt follows from the second assertion of proposition 3.3.5 that if F is any
i Oy-module, then ¢ v F is a crystal and the adjunction map ox v.¢ v F — Fis
bijective. If E is an overconvergent crystal on (X, V'), we know from the last assertion
of proposition 3.3.5 that the realization of the adjunction map ¢% ypxv«E — E
along any (f,u) : (X, V') — (X,V) is the transition map QSLE : ]f[LEV — By,
which is by hypothesis, an isomorphism. It follows that this adjunction map is also
an isomorphism. O

COROLLARY 3.3.9. — IfT is an overconvergent presheaf, the category CrysT (T) is an
additive subcategory of the category of overconvergent modules which is stable under
cokernel, extensions and tensor product.

Proof. — We may clearly assume that 7' = (X, V) in which case everything follows
from the right exactness of % ;, on the category of overconvergent modules. O

ProproOSITION 3.3.10. — Let T be an overconvergent presheaf. If E is an overconver-
gent crystal on T and E’ is any overconvergent module, then for each overconvergent
variety (X, V) over T, we have

HOIIIOTT (E, EI)X,V = Homi}lov (Ex7v, E_/X,V)'
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Proof. — It is again sufficient to consider the case T' = (X, V). Then, our assertion
formally follows from proposition 3.3.8. Namely, we have

Homyt (B, E')xyv = exv«Homyt  (pk yeox,v«E, E')
(xX,V) (X,V)

= Hom«px,w(?;xm (px.v«E, ox, v+ E') = Hom, -1, (Ex,v, Exv). O

At this point, we need to introduce some finiteness conditions.
ProOPOSITION 3.3.11. — Let T be an overconvergent presheaf. An overconvergent
module E on T is finitely presented if and only if it is a crystal and for all over-
convergent varieties (X, V) over T, Ex v is a coherent i)_(l(’)v—module, Moreover, E

is locally free of rank v if and only if for all (X,V) over T, Ex v is a locally free
i;(l(’)v -module of rank r.

Proof. — The question being local on An'(T"), we may assume that 7' = (X, V). Then,
since both px v and ¢ ;- are additive and right exact, our assertions follow directly
from the fact that O;’V is a crystal. O

If T is an overconvergent presheaf, we will denote by Mod;rp (T') the category of over-

convergent modules of finite presentation on 7. It is a full subcategory of CrysT(T).

PROPOSITION 3.3.12. — Let T be an overconvergent presheaf. If E,E' € Modgp(T),
then
/ T
HomOTT (E, E') € Mody,(T).

In particular, it is a crystal.
Proof. — If (f,u) : (X', V') = (X, V) is a morphism over T, we have
]f[L’HOInO; (E, E/)X,V — ]f[LHomi;OV (EX,V7 E;(7V)'
Since Ex v is coherent, we have
]f[LHomi;cloV (Exv,Exy)= Homig}ov (f[L Exv, ]f[TuES(,V)'
Since we are dealing with crystals, we have
Homi;}ov (]f[LEX,V, ]f[LE_/X,V) = ’Homl;{} Ov (EX/,V/, E;(/,V/)'
And we get
/[l Homy (B, E')xy = Homey (E.E)x v O
We will finish this section with the study of immersions of algebraic varieties. We

need some preliminary results and we start with the following elementary lemma.

LEMMA 3.3.13. — Leti: T < V be the inclusion of a closed subspace in a topological
space, A a sheaf of rings on V, and F and G two A-modules. Then

i (FOAG) =ii ' F®4G.
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Proof. — Stalks are identical on both sides. O

The following lemma is analogous to proposition 2.1.4 of [10] (see also proposition
5.3.8 of [23]).

LEMMA 3.3.14. — Let (f,u) : (X, V') — (X, V) be a morphism of overconvergent
varieties. Assume that | X[y, is closed in V and that u='(]X[;,) = |X'[y,,. Let us
write i : | X[, = V and i’ : | X'[\,, <= V' for the inclusion maps. Then, if F is any
Oy -module, we have

i F il Tt F
In particular, if F is a i}lOV—module, we have

wi F =i ] f[LF.

U

Proof. — Using the previous lemma, our statement is a formal consequence of the
fact that, with our hypothesis (a cartesian square with a closed embedding), we have
for any sheaf, u=1i, F =i u=1F. O

PROPOSITION 3.3.15. — Let (C, O) be an overconvergent variety and o : Y — X an
open immersion over C. If E is an overconvergent crystal on Y /O then aan.E is an
overconvergent crystal on X/O. In other words, aan. induces a functor

@ans : Crys' (Y/0) — Crys'(X/0).
Proof. — We are given an overconvergent crystal F on Y/O, and a morphism (f,u) =
(X', V') = (U,V) in An'(X/0). We want to show that
1 (@A B)v = (canE)v.

We call Y’ the pull-back of Y in X', and denote by o : Y/ < X’ the inclusion map.
Using proposition 3.1.11, our formula can be rewritten

£ Jaly. Byavy = 10/ [y By v,
It is clearly sufficient to do the case U = X. If g : Y/ — Y denotes the map induced
by f, we have By v = | g[LEyy. We are thus reduced to show that

1£1L o Jaly, = 1o/[y, o Jgll.

In other words, we want a base change isomorphism for the commutative diagram

with cartesian left square:

Y[, L 1X[ Xy

]g[l ]f[l Ul
v, —2 X[, —= v

We may assume that our morphism is formal and split the verification in two parts
using proposition 2.3.4.
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So we assume first that u = Idy. We simply have here |f[' = ][ and Jg[' =
Jg[~". Thus, we are reduced to check that

Jf[ el =lal, o9

which follows from the fact that Y[y, is closed in | X[, (and the diagram is cartesian).

We assume now that P/ = P and f = Idy, in which case, also g = Idy. Shrinking
V and V' if necessary, we may also assume that |X[,, and |X[;, are closed in V'
and V'. Moreover, since ix is fully faithful, it is sufficient to prove that

ixe 0 Jldx[, o Jafy, = ix. o ][y, o [ldy[].
We are in the situation of applying lemma 3.3.14 both to X and Y. On the left hand
side, we get
ix o Jldx[! o laly, = u* oixs o Jaly, = u” 0iy.

and on the right hand side, we get

iX* 9 ]O/[V’* o ]Idy[Tu = iy/* 9 ]Idy[Tu =u*o iy*. O

3.4. Stratifications

We fix an overconvergent variety (C' C S <— O) over V. We will use the notion of
stratification as a bridge between crystals and modules with integrable connection.
The first point is to relate overconvergent stratifications to usual stratification (analo-
gous to HPD stratification versus usual stratification in crystalline cohomology). We
do this here.

Note that if (X C P < V) is an overconvergent variety over (C' C S - O), then
(X, V) xx/0(X,V) is representable by (X C Px P +- V xo V). When the structural
morphism is a formal morphism of overconvergent varieties, we may (and will) replace
P x P with P xg P.

DEFINITION 3.4.1. — Let (X, V) be an overconvergent variety over (C,0). We write
V2:=V x0o V and denote p1,ps2 : (X,V?) — (X, V). the projections.
> An overconvergent stratification on a i)}l(’)v -module F is an isomorphism
€: pg}' ~ p?[]—'
on | X[y, called the Taylor isomorphism of E, satisfying the usual cocycle condition
on triple products.

> A morphism of overconvergent stratified modules is a morphism of i}l(’)v-
modules compatible with the data.

We denote this category by Strat! (X, V/0). We will also set:
HI(F) =ker [eopy! —prt  p)x [, «F = D)x[2xP 1 F)

where pyx, | X[y = |C[p and p)x(,, : |X[y2 = ]C[, denote the projections.
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LEMMA 3.4.2. — If (f,u) : (X",V') = (X,V) is a morphism of overconvergent va-
rieties with w universally flat in a neighborhood of X' in V', then ]f[L is exact.

Proof. — Our assumption implies that, shrinking V and V" if necessary, the morphism
u~ 'Oy — Oy is flat. Pulling back by i)_(}, we see that

—1 .- L — L
£l i Oy =ixiu™ Oy — iy Oy
is also flat. And this is what we want. O

PROPOSITION 3.4.3. — Let (X, V) be an overconvergent variety over (C,0). Then,
the category StratT(X ,V/O) is an additive category with cokernels and the forgetful
functor from Strat’(X,V/O) to the category of ix' Oy -modules is right exact and
faithful. Moreover, if V' is universally flat in a neighborhood of X over O, then
Strat (X,V/O) is even an abelian category and the forgetful functor is exact.

Proof. — 1t is clear that we have an additive category and that the forgetful functor
is faithful. We will show, when V is universally flat over O, the existence of a stratifi-
cation on the kernel of a morphism of overconvergent stratified modules m : F — G,
and also that this new structure turns ker m into a kernel in the category of overcon-
vergent stratified modules. The analogous result for cokernels is shown exactly in the
same way (without the flatness assumption).

If V is universally flat over O, the projections p; and p, are universally flat. It
follows from the lemma that pJ{ and p; are exact. Thus, we see that the Taylor
isomorphisms induce an isomorphism pg(ker m) =~ pJ{(ker m) which is obviously a
stratification on ker m. Clearly, if the image of a morphism of overconvergent stratified
modules G — F is contained in ker m, the induced map G — ker m is compatible with
the stratifications. O

We will need an infinitesimal version of this notion of overconvergent stratification.
We want first to recall some notions concerning analytic varieties over K. If W is a
fixed analytic variety over K and V an analytic variety over W, we will write V(™)
for the n-th infinitesimal neighborhood of V' in V' xy V and pgn),pén) VO SV for
the projections. By definition, there is an exact sequence

0= Qyw — Oy — Oy = 0.

We can define stratifications, modules with (integrable) connection (and the sheaf of
differential operators Dy y) as usual. Everything behaves as expected.
If (X C P+ V) e An'(C,0), we may consider

(X CPx P« V™)eAn'(C,0).

DEFINITION 3.4.4. — Let (X,V) € An'(C,0). A stratification on a iy' Oy -module
F is a compatible sequence of Taylor isomorphisms

{e(n) :pén)TF = pgn)'rf}neN

MEMOIRES DE LA SMF 127



3.4. STRATIFICATIONS 59

that satisfy the cocycle condition on triple products (and €®) = Idz). A morphism of
stratified modules is a morphism of i)}l(’)v—modules that is compatible with the data.

For each n € N, we will write

HO(F) = ker (e 0 (05) ™) = (01") 7 £ pyxty o F = pxly 2t F]-

DEFINITION 3.4.5. — Let (X,V) € An'(C,0). A connection on a ix' Oy -module F
is an Op-linear map
: 101
V:iF— ]:®i;(10‘, ix Q0
satisfying the Leibnitz rule. A horizontal map is a i;(l(’)v—linear map compatible with

the connections. Integrability is defined in the usual way.

Stratified i ' Ov-modules form a category Strat(X, V/O) and iy Oy-modules with
integrable connection make a category MIC(X,V/O). As usual, there is an obvious
forgetful functor Strat(X,V/O) — MIC(X, V/O) sending {¢™},cn to the morphism

V=(Wom) ) =) i F— Foe, ix' 0 <P
When CharK = 0 and V' is smooth in the neighborhood of ] X[y, it is not hard to see
that we get an equivalence

Strat(X,V/0) ~ MIC(X,V/O)
and that H (") (F) is independent of n, for n > 0; and canonically isomorphic to FV=0.

We can do better with some finiteness conditions. In general, if 7 and G are two
i Oy-modules with integrable connections with F coherent, then Hom; 10, (F,9)
has a natural integrable connection given by

V(m)(z) = V(m(z)) — (m ®1d)(z).
Moreover, we have

F(]X[V, HOmi;{IOV (]:, g)vzo) = HomMIC(X,V/O) (]:, g)

In the same way, if F and G are stratified i)_(l(’)v—modules with F coherent, then
Hom,-1, (F,G) has a natural stratification and we have
X

lim (X [y, H™ (Hom, 14, (F,G))) = Homsura(x,v/0) (F, G)-
Moreover, the canonical functor
Strat(X, V/0O) — MIC(X,V/O)
is compatible with these constructions.
We now come back to overconvergent stratifications: by restriction, there is an

obvious functor
Strat’ (X, V/O) — Strat(X,V/0)
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and a compatible family of canonical maps H(F) — H(F). Assume that F
and G are two overconvergent stratified i)}l(’)v—modules with F coherent. Then
Hom, -1, (F,G) has a natural overconvergent stratification and

X

L(1X [y, 1 (Hom 10, (F,G))) = Homgyrart (x v7s) (F, G).
Again, the canonical functor
Strat!(X,V/O) — Strat(X,V/0)
is compatible with these constructions. Finally, by composition, we have
Strat'(X,V/O) — Strat(X,V/O) — MIC(X,V/O)
and we will denote by MICT(X, V/O) the full subcategory generated by the image of

this functor.

DEFINITION 3.4.6. — Let (X, V) be an overconvergent variety over (C,0). If
(F,V) € MIC"(X,V/0),
we say that the connection is overconvergent.

In the next proposition, we will need to localize with respect to the Grothendieck
topology of an analytic variety V. Recall that there exists a canonical morphism
my : Vg — V of ringed spaces. By functoriality, if ¢ : T < V is the inclusion of an
analytic domain and F a sheaf on V', then

O(T,i"'F) = I(T, ;' F).

If 7 is an Oy-module, it is common to write Fg = 7{,F. Recall also that, when V is
good, we get an equivalence on coherent sheaves: Coh(Oy ) ~ Coh(QOy,,).

PRrROPOSITION 3.4.7. — If V is a good analytic variety and F is a coherent sheaf
on V', then the canonical map 71";1.7: — Fa is injective.

Proof. — 1t is sufficient to show that if W is an affinoid domain inside V', the canonical
map

L(W, ' F) — T(W, Fa)
is injective. By definition, we have

(W, ny ' F) = lim T(U, F)

wcuU

where U runs through analytic open subsets of V that contain W. It is therefore
sufficient to prove that if U is an open neighborhood of W in V' and s € I'(U, F) is
sent to 0 € T'(W, Fg), then there exists an open neighborhood U’ of W in V such
that s;» = 0. Of course, this will follow if we show that for each x € W, the stalk of
s at x is zero. But if we denote by Fy the coherent sheaf on W induced by F (i.e.
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Fw = mw«(Fa)w), the image of s in the stalk of Fy at x is zero. It is therefore
sufficient to check that the map

Fo — Fwaz
is injective. Since V' is good, we may assume that V and W are both affinoid with
A :=T(V,0y) and M :=T'(V,F). And we want to show that the following map is
injective:
Ove®a M — Ow,e ®a M.

This is an immediate consequence of the flatness of the inclusion map W — V. 0O

PROPOSITION 3.4.8. — Let

be a formal morphism of overconvergent varieties with f quasi-compact, v smooth
at X, O locally separated and V' a good neighborhood of X in Pk Xs, O. If F is a
coherent overconvergent stratified module on (X,V)/O, then

HI(F) = lim 1 (F).

Proof. — We start with a topological reduction. The question being local on O which
is locally compact, we may assume that the image of the canonical map O — Sk is
relatively compact. It is then contained in some S} where S’ is a quasi-compact
formal scheme. Since the morphism f : X — C' is assumed to be quasi-compact we
see that X’ := X x g8’ is quasi-compact and so is its closure X’ in P. In particular,
we can find a quasi-compact open neighborhood P’ of X’ in P. By construction, P
is a compact neighborhood of X in Px xg, O. It follows from proposition 3.2.8 that
the overconvergent variety (X, V) is countable at infinity.

We denote by p : | X[y — 1X[, and p{™ : ] X[, — ]X[, the first projections.
In order to lighten the notations, we will identify the underlying spaces of | X[ ()
and ] X[,. In particular, p§2> becomes the identity. By definition, it is sufficient to
show that the natural map

PIXy2/0:PiF — limpyx( ) j0epi" F
is injective. It is even sufficient to check that the canonical map
prp|F — limp{”F
is injective. Since (X, V') is countable at infinity, we can use proposition 3.2.10. Thus,
shrinking V' if necessary, it is therefore sufficient to consider sheaves of the form i ~1F

where F is a coherent module on V' of and i : ] X[, < V denotes the inclusion map.
In this situation, we want to show that the map

prei ' piF — lim i p{F
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is injective where the map i on the left hand side denotes the inclusion | X[, < V2

and the maps p; and pgn) now denote the first projections V2 — V and V(™ — V.

We want to use the Grothendieck topology but we need to be very careful because
| X[, might not be good. First of all, since V' is good, F extends uniquely to a
coherent sheaf F¢ = mi, F for the Grothendieck topology of V. Moreover, since O
is locally separated and V is good, then V?2 also is good. If W is an analytic open
subset of ] X[/, since V2 is good and p}Fg coherent, it follows from proposition 3.4.7
that there is a natural injective map

D(W,pri™ 'piF) =T (py (W), i 'piF)

=T (p1 (W), mp2pi F) = T(pr (W), 70pi F)

=T (W, prupimy F) = T(W, prapiFa).
For the same reason, we also have an injection

r(w, lim i_lpgn)*]:) — (W, @pgn)*fc) .
It is therefore sufficient to show that the morphism
p1P1FG — @pg’L)*fG

is injective. Now the question is local for the Grothendieck topology on | X[, . It is
therefore also local on P and we may assume that P is affine, that X is closed in P,
and that we have local coordinates t1,...,t,. They induce local coordinates 7, ..., 7,
on P xg P with respect to the first projection p;. Using Lemma 4.4 of [6], we get an
isomorphism

X[y =~ [ X[y xx B"(0,17).
and we may use lemma 3.4.9 below. O

LEMMA 3.4.9. — Let V be a good analytic variety and B any non trivial polydisc
(open or closed) with coordinates t1,...,t,. Denote the projections by

p:VxgB-—V and p™:V xxg M(K[t]/(t)") — V.
If F is a coherent Oy -module, the canonical map
p«p  F — lim p\"™"* F
o
18 1njective.
Proof. — Since we work with coherent sheaves and good analytic varieties, we may
freely use the Grothendieck topology. Taking inverse limits, it is sufficient to consider

the case of a closed polydisc. We may even assume that it has radius 1. Moreover, it
is sufficient to check that, when V is affinoid, the map

LV, pp* F) — F(V,%np F)
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is injective. If we let A := I'(V,Oy) and M := I'(V,F), this map is the canonical
map

M @4 A{t} — M @4 A[[t]].

By induction on the number of generators of M, we may assume that M is a quotient
of A. Tt is therefore an affinoid algebra and we are reduced to the case M = A which
is part of the definition of the ring of convergent power series. O

COROLLARY 3.4.10. — With the assumptions and notations of the proposition, the
canonical functor

Strat’ (X, V/O) — Strat(X,V/0)

18 fully faithful on coherent modules.

Proof. — Follows from the above description of morphisms in both categories. O

3.5. Crystals and connections

We fix an overconvergent variety (C C S < O). Then, the results of the first
chapter and the previous section, will allow us to prove that overconvergent modules
of finite presentation do correspond to modules with an overconvergent integrable
connection on a geometric realization.

Recall that if (X, V) is an overconvergent variety over (C, O), we defined the over-
convergent presheaf Xy /O as the image of (X, V) in X/O. We may therefore consider
the category An'(Xy /O) of overconvergent varieties over (C,0) that factors through
a specific X’ — X and through a possible V' — V.

LEMMA 3.5.1. — Let f: X' — X be a morphism of varieties over C that extends in
two ways to morphisms of overconvergent varieties over (C,0):

(fyur): (X, V) — (X,V) and (f,u2): (X, V') — (X,V).
If E is an overconvergent crystal on Xy /O, there is a canonical isomorphism
€y : ugEV ~ uJ{EV.
Proof. — Just take ey := ¢, o (¢l )7 ub By ~ By, ~ ulEy. O

Recall that we introduced in definition 3.1.7, for an overconvergent presheaf T' over
an overconvergent variety (C, O), the projection pr : Tyt — |C|,.

LEMMA 3.5.2. — Let (X, V) be an overconvergent variety over (C,0). If O’ is an
open subset of O and V' its inverse image inside V , then

L(]Clorspxy 0+ E) =T(Xy: /O, E).
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Proof. — By definition, px, o is the composition of the restriction map induced
by the morphism of overconvergent presheaves Xy /O — (C,0) and the canonical
morphism An'(C,0) — ]C[,. Inverse image of ]C[,, through the later is simply
(C,0") and inverse image of (C,0’) through the former is Xy//O’ as we saw in

proposition 2.4.16. O
PROPOSITION 3.5.3. — Let (X, V) be an overconvergent variety over (C,0). Then,
the functor

Crys' (Xv/0) — Strat! (X, V/0), E+— (F,e)

with F := By and € : p%EV ~ pIEV 18 an equivalence of categories. Moreover, we
have

Pxy 0. E =~ HI(F).

Proof. — Let (F,¢€) be an overconvergent stratified module. If (f,u) : (X', V') —
(X,V) is a morphism in Anf(C,0), we set Ey := u!F. This seems to depend on u
but if we are given two such morphisms

(fyur) : (X, V) — (X,V) and (f,u2): (X, V') — (X,V),

we can consider the diagonal morphism (f,u) : (X’, V') — (X, V?). Pulling back the
Taylor isomorphism gives a canonical isomorphism ug}' ~ uJ{}' . This shows that our
definition is essentially independent of the choices. One easily checks that this gives
a quasi-inverse to our functor.

The second assertion can be deduced from the first one but we can also prove it
directly: using lemma 3.5.2, it is sufficient to show that I'(Xy /O, E) is the kernel of

copyt —prt:T()X[,, By) — F(]X[Vg,pIEV).
But we have
I'(Xv/O,E) =limI'((X",V'),E)
=D (JX’ [y, Bxrvr) = §m T ()X [y, 1 /[ Ex.y ).
Since any morphism factors through its graph, we see that

— F(]X[V%pIEV)]
— T(]X[y2,pbEv)

which is what we want. O

['(Xy /O, E) = ker [F(]X[V,EV)

COROLLARY 3.5.4. — Let (X, V) be an overconvergent variety over (C,0). The real-
ization functor to from CrysT(XV/O) to the category of i)_(l(’)v -modules is right exact
and faithful. Moreover, if V is universally flat in a neighborhood of X over O, then
CrysT(Xv /O) is even an abelian category and the realization functor is exact.

Proof. — Follows from proposition 3.4.3. O
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Note that there is a sequence of functors
Crys' (Xy /O) ~ Strat' (X, V/O) — Strat(X, V/0) — MIC(X,V/O)

whose essential image is the category MICT (X, V/O) of i Oy-modules with an over-
convergent integrable connection on X[, /O. And there is also a sequence of mor-
phisms

Pxy j0-E = H (By) — lim H™ (By) — Ey=°.

In both cases, the last arrow is bijective when CharK = 0.

PROPOSITION 3.5.5. — If (X,V) is an overconvergent variety over (C,0), then an
overconvergent module E on Xy /O is finitely presented (resp. locally free of rank r) if
and only if it is a crystal and Ey is coherent (resp. locally free of rank r). Moreover,
if V' is universally flat in the neighborhood of 1X|,, over O, then Mod}Lp(Xv/O) is an

abelian subcategory of Crys' (Xy /O).

Proof. — The first assertion follows from proposition 3.3.11 because here, if (f,u) :
(X', V') — (X,V) is any morphism of overconvergent varieties and Ey is coherent,
then By, = |f [LEV will also be coherent. The second assertion formally follows since
Coh(i)_{1 Oy ) is an abelian subcategory of the category of all i)_(l Oy-modules and that,
under the flatness condition, the realization functor is exact and faithful. O

Note also that if E,E’ are two overconvergent modules of finite presentation
on Xy /O, then the overconvergent stratified module associated to Hom 1 (E, E)
. Xy /O
is

Homi;OV (EX,V7 ES(7V).

PROPOSITION 3.5.6. — Assume CharK = 0. Let
X ——P<+—V

o

C —— S«~—0

be a formal morphism of overconvergent varieties with f quasi-compact, v smooth at X,
O locally separated and V' a good neighborhood of X in Px xg, O. Then,

1) There is an equivalence of categories

Mod] (Xy /0) ~ MIC]

coh

(X, V/0)

between finitely presented modules on the overconvergent site of Xy over (C,0)

and coherent i;(lOV -modules with an overconvergent integrable connection
on | X[, /O.
2) If E is an overconvergent module of finite presentation on Xy /O, we have

Pxy o B = EY=.
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Proof. — Tt follows from proposition 3.5.3 that Mod;rp(XV /O) is equivalent to the cat-
egory of coherent overconvergent stratified modules and we proved in corollary 3.4.10
that, under our hypothesis, the forgetful functor to stratified modules is fully faithful.
Finally, as already mentioned after definition 3.4.5, stratified modules are equivalent
to modules with integrable connections since we assumed CharK = 0 and v smooth
in the neighborhood of X.

The second assertion may be seen as a consequence of fulfaithfulness:

Pxy /o« b = Hom((’)}wo, E) ~ Homvy (i3 O, By) = BY=". 0

Recall (see definition 2.2.5 of [10] or definition 7.2.10 and proposition 7.2.13 of [23])
that if X C P is a formal embedding, an overconvergent isocrystal on (X C X C P/S)
is a coherent J;coO] X[Po—module with an integrable connection (relative to Sk¢) whose
Taylor series converges on a strict neighborhood of the diagonal.

They form a category Isoc' (X ¢ X ¢ P/S). This is shown (corollary 7.3.12 of [23])
to be independent of P when P is smooth at X over S in which case the category is
denoted Isoc! (X ¢ X/S).

COROLLARY 3.5.7. — Assume CharK = 0 and S is separated. Let X be a quasi-
compact separated algebraic variety over Sy. Let X — P be a good formal embedding
into a formal S-scheme which is smooth at X. Then, we have a canonical equivalence
of categories

Mod] (Xp/S) ~Isoc' (X ¢ X/S).

Proof. — Tt follows from corollary 3.2.13 that Isoc'(X < X/9) is equivalent to the
category of coherent i~'Op, -modules with an integrable connection whose Taylor
series converges on a neighborhood of the diagonal. We may then apply the proposi-
tion. O

We will now apply the results of section 2.5 to crystals. If T' is an overconvergent
presheaf, we considered the good overconvergent site An;(T) made of good overcon-
vergent varieties over T'. By restriction, it becomes a ringed site and we can define
crystals in the usual way. We will denote by Crys;(T) the category of overconvergent
crystals in An;(T) and Mod;fp (T') the category of finitely presented modules on this
ringed site. Note that when T has a covering by good overconvergent varieties, we
obtain an equivalence on crystals but this is not the case in general. However, this
applies to the case when T is represented by a good overconvergent variety (X, V) or
when T' = Xy, /O if moreover, we are given a morphism (X, V) — (C,0). When this
is the case, we will remove the index “g” from the notations.
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Recall that a geometric realization of a morphism f : X’ — X is a formal morphism

of overconvergent varieties
X/ P/ V/

S

where u is proper smooth at X’ and V' is a neighborhood of X’ in P} xp, V.

PROPOSITION 3.5.8. — 1) Let (X,V) be a good overconvergent variety over
(C,0) and (X,V') — (X,V) a geometric realization of the identity. Then,
there is an equivalence of categories

Crys'(Xy/0) ~ Crys' (X /O).
2) Let (C,0) be a good overconvergent variety and (X,V) — (C,0) a geometric
realization of a morphism X — C. Then, there is an equivalence of categories

Crys; (X/0) ~ Crys' (X /O)

Proof. — The first assertion follows from corollary 2.5.12 (since the assumptions of
the theorem are satisfied) and the second one from corollary 2.5.15 (since the assump-
tions of the proposition are satisfied). O

THEOREM 3.5.9. — Assume that CharK = 0. Let (C,0) be a good overconvergent
variety and X an algebraic variety over C. If (X,V) — (C,O) is a geometric realiza-
tion of X over C, then

1) There is an equivalence of categories

Mod! , (X/0) ~ MIC!

g,fp coh (X7 V/O)

between finitely presented modules on the good overconmvergent site of X over
(C,0) and coherent i}lOV -modules with an overconvergent integrable connec-
tion on | X[, /0.

2) If E is a module of finite presentation on (X/0),, we have

pxjosE = Ey=°.
Proof. — This follows from propositions 3.5.6 and 3.5.8. O
More precisely, we have the following sequence of functors
Crys! (X/0) =~ Crys' (X /O) =~ Strat (X, V/O)
— Strat(X,V/0) ~ MIC(X,V/O)
and a sequence of isomorphisms
Px/0+E = pxy j0. B = H (Ev) >~ lm H™ (By) ~ By

(in both cases, the last arrow also is bijective because CharK = 0). O
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PROPOSITION 3.5.10. — Assume that CharK = 0 and that (C,0) is good. If X is
a realizable algebraic variety over (C,0), then Mod! . (X/O) is an abelian category.

g,fp
Moreover, if f: X' — X is morphism of realizable varieties over (C,O), then
Fani + Mod! . (X/O) — Mod] ¢ (X'/0)
18 exact.
Proof. — The first assertion results from proposition 3.5.5. For the second one, we

may choose a realization both for X and for X’. We may then use the diagonal
embedding and assume that f extends to a morphism of formal schemes which is
smooth in the neighborhood of X. In particular, it induces a universally flat morphism
on neighborhoods, and therefore an exact functor. O

Recall (corollary 8.1.9 of [23]) that if X C P is a formal embedding over S that is
proper and smooth at X, the category Isoc(X ¢ X/S) does not depend on X and
is denoted by Isoc’(X/S).

PrOPOSITION 3.5.11. — Assume CharK = 0. Let S be a good formal scheme. If X
is a realizable algebraic variety over Sy, we have a canonical equivalence of categories

Mod;fp(X/S) ~ Tsoc (X/S)
Proof. — Follows from proposition 3.5.8 and corollary 3.5.7. O
Remark. — As a corollary, we recover the fact that the category Isoc'(X/S9) is
essentially independent of the choices, which is one of the key points in rigid coho-
mology.
Last remark. — We can easily remove the realizable assumption. This is almost

a triviality if we consider definition 8.1.3 of [23] and not really more complicated if
we use the former one of Berthelot (definition 2.3.2 (iii) of [10]) and proposition 4.6.6
below.
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COHOMOLOGY

In section 3.1, we state and prove Berthelot’s strong fibration theorem using
Berkovich theory. The main ingredient (invariance of neighborhoods by a finite étale
map) is deduced from general properties of Berkovich analytic varieties. The rest of
the proof follows the original lines. These results are only used in section 3.5.

The main point in section 3.2 is a technical base change for finite quasi-immersions
that is necessary in order to pull differential operators to the crystal level in the
following section.

In section 3.3, we study differential operators on strict neighborhoods, pull them
back to differential operators at the crystal level and push them to the analytic site.
It is necessary at this point to use derived functors. Anyway, we show that the
cohomology of the derived linearization of a complex with differential operators is
captured by the cohomology of the original complex.

Section 3.4 is totally independent of the previous ones and is devoted to the com-
parison of the behavior of overconvergence for the analytic and for the Grothendieck
topology. This is necessary because the strong fibration theorem that we proved in
section 1 holds only locally for the Grothendieck topology. And we need this result
in the proof of the main theorem in the following section.

Section 3.5 contains the main results. We prove that the cohomology of an over-
convergent module of finite presentation can be computed via de Rham cohomology
and derive some consequences such as the crucial fact that this cohomology coincides
with rigid cohomology.

In section 3.6, we show that, even if the usual topology of an analytic variety is not
rich enough to recover the Zariski topology of its reduction, the cohomology of crystals
on the overconvergent site is local for the Zariski topology of X. As a consequence,
we obtain the main comparison theorem with rigid cohomology.
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4.1. The strong fibration theorem

We reprove here in the context of Berkovich theory the strong fibration theorem
of Berthelot. The strategy of the proof is exactly the same as Berthelot’s.

The following result is the key point. The classical proof is quite involved (theo-
rem 1.3.5 of [10] or theorem 3.4.12 of [23]). We see it here as an add-on to the first
part of section 2.5.

PROPOSITION 4.1.1. — Let (X C P + V) be an overconvergent variety, v : P' — P
be a morphism of embeddings of X that is finite étale at X and V' a meighborhood
of X in Py xp, V. Then, the induced morphism of overconvergent varieties is an
isomorphism

(X, V')~ (X,V).

Proof. — Shrinking V' and V' if necessary, we may assume thanks to corollary 2.5.6
that v induces an étale morphism V' — V. Moreover, it follows from proposi-
tion 2.5.7 that v induces an isomorphism |X[,, ~ ]X[,,. Now, the result follows
from lemma 4.1.2 below. O

LEMMA 4.1.2. — An étale morphism of analytic varieties V' — V that induces an
isomorphism on analytic domains T’ ~ T induces an isomorphism between open neigh-
borhoods of T' and T in V' and V respectively.

Proof. — We consider the morphism of germs of analytic varieties (V',T") — (V,T).
It is a surjective quasi-immersion in the sense of Berkovich (see [3], definition 4.3.3)
and it follows from proposition 4.3.4 of [3] that it induces an isomorphism on the
small étale topos

(V/a T/)et = (‘/7 T)et-

Since the morphism of germs is étale, it formally follows that it is an isomorphism of
germs. o

If (X C P < V) is an overconvergent variety, we may embed X in f&}é using the
zero section in order to get another formal embedding and we obtain a geometric
realization of Idx:

X <—>f&}é<—B(5

X— P +— V

The strong fibration theorem says that, locally, any geometric realization of the
identity looks like this one. Unfortunately, “locally” means with respect to the
Grothendieck (and the Zariski) topology. More precisely, we have:
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THEOREM 4.1.3 (strong fibration theorem). — If X is an algebraic variety over k,
any geometric realization (X, V') — (X, V) of Idx is locally for the Zariski topology
on X and for the Grothendieck topology on V', isomorphic to (X, BY).

Almost all the ideas in the following proof are already in Berthelot’s original
preprint [10].

Proof. — We start with a geometric realization

X ——P+—V

[

X—P+—V

It means that P’ is proper and smooth over P at X and that V' is a neighborhood
of X in Pj; xp, V.

Since the question is local for the Grothendieck topology, we may assume that V is
affinoid. Using corollary 2.3.15, we may assume that the locus at infinity of X, both
in P and in P’, is the support of a divisor. Also, being local for the Grothendieck
topology of V', the question is local for the Zariski topology of P. In particular, we
may assume that P is affine and that the locus at infinity of X in P is actually a
hypersurface. Finally, removing extra components, we may also assume that P’ is
quasi-compact.

Now, let Y = X P be the Zariski closure of X in P/. The map Y — P induced
by u is proper by hypothesis. Using corollary 2.3.14, we may therefore assume thanks
to Chow’s lemma (corollary 1.5.7.14 of [26]) that the map Y — Pj is projective. Thus,
there exists a commutative diagram

/Y<—>Pg

P, — P.

X

The closed immersion X < p~}(X) = P¥ is a section of the canonical projection
which is smooth. Since the question is local on X, we may assume that there ex-
ists an open subset U of P¥ such that X is defined in U by a regular sequence.
If X := X* denotes the Zariski closure of X in P, we may assume that U =
D*(5) N PL with s € T(PF,0(m)) for some m and that the regular sequence is
induced by t1,...,tq € T(P¥,0(n)) for some n. Then, by construction, the induced
morphism

v: P =V, . td) — P
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is finite and étale at X and lifts the map ¥ — X. We embed Y in the product
P"" := P"” xp P’ and consider the following cartesian diagram of embeddings of X:

P/ P1 P///

1

i —

Proposition 4.1.1 tells us that both horizontal arrows induce an isomorphism on the
corresponding overconvergent varieties. We may therefore replace v by ps and assume
that u induces an isomorphism on Y ~ X. The question is henceforth local on Y too.
This was the hard part.

Since the question is local on X, we may assume that the conormal sheaf N of X
in u=(X) is free. Since the question is local on Y, we can replace P’ by an affine
neighborhood of Y. We may then lift a basis of N toa sequence Si, ..., S, of elements
of the ideal of Y in P’. By construction, they induce a morphism P’ — 11’]3 of
embeddings of X which is finite étale at X. And we get as expected an isomorphism
of overconvergent varieties over (X, V') using again proposition 4.1.1. O

In order to apply this theorem, we will have to localize with respect to the Zariski
topology of X when (X,V) is an overconvergent variety. This is possible thanks to
the next result.

PROPOSITION 4.1.4. — Let (X, V) be an overconvergent variety and {Xi}rer a lo-
cally finite open covering of X with inclusion maps

ag : X — X, Oék)g:XkﬂXg;)X,
If F is an abelian sheaf on | X[, there is a long exact sequence

0~ F — [Tlaxly. larly'F — T owelyJanely ' F — -
k k,¢

Proof. — This assertion is local on V. Since the specialization map is anticontinuous,
the tubes of the irreducible components of X form an open covering of | X[;,. We may
thus assume that X is irreducible and, in particular, quasi-compact, in which case our
covering is finite. Again, since the specialization map is anticontinuous, we obtain a
finite closed covering and our sequence is simply the Mayer-Vietoris sequence for this
closed covering. O

COROLLARY 4.1.5. — Let (f,u) : (X', V') = (X, V) be a morphism of overconver-
gent varieties, F' a complex of abelian sheaves on |X'[,,, and { X }rer a locally finite
open covering of X'. Then, there is a spectral sequence

= 8 r+s
= @R ul]Xé[w*]:\/]Xfﬁ[v,* = R'"u, F.
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Proof. — Of course, we use the fact that all maps |o) [ ] X} [, — ]X'[}, are inclu-

sions of closed subsets and therefore that all |o/ [, are exact. O

4.2. Functoriality

In this section, we prove some functoriality results that are used in the next one.

Recall that if (X, V') is an overconvergent variety, there exists a morphism of ringed
toposes
(W;(,Va SDX7V*) : ((X, V)AnT ) ngy)) — (]X[Van’ i;(lov)
where @ x v« denotes the realization functor which is exact and preserves injectives.
Recall also that when (f,u) : (X',V’) — (X,V) is a morphism of overconvergent
varieties, there is a restriction map that we will denote by

UAnt * ((X/aVI)An‘HOZX/’V/)) — ((Xa V)Anfaogx’v))

rlﬁ, which has a left

which is naturally a morphism of ringed toposes. Moreover, u,

adjoint, is also exact and preserves injectives.
Realization on (X', V') of an overconvergent sheaf F defined on (X, V) is by defi-
nition
}—X’,V’ = QDX/,V/*UX}]T}—.
By composition, this is an exact functor that preserves injectives.
Finally, note that the morphism (f,u) : (X',V’) — (X,V) will also induce a
morphism of ringed toposes

(uf, ) : (]X/[V/anﬂ;)_(}OVI) - (]X[Van’i)_(lov)
and that we always have
(kv F)xr v =ulF.
(We previously used to write |f[! and ]f [« but we need to lighten the notations a

U
little bit.) There is a first elementary result:

PRrROPOSITION 4.2.1. — If(f,u) : (X', V') = (X, V) is a morphism of overconvergent
varieties and F is an i)—(,lv(’)v -module, there is a canonical isomorphism

—1 * *
uAnTQOX,V‘F: SUX/’V/UTF.

Proof. — Simply follows from functoriality: there is a commutative diagram of ringed
toposes
pxr v
X[y )an (X", V") ant
w Uant D

PxX,V

(JX[y)an ——— (X, V)ant

There is also a first easy base change theorem:
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PROPOSITION 4.2.2. — Let

(v, w) L (v w)

(g'ﬂ/)l J (9,v)

(XI,VI) (fu) (X, V)
be a cartesian diagram of overconvergent varieties. If F' is an analytic sheaf on
(X', V"), we have
(upnt« F)y,w = u,Fyrwr.
Actually, if F' is a complex of abelian sheaves, we even get
(RugntoF)yv,w = RulFy/ -
Proof. — The first assertion follows from the formal identity in any topos
_ -1
UArll‘ruAnT* = U:Anf*v/AnT
after applying ¢y, w+. For the second one, it is sufficient to recall that the realization

functors are exact and preserve injectives. O

Recall from [3], definition 4.3.3, that a finite quasi-immersion of analytic varieties
is a finite morphism which is a homeomorphism onto its image with purely insepa-
rable residue field extensions. This property is stable under composition and base
change. Projections of infinitesimal neighborhoods are non trivial examples of quasi-
immersions.

DEFINITION 4.2.3. — A morphism (f,u) : (X', V') = (X, V) of overconvergent va-
rieties is finite (resp. a finite quasi-immersion) if, after replacing V. and V' by strict
neighborhoods of X and X' respectively, we have

1) w is finite (resp. a finite quasi-immersion);
2) v (X [y) = 1X[y-

PROPOSITION 4.2.4. — Let (f,u) : (X', V') = (X, V) be a finite quasi-immersion of
overconvergent varieties and F' an i;(}(’)v/—module. Then the adjunction map

* ! * !
Ox v UusF = upnt X v F
is an isomorphism. Moreover, we have

Riu, F' =0 and Riup,t.x n F =0 for ¢>0.

There should be an analogous result for finite morphisms and coherent sheaves but
we will not need it.
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Proof. — Of course, we choose V' and V' such that (f,u) satisfies the conditions of
definition 4.2.3. Let (g,v) : (Y, W) — (X, V) be any morphism of overconvergent vari-
eties, (¢',v") : (Y, W') — (X', V') the pull-back along (f,u), and (f',v) : (Y, W') —
(Y, W) the corresponding map. We are in the situation of proposition 4.2.2 and it
follow that

(Rupnt 0% v F )yv,w = Rul (% v F )y wr
In particular, in order to prove the last assertion, it is actually sufficient to show that
Riu,F' =0 for ¢>0

and then apply it to v/ and (@},y,}' "Yy+ w- (finite quasi-immersions are preserved
under base change).

We also have to show that we always have
D((Y, W), ok yunF') = T((Y, W), ul (0 v F v wn )
And this means that
(Yl vl wnF) = DY [y o’ F)

with the cartesian diagram

X'y ———— X[y
We are therefore reduced to checking that on Y[, one has
vt F el T F

Of course, it is sufficient to consider sheaves of the form i)_(}}" . Thus, changing
notations, we want to show that, if 7’ is an Oy -module, we have

v d B F ~ ot F o and RouyiplF =0 forg >0
with the cartesian diagram
W W
vV —2 V.

Since the map w is just the inclusion of a closed subset (it is a finite homeomorphism),
it follows from the second condition of definition 4.2.3 that the cohomology vanishes
and that u.iy F' =iy u.F'. By definition, we obtain

UTu*i}}}" = vTi;{lu*}" = i{,lv*u*]—".
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For the same reasons, since we always have v'Ti)_(}}" =iy v F, we get
w Vi F = ulig o F =iy o
It is therefore sufficient to show that on W one has
v uF =l F
This can be checked on each fiber. If z € W is not in the image of W', then v(z) is
not in the image of V’ and both sides vanish. If x € W’, then
(VU F ) (2) = Owwr (2) @O,y 0y (U ) ()
= Ow.u'(z) ®Oy 400y (UsF )ur ()
= Ow.u'(z) ®Oy 0y For ()
At last, we use the fact that « is finite to obtain
u;v’*f;,(gg) =W F)e = Owr s ®ROy1 oy i
= (Ow,u'(2) ®Oy.p 10y OVior (@) @041 iy Fa
= Ow (@) B0y iy For(a)- 0

4.3. Differential operators

We introduce in this section the notions of differential operator and derived lin-
earization of a complex of differential operators in our context. Then, we apply the
theory to the de Rham complex.

We fix a morphism (X, V) — (C, O) of overconvergent varieties.

As we already did, we will consider the infinitesimal neighborhood of order n of V'
which is the analytic subvariety V(™ defined by Z"t! if V is defined by Zin V xo V.
The diagonal embedding and the projections

0:Ve—aVxpoV and p;:VxoV —V
induce morphisms
5V s V™ and p™ v v

From p; o 6 = Idy, we deduce that pgn) and pén) are identical as continuous maps

(both are inverse to the homeomorphism §(™). Actually, if we use () to identify
the underlying topological spaces of V(") and V, then pl(.") becomes the identity as
continuous maps both for i = 1 and 4 = 2 so that pg:) = pgz). Of course, the
projections act differently on sections so that pg")* #* pgn)*.

We will embed (X, V) into (X, V() using 6(™ and consider also the projection
maps pgn) (X, V(™) — (X,V). All these maps do nothing on the underlying topo-

logical spaces and only play a role on sections.
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DEFINITION 4.3.1. — An ial(’)o-lmear morphism d : F — G between two i)_(l(’)v-
modules is a differential operator (of order at most n) if it factors as

(n)« -
d: F 2 plp T = p{p T F 6

where d is i)}l(’)v-linear

Note that the equality sign is not linear: the abelian sheaves are the same but they
carry different z';(lOV—module structures. Note also that d is unique: locally, we have

d(f ®g@m) = fdgm).

The composition of two differential operators is a differential operator. More precisely,
ifd: F = Gand d : G — H are two differential operators of order at most n and m
respectively, then d’ o d is a differential operator of order at most m + n and

dod=d opém)T(a).

We will mainly be concerned with differential operators of order at most 1: it just
means that, locally, we have

d(fgm) + fgd(m) = fd(gm) + gd(fm).

The standard example of differential operators of order at most 1 is given by the
differentials in a de Rham complex

'71 L]
F®i)_<10v ZX QV/O
when F is an i ' Oy-module with an integrable connection.

We can extend this notion of differential operator to overconvergent modules as
follows:

DEFINITION 4.3.2. — An (’)Zc O)—linear morphism d : E — E’ between two ng V)"
modules is a differential operator (of order at most n) if it factors as the composite
of two ng V)—linear morphisms

(n)
Poant (n) (n)~*

1 F
E DPoant«Poant b= pgz)nT*pg;)nT E E

Of course, here again, the equality sign in this definition is not linear.
PROPOSITION 4.3.3. — The functors px, v« and ¢ y, induce an equivalence between

the category of overconvergent crystals on (X, V) with differential operators and the
category of i}lOV -modules and differential operators.

Proof. — If d : F — G is a differential operator of order at most n, we can apply the
functor ¢% 1, to d and get a morphism of crystals

*

e (@) ok @S TF) — ok v (9).
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We have thanks to propositions 4.2.1 and 4.2.4,

n n)~?t * n * n * n n
pgA)nf*p;A)nf @X,v]::pgA)nf*@X,v(n) (pg )T]:) = ‘ny(pg*)pg )T]:)-

And we compose on the left with pgg); in order to get a differential operator at the

crystal level. Since we already know from proposition 3.3.8 that our functor induce
an equivalence between crystals on (X, V) and of i ' Oy-modules when we consider
only linear maps, the conclusion is immediate. O

The following lemma shows that the category of overconvergent modules and dif-
ferential operators has enough injectives.

LEMMA 4.3.4. — Any complex (E*, d) of overconvergent modules and differential op-
erators has a resolution (I*,d) made of injective overconvergent modules and differ-
ential operators.

Proof. — Tt is sufficient to show that if F < I and E’ < I’ are two inclusion maps
into injective overconvergent modules, then any differential operator d : E — E’ of
order at most n, extends to a differential operator I — I’ of the same order. By
functoriality, it is clearly sufficient to extend

_ " n)—1
d :pgA)nT*p;A)nT b — EI'

Since [ " is an injective module, this will follow from the fact that both pﬁ)ﬂu and
()

Poynni are left exact. L

Now that we can pull a complex of differential operators back to (X, V)1, we
want to push it to (X/O)s,i. We first need an explicit description of the restriction
morphism

jX,V : (Xv V)Anf — (X/O)Anf'

LEMMA 4.3.5. — If F is an analytic sheaf on (X,V) and (X', V') is an overconver-
gent variety over X/O, we have

(Jx,veF)xr v = D1xF X VoV

where p1 : V! xo V. — V' denotes the first projection. If F is a complex of abelian
sheaves, we even get

(Rjx,vsF)xr v = Rp1aFxr vixov.

Proof. — The first assertion follows from the fact that j)_(’lv (X, V)= (X", V' xoV)
and therefore

(X", V), jxveF) =T(x (X, V'), F) =T (X", V' x0 X), F)
=T(1X'lyrwovs Fxrvixv) =T(1X [y, piaFxrvixov)-
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More precisely, this equality should be applied when V"’ is replaced with some open
subset. For the second assertion, we recall that the realization functors are exact and
preserve injectives. O

In order to justify the next definition, we also prove the following.

LEMMA 4.3.6. — If d : E — E' is a differential operator between overconvergent
modules on (X, V), the following morphism is O;c/o -linear:
Jxv(d) 1 jx v E — jx v E'.

Proof. — This follows from the definition of a differential operator and the fact that
the following diagram is commutative:
p (1n) Jix,v
(X, V) —=(X, V) &5 X /0. O

Py
DEFINITION 4.3.7. — If F is a sheaf of i}l(’)v-modules, the linearization of F is
L(F) = jxv«px v F.
If d: F — G is a differential operator of finite order, its linearization is
L(d) : jx.vapx,v(d) : L(F) — L(G).

If (F°,d) is a complex of i)—(l(’)v -modules and differential operators, the derived lin-
earization of F is
RL(]:') = ijy*(p}y]:'.

Note that RL is not the right derived functor of L (and anyway that L is not left
exact in general). Thus, we have to be careful when one moves from L to RL. It also
follows from lemma 4.3.6 that the linearization of a differential operator is linear.
We now give a more explicit description of this linearization.

PROPOSITION 4.3.8. — If F is a sheaf of iy Oy-modules and (X', V') is an over-
convergent variety over X /O, we have

L(F)x: v = prapsF

where p1 : V' xo V=V’ and py : V' xo V. — V denote the projections. Actually, if
(F*,d) is a complex of i)zl(’)v—modules and differential operators, we have

RL(F*)x/ v = Rpr.phF*.
Proof. — Results from lemma 4.3.5. O

If d: F — G is a differential operator, we can also give an explicit description of
the corresponding linear map

pl*p;/—_. — pl*p;g
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on ] X'[,,. Of course, the main point is to describe the pull-back morphism
8 prapsF — prpbps T F

that will be composed on the right with d. Thus, we consider the following diagram
(where all products are taken relative to O)

in P1,
Vix v Ay — s Y x v
P1,2
D2 D2 NS P2
in p2
| 7452 SN V) /g —
P1

and call p,(c") = ppoi, and p

P pyF — pl" o b F = i, phpl T F

g",g = p1.x o (Id x i,). We consider the map

and apply p1s« in order to get
5 =pi" : prpbF = prpbpiF.

Recall that px,o is defined as the composition of the restriction map from
(X/0) ppt to (C,0) ot with the realization at (C, O):

px/0 + (X/O)ant — (JC[p)an; (X/0") +—1Clo-

We will also denote by pyx, : ] X[}, = ]C[, the map induced on the tubes.

ProprosITION 4.3.9. — If F is a sheaf of i)_(l(’)v—modules, there is a canonical iso-
morphism

px/0xL(F) = pix(, «F

on |Cly,. Actually, if (F*,d) is a complex ofi)_(1 Oy -modules and differential operators,
we also have

RpX/O*RL(]:.) = Rp]X[V*]:.-
Proof. — We consider the commutative diagram

(X, V)AnT L (]X[V)an

jx,er J,p]X[V

(X/0) ant — 2
‘We have

Px/0xL(F) = Dx/0xJx v« PXx vF = PIX[,«PX,VsPX vF = DIX[,+F
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because gpxy*(,o}yf = F. Similarly, when (F*,d) is a complex of i)_(l(’)v—modules
and differential operators, we have

Rpx/0-RL(F*) = Rpx/c,o-Rix v«px v F*
= R(px/0 0 jx,v)«px vF* = R(pix[, o px,v)«px v F°
= Rpix[,»px,vsROX v F* = Rpix(, «ox, v« X v F* = Rpix(,«F°. O

We end this section with an application of these methods to the de Rham complex.
As already mentioned, if F is an i)_(l Oy-module with an integrable connection, its de
Rham complex

'71 L]
‘F®i;{10v 1x QV/O
is a complex of differential operators of order at most 1. We may therefore consider
its derived linearization
'—1 L]
RL(F ®itoy Ix Q%/0)-

We can give an explicit description of this object (we stick to the case of crystals):

PROPOSITION 4.3.10. — If E an overconvergent crystal on X/O, we have the fol-
lowing:
1) If (X', V') is an overconvergent variety over X/O, then
RL(Exy ®;10, ix' Qj0)xv = Ronl Ex v @10, ixQrov)-
2) There is a canonical augmentation
‘_1 L]
E— RL(EX,V ®i;(1f9v iy QV/O)'
Actually, both results hold before deriving.
Proof. — Since F is a crystal, we have
—1ye -—1)e
Ph(Ex,v @0y ix o) = PiExy Bi10y,, xMrxvyve
71 L]
=Ex/ vixv Qiloy .y ix Qv v
— f —1()e
= plEX',V' ®i;}0v/xv ZX/QV'XV/V/
and we may apply Rp1. in order to get the first assertion thanks to proposition 4.3.8.

Note that it is sufficient to prove the second assertion before deriving and then
compose with the canonical morphism L — RL. Since F is a crystal, we have

—1 * c—1 *
JX,VE = SOX,VSOX,V*JX,VE =exvExyv
and by adjunction, we obtain a map
E = jxv«exvExyv = L(Exy).
We have to show that the composite map

E — L(Exy) — L(Ex,v ®;10, z';(lﬁlwo)

SOCIETE MATHEMATIQUE DE FRANCE 2011



82 CHAPTER 4. COHOMOLOGY

is zero. This can be done locally and, thanks to the first part, we are reduced to check
that

'71 L]
Ex: v — prap} Exrv: — pra(p] Ex: v ®i 10y, I Hrsvyv)
is zero. This is linear in Ex/y/ and we are reduced to show that the composite map
-710 -710 -719-
Lx Yy ? P1xlx Vvixv — Pixlxs VIXV/V!

is zero. Here again, we need to be careful since the base change map i}}pl* —
pl*i;(} is not bijective in general. But we do not care because it is sufficient that the
composition

Z;(}OV/ — i;(}pl*OV/XV — i;(}pl*Q{/’XV/V’
is zero. Finally, we may drop the z)_(} and are reduced to the augmentation from the
constant sheaf to the usual de Rham complex. O

4.4. Grothendieck topology and overconvergence

In proposition 4.5.5 below, we will need to localize with respect to the Grothendieck
topology. Unfortunately, the dictionary of section 1.3 of [3] is not sufficient for us and
we need to expand it a little bit. This is what we do here.

We start with a geometrical result.
LEMMA 4.4.1. — Let (X C P <+ V) be an overconvergent variety. We assume that P

is affine and that cox := X \ X is a hypersurface § =0 in X with g a function on P.
We also assume that V is affinoid and that | X |y = V. Then, the affinoid domains

Ve:={z €V; |g(\(x))| > €},
fore S1landee VK>, form a cofinal family of neighborhoods of X in V.

Proof. — Since

X[y = {z € Vi g\@)) £ 0} = {x € V; [g(A(@))] > 1},

it is clear that each V. is an affinoid neighborhood of X in V. Let V' be an open
neighborhood of X in V. Denote by T', 7" and T, the complement of | X[, in V', V'
and V. respectively. Clearly, T = |J7. is an open covering and 7" is compact as a
closed subset of V. It follows that there must exist € such that 7/ C T, which means
that V. C V. O

If w: V" — V is a morphism of analytic varieties over K, then ug : V4 — Vg
will denote the corresponding morphism of ringed sites (see appendix 5.2 for details).
Recall also that there is an obvious natural morphism of ringed sites my : Vg — V
and that we sometimes write Fg = 7, F.
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If (X,V) is an overconvergent variety and F is a sheaf on V', we proved in propo-
sition 3.2.12 that, when | X[, is closed in V', we have

ixsix'F =l jlj "' F
when j’ runs through all inclusions of neighborhoods of X in V. In a similar way, if G
is a sheaf on Vi, one sets
%G = lim j6.j6 6.
We use below the notion of family of subsets of finite type: it just means that any

subset meets only a finite number of the others. Note that a locally finite covering by
quasi-compact subsets is automatically of finite type.

LEMMA 4.4.2. — Let (X C P < V) be an overconvergent variety. Assume that V
is separated and countable at infinity and that ])T[V = V. If G is a coherent sheaf
on Va, then

g >0, limHY(V4,G) ~ H(V, 5% 6)
where V' runs through all the neighborhoods of X in V.

The result actually holds if V' is locally separated and paracompact (this follows
from proposition 4.4.3 below).

Proof. — Note first that this equality is always true when V' is compact because then,
V& is quasi-compact and quasi-separated. In particular, this holds in the affinoid case.
If, moreover, X has a cofinal family of affinoid neighborhoods in V', we see that the
left hand side is zero for ¢ > 0 and it follows that the right-hand side is zero too.

We now come back to the general case. After blowing up cox in P, we may find
a locally finite affine covering of P = |, P, such that cox, is a hypersurface in
X, := XN P,. Since V is countable at infinity, we can find a countable admissible
affinoid covering of finite type V' = (J;,cn Wi such that the image of W; in Pk is
contained in some P,x. Then, it follows from lemma 4.4.1 that there exists for
each ¢ € N a decreasing family {Wi’e}ei L of affinoid neighborhoods of X in W that
are cofinal. If € := {¢; }ien is any sequence inside [0, 1], we let Ve := [JW;,. Thisis a
covering of finite type by affinoid domains and therefore an admissible covering of an
analytic domain. Note that V, is a neighborhood of X in V' because this question is
local for the Grothendieck topology of V' and that V.N'W; D W; ., Moreover, if V' is an
open neighborhood of X in V, then, for each ¢ € N, V' N'W, is an open neighborhood
of X in W; and there exists ¢; such that W; ., C V’. It follows that there exists € such
that Ve C V.

For fixed i1,...,i, € N, the analytic domains Wy := Wy, ., N---NW; . with
€1,...,€ < 1, form a cofinal system of neighborhoods of X in W; := W;, n---NW; .
Since our variety is separated, all the analytic domains W; . are affinoid, and we have
for all ¢ > 0, o

HY(W;eq,G) =0 and HY(W; g, jL6) =0
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(use the remark at the beginning of this proof). It follows that for any sequence e,
we have

HY(V,¢,9) = H ({Wic, ¢}, G) and HY(V,j%G) = HI({W;c},iL0)).
Since filtered direct limits are exact, it is therefore sufficient to show that

¥g >0, limC({Wie, o} G) ~ C?({Wich ik0).

We are therefore reduced to prove that for all 41,...,7, € N, we have
lim [[T(Wie6,6) =~ [[im T (Wi, 0)

with Wy ¢ := Wy, cN---NW;, .. This is an easy exercise on commutation of products

and filtered direct limits. O
PROPOSITION 4.4.3. — Let (X,V) be an overconvergent variety with X[, closed
i V. Then,

1) If F is any sheaf on 'V, we have
Ty kT L F = ix iy F.
2) If F is an Oy -module and V' is good, we have
Ty kT F = ixaix F.
3) If moreover, | X[,, =V and F is coherent, then
Ry, jimy F = ixsix' F.

Proof. — The first assertion is checked on the stalks and follows from the facts that an
analytic variety is locally compact and that global sections on compact sets commute
with direct limits.

For the second assertion, we use the same method and the fact that with our addi-
tional hypothesis, any point has a basis of affinoid neighborhoods. Then it is sufficient
to notice that, if W is a good compact analytic domain in V', and in particular an
affinoid domain, we have

T(We, ik Fa) = T(1X [y, 5 F).

In order to prove the last assertion, since any good analytic variety has a basis of
open subsets that are separated and countable at infinity, it is sufficient to show that,
if V is separated and countable at infinity, then

Vg >0, H(Va,j\Fe)=H(]X[,ix'F).
We proved in lemma 4.4.2 that
Vg >0, limHY(VE, Fo) ~H(Va, ik Fe)
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where where V' runs through all the open neighborhoods of X in V. On the other
hand, since V' is paracompact and | X[, is closed in V', we also have (see for example
Remark 2.6.9 of [22])

Vg >0, limHY(V',F) =~ HY(]X [y, i F).
Our assertion therefore follows from proposition 1.3.6.ii of [3]. O
In fact, we will need a relative version of this result:

COROLLARY 4.4.4. — Let (X', V') = (X,V) be a morphism of good overconvergent
varieties with | X[, =V (resp. X[y, = V'). Let F (resp. F') be a complex with
coherent terms on V (resp. V') and differentials defined on Vg (resp. V). Assume

that there is an isomorphism j;(]-'c ~ Ruc*j;(/]:gl. Then, we also have
ixsi' F =~ Rugixiaiz F

Proof. — We apply Rmy . on both sides of the first equality in order to get, thanks
to proposition 4.4.3,

ix«ix' F =~ Ray.jlmy F ~ Rov.Ruga.jl i F/

. . 1
~ RuRmy i w5 F' = Rugixrixg i F. O

4.5. Cohomology

We will show now that overconvergent cohomology can be computed as de Rham
cohomology. Due to the restriction on corollary 4.4.4, we will have to work with the
good overconvergent sites.

We assume throughout this section that CharK = 0 and we let (C' C S < O) be
a good overconvergent variety.

Recall that we defined the good analytic site Ang (T') on an overconvergent presheaf
T as the subsite of good overconvergent varieties over T'. We will freely use for AnI,(T)
any result proved for An'(T'). The proofs are identical (and usually easier).

DEFINITION 4.5.1. — 1) Let X be an algebraic variety over C with structural mor-
phism p : X — C. Consider the projection

Px/0 : (X/O)An; — (]C[O)an’ (X/0")g+—1Clo

composed of the restriction map and the morphism ¢c,o. Then, the absolute
cohomology of a complex of abelian sheaves F on (X/O)y is Rpx 0. F.

2) Let f : X' — X be a morphism of algebraic varieties over C. Consider the
induced morphism of overconvergent presheaves f : X'/O — X/O and the cor-
responding morphism of toposes

fant + (X7/0) g1 = (X/O0) g1
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Then, the relative cohomology of a complex of abelian sheaves F' on (X'/O),
8 R,fAnT*.FI'

Relative cohomology can be recovered from absolute cohomology; and, conversely,
absolute cohomology can also be derived from relative cohomology:

PROPOSITION 4.5.2. — 1) If f : X' — X be a morphism of algebraic varieties
over C, F' is a complex of abelian sheaves on (X'/O)q and (U, V') a good over-
convergent variety over X /O, then

(RfantsF oy = Roxrxxv/veF|xrxxv/v-

2) If p: X — C is a morphism of algebraic varieties and F is a complex of abelian
sheaves on (X/0)gq, then

Rpxj0+F = (RpantsF)c,0-
Proof. — This is just base change for restriction maps. O

Recall that we assume that CharK = 0 and that (C,O) is a good overconvergent
variety. The notion of geometric realization was introduced in definition 2.5.10.

THEOREM 4.5.3. — Let X be an algebraic variety over C' and E be an overconvergent
module of finite presentation on (X/0),. If (X, V) — (C,0) a geometric realization
of X, there is a canonical isomorphism

Rpx/o«E ~ Rpix(, «(Exv @10, ix' %)
where pix(, : | X[y, = |C[y denotes the morphism induced on the tubes.

Proof. — 1t is sufficient, thanks to proposition 4.3.9, to prove proposition 4.5.4 below.
O

PROPOSITION 4.5.4. — In the situation of the theorem, the augmentation map is an
isomorphism
E~RL(Exy ®; 10, i;{lQ;//O).

on An!(X/0).
Proof. — We have to show that for any good overconvergent variety (X', V’)
over X/O, we have

EX’,V’ >~ RL(EX’V ®i;(10v i;{lg;//o)x/,v/.
If we write F' := Ex v+, proposition 4.3.10 allows us to rewrite this isomorphism as

F' ~ Rpu.(p| F Bi10ys .y i3 Qv )

Note that p; : V/ xo V — V' is a geometric realization of the identity of X’. Our
assertion therefore follows from the Poincaré lemma below. O

MEMOIRES DE LA SMF 127



4.5. COHOMOLOGY 87

PROPOSITION 4.5.5 (Poincaré lemma). — Let (X, V) be a good overconvergent vari-
ety and (f,u) : (X, V') = (X, V) be a geometric realization of Idx. If F is a coherent
i}lOV—module, then

F =~ Ru.(ulF ®izto,, i}lﬁ{///v).

Proof. — Tt follows form corollary 4.1.5 that the question is local on X. We want
to show that it is local for the Grothendieck topology of V also. This is not clear.
First of all, we may replace V with | X [,;- Also, since the question is local for the
analytic topology, we may assume that V' is countable at infinity and replace, as we
usually do, F by i}l}" where F is a coherent Oy-module. After pushing by ix., we

are reduced, thanks to proposition 3.2.12, to showing that
ix«ix F =~ Ru(ixeix v F @o,, Q. jy).

Since F is coherent and V and V' are good (use proposition 2.5.3 for V'), it is sufficient
to prove thanks to corollary 4.4.4 that

jg(]:G = RUG*(J'}L(“Z']:G ®ng; Q;/’/V7G)'

Now, the question is local for the Grothendieck topology of V. Thanks to the strong
fibration theorem 4.1.3, we may therefore assume that P is affine, that the locus at
infinity of X is a hypersurface, that V is affinoid with V = ]X[;,, and that P’ = A\}B

One may then proceed by induction on n. The case n = 1 results from lemma
4.5.6 below. For the induction process, we use the Gauss-Manin connection as in
lemma 6.5.5 of [23]. O

LEMMA 4.5.6. — Let (X C P < V) be an overconvergent variety. Assume that P
is affine, that the locus at infinity of X is a hypersurface, that V is affinoid and that
])?[V =V. If F is a coherent i;(l(’)v -module, there is canonical isomorphism

P (1X[y, F) ~ RI(1X [, x D(0,17), pl F 2% pi 7).

Proof. — The proof goes exactly as its rigid counterpart. Since this is quite long and
technical, we send the reader to proposition 6.5.7 of [23]. O

We can now derive several corollaries.

COROLLARY 4.5.7. — Let f : X' — X be a morphism of algebraic varieties over
C, E' an overconvergent module of finite presentation on (X'/O)q and (U,V') a good
overconvergent variety over X/O. Let U = U xx X' and (p1,u) : (U, V') —
(U, V) be a geometric realization of the first projection. Then, there is a canonical
isomorphism

(RfantE)wv) ~ Ru(Epyr v Q1o i R v)-
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Proof. — We know from proposition 4.5.2 that

(Rfant«E)w,v) = Rou jv Ejur v
and we apply theorem 4.5.3. O

Recall that if V' is a Hausdorff analytic variety over K, we may consider the mor-
phism of toposes
7o Vo ~ Vg V.
If F is a complex of abelian groups on Vj, we will write F*" := Rmg.F.

We now recall the definition of absolute rigid cohomology (definitions 8.2.5, 7.4.4
and 6.2.1 of [23]). We are given a morphism p : X — Sy of algebraic varieties and
an overconvergent isocrystal E on X/S. We assume that p extends to a morphism
v: P — S that is proper and smooth at X and we denote by vk : | X[, — Sk the
induced map. The overconvergent isocrystal E has a realization Fp on P which is a
coherent J;(oO] )—([Po—module with an integrable connection and

Rpaghl = Roxoe(Bp @05, N, /5.0

In general, it is necessary to rely on descent methods such that in [16].

PRrOPOSITION 4.5.8. — Let S be a good formal scheme and p : X — Sy a realizable
morphism of algebraic varieties. Let E be an overconvergent isocrystal on X/S. Then,
we have

(RprigE)an = RpX/S*E

Of course, we use proposition 3.5.11 to identify the category of overconvergent mod-
ules of finite presentation on (X/S), and the category of overconvergent isocrystals
on X/S.

Proof. — Realizable means that p extends to a morphism v : P — S that is proper
and smooth at X. Now, we see E as an overconvergent module on (X/S), and
consider its realization Ep on P. The question being local on Sk, we may assume
that S is quasi-compact and therefore also that P is quasi-compact. Then, there
exists a good open neighborhood V of | X[, in | X[, and a coherent module with an
integrable connection F on V such that Ep = z';(l]-" . Since V is good, F extends
uniquely to a coherent module with an integrable connection Fy on V4. Recall from
corollary 2.3.2 that strict neighborhoods in rigid geometry correspond essentially to
neighborhoods in Berkovich theory. In particular, if we still denote by vk : V — Sk
the induced morphism, we have thanks to proposition 6.2.2 of [23],

RprigE = RUKO* (];(OFO ®Ov0 Q{/O/SKO)-
Since V is good, it follows from proposition 4.4.3 (and the equivalence Vo =~ ‘7&) that

(7k0Fo ®ou, D 5100) ™ = ixix F @0y D/,
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and therefore,
(RprigE)™ = Rugc(ixix' F ®oy, Q5. ) = Rugaixa(ix' F @210, ix' Q)

= Ruk+(Ep ®;210, ix' QY /s,.) = Rpx/seE. O

Remark. — As a corollary of this proposition, we recover the fact that the rigid
cohomology of an overconvergent isocrystal on X /S is independent of the choice of
the formal embedding X < P into a formal scheme that is proper and smooth at X
over S.

Last remark. — One can remove the condition that X/S is realizable by using some
glueing which is possible as shown in section 4.6 below. More precisely, Berthelot
defines rigid cohomology as Cech cohomology relative to a Zariski open covering by
realizable varieties ([8]). Alternatively, we can use definition given at the end of
section 10.4 of [16]. It is then necessary to translate the results of section 4.6 in terms
of cohomological descent as D. Brown does in [14].

4.6. Zariski localization

In this section, we show that the cohomology of an overconvergent crystal is lo-
cal for the Zariski topology (on the algebraic side). As a consequence, we get that
rigid cohomology coincides with our cohomology even when there is no geometric re-
alization. Everything below also holds when we work with the good overconvergent
site.

We let (C,0) be an overconvergent variety as usual but we first give a general
definition:

DEFINITION 4.6.1. — Let T be an overconvergent presheaf. An overconvergent
sheaf F on T is said to be of Zariski type if for any overconvergent variety (X,V)
over T and any open immersion « : U — X, we have ]oz[‘_,l]:xy =Fuyv.

Clearly, this property will then be satisfied for any locally closed immersion.

Recall that if X is an algebraic variety over C' and « : U — X is a locally closed
immersion, then
Qant - (U/O)Anf — (X/O)An*

denotes the corresponding morphism of toposes (this is a restriction map).

LEMMA 4.6.2. — Let X be an algebraic variety over C. Let F be a sheaf of Zariski
type on X/O and o : U — X be a locally closed immersion over C. Let (X', V') be
an overconvergent variety over X/O, f : X' — X the structural map, U' = f~1(U)
and o : U" — X' the inclusion map. Then, we have

(Cantepni F)xr v = 1o/[, 1o/ [T Fxo v

SOCIETE MATHEMATIQUE DE FRANCE 2011



920 CHAPTER 4. COHOMOLOGY

Proof. — Tt follows from proposition 3.1.11 that
(@ant. 0 L F)xryr = (e L Flonv = 1o/ Fory = 1)/ [ " Fxryr. O

PROPOSITION 4.6.3. — Let X be an algebraic variety over C' and F an abelian sheaf
of Zariski type on X/O. If {Xk}rer is a locally finite open covering of X, there is a
long exact sequence

—1 —1
0—=F H OZkaAnT*OékAnf]: - H OéklvAnT*ak,f,An*F e
% k.l

where ay, : X, — X, ap 0+ X N Xy — X, ... denote the inclusion maps.

Proof. — The assertion can be checked on some (X', V') with f: X’ — X. We may
clearly assume that X’ = X and we are reduced, thanks to the previous lemma, to
the exact sequence of proposition 4.1.4. O

Thus, we get a spectral sequence on absolute cohomology:

COROLLARY 4.6.4. — With the assumptions of the proposition, there is a spectral
sequence

B = @ Rpx,jonFix, = R pxj0uF
|kl=r+1

where Xp = Xp, NN Xy, . O
We also mention the spectral sequence of relative cohomology:
COROLLARY 4.6.5. — Let f: X' — X be a morphism of algebraic varieties over C,

F' an abelian sheaf of Zariski type on X'/O, {X| }rer a locally finite open covering
of X' and f: X' — X any C-morphism. Then, there is a spectral sequence

rs _ / + /
By = @ RSf\XLAnf*]ﬂX;C = R fant F u
|k|=r+1 N -

What is important is that the above results apply to crystals as the following
proposition shows. Moreover, we also see that, being a crystal is of local nature for
the Zariski topology.

PROPOSITION 4.6.6. — Let X be an algebraic variety over C' and E an overconver-
gent module on X/O. Let {Xy}rer be a locally finite open covering of X. Then E is
a crystal if and only if it is of Zariski type and for each k, E|x, is a crystal.

Proof. — Tt follows from corollary 3.3.2 that an overconvergent crystal is of Zariski
type. And we also know that the inverse image of a crystal is a crystal.

Conversely, assume that F is an overconvergent module of Zariski type and that
for each k, E|x, is a crystal. Let (f,u) : (U, V') — (U,V) be any morphism of
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overconvergent varieties over X and g : U — X the canonical map. For each k =
(k1,..., k), let

fi 2 U, — Uy the restriction of f and finally, oy : Uy — U, aj : Uy — U’ the

inclusion maps. Since E|x, is a crystal, we have |fy [LEU&,V = Ey; v. Since E is
Zariski type, it follows that -

Jai [ AL By = 1fell, log[ T Boy = Jai [T Eur v
and we can apply proposition 4.1.4. Note that the first equality follows from the fact
that ]| ' = Jo[' when a is an immersion as was shown in corollary 3.3.2. O

We can now state the main comparison theorem:

THEOREM 4.6.7. — Assume CharK = 0. Let S be a good formal scheme, X an al-
gebraic variety over k and p : X — Sk a morphism of algebraic varieties. Then,
we have a canonical equivalence of categories

Mod! . (X/8) ~ Isoc'(X/S).
If E is an overconvergent isocrystal on X/S, we have

(RprigE)™ = Rpx/s. .

Proof. — Using the results of this section, this follows immediately from propositions
and 3.5.11 and 4.5.8. O

Finally, there is a particular case of the theorem that is worth stating:

COROLLARY 4.6.8. — If X is an algebraic variety over k and E an overconvergent
isocrystal on X /K, we have for all i € N,
Hio(X/K,B) = H'((X/V) y,.1, B). O

And in particular, we obtain

Hijy (X/K) = H ((X/V) g1, Ok )
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CHAPTER 5

APPENDIX

5.1. Sites and toposes

For the convenience of the reader, we give here a brief review of the basics of topos
theory that is used in this article. Of course, almost everything can be found in [1]
(see also chapter 0 of [20]). Note that we do not discuss set-theoretical questions.

Topology. — A presheafon a category C is a contravariant functor from C to Sets.
A morphism of presheaves is a natural transformation between them. We denote
by C the category of presheaves on C. Thanks to the Yoneda lemma, we can (and
will) embed C into C by X — Hom(—, X). A sieve of X € C is a subobject R of X
inC. A topology T on C' is a family of sieves, called 7-covering sieves which

1) is stable by pull-back: if R < X is a covering sieve, then for all Y — X,
R xx Y <Y is a covering sieve;

2) is of local nature: if R < X is a sieve and if there exists a covering sieve S — X
such that, for all Y — S, then R xx Y — Y is a covering sieve, then R — X
itself is a covering sieve;

3) contains C.

A category C' endowed with a topology 7 is a site. A topology o is coarser than
a topology 7 if o C 7. Alternatively, we will say that 7 is finer than 0. The coarse
topology on a category C' is the topology for which the sieves are just the objects
of C'. Any intersection of topologies is a topology. Given any family of sieves, there
exists a finest and a coarsest topology for which they become coverings.

A sheaf on a site C' is a presheaf F' such that for all covering sieves R of X, the
canonical map

F(X)=Hom(X, F) — Hom(R, F)
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is bijective. It is actually sufficient to check this property for a generating family of
sieves which is stable by pull back. The full subcategory of C made of sheaves on C
is the topos C.

The eanonical topology on a category C' is the finest topology for which the
presheaves Hom(—, X) are sheaves. The topology of a site C' is coarser than the
canonical topology if and only if C' C C. A site is said to be standard if it has fibered
products and the topology is coarser than the canonical topology. If C'is a site, then
C is a standard site for the canonical topology: actually, we have C = C. Finally,
note that if C' is endowed with the coarse topology, the corresponding topos is C.

The sieve of X generated by a family {f : X — X} of morphisms of C, is the
union of the images of the morphisms fj in C.IfCisa site, a covering family is
a family that generates a covering sieve. A pretopology on a category C is a set of
families of morphisms { X} — X}, which

1) is stable by pull-back: if {X} — X} is a covering family, then for all Y — X,

{Xr xxY = Y} (exists and) is a covering family;
2) is stable by composition: if {X}; — X} is a covering family and for each k,
{ Xk — Xk} is a covering family, then {Xy ¢ — X} is covering family;

3) contains the identities.

The topology generated by the pretopology is the coarsest topology for which the
families of the pretopology are covering families.

If C is a site with fibered products, then the set of all covering families is a pre-
topology that generates the topology of C. In general, if C' is a site defined by
a pretopology, the sieves generated by the covering families are cofinal among all
covering sieves. Moreover, a sheaf is simply a presheaf T such that for any family
{X) — X}, in the pretopology, the sequence

T(X) — [J7X%) =[] T(Xk xx X0)
k k.0

is exact. Actually, it is sufficient to check this property for a generating set of families.

Note that if C' is a site, we may also endow C with the coarser topology that is
finer than the canonical topology and such that any covering family in C is still a
covering family in C. Then, a family {7}, — T’} will be a covering family in C' if and
only if the family {7} — T} is a covering in C' (notations below).

Morphisms. — If g : C — C’ is a functor, the composition functor
G0 —C, T'—Tog

has a left adjoint g, and a right adjoint g.. Note that g, extends g. As we will see
below, it is sometimes convenient to write f~! instead of ¢ for the original functor.
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In this case, we will write

Fl=a, f.o=37" fl=3.

A functor f=1 : C — C’ between two sites is continuous if f* preserves sheaves.
If this is the case, then f* induces a functor f; : C' = C which has a left adjoint
]7_1 C — C’. Note also that f~!is always continuous when C'is endowed the coarse
topology In general, if £~ is continuous and f~1 : C — C’ is exact, then the pair
(f f*) is called a morphism of sites f :=: C' — C. A morphism of sites f is an
embedding of sites if f, is fully faithful. A morphism of toposes is a morphism of
sites between two toposes (with their canonical topology).

If f~': C’ — C is continuous, it preserves covering families and the converse is
also true when C’ has fibered products and f~! is left exact. Moreover, in this case,
we do get a morphism of sites f : C — C’. This applies in particular to toposes and
we see that a morphism of sites f : ¢/ — C alwayb induces a morphism of toposes
f C" — C. Recall also that the inclusion C' < C is the direct i image of a morphlsm
of toposes whose left adjoint will be written T' +— T.UTisa presheaf on C, then T
is the associated sheaf. Actually, if f~': C’ — C is continuous and T € C’, then

Py = ).

A functor g : C" — C between two sites is cocontinuous if g, preserves sheaves. If
g : C" — C is a cocontinuous functor, then g g« induces a functor g, : ¢’ — C which
extends to a morphism of toposes g : ' = C.

When both sites are defined by a pretopology, we have the following criterion to
tell wether ¢ is cocontinuous or not: given an object X’ in C’ and a covering family
{X; = g(X")}ier, we have to show that the family of all u : Y/ — X’ such that g(u)
factors through some X is a covering family of X”. This is the case for example if
any covering family of g(X’) is the image of a covering family of X'.

If C is a site and f~! : C' — C is any functor, the induced topology on C’ is
the finest topology that makes f~! continuous. If the functor f=1 : C’ — C is left
exact and C’ has fibered products, a family in C’ is a covering family for the induced
topology if and only if its image in C' is a covering family. Note that, in general, the
topology of a site C is the topology induced by the canonical functor

C — 6’, X — X.
If C' is a site and f~!' : ¢’ — C is any functor, there exists a coarsest topology on
C that makes f~! continuous. It is called the #mage topology on C. Note also that

if ¢’ is a site and g : ¢/ — C any functor, there exists a finest topology on C that
makes g cocontinuous.

Restriction. — If C is a category and T an object in C, the restricted category
C)r is the category of arrows X — T" and morphisms compatible with these arrows.
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More generally, if T"is a presheaf on C, then C)7 is the full subcategory of C /7 made
of arrows X — T' with X € C. In other words, an object of C/ is a pair (X, u) where
X € C and v € T(X) and a morphism (Y,v) — (X,u) is a morphism f : Y — X
such that T'(f)(u) = v.

It C is a site, T' a presheaf on C' and C)p is endowed with the induced topology,
the forgetful functor jr : Cy7 — C'is continuous and cocontinuous. In particular,
it induces a morphism of toposes

JiT C/T — C

and jr ! has a left adjoint jzi. If we denote by jr the corresponding morphism on
presheaves, we have

OnF)(X) = H F(X,u).
uweT(X)

and jm F = ﬁ/T\:F It is important to remark that, on abelian sheaves, there exists also
a left adjoint j%‘f which is exact so that j, ! preserves injectives.

We have an equivalence of toposes 67;“ ~ 5/f and jn L corresponds to product
with 7. Any morphism of presheaves u : 7" — T induces a functor j, : C/p» — C)p
which gives a morphism of toposes when C' is a site. Actually, this is a particular
case of a restriction map as before because we may see the morphism u as a presheaf
on C)p. More generally, if f : ¢/ — C is a morphism of sites, T a presheaf on C,
T" a presheaf on ¢’ and T — f~(T) a morphism, there is a canonical morphism of
toposes 57:; — 67’}‘

Finally, as for open embeddings in topological spaces, if we are given a cartesian
diagram of presheaves

T X7 Ty L}Tl

ll& lul
T, —2 T,
then we have a general base change theorem that reads
j;lljuw]: = jp1*j;j_21f-
For complexes of abelian sheaves, we also have
Jui Rijugs F 22 Rijpy v, F

since inverse images preserve injectives.

5.2. Analytic varieties

We give here a brief review of Berkovich theory (see [3], section 1). A very good
introduction is also given in [5]. We will consider only fields with non-trivial valuations

MEMOIRES DE LA SMF 127



5.2. ANALYTIC VARIETIES 97

and strictly analytic spaces defined directly over the base field. We call them analytic
varieties.

Let K be a complete ultrametric field with non-trivial absolute value.
Affinoid varieties. — An affinoid algebra over K is a quotient A of a Tate algebra

K{T\,...,T,} := {Zaizi; a; —>0When1—>oo}
=0

over K. The topology induced by the gauss norm

H

only depends on A (and not on the presentation as a quotient of a Tate algebra).
Moreover, any morphism between two affinoid algebras is continuous.

Qg Il

M8

‘= max |a;|

(==}

I8

The Gelfand spectrum of a an affinoid algebra A is the set M(A) of continuous
semi-absolute values (or multiplicative semi-norms) on A/K, that is,

M(A) = {z € C°(A,Rx¢); z(a) =a| if a € K,
a(f +g) < max{z(f),2(9)} and z(fg) = z(f)z(g) when f,g € A}.

Any z € V has a prime kernel p and we will denote by K(x) the completion of the
fraction field of A/p. Its valuation ring will be written V(z) and its residue field k(x).
We will denote by f(x) € K(x) the image of f € A so that z(f) = |f(z)|. The Gelfand
spectrum V' = M (A) is endowed with the topology of simple convergence (the coarsest
topology making continuous all maps x — |f(z)| with f € A). It becomes a non-
empty compact (Hausdorff) topological space. We clearly get a functor A — M(A)
from affinoid algebras to topological spaces.

An affinoid variety V is a triple made of a topological space, an affinoid algebra A
and a homeomorphism V ~ M(A). We will then write O(V) := A. A morphism of
affinoid varieties u : V' — V is a pair made of a (continuous) map and a homomor-
phism ¢ : A:= O(V) —» A’ := O(V') making commutative

L
M) — O ().

Clearly, the functors A — M(A) and V — O(V) establish an equivalence between the
category of affinoid algebras and the category of affinoid varieties. If V' is an affinoid
variety, we say that a subset W C V is an affinoid domain if the functor

C+— {u: M(C) = V; u is affinoid and Im(u) C W}
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is representable by an affinoid algebra B. If this is the case, we actually get an
homeomorphism M(B) ~ W and W becomes an affinoid variety. Affinoid domains
form a basis of compact subsets for the topology of V.

If A is an affinoid algebra, we may consider the relative Tate algebra
ATy T = {3 LT fi= 0,05 00)
i=0

The closed polydisc on V ~ M(A) is
BY(0,17) := M(A{T},...,Tn})
and we will write x; := T;(x). The open polydisc on V is
BY(0,17) :={z e BY(0,17); Vi € {1,...,N}, |z;| < 1}

We will say that a morphism of affinoid varieties V! — V is finite (resp. a closed
tmmersion) if the map O(V) — O(V’) is finite (resp. surjective). We say that
2’ € V' is inner with respect to an affinoid morphism u : V/ — V if there exists a
closed immersion V' < B (0,1%) such that 2’ € BY(0,17). For example, the Gauss

norm on K{T},...,T,} defines a point of BV (0,1%) which is not inner (with respect
to M(K)).
Quasi-nets. — A quasi-net on a topological space V is a set 7 of subsets of V'

such that any point x of V has a neighborhood which is a finite union of elements
of T containing x. For example, {W;, W5} is a quasi-net on V if and only if W; is a
neighborhood of any point not in W5 and conversely. For example, in R, any finite
covering of a closed interval by closed intervals is a quasi-net.

IfW CV, we write 7 = {W' € 7,WW C W}. We say that W is a 7-admissible
subset if Ty is a quasi-net on W (for the induced topology). We say that 7 is a net
if any finite intersection W of elements of 7 is 7-admissible. In this case, a covering
of a T-admissible subset W by 7-admissible subsets is a 7-admissible covering if it
defines a quasi-net on W.

I include a proof of the following result because I could not find any reference:

PROPOSITION. — If 7 is a net on V, then T-admissible subsets and T-admissible

coverings define a Grothendieck topology on V' for which T is a basis. Moreover, it
satisfies axzioms Go, G1, G2 of [13].

Proof. — 1t is clear that V' and @ are admissible. This is Gy.

We now prove that G holds. It means that admissibility of a subset is of local
nature for the Grothendieck topology. Thus, we are given an admissible subset W
of V, an admissible covering W = |JW,; of W and a subset W’ C W such that for
all 2, W/ N W; is admissible. We have to show that W’ is admissible. Let z € W’.
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Since the set of W;’s is a quasi-net on W and = € W, there exists an open subset
U CV and a subfamily W;,,...,W; with x € W, such that

Z‘EUQWCUW@J..

For each j = 1,...,n, we have x € W' N W;, which is admissible. Thus, there exists
finitely many W}, € 7 such that x € W, C W' N W;; and an open subset U; C V
such that

reUnW, nW' cUWj,.
=2
Now, we let U = U N ((U;) and we have
reUnNW =UnNU)NW =UnW)n(OU;) N W'
C (UW%) ﬂ(mUj)ﬂW/ - U(le ﬂUjﬂW’) C UW]{,k'

The next step is Go: we are given a covering W = |J W; of an admissible subset by
admissible subsets and a refinement W = |J W/ which is admissible. We have to check
that the first covering is admissible. This is easy. If z € W, there exists an open subset
U C V and a subfamily W ,..., W/ with z € W/ such that z € UNW C UW] .
Now, for each 4;, there exists a k; such that Wl’J C Wy, . It follows that x € Wy, and
that 2 € UNW C UWy,.

It still remains to show that we do have a Grothendieck topology. It is clear that
any admissible subset is a covering of itself. Also, admissibility of subsets is stable
under finite intersection: the question is local for the Grothendieck topology by Gj.
We are therefore reduced to the case of two elements of 7. And we are done since we
assumed that 7 is a net. Transitivity of admissibility of coverings is proved exactly
as (G1 above. Finally, the trace of an admissible covering on a subset is admissible
since the trace of a quasi-net on any subset is a quasi-net (and admissibility of subsets
is stable under finite intersection). (]

Analytic varieties. — Let V be a locally Hausdorff topological space. An affinoid
atlas on V is a net 7 of affinoid varieties and inclusion of affinoid domains. There
is an obvious ordering on affinoid atlases on V. It can be shown that any affinoid
atlas extends to a unique maximal affinoid atlas. Note also that the restriction of an
affinoid atlas to any subnet is an affinoid atlas.

An analytic variety over k is a locally Hausdorff topological space V' endowed
with a maximal affinoid atlas 7. The elements of T are called affinoid domains of V,
the T-admissible subsets are called analytic domains and T-admissible coverings are
simply called admissible covering. When endowed with its Grothendieck topology,
we will denote our space by V. Of course, an affinoid variety comes naturally with
a structure of analytic variety.

Any open subset of an analytic variety V' is an analytic domain: this question being
G-local reduces to the affinoid case. It follows that the identity map 7y : Vg — V
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is continuous. Actually, it is a morphism of sites. The pull back map F 71";1.7: is
(exact and) fully faithful.

One can show that the presheaf W +— O(W) on affinoid domains extends uniquely
to a sheaf of rings Oy, on Vi called the structural sheaf. This sheaf induces a sheaf
of rings Oy := 1y Oy, on V turning my into a morphism of ringed spaces

(7'("/*,7'('\/*) : (VG,OVG) — (V, OV)

On usually writes F¢g := 7{,F. Note that the functor F — F¢ is not fully faithful in
general (even on coherent sheaves).

A wvalued ringed space over K is a set V endowed with a Grothendieck topology,
a sheaf of K-algebras Oy and for each point z € V, a semi-absolute value on Oy .
A morphism of valued ringed spaces over K is a morphism of Grothendieck ringed
spaces compatible with the semi-absolute values. Any analytic variety V has a natural
structure of valued ringed space, namely

Ovge = hg O(W),
rzeW

with z € W affinoid, comes with a semi-absolute value f — |f(z)|. A morphism of
analytic varieties v : V' — V is a morphism of valued ringed spaces ug : V& — Vi .

One can show that the functor A — M(A) from affinoid algebras to analytic
varieties is fully faithful. We may therefore identify the category of affinoid varieties
with a full subcategory of the category of analytic varieties. This implies that any
morphism of analytic varieties is continuous: since being open is a local property for
the grothendieck topology, one reduces to the affine case.

Actually, to give a morphism of analytic varieties V/ — V amounts to the following
data (this is Berkovich’s original definition):

1) affinoid atlases 7 and 7/ on V and V’, respectively;
2) for each W' € 7/, a morphism of affinoid varieties W/ — W with W € .

Moreover, we require these morphisms to be compatible whenever this is meaningful.

Finally, note that we defined a morphism of analytic variety as a morphism of valued
ringed spaces ug : V4 — Vig; note that it actually induces a morphism of ringed spaces
U : (V’, OV/) — (V, Ov).

Note. — A point = of an analytic variety V is called a rigid point if K(z) is a finite
extension of K. The set of rigid points is denoted by V. When V' is Hausdorff, there
exists a unique structure of rigid analytic variety on Vj that gives a bijection between
affinoid domains (resp. admissible affinoid coverings) of V' and affinoid open subsets
(resp. admissible affinoid coverings) of V. This is functorial and the inclusion map
Vo < V induces an equivalence of toposes \7G ~ ‘70. Note however that this inclusion
map Vo < V is not continuous: if £ is not a rigid point of V, then W = V' \ £ is
an open subset of V' but the induced map Wy — V} is not an open immersion. For
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example, if we remove the “generic” point from the unit disc, we get the disjoint union
of the residue classes mapping bijectively onto the rigid disc which is not an open
immersion of rigid analytic spaces.

Properties. — The category of analytic varieties has fibered products and we have
M(B) X M(A) M(O) = M(B@)AC)
Also, if we are given an isometry K < K’, there is an extension functor V +— Vi
such that
M(A) g = M(K'®kA).
If u: V! — V is any morphism and W C V is an analytic domain, then v~1(W) ~
V' xy W. Similarly, if z € V, then u™!(z) ~ Vi)

A morphism of analytic varieties v : V' — V is finite (resp. a closed immersion)
if the induced map u=1(W) — W is a finite morphism (resp. a closed immersion) of
affinoid varieties whenever W is an affinoid domain inside V.

A morphism u : V! — V of analytic varieties is said to be (locally) separated
if the diagonal map is a (locally) closed immersion. An analytic variety is said to
be good if any point has an affinoid neighborhood (or equivalently a basis of affinoid
neighborhoods). Note that fibered product of good over locally separated is always
good. Good analytic varieties play an important role because the functor F — Fg is
fully faithful when V' is good. It is even an equivalence if we stick to coherent sheaves.

We say that a point 2’ € V' is inner with respect to a morphism u : V' — V if there
exists an affinoid domain W in V and an affinoid neighborhood W' of 2’ in u=1(W)
such that 7’ is inner with respect to W/ — W. The interior of V' with respect
to V is the set of inner points and its boundary is the complement of the interior.
The morphism is said to be boundaryless (closed in the terminology of Berkovich) if
the boundary is empty. The map wu is said to be proper if it is topologically proper
and boundaryless. Both notions are local for the Grothendieck topology. A finite
morphism is always proper and a proper morphism is separated.

A morphism w : V' — V is universally flat (resp. formally smooth, formally
étale) if given any point 2’ € V', there exists an affinoid domain W’ in V’ containing z’
and an affinoid domain W of V with u(W’) C W such that the induced morphism
O(W) — O(W") is flat (resp. formally smooth, formally étale). Then, if u induces a
morphism W’ — W between analytic domains in V/ an V respectively, the induced
map will also be universally flat (resp. formally smooth, formally étale). Finally, a
morphism u : V' — V is smooth (resp. étale) if it is formally smooth (resp. formally
étale) and boundaryless.
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