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REPULSION FROM RESONANCES

Dmitry Dolgopyat

Abstract. – We consider slow-fast systems with periodic fast motion and integrable
slow motion in the presence of both weak and strong resonances. Assuming that
the initial phases are random and that appropriate non-degeneracy assumptions are
satisfied we prove that the effective evolution of the adiabatic invariants is given by a
Markov process. This Markov process consists of the motion along the trajectories of a
vector field with occasional jumps. The generator of the limiting process is computed
from the dynamics of the system near strong resonances.

Résumé (Répulsion par les résonances). – Nous considérons des systèmes « lents-
rapides », dont le mouvement rapide est périodique et le mouvement lent intégrable,
en présence de résonances faibles ou fortes. En supposant que les phases initiales sont
aléatoires et que certaines conditions de non-dégénérescence sont satisfaites, nous
démontrons que l’évolution effective des invariants adiabatiques est donnée par un
processus de Markov. Ce processus de Markov consiste en un mouvement le long des
trajectoires d’un champ de vecteurs qui peut présenter des sauts occasionnels. Le
générateur du processus limite est calculé à partir de la dynamique du système au
voisinage des résonances fortes.
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CHAPTER 1

INTRODUCTION

1.1. Introduction

Averaging method is one of the most classical and most effective tools in dynamics.
The basic idea is very simple. Consider a two scale system

ẏ = Y (x, y, ε), ẋ =
X(x, y, ε)

ε
, where ε � 1.

If we are interested in the evolution of the slow variables y the direct computations
are costly since y changes at times O(1) while any numerical procedure should have
step o(ε) which is the natural time scale for the change of fast variables. In fact,
the instabilities of the fast system can make computations unreliable. Therefore it is
natural to approximate y by the solution of the effective equation

(1.1) ˙̄y = Y (ȳ) where Y (ȳ) =
�
Y (ȳ, x, 0)

�

and � . � denotes the averaging with respect to an invariant measure for the frozen
system

ẋ = X(x, ȳ, 0)

(finding the correct measure for � . � is part of the problem).
While the averaging method itself was invented about quarter of the millennium

ago motivated by the needs of the Celestial Mechanics (see [58] for a historical survey)
the work on its rigorous justification started much later. The first results were limited
to the case where the fast motion is periodic [20], [38], [9], [36] or more generally
uniquely ergodic [8]. In the uniquely ergodic case there is only one invariant measure
so the meaning of � . � in (1.1) is clear. However the uniquely ergodic setting is insuf-
ficient even for describing small perturbation of nearly integrable systems (because in
this case the unperturbed system contains resonant tori which possess many invariant
measures). The justification of averaging method in the general case is more subtle
since in that case the actual trajectory is close to the averaged one not everywhere
but only on a large measure set of initial conditions. The work on the justification
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2 CHAPTER 1. INTRODUCTION

of the averaging method in the general setting was undertaken in the second half of
20th century mostly by the Soviet School (see [2], [3], [4], [21], [32], [33], [35], [39],
[41], [43]). By now the averaging principle is justified under quite general conditions
(see e.g. [5], [24], [34], [37]).

In the case the fast motion is chaotic (for example an Anosov system or a Markov
process) one can also obtain the limiting distribution for the difference between the
actual and the averaged trajectory (see review [34]). Such estimates are not yet
available in the classical setting of the quasiperiodic fast motion. One situation where
such deviations are important is when the averaged system has first integrals (which
are called adiabatic invariants for the original system). The change of the adiabatic
invariants occurs only due to deviations from the averaged motion. It is well known
that in the quasiperiodic case the main source of deviations from the averaged mo-
tion happens due to passages through resonances. The contribution of the individual
resonance has been computed by several authors [14], [26], [27], [42], [41], [48].
There are many examples of the systems where multiple resonance passages can lead
to destruction of adiabatic invariants on the appropriate time scale (see the above
cited papers as well as [29], [31], [40], [47], [57], [59], [60], [61], [62]). Since the
quasiperiodic case remains the prevalent source of application of the averaging tech-
niques the development of the statistical theory of adiabatic invariants is one of the
most important problems in the averaging theory. The goal of the present paper is to
make a step in this direction by considering the simplest case of periodic fast motion.

The basic idea is that the passage through resonances makes the dynamics hy-
perbolic on most of the phase space [47]. In fact the hyperbolicity is created due
to the combination of strong shearing away from resonances with the destruction of
the shear-invariant foliation near the resonances. (For the general discussion of the
sheared induced stochasticity we refer the reader to [1], [28], [55], [63].) There-
fore the methods developed to treat hyperbolic fast motion (see [7], [13], [17], [18],
[19]) can be applied. The difference between our approach and the other papers on
quasiperiodic averaging is that rather than computing C0-norm of the deviation with
a very high precision we get more coarse information about C2-norms and exploit the
properties which are shared by our system and its C2-small perturbations. Unfortu-
nately this shift of the point of view leads to the increased size of the paper. Indeed
the C2-estimates required for our method were not readily available in the literature
(even though their derivation proceeds similarly to the C0-bounds). For completeness
we provide the required estimates in the appendices.

We hope that this new point of view can be useful in the general quasiperioidic
case. However new ideas will be required to handle the overwhelming growth of
complexity coming from the fact that in the quasiperiodic case there are infinitely
many resonances.
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1.2. THE PROBLEM 3

1.2. The Problem

Consider the simplest three scale system

(1.2)






İ = α1(I, φ, θ) + εα2(I, φ, θ, ε),

φ̇ = p(I) + β1(I, φ, θ) + εβ2(I, φ, θ, ε),

θ̇ = ε−1ω(I, φ) + η(I, φ, θ, ε),

where α1 and β1 satisfy

(1.3)
� 1

0
α1(I, φ, θ)dθ =

� 1

0
β1(I, φ, θ)dθ = 0.

Here I varies over an interval [I1, I2] and φ and θ vary over the circle R/Z.

The averaging principle guarantees that away from resonant surfaces {ω = 0} the
effective dynamics of slow variables is given by the averaged equation

(1.4) İ = 0, ˙̄φ = p(I ).

In particular I is an adiabatic invariant of (1.2). We are interested in evolution of this
invariant on a longer time scale. Before formulating our results let us review known
facts (see [5], [37]).

The case where ω �= 0 is quite well understood. Namely, we can introduce an
improved invariant

(1.5) J = I − ε

ω
A1

where ∂A1/∂θ = α1. Then J̇ = O(ε). So if we are interested in the dynamics of I

on a time scale shorter than ε−1 then all changes happen in a small neighborhood
of resonances ω = 0. Let us study the dynamics near the resonances more closely. If
the resonance is non-degenerate in the sense that ∂ω/∂φ �= 0 then it is convenient to
make the change of variables

τ =
t√
ε
, r =

ω√
ε
·

Then (1.2) takes the form:

(1.6)






θ� = r +
√

ε η
�
I,
√

ε r, θ, ε
�
,

r� = a(I)p(I) + g(I, θ) +
√

ε rβ
�
I,
√

ε r, θ, ε
�

+ ε�β(I, θ, ε),

I � =
√

ε α(I,
√

ε r, θ, ε).

Here we let (I, φ(I)) be the parametrization of the resonance curve,

(1.7) a(I) =
∂ω

∂φ

�
I, φ(I)

�
,
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4 CHAPTER 1. INTRODUCTION

(1.8) g(I, θ) =
∂ω

∂φ

�
I, φ(I)

�
β1

�
I, φ(I), θ, 0

�
+

∂ω

∂I

�
I, φ(I)

�
α1

�
I, φ(I), θ, 0

�

and β, �β represent the corrections to the main term coming from the fact that in the
RHS of (1.6) φ �= φ(I) and ε �= 0 respectively. Note that

� 1

0
g(I, θ)dθ = 0.

(1.6) has a limit at ε = 0 where I does not move and the dynamics of the other
variables is given by

(1.9) θ� = r, r� = L(I) + g(I, θ)

where L(I) = a(I)p(I). (1.9) is Hamiltonian with the Hamiltonian function

(1.10) HI(θ, r) =
r2

2
− L(I)θ −GI(θ)

where

GI(θ) =

�
θ

0
g(I, s)ds(1.11)

= a(I)

�
θ

0
β1

�
I, φ(I), s

�
ds +

∂ω

∂I

�
I, φ(I)

� �
θ

0
α1

�
I, φ(I), s

�
ds.

It is convenient to introduce a variable

(1.12) E =
HI(θ, r)

L(I)

which allows us to consider the dynamics of (1.9) on the cylinder by identifying points
whose E values differ by an integer.

Observe that in (1.6)

(1.13) α
�
I,
√

ε r, θ, 0
�

= α1

�
I, φ(I), θ) + O(

√
ε
�
.

Hence (1.6) and (1.9) suggest that the main contribution to the change of I due to
resonance crossing equals

√
ε σ(E, I) where E is the value of the energy when the

orbit crosses the resonance, and

(1.14) σ(E, I) =

� ∞

−∞
α1

�
I, φ(I), θ(s)

�
ds

where (r(s), θ(s)) is the solution of (1.9) with energy E.

For computations it is more convenient to restate this formula using θ as integration
variable. Thus if L > 0 then

(1.15) σ(E, I) = 2

� ∞

θ∗(E)

α1(I, φ(I), θ)�
2(LE + Lθ + G)

dθ
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1.2. THE PROBLEM 5

and if L < 0 then

(1.16) σ(E, I) = 2

�
θ
∗(E)

−∞

α1(I, φ(I), θ)�
2(LE + Lθ + G)

dθ

where GI(θ∗(E)) = −L(E + θ∗(E)).

To see to what extent (1.14) can be justified we need to look more closely at the
dynamics of (1.9). We distinguish two cases. (Below in order to fix our notation we
assume that L > 0.)

Figure 1. Motion near a weak resonance

(I) Weak resonance. — If minθ g(I, θ) > −L then the phase portrait of (1.9) is
topologically the same as the phase portrait of the averaged system (1.4) (which is
obtained from (1.9) by dropping g). In this case r is a monotone function of s and the
amount of time an orbit spends near the resonance is uniformly bounded from above.
Hence for ε �= 0 the phase portrait is also similar to the phase portrait of the averaged
system and our formal asymptotics for the change of I can be easily justified.

(II) Strong resonance. — Suppose that minθ g(I, θ) < −L. The phase portrait
of (1.9) in this case is shown on Fig. 2. In this case points can spend arbitrary long
time near the saddle. As a consequence, the dynamics is qualitatively different for
ε �= 0. Namely given a saddle θ = θ(I) let Ω denote the set of points inside the
separatrix loop of this saddle and let Γ be the boundary of this set. Let

�HI(θ, r) =
r2

2
− L(I)θ −GI(θ) + K(I)

where K(I) is chosen so that �H equals 0 on Γ. Let

M(I) = −
�

Γ

�
r2β(I, 0, θ, 0)(1.17)

−
�
L(I) + g(I, θ)

�
η(I, 0, θ, 0) +

∂ �H
∂I

α(I, 0, θ, 0)
�
ds.
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6 CHAPTER 1. INTRODUCTION

Figure 2. The limiting system for strong resonance

(To see that this integral converges note that

(1.18)
∂ �H
∂I

(I, 0, θ(I)) +
∂ �H
∂θ

(I, 0, θ(I))
dθ

dI
= 0.

Since ∂ �H/∂θ(I, 0, θ(I)) = 0 it follows that ∂ �H/∂I(I, 0, θ(I)) = 0.)
A typical behaviour of the trajectories for M > 0 is depicted on Fig. 3. In particular

the initial conditions starting on the thick segment get captured into resonance and
so I experience a jump. A captured point moves along the resonance. The motion
along the resonance is also a slow-fast system with slow variables �H and I and fast
variable θ so it can also be descibed by the averaging principle, see (1.23) below. At
some point the orbit can enter a region where M(I) < 0. In this case dynamics near
the saddle (0, θ(I)) looks like a mirror image of Fig. 3 and the orbit can escape from
the resonance so its motion again can be described by the averaged system (1.4).
According to [47] (see also Appendix E.4) during each passage a set of points of
measure about

√
εM(I)+ gets captured. (We use the notation a+ = max(a, 0) here

and below). Therefore we expect that after O(1/
√

ε ) passages a set of measure O(1)

gets captured. Hence 1/
√

ε is the natural time scale for this problem. At this scale
there are two mechanisms responsible for the change of I.

(I) Capture into resonance. — This phenomenon has been described above. It is
only relevant if M > 0 for one of the saddles of (1.9).

The second mechanism is important regardless of the sign of M.

(II) Repulsion from resonances (see [51]). — To describe this phenomenon, suppose
for a moment that (1.2) preserves the Lebesgue measure dI dφdθ. For each time t

the phase space of (1.2) is the union of two sets. First, there is a set of measure
O(
√

ε ) consisting of points which has been captured into resonance and at time t
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Figure 3. Motion near a strong resonance. A projection of a set of orbits
starting with a fixed values of I = I0 and r = −r0 where r0 � 1 to the
(r, θ)-plane is shown.

move inside one of the separatrix domains. For these points I changes with unit
speed. This creates a flux of measure of order

√
ε. Secondly there are points of

measure 1− O(
√

ε ) which follow the orbits of the averaged system (1.4). Therefore in
order to maintain the balance of measure most of these points which are not captured
move with speed

√
ε in the opposite direction. In general Lebesgue measure is not

preserved. However the divergence of the flow is given by

(1.19) D(I, φ, θ) =
∂α1

∂I
+

∂β1

∂φ
+

∂η

∂θ
+ O(ε).

Now (1.3) and the periodicity of η imply

� 1

0
D(I, φ, θ)dθ = O(ε).

So in average the measure is preserved on time scale o(ε−1) and the previous argument
applies.

The flux of orbits moving inside the separatrix domain Ω equals to

(1.20) ΨΩ(I) = − 1

L(I)

��

Ω
α1

�
I, φ0(I), θ

�
drdθ,

M and Ψ play an important role in the description of the effective evolution of the
adiabatic invariant I given in the next section.
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1.3. Results

1.3.1. Dynamics before capture. – We are now ready to formulate our main
results. They require certain non-degeneracy conditions for the system (1.2). Assume
that for each I ∈ [I1, I2] the following conditions are satisfied.

(A) p(I) �= 0.

This means that I is the only invariant of the averaged system (1.4).

(B) Resonances are non-degenerate. Namely if (I, φ1(I)), . . . (I, φq(I)) are reso-
nances counted counterclockwise then

aj(I) =
∂ω

∂φ

�
I, φj(I)

�
�= 0.

(C) Twist condition: ∂wj/∂I �= 0 where

wj(I) =

�
φj+1(I)

φj(I)

ω(I, φ)

p(I)
dφ.

(Here j + 1 is understood mod q.)

(D) For each j, the function θ �→ Lj(I)θ+GI(θ) is Morse. Namely, there is at most
one critical point on each level set and the critical points are non-degenerate. (Here
and below we ignore the dependence of G on j in order to simplify the notation).

We also impose a non-degeneracy condition in the I-direction, namely:

(E) If (0, θjk(I)) is a saddle of (1.9) then we have α1(I, φj(I), θjk(I)) �= 0 for each
(j, k). (Here j counts the resonances and k counts the saddles of the given resonance).

(F) The critical points of the function E �→ σ(I, E) are non-degenerate for each I.

Suppose that I = I0 and that (φ(0), θ(0)) are chosen uniformly with respect to the
Lebesgue measure. Let I ε(t) = I(t/

√
ε ). Since (φ(0), θ(0)) are random, I ε(t) is a

random process. Stop it when it leaves [I1, I2] or get captured. Let

Ψj(I) =
�

k

Ψjk(I), Ψ(I) =
�

j

Ψj(I)

where Ψjk(I) = ΨΩjk(I) (see (1.20)) and Ωjk denotes the domain bounded by the
separatrix loop of the saddle (0, θjk). We denote

λ( I ) =






�

jk

Mjk( I )+p( I )

|Lj( I )| if I ∈ (I1, I2),

∞ otherwise.
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Theorem 1. – Under conditions (A)–(F) the process I ε(t) converges weakly as ε →
0 to the solution of

(1.21)
d I
dt

= Ψ( I )p( I ), I (0) = I0

killed with intensity λ( I ).

In other words let I (I0, s) denote the solution of (1.21). Then the probability that
the orbit is not stopped until time t equals

(1.22) p(t) = exp
�
−

� t

0
λ
�
I (I0, s)

�
ds

�
.

In case of survival I (t) = I (I0, t).

Remark. – In fact Theorem 1 as well as Theorem 2 below are valid for a larger class
of initial distribution. Namely it is enough to assume only that the fast variable θ has
a Hölder density with respect to Lebsesgue measure. The precise class of allowable
measures consists of the convex hull of the measures corresponding to the standard
pairs. See subsection 2.2.2 for details.

1.3.2. Life after capture. – In this section we extend Theorem 1 to a fixed size
time interval. During that time a positive measure set of orbits is going to be captured,
some of them several times, and we need to extend our analysis beyond the time of
the capture.

To this end we introduce entrance-exit maps Qjk(I) (see [47], [5]). To define these
maps we consider the system (1.9) on the domain Ωjk. We assume that:

(G) There are no saddle points of (1.9) inside Ωjk.

In this case all orbits in the interior of Ωjk are closed so that (1.6) is a slow-fast
system with two slow variables I and Hjk where

Hjk =
r2

2
− Lj(I)θ −GI(θ) + Kjk(I)

and Kjk(I) is chosen so that Hjk vanishes on Ωjk.

Let θjk(H, I, s) denote the solution of (1.9) with Hamiltonian H, action I and let
Tjk(H, I) denote the period of this solution. Consider the averaged quantities

Xjk(H, I) =

�
Tjk(H,I)

0

�
r2β(I, 0, θjk(s), 0)

−
�
Lj(I) + g(I, θjk(s))

�
η
�
I, 0, θjk(s), 0

�

+
∂Hjk

∂I
α
�
I, 0, θjk(s), 0

��
ds,

Yjk(H, I) =

�
Tjk(H,I)

0
α
�
I, 0, θjk(s), 0

�
ds.
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(In principle we need to divide those quantities by Tjk(H, I) but we can avoid doing
this by rescaling the time. Observe that the entrance-exit maps Qjk defined below
depend only on the orbit of (1.23), not on its time parametrization.)

We observe that Xjk ∼ −Mjk(I) as H → 0. Hence Xjk < 0 for small H since a
capture is possible near the saddle θjk. Also Yjk ∼ α(I, 0, θjk(I), 0) Tjk(H, I). Thus
Yjk is non-zero for small H due to condition (E). Consider inner averaged equation

(1.23)
dH

ds
= Xjk(H, I ),

dI

ds
= Yjk(H, I )

with initial condition (H, I )(0) = (0, I). Then we have H(s) < 0 for small positive s.
We make two assumptions

(H) There exists sjk(I) such that H(s) < 0 for s ∈ [0, sjk(I)], H(sjk(I)) = 0.
Moreover Mjk(I) > 0 and Mjk(I(sjk(I)) < 0.

(I) Equation (1.23) is not overtwisted at I (the notion of overtwisting is defined in
Section 1.3.3.)

To formulate our last assumptions consider inner averaged equation (1.23) near an
elliptic rest point. By assumption (G) there is a unique such point (θ∗

jk
(I), 0, I) inside

each domain Ωjk. It is convenient to use variable

�H =
r2

2
− Lj(I)θ −GI(θ) + �K(I)

where �K is chosen so that �H(θ∗
jk

(I), 0, I) = 0. Arguing similarly to (1.18) we get

∇ �H
�
θ∗

jk
(I), 0, I

�
= 0.

Considering Taylor series of (η, β, α) in (r, θ − θ∗
jk

) and observing that the averaging
kills odd degree terms we can write the averaged equation for �H near { �H = 0} as

(1.24)
d �H
ds

= Λ(I, �H ) �H.

Let Sjk = (θ∗
jk

(I), 0, I) denote the curve of elliptic fixed points. Equation (1.24)
means that Sjk is invariant under the averaged dynamics. The restriction of the
inner averaged equation to Sjk is

(1.25)
dI

ds
= 2π

α(θ∗
jk

(I ), 0, I, 0)

ωjk(I )

where iωjk(I) is the eigenvalue of the rest point. We assume that:

(J) The zeroes of α are non-degenerate.
Thus Sjk is a union of fixed points and their stable manifolds.

Let Ijk� be the set of zeroes of the RHS of (1.25). Our last assumption is

(K) Λ(Ijk�, 0) �= 0.
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In other words all fixed points on Sjk are hyperbolic.

We let
Qjk(I) = I

�
sjk(I)

�
.

We are now ready to generalize Theorem 1. Let G be a finite union of closed intervals
such that conditions (A)–(K) are satisfied for all I ∈ G. Moreover we assume that
for each I ∈ G for each pair (j, k) the assumptions (G), (I) and (K) are satisfied
for all I along the orbit of inner averaged equation (1.23) from I to sjk(I). We now
relax the stopping rules as follows. We stop our process when the orbit is less than�

ε/| ln ε| away from the resonance surface and I ε(t) is not in G. (It will follow from
Theorem 2 below that there are two reasons a typical orbit is stopped. Either it
reaches the boundary of G while moving along the trajectory of (1.21) or it gets
captured at some I and Qjk(I) �∈ G.) Unlike Theorem 1 we do not require G to
be connected since entrance-exit maps Qjk can move orbits between the different
components. In particular we do not insist that I ∈ G while it moves along the
resonance surface.

As in Theorem 1 we assume that I(0) = I0 is fixed and (φ(0), θ(0)) are uniformly
distributed.

Theorem 2. – As ε → 0, I ε(t) converges to the Markov process with generator

L(A) = Ψ(I)
dA

dI
+

�

jk

�Mjk(I)+p(I)

Lj(I)

�
A

�
Qjk(I)

�
−A(I)

��
.

In other words (1.21) and (1.22) have to be supplemented by the following:
� Given that the point got captured at time t the conditional probability that it

get captured near θjk is

Mjk( I (t))+/Lj( I (t))�
jk

[Mjk( I (t))+/Lj( I (t))]
·

� If the point gets captured at time t near θjk then it moves instantly to Qjk( I (t)).

Remark. – Since the limiting process has jumps the convergence is understood in
the space of functions without jumps of second kind with Skorokhod topology (see
[25], Section VI.5). Namely two functions are close if their discontinuities are close
and the values of the functions are close away from the discontinuities. More precisely,
the topology is given by the distance

d( I 1, I 2) = inf
h

�
sup

t∈[0,T ]

�� I 1(t)− I 2(h(t))
�� + sup

t∈[0,T ]

��t− h(t)
���

where [0, T ] is the common domain of I 1 and I 2 and the infimum is taken over all
homeomorphisms h : [0, T ] → [0, T ].
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Remark. – Assumptions (A)–(K) state that certain functions are different from 0.
Therefore for a typical system we can expect them to hold in a neighborhood of a
typical point. However we can not expect them to hold globally so in Theorems 1 and
2 we stop the process when it escapes the region of validity of assumptions (A)–(K).
See Section 2.8 for the discussion of the ways to relax assumptions (A)–(K).

1.3.3. Formal solution of the averaged equation. – To complete the formu-
lation of Theorem 2 it remains to explain condition (I). To do so we discuss the
properties of the inner averaged equation (1.23). In this section we shall omit the
subscripts j and k in order to simplify the notation. Thus we shall write θcr instead
of θjk and let U be the potential of the Hamiltonian Hjk. Define

(1.26) c(I) =
α1(I, φ(I), θcr(I))���∂2U

∂θ2 (θcr(I), I)
��
·

The next result is proven in Appendix F (see also [46]).

Lemma 1.3.1. – As H tends to 0

X(H, I) −→ −M(I), Y (H, I) ∼ c(I) · | ln |H||
∂X

∂H
∼ O

�
| ln |H||

�
,

∂X

∂I
= O(1),

∂Y

∂H
∼ c(I)

|H|
, ∂Y

∂I
∼ c�(I) ·

�� ln |H|
��,

∂2X

∂H2
∼ O

� 1

|H|

�
,

∂2X

∂H∂I
= O

�
| ln |H||

�
,

∂2X

∂I2
= O(1),

∂2Y

∂H2
∼ c(I)

H2
, ∂2Y

∂H∂I
=

c�(I)

|H|
, ∂2Y

∂I2
= c��(I) ·

�� ln |H|
��·

Using this lemma we analyze the variational equation of (1.23). Consider a solution
to (1.23) defined on the interval [0, t] such that (H, I)(0) = (H0, I0) and (H, I)(t) =

(Hf , If ). We assume that H0 and Hf are small so that t is close to s(I0). We have

˙δH =
∂X

∂H
δH +

∂X

∂I
δI, δ̇I =

∂Y

∂H
δH +

∂Y

∂I
δI.

Let ∆(t) = Y δH −XδI. Then ∆̇ = (∂X/∂H + ∂Y /∂I)∆.

Observe that due to assumption (H) the RHS has an integrable singularity. Let

A(t) = exp

��
t

0

�∂X

∂H
+

∂Y

∂I

�
(s)ds

�
.

Then ∆(t) = A(t)∆0. Accordingly

˙δH =
�∂X

∂H
+

Y

X
· ∂X

∂I

�
δH − (∂X/∂I)A(t)∆0

X
·
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Let

B(t) = exp
� �

t

0

�∂X

∂H
+

Y

X
· ∂X

∂I

�
(s)ds

�
.

Then

δH(t) = B(t)
�
δH(0)−∆0

�
t

0

A(s)(∂X/∂I)

B(s)X
ds

�
.

Denoting

(1.27) C∗(I) = B
�
s(I)

� � s(I)

0

A(s)(∂X/∂I)

B(s)X
ds

we obtain the following asymptotics of the solutions as H0, Hf → 0:





∂Hf

∂H0
∼ −C∗(I0)c(I0) ·

�� ln |H0|
��,

∂If

∂H0
∼ −C∗(I0)c(I0)c(If ) · | ln |H0|| · | ln |Hf ||

M(If )
,

(1.28)






∂Hf

∂I0
∼ −C∗(I0)M(I0),

∂If

∂I0
∼ −C∗(I0)M(I0)c(If ) · | ln |Hf ||

M(If )
·

(1.29)

In the proof of Theorem 2 it is convenient to have the leading terms given by the
above equations non-vanishing.

We say that (1.23) is overtwisted at I0 if C∗(I0) = 0.

Condition (I) provides additional hyperbolicity for our system since it implies that
for orbits passing closer to a saddle point of (1.9) expansion is stronger than for points
staying far from the saddles. See Appendix F for details.

1.4. Examples

Here we illustrate typical applications of our main results. In this section we restrict
ourselves to demonstrating how to reduce these examples to the form (1.2) required to
apply our results relegating straightforward but lengthy computations of the limiting
process to Appendix G. We leave it to the reader to check that the nondegeneracy
conditions needed in Theorems 1 and 2 are satisfied on an open set of values of I for
a typical values of the parameters involved in our examples.
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1.4.1. Motion in rapidly oscillating force field

Example 1. – Consider a particle in a potential field which is subjected to forcing
which rapidly changes both in space and time.

ẍ + U �(x) = sin
�x− t

ε

�
.

Introduce θ = (x− t)/ε. Then we have θ̇ = (v − 1)/ε. The averaged equation therefore
takes form

(1.30) ẍ + U �(x) = 0

and so its energy

I =
v2

2
+ U − 1

2
where v = ẋ

is an adiabatic invariant for original system. (Here the normalization by subtracting
1
2 is made in order to simplify the formulas below). Observe that

İ = v sin θ.

The resonant curve takes form {v = 1}. Introducing r = (v − 1)/
√

ε we obtain the
inner system

θ�� = r� = −U �(x) + sin θ.

The relation

I = U(x) +
(1 +

√
ε r)2

2
− 1

2

gives

U(x) = I −
√

ε r + O(ε).

Let Z denote the local inverse of U, U(Z(u)) = u then Z � = 1/U �. The inner system
takes form

(1.31) θ�� = −U �(Z(I)) + sin θ +
U ��

U �
�
Z(I)

�
r
√

ε + O(ε).

The computation of the limiting process is given in Appendix G.1. We see that at
time intervals of order 1 we can ignore the oscillating force and so the motion of the
particle appears to follow the averaged system (1.30). The influence of the forcing is
felt at time intervals of order ε−1/2. Namely it causes the changes of the particle’s
energy by a slow drift according to equation (G.3) and occasional captures into res-
onances which happen with intensity given by (G.4). The entrance-exit function is
computed using inner averaged equation (G.2).
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1.4.2. Motion on narrow cylinder in the presence of magnetic field

Example 2. – Consider a particle moving on a narrow cylinder in the presence of a
magnetic field

ż = v, v̇ = z(N + y)u, θ̇ =
u

ε
, u̇ = −z(N + y)v

where y = sin θ. The kinetic energy is preserved and we assume that it is equal to 2,
v2 + u2 = 1. Introducing a variable ψ such that

v = cos ψ, u = sinψ,

we rewrite our system as

θ̇ =
sin ψ

ε
, ż = cos ψ, ψ̇ = z(N + y).

After averaging over the fast variable θ the last equation becomes ψ̇ = Nz and so the
averaged system

(1.32) ż = cos ψ, ψ̇ = Nz

has a first integral

I =
Nz2

2
− sin ψ.

For the actual system we have

İ = −z cos ψ sin θ.

The resonance curves are {ψ = 0} and {ψ = π}. Introducing r = sinψ/
√

ε we get

r� = z cos ψ(N + sin θ) = ±
�

2(I +
√

ε r)

N
(N + sin θ) + O(ε).

So the inner system takes form

(1.33) θ�� = ±
��

2I

N
(N + sin θ) +

√
ε√

2NI
r(N + sin θ)

�
+ O(ε).

The computation of the limiting process is given in Appendix G.2. We see that
most of the time particle makes rapid rotations around the cylinder with its vertical
coordinate changing according to a pendulum equation (1.32). At time intervals of
order 1/

√
ε the energy of the pendulum experiences abrupt changes due to captures in

resonances which manifest themselves by particle moving vertically for times of order
1. The time before capture is an exponential random variable with parameter λ( I )

given by formula (G.7) and the entrance-exit function is computed using equations
(G.5)–(G.6).
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CHAPTER 2

THE PROOF

2.1. Idea of the proof

In this section we present main ideas of the proof of Theorem 1. The proof of
Theorem 2 proceeds along similar lines. The necessary modifications are presented in
Section 2.7.

We shall use freely formal manipulations and heuristic arguments. Rigorous justifi-
cations (of somewhat weaker results which are still sufficient for the proof of Theorem
1) will be given later.

We need some notation. Given a resonance φ = φj(I) define two surfaces S and
�S as follows. Let c be a small number (the precise conditions on c will be given later
but they are not important in the discussion to follow).

If aj(I) > 0 let

S =
� ω√

ε
= −

�
c ε−1/4 +

GI(θ)

c ε−1/4

��
,(2.1)

�S =
� ω√

ε
= c ε−1/4 +

GI(θ)

c ε−1/4

�
.(2.2)

If aj(I) < 0 then we define S by (2.2) and �S by (2.1).

Thus S is a section immediately before the resonance and �S is a section immediately
after resonance. One motivation for this choice of the sections is that (2.1) and
(2.2) have quite simple expressions in terms of the improved adiabatic invariants, see
Appendix B. Another motivation is that in (r, θ) coordinates

�S =
�

r = ∓
�
R +

G

R

��

where R = c/ε−1/4. Hence

(2.3)
∂E

∂θ
∼ ±1.
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Let xn be consecutive visits to Ss corresponding to different resonances. (1.4)
suggests that it takes time about 1/p(I) to make a complete circle. Since there are q

resonances per period we expect that the time of the nth visit is

tn =
n

p(I)q

�
1 + o(1)

�
.

Let A(xn) denote the change of I between tn and tn+1. To establish Theorem 1 we
need to show that if N � 1/

√
ε and m ≤ Const/

√
ε then for orbits which has not

been captured up to time m,

(I) the probability of capture on the segment [m, m + N ] is about λ(I)N
√

ε/pq;

(II) for non-captured points

1

N

m+N�

n=m

A(xn) ∼ Ψ(I)N

pq
·

The first statement is nothing but the Poisson Limit Theorem for our system
and the second the Law of Large Numbers. Both results are well understood for
independent or weakly dependent random variables so we need to show that xn are
weakly dependent. To understand where this independence comes from consider first
few iterations of the Poincaré map. Suppose that x0 has a smooth density on

S
I0

:= S ∩
�
I = I0

�
.

We want to describe the distribution of x1. The passage to the next resonant surface
S consists of two parts:

1) Passage of the resonant zone (from S to �S ).

2) Motion far from resonance (from �S to S ).

The considerations of Section 1.2 suggest that during the first part I changes as
follows

(2.4) �I ≈ I +
√

ε σ(E, I), so
∂�I
∂E

≈
√

ε
∂σ

∂E
·

On the other hand (1.2) and (1.4) suggest that

θ − �θ ≈ 1

ε
w(�I ) =

1

ε

�
φ̄

φ

ω(�I , φ)

p(�I )
dφ.

Formal differentiation gives

(2.5)
∂θ

∂�θ
≈ 1

ε

∂w

∂I
(I).

Combining this with (2.3) we obtain

∂E

∂E
≈ 1√

ε

∂w

∂I

∂σ

∂E
·
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Figure 1. Large time image of SI0
.

Now Assumption (F) implies that for most points ∂σ/∂E �= 0. In this case Assump-
tion (C) tells us that a preimage of a unit interval has length O(

√
ε ) so ∂σ/∂E is

approximately constant at this preimage. That is, on such intervals E �→ E can be
approximated by a linear map. For linear maps of slope 1/

√
ε the images of the seg-

ments of length �
√

ε are uniformly distributed. In other words we can prescribe the
phase of x0 with a good precision and still the phase of x1 is uniformly distributed. In
this sense we can regard the phases of x1 and x0 as weakly dependent. To summarize
the image of S

I0
consists of finitely many segments consisting of captured points,

O(1/
√

ε ) almost linear segments and finitely many ‘parabolic’ segments coming from
neighborhoods of the critical points of σ. Assumption (F) makes it plausible that if
E0 is a critical point of σ then for E near E0

E − E0 ∼
(E − E0)2√

ε

so the total measure in parabolic pieces is O(ε1/4) (by definition a parabolic piece
consists of points which are within a unit distance from E0).

Now let us see what happens for large n. The non-captured part of the image of
S

I0
consists of

(a) almost linear segments;

(b) parabolic pieces;

(c) curves of more complicated geometry appearing when a parabolic piece comes
near the critical points of σ.

To apply the argument used for x0 we need to prove that most of the measure is
concentrated in the linear segments. To this end we have to show that once an orbit
finds itself in a parabolic piece it is much more likely to escape (that is to get farther
than a unit distance from the tip) rather than stay close to the tip or even enter into
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a curve of type (c). The reason is the following. Since ∂σ/∂E ∼ 1 for most points we
can expect that

(2.6)
∂σ

∂E
(E0) ∼ 1

in which case for the second iteration we would get

E − E0 ∼
(E − E0)2

ε
so the set of points staying close to the tip for two iterations in a row would have
measure O(

√
ε ) (there are also secondary parabolas appearing at the intersection of

the the primary one with the critical curves but if (2.6) holds then their measures are
O(
√

ε ) as well). Continuing this reasoning it is not difficult to convince oneself that
the set of points staying in (b) or (c) segments three times in a row have measure
o(
√

ε ). Thus if n < Const/
√

ε then the set of non-linear pieces is small as required.
The problem with this argument is that it is unreasonable to expect (2.6) for all

initial values of I0. Let C = {∂σ/∂E = 0}. Then (2.5) implies that the image of C
also consist of almost linear segments and so we can not keep the image of C from
intersecting itself. Dynamics near such intersection could be quite complicated. In
particular elliptic islands could be formed. For this reason we can not guarantee for
the first and the second iteration of the Poincaré map that only a set of measure o(

√
ε )

contributes to the nonlinear part of the image. Fortunately this problem is confined
to the first two iterates only. Indeed even for the first iteration the required o(ε)

bound can be obtained if we assume that I0 has isolated returns that is, the images of
C ∩ S

I0
are far from C . Starting from the third iteration we can actually prove that

most of the returns are isolated. Indeed (2.5) tells us that the points of intersection

Figure 2. Parabolic pieces are close to the image of C (thick line). Since
this image is transversal to C (dashed line) most of the returns are
isolated.
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of C and the image of C form a lattice of step O(ε). On the other hand most of the
second image of S

I0
is in linear segments. There are O(1/ε) such segments. By (2.4)

the variation of their I values is O(
√

ε ) so the distance between consecutive segments
is O(ε3/2). Thus most of the segments are far from the critical lattice. Hence most of
the returns are isolated (see Fig. 2). So the total measure of the non-linear segments
can be bounded by

o
�
n
√

ε
�

+ O(ε1/4)

where the second term estimates the measure of bad points formed during the first
two iterations. Thus most of the measure is in linear segments giving the required
independence.

2.2. Plan of the proof

Here we present the main steps of the proof of Theorem 1.

2.2.1. One passage. – Our analysis in Section 2.1 was based on heuristic formulas
for the derivatives of the Poincare map. Here we present the precise results. Let us
emphasize that the parts of the statements not dealing with derivative estimates are
well known. Still we provide sketches of proofs in Appendix A in order to make our
exposition self contained.

Let S
j

denote the preresonance surface of the resonance (I, φj(I)). Denote

S =
�

j

S
j
.

We want to study the Poincaré map P : S → S. Let S and S be the surfaces cor-
responding to two consecutive resonances (I, φ(I)) and (I, φ̄(I)). Below we present
some information about P : S → S. Observe that if we are interested in the deriva-
tives bounds then it is not convenient to work with I and θ since they are rapidly
oscillating and a slight change of the surface produces big changes of the derivatives.
For this reason we shall work with the variables J and E defined by (1.5) and (1.12)
respectively. Denote

P (J, E) = (J, E ).

In the statements below o( . ) means the limit then both c and ε tend to 0 but c

goes to 0 much slower than ε. That is there exists a function c0 = c0(ε) such that the
asymptotics below are uniform for c, ε small, c ≥ c0(ε).

In Appendix B we prove the
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Proposition 2.2.1. – If (I, φ(I)) is a weak resonance then:

(a) The passage time t(J,E) ∼ (φ̄− φ)/p(I).

(b) We have

I − I = J − J + o(
√

ε ) =
√

ε σ(J,E) + o(
√

ε ).

(c) We have

(2.7)
∂E

∂E
=

1√
ε

�
Λ(J,E) + o(1)

�
+ O(1),

∂E

∂J
=

1

ε

�∂w

∂I
+ o(1)

�
,

where Λ(J,E) =
∂w

∂I

∂σ

∂E
and

(2.8)
∂2E

∂E2
=

1√
ε

∂Λ(J, E)

∂E
+ O

�
ε1/4

���
∂E

∂E

���
2�

.

(d) We have

∂J

∂J
= O(1),

∂J

∂E
= O(

√
ε ),

∂2J

∂E2
= O

�√
ε
�

+ O
�
ε5/4

���
∂E

∂E

���
2�

,

∂2E

∂E∂J
= O

�1

ε

�
+ O

�
ε−3/4

���
∂E

∂E

���
�
,

∂2J

∂E∂J
= O(1) + O

�
ε1/4

���
∂E

∂E

���
�
,

∂2E

∂J2
= O

� 1

ε−7/4

�
,

∂2J

∂J2
= O

�
ε−3/4

�
.

For strong resonance the formulations are more complicated because as we ex-
plained above the heuristic formulas of Proposition 2.2.1 are not valid for all orbits
but on the other hand we do not want to exclude too large a set.

Fix arbitrary δ > 0. For ε = 0 the union of the saddles of (1.9)

N =
�

jk

�
φ = φj(I), θ = θjk(I)

�

is a normally hyperbolic invariant set of the flow (1.6). Hence for small ε there is a
normally hyperbolic invariant set N ε near N (see [30]). Let d be the distance of the
orbit from N ε and τ be the time the orbit spends in a δ neighborhood of N ε.

In Appendix E we prove the

Proposition 2.2.2. – If (I, φ(I)) is a strong resonance then the following statements
hold.

(a) If d > δ then the estimates of Proposition 2.2.1 are valid.

(b) If
�

ε/| ln ε| < d ≤ δ but the orbit is not captured, then the statements of
Proposition 2.2.1 should be modified as follows. Part (a) remains valid, part (b) has
to be replaced by

(2.9) J − J ∼
√

ε τα1

�
I, φ(I), θjk(I)

�
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where (0, θjk(I)) is the saddle of (1.9) the orbit is passing near. Part (c) has to be
replaced by

(2.10)
∂E

∂E
≥ Const

d
√

ε
, ∂E

∂J
≤ Const

d ε
·

Also for part (d) in the estimates for the first derivative the RHS has to be multiplied
by 1/d and in the estimates for the second derivative the RHS has to be multiplied by
| lnm d|/d2 where m is a sufficiently large number.

Let γ be the graph of J = g(E), with |g�| < ε1/2+δ.

(c) Let ξ > ε1/2+δ. Then measure of points with d ≤ ξ is less than Const ξ.

(d) Let [E(jk)
− , E(jk)

+ ] be the segment of points captured while passing near the res-
onance (I, φj(I), θjk(I)). Then

E(jk)
+ − E(jk)

− =
√

ε
Mjk(I)

Lj(I)
+ o

�√
ε
�
.

Comparing the statements above with the heuristic estimates of Section 2.1 we see
the following. The first derivative bounds can be obtained by the formal differentiation
of the formulas suggested by the averaged equation (after replacing I by J). This is
not true however for the second derivatives. The reason is that our analysis suggested
that the map E �→ E was close to linear. Now if we perturb a linear map such as
E �→ E/

√
ε by a small nonlinearity, say

E �−→ E �−→ E√
ε

+ δh
� E√

ε

�

then the effect of the nonlinear term is δh��(E/
√

ε )/ε which can be larger than 1/
√

ε

even if δ is small. However the second derivative bounds are still sufficient to derive
the conclusions we want. Namely, for most points

∂E

∂E
∼ 1√

ε
whereas

∂2E

∂E2
= O(ε−3/4) �

���
∂E

∂E

���
2

which is enough to conclude that the image looks like a linear map (cf. Lemma H.0.1).
On the other hand if ∂E/∂E � 1/

√
ε then the formal arguments of Section 2.1 remain

valid (since we have quadratic decrease in the terms coming from the nonlinearity!)
and we still are able to prove quadratic bounds near the parabolic pieces.

We conclude this section by computing the average for our Law of Large Numbers.
The proof is given in Appendix A.

Lemma 2.2.3. – The average value of the jump at resonance (I, φj(I)) is
� 1

0
σ(I, E)dE = Ψj(I).
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2.2.2. Standard pairs. – Now we state more precisely what we mean by “almost
linear” segments. The most obvious requirement is that we want to control the cur-
vature. However we need two more conditions. First we want not only the geometry
of the image to be close to linear but also the image of the initial measure to be
uniform since the uniformity of the phase plays a key role in our argument. Secondly,
to control the geometry of high iterates inductively the way we analyzed the first
iteration we want to assert that the images are close to S

I
curves, namely that they

go roughly in E-direction. The precise definition is the following.

Let c1, c2, C1, C2, C3 be constants whose precise values will be specified later and
δ be a small number.

Definition. – A standard pair is a pair � = (γ, ρ) where γ is a curve in some S and
ρ is a probability density on γ such that

(a) c1 ≤ length(γ) ≤ c2;

(b) γ is a graph of a map J = g(E) with

(b1)
��g�(E)

�� ≤ C1ε, (b2)
��g��(E)

�� ≤ C2ε1/2+δ;

(c) |d/dE ln ρ| ≤ C3.

If � is a standard pair and A is a function we write

E�(A) =

�

γ

A(x)ρ(x)dx.

Standard pairs had been applied to derive the averaging results in case the fast
motion is hyperbolic (see [7], [13], [19]). Here we shall use them in the periodic
setting.

We want to show that most of the image of S
I0

consists of standard curves. The
problem is that an orbit can pass close to either region where ∂σ/∂E = 0 where
expansion coefficient of (2.7) is small or it can pass close to the separatrix of (1.9)
in which case it spends a long time near resonance and the perturbation terms can
become too large invalidating (2.7). Let γ be a standard curve. If either of the above
problems happen we say that the orbit has a close return. We call passages near the
separatrix close returns of the first kind and passages near critical region close returns
of the second kind. We postpone the precise definition of these notions till the later
sections since it is quite technical. For close returns of the first kind, the time spent
near the separatrix is logarithmic function of the minimal distance which implies that
returns where the deviations from the unperturbed inner system are significant have
small probability, so they can be ignored. However close returns of the second kind
should be treated more carefully. Namely in this case we consider few consecutive
iterations of the Poincare map. If they also give close returns when we say that the
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orbit got stuck in the critical region. Likewise for the returns of the first kind we say
that the orbit got stuck near the separatrix. Also observe that whatever return is
close or not depends not only on the point itself but on the curve under consideration
because we want to have expansion in the tangent direction of this curve. However
we will not emphasize this dependence in order to simplify the notation. In this
section we shall only use the properties of the close returns described in the next two
propositions. Let � = (γ, ρ) be a standard pair. Denote by P (x) the first free return
to some resonant surface and let n(x) be the number of the first free return. We shall
arrange that 1 ≤ n(x) ≤ 3.

We claim that most of the image of a standard curve consists of standard curves.
The precise statements are given below. As it was explained in Section 2.1 we get
more precise bounds for higher iterates since we are able to avoid non-isolated returns.

Proposition 2.2.4. – (a) (Invariance) P (γ) =
�

j
γj where n is continuous on

P −1γj and (γj , ρ̄/cj) is a standard pair where ρ̄ is the induced density on P γ and
cj = P�(P −1γj)

(b) P�(n(x) > 1) ≤ Const ε1/4.

(c) The time before the first free return is
n(x)−1�

j=0

φ(P j+1x)− φ(P jx)

p(I)
+ o(1)

(of course, the angle difference is measured counterclockwise).

P is not defined on a set Z1 ∪ Z2 where Z1 consists of the points which got stuck
and Z2 consists of captured points.

(d) P�(Z1) ≤ ε7/16−δ/4

(e) P�(Z2) ≤ Const
√

ε

(f) (Hyperbolicity) There exists �δ > 0 such that ||dP
−1|| ≤ Const ε

�δ.

Observe that a priori bounds (d) and (e) look unsatisfactory since they do not
preclude that all points get eliminated during the first 1/

√
ε iterations. However

already P
2
γ is sufficiently well distributed to improve these bounds.

Proposition 2.2.5. – (a) (Equidistribution) Let A be a C1 function and � = (γ, ρ)

be a standard pair. Let ( �J, �E) be a point on γ. Then

E�(A ◦ P ) =

� 1

0
A( �J,E)dE + O(ε

�δ).

(b) P�(P
2
x gets captured before the next free return to S)

=
√

εM
� �J )(1 + o(1)

�
.
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(c) P�(P
2
x gets stuck before the next free return to S) ≤ Const

�
ε/| ln ε|.

Proposition 2.2.4 is proved in Section 2.5 and Proposition 2.2.5 is proved in Section
2.6.

2.2.3. Short time evolution. – As we explained in Section 2.1 Proposition 2.2.5
allows us to obtain the Poisson Limit Theorem and the Law of Large Numbers (state-
ments (I) and (II) of Section 2.1) if the number of iterations is much smaller than
1/
√

ε. Let us formulate the precise result used in the proof of Theorem 1.

We define inductively a sequence of curves {γkj} such that
�

j
γkj lie on the part

of the orbit of γ not captured in the resonance after k steps. Put γ01 = γ. If {γkj} is
already defined up to some k, decompose

P γkj =
�

�

γkj� ∪ Z1kj ∪ Z2kj

as in Proposition 2.2.4 and let {γ(k+1)j} be some reindexing of {γkj�}. Let Γk ⊂ γ be
the set of points having representatives

�
j
γkj . For x ∈ Γk let xk = (Jk, Ek) denote

the representative of γkj(x). Let Γ�
k

denote the set of points captured before time k

and Γ��
k

denote the set of points which got stuck at m-th free return for some m ≤ k.

Fix a small number δ1. Let N = [δ1q/
√

ε ].

Proposition 2.2.6. – There exist a function δ2(δ1) such that limδ1→0 δ2 = 0 and a
subset Γ���

N
⊂ γ such that, for all x ∈ ΓN − Γ���

N
,

(a) P�(Γ���N
) = o(δ1),

(b)
��IN − I0 − δ1Ψ(I0)

�� ≤ δ1δ2.

(c) Let t(0)(x) be the time between x0 and xN then, for all x ∈ ΓN − Γ���
N

,

���
√

ε t(0)(x)− δ1

p(I0)

��� ≤ δ1δ2,

(d)
���P�(Γ

�
N

)− δ1λ(I0)

p(I0)

��� ≤ δ1δ2,

(e) P�(Γ��N ) ≤ δ1δ2.

Theorem 1 is derived from Proposition 2.2.6 in Section 2.3. In Section 2.4 we
explain how Proposition 2.2.6 follows from Propositions 2.2.4, 2.2.5 and Lemma 2.2.3.
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2.3. Convergence

Proof of Theorem 1. – Let us first prove this result in the case then (I, φ, θ)(0) are
distributed according to some standard pair �. Let Γ(1) = ΓN −Γ���

N
. Let {γ(1)

j
} be the

union of ΓNj not falling into Γ���
N

. Repeat the procedure described above with each
γ(1)

j
instead of γ and let Γ(2) be union of the resulting sets. Continue inductively to

obtain a nested sequence

γ ⊃ Γ(1) ⊃ · · · ⊃ Γ(n−1) ⊃ Γ(n) ⊃ . . . .

Let {γ(n)
j

} denote the set of the resulting curves. For x ∈ Γ(n) let x(n) = (I(n), E(n))

be the point from the orbit of x on γ(n)
j

and let t(n−1) denote the time between the
returns of x(n−1) and x(n). Set τn(x) =

�
n−1
m=0 t(m)(x). By Proposition 2.2.6

���I(n+1) − I(n) − δ1Ψ(I(n))
��� ≤ δ1δ2,

���
√

ε [τn+1 − τn]− δ1

p(I(n))

��� ≤ δ1δ2.

Let ( �J, �τ ) be the solution of
�J � = Ψ( �J ), τ � = 1/p.

Then �
I([t/δ1]), τ ([t/δ1])

�
= ( �J, �τ )(t) + o(1), as δ1, δ2 −→ 0.

This describes the dynamics of the points from Γ([T/δ1]). Next define Γ(n)�,Γ(n)�� and
Γ(n)��� similarly to Γ�

N
,Γ��

N
and Γ���

N
. It remains to show that Γ�� and Γ��� have small

probability and to compute the asymptotics of Γ� (captured trajectories). First, by
induction

P�

�
Γ(n)�� − Γ(n−1)��� ≤ δ1δ2n, P�

�
Γ(n)��� − Γ(n−1)���� ≤ δ1δ2n

which implies that Γ(n)�� and Γ(n)��� have small measure for n ≤ T/δ1. Denote p
n

=

P�(Γ(n)�). Then the foregoing discussion and Proposition 2.2.6(d) imply

(2.11) p
n+1 − p

n
= δ1(1− p

n
)λ

� �J(nδ1)
��

1 + oδ1→0(1)
�
.

Letting δ1 → 0 we obtain (1.22). This completes the proof of Theorem 1 for (I, φ, θ)

being chosen according to P�. Next, let γα be the first visit of

σα =
�
I = I0, φ = α

�

to S and let ρα denote the measures on γα which is the image of the uniform measure
on σα. Write �α = (γα, ρα). Applying the foregoing discussion to

µ =

� 1

0
P�α dα

we obtain the original statement of Theorem 1.

Remark. – In fact, the proof gives a stronger result. Namely, randomness in θ alone
is sufficient to obtain Markovian evolution.
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2.4. Short time dynamics

Proof of Proposition 2.2.6. – Given γ let

b(x) =
I(Px)− I(x)√

ε
,

b̄γ(x) =

n(x)−1�

j=0

b(P jx), b̄(xk) = b̄γkj(x)
(xk).

We extend b̄(xk) = Ψk (here k is understood mod q) if the trajectory of x gets stuck
or captured for some m ≤ k. Likewise we define n(xk) = nγkj(x)

(xk) and extend it to
1 if xk is not defined. Define

�λj(I) =
�

k

Mjk(I)+
|Lj(I)|

where the sum is over all saddles of (1.9) on S
j
. Write Ψ(x) = Ψj , �λ(x) = �λj if x ∈ Sj .

Let �� = (�γ, �ρ ) be a standard pair such that with �γ ⊂ P
k

γ and �ρ is a normalized
induced density. Then by Proposition 2.2.4 (b)

E
�̃

�
|n(x)− 1|

�
= O(ε1/4).

Next, let �kj denote the pair (γkj , ργ(x0)/ckj) where ckj = P�(xk ∈ γkj). Then

E�

�
|n(xk)− 1|

�
≤

�

j

ckjE�kj

�
|n(x)− 1|

�
≤ Const ε1/4

�

j

ckj ≤ Const ε1/4.

Therefore

E�

����
N−1�

k=0

n(xk)−N
���
�

= O(Nε1/4).

Hence

P�

����
N−1�

k=0

n(xk)−N
��� >

δ2N

2

�
≤ 2ε1/4

δ2
·

Since tk = n(xk)/p(Ik) + o(δ2) we get using Proposition 2.2.1 (a)

P�

����
N−1�

k=0

tk(x)− N

p(I0)

��� > δ2N
�
≤ Constε1/4

δ2
·

Including the part of γNj where the above sum is larger than δ2N in Γ���
N

we obtain
part (c) of Proposition 2.2.6. Next let

�In = I0 +

√
ε n

q
Ψ(I0), ∆n = In − �In.
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We have

∆nq =
√

ε
� n−1�

j=0

q−1�

r=0

�
b̄(xjq+r)−Ψ(xjq+r)

�
(2.12)

+
� n−1�

j=0

�
Ψ(Ijq)−Ψ(�Ijq)

��
+

� n−1�

j=0

�
Ψ(�Ijq)−Ψ(I0)

���

=
√

ε
� n−1�

j=0

q−1�

r=0

�
b̄(xjq+r)−Ψ(xjq+r)

�

+
� n−1�

j=0

O
�
|Ijq − �Ijq|

��
+ O

�
n2√ε

��
.

Lemma 2.4.1. –

(2.13) E�

�� n−1�

k=0

�
b̄(xk)−Ψ(xk)

��2�
≤ Const n2δ20

1 .

Therefore

E�

����
n−1�

k=0

�
b̄(xk)−Ψ(xk)

����
�
≤ Const nδ10

1 .

Proof. – We have

E�

�� �

k

�
b̄(xk)−Ψ(xk)

��2�

= E�

� �

k2−k1>2

�
[ b̄(xk1)−Ψ(xk1)] · [ b̄(xk2)−Ψ(xk2)]

��
+ O(n).

Let k3 = [ 12 (k1 + k2)]. By Proposition 4 (f) the map xk1 �→ xk3 expands distances by
at least ε−

�δ. We claim that this implies that for each standard pair �k3j = (γk3j , ρk3j)

such that γk3j ⊂ P
k3

γ there exists a number ζk3j such that

(2.14)
�� b̄(xk1)−Ψ(xk1)− ζk3j

�� ≤ δ20
1

uniformly on each γk3j . Indeed since the preimages of γk3j under P have lengths O(ε
�δ)

and since b is well approximated by σ which is continuous away from the separatrix of
the inner system we only have to establish (2.14) in case xk1 passes near the separatrix.
To analyze this case we assume that n(xk1) = 1 (other possibilities are similar). Then
by Proposition 2.2.2 ���

dσ(xk)

dEk

��� ≤
Const

d
whereas ���

dEk+1

dEk

��� ≥
Const

d
√

ε
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so the preimage of γk+1,j(x) has Ek-length O(d
√

ε ) and the oscillations of b on such
interval are O(

√
ε ) � 1 verifying (2.14).

On the other hand applying Proposition 2.2.5 (a) for each j we have

E�k3j

�
ζk3

�
b̄(xk2)−Ψk2(xk2))

��
= O(ε

�δ).

Summation over j gives

E�

�
ζk3

�
b̄(xk2)−Ψk2(xk2))

��
= O(ε

�δ).

Combining this with (2.14) we obtain

E�

��
[ b̄(xk1)−Ψ(xk1)] · [ b̄(xk2)−Ψ(xk2)]

��
= O(δ20

1 ).

proving (2.13).

Next, since E�(|b̄(xk)|) = O(1) we get an a priori bound

(2.15) E�

�
|Ik − I0|

�
≤ Const k

√
ε

and hence

(2.16) E�

�
|Ik − �Ik|

�
≤ Const k

√
ε.

Plugging (2.16) into (2.12) we get, for k ≤ N ,

(2.17) E�

�
|∆k|

�
= O

�
δ2
1

√
ε + k2ε

�
.

Plugging (2.17) back into (2.12) we get

∆n = O(δ2
1) + �∆n

where
E�

�
|�∆N |

�
= O(δ3

1).

Adding to Γ���
N

the set of points where |�∆1| > δ3/2
1 we obtain parts (a) and (b) of

Proposition 2.2.6.
Next, using Proposition 2.2.5 (c) we get by induction that for m ≥ 3

P�(Γ
��
m
− Γ��

m−1) ≤ Const

�
ε

| ln ε| ·

Combining this with parts (d) and (e) of Proposition 2.2.4 for m < 3 we get (e).
Let now Qk = P�(Γ�k). Then

Qk+1 −Qk =
�

j

ck−2,jP�k−1,j (Γ
�
k+1 − Γ�

k
)

where ck,j = P�(P
−k

γkj). Using Proposition 2.2.5 (b) we get

Qk+1 −Qk =
� �

j

ck−2,j

�√
ε E�

��λ(xk)
��

1 + o(1)
�
.
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By already proven parts (a) and (e) of Proposition 2.2.6
�

j

ck−2,j = 1−Qk−2 + o(δ1)

so

(2.18) Qk+1 −Qk = (1−Qk−2)
√

ε E�

��λ(xk)
��

1 + o(δ1)
�
.

This gives a priori bounds

(2.19) Qk+1 −Qk = O
�√

ε
�

and Qk = O(δ1).

Combining (2.18) and (2.19) we get

Qk+1 −Qk =
√

ε �λ(xk)
�
1 + O(δ1)

�
.

Thus given r we obtain after the summation over the period
r+q−1�

k=r

Qk+1 −Qk =
√

ε λ(I0)
�
1 + O(δ1)

�
.

This proves part (d) of Proposition 2.2.6.

2.5. Free returns

2.5.1. Definitions. – Here we prove Proposition 2.2.4. First we need to give precise
definitions of close returns and also to explain when we consider an orbit stuck. Let
(J,E) �→ (J, E ) denote the Poincaré map. Given a standard curve we write

k =
dE

dJ
, q =

d2E

dJ 2
, r =

d

dE
ln ρ, k̄ =

dE

dJ
, q̄ =

d2E

dJ
, r̄ =

d

dE
ln ρ̄.

Close returns of the first kind are defined by the condition that the orbit of (J,E)

is within distance
�

ε/| ln ε| from N ε. Close returns of the second kind are more
complicated to define. Indeed we need to satisfy several conditions (conditions (a)–
(c) of the definition of the standard pair). We begin with expansion. Observe that

dE

dE
=

∂E

∂E
+ k

∂E

∂J
=

∂E

∂E
+ O(1)

by Proposition 2.2.1 and part (b1) of the definition of the standard pair. Hence
expansion may fail only near zeroes of ∂E/∂E. By Proposition 2.2.1 if c is sufficiently
small then these zeroes are close to the critical points of σ. Proposition 2.2.1 and
Assumption (F) now imply that if |∂E/∂E| ≤ δε−3/8 then |∂2E/∂E2| ≥ Const/

√
ε.

Also
d2E

dE2
=

∂2E

∂E2
+ 2k

∂2E

∂E∂J
+ k2 ∂2E

∂J2
+ q

∂E

∂J
=

∂2E

∂E2
+ O(ε−(1/2−δ)).

Hence |d2E/dE2| ≥ Const/
√

ε near possible zeroes of dE/dE. We now define close
returns of the second kind by the condition |dE/dE | < ε−1/4. If a point has a close
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return of the first kind we declare it stuck and remove it from consideration. For the
close returns of the second kind we truck the orbit for two more iterations to see if
its recovers the lost hyperbolicity. Namely if

���
dE

dE

��� < εδ

we declare the point stuck. Otherwise let (J, E) and (J, E) be the images of (J, E ).

If ���
dE

dE

��� < ε−1/16

we declare the orbit stuck if
���
dE

dE

��� < ε−(1/4+δ) or
���
dE

dE

��� < ε−(1/4+δ)

or if (J, E) or (J, E) experience close returns of the first kind. Otherwise we declare
the orbit free. If

(2.20) ε−1/16 ≤
���
dE

dE

��� < ε−1/8

we declare the orbit stuck if
���
dE

dE

��� < ε−1/8 or
���
dE

dE

��� < ε−(1/4+δ)

or if (J, E) or (J, E) experience close returns of the first kind. Otherwise we declare
the orbit free. Finally if

���
dE

dE

��� ≥ ε−1/8

then we set an orbit free if
���
dE

dE

��� > ε−1/4,

otherwise we declare it stuck.

2.5.2. Free orbits form standard pairs. – We now show that these rules al-
low us to preserve standard pairs. First we consider the case when all the traversed
resonances are weak and then describe the modifications needed to treat strong reso-
nances. We begin with points without close returns. We have

(2.21) k̄ =
∂J/∂E + k∂J/∂J

∂E/∂E + k∂E/∂J
·

Combining the identity
∂J

∂E
· ∂E

∂J
=

∂J

∂J
· ∂E

∂E
+ O(1)
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(valid by (1.19)) with Proposition 2.2.1 we get

(2.22)
∂J

∂E
= O(ε)

∂E

∂E
+ O(ε).

Thus on the set where |∂E/∂E|−1 = O(1) we have

(2.23)
∂J/∂E + k∂J/∂J

dE/dE
= O(ε),

so k̄ = O(ε) and (b1) follows if C1 is large enough. Next

q̄ =
∂2J/∂E2 + 2k∂2J/∂J∂E + k2∂2J/∂J2

(dE/dE)2
(2.24)

− (∂J/∂E + k∂J/∂J)(∂2E/∂E2 + 2k∂2E/∂J∂E + k2∂2E/∂J2)

(dE/dE)3

+ q
� ∂J/∂J

(dE/dE)2
− dJ/dE∂E/∂J

(dE/dE)3

�

= (I) + (II) + (III).

Now
��(I)

�� =
O(
√

ε )

|∂E/∂E|2
+

O(ε5/4)

|∂E/∂E|
+ O(ε5/4) = O(ε).

Next by (2.23)

(II) = O
�
ε× ∂2E/∂E2 + 2k∂2E/∂J∂E + k2∂2E/∂J2

(dE/dE)2

�
.

The second factor here is
O(1/

√
ε)

|∂E/∂E|2
+

O(ε1/4)

|∂E/∂E|
+ O(ε1/4) = O(1)

so (II) = O(ε). Finally using (2.22) we get

(III) = q ×
�
O
� 1

|∂E/∂E|2
�

+ O
� ∂E/∂J

|∂E/∂E|2
ε
��

= O(ε1+δ).

Thus

(2.25) q̄ = O(ε).

Condition (a) is automatic since we delete points which come close to critical set
and the distance between those points is of order 1. Next,

ρ̄(E ) =
1

c̄

�
ρ(E)/

dE

dE

�
,

where c̄ is the normalization constant. Hence

(2.26) r̄ =
r

(dE/dE)
− d2E/dE2

(dE/dE)2
=

r

(dE/dE)
+ O(ε1/4) + O

� 1/
√

ε

(dE/dE)2

�
.
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The first term is O(ε1/4) and the last is

O
� 1/

√
ε

(ε−1/4)2

�
= O(1)

so (c) follows if C3 is large enough.

We now come to the close returns of the second kind. Consider the case |dE/dE | ≥
ε−1/8 first. In this case (2.23) gives k̄ = O(ε). Next (2.24) and (2.23) give q̄ = O(ε3/4)

and (2.26) implies O(r̄) = ε−1/4. Thus if the orbit brakes free on the second step then
we have

¯̄k = O(ε), ¯̄q = O(ε), ¯̄r = O(1)

verifying (a)–(c).

Next if ε−1/16 ≤ |dE/dE | ≤ ε−1/8 then we get

k̄ = O(ε), q̄ = O(ε5/8), r̄ = O(ε−3/8)

If the orbit survives the next steps we have

(2.27)
� ¯̄k = O(ε), ¯̄q = O(ε3/4), ¯̄r = O(ε−1/4),

¯̄̄
k = O(ε), ¯̄̄q = O(ε), ¯̄̄r = O(1).

In case εδ < dE/dE < ε−1/16 these estimates take the form

(2.28)






k̄ = O(ε1−2δ), q̄ = O(ε1/2−4δ), ¯̄r = O(ε−(1/2+2δ))

¯̄k = O(ε), ¯̄q = O(ε1−2δ), ¯̄r = O(ε−(1/4+δ)),
¯̄̄
k = O(ε), ¯̄̄q = O(ε), ¯̄̄r = O(1).

This proves part (a) of Proposition 2.2.4. Also, part (f) follows because at each step
we have |dE/dE | > εδ and on the last step the expansion is at least ε−1/4. Part
(c) follows from Proposition 2.2.1(a). This concludes the proof of parts (a)–(c) of
Proposition 2.2.5 in case all three resonances γ has to traverse are weak. The case
where some of the resonances are strong requires minimal modifications. First we
have to remove the points coming too close to N ε. Since the distance between the
saddles of (1.9) and the zeroes of of ∂E/∂E is of order 1 by (2.7) and assumption (E)
we still have uniform lower bounds on the image lengths. For the estimates of k, q and
r we claim that if at some point |∂E/∂E| > ε−1/4 then the worst case is still when
|∂E/∂E| ∼ ε−1/4. Indeed (2.23) holds near N ε by Proposition 2.2.2. Thus comparing
what happens near N ε with points near parabolic pieces we see that for terms having
dE/dE, (dE/dE)2 and (dE/dE)3 in the denominator the denominator is multiplied
by 1/dε1/4, 1/d2ε1/2 and 1/d3ε3/4 respectively whereas the numerator increases by
| lnm d|/d, ln2m d/d2 and | ln3m d|/d3 respectively so the situation is much better. It
remains to prove parts (d) and (e) of Proposition 2.2.4.
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2.5.3. Measure estimates. – We complete the proof of Proposition 2.2.4 here.
Again we first analyze the case when all resonances are weak and describe the mod-
ifications needed for strong resonances at the end of this section. In this section we
shall make a frequent use of two estimates. The first is a standard distortion bound
(see Lemma H.0.1 of Appendix H). The second is (2.32) below.

Let E0 be a point where dE/dE = 0. Then near E0

(2.29)
�c1√
ε
≤

���
d2E

dE2

��� ≤
�c2√
ε
·

Hence in the region where

(2.30)
���
dE

dE

��� ≤ δε−3/8

we get

(2.31)
c�1√
ε
|E − E0| ≤

���
dE

dE

��� ≤
c�2√
ε
|E − E0|.

For these values of E we have

(2.32)
c��1√
ε

(E − E0)
2 ≤ |E − E0| ≤

c��2√
ε

(E − E0)
2.

It follows from (2.31) that the close returns of the second kind have measure O(ε1/4).

We now estimate the measure of Z1. It consists of several parts. Points coming too
close on the first step have measure

(2.33) P�(ZI) ≤ Const ε1/2+δ.

by (2.31) (since ρ is uniformly bounded above and below by parts (a) and (c) of the
definition of the standard pair). Next there are points which satisfy εδ < dE/dE <

ε−1/16. In the worst case scenario all those points will be removed at the second step
so we can not do better than estimate the measure of points removed from this part
by their total measure, that is

(2.34) P�(ZII) ≤ Const ε7/16

(see (2.31)). Next, consider points satisfying (2.20). They satisfy

|E − E0| ≤ Const

and if these points are removed on the second step then (2.31) and (2.32) show that
E should be close to the zeroes of ∂E/∂E. Hence on the second step we remove
finitely many intervals of E-length O(ε3/8) (till the end of this section we use the
phrase ‘finitely many’ to mean that the corresponding number is uniformly bounded
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as ε → 0). Next (2.31) and (2.32) show that the induced density (which we denote �ρ
to distinguish it from the conditional density ρ̄) satisfies

�ρ(E) =
ρ(E)

|dE/dE|
∼ ε1/4

�
|E − E0|

.

Since 1/
�

|E − E0| is increasing towards E0 the worst case is when one of whose
intervals contains E0. In this case the probability ∆ of getting stuck can be estimated
with the help of (2.32). We get

∆2

√
ε

= Const ε3/8

that is

(2.35) P�(ZIII) ≤ Const ε7/16

On the third step we have to remove finitely many critical intervals (where |∂E/∂E| ≤
ε−1/4) and several non-critical intervals.

Let us first estimate how much we remove from the critical intervals. Reasoning
as above we see that on each interval we have to remove a set of E-length O(ε1/4−δ)

hence its E-length is O(ε3/8−δ/2) and E-length is O(ε7/16−δ/4). Thus

(2.36) P�(ZIV ) ≤ Const ε
7
16−

δ
4 .

Now consider non-critical intervals. Recall constants c1, c2 from the definition of the
standard pair. Decompose

�
ε−1/16 <

���
∂E

∂E

��� < ε−1/8,
���
∂E

∂E

��� ≥ ε−1/4
�

=
�

α

Yα

where length(PYα) < c2 and either length(PYα) > c1 or Yα is adjacent to one of
the interval removed at the first two steps. If the first alternative holds we call Yα

complete, otherwise we call it incomplete. Let Zα = P (Yα).

Figure 3. Thick line stands for C . 1 is the interval removed at the first
step, 2 are the intervals removed at the second step, 3 are critical intervals,
4 are incomplete intervals, 5 are complete intervals.
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By the estimates of Section 2.5.2, P has bounded distortion on Yα (since Zα are
non-critical). We remove a set of E-measure O(ε1/4−δ) from each Zα. This set has
E-measure O(ε1/4−δ|Yα|). Taking the union of all αs we get a set of E-measure
O(ε1/4−δ)|E1 − E0| where ∂E/∂E(E1) = ε−1/8. Thus the total E-measure of the
deleted set is O(ε3/8ε1/4−δ) = O(ε5/8−δ). Since P expands by at least ε−1/16 on the
set where (2.20) holds the total measure deleted from the complete intervals is

(2.37) P�(ZV ) ≤ Const ε11/16−δ.

There are also finitely many incomplete intervals. Since the minimal extension on
the second step is Const ε−1/4 for non-critical intervals we conclude that E-length of
the removed set is O(ε1/2−δ) and since the expansion of E �→ E is at least ε−1/16 we
get

(2.38) P�(ZVI) ≤ Const ε9/16−δ.

Finally we consider points with |dE/dE | > ε−1/8. We remove intervals of E-length
O(ε3/8) and since we have expansion of at least ε−1/8 the bound we obtain is

(2.39) P�(ZVII) ≤ Const
√

ε.

This completes the proof of Proposition 2.2.4 (d) for weak resonances. In the
presence of strong resonances there are additional complications.

(a) There are points which are removed on the first step due to returns of the first
kind.

(b) Returns of the first kind could appear after the returns of the second kind.
(c) There are points which come close to N ε on the second step without getting

stuck and we need to check that this does not destroy our estimates.
Case (a) contributes a set of measure O(

�
ε/| ln ε|) by Proposition 2.2.2 (d).

To handle (b) observe that the probability to have a close return of the first
kind on the second step is O(ε1/2| ln ε|−1/2) since we have to remove an interval
of E-length O(ε1/2| ln ε|−1/2) and E-length of the preimage of any such interval is
O(ε1/2| ln ε|−1/4). On the third step we have to distinguish critical and non-critical
cases. In the critical case we have a bound O(ε1/2| ln ε|−1/8) by the argument used for
the second step. In the non-critical case we see using the bounded distortion property
that we remove a set of E-measure

O
�
ε1/2| ln ε|−1/2|E1 − E0|

�
= O

�
ε3/4| ln ε|−1/2

�

so the contribution of non-critical intervals is O(ε5/8| ln ε|−1/4).

Finally (c) is of no concern since the expansion near N ε is better than the expansion
away from N ε and the bounded distortion property still holds so our estimates only
become better.
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It remains to prove Proposition 2.2.4 (e). Again capture can occur either on the
first step or after a return of the second kind. For immediate capture we use a
bound O(

√
ε ) of Proposition 2.2.2 (c). Captures on the second and the third steps

are analyzed similarly to close returns of the first kind. The difference is that now
we use Proposition 2.2.2 (d) instead of 2.2.2 (c) so we do not have powers of δ in the
corresponding estimates. So instead of O(ε1/2+δ/4) bound we get O(ε1/2) bound.

We also observe that this bound comes from possible captures in critical intervals.
Namely for captures from non-critical intervals we have O(ε5/8) bound corresponding
to O(ε5/8+δ/2) bound for the first kind returns.

Proposition 2.2.4 follows.

2.6. Equidistribution

2.6.1. Equidistribution on a unit scale. – We prove Proposition 2.2.5 here. To
prove (a) observe that if |E−E0| > ε1/4−δ then r̄ < Cε2δ. Divide the part of γ where
|E−E0| > ε1/4−δ into segments {Yα} so that the image of each segment has E-length
1. Then by Lemma H.0.1 on each Yα the map E �→ E is ε2δ close to linear. Since
linear maps have required equidistribution properties part (a) of Proposition 2.2.5
follows.

2.6.2. Isolated returns. – Our next task is to prove part (c) of Proposition 2.2.5
following the outline given in Section 2.1. We say that a standard curve γ has an
isolated return if for all E0 such that dE/dE(E0) = 0 we have

���
∂E

∂E
(E0)

��� > ε−( 1
4+4δ).

Let us derive some consequences of the isolation. Let X be a component consisting
of points which have a close return of the second kind but are not removed at the
first step. X consists of three segments X = X1 ∪ X2 ∪ X3 where

X1 =
�

εδ ≤
���
dE

dE

��� ≤ ε−1/16
�

, X2 =
�

ε−1/16 <
���
dE

dE

��� ≤ ε−1/8
�

,

X3 =
�

ε−1/8 <
���
dE

dE

��� ≤ ε−1/4
�

.

Let (E1, J1) be the endpoint of X in X1. Then |E1−E0| ≤ Const ε1/2+δ by (2.31). So
by property (b1) of standard pairs the J-coordinate satisfies |J1−J0| ≤ Const ε3/2+δ.

It follows from (2.32) that |E1 − E0| ≤ Const ε1/2+2δ and Proposition 2.2.1 (d) gives
|J1 − J0| ≤ ε1+δ. It follows from the bounds on the second derivatives of E given by
Proposition 2.2.1 that

(2.40)
���
∂E

∂E

���(E1) ≥
1

2
ε−(1/4+4δ).

MÉMOIRES DE LA SMF 128



2.6. EQUIDISTRIBUTION 39

Next let E2 be the closest point to E1 in X such that |dE/dE(E2)| = ε−1/4. Then
(2.28) implies that the arguments of Section 2.5.3 are available giving

(2.41) |E2 − E1| ∼ Cε1/4−4δ.

Now (2.32) implies that |E2 − E1| ∼ Const ε3/8−2δ and (2.31) gives

(2.42)
���
dE

dE
(E2)

��� ≥ Const ε−1/8−2δ.

2.6.3. Getting stuck at isolated returns. – Let �Z1 denote the event that the
orbit gets stuck due to the second kind return.

Lemma 2.6.1. – If γ has an isolated return then

P�( �Z1) < ε1/2+δ.

Proof. – We need to show how to improve (2.34), (2.35), (2.36) and (2.39) for isolated
returns.

We begin with X1. An argument similar to the proof of (2.40) shows that on P X1

(2.43)
���
dE

dE

��� ≥
1

10
ε−(1/4+4δ)

so nothing is removed on the second step. Also (2.43) means that P has bounded
distortion on P X1. Consider two cases.

1) |P 2 X1| > 1. By the bounded distortion E-measure of the removed set is at most
O(ε1/4−δ|P X1|) = O(ε5/8−δ) and since |dE/dE | > εδ on X1 the E-measure of the
removed set is O(ε5/8−2δ).

2) |P 2 X1| ≤ 1. Since E-measure of the removed set is O(ε1/4−δ), by (2.43) E-
measure of the removed set is at most O(ε1/2+3δ) and its E-measure is at most

P( �ZII) = O(ε1/2+2δ).

(Here the tilde is used to emphasize that this inequality is valid only for isolated
returns).

Case III is analyzed similarly to case I giving

P( �ZIII) = 0.

In case IV we have the following changes comparing with case II. Due to (2.31) and
(2.32)

ε1/4

C
≤

��P ( X2)
�� ≤ Cε1/4
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and (2.41) shows that (2.43) still holds so only case (1) can happen. Now E-length of
the removed set is O(ε1/4−δ|P X2|) = O(ε1/2−δ). But the expansion on the first step
is at least ε−1/16 so

P ( �ZIV ) = O(ε9/16−δ).

Case VII is analyzed as before except that due to (2.42) for points having close return
on the second step the minimal expansion on the first step is now O(ε−1/8−2δ) giving
much needed improvement of 2δ. Thus

P( �ZVII) = O(ε1/2+δ).

This completes the proof of Lemma 2.6.1.

2.6.4. Proof of Proposition 2.2.5 (c) for returns of the second kind

In the next section we show that non-isolated returns are rare. More precisely we
establish the following result.

Lemma 2.6.2. – P(component containing P
2
x has a non-isolated return) =

O(ε1/8−4δ| ln ε|).

This Lemma implies the estimate of part (c) of Proposition 2.2.5 for returns of the
second kind since the contribution of isolated returns is O(ε1/2+δ) by Lemma 2.6.1
and the contribution of the non-isolated returns is

O
�
ε1/8−4δ| ln ε| × ε7/16−δ/4

�
= O

�
ε9/16−(17/4)δ| ln ε|

�

where the first factor is the probability of a non-isolated returns and the second factor
is the probability of getting stuck in a non-isolated return.

2.6.5. Isolated returns are rare. – Here we prove Lemma 2.6.2. Let

Cε =
�∂E

∂E
= 0

�
, Uε =

����
∂E

∂E

��� < ε−3/8
�

, H ε =
����

∂E

∂E

��� ≥ ε−3/8
�

.

Thus Cε is the critical set, Uε is a small neighborhood of the critical set and on
H ε our system is strongly hyperbolic.

We want to follow the outline of Section 2.1 but we need to address two issues.
(i) The isolated returns are defined in terms of dE/dE, not ∂E/∂E.

(ii) We know that
∂E

∂E
∼ 1√

ε

�∂w

∂I

∂σ

∂E
+ o(1)

�

but we need to check that o(1) term does not invalidate our arguments.
To address (i) let E0 be a point such that dE/dE(E0) = 0. Then

∂E

∂E
= O(1)
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whereas
���

d

dE

∂E

∂E

��� =
���
∂2E

∂E2
+ O(1)

��� ≥
Const√

ε
·

Therefore either there exists E�0 such that |E�0−E0| ≤ Const
√

ε and (E�0, I
�
0) ∈ Cε or

E0 is near a boundary of its standard curve.
In the first case we have |E �

0−E0| ≤ Const
√

ε so if the return is non-isolated then

(2.44)
���
∂E

∂E
(E

�
0)

��� ≤ 2ε−(1/4+4δ).

Therefore we have the following statement.

Corollary 2.6.3. – If a subcurve �γ ⊂ P
2
γ has a non-isolated return then either

there exists x ∈ �γ such that x ∈ Cε and d(Px, Cε) ≤ Const ε1/4−4δ or d(∂�γ,Cε) ≤
Const

√
ε.

Now in our inductive construction we have a freedom of how to break Pγ into
pieces. If we avoid putting the endpoints in Uε then the second possibility would
means that �γ experienced a close return and this has probability ε1/4. Thus we can
ensure isolation by excluding (2.44). This takes care of (i).

To handle (ii) we show that Cε has properties similar to C . Namely on Cε,
∂

∂E
(∂E/∂E) �= 0, so Cε is a graph of a function E = F (J) with

(2.45)
∂F

∂J
= −∂2E/∂E∂J

∂2E/∂E2
= O

� 1√
ε

�
.

Let ( �E, �J ) be the image of Cε. Then

(2.46)
1

C∗ε
≤

���
d �E
dJ

��� =
���
∂E

∂J

���(F (J), J) ≤ C∗

ε

by twist condition.

The next lemma shows what we can disregard points with small expansion.

Lemma 2.6.4. – P
�
∃j ≤ n(x) + n(P (x)) : P jx ∈ Uε

�
= O(ε1/8).

Proof. – Since close returns have probability O(ε1/4) � ε1/8 we can consider only
points avoiding close returns. In this case we have bounded distortion property so
the probabilities are the same for image and preimage giving the result.

Now consider Pγ ∩ H ε. It has many components.

Lemma 2.6.5. – J-distance between consecutive components is O(ε).
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Proof. – If we lift the picture to a strip in (E, J)-plane then the E-distance between
the components is O(1). On the other hand by (2.22)

dJ

dE
= O

����
∂E

∂E

���
�
ε.

Since ln |∂E/∂E| oscillates by O(1) on components from H ε the result follows.

Now consider P−1Cε. Since D = (∂E/∂E)(∂J/∂J)− (∂E/∂J)(∂J/∂E) = 1+ o(1)

we have
∂J

∂J
∼ ∂E

∂E
, ∂E

∂J
∼ −1

ε

∂w

∂I
,(2.47)

∂J

∂E
= O(

√
ε ),

∂E

∂E
= O(1).(2.48)

Lemma 2.6.6. – Take (E1, J1) ∈ Cε. Let P−1(E1, J1) = (E1, J1) belong to one of
the components of Pγ ∩ H ε. Then there exists (E

∗
1 , J

∗
1 ) ∈ Cε such that

(2.49) |J ∗1 − J1| ∼
Const ε

|(∂J/∂J)(J1)|

and P−1(E
∗
1 , J

∗
1 ) belongs to either the consecutive component of Pγ ∩ H ε or to Uε.

Figure 4. Components of Pγ (thin lines) and P−1Cε (thick lines) have
many crossings

Proof. – Suppose that ∂J/∂J(J1) = (∂E/∂E)(E1, J1)/D > 0. Let J = f1(E) and J =

f2(E) be equations of consecutive components of Pγ. We claim that P−1Cε can not
be squeezed between the graphs of f1 and f2. Indeed by property (b1) of standard
pairs fj(E) have slopes O(ε). Also the distance between the components is O(ε) by
Lemma 2.6.5. On the other hand P−1Cε has slope at least c ε5/8 by (2.45), (2.47)) and
(2.48). This shows the existence of the intersection. It remains to establish (2.49).

We have by the Intermediate Value Theorem

|J1 − J∗1 | = |J1 − J
∗
1 |

dJ

dJ
(E♦, J♦).
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Next
dJ

dJ
=

∂J

∂J

�
1 + o(1)

�
=

∂E

∂E
(E♦, J♦)

�
1 + o(1)

�
.

Using the definition of standard pairs and Proposition 2.2.1 we see that on Pγ

���
d

dE

∂E

∂E

��� ≤
Const√

ε
·

Next if the image of [E♦, E1] belongs to H ε then |E1 − E♦| ≤ ε3/8 so that
���
∂E

∂E
(E1)−

∂E

∂E
(E♦)

��� ≤ ε−1/8

and hence
∂E

∂E
(E♦, J♦) =

∂E

∂E
(E1, J1)

�
1 + o(1)

�
.

This completes the proof of (2.49). Lemma 2.6.6 is proved.

Let now E2 < E1 < E3 be such that the interval [E2, E3] inside Pγ is the preimage
of the standard component containing (E1, J1). Let ∆E = E3−E2, ∆J = |J1− J

∗
1 |.

By bounded distortion, (2.47) and Lemma 2.6.6

|∆E| ≤ Const

∂E/∂E(E1, J1)
≤ Const

ε
|∆J |.

Let Rε ⊂ Cε denote the subset of points having non-isolated returns. Let (Eα, Jα)

be the points of the intersection Rε

�
P 2γ

�
P H ε and consider corresponding

∆Eα,∆Jα. It follows that
�

α

|∆Eα| ≤
Const

ε

�

α

|∆Jα| ≤
Const

ε
|Rε ∩ K ε|

where K ε is the interval of feasible values of J after two passages. Observe that
|K ε| ≤ Const

√
ε ln ε since J jumps by at most O(

√
ε ln ε). By (2.46) each component

of Rε has J-length O(ε5/4−4δ). Since it takes at least the length of Constε to wind
around the cylinder there are at most O(| ln ε|/

√
ε) such components intersecting P

2�γ.

Their total measure is O(ε3/4−4δ| ln ε|). Thus

|Rε ∩ K ε| ≤ Const ε3/4−4δ| ln ε|.

Therefore �

α

|∆Eα| ≤ Const ε−1/4−4δ| ln ε|.

We need to estimate the measure of preimages of these intervals. Since P expands by
at least Const ε−3/8 by the definition of H ε this measure is at most ε1/8−4δ| ln ε| as
claimed.
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2.6.6. Passages near saddle points. – We are now ready to complete the proof
of Proposition 2.2.5. Divide γ into subintervals {Zα} such that |P 2

Zα| ∼ 1. Again for
most segments the map Zα �→ P

2
Zα has distortion O(εδ) and so Proposition 2.2.2 (d)

gives

P�

�
P

2
x gets captured before(2.50)

the next return | x ∈ Zα

�
=
√

ε λj(x)+2(x).

To prove part (b) of Proposition 2.2.5 we need to get this estimate with next return
replaced by next free return. The problem is that near the parabolic tip the preimage
of a set of E-measure O(

√
ε ) can have measure O(

√
ε ) (see (2.32)). Therefore on the

second step a set of measure O(
√

ε ) can be removed so that (2.50) could fail if we
replace P

2 by P . In other words we need to show that most of the tips of P
2
γ do not

get captured immidiately. To do so we can extend the definition of isolation to require
d(E0, N ε) ≥ ε1/4. Arguing as in subsection 2.6.5 we can show that most returns are
isolated in the sense of this new definition. Therefore captures of the second step
are much less likely that the captures at the first step so that (2.50) gives the main
contribution in Proposition 2.2.5 (b). This completes the proof of part (b).

The new notion of isolation also allows to improve the estimate for the measure of
points getting stuck due to a return of the first kind to O(ε1/2| ln ε|−1/2) (even though
the bound O(ε1/2| ln ε|−1/8) established in Section 2.5 would suffice for the proof of
Theorem 1). This completes the proof of part (c) of Proposition 2.2.5.

2.7. Theorem 2

2.7.1. Preliminaries. – We shall follow the main ideas of the proof of Theorem 1.
We need to supplement Propositions 2.2.1 and 2.2.2 by the description of the dynamics
of captured orbits. In the Proposition below d is the closest distance the orbit comes
to N ε during the time of capture (this distance is realized at either entrance into the
resonance or the exit from it).

Proposition 2.2.2*. — The Poincaré map P : S → S satisfies the following on
the set of captured orbits. Let orbit of (J, E) be captured near the saddle θjk and
(J, E ) = P (J,E). Then for d >

�
ε/| ln ε| the following holds:

(a) sup
d<

√
ε/ln ε

��J −Qjk(J)
�� −→ 0.

(b) There exists a function c̄(I) such that

∂E

∂E
∼ c̄(I)

ln2 ε

ε
,

∂E

∂J
= O

� ln2 ε

ε3/2

�
,

∂J

∂J
= O

� ln2 ε√
ε

�
,

∂J

∂E
= O(ln2 ε).
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(c) For any δ̄ > 0 the estimates for the second derivatives are worse than the
estimate of Proposition 2.2.2 by a factor of O(ε−(1+δ̄)). Thus

∂2J

∂E2
= O(ε−(3/4+δ̄)),

∂2E

∂E2
= O(ε(−7/4+δ̄)),

∂2J

∂J∂E
= O(ε(−5/4+δ̄)),

∂2E

∂J∂E
= O(ε−(9/4+δ̄)),

∂2J

∂J2
= O(ε−(7/4+δ̄)),

∂2E

∂J2
= O(ε−(11/4+δ̄)).

(d) The time of capture is bounded by Const ln ε.

(e) Prob�

�
d <

�
ε/| ln ε|

�
= O

��
ε/| ln ε|

�
.

The proof of Proposition 2.2.2* is given in the Appendix F. The explicit expression
for c̄(I) is (recall the notation of Section 1.3)

c̄(I) =
−C∗c(I) c(Q(I))

4M(Q(I))
· ∂w

∂I

�
Q(I)

�
.

Next we extend P to captured points as follows. If the orbit gets captured we let
P = P unless d <

�
ε/| ln ε| in which case we declare the orbit stuck. Propositions

2.2.4 and 2.2.5 have to be modified as follows.

Proposition 2.2.4*. — Proposition 2.2.4 remains valid with the new definition of
P .

The proof of Proposition 2.2.4* for captured points is similar but easier then the
proof (of Proposition 2.2.4) for non captured points. Indeed for captured points the
expansion is stronger while distortion is still under control. We leave the details for
the reader.

Proposition 2.2.5*. — Proposition 2.2.5 remains valid with the new definition of
P .

Proposition 2.2.5* follows immediately from Proposition 2.2.5 since we now exclude
a smaller set.

Comparing to subsection 2.2.3 we now enlarge Γ��
k

since some captured points get
stuck afterwords. We let Γ�

k
to be the set of points which have been captured but

have not been stuck so we have Γ�
k
⊂ Γk in the new definition. Let Γ∗

Njk
denote

the set of points experiencing exactly one capture which happens near θjk and let
�ΓN = Γ�

N
−

� �
jk

Γ∗
Njk

�
.

Proposition 2.2.6*. — There exist a function δ2(δ1) such that limδ1→0 δ2 = 0 and
a subset Γ���

N
⊂ γ such that

(a) P�(Γ���N
) = o(δ1),

(b)
��IN − I0 − δ1Ψ(I0)

�� ≤ δ1δ2 for all x ∈ ΓN − (Γ�
N
∪ Γ���

N
).
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(c) Let t(0)(x) be the time between x0 and xN then
���
√

ε t(0)(x)− δ1

p(I0)

��� ≤ δ1δ2,

for all x ∈ ΓN − (Γ�
N
∪ Γ���

N
),

(d1)
���P�(Γ

∗
Njk

)− δ1Mjk(I0)+
Lj(I0)

��� ≤ δ1δ2 and for x ∈ Γ∗
Njk

(d2) IN −Qjk(I0) = o(1),

(d3) t0(x) ≤ Const N ,

(e) P�(Γ��N ) ≤ δ1δ2,

(f) P�(�ΓN ) ≤ δ1δ2.

The proof of Proposition 2.2.6* is similar to the proof of Proposition 2.2.6. The
only new issue is to show that the set of points experiencing more than one collision
has measure oδ1→0(N

√
ε ). This is done in two steps. First we use Proposition 2.2.5 (b)

to show that the set of points experiencing at least one collision by the time of the
n-th return has measure at most Cn

√
ε. Secondly we use this bound to deduce that

the set of points experiencing at least two collisions by the time of the n-th return
has measure at most (Cn

√
ε )2.

2.7.2. Proof of Theorem 2. – We follow the proof of Theorem 1. Again it is
enough to obtain the result for (I, φ)(0) being distributed according to a standard
pair �.

We define Γ(n), Γ(n)���, Γ(n)��, �Γ(n) and γ(n)
j

, similarly to the definitions of Section
2.3. As before we show that if n ≤ T/δ1 then the measures of Γ(n)���, Γ(n)�� and
�Γ(n) are small. Also Proposition 2.2.6* (b) shows that I(n) changes little between
τn and τn+1 except for a small measure set so it is enough to restrict our attention
to (I(n), τn). We want to show that as ε → 0 and δ1(ε) → 0 at appropriate rate
(I(t/δ1), τt/δ1

) converges to a Markov process with generator

(LA)(I, τ) = Ψ
∂A

∂I
+

1

p

∂A

∂τ
+

�

jk

Mjk(I)+
Lj(I)

�
A(Qjk(I), τ)−A(I, τ)

�
.

We first show that the family {(I(t/δ1), τt/δ1
)} is tight.

Let T0 be a small number. Since by Proposition 2.2.6* this family is uniformly
Lipshitz apart from the jumps by [25], Section VI.5 it suffices to show that given
κ > 0 there exists T0, ε0, δ0 such that

Prob
�
∃t0 ∈ [0, T − T0] : I(t/δ) experience(2.51)

at least two jumps on [t0, t0 + T0]
�
≤ κ

provided that δ1 ≤ δ0, ε ≤ ε0.
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To this end we show that there are constants C1, C2 > 0 such that

(2.52) P� (there are at least m jumps for by time T0/δ1) ≤ C1(C2T0)
m.

Inequality (2.52) with m = 2 implies (2.51) since the interval [0, T ] can be subdi-
vided into O(T−1

0 ) subintervals of size T0. So it remains to prove (2.52). Proposition
2.2.6* (f) allows us to neglect points having at most two jumps between τn and τn+1

for some n. Let
wmn = P�( J

mn
)

where

J
mn

= {there are at least m jumps by time n but there is
at most 1 jump on τk, τk+1 for each k ≤ n}.

We wish to show that

(2.53) wmn ≤ C1 (C2nδ1)
m

Proposition 2.2.6* (d1) gives a recursive relation

wm+1,n+1 ≤ wm+1,n + Kδ1wmn

from which (2.53) follows by induction. (2.53) implies (2.52) proving the tightness.
Let (I(t), τ (t)) be a limit point. We shall show that for any functions of compact

support B1, . . . , Bm, A for any moments s1 < s2 < · · · < sm < t1 < t2

E
� �

k

Bk

�
I(sk), τ (sk)

��
A

�
I(t2), τ (t2)

�
−A

�
I(t1), τ (t1)

�
(2.54)

−
�

t2

t1

(LA)
�
I(s), τ (s)

�
ds

��
= 0.

To establish (2.54) we let nq (q = 1, 2) be the numbers such that nqδ1 are closest to
tq. Take some γ(n1)

j
and let �j be the corresponding standard pair. We show that, as

ε → 0 and δ(ε) → 0,

(2.55) E�j

�
A(I(n2), τn2)−A(I(n1), τn1)− δ1

n2�

s=n1

(LA)(I(s), τs)
�
−→ 0.

Let γ(s)
r be standard curves such that P

−(s−n1)N
γ(s)

r ⊂ γ(n1)
j

and let �(s)r be the
associated standard pairs. Let (I∗, τ∗) be values of action and time for a point from
γ(s)

r . Then on γ(s)
r we have (I, τ) = (I∗, τ∗) + o(1). We shall show that

(2.56) E
�
(s)
r

�
A(I(n2), τn2)−A(I(n1), τn1)− δ1(LA)(I∗, τ∗)

�
= o(δ1).

Then the summation over r and s will give (2.55). Next, since the product of B’s in
(2.54) is almost constant on γ(n1)

j
we have

E�j

�
B

�
A(I(n2), τn2)−A(I(n1), τn1)− δ1

n2�

s=n1

(LA)(I(s), τs)
��
−→ 0
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as ε → 0, δ(ε) → 0 where B =
�

k
Bk(I(−(n1−sjδ1), τ(−(n1−sjδ1)).

Summing over j and passing to the limit as ε → 0 we obtain (2.54) as claimed.

To establish (2.56) we consider the contribution of several terms to E
�
(s)
r

(A(IN , t(0)(x))−
A(I∗, τ∗)).

(I) The contributions of Γ���,Γ�� and �Γ are o(δ1) due to parts (a) and (f) of Propo-
sition 2.2.6*.

(II) The contribution of Γ− (Γ� ∪ Γ�� ∪ Γ���) is

δ1

�
Ψ

∂A

∂I
+

1

p

∂A

∂τ

�
(I∗, τ∗)

due to parts (b) and (c) of Proposition 2.2.6*.

(III) The contribution of Γ∗
Njk

is

δ1
Mjk(I∗)+

Lj(I∗)

�
A(Qjk(I∗), τ∗)−A(I∗, τ∗)

�

due to part (d) of Proposition 2.2.6*.

Combining (I), (II) and (III) we obtain (2.56) completing the proof of Theorem 2.

2.8. Open problems

In this paper we described effective evolution of slow-fast systems with periodic fast
motion and integrable slow motion in the presence of both weak and strong resonances.
This is a first step in developing the statistical theory of adiabatic invariants. Below
we list open questions motivated by our work.

2.8.1. Weakening of conditions (A)–(K). – The theorems of this paper are
valid under nondegeneracy assumptions (A)–(K). For a typical system one can expect
these assumptions to hold in a neighborhood of a typical point. However they may
not be valid globally. For example, assumption (E) says that a certain function of I

is non-zero. While one can expect this functions to be non-zero near a given point
I0, on the whole interval it may have zeroes which can not be removed by a small
perturbation. As a result Theorems 1 and 2 describe the evolution of the system only
locally in time, that is, until the orbit leaves the region where the assumptions (A)–
(I) hold. By, contrast, the assumptions (J) and (K) can be expected to hold globally
since they ask that certain maps R → R2 are non-zero. It is desirable to relax the
other conditions as well so that they would hold globally for a typical system. Below
we discuss possible weakening of conditions (A)–(I).
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Question 1. – Is it possible to extend Theorem 1 and 2 to the following cases:

(a) there is an orbit of the averaged system which is tangent to a resonance curve;

(b) two resonances cross?

The first step in answering these questions is to obtain the analogue the normal
form (cf. (1.9), (1.14)) for systems with degeneracies described above. The estimates
of errors for averaging of slow-fast systems with single frequency fast motion under
the assumption of general position singularities were obtained in [6] but we need a
more precise information to deal with the problem of adiabatic invariants.

Question 2. – Are Theorems 1 and 2 still valid if the twist condition is replaced by
the assumption that the critical points of the function I �→ wj(I) are non-degenerate?

Heuristic arguments of Section 2.1 indicate that in case all wj are constant the
system may have many elliptic islands since the hyperbolicity is lost (cf. [52]). On the
other hand if ∂wj/∂I have only isolated zeroes then there is still some hyperbolicity
even though it is much weaker than in the case where the twist condition holds.

Question 3. – Extend Theorems 1 and 2 to the case where assumptions (D)–(F)
hold except for finitely many values of I.

In order to achieve such an extension one needs to do two things. First, an asymp-
totics of Propositions 2.2.1 and 2.2.2 should be improved since lower order terms will
play a role near the degeneracies. Secondly, one needs to modify the definition of stuck
orbits. Indeed the assumptions (D)–(F) are used to establish hyperbolicity so near
the points where (D)–(F) fail the hyperbolicity is weaker and more time is needed to
recover good estimates near the parabolic tips.

Assumption (G) is discussed in Section 2.8.2.

Finally we come to assumptions (H) and (I). They can be weakened as follows.

(H �) There exists sjk(I) such that H(s) < 0 for s ∈ [0, sjk(I)], H(sjk(I)) = 0. The
functions I �→ Mjk(I) and I �→ Mjk(I(sjk(I)) have only isolated zeroes {I �

jk�
} and

{I ��
jk�

} respectfully. Moreover Ψ(I ��
jk�

) �= 0.

(I �) The inner averaged equation is not overtwisted apart from finitely many points
{�I jk�}. Moreover Ψ(�I jk�) �= 0.

Theorem 2�. — Theorem 2 remains valid if assumptions (H) and (I) are replaced
by (H �) and (I �).
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Proof. – Take h(ε) → 0 as ε → 0 sufficiently slowly (for example h(ε) = εδ where
δ = 0.001 would do). Let ∆jk� = [Ijk� − h, Ijk� + h]. (Ijk� can be either I �

jk�
, I ��

jk�
,

or �I jk�.) On the complement of ∆jk�’s the argument of Theorem 2 remain valid
since Proposition 2.2.2* remains valid (indeed assumptions (H) and (I) is satisfied
on G −

�
jk�

∆�). However inside ∆l standard pairs need not be preserved after the
capture since the estimates of Appendix F are no longer valid. However by Theorem
1 the probability that the orbit is captured inside one of ∆jk� near the bad saddle is
O(h) so it tends to 0 as ε → 0. (In case of I ��

jk�
and �I jk� this is true because a typical

orbit spends time O(h) on ∆jk�. In case if I �
jk�

the estimates of Appendix F can only
be violated for the orbit captured near the saddle θjk(I) but the probability of such
capture is small since Mjk is small on ∆jk.) Therefore bad captures inside ∆jk� can
be disregarded.

2.8.2. Separatrix crossings. – A typical situation where the results of this paper
apply is small perturbations of integrable systems. In order to bring the system to the
form 1.2 one needs to pass to action-angle variables of the integrable system. However
the integrable systems usually admit action-angle coordinates only locally. In fact,
in 1 degree of freedom systems the resonances typically happen at the separatrices
separating the regions with different action-angle coordinates (since the vanishing
of frequency is equivalent to the period being infinite). A well known example of
this situation is one (and a half) degree of freedom systems with slowly changing
Hamiltonian H(p, q, εt). Currently the results of our paper do not apply to this setting
since action-angle coordinates are singular near the separatrices and so the smoothness
assumptions of our paper are not satisfied. The C0 expansions for the change of
quantities of interest are obtained in [11], [12], [44], [53], but to apply our arguments
one needs to supplement them by the C2-bounds. We hope that the analysis of
Appendices E and F can be helpful in obtaining such bounds.

Question 4. – Extend Theorems 1 and 2 to the case where the vanishing of the
frequency ω happens on the separatrices of the integrable system.

This question deals with separatrices of the fast system. However separatrix cross-
ing appear at other stages of our analysis as well.

Question 5. – Extend Theorems 1 and 2 to the case where the averaged system (1.4)
has separatrices.

For systems with separatrices it it natural to consider the limiting Markov process
not on the segment but on the graph whose vertexes correspond to the separatrices.
The motion inside each edge could be analyzed by the method of our paper, but this
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analysis should be supplemented by the boundary conditions describing the probabil-
ity of the orbit to enter different action-angle domains after the separatrix crossing.
We refer the reader to [23], [22], [48], [50] for surveys of problems where similar
limiting processes on graphs appear.

Question 6. – Extend Theorem 2 to the case where the inner unperturbed system
(1.9) has both centers and saddles.

In this case the entrance-exit maps become random since the domain which the
trajectory chooses after crossing the separatrix of the inner averaged equation becomes
random. The probability of chooosing a particular domain is computed in [40] (see
also [5], [10]).

2.8.3. Systems without strong resonances

Question 7. – Describe the effective evolution of the adiabatic invariants in case all
resonances are weak.

If all resonances are weak then Theorem 2 tells us that most orbits do not move
at time t ∼ ε−1/2. Since the Law of Large Numbers gives a trivial description of the
dynamics it is natural to conjecture that the main contribution comes from deviations
which are described by the Central Limit Theorem. That is, one expects [49] that
the adiabatic invariants evolve so that

I(t)− I(0) ∼
√

ε
√

t

and hence the correct scaling is τ = tε−1 and the limiting process should be a diffusion.
That is the generator should be

L = a(I)∂I +
1

2
b(I)∂2

I
.

A comparison with systems with chaotic fast motion [18] suggests that the diffusion
matrix should be determined by the leading terms in the change of I. Namely,

b(I) =

�
σ2(I, E)dE.

One the other hand in order to compute the drift one needs to take into account
subleading terms as well. To understand this consider a simple recurrence relation

In+1 − In =
√

ε σn + ε�σn

where (σn, �σn) are independent and E(σn) = 0. In this case n ∼ ε−1 steps are needed
for I to change by O(1). During this time the systematic contribution of the subleading
term �σn is ∼ εn which is of the same order as the fluctuations O(

√
ε
√

n) of the
leading term σn. One case where drift computations can be simplified is when the
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invariant measure of the limiting process is known. For example if the original slow-
fast system has smooth invariant measure this measure could be projected into the
space of adiabatic invariants yielding the invariant measure for the limiting process.
In this case the condition that a given measure is invariant yields a relation between
drift and diffusion coefficients (sometimes called Einstein relation).

In the general case in order to compute the drift one needs to improve the asymp-
totics of Proposition 2.2.1. It is likely that higher order improved adiabatic invariants
can be helpful but the computations would be more involved than the computations
presented in the appendices of the present paper.

Another problem is that one needs to relax the definition of stuck orbits since
otherwise all the orbits will be removed from consideration by the time t ∼ ε−1. Some
progress in this direction has been obtained in [15].

After the systems with weak resonances only are understood one can pass to the
generic systems where the segment of possible I values is divided into several regions,
some of which admit only weak resonances while the others have the resonances of
both types. In particular, one should study the transition between different regions.
The questions discussed in Section 2.8.1 should be of particular relevance here in
describing the motion near the boundary.

In case the space of I’s is higher dimensional the regions also are higher dimensional
and so their boundaries have positive dimension. In the analysis of these systems one
is likely to encounter diffusions with non standard boundary conditions. The study
of such diffusions is of independent interest.

2.8.4. Non integrable averaged motion. – Our paper deals with the case where
the averaged system is integrable. This is a special instance of the general problem
in averaging theory which can be stated as follows:

Suppose that the long time behavior of the averaged system is well understood.
Describe the long time behavior of the actual system

While this problem is too general we would like to formulate the following question.

Question 8. – What happens if the averaged system is Morse-Smale?

In other words we suppose that the limit set of the averaged system consists of
finitely many periodic (and fixed) orbits. Therefore each trajectory of the averaged
system eventually settles close to one of these orbits. However the capture into a
resonance may eventually move the actual trajectory into the attraction domain of
another orbit. So the actual system will exhibit metastability (see [50]). The limiting
process should be a finite state Markov chain describing near which orbit the trajec-
tory is located. Question 8 makes sense for any dimension of the slow variables but
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it is especially relevant in two dimensions since the Morse-Smale property is generic
among dissipative two dimensional flows [56].

2.8.5. Higher dimensions

Question 9. – Extend Theorem 2 to higher dimensional systems.

It seems likely that the methods of the present paper are sufficient to handle the
case of higher dimensional slow variables. In fact, the inner unperturbed system (1.9)
is integrable in any dimensions (see [5], [37]) and many results of Appendices C and D
admit straightforward generalizations to the case I and φ have arbitrary dimensions.

The case of higher dimensional fast variables (that is of quasiperiodic fast motion)
is quite different. It is possible that our approach can be adapted to the case when
there are only finitely many resonances (that is αs and βs in (1.2) are trigonometric
polynomials in θ) once an appropriate definition of the standard pair is found in
this case. However the general case when infinitely many resonances are present
requires new ideas. In fact, it is not even clear how to generalize our assumptions
(A)–(K) to the quasiperiodic case. In the periodic case these conditions require that
certain expressions should be different from zero. Since there are only finitely many
resonances we could utilize compactness to get uniform bounds from below. It is
unrealistic to expect such uniform bounds in case of infinitely many resonances. On
the other hand merely requiring the corresponding quantities to be different from zero
is likely to be insufficient for our arguments to work. For example, recall that in the
periodic case if there are no resonances then the KAM theory is applicable. However
mere irrationality of rotation number is insufficient to guarantee the existence of
invariant tori. One has to require some qualitative non resonance estimate as given
for example by the Diophantine condition. It is not clear how to formulate qualitative
extensions of conditions (A)–(K) which would be sufficient for our approach to work
but would not be too restrictive so that they could be verified for systems of interest.

As a first step in handling quasiperiodic fast motion one can try to prove that
the jumps of adiabatic invariants at different resonances are independent for times of
order 1. (For periodic fast motion such results have been obtained in [54] in a model
problem.)

Acknowledgment. – I am grateful to Anatoly Neishtadt for many useful comments
on the prelimnary version of this paper.
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APPENDIX A

ASYMPTOTICS OF THE POINCARÉ MAP

A.1. Size of the jump

Here we prove Proposition 2.2.1 (b). First we check the convergence of (1.14). To
this end we observe that by (1.15) we have to establish the convergence of

�
α1(I, φ(I), θ)dθ�
2(LE + Lθ + G)

=

�
dA1(I, φ(I), θ)�
2(LE + Lθ + G)

=
A1(I, φ(I), θ)�
2(LE + Lθ + G)

+
1

2

�
A1(2L + g)

(
�

2(LE + Lθ + G))3
dθ

and the last integral converges at ∞ since the denominator behaves as θ3/2.

Next, we estimate the change of J in three different regions:

1) {|ω| ≥ Kε1/4},

2) {R
√

ε ≤ |ω| ≤ Kε1/4},

3) {|ω| ≤ R
√

ε },

where K and R are parameters.

Let ∆i denote the jump of J in the region 1). Since |J̇ | ≤ Constε/ω2 we have
|∆1| ≤ Const

√
ε/K2. To bound ∆2 we have to estimate

�
ε/ω2dt where the integral

is over region 2). Recall that r = ω/
√

ε, dθ/dt =
√

ε r, r2 ∼ θ. Therefore using θ as
the integrand we get

���
�

ε

ω2
dt

��� ≤ Const

� √
ε

|r|3 dθ ≤ Const

√
ε√
θ

��θ2

θ1
≤ Const

√
ε

r

��Kε
−1/4

R
≤ Const

√
ε

R
·

To estimate ∆3 we observe that by (1.5) ∆3 = �∆3 + O(
√

ε/R) where �∆3 is the change
of I in region 3). To estimate �∆3 change variables in (1.6): �I = (I − �I )/

√
ε, where �I

is the value of I at the time our trajectory crosses {|ω| =
√

ε R}. Then

�I � = α
��I +

√
ε �I,

√
ε r, θ, ε

�
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and we also replace I by �I +
√

ε �I in the RHS of (1.6). Now as ε → 0 the equation
(1.6) converges to

θ� = r, r� = L + g, �I � = α1(�I , 0, θ)

It follows that �∆3 ∼
√

ε σR(�I , �E) where where �E is the value of E at the time our
trajectory crosses {|ω| =

√
εR} and σR denotes the integral (1.14) taken between the

limits r = ∓R.

Next we claim that

(A.1) �E = E + o(1), c −→ 0

Observe that the evolution of E is given by the following equation (see (1.6))

(A.2) E� =
√

ε
r2L�

2L2
α1 +

M�

m=1

√
ε m rm+1 �γ(m)

1 +
M�

m=1

√
ε m+1 rm �γ(m)

2 + HOT

where �γ(m)
1 have zero mean in θ. Thus �γ(m)

1 = dΓ(m)
1 /dθ. Make a change of variables

E = E −
�√

ε
r2L�

2L2
A1 +

�

m

εm rm Γ(m)
1

�
.

Then (A.2) and the fact that θ� = O(r) imply that dE/dθ = O(
√

ε ). Since θ changes
on the interval of order c2/

√
ε (A.1) follows. Combining our bounds for ∆1, ∆2 and

∆3 we get the following asymptotics for the total jump

∆ ∼
√

ε
�
O
� 1

K2
+

1√
r

�
+ σR(I, E)

�
.

Since K and R are arbitrary we can let them go to ∞ getting ∆ ∼
√

ε σ(I, E).

A.1.1. Passage time. – To obtain Proposition 2.2.1 (a) we observe that by argu-
ment of Section A.1 implies that

(I, φ)(t) = (I, φ̄)(t) + O
�√

ε
�

where (I, φ̄)(t) is the solution of (1.4) with the same initial condition. Now the result
is obvious.

A.1.2. Proof of Lemma 2.2.3

Proof. – Observe that (1.9) preserves Liouville measure drdθ = L(I)dE dt. Let tz be
the first moment when the solution of (1.9) has r(t) = z. Then uniformly in θ, I

a(θ, I) = lim
z→∞

�
tz

−tz

α1

�
I, φj(I), θ(I, E, s)

�
ds.

Since the union of orbits starting on
�

r = −
�
R +

GI(θ)

R

��
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Figure 1. Proof of Lemma 2.2.3. The fluxes through the clear and filled
domains have opposite signs.

covers whole cylinder [0, 1]× R except for the loops Ωjk we get
� � �

tz

−tz

α1

�
I, φj(I), θ(I, E, s)

�
ds

�
dE

=

��

[0,1]×[−z,z]−∪kΩjk

α1

�
I, φj(I), θ

� drdθ

L(I)

= −
�

k

��

Ωjk

α1

�
I, φj(I), θ

� drdθ

L(I)
= Ψj(I).

The second identity follows by (1.3) from the fact that
��

[0,1]×[−z,z]
α1

�
I, φj(I), θ

�
drdθ = 0.
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APPENDIX B

DERIVATIVES OF THE POINCARÉ MAP. OUTLINE OF
THE PROOF

Here we describe the asymptotics of Poincaré maps between sections corresponding
to different resonances. We assume first that the orbit avoids δ0 neighborhood of the
separatrix and then show how to remove this restriction. Let R = c ε−1/4. Given a
resonance we let r = ω/

√
ε,

S =
�

r = −
�
R +

G

R

��
, �S =

�
r = R +

G

R

�
.

To simplify the formulas we use H instead of E variable. Then the asymptotics of
Proposition 2.2.1 take form

∂H

∂H
=

1√
ε

L
∂w

∂I
· ∂σ

∂H
+ o(1),

∂H

∂J
=

L

ε
· ∂w

∂I
+ o(1),

∂2H

∂H2
=

1√
ε

L
∂w

∂I
· ∂2σ

∂H2
+ O

�
ε1/4

���
∂H

∂H

���
2�

.

where L is the value of L at the new resonance.
To estimate the derivatives we decompose the Poincare map into several pieces by

cutting the orbit between the sections into several parts.
Below we use the following terminology. Given a surface S and a point x0 let τ(x0)

be the first time the orbit of x0 visits S. We call time τ(x0) map of our differential
equation the hit map of S (for x0). If instead of fixing time we project orbits near x0

to S along the flow lines we shall call the result landing (to S) map.
1) (J,H) �→ (I, H).
2) Landing to {θ = θ0}. For steps 3) and 5) we use θ as the time variable.
3) Hit of {r = −R}.
4) Passage of resonance (from {r = −R} to {r = R}).
5) Hit of �S1.
6) Landing to �S1.
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7) (I, H) �→ (J,H).
8) (J,H) �→ (J, θ)

9) Hit of S2.
10) Landing to S2.
11) (J, θ) → (J,H).

In the computations below we always assume that ε → 0, c → 0, R → ∞ so that
ε � c and ε � 1/R. That is first, we choose c as small and R as large as needed and
then let ε ≤ ε̄(c, R).

We shall use subscripts j for the variables appearing at step j. Thus the total
Poincaré map takes (J0, H0) �→ (J11, H11).

Steps 1)–7) constitute the passage through the resonance. We call the map
(J0, H0) �→ (J7, H7) the inner map. It is analyzed in Appendix C. The estimates of
Appendix C can be summarized as follows.

Proposition B.0.1. – We have:
∂J7

∂H0
∼
√

ε
∂σ

∂H
,(B.1)

∂J7

∂J0
∼ 1,

∂H7

∂H0
∼ 1,

∂H7

∂J0
≤ Const√

ε
,

∂2J7

∂H2
0

=
√

ε
∂2σ

∂H2
+ o

�√
ε
�
,(B.2)

∂2J7

∂H0∂J0
= O(1),

∂2J7

∂J2
0

= O
� 1√

ε

�
,

∂2H7

∂H2
0

= O(1),
∂2H7

∂H0∂J0
= O

� 1√
ε

�
,

∂2H7

∂J2
0

= O
�1

ε

�
.

Steps 8)–11) describe the motion far from resonance. We call the map (J7, H7) �→
(J11, H11) the outer map. It is analyzed in Appendix D. The upshot is the

Proposition B.0.2. – We have:
∂H11

∂J7
∼ 1

ε
L

∂w

∂I
,(B.3)

∂H11

∂H7
= O(1),

∂J11

∂H7
= O(ε),

∂J11

∂J7
∼ 1,(B.4)

∂2H11

∂J2
7

= O(ε−7/4),
∂2H11

∂J7∂H7
= O(ε−3/4),

∂2H11

∂H2
7

= O(1),(B.5)

∂2J11

∂J2
7

= O(ε−3/4),
∂2J11

∂J7∂H7
= O(ε1/4),

∂2J11

∂H2
7

= O(ε).(B.6)
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Proof of Proposition 2.2.1. – The first derivative estimates follow immediately from
the identity

�
A Bε

C/ε D

� �
a b

√
ε

c/
√

ε d

�
=

�
Aa Ab

√
ε

Ca/ε Cb/
√

ε

�
+ HOT

and Propositions B.0.1 and B.0.2.
Also the estimates of (∂/∂J0)2 follow directly from the above propositions. For

other derivatives we obtain using Propositions B.0.1 and B.0.2:
∂2H11

∂H2
0

=
∂H11

∂J7

∂2J7

∂2H2
0

+ O(1) + O
�
ε−7/4

���
∂J7

∂H0

���
2�

,(B.7)

∂2J11

∂H2
0

= O
�√

ε
�

+ O
�
ε−3/4

���
∂J7

∂H0

���
2�

,

∂2H11

∂H0∂J0
= O

�1

ε

�
+ O

�
ε−7/4

���
∂J7

∂H0

���
�
,

∂2J11

∂H0∂J0
= O(1) + O

�
ε−3/4

���
∂J7

∂H0

���
�
.

Next, using Propositions B.0.1 and B.0.2 once more we get

(B.8)
∂H11

∂H0
=

∂H11

∂J7

∂J7

∂H0
+

∂H11

∂H7

∂H7

∂H0
∼ L

ε

∂w

∂I

∂J7

∂H0
+ O(1).

Thus Assumption (C) gives
∂J7

∂H0
= O(ε)

∂H11

∂H0
+ O(ε).

Plugging this into last four inequalities we obtain the second derivative bounds.
The asymptotic formula for ∂J11/∂H0 follows from (B.1) and (B.8). The asymp-

totics for ∂2H11/∂H2
0 follows from (B.2), (B.3) and (B.7).
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DERIVATIVES OF THE INNER MAP

C.0.3. Some classes of maps invariant under the compositions. – We say
that a family of maps (a, b) �→ (A, B) depending on a parameter ε is in class T if
D = det

�
∂(A,B)
∂(a,b)

�
is uniformly bounded from (above and) below,

���
∂A

∂a

��� ≤ Const,
���

∂A

∂b

��� ≤ Const
√

ε,
���

∂B

∂a

��� ≤
Const√

ε
,

���
∂B

∂b

��� ≤ Const,

���
∂2A

∂b2

��� ≤ Const
√

ε,
���

∂2A

∂a∂b

��� ≤ Const,
���

∂2A

∂a2

��� ≤
Const√

ε
,

���
∂2B

∂b2

��� ≤ Const,
���

∂2B

∂a∂b

��� ≤
Const√

ε
,

���
∂2B

∂a2

��� ≤
Const

ε
·

We further say that this family is in T + if addition

�A�C2 ≤ Const, �B�C2 ≤ Const

(that is powers of (
√

ε )−1 are replaced by constants).

Lemma C.0.3. – Classes T and T + are closed with respect to compositions and in-
verses.

Proof. – Let (a0, b0) �→ (a1, b1) and (a1, b1) �→ (a2, b2) belong to T . Then
∂a2

∂b0
=

∂a2

∂a1
· ∂a1

∂b0
+

∂a2

∂b1
· ∂b1

∂b0

and both terms are O(
√

ε ). Also
∂2a2

∂b2
0

=
∂2a2

∂a2
1

�∂a1

∂b0

�2
+ 2

∂2a2

∂a1∂b1
· ∂a1

∂b0
· ∂b1

∂b0
+

∂2a2

∂b2
1

�∂b1

∂b0

�2

+
∂a2

∂a1
· ∂2a1

∂b2
0

+
∂a2

∂b1
· ∂2b1

∂b2
0

and each term here is O(
√

ε ). Now each time we replace a2 by b2 or b0 by a0 the
estimates worsen by a factor (

√
ε )−1. This proves the estimates for other derivatives,

so T is closed with respect to compositions.
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Next let (a, b) �→ (A, B) be in T . We have

∂a

∂B
= −∂A/∂b

D
= O(

√
ε )

and the rest of the first derivatives can be estimated similarly. Next

∂2a

∂B2
= − ∂

∂B

�∂A/∂b

D

�
=

∂

∂b

�∂A/∂b

D

�
O(1) +

∂

∂a

�∂A/∂b

D

�
O(
√

ε ).

Furthermore,

∂

∂b

�∂A/∂b

D

�
=

∂2A/∂b2 · D − ∂A/∂b · ∂D/∂b

D2
= (I) + (II)

where (I) = O(
√

ε ) and

(II) = O(
√

ε )
∂

∂b

�∂A

∂a
· ∂B

∂b
− ∂A

∂b
· ∂B

∂a

�

= O(
√

ε )
� ∂2A

∂a∂b
· ∂B

∂b
+

∂A

∂a
· ∂2B

∂b2
− ∂2A

∂b2
· ∂B

∂a
− ∂A

∂b
· ∂2B

∂a∂b

�
= O(

√
ε ).

Similarly
∂

∂a

�∂A/∂b

D

�
= O(1),

so ∂2a/∂B2 = O(
√

ε ). The rest of the derivatives can be estimated using the same
reasoning as for compositions. This completes the proof for T . Since T + is the
intersection of T with C2 bounded maps the result follows.

The maps we consider also depend on two other parameters c and R. We use T 0

to indicate maps in T which for c sufficiently small, R sufficiently large and ε � c,

ε � 1/R satisfy
���

∂A

∂a

��� ∼ 1,
���

∂A

∂b

��� = o(
√

ε ),
���

∂B

∂a

��� = o
� 1√

ε

�
,

���
∂B

∂b

��� ∼ 1,

���
∂2A

∂b2

��� = o
�√

ε
�
,

���
∂2A

∂a∂b

��� = o(1),
���

∂2A

∂a2

��� = o
� 1√

ε

�
,

���
∂2B

∂b2

��� = o(1),
���

∂2B

∂a∂b

��� = o
� 1√

ε

�
,

���
∂2B

∂a2

��� = o
�1

ε

�
.

Lemma C.0.4. – T 0 is closed with respect to compositions and inverses.

Proof. – The statement about the compositions is clear since in all terms we get o(1)

improvement compared with T . For inverses observe that for maps in T 0, D ∼ 1 so
the first derivative bounds are straightforward. For the second derivatives all terms
in the numerator contain second derivative of either A or B so again we get o(1)

improvement against T .
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C.0.4. Step by step analysis of the inner map

Lemma C.0.5. – The map of step 7) belongs to T 0.

Proof. – We have

(C.1) δJ7 =
�
1− ε

∂

∂I

�A1

ω

��
δI6 − ε

∂

∂φ

�A1

ω

�
δφ6 −

εα1

ω
δθ6.

Next, let S = ω −
√

ε G/R. Then on �S1

(C.2) 0 = dS =
�∂ω

∂I
−
√

ε

R
· ∂G

∂I

�
δI6 +

∂ω

∂φ
δφ6 +

√
ε

R
gδθ6.

It follows that

(C.3) δφ6 = −
∂ω

∂I
− (
√

ε/R) ∂G

∂I

∂ω/∂φ
δI6 −

√
ε g

R ∂ω/∂φ
δθ6.

Also H = ω2/2ε− θL−G so

δH6 =
ω

ε

�∂ω

∂I
δI6 +

∂ω

∂φ
δφ6

�
−

�
L�θ − ∂G

∂I

�
δI6 − (L + g)δθ6.

Expressing the first term through (C.2) we get

δH6 =
� ω
√

ε R
· ∂G

∂I
− L�θ − ∂G

∂I

�
δI6 +

� ω

εR
g − g − L

�
δθ6.

Since ω/(
√

ε R)− 1 = G/R
2 on �S1, we have

δH6 =
�G · ∂G

∂I

R
2 − L�θ

�
δI6 +

�Gg

R
2 − L

�
δθ6.

Thus

(C.4) δθ6 = − δH6

L− gG/R
2 −

L�θ − (G · ∂G

∂I
)/R

2

L−Gg/R
2 δI6.

Plugging (C.3) into (C.1) we get

δJ7 =
�
1− ε

∂

∂I

�A1

ω

�
+ ε

∂

∂φ

�A1

ω

� ∂ω

∂I
− (
√

ε/R) · ∂G

∂I

∂ω/∂φ

�
δI6

−
�εα1

ω
+

√
ε g

R(∂ω/∂φ)

�
δθ6.
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Using (C.4) we get

δJ7 =
�
1− ε

∂

∂I

�A1

ω

�
+ ε

∂

∂φ

�A1

ω

�∂ω/∂I − ε G/R

∂ω/∂φ

+
�ε α1

ω
+

√
ε g

R · ∂ω/∂φ

��L�θ −G · ∂G

∂I
/R

2

L− g G/R
2

��
δI6

+
�ε α1

ω
+

√
ε g

R · ∂ω/∂φ

� δH6

L− g G/R
2 ·

This proves the first derivative estimates.
To estimate the second derivatives we must differentiate these expressions once

more. Observe that
d

dH
=

∂θ

∂H

∂

∂θ
, d

dI
=

∂

∂I
+

∂θ

∂I

∂

∂θ
,

so, by (C.4), d/dH does not change ε-powers and d/dI decreases the terms containing
ω in the denominator by (R

√
ε )−1. The result follows.

Corollary C.0.6. – The map of step 1) is in T 0.

Proof. – Similarly to Lemma C.0.5 we obtain that the inverse of this map is in T so
the result follows from Lemma C.0.3.

Lemma C.0.7. – The map of step 2) is in T 0.

Proof. – Write our equations as

(C.5) İ = U, Ḣ = V, θ̇ = W.

Then we have

I2 = �I(I1, H1, θ1, τ) H2 = �H(I1, H1, θ1, τ) θ2 = �θ(I1, H1, θ1, τ),

where τ is the hit time and (�I, �H, �θ) denotes the time τ map of (C.5) and θ1 is a
function of I1 and H1. Thus

∂H2

∂H1
=

∂ �H
∂H1

+
∂ �H
∂θ1

· ∂θ1

∂H1
+ V

∂τ

∂H1
·

At τ = 0 we get
∂H2

∂H1
= 1 + V

∂τ

∂H1
·

Since θ2 is constant we get

(C.6) 0 =
∂θ2

∂H1
=

∂�θ
∂H1

+
∂�θ
∂θ1

· ∂θ1

∂H1
+ W

∂τ

∂H1
=

∂θ1

∂H1
+ W

∂τ

∂H1
·

Therefore
∂τ

∂H1
= −∂θ1/∂H1

W
=

1

W (L− g G/R
2
)
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where the last equality follows similarly to (C.4). Therefore

∂H2

∂H1
= 1 +

V

W (L− g G/R
2
)
·

Likewise

∂H2

∂I1
=

V

W

�L�θ − g · ∂G

∂I
/R

2

L− g G/R
2

�
,

∂I2

∂H1
=

U

W (L− g G/R
2
)
,

∂I2

∂I1
= 1 +

U

W

�L�θ − g · ∂G

∂I
/R

2

L− g G/R
2

�
.

Observe that

U =
�

m

√
ε m+1rmα̃(m)

1 +
�

m

√
ε m+2rmα̃(m)

2 ,(C.7)

V =
�

m

√
ε m+1rm+1�γ(m)

1 +
�

m

√
ε m+1rm�γ(m)

2(C.8)

where α̃(m)
1 and �γ(m)

1 have zero mean in θ and W = r +
√

ε η. This proves the first
derivative estimates.

Next, let us show how to bound ∂2I2/∂H2
1 , other derivative bounds being similar.

We begin with the identity

∂I2

∂H1
=

∂ �I
∂H1

+
∂ �I
∂θ1

· ∂θ1

∂H1
+ U

∂τ

∂H1
.

Differentiating once more with respect to H1 and discarding the terms vanishing at
τ = 0 we get

∂2I2

∂H2
1

=
∂

∂τ

� ∂ �I
∂H1

� ∂τ

∂H1
+

∂

∂τ

� ∂ �I
∂θ1

� ∂τ

∂H1
· ∂θ1

∂H1
(C.9)

+
�∂U

∂I

∂I2

∂H1
+

∂U

∂H
· ∂H2

∂H1

� ∂τ

∂H1
+ U

∂2τ

∂H2
1

=
∂U

∂H
· ∂τ

∂H1
+

∂U

∂θ
· ∂τ

∂H1
· ∂θ1

∂H1

+
�∂U

∂I

∂I2

∂H1
+

∂U

∂H
· ∂H2

∂H1

� ∂τ

∂H1
+ U

∂2τ

∂H2
1

·

Observe that to compute the differential of U with respect to (I, H, θ) variables we
can compute the differential of U with respect to (I, r, θ) variables and then replace

δr =
δH +

�
∂G/∂I + L�θ

�
δI + (g + L)δθ

r
·
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From this it is easy to see that all terms in (C.9) except possibly the last one are
O(ε3/4). It remains to bound ∂2τ/∂H2

1 . Differentiating (C.6) we obtain

0 =
∂

∂τ

� ∂�θ
∂H1

� ∂τ

∂H1
+

∂

∂τ

� ∂�θ
∂θ1

� ∂τ

∂H1
· ∂θ1

∂H1
+

∂�θ
∂θ1

· ∂2θ1

∂H2
1

+
�∂W

∂I
· ∂I2

∂H1
+

∂W

∂H
· ∂H2

∂H1

� ∂τ

∂H1
+ W

∂2τ

∂H2

=
∂W

∂H
· ∂τ

∂H1
+

∂W

∂θ
· ∂τ

∂H1
· ∂θ1

∂H1
+

∂2θ1

∂H2
1

+
�∂W

∂I·
∂I2

∂H1
+

∂W

∂H
· ∂H2

∂H1

� ∂τ

∂H1
+ W

∂2τ

∂H2
·

It follows that ∂2τ/∂H2
1 = O(1/r) completing the estimate of ∂2I2/∂H2

1 .

Corollary C.0.8. – The map of step 6) is in T 0.

Proof. – This follows from Lemmas C.0.3 and C.0.7.

Lemma C.0.9. – The map of step 3) is in T + ∩ T 0.

Proof. – From (C.7), (C.8) we get

dI

dθ
=

�

m

√
ε m+1rm−1α(m)

1 +
�

m

√
ε m+2rm−1α(m)

2 ,(C.10)

dH

dθ
=

�

m

√
ε m+1rmγ(m)

1 +
�

m

√
ε m+1rm−1γ(m)

2(C.11)

where α(m)
1 and γ(m)

1 have zero mean in θ. Observe that

(C.12) δr =
δH + (L�θ + ∂G

∂I
)δI

r
·

Hence the variational equation takes form

d

dθ
δH = AδH + BδI,

d

dθ
δI = CδH + DδI,

where

A = O
�√

ε
�
, B = O

�√
ε
�
, C = O

�
ε +

√
ε

r3

�
, D = O

�√
ε
�
.

Let Q be the fundamental solution of

(C.13)
dQ

dθ
=

�
A B

0 D

�
Q.
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Then Q = O(1), Q−1 = O(1). Substituting
� δH

δI

�
= QZ we obtain

(C.14)
dZ

dθ
= Q−1

�
0 0

C 0

�
QZ = O

�
ε +

√
ε

r3

�
.

It follows that (δH, δI) = ( �X, �Y ) + O(
√

ε ) where ( �X, �Y ) is a solution of (C.13). But
those solutions are of the form

(C.15)

�
O(1)δH(0) + O(1)δ �I(0)

O(1)δ �I(0)

�
.

This proves the first derivative estimates required for T +. For T 0 estimates observe
that time changes on the interval of size o(1/

√
ε ) so the integral of (C.14) becomes

o(
√

ε ) instead of O(
√

ε ) and (C.15) becomes
�

1 + o(1) o(1)

0 1 + o(1)

�
.

To estimate the second derivatives we begin with (∂/∂I)2. We have

d

dθ

�
δ2H

δ2I

�
=

�
A B

C D

� �
δ2H

δ2I

�
+

�
∂

∂I

�
A B

C D

�� �
δH

δI

�
δI(C.16)

+

�
∂

∂H

�
A B

C D

�� �
δH

δI

�
δH.

Let M be the solution of
dM

dθ
=

�
A B

C D

�
M.

Then

(C.17) M = O(1).

Now arguing as before using (C.17) we get (δ2H, δ2I) = O(1). The same argument ap-
plies to (∂/∂I)(∂/∂H) and (∂/∂H)2. However for ∂2I/∂H2 we want stronger bounds
O(
√

ε ) for T + and o(
√

ε ) for T 0. To this end observe that by the first derivative
bounds M and M−1 have entries

�
O(1) O(1)

O(
√

ε ) O(1)

�

Observe that if we multiply the RHS of (C.16) by M−1 then the second row is

(C.18) O(ε) + O
�√

ε/r3
�
.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2012



70 APPENDIX C. DERIVATIVES OF THE INNER MAP

Now the bounds of δ2I follows easily (for T 0 we use again the fact that time changes
on the interval of size o(1/

√
ε )).

Corollary C.0.10. – The map of step 5) is in T + ∩ T 0.

Lemma C.0.11. – The map of step 4) satisfies the following.

(a) For fixed R we have (I4, E4) = (E3, I3) + O(
√

ε ) where ‘ O’ bound holds in C2

topology.

(b) As R →∞
∂I4

∂H3
∼
√

ε
∂σ

∂H
(H3),

∂2I4

∂H2
3

∼
√

ε
∂2σ

∂H2
(H3).

Proof. – Part (a) follows from the theorem on differentiability of solutions of ODEs
with respect to parameters. To establish part (b) we prove three statements

(i) For fixed R we have

∂I4

∂H3
∼
√

ε
∂σR

∂H
(H3),

∂2I4

∂H2
3

∼
√

ε
∂2σR

∂H2
(H3).

where σR stands for integral (1.14) taken between the limits s− and s+ where r(s∓) =

∓R.

(ii) As R →∞
∂σR

∂H
−→ ∂σ

∂H
, ∂2σR

∂H2
−→ ∂2σ

∂H2
,

that is we can interchange differentiation and R →∞ limit.

(iii) If R1 and R2 are sufficiently large then

1√
ε
· ∂I4

∂H3
(R1) ∼

1√
ε
· ∂I4

∂H3
(R2),

1√
ε
· ∂2I4

∂H2
3

(R1) ∼
1√
ε
· ∂2I4

∂H2
3

(R2).

To establish (i) change variables in (1.6): �I = (I − I4)/
√

ε. Then

�I � = α(I4 +
√

ε �I,
√

ε r, θ, ε)

and we also replace I by I4 +
√

ε�I in the RHS of (1.6). Now as ε → 0 the equation
(1.6) converges to

θ� = r, r� = L + g, �I � = α1(I4, 0, θ)

so the result follows by differentiable dependence of solutions on parameters.

To get (ii) rewrite the expression for σ using θ as the time variable (see (1.15)).
Since r = ±

�
2(H + G + Lθ) we need to estimate the H-derivatives of

σ(I, H) =

�
θ(R2)

θ(R1)

α1(I, 0, θ)�
2(H + G + Lθ)

dθ
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where θ(R) = (H + G − 1
2R2)/L. Now the first (second) derivative of the integrand

decays as θ−3/2 (θ−5/2) so
���

∂

∂H
(σ − σR)

��� ≤
Const

θ−1/2

�
∼ Const

R

�
,

���
∂2

∂H2
(σ − σR)

��� ≤
Const

θ−3/2

�
∼ Const

R3

�
.

Thus (ii) follows. The proof of (iii) is similar to the proof of Lemma C.0.9. (b) is
proven.

Proof of Proposition B.0.1. – Combining Lemma C.0.3–Lemma C.0.11 we get that
the map (J0, H0) �→ (J7, H7) is in T . This gives the inequalities claimed in Proposition
B.0.1. To get the asymptotic formulas observe that each of ∂J7/∂J0, ∂H7/∂H0,

∂J7/∂H0 is a sum of monomials in matrix elements computed at steps 1)–7). Since
the composition is in T we know that each monomial of ∂J7/∂J0 and ∂H7/∂H0 is
O(1) and monomial of ∂J7/∂H0 is O(

√
ε ). To avoid an extra o(1) factor coming from

T 0 the factors should stay on the diagonal except for step 4) since all off-diagonal
terms in steps 1)–3) and 5)–7) have the extra o(1) factors. Thus

∂J7

∂J0
∼ ∂I1

∂J0

∂I2

∂I1

∂I3

∂I2

∂I4

∂I3

∂I5

∂I4

∂I6

∂I5

∂J7

∂I6

, ∂H7

∂H0
∼

6�

j=0

∂Hj+1

∂Hj

,

∂J7

∂H0
∼ ∂H1

∂H0

∂H2

∂H1

∂H3

∂H2

∂I4

∂H3

∂I5

∂I4

∂I6

∂I5

∂J7

∂I6
·

Together with (A.1) this proves the results about the first derivatives. A similar
reasoning gives

∂2J7

∂H2
0

∼ ∂J7

∂I6

∂I6

∂I5

∂I5

∂I4

∂2I4

∂H2
3

�∂H3

∂H2

∂H2

∂H1

∂H1

∂H0

�2
.
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DERIVATIVES OF THE OUTER MAP

In order to analyze the map of step (9) we first consider a more general setting of
equations

ẋ = a1(x, θ) + a2(x) + εa3(x, θ, ε),(D.1)

θ̇ =
ω(x)

ε
+ η(x, θ, ε)(D.2)

where a1 has zero mean in θ. Introduce the improved variables y = x− (ε/ω)A1 where
∂A1/∂θ = a1. We want to study time t maps in a region where |ω| > c ε1/4. Let (y, θ)

denote the original variables and (ȳ, θ) denote the final variables.

Lemma D.0.12. – (a) We have

∂ȳ

∂y
= O(1),

∂ȳ

∂θ
= O(ε),

∂θ

∂y
= O(1/ε),

∂θ

∂θ
= O(1).

∂2ȳ2

∂y2
= O(ε−3/4),

∂2ȳ2

∂y∂θ
= O(ε1/4),

∂2ȳ2

∂θ2
= O(ε5/4).

∂2θ2

∂y2
= O(ε−7/4),

∂2θ
2

∂y∂θ
= O(ε−3/4),

∂2θ
2

∂θ2
= O(ε1/4).

(b) If x is a pair (I, φ) from equation (1.2) then

∂θ

∂J
∼ 1

ε

∂w

∂I
, ∂θ

∂ψ
= o

�1

ε

�
,

∂J

∂J
= 1 + o(1),

∂J

∂ψ
= o(1).

Proof. – (a) We have

ẏ = a2(x) + ε
�
a3 −

∂

∂x

�A1

ω

��
.

Denote q = a3 − ∂

∂x
(A1/ω). Then the variational equation takes form

δ̇y =
�∂a2

∂x
+ ε

∂q

∂x

�
δx + ε

∂q

∂θ
δθ, δ̇θ =

�1

ε

∂ω

∂x
+

∂η

∂x

�
δx +

∂η

∂θ
δθ.

Observe that
δy =

�
1− ε

∂

∂x

�A1

ω

��
δx− εa1

ω
δθ

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2012



74 APPENDIX D. DERIVATIVES OF THE OUTER MAP

so that

(D.3) δx =
�
1− ε

∂

∂x

�A1

ω

��−1�
δy +

εa1

ω
δθ

�
.

Introducing Z = ε δθ we get

δ̇y =
∂a2

∂x
δy +

�∂a2

∂x

a1

ω
+

∂q

∂θ

�
Z + HOT,

Ż =
∂ω

∂x
δy +

�∂η

∂θ
+

∂ω

∂x

a1

ω

�
Z + HOT.

Consider

�Y = δy − ε

ω

�∂a2

∂x

A1

ω
+ q

�
Z, �Z =

�
1− ε

ω

�
η +

∂ω

∂x

A1

ω

��
Z.

We obtain an equation

(D.4)
d

dt

� �Y
�Z

�
= R

� �Y
�Z

�
.

where R = O(1+ε/ω4) where ω4 appears in the denominator due to the differentiation
with respect to x (recall that due to (D.4) δx = δy+Z/ω+HOT ). Hence to establish
the statement about the first derivatives it is enough to show that

�
|R|dt = O(1).

But indeed
�

ε

ω4
dt =

�
ε2

ω5
dθ = O

� 1√
ε

�
dθ

θ5/2

�
(D.5)

= O
�
(
√

ε θ3/2)−1
�

= O
� ε

ω3

�
= O(ε1/4).

Since the solution to the variational equation are obtained from the solutions of (D.4)

by conjugation by
� 1 0

0 ε

�
the result follows.

Let us now estimate (∂/∂θ)2. The second variational equation takes form

˙δ2y =
�∂a2

∂x
+ ε

∂q

∂x

�
δ2x + ε

∂q

∂θ
δ2θ +

∂

∂x

�∂a2

∂x
+ ε

∂q

∂x

�
(δx)2

+ 2ε
∂2q

∂x∂θ
(δx)(δθ) + ε

∂2q

∂θ2
(δθ)2,

˙δ2θ =
�1

ε

∂ω

∂x
+

∂η

∂x

�
δ2x +

∂η

∂θ
δ2θ +

∂

∂x

�1

ε

∂ω

∂x
+

∂η

∂x

�
(δx)2

+ 2
∂2η

∂x∂θ
(δx)(δθ) + 2

∂2η

∂θ2
(δθ)2

MÉMOIRES DE LA SMF 128



APPENDIX D. DERIVATIVES OF THE OUTER MAP 75

where δx is related to δy by (D.3) and δ2x is related to δ2y by

δ2y =
�
1− ε

∂

∂x

�A1

ω

��
δ2x− εa1

ω
δ2θ − ε

� ∂

∂x

�2�A1

ω

�
(δx)2

− 2ε
∂

∂x

�a1

ω

�
(δx)(δθ)− ε

ω

∂a1

∂θ
(δθ)2.

Substituting X = εδ2θ and keeping in mind that δy = O(ε) by the first
derivative estimate we obtain an inhomogenous system whose fundamental solu-
tion is uniformly bounded and the inhomogenous terms are O(ε2/ω4) except for
ε[ω−1(∂a2/∂x)(∂a1/∂θ) + ∂2q/∂θ2](δθ)2 in the first equation and ε ∂

∂θ
(∂η/∂θ +

(∂ω/∂x)(a1/ω))(δθ)2 in the second equation. Introducing

�Y = δ2y − ε2
�a1

ω

∂a2

∂x
+

∂q

∂θ

� (δθ)2

ω
, �X = X − ε2

�∂η

∂θ
+

∂ω

∂x

a1

ω

� (δθ)2

ω
we get

d�Y
dt

= O
� ε2

ω4

�
,

d �X
dt

= O
� ε2

ω4

�
.

By (D.5) �Y = O(ε5/4). Observe that �Y − δ2y = O(ε5/4) due to ω−1∂q/∂θ term and
�X −X = O(ε3/2) due to 1/ω2 term. This proves the estimate for (∂/∂θ)2. Now if we
replace ∂/∂θ by ∂/∂y the estimates are similar except that each replacement increases
the RHS by a factor of ε−1 due to the first derivative estimates. This completes the
proof of (a).

Next, (D.4) reads in the setting of (b) as follows (we put δy = (YJ , Yψ))

ẎJ = · · · , Ẏψ =
∂p

∂I
YJ + · · · , Ż =

∂ω

∂I
YJ +

∂ω

∂φ
Yψ + · · ·

where . . . denote lower order terms. Hence

YJ(t) ∼ YJ(0), Yψ(t) = Yψ(0) + s
∂p

∂I
YJ(0),

Z(t) ∼ Z(0) +
� �

t

0

∂ω

∂I
ds +

�
t

0

∂p

∂I
· ∂ω

∂φ
sds

�
YJ(0) +

� �
t

0

∂ω

∂φ
ds

�
Yψ(0).

In terms of our original variables this says δJ(t) ∼ δJ(0),

δθ(t)− δθ(0) ∼ 1

ε

�� �
t

0

∂ω

∂I
ds +

�
t

0

∂p

∂I
· s · ∂ω

∂φ
ds

�
δJ(0)(D.6)

+
� �

t

0

∂ω

∂φ
ds

�
δψ(0)

�
.

We need to apply this formula with t being the time it takes to pass from one reso-
nance to the next. Observe that the integrals in (D.6) can be approximated by the
corresponding integrals for the averaged system (1.4). But in this case ds = dφ̄/p(I ).

Hence �
t

0

∂ω

∂φ

�
I(s), φ̄(s)

�
ds =

1

p(I )

�
φ+

φ−

∂ω

∂φ
(I, φ̄)dφ̄ = 0
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since

(D.7) ω(φ−) = ω(φ+) = 0.

Similarly integrating by parts and using (D.7) we get

∂p

∂I
(I )

�
t

0
s
∂ω

∂φ

�
I(s), φ̄(s)

�
ds = −∂p/∂I

p2

�
φ+

φ−

ω(I, φ̄)dφ̄.

Finally the first term in (D.6) can be rewritten as

1

p

�
φ+

φ−

ω(I, φ̄)dφ

so we get

δθ(t)− δθ(0) ∼ 1

ε

� �
φ+

φ−

∂ω/∂Ip− ω ∂p/∂I

p2
dφ

�
δJ(0) =

1

ε
· ∂w

∂I
δJ(0)

as claimed.

Lemma D.0.13. – The map of step 10) satisfies
∂J10

∂J9
= 1 + O

�√
ε
�
,

∂J10

∂ψ9
= O

�√
ε
�
,

∂J10

∂θ9
= O

�
ε3/2

�
,

∂θ10

∂y9
= O

�
ε−3/4

�
,

∂θ10

∂θ9
= 1 + O

�
ε1/4

�
.

∂2J10

∂y2
9

= O
�
ε−1/4

�
,

∂2J10

∂y9∂θ9
= O

�
ε3/4

�
,

∂2J10

∂θ2
9

= O
�
ε3/2

�
.

∂2θ10

∂y2
9

= O
�
ε−3/2

�
,

∂2θ10

∂y9∂θ9
= O

�
ε−1/2

�
,

∂2θ10

∂θ2
9

= O
�
ε1/4

�
.

Proof. – We have
J10 = �J(y9, θ9, τ), θ10 = �θ(y9, θ9, τ)

where τ is the hit time and �J and �θ are the components of time τ map of our system
which we denote by

(D.8) J̇ = U(y, θ), θ̇ = V (y, θ).

Observe that

(D.9) U = O
�√

ε
�
, V = O

�
ε−3/4

�
.

(D.8) gives

∂J10

∂y9
=

∂ �J
∂y9

+ U
∂τ

∂y9
,

∂J10

∂θ9
=

∂ �J
∂θ9

+ U
∂τ

∂θ9

,(D.10)

∂θ10

∂y9
=

∂�θ
∂y9

+ V
∂τ

∂y9
,

∂θ10

∂θ9
=

∂�θ
∂θ9

+ V
∂τ

∂θ9
·(D.11)
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To find the partial derivatives of τ let S = ω +
√

ε G/R +
√

ε R. Then
dS

dt
=

∂ω

∂I
α1 +

∂ω

∂φ
(p + β1) +

g ω

R
√

ε
+ o(1) = L(I) +

Sg
√

ε R
+ o(1).

On S2 we have S = 0 and so its partial derivatives vanish as well. Thus
∂S

∂y9
+

dS

dt
· ∂τ

∂y9
= 0

and so
∂τ

∂y9
= − ∂S/∂y9

L(I) + Sg/
√

ε R + o(1)
·

Likewise
∂τ

∂θ9
= − ∂S/∂θ9

L + Sg/
√

ε R + o(1)
·

A direct computation gives ∂S/∂y9 = O(1). We also claim that on S2

(D.12)
∂S

∂θ9
= O(ε).

Indeed
dS =

�∂ω

∂I
+ O(ε3/4)

�
δI +

�∂ω

∂φ
+ O(ε3/4)

�
δφ +

ε g

R
δθ.

Recalling the definitions of J, ψ and g we get

δI = δJ +
εα1

ω
δθ + HOT, δφ = δψ +

εβ1

ω
δθ + HOT

and hence

(D.13)
∂S

∂θ9
= ε g

� 1

ω
+

1
√

ε R

�
+ O(ε).

On S2 the first term equals to −εgG/R
2
ω = O(ε5/4) proving (D.12). Now the first

derivative estimates follow easily from (D.10) and (D.11).
To obtain the second derivative estimates we differentiate (D.10) and (D.11) once

more. We have
∂

∂θ9
=

∂θ10

∂θ9
· ∂

∂θ10
+

∂y10

∂θ9
· ∂

∂y10

,(D.14)

∂

∂y9
=

∂θ10

∂y9
· ∂

∂θ10
+

∂y10

∂y9
· ∂

∂y10
·(D.15)

Therefore ∂/∂θ9 does not worsen the first derivative estimates while taking ∂/∂y9 we
loose ε−3/4 due to the first term in (D.15).

Lemma D.0.14. – We have

δJ10 ∼ δJ8 + o(1)δφ8 + O(ε)δθ8,

δθ10 ∼
1

ε

∂w

∂I
δI8 + o

�1

ε

�
δφ8 + O(1)δθ8,
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∂2J10

∂y2
8

= O(ε−3/4),
∂2J10

∂y8∂θ8
= O(ε1/4),

∂2J10

∂θ2
8

= O(ε5/4),

∂2θ10

∂y2
8

= O(ε−7/4),
∂2θ10

∂y8∂θ8
= O(ε−3/4),

∂2θ10

∂θ2
8

= O(ε1/4).

Proof. – This follows from Lemmas D.0.12 and D.0.13 by direct computation.

Lemma D.0.15. – The composition (J8, θ8) �→ (J10, θ10) satisfies
dJ 10

dJ 8
= 1 + o(1),

dJ 10

dθ8
= O(ε),

dθ10

dJ 8
=

1

ε

∂w

∂I
+ o(ε−1),

dθ10

dθ8
= O(1),

d2J10

dJ 2
8

= O(ε−3/4),
d2J10

dJ 8dθ8
= O(ε1/4),

d2J10

dθ2
8

= O(ε),

d2θ10

dJ 2
8

= O(ε−7/4),
d2θ10

dJ 8dθ8
= O(ε−3/4),

d2θ10

dθ2
8

= O(1).

Proof. – The difference with lemma D.0.14 is that now ψ8 is a function of J8 and θ8

so
d

dθ8
=

∂

∂θ8
+

∂ψ8

∂θ8
· ∂

∂ψ8

, d

dJ 8
=

∂

∂J8
+

∂ψ8

∂J8
· ∂

∂ψ8
·

The same computations as in Lemmas C.0.5 and D.0.13 give

(D.16)
∂ψ8

∂J8
= O(1),

∂2ψ8

∂J2
8

= O(1).

Let �S = ω −
√

ε R−
√

ε G/R. Arguing as in (D.13) we get

(D.17)
∂ψ8

∂θ8
= − ∂ �S/∂θ8

∂ �S/∂ψ8

=
εg(ω−1 − 1/

√
εR) + O(ε)

∂ �S/∂ψ8

= O(ε),

∂2ψ8/∂θ8∂J8 = O(
√

ε ) due to ε d(1/ω)/dJ 8 term, and ∂2ψ8/∂θ2
8 = O(ε). (D.16) and

(D.17) immediately imply the estimates for the first derivatives. Next,

d2θ10

dθ2
8

=
∂2θ10

∂θ2
8

+ 2
∂ψ8

∂θ8
· ∂2θ10

∂θ8∂ψ8
+

�∂ψ8

∂θ8

�2 ∂2θ10

∂ψ2
8

+
∂2ψ8

∂θ2
8

· ∂θ10

∂ψ8
= O(1),

d2J10

dθ2
8

=
∂2J10

∂θ2
8

+ 2
∂ψ8

∂θ8
· ∂2J10

∂θ8∂ψ8
+

�∂ψ8

∂θ8

�2 ∂2J10

∂ψ2
8

+
∂2ψ8

∂θ2
8

· ∂J10

∂ψ8
= O(ε)

the leading term in both cases being the last one. Other derivatives are easier since
now (∂2ψ8/∂ ∗ ∂∗)(∂∗/∂ψ8) does not spoil the main term.

Lemma D.0.16. – The map of step 11) satisfies

δJ11 = δJ10,

the second derivatives of J11 vanish,
∂H11

∂θ10
= L + O(ε1/4),

∂H11

∂J10
= O(ε−3/4),
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∂2H11

∂θ2
10

= O(ε1/4),
∂2H11

∂θ10∂J10
= O(ε−1/4),

∂2H11

∂J2
10

= O(ε−1).

Proof. – We have

H =
ω2

2ε
− Lθ −G.

Direct differentiation implies all first derivative estimates except for ∂H/∂θ. To obtain
this last estimate we rewrite using (1.11)

ω2(I, φ) = ω2(J, ψ) + 2εG + O(ε5/4).

Thus
H =

ω2(J, ψ)

2ε
− Lθ + O(ε1/4).

Now the rest of the proof proceeds as in Lemma C.0.5.

Lemma D.0.17. – We have:
∂H11

∂θ8
= O(1),

∂H11

∂J8
=

L

ε

�∂w

∂I
+ o(1)

�
,

∂J11

∂θ8
= O(ε),

∂J11

∂J8
∼ 1,

∂2H11

∂J2
8

= O(ε−7/4),
∂2H11

∂θ8∂J8
= O(ε−3/4),

∂2H11

∂θ2
8

= O (1) ,

∂2J11

∂J2
8

= O(ε−3/4),
∂2J11

∂θ8∂J8
= O(ε1/4),

∂2J11

∂θ2
8

= O(ε).

Proof. – Direct computation.

Lemma D.0.18. – The map of step 8) satisfies

δJ8 = δJ7,

the second derivatives of J8 vanish,
∂θ8

∂H7
= O(1),

∂θ8

∂J7
= O(ε−3/4),

∂2θ8

∂H2
7

= O(ε1/4),
∂2θ8

∂H7∂J7
= O

� 1√
ε

�
,

∂2θ8

∂J2
7

= (ε−5/4).

Proof. – Similarly to Lemma D.0.16 we obtain
∂H7

∂θ8
= L + O(ε1/4),

∂H7

∂J8
= O(ε−3/4),

∂2H7

∂θ2
8

= O(ε1/4),
∂2H7

∂θ8∂J8
= O(ε−1/4),

∂2H7

∂J2
8

= O(ε−1).

Next
∂θ8

∂H7
=

�∂H7

∂θ8

�−1
= O(1),

∂θ8

∂J7
= −∂H7/∂J8

∂H7/∂θ8
= O(ε−3/4).

Now the result follows by direct computation using the formulas for derivatives of the
inverse mapping.
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Proof of Proposition B.0.2. – The result follows from Lemmas D.0.17 and D.0.18 by
direct computation.
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APPENDIX E

DYNAMICS NEAR THE SEPARATRIX

E.1. Normal form

In this section we describe the dynamics near the separatrix of the inner map.

Lemma E.1.1. – There exist functions x(r, θ, I, ε), y(r, θ, I, ε), such that in coordi-
nates (x, y, I) the following holds:

(E.1) ẋ = a(x, y, I, ε), ẏ = b(x, y, I, ε), İ =
√

ε c(x, y, I, ε)

where

a(0, y, I, ε) = b(x, 0, I, ε) = 0,(E.2)
∂a

∂x
(x, y, I, 0) +

∂b

∂y
(x, y, I, 0) = 0,(E.3)

a(x, 0, I, ε) = λ1(I, ε)x, b(0, y, I, ε) = −λ2(I, ε)y,(E.4)

Denote λ(I) = λ1(I, 0) = λ2(I, 0). Due to assumption (D) there exists λ0 such that
λ(I) > λ0.

Proof. – We first consider the case where I is fixed and ε = 0. In this case equations
(E.2)–(E.4) mean that

(i) the origin is fixed;

(ii) the stable manifold of the origin has coordinates {y = 0} and the unstable
manifold of the origin has coordinates {x = 0};

(iii) The flow restricted to the invariant manifolds is linear;

(iv) The area from Ω := drdθ equals to dxdy.

To satisfy this conditions we first choose an arbitrary coordinate system (x̄, ȳ)

satisfying (i) and (ii). This is possible since the invariant manifolds are smooth (see
[30, Theorem 4.1 (d)]).

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2012



82 APPENDIX E. DYNAMICS NEAR THE SEPARATRIX

Next we further change coordinates �x = �x(x̄), �y = �y(ȳ), to satisfy (iii). To fix our
ideas consider the unstable manifold. The flow restricted to it has form ˙̄y = ḡ(ȳ) for
some function ḡ. We need our change to satisfy d�y

dȳ
g(ȳ) = λ(I)�y that is

ln �y
λ(I)

= C +

�
ȳ

y∗

ds

ḡ(s)
·

Using the fact that
1

ḡ(s)
=

1

λ(I)s
+ g∗(s)

where g∗ is a smooth function we get �y = ȳeG
∗(ȳ) where G∗ is a smooth function near

the origin (in fact, G∗ is a rescaled antiderivative of g∗).
Now we need one last change (�x, �y) �→ (x, y) to satisfy (iv). In coordinates (�x, �y)

we have Ω = z(�x, �y)d�xd�y for some function z. We obtain the point with coordinates
(x, y) by starting from the point with coordinate (0, y) (recall that our coordinates
has been already defined on the unstable manifold of the fixed point) and moving for
time x along the flowlines of the vectorfield (X, Y). We need to satisfy the following
conditions:

divΩ(X, Y) = 0 and (X, Y)(0, x) = (1, 0).

We take X = 1 and then obtain Y solving
∂Y
∂y

+ Y∂z

∂y
+

∂z

∂x
= 0, Y(0, x) = 0.

Next we claim that our coordinates depend smoothly on I. First we not that the
manifolds {x = 0} and {y = 0} are smooth. For example, {y = 0} is normally
hyperbolic (in fact transversally we have just contraction so the claim follows from
the smoothness of normally hyperbolic manifolds [30, Theorem 4.1 (d)]). Now the
smoothness of x(r, θ, I, 0) and y(r, θ, I, 0) follows from the fact that the solutions of
ODEs depend smoothly on initial conditions.

Next we have that the manifolds {x = 0}, {y = 0} and {x = y = 0} are normally
hyperbolic and by [30, Theorem 4.1(f)] these structures survive for small non-zero ε.

In fact the set of points (r, θ, I,
√

ε) such that {x = 0} is also normally hyperbolic
for the equation (1.6) supplemented by ε̇ = 0, and so it is smooth. Arguing as in
ε = 0 we obtain that the functions (r, θ, I,

√
ε ) �→ (x, y) are smooth (again we need

to introduce an additional coordinate change in order to satisfy (E.4)). Since (x, y)

are smooth we obtain (E.1) with smooth a, b and c.

E.1.1. Some consequences of volume preservation. – Consider the Poincaré
map between the sections {y = δ} and {x = δ} for small δ. In order to study its
derivatives we decompose this map into two parts:

1) hit of {x = δ};
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2) landing to {x = δ}.
Motivated by Proposition 2.2.2* we assume that

(E.5) x0 >

�
ε

| ln ε| ·

The following estimates will be helpful in our analysis. Let Z denote the set
Z = {x = 0 or y = 0}. Denote π : R3 → Z denote the map

π(x, y, I) =

�
x if x < y,

y if x ≥ y.

Lemma E.1.2. – Let t1 < t2 be an intervals such that x(t) < δ, y(t) < δ for all
t1 < t < t2. Let p(t) = π((x(t), y(t), z(t)). There exist functions A, B : [0, δ]× Z → R
such that

(a)
�

t2

t1

x(t)dt < Const x(t2);

(b)
�

t2

t1

y(t)dt < Const y(t1);

(c) Let z(t) = x(t)y(t). Then for t2 � 1/
√

ε
���
z(t)

z(0)
− 1

��� ≤ Const
�√

ε + z(0)
�
τ ;

(d) x(t) ∼ A
�
x(0), π(t)

�
eλ(I0)tx(0);

(e) y(t) ∼ B
�
x(0), π(t)

�
e−λ(I0)ty(0).

Proof. – We have a(x, y, I, ε) = x �a(x, y, I, ε), b(x, y, I, ε) = x b̃(x, y, I, ε) and if x(t) <

δ, y(t) < δ then �a > 1
2λ0, b̃ < − 1

2λ0. It follows that for t < t2

(E.6) x(t) < x(t2) exp
�

1
2λ0(t− t2)

�
, y(t) < y(t1) exp

�
− 1

2λ0(t− t1)
�
.

This implies (a) and (b). Next

ż = ẋy + xẏ = ay + bx.

We have

a(x, y) = a(0, y) +
∂a

∂x
(0, y)x +

1

2

∂2a

∂x2
(ξx, y)x2 for some ξ < 1.

By (E.3) and (E.4)
∂a

∂x
(0, y) = − ∂b

∂y
(x, 0) = λ(I) + O

�√
ε
�
.

Therefore
a(x, y) = λ(I)x + O

�√
ε x

�
+ O(x2y).

Likewise
b(x, y) = −λ(I)y + O

�√
ε y

�
+ O(xy2).
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Thus

ż = z × O
�√

ε + z
�
.

Now (c) follows easily.

Next from the equation ẋ = �ax we conclude that

x(t) = x(0) exp
� �

t

0
�a(x(s), y(s), I(s), ε)ds

�

= x(0) exp
�
λ(I0)t

�
exp

� �
t

0

�
�a(x(s), y(s), I(s), ε)− �a(0, 0, I0, 0)

�
ds

�
.

To estimate the last integral we split

�a(x(s), y(s), I(s), ε)− �a(0, 0, I0, 0)

=
�
�a(x(s), y(s), I(s), ε)− �a(x(s), y(s), I0, 0)

�

+
�
�a(x(s), y(s), I0, 0)− �a(0, 0, I0, 0)

�
.

The first term here is O(
√

ε t). To estimate the integral of the second term we split it
into three parts. Fix t∗ > 0. Then on the interval [t − t∗, t] y is exponentially small
while x(t) is well approximated by the solution of ˙̄x = a(x̄, 0, I0, 0) with the boundary
condition x̄(t) = x(t). Denoting p(s, t) = (x̄(s), 0, I0, 0) we have

�
t

t−t∗

�
�a(x(s), y(s), I0, 0)− �a(0, 0, I0, 0)

�
ds ∼

�
t

t−t∗

�
�a(p(s, t))− �a(0, 0, I0, 0)

�
ds.

Likewise
�

t
∗

0

�
�a(x(s), y(s), I0, 0)− �a(0, 0, I0, 0)

�
ds ∼

�
t
∗

0

�
�a(p(s, 0))− �a(0, 0, I0, 0)

�
ds.

Here p(s, 0) = (x̄(s), ȳ(s), I0, 0) where x̄, ȳ denotes the solution of

˙̄x = a(x̄, ȳ, I0, 0), ˙̄y = b(x̄, ȳ, I0, 0)

with initial condition x̄(0) = δ, ȳ(0) = y(0).

Finally due to parts (a), (b) and (E.6)
���
�

t−t
∗

t∗

�
�a(x(s), y(s), I0, 0)− �a(0, 0, I0, 0)

�
ds

���

≤ Const

�
t−t

∗

t∗

�
x(s) + y(s)

�
ds ≤ Const

�
x(t− t∗) + y(t∗)

�

≤ Const δe−
1
2 λ0t

∗
.

Now (d) and (e) follow easily.
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Lemma E.1.3. – Suppose that (δx, δy, δI)(0) = O(1). Then
(a) �(δx, δy)� = O

�
δ/y(t)

�
.

(b) �δI(t)− δI(0)� ≤ Const
√

ε δ/y(t).

(c) Denote
∆ = b δx− a δy.

Then for all t ∈ [0, τ ]

∆(t)−∆(0) = O
�√

ετ + x2
0

�
τ.

Proof. – Write the variational equation as

d

dt





δx

δy

δI



 = R





δx

δy

δI



 .

Then by the argument of Lemma E.1.2
�

t

0

��R(s)
��ds = λt + O(1).

Combining this with Lemma E.1.2(e) gives part (a). Plugging the estimate of part
(a) into the equation for δI proves part (b).

To prove part (c) write

(E.7) ∆̇ =
�∂a

∂x
+

∂b

∂y

�
∆ +

√
ε c

� ∂b

∂I
− ∂a

∂I

�
δI +

�∂a

∂I
b− ∂b

∂I
a
�
δI.

The first term is O(
√

ε∆) due to (E.3), the second term is O(
√

ετ) by part (b) and
(E.5). The contribution of the last term will be split into two parts according to the
bound on |δI(t)| provided by part (b).

Let Σ(t) be the surface spanned by the trajectories starting from
�
0 ≤ x ≤ x0, y = δ, I = I0

�

and terminating at x = x(t). Let γ(t) = ∂Σ(t). Consider the contribution of

δI(0)

�
t

0

�∂a

∂I
b− ∂b

∂I
a
�
(s)ds.

The second factor here equals to

(E.8)
�

γ(t)

�∂a

∂I
dy − ∂b

∂I
dx

�
+ e(t)

where the error term e(t) can be estimated as follows.

e(t) =

�
x0

0

∂b

∂I
(x, δ)dx +

�
y(t)

0

∂a

∂I
(x(t), y)dy

= λ(I)(x0y0 − x(t)y(t)) + O(
√

ε + x2
0) = O(

√
ε + x2

0)τ
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by Lemma E.1.2 (c). The main term in (E.8) equals
�

γ(t)

�∂a

∂I
dy − ∂b

∂I
dx

�
=

��

Σ(t)

∂

∂I

� ∂b

∂y
+

∂a

∂x

�
dxdy = O

�√
ε
�
.

Next by (E.2)
�∂a

∂I
b− ∂b

∂I
a
�
≤ Const x(t)y(t)

so by Lemma E.1.2 the contribution of
�

t

0

� √ε

y(s)

��∂a

∂I
b− ∂b

∂I
a
�
(s)ds

is O(
√

ε ). Now the result follows easily.

E.2. Analysis of passages near the origin

We are now ready to estimate first derivatives of the map of step 1).

Lemma E.2.1. – One has
∂x1

∂x0
∼ δ

x0

,
���
∂y1

∂x0

��� ≤ Const δ,
���
∂I1

∂x0

��� ≤
Const δ

√
ε

x0

,

∂x1

∂y0
= O(1),

∂y1

∂y0
= O(x0),

∂I1

∂y0
= O(

√
ε ).

∂x1

∂I0
= O(τ2),

∂y1

∂I0
= O

�√
ετ τ + x0τ

�
,

∂I1

∂I0
− 1 = O

�√
ε τ2

�
.

Proof. – Substituting the identity

(E.9) δx =
aδy + ∆(t)

b

into the equation for δy we get

(E.10) δ̇y =
� (∂b/∂x)a

b
+

∂b

∂y

�
δy + �∆(t)

where
�∆(t) =

(∂b/∂x)∆(t)

b
+

∂b

∂I
δI.

Let Ξ(s, t) denote the fundamental solution of the homogeneous equation

Ξ̇ =
� (∂b/∂x)a

b
+

∂b

∂y

�
Ξ, Ξ(s, s) = 1.

Observe that, due to (E.2) and (E.3), on {x = y = 0} the expression in parenthesis
equals to −λ(I0) + O(

√
ε ). Therefore arguing as in the proof of Lemma E.1.2 we see

that
C1e−λ(I0)(t−s) ≤ Ξ(s, t) ≤ C2e−λ(I0)(t−s).
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In particular �
t

0
Ξ(s, t)ds = O(1).

We have

δy(t) = Ξ(0, t)δy(0) +

�
t

0
Ξ(s, t)�∆(s)ds.

Since
∆(t) = ∆(0) + O

�
(
√

ετ + x2
0)τ

�
,

∂b/∂x

b
= O(1),

we have �
t

0
Ξ(s, t)∆(s)ds = O

�
∆(0) + (

√
ετ + x2

0)τ
�
.

Since
∂b

∂I
(s)Ξ(s, t) = O

�
e−λ(I0)t

�
,

∂b/∂I(s)

y(s)
= O(1)

we have
�

t

0
Ξ(s, t)

∂b

∂I
(s)δI0ds = O(x0τδI0),

�
t

0
Ξ(s, t)

∂b

∂I
(s)

√
ε

x(s)
ds = O(

√
ε ).

Therefore
δy1 = O

�
∆(0) + (

√
ετ + x2

0)τ + x0τδI0

�
.

The estimates for δx1 are now obtained from (E.9). In particular

∂x1

∂x0
=

∆(0)

b1
+ O

�δ2

x0

�
=

b0

b1
+ O

�δ2

x0

�

=
y0

y1
+ O

�δ2

x0

�
=

x1

x0
+ O

�δ2

x0

�
=

δ

x0
+ O

�δ2

x0

�
.

To get the estimates for δI1 we plug the bounds for δx and δy into the equation

δ̇I =
√

ε
∂c

∂x
δx +

√
ε

∂c

∂y
δy +

√
ε

∂c

∂I
δI

and observe that the main contribution comes from the first term and that�
t

0 |δx|(s)ds = O(|δx| (t)). This gives the required estimates for x0- and I0-derivatives.
However for y0 derivatives we get slightly weaker bounds

∂y1

∂y0
= O

�
x0 +

√
ετ τ

�
,

∂x1

∂y0
= O

�
1 +

√
ετ τ

x0

�
= O(τ2),

δI = O(
√

ε τ2).(E.11)

Substituting (E.11) into (E.7) we get

(E.12) ∆(t) = ∆0 + O
�√

ε x0t
3 + εt3

�
.

Substituting (E.11) and (E.12) into (E.10) we get
∂y1

∂y0
= O(x0).
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Now the bounds for other y0-derivatives follow easily.

Next, we estimate the second derivatives.

Lemma E.2.2. – We have:

∂2x1

∂x2
0

= O
� 1

x0

�
,

∂2y1

∂x2
0

= O
� 1

x0

�
,

∂2I1

∂x2
0

= O
�√ε

x2
0

�
,

∂2x1

∂x0∂I0
= O

� 1

x0

�
,

∂2y1

∂x0∂I0
= O

� 1

x0

�
,

∂2I1

∂x0∂I0
= O

�√ε

x0

�
,

∂2x1

∂I2
0

= O
� 1

x0

�
,

∂2y1

∂I2
0

= O
�
τ2

�
,

∂2I1

∂I2
0

= O
�√ε

x0

�
.

Proof. – We will show how to estimate ∂2/∂x2
0. Other derivatives are similar. Con-

sider the second variational equation

d

dt





δ2x

δ2y

δ2I



 = R





δ2x

δ2y

δ2I



 + Q

where Q denotes the quadratic part. Using Lemma E.2.1 and the fact that due to
(E.4)

∂2a

∂x2
= O(y),

∂2b

∂x2
= O(y)

we get the following bounds for the components of Q

Qx(s) = O
�
eλ(I0)s

�
, Qy(s) = O

�
eλ(I0)s

�
, QI(s) = O

�√
ε e2λ(I0)s

�
.

On the other hand if Γ(s, t) denote the fundamental solution of Γ̇ = RΓ then by the
estimates of Lemma E.2.1 we have

Γ(s, t) = O









eλ(I0)(t−s) 1 (t− s)2

1 e−λ(I0)(t−s) e−λ(I0)(t−s)(t− s) +
√

ε(t− s)3/2

√
ε eλ(I0)(t−s) √

ε 1







.

This implies the bounds for ∂2/∂x2
0 derivatives.
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Lemma E.2.3. – The map of step 2) satisfies

∂y2

∂x1
= − b

a
, ∂y2

∂y1
= 1,

∂y2

∂I1
= 0,

∂I2

∂x1
= −

√
ε

c

a
, ∂I2

∂I1
= 1,

∂I2

∂y1
= 0,

∂2y2

∂x2
1

= O
�
y2 + y

√
ε
�
,

∂2y2

∂x1∂y1
= O(1),

∂2y2

∂x1∂I1
= O(y),

∂2I2

∂x1∂∗1
= O

�√
ε
�

and the other second derivatives are zero.

Proof. – Let X(x, y, I, τ), Y (x, y, I, τ), I (x, y, I, τ) denote the solutions of (E.1) with
initial conditions

(E.13) (X,Y, I )(x, y, I, 0) = (x, y, I).

Then

y2 = Y (x1, y1, I1, τ) I2 = I (x1, y1, I1, τ)

where

(E.14) X(x1, y1, I1, τ) = δ.

Differentiating (E.14) and using (E.13) together with its x-derivative we get

∂X

∂x
+ a(δ, Y, I )

∂τ

∂x
= 0,

∂a

∂x

∂τ

∂x
+

∂a

∂y
b

�
∂τ

∂x

�2

+
√

ε
∂a

∂I
c
�∂τ

∂x

�2
+ a

∂2τ

∂x2
= 0.

Therefore
∂τ

∂x
= −1

a
, ∂2τ

∂x2
=

1

a2
· ∂a

∂x
− 1

a3
·
�∂a

∂y
b +

√
ε

∂a

∂I
c
�
.

Now
∂Y

∂x1
=

∂Y

∂x
+ b(δ, Y, I , τ)

∂τ

∂x
= − b

a
,

∂2Y

∂x2
1

=
∂b

∂x
· ∂τ

∂x
+

∂b

∂y
b
�∂τ

∂x

�2
+
√

ε
∂b

∂I
c
�∂τ

∂x

�2
+ b

∂2τ

∂x2
·

Using (E.2) the last expression is

−1

a
· ∂b

∂x
+

b

a2

� ∂b

∂y
+

∂a

∂x

�
+ O

�
y2 + y

√
ε
�
.
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By (E.3) the second term is O(y
√

ε ). To estimate the first term observe that

∂b

∂x
(x2, y2, I2) =

∂b

∂x
(x2, 0, I2) +

∂2b

∂x∂y
(x2, 0, I2)y1 + O(y2)

=
∂b

∂x
(x2, 0, I2)−

∂2a

∂2x
(x2, 0, I2)y1 + O(y2).

The first term here vanishes due to (E.2) while the second term is O(y2
1 +

√
ε y1) due

to (E.4).
The estimates for other derivatives are similar but easier because there is no need

to use (E.3) and (E.4).

Lemma E.2.4. – We have:
∂y2

∂x0
=

|b(x0, y0, I0, 0)|
a(x1, y1, I1, 0)

+ O
�
(
√

ετ + x2
0)τ

�
,

∂y2

∂I0
= O

�
(
√

ετ + x2
0)τ

�
,

∂I2

∂x0
∼ −

√
ε c

(∂a/∂x0)x0
,

∂I2

∂I0
= 1 + O

�√
ετ2

�
,

∂2y2

∂x2
0

= O
� 1

x0

�
,

∂2y2

∂x0∂I0
= O

� 1

x0

�
,

∂2y2

∂I2
0

= O(τ2),

∂2I2

∂x2
0

= O
�√ε

x2
0

�
,

∂2I2

∂x0∂I0
= O

�√ε τ2

x0

�
,

∂2I2

∂I2
0

= O
�√ε

x0

�
.

Proof. – The inequalities are obtained by direct computation. To get the asymptotics
of ∂y2/∂x0 observe that

∂y2

∂x0
=

∂y2

∂x1
· ∂x1

∂x0
+

∂y2

∂y1
· ∂y1

∂x0
+

∂y2

∂I1
· ∂I1

∂x0

=
∂y1

∂x0
−

� b

a

�
(x1, y1, I1, ε)

∂x1

∂x0

= − ∆1

a(x1, y1, I1, ε)
=

|b(x0, y0, I0, ε)|
a(x1, y1, I1, ε)

+ O
�
(
√

ετ + x2
0)τ

�

where the last equality follows from Lemma E.1.3.
To get the asymptotics of ∂I2/∂x0 observe that

∂I2

∂x0
=

∂I2

∂x1
· ∂x1

∂x0
+

∂I2

∂y1
· ∂y1

∂x0
+

∂I2

∂I1
· ∂I1

∂x0

=
∂I2

∂x1
· ∂x1

∂x0
+

∂I2

∂I1
· ∂I1

∂x0
=

∂I2

∂x1
· ∂x1

∂x0
+ O

�√ε δ

x0

�
.

Now by Lemmas E.2.1 and E.2.3
∂I2

∂x1
· ∂x1

∂x0
∼ −

√
ε

c

a
· δ

x0
·

Since a ∼ δ ∂a/∂x the result follows.
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The above formulas describe the transition between (I, x) and (I, y) coordinates.
We now return to (I, E) coordinates. Due to the smoothness of (x, y, I) near the
separatrix we have

(E.15) H =
√

ε κ(I) + q(I)xy + HOT

Thus on {y = δ} the following bound hold
∂H

∂x
= q(I)y + HOT = δq(I) + HOT and

∂H

∂I
∼ ∂q

∂I
xδ + HOT.

It follows that the passage near the separatrix has the following derivatives in (I,H)

coordinates
�

1 0

O(δx0) δq(I)

� �
1 − c

√
ε

(∂a/∂x)x0

O((
√

ετ + x2
0)τ) b/a

�

×
�

1 0

O(x0) 1/δq(I)

�
+ HOT

=

�
1 − c

√
ε

(∂a/∂x)x0δq(I)

O(x0δ) b/a

�
.(E.16)

Observe that if H0 �
√

ε then by (E.15) the term in the upper corner equals to

−
√

ε
c

λ(I)H0

�
1 + o(1)

�
.

In our setting this can be rewritten as

∂I2

∂H0
∼ −

√
ε α1(I, φ(I), θcr(I))���∂2U

∂θ2 (θcr(I), I))
��

·

Concerning the second derivatives Lemma E.2.4, (E.16) and Lemma C.0.3 imply that
those bounds can have at most 1/d2 extra factor comparing with maps in T .

E.3. Derivative bounds of Proposition 2.2.2

Here we prove Proposition 2.2.2 (a) and (b). For simplicity we consider orbits which
pass only once near the saddle. On Fig. 3 of Chapter 1 those orbits pass on the right
of the saddle point. There are also orbits passing twice near the saddle. On Fig. 3 of
Chapter 1 those orbits pass below and then above the saddle point. The analysis of
orbits experiencing two passages is similar to one passage case but requires a slightly
longer computations. Namely we need to consider the composition of three maps:
first passage of the δ-neighborhood of the saddle, motion along the separatrix loop
and the second passage of δ-neighborhood of the saddles. Since such compositions
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are studied in Appendix F we leave the proof of the two passage case to the reader
who may refer to section F.2 and in particular Lemma F.2.1 for details.

The proof of parts (a) and (b) of Proposition 2.2.2 for is the same as for Proposition
2.2.1 except that now for orbits passing (once) near the separatrix we split step 4)
into three substeps:

(a) landing to y = δ;
(b) landing to x = δ;
(c) hit of r = R.

Now the jump of I inside the δ-neighborhood of the saddle can be computed using
(E.1). Namely if t∓ are the beginning and the end of the passage then

∆Isaddle =
√

ε

�
t+

t−

c(I(s), φ(s), θ(s))ds.

Now near the saddle we have c(I(s), φ(s), θ(s)) = c(I, φj(I), θjk(I) + o(1), so

∆Isaddle =
√

ε c
�
I, φj(I), θjk(I)(t+ − t−)(1 + o(1)

�
.

Now the jump outside the δ-neighborhood is at most Const
√

ε t̄ where t̄ is the largest
time spent on step (4) by an orbit avoiding δ neighborhood of the saddles. Now if δ is
fixed and d → 0 we get t̄ ≤ Const(δ) whereas t+− t− →∞. Letting δ → 0 sufficiently
slowly we obtain equation (2.9) Proposition 2.2.2 (a).

To get the bounds for derivatives observe that the maps of steps (4a) and (4c) are
in T 0 (see Lemmas C.0.3, C.0.9 and E.2.3). Therefore if the map of step (4b) were
in T the estimates of the Proposition 2.2.1 would remain valid. However because
of the step (4b) the estimates are actually worse. Namely for the first derivative we
loose a factor of O(1/d) and for the second derivative we loose a factor of O(1/d2).

Now to obtain the first derivative estimates we need to multiply the estimates of
steps 1)–11). Since bounds for all factors stay as before except for extra (1/d) factor
at step 4) we loose at most (1/d). Similarly then computing the second derivative
step 4) contributes either the second derivative or the first derivative squared. In
the first case we loose at most lnm d/d2 for some number m, in the second case we
loose at most 1/d2. Finally to get (2.10) we argue as in the proof of Proposition B.0.1
examining each monomial of ∂J7/∂H0. Again there is only one monomial which is
better than o(

√
ε/d). Thus

∂J7

∂H0
∼ ∂J7

∂I6
· ∂I6

∂I5
· ∂I5

∂I4c

· ∂I4c

∂I4b

· ∂I4b

∂H4a

· ∂H4a

∂H3
· ∂H3

∂H2
· ∂H2

∂H1
· ∂H1

∂H0
∼ −

√
ε

c

λd

�
1 + o(1)

�
.

Combining this with
∂H11

∂H0
∼ ∂H11

∂J7
· ∂J7

PH0
∼ 1

ε
· ∂w

∂I
· ∂J7

∂H0
·

we obtain (2.10).
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Figure 1. Proof of Proposition 2.2.2 (c) and (d).

E.4. Measure bounds of Proposition 2.2.2

Here we prove Proposition 2.2.2 (c) and (d).

To get (c) observe that the maps of steps 1)–3) are in T 0 so their compositions are
in T 0. Thus using the notation of the previous section we have

∂H4a

∂H0
=

∂H4a

∂H3
· ∂H3

∂H0
+

∂H4a

∂I3
· ∂I3

∂H0
= 1 + o(1) + O

�√
ε
�
o
�
1/
√

ε
�

= 1 + o(1).

Next, since the composition of the maps of steps 1)–4a) is in T we have that the
image of γ satisfies

dI 4a

dH 4a

=
∂I4a/∂H0 + ∂I4a/∂I0g�(H0)

∂E4a/∂H0 + ∂H4a/∂I0g�(H0)
(E.17)

=
O(
√

ε )

1 + o(1) + O(1/
√

ε ) O(ε1/2+δ)
= O(

√
ε ).

So this image is transversal to the line H = Const. Thus the set {d ≤ ξ} has measure
comparable to the measure of the set {H4a ≤ ξ}. This proves (c).

Using (1.12) we see that (d) reduces to

H(jk)
+ −H(jk)

− =
√

ε Mjk(I) + o
�√

ε
�
.

Let A and B be the images of H(jk)
− and H(jk)

+ respectively under the map of steps
(1)–(4a). By the foregoing discussion

H(jk)
+ −H(jk)

−
H(B)−H(A)

= 1 + o(1)

so we need to estimate the denominator.

Let CD be the component of the orbit of A outside the δ neighborhood of the
saddle. Fig. 1 projects everything into I = Const plane ignoring the fact that the
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orbits of B and D hit N ε at different points OB and OD. Now using the smooth
dependence of stable and unstable manifolds on parameters we get

��H(B)−H(OB)
�� ≤ Const δ

√
ε,(E.18)

��I(B)− I(OB)
�� ≤ Const δ

√
ε,(E.19)

��H(D)−H(OD)
�� ≤ Const δ

√
ε,(E.20)

��I(D)− I(OD)
�� ≤ Const δ

√
ε.(E.21)

Next

H(D)−H(C) =
√

ε

� �
r2β(I, 0, θ, 0)

−
�
L(I) + g(I, θ)

�
η(I, 0, θ, 0) +

∂ �H
∂I

α(I, 0, θ, 0)
�
dt

where the integral is taken along the orbit from C to D. Thus

(E.22) H(D)−H(C) =
√

ε
�
Mδ

jk
(I) + ∆δ,ε

�

where Mδ
jk

(I) denotes the integral (1.17) over the part of Γ which lies outside δ-
neighborhood of O and ∆δ,ε → 0 as ε → 0. Also since it takes time O(| ln δ|) to go
from C to D we have

I(D)− I(C) = O
�
| ln δ|

√
ε
�
.

Thus by (E.21)

(E.23) I(OD)− I(C) = O
�
| ln δ|

√
ε
�
.

Let OA and OC be the points on N ε having the same I coordinate as A and C respec-
tively. Using that N ε and its derivatives depend smoothly on

√
ε and remembering

that H is zero on N by our choice of Kjk(I) we get

(E.24)
��H(OC)−H(OD)

�� ≤ Const
√

ε
��I(OC)− I(OD)

�� ≤ Const ε| ln δ|.

Next we claim that

(E.25) H(A)−H(OA) = H(C)−H(OC) + O
�
δ
√

ε
�
.

Indeed if both H(A) − H(OA) and H(C) − H(OC) are less than δ
√

ε then there is
nothing to prove. Otherwise the result follows from Lemma E.1.2(c) (applied to either
system (E.1) or its time reversal).

Combining (E.18), (E.22), (E.24) and (E.25) we get

H(B)−H(A)−
�
H(OB)−H(OA)

�
(E.26)

=
√

ε
�
Mδ

jk
(I) + ∆δ,ε

�
+ O

�
δ
√

ε
�
.
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On the other hand we have
��I(OA)− I(OB)

�� =
��I(A)− I(OB)

��

≤
��I(A)− I(B)

�� +
��I(B)− I(OB)

��

≤ Const
�√

ε |H(A)−H(B)| + δ
√

ε
�

where the last inequality uses (E.17) and (E.19). Thus

H(OA)−H(OB) ≤ Const
�√

ε |H(A)−H(B)| + δ
√

ε
�
.

Combining this with (E.26) we get

H(B)−H(A) =
√

ε
�
Mδ

jk
(I) + ∆δ,ε

�
+ O

�
δ
√

ε
�
.

Letting ε and δ to 0 at appropriate speed we obtain the statement required.
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APPENDIX F

CAPTURED POINTS

F.1. Dividing the trajectory

Our task is to establish (1.28)–(1.29) rigorously. To this end we divide the captured
trajectory into three parts: entrance part, middle part and exit part. The middle part
will be defined by the condition that |H| ≥ ε1/4−δ. For the middle part the standard
averaging theory of Appendix D can be applied. On the other hand, for the entrance
and the exit parts the orbit passes near the saddle point several times and for each
passage the results of Appendix E can be used.

Since our goal is to prove Proposition 2.2.2* we only consider the orbits which do
not come closer that

�
ε/| ln ε| to the saddle point.

Lemma F.1.1. – (a) The entrance map satisfies the estimates

|H1| = ε1/4−δ + O
�√

ε
�
, I1 − I0 ∼

ε1/4−δc(0, 0, I0)
�

1
4 − δ

�

Mij(I0)λ(I0)
|ln ε| ,

∂H1

∂H0
∼ 1,

∂I1

∂I0
∼ 1,

∂H1

∂I0
= o(εδ),

∂I1

∂H0
∼ c(0, 0, I0)(1/4 + δ) |ln ε|

Mij(I0)λ(I0)
,

∂2(H1, I1)

∂(H0, I0)2
= O

�
ε−(3/4+2δ)

�
.

(b) The middle map satisfies

I2 = s(I1) + o(1), |H2| = ε1/4−δ + O(
√

ε ).

The first derivatives of (H2, I2) with respect to (H1, I1) are given by (1.28)–(1.29)
(with (H0, I0) replaced by (H1, I1) and (Hf , If ) by (H2, I2)). The second derivatives
are O(ε−1/4).
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(c) The exit map satisfies the estimates

|H3| = O(
√

ε ), I3 − I2 ∼
ε1/4−δc(0, 0, If )

�
1
4 − δ

�

Mij(If )λ(If )
|ln ε| ,

∂H3

∂H2
∼ 1,

∂I3

∂I2
∼ 1,

∂H3

∂I2
= o(εδ),

∂I3

∂H2
∼ c(0, 0, If )(1/4 + δ) |ln ε|

Mij(If )λ(If )
,

∂2(H3, I3)

∂(H2, I2)2
= O

�
ε−(3/4+2δ)

�
.

The next result is obtained from Lemma F.1.1 by a direct computation.

Corollary F.1.2. – The derivatives of the map (I0, H0) �→ (I3, H3) satisfy (1.28)–
(1.29) with (Hf , If ) replaced by (H3, I3) and lnH0, lnHf replaced by 1

2 ln ε. The second
derivatives are O(ε−(3/4+3δ)).

Corollary F.1.2 implies the following modification of Proposition B.0.1.

Proposition B.0.1∗. — The inner map for the captured orbits satisfies the esti-
mates

∂J7

∂H0
∼ −C∗c(J0)c(Jf )

4M(Jf )
ln2 ε,

where C∗ is defined by (1.27) and c(J) is defined by equation (1.26).

∂J7

∂J0
= O

� ln2 ε√
ε

�
,

∂H7

∂H0
= O

� ln2 ε√
ε

�
,

∂H7

∂J0
= O

� ln2 ε

ε

�

The second derivatives bounds are worse than the bounds of Proposition B.0.1 by a
factor of ε−(5/4+3δ).

Proof. – To get the information about the first derivatives we directly multiply the
bounds

�
O (1) O (

√
ε)

O (1/
√

ε) O (1)

� �
O (| ln ε|) O

�
ln2 ε

�

O (1) O (| ln ε|)

�
(F.1)

×
�

O (1) O (
√

ε)

O (1/
√

ε) O (1)

�

(the middle term is given by Corollary F.1.2 while two other terms come from Ap-
pendix C). To get the asymptotics of ∂J7/∂H0 we observe that the bound for top
right corner of the product (F.1) comes from products of the top left corner of the
first matrix, the top right corner of the second matrix and the bottom right corner
of the third matrix. Therefore the result follows from (1.28) and the fact that the
maps of steps 1)–3) and 5)–7) of Appendix C as well as the maps of steps (4a), (4c)
of Section E.3 are in T 0.
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To obtain the bounds for the second derivatives we observe that comparing to the
proof of Proposition B.0.1 only the terms of step 4) are different. Now the terms
containing ∂2(I4, H4)/∂2(I3, H3) get worse by a factor O(ε−(5/4+3δ)) and the terms
containing (∂(I4, H4)/∂(I3, H3))2 get worse by a factor of O(ε−1 ln4 ε).

F.2. Entrance phase

We consider the iterates of the first return map to {y = δ}. The first return map
satisfies the following estimates.

Lemma F.2.1. – The first return map satisfies the following estimates:

(a) |Hn+1| − |Hn| ∼
√

ε Mij(I), In+1 − In ∼
√

εα1

�
In, φ(In), θcr(In)

� | lnxn|
λ(In)

·

(b) Here bn denotes b(xn, δ, In, 0) :

∂xn+1

∂xn

=
bn+1

bn

+ O
�
(
√

ε + x2
n
)τ

�
,

∂xn+1

∂In

= O
�
(
√

ε + x2
n
)τ

�
,

∂In+1

∂In

= 1 + O
�√

ε τ2
�
,

∂In+1

∂xn

∼ −
√

ε α1(I, φ(I), θcr(I))

λ(I)xn

·

(c)
∂2xn+1

∂x2
n

= O
� 1

xn

�
,

∂2xn+1

∂xn∂In

= O
� 1

xn

�
,

∂2xn+1

∂I2
n

= O(τ2),

∂2In+1

∂x2
n

= O
�√ε

x2
n

�
,

∂2In+1

∂xn∂In

= O
�√ε τ2

xn

�
,

∂2In+1

∂x2
n

= O
�√ε

xn

�
.

Proof. – (a) The formula for the change of H is proven similarly to Section E.4. To
establish the formula for the change of I observe that

I(t2)− I(t1) = O
�√

ε |t2 − t1|
�
.

The orbit spends most of the time near (0, 0, In) where İ ∼
√

ε c(0, 0, In). Also by
Lemma E.1.2 (d) the passage time satisfies τ ∼ | ln xn|

λ(In) .

(b) and (c) We represent our map as a composition of two maps: landing to {x = δ}
and landing to {y = δ}. The first map was analyzed in Section E.1. The second map
can be treated using the standard perturbation theory. Thus its derivative is O(

√
ε )

perturbation of ε = 0 map which is
�

a/b 0

0 1

�
.

(The derivation of the first column is similar to but much easier than the results of
Section E.1.) Concerning the second derivatives, the derivatives of x are O(1) and
the derivatives of I are O(

√
ε ). Now the result follows easily.
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Lemma F.2.2. – Let (�x, �I ) be the last point in the entrance zone. Then

(a) | �H| = ε1/4−δ + O
�√

ε
�
,

�I − I0 ∼
ε1/4−δα1(I0, φ(I0), θcr(I0))

�
1
4 − δ

�

Mij(I0)λ(I0)
| ln ε|.

(b)
∂�x
∂x0

∼ 1,
∂�I
∂I0

∼ 1,
∂�x
∂I0

= o(1),

∂�I
∂x0

∼ −α(I0, φ(I0), θcr(I0))δ(1/4 + δ)q(I0) ln ε

λ(I0)Mij(I0)
,

(c) the second derivatives are O
�
ε−(3/4+2δ)

�
.

Proof. – Part (a) immediately follows from Lemma F.2.1. To establish (b) we first
show by induction that if K1, K2, K3 and K4 are sufficiently large then

���
∂xn

∂x0
− bn

b0

��� ≤ K1

�√
ε n + εn3

��
lnn + | ln ε|

�2
,

���
∂xn

∂I0

��� ≤ K2

�√
ε n + εn3

��
lnn + | ln ε|

�2
,

���
∂In

∂I0
− 1

��� ≤ K3

�√
ε n + εn3

��
lnn + | ln ε|

�2
,

���
∂In

∂x0

��� ≤ K4 lnn.

This readily gives the estimates of part (b) except that for the asymptotics of ∂�I/∂x0.

However the above bounds imply that for n > 0

∂In+1

∂x0
− ∂In

∂x0
∼ −α1(I0, φ(I0), θcr(I0))

√
ε

λ(I0)xn

·

By (E.15) and Lemma F.2.1(a)

xn ∼ −
nMij(I0)

δq(I0)

√
ε.

Since the number of steps is O(ε−(1/4+δ)) we get

(F.2)
∂�I
∂x0

∼ α1(I0, φ(I0), θcr(I0))δ(1/4 + δ)q(I0)

Mij(I0)λ(I0)
| ln ε|.

Now part (b) follows easily.

Moreover a similar argument shows that for any n

���
∂(�x, �I )

∂(xn, In)

��� ≤ K| ln ε|.

Now part (c) follows from Lemma F.2.1(c).
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Combining Lemma F.2.2 with (E.15) proves part (a) of Lemma F.1.1. Part (c) of
Lemma F.1.1 follows from part (a) by time reversal.

Observe that (F.2) can be rewritten as

∂�I
∂H0

∼
c(I0)(

1
4 + δ)

Mij(I0)
| ln ε|

where c is defined by (1.26). This matches the asymptotics predicted by (1.28).

F.3. Middle phase

We need to study equations of the form

θ̇ = r +
√

εP, ṙ = −∂U

∂θ
+
√

ε Q, İ =
√

εR.

It will be convenient to change the time to ensure that the orbits do not hang near
the saddle for a long time. Accordingly introduce a new time variable s by

(F.3) ds =
�

r2 +
�
∂U/∂θ

�2
dt.

Next we rewrite our system in action-angle coordinates. Namely define ψ by the
equation

∂ψ

∂r
= −

�
r2 + (∂U/∂θ)2

T (H)(∂U/∂θ +
√

ε Q)

where T (H) is the normalization factor

T (H) = −
� �

r2 + (∂U/∂θ)2

(∂U/∂θ −
√

εQ)
dr

and the integration is over the energy level.

This leads to the system

ψ� = 1, H � =
√

ε �X(H, I, ψ), I � =
√

ε �Y (H, I, ψ).

Observe that �X and �Y are nonsingular away from the set �H = 0. Indeed the
only other possible singularity set is the set S of elliptic rest points. However by
assumption (H) the entrance-exit map is defined for all I ∈ G. Also by assumptions
(J)–(K) the only way the solution of the inner averaged system (1.23) can accumulate
on S is if it approaches a fixed point. But by assumption (H) no orbit starting from
G converges to a fixed point on S. So all the solutions are uniformly bounded away
from S. Next we get the asymptotics of �X and �Y near the singularities.
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Lemma F.3.1. – We have

�X = O(1), �Y = O
� 1�

|H|

�
,

∂p+q+� �X
∂Hp∂Iq∂ψ�

= O
�
|H|−(p+ 1

2 (q+�))| lnq |H||
�
,

∂p+q+� �Y
∂Hp∂Iq∂ψ�

= O
�
|H|−(p+ 1

2 (q+�+1))| lnq |H||
�
,

� ���
∂p+q+� �X

∂Hp∂Iq∂ψ�

���ds = O
�
|H|−(p+ 1

2 (q+�−1))| lnq |H||
�
,

� ���
∂p+q+� �Y

∂Hp∂Iq∂ψl

���ds = O
�
|H|−(p+ 1

2 (q+�))| lnq |H||
�
.

where the integration is over the energy level.

The proof of Lemma F.3.1 is given in Section F.4.

Lemma F.3.2. – The first return map satisfies the following:

(a) Hn+1 −Hn ∼
√

ε X, In+1 − In ∼
√

ε Y,

(b)
∂Hn+1

∂Hn

− 1 ∼
√

ε
∂X

∂H
, ∂Hn+1

∂In

∼
√

ε
∂X

∂I
,

∂In+1

∂Hn

− 1 ∼
√

ε
∂Y

∂H
, ∂In+1

∂In

∼
√

ε
∂Y

∂I

where X and Y are inner averaged vector fields (see (1.23)).

Proof. – Both part (a) and part (b) are proven as in Appendix D. We sketch part
(b), part (a) is easier. We introduce improved variables

ξ = δH −
√

ε Z1δH −
√

ε Z2δI, η = δH −
√

ε Z3δH −
√

ε Z4δI

where

∂Z1

∂ψ
=

�∂ �X
∂H

− ∂X

∂H

�
,

∂Z2

∂ψ
=

�∂ �X
∂I

− ∂X

∂I

�
,

∂Z3

∂ψ
=

� ∂ �Y
∂H

− ∂Y

∂H

�
,

∂Z2

∂ψ
=

�∂ �Y
∂I

− ∂Y

∂I

�
.
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Proceeding as in the proof of Lemma D.0.12 we see that the errors of averaging are
controlled by the following terms:

∂Hn+1

∂Hn

: ε

� �����
∂2 �X
∂H2

����� ds = O
�
ε|H|− 3

2
�

= O
�
ε

5
8+ 3

2 δ
�
,

∂Hn+1

∂In

: ε

� ���
∂2 �X
∂I∂H

���ds = O
�
ε|H|−1| ln |H||

�
= O

�
ε

3
4+δ| ln ε|

�
,

∂In+1

∂Hn

: ε

� ���
∂2 �Y
∂H2

���ds = O
�
εH−2

�
= O

�
ε

1
2+2δ

�
,

∂In+1

∂In

: ε

� ���
∂2 �Y

∂I∂H

���ds = O
�
ε|H|− 3

2 | ln |H||
�

= O
�
ε

5
8+ 3

2 δ| ln ε|
�
.

The reason why (∂/∂I)(∂/∂H) appears in the second and fourth lines instead of a
more dangerous (∂/∂H)2 is because ∂2 �X/∂H2 and ∂2 �Y /∂H2 come with the factor
δH and in the second and fourth lines we have |δH| = O(

√
ε ).

Lemma F.3.2 gives the bounds of Lemma F.1.1(b) related to the change of I, H

and their first derivatives. To obtain the bounds on the second derivative we consider
the variational equation for the second derivative

d

dt
(δ2I, δ2H) =

√
ε

∂(X,Y )

∂(I, H)
(δ2I, δ2H) +

√
ε

∂2(X,Y )

∂(I, H)2
�
(δI, δH), (δI, δH)

�
.

This is a linear inhomogeneous equation where the inhomogeneous part is O(|H|−2√ε | ln4 ε|)
(see Lemma 1.3.1), the fundamental solution of the corresponding linear system is
O(ln2 ε) and |H| grows as

√
εt near the entrance phase and has a similar decay near

the exit phase. Now the estimates on the second derivatives follows easily.

F.4. Estimates of the derivatives

We begin with the following general result.

Lemma F.4.1. – (a) Let

Φ(I, H ) =

�
s
∗

√
H

f(s, I, H )√
s2 − H

ds

where f is a smooth bounded function. Then for p ≥ 0

∂pΦ

∂Ip
=

1

2
· ∂pf

∂Ip
f(0, I, 0)| ln H | + O(1)

and for q > 0

∂p+qΦ

∂Ip∂ H q =
1

2
· ∂pf

∂Ip
f(0, I, 0)

(−1)qq!

H q + O
� 1

H q−1

�
.
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(b) If f(0, I, 0) ≡ 0 then

∂pΦ

∂Ip
=

�
s
∗

0

∂pf/∂Ip(s, I, 0)√
s2 − H

+ O
�
H | ln H |

�
,

∂p+1Φ

∂Ip∂ H
= −1

2
· ∂p+1f

∂pI∂ H
(0, I, 0) lnH + O(1)

and for q ≥ 2

∂p+1Φ

∂Ip∂ H q = −1

2
· (−1)q−1(q − 1)!

H q−1 · ∂p+1f

∂pI∂ H
(0, I, 0) + O

� 1

H q−2

�
.

c Let

Ψ(I, H ) =

�
s
∗

√
H

f(s, I, H )√
s− H

ds

Then Ψ is a smooth function.

Remark. – In a typical application of this lemma we will have H = −H.

Proof. – (a) It is enough to estimate Φ and its H derivatives since the differentiation
with respect to I just replaces the integrand by its I derivatives. Write

f(s, I, H ) = f(0, I, H ) + s
∂f

∂s
(0, I, H ) + s2f2(s, I, H )

and split Φ = Φ0 + Φ1 + Φ2 where Φi denotes the contribution of the corresponding
terms in the above formula. Then

Φ0 =

�
s
∗

√
H

f(0, I, H )√
s2 − H

ds =

�
s
∗
/
√

H

1

f(0, I, H )√
u2 − 1

du

=

�
s
∗
/
√

H

1

f(0, I, H )

u
du −

�
s
∗
/
√

H

1

f(0, I, H )

u
√

u2 − 1(
√

u2 − 1 + u)
du

= f(0, I, H ) ln
s∗√
H

+ O(1).

Also

(F.4)
∂Φ0

∂ H
=

�
s
∗
/
√

H

1

∂f/∂ H (0, I, H )√
u2 − 1

du − 1

2H
f(0, I, H )�
1− H /(s∗)2

·

Thus the main contribution comes from the second term which equals to−f(0, I, 0)/2H +

O(1) while the first term is O(| ln H |).
(F.4) easily implies that

∂qΦ0

∂ H q =
1

2
f(0, I, 0)

(−1)qq!

H q + O
� 1

H (q−1)

�

so it remains to show that the contributions of Φ1 and Φ2 are of lower order. We have

Φ1 =

�
s
∗

√
H

s∂f

∂s
(0, I, H )

s2 − H
ds =

1

2
· ∂f

∂s
(0, I, H )

�
(s∗)2 − H .
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To handle Φ2 we split

Φ2 =

� 2
√

H

√
H

s2f2(s, I, H )√
s2 − H

ds +

�
s
∗

2
√

H

s2f2(s, I, H )√
s2 − H

ds.

The first term here equals

Φ1(I, H ) = H
� 2

1

u2f(u
√

H , I, H )√
u2 − 1

dz

so it admits the Taylor expansion in powers of
√

H . To analyze the second term we
expand the denominator into a power series (with unit radius of convergence)

�
s
∗

2
√

H

sf2(s, I, H )�
1− (H /s2)

ds =
�

k

ωk

�
s
∗

2
√

H

f(s, I, H )H k

s2k−1
ds

and notice that the last integral is

O
� H

(2k − 2)2k−2

�

so that Φ2 = O(H ). A similar argument shows that
∂qΦ2

H q = O
�

H 1−q

�
.

This completes the proof of part (a).

The proof of part (b) is similar except that the estimate of Φ0 is different. Namely
we have f(0, I, H ) = H f̃(I, H ) for a smooth function f̃ so we gain an extra factor of
H compared to part (a).

(c) Introducing a new variable s− H instead of s we obtain

Ψ(I, H ) =

�
s
∗

H

h(s− H , I, H )√
s− H

ds

for a smooth function h. Now the change of variables u =
√

s−H transforms

Ψ(I, H ) = 2

� √
s∗−H

0
h(u2, I, H )du.

Proof of Lemma 1.3.1. – We have

(F.5) Y (I, H) = 2

�
α(I, 0, θ(s), 0)ds =

√
2

�
θ2(H)

θ1(H)

α(I, 0, θ, 0)√
H − U

dθ.

Choose some θ∗ between θ1(0) and θ2(0) and split Y = Y1 + Y2 where Y1 involves
the integral from θ1 to θ∗ and Y1 involves the integral from θ∗ to θ2. To estimate
the first term observe that θjk is the maximum of U and U(θjk(I), I) = 0. Therefore
U(θ, I) = −(θ−θjk)2V (I, θ) for a positive function V. Accordingly the denominator of
(F.5) takes form

�
(θ − θjk)2V − |H|. Introducing a new variable s by θ−θjk = s/

√
V
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reduces Y1 to the form of Lemma F.4.1 (a). Similarly Y2 can be estimated using
Lemma F.4.1 (c).

The estimates of X are similar except we use Lemma F.4.1 (b) instead of Lemma
F.4.1 (a) to handle the first integral.

Proof of Lemma F.3.1. – The estimates for �X and �Y follow from the expressions for
Ḣ, İ and (F.3). (Recall, see (1.18) that the

√
ε coefficient of Ḣ vanishes near the

origin.)

To estimate the derivatives of �X and �Y we need to bound the derivatives of the co-
ordinate change (θ, r, I) �→ (H,ψ, I). We represent it as a composition of two changes.

1) (θ, r, I) �→ (H, r, I). Since H = 1
2r2 + U we have

(F.6) δθ =
δH − rδr − ∂U/∂I δI

∂U/∂θ
·

Observe that, since r2 ≤ 2|U |,

∂U

∂θ
∼ (θ − θjk),(F.7)

r ≤ Const|θ − θjk|.(F.8)

2) (H, r, I) �→ (H,ψ, I). We have

ψ = − 1

T (H, I)

�
r

0

�
(∂U/∂θ)2 + z2

∂U/∂θ −
√

ε Q

�
θ(z, H, I), I

�
dz

where θ(z, H, I) is defined by the condition

(F.9) U(θ, I) +
z2

2
= H.

By the same analysis as in Lemma F.4.1 we have

��T (H)
�� ≤ Const,

∂p+qT

∂pI∂qH
= O

�
H

1
2−q

�
.

Next,

(F.10)
∂ψ

∂r
=

�
(∂U/∂θ)2 + r2

T (∂U/∂θ −
√

ε Q)
= O(1)

due to (F.7) and (F.8). Further,

∂ψ

∂H
= (I) + (II) + (III) + (IV )
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where

(I) = −∂T/∂H

T 2
ψ = O

�
1/

�
|H|

�
,

(II) = − 1

T

�
r

0

z2(∂2U/∂θ2)(∂θ/∂H)�
(∂U/∂θ)2 + z2(∂U/∂θ −

√
ε Q)2

dz,

(III) = −
√

ε

T

�
r

0

Q(∂U/∂θ)(∂θ/∂H)�
(∂U/∂θ)2 + z2(∂U/∂θ −

√
ε Q)2

dz,

(IV ) = −
√

ε

T

�
r

0

�
(∂U/∂θ)2 + z2(∂Q/∂θ)(∂θ/∂H)

(∂U/∂θ −
√

ε Q)2
dz.

Differentiating (F.9) we get ∂θ/∂H = 1/(∂U/∂θ) so
��(II)

�� ≤ Const

�
r

0

z2

(∂U/∂θ)4
dz ≤ Const

�
r

0

z2

U2
dz(F.11)

≤ Const

�
r

0

z2

(|H| + 1
2z2)2

dz ≤ Const�
|H|

·

Similarly
��(III)

�� ≤ Const
√

ε

H
≤ Const�

|H|
, ��(IV )

�� ≤ Const

�
ε

|H| ·

Likewise computing ∂ψ/∂I reduces to estimating
�

r

0

z2

(∂U/∂θ)3
· ∂θ

∂I
dz.

Differentiating (F.9) we get
∂θ

∂I
= −∂U/∂I

∂U/∂θ
= O(1)

since
0 =

∂U

∂θ

�
θjk(I), I

� ∂θjk

∂I
+

∂U

∂I

�
θjk(I), I

�
=

∂U

∂I

�
θjk(I), I

�

and so ���
∂U

∂I

��� ≤ Const|θ − θjk| ≤ Const
���
∂U

∂I

���.

Thus ���
∂ψ

∂I

��� ≤ Const

�
z2dz

( 1
2z2 + |H|)3/2

≤ Const | ln |H||.

Accordingly

δψ = O(1)δr + O
� 1�

|H|

�
δH + O

�
| ln |H||

�
δI.

Conversely by (F.10)

(F.12) δr = O(1)δψ + O
� 1�

|H|

�
δH + O

�
| ln |H||

�
δI.
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Substituting this into (F.6) we get

δθ =
δH − (∂U/∂I)δI

∂U/∂θ
(F.13)

− r

(∂U/∂θ)

�
O(1)δψ + O

� 1�
|H|

�
δH + O

�
| ln |H||

�
δI

�
.

The derivatives of �X and �Y with respect to (H,ψ, I) are obtained from the derivatives
with respect to (θ, r, I) by substitution (F.12)–(F.13). Taking ∂/∂r and ∂/∂θ brings
an extra factor of (θ − θjk)−1 (that is an extra factor of O(1/

�
|H|) whereas the

substitution (F.12)–(F.13) contributes another factor O(1/
�

|H|) for H-derivatives
and O(| ln |H||) for I-derivatives. Integrals of (θ − θjk)−� are estimated as above (cf
e.g. (F.11)). The result follows.

F.5. Proof of Proposition 2.2.2*

Proof. – Part (a) follows from the estimates of Lemma F.1.1. Parts (b) and (c) are
obtained similarly to the proof of Proposition 2.2.1 except we use Proposition B.0.1*
instead of Proposition B.0.1. For part (c) we let δ̄ = 3δ and observe that even
though the second derivative bounds of Proposition B.0.1* are worse by the factor of
ε−( 5

4+δ̄) it only results in O(ε−(1+δ̄)) diterioration of the second derivative bounds in
Proposition 2.2.2* since ∂2(J7, H7)/∂(J0, H0)2 does not give the leading contribution
in Proposition 2.2.1.

Part (d) follows since the orbits we consider make O(1/
√

ε) rotations and the
longest rotation takes time O(

√
ε | ln ε|). To obtain part (e) we observe that the orbit

can pass near the separatrix either during the entrance into resonance or during the
exit from it. The measure of the former orbits is estimated similarly to Section
E.4. To estimate the measure of the orbits which come too close to the resonance
during the exit we observe that due to Corollary F.1.2 the image of each captured
component consists of O(| ln ε|) components (each component consisting of the points
making the same number of rotation during the capture) and for each component
the relative measure of the points coming too close to the separatrix is O(1/

�
| ln ε|)

(this is because in the notation of Corollary F.1.2 the map H0 �→ H3 has bounded
distortion).
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APPENDIX G

EXAMPLES

G.1. Example 1

Here we compute the parameters of the limiting process for Example 1 of Section
1.4. From (1.31) we have

L(I) = U �
�
Z(I)

�
.

The critical points are given by the equation

sin θcr = U �
�
Z(I)

�
.

We are interested in the saddle point corresponding to the maximum of U so θcr =

sin−1 U �(Z(I)). The inner hamiltonian takes form

H = U �
�
Z(I)

�
θ + cos θ −

�
(U �(Z(I))θcr + cos θcr

�
.

Since
∂θcr

∂I
=

U ��

U � cos θcr

we have
H �
√

ε
=

U ��

U �
(Z(I))

�
r2 − (θ − θcr)

�
sin θ.

Introduce functions

Λj,k(N,E) =

�
rj sink θdt, Υ =

�
θ sin θdt,

where the integration is over the energy E curve of the pendulum with constant torque

(G.1) x�� = N + sin θ.

Then the integral over the separatrix loop is computed as
��

Ω
sin θdrdθ = Λ2,1

�
− U �(Z(I)), 0

�
,
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whereas

M =
U ��

U �
�
Z(I)

��
− Λ2,1

�
− U �(Z(I)), 0

�

+
�
Υ

�
− U �(Z(I)), 0

�
− θcrΛ0,1

�
− U �(Z(I), 0)

��
.

Finally the inner averaged equation used to compute the entrance-exit function takes
form

H � =
U ��

U �
�
Z(I)

��
Λ2,1

�
− U �(Z(I)), H

�
(G.2)

−
�
Υ

�
− U �(Z(I)), H

�
− θcrΛ0,1

�
− U �(Z(I), H

���
,

I � = Λ0,1(−U �(Z(I)), H).

Thus denoting by τ(I) the period of the averaged system (1.30) we get the following
formulas for the limiting process

� The limiting equation is

(G.3)
d I
dt

=
1

τ( I )

�

j

Λ2,1

�
− U �(Zj( I )), 0

�

where the summation is over all points where U(Zj) = I .

� The killing intensity is

(G.4) λ( I ) =
�

j

λj( I )

where

λj( I ) =
� U ��(Zj( I ))

U �(Zj( I ))τ( I )

�
− Λ2,1(−U �(Zj( I )), 0)

+
�
Υ

�
− U �(Zj( I )), 0

�
− θcrΛ0,1

�
− U �(Zj( I ), 0

����

+
.

� The entrance-exit function is computed using (G.2).

G.2. Example 2

Here we compute the limiting process for Example 2. From (1.33) the inner hamil-
tonian is

H =
r2

2
∓ (Nθ − cos θ)

�
2I

N
± (Nθcr − cos θcr)

�
2I

N
where θcr is the same as in the Example 1. Thus we have

L(I) =
√

2NI.

MÉMOIRES DE LA SMF 128



G.2. EXAMPLE 2 111

Observe that there are four resonances corresponding to possible choices of signs z

and cos ψ but only the sign of z cos ψ is important. For example, if z cos ψ > 0 we get

H �
√

ε
=

1√
2NI

�
r2(N + sin θ) + (Nθ − cos θ + Nθcr − cos θcr)

�
2I

N
sin θ

�

Using the equality

(Nθ − cos θ + Nθcr − cos θcr)

�
2I

N
=

r2

2
−H

we obtain
H �
√

ε
=

Nr2 + 3
2r2 sin θ −H sin θ
√

2NI
·

Likewise in case z cos ψ < 0 we obtain

H �
√

ε
= −

Nr2 + 3
2r2 sin θ −H sin θ
√

2NI
·

Next observe the change of variables θ = π − θ transforms equation (G.1) into

θ
��

= −θ�� = −N − sin θ = −N − sin θ.

Accordingly the contributions of four resonances to the drift term cancel out and
so the limiting equation is I � = 0. Next the change of time t̃ = (2I/N)

1
4 t trans-

form the unperturbed inner system into (G.1) and the velocity becomes rescaled by
r = r̃(2I/N)

1
4 and the total energy is rescaled by �H = H

�
N/2I. Observe that the

separatrix integrals corresponding to z cos ψ = ±1 have opposite signs so one of them
is positive and the other is negative. Thus the total contribution of the separatrix
integrals is

4�

j=1

(Mj(I))+
Lj(I)

=
|3Λ2,1(I) + 2NΛ2,0(I)|

(8N5I3)1/4
·

The inner averaged system used to compute the entrance-exit function takes form

�H � = ±
�2I

N

� 1
4 1

2I

�
NΛ2,0(N, �H) + 3

2Λ2,1(N, �H)− �HΛ0,1(N, �H)
�
,

I � = ∓
�2I

N

� 1
4
Λ0,1(N, �H).

(Here we have used the variable �H = H
�

N/2I rather than H to compute inner
averaged equation since it leads to simpler formulas while the entrance–exit function
is the same). After a further change of time the inner averaged system takes form

�H � = ±
NΛ2,0(N, �H) + 3

2Λ2,1(N, �H)− �HΛ0,1(N, �H)

2I
,(G.5)

I � = ∓Λ0,1(N, �H).(G.6)

(Here the sign is chosen so that �H is decreasing near (0, I0).)
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Denote by τ̄(I) the period of the averaged system (1.32). Then the limiting process
is a jump process with jump intensity

(G.7) λ( I ) =
|3Λ2,1(I) + 2NΛ2,0(I)|

τ̄(I)(8N5I3)
1
4

·

and the jump function computed using the inner averaged system (G.5)–(G.6).
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APPENDIX H

DISTORTION BOUND

Lemma H.0.1. – Suppose that �γ is a subcurve with coordinates [E1, E2] such that
|E2 − E1| ≤ ∆. If

���
d2E

dE2

��� ≤ L
� dE

dE

�2
and

dE

dE
�= 0

then we have the following distortion bound: for all E3, E4 ∈ [E1, E2] we have

(H.1) e−L∆ ≤ |E4 − E3| · |E2 − E1|
|E4 − E3| · |E2 − E1|

≤ eL∆.

Proof. – By the Intermediate Value Theorem
|E4 − E3| · |E2 − E1|
|E4 − E3| · |E2 − E1|

=
���
dE

dE
(E�)

� dE

dE
(E��)

���

for some E� ∈ [E1, E2], E�� ∈ [E3, E4]. On the other hand
���

d

dE
ln

� dE

dE

���� ≤ L
���
dE

dE

���.

Integrating we get

e−L|E�−E
��| ≤

���
dE

dE
(E�)/

dE

dE
(E��)

��� ≤ eL|E�−E
��|.

The lemma follows.
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