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We consider the one-dimensional generalized forest fire process: at each site
of Z, seeds and matches fall according to i.i.d. stationary renewal processes.
When a seed falls on an empty site, a tree grows immediately. When a match
falls on an occupied site, a fire starts and destroys immediately the correspond-
ing connected component of occupied sites. Under some quite reasonable as-
sumptions on the renewal processes, we show that when matches become less
and less frequent, the process converges, with a correct normalization, to a
limit forest fire model. According to the nature of the renewal processes gov-
erning seeds, there are four possible limit forest fire models. The four limit
processes can be perfectly simulated. This study generalizes consequently pre-
vious results of [15] where seeds and matches were assumed to fall according
to Poisson processes.

Nous étudions le processus des feux de forêt généralisé en dimension 1 : sur
chaque site de Z, des graines et des allumettes tombent suivant des processus
de renouvellement stationnaires i.i.d. Quand une graine tombe sur un site vide,
un arbre pousse immédiatement. Quand une allumette tombe sur un site oc-
cupé, un feu démarre et brûle immédiatement la composante connexe occupée
autour de ce site. Nous montrons — sous des hypothèses raisonnables sur les
processus de renouvellement — que lorsque la fréquence des allumettes tend
vers zéro, le processus converge, correctement renormalisé, vers un processus
limite. Suivant la nature des processus de renouvellement gouvernant l’appa-
rition des graines, quatre processus limites sont possibles. Les quatre modèles
limites peuvent être simulés parfaitement. Cette étude généralise des résultats
de [15], où nous supposions que graines et allumettes tombaient suivant des
processus de Poisson.
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ONE-DIMENSIONAL GENERAL
FOREST FIRE PROCESSES

Xavier Bressaud, Nicolas Fournier

Abstract. — We consider the one-dimensional generalized forest fire process: at each

site of Z, seeds and matches fall according to i.i.d. stationary renewal processes.

When a seed falls on an empty site, a tree grows immediately. When a match falls on

an occupied site, a fire starts and destroys immediately the corresponding connected

component of occupied sites. Under some quite reasonable assumptions on the renewal

processes, we show that when matches become less and less frequent, the process

converges, with a correct normalization, to a limit forest fire model. According to the

nature of the renewal processes governing seeds, there are four possible limit forest fire

models. The four limit processes can be perfectly simulated. This study generalizes

consequently previous results of [15] where seeds and matches were assumed to fall

according to Poisson processes.

Résumé (Processus de feux de forêt généraux en dimension 1)

Nous étudions le processus des feux de forêt généralisé en dimension 1 : sur chaque

site de Z, des graines et des allumettes tombent suivant des processus de renouvelle-

ment stationnaires i.i.d. Quand une graine tombe sur un site vide, un arbre pousse

immédiatement. Quand une allumette tombe sur un site occupé, un feu démarre et

brûle immédiatement la composante connexe occupée autour de ce site. Nous mon-

trons — sous des hypothèses raisonnables sur les processus de renouvellement — que

lorsque la fréquence des allumettes tend vers zéro, le processus converge, correctement

renormalisé, vers un processus limite. Suivant la nature des processus de renouvelle-

ment gouvernant l’apparition des graines, quatre processus limites sont possibles. Les

quatre modèles limites peuvent être simulés parfaitement. Cette étude généralise des

résultats de [15], où nous supposions que graines et allumettes tombaient suivant des

processus de Poisson.
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CHAPTER 1

INTRODUCTION

1.1. Introduction

Consider a graph G = (S, A), S being the set of vertices and A the set of edges.
Introduce the space of configurations E = {0, 1}S . For ⌘ 2 E, we say that ⌘(i) = 0
if the site i 2 S is vacant and ⌘(i) = 1 if i is occupied by a tree. Two sites are
neighbors if there is an edge between them. We call forests the connected components
of occupied sites. For i 2 S and ⌘ 2 E, we denote by C(⌘, i) the forest around i in
the configuration ⌘ (with C(⌘, i) = ? if ⌘(i) = 0). We consider the following (vague)
rules:

. vacant sites become occupied (a seed falls and a tree immediately grows) at
rate 1;

. occupied sites take fire (a match falls) at rate � > 0;

. fires propagate to neighbors (inside the forest) at rate ⇡ > 0.

Such a model was introduced by Henley [37] and Drossel and Schwabl [27] as a
toy model for forest fire propagation and as an example of a simple model intended
to clarify the concept of self-organized criticality.

The order of magnitude of the rate of growth is much smaller than the propagation
rate, ⇡ � 1. We will focus here on the limit case where the propagation is instan-
taneous: when a tree takes fire, the whole forest (to which it belongs) is destroyed
immediately. The model is thus:

. vacant sites become occupied (a seed falls and a tree immediately grows) at
rate 1;

. matches fall on occupied sites at rate � and then burn instantaneously the cor-
responding forest.

The features of the model depend on the geometry of the graph; we only consider
in this paper the case S = Z (with its natural set of edges). They also depend on the
laws of the processes governing seeds and matches; the standard case is when these
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are Poisson processes so that the forest fire process is Markov. We deal here with the
most general (stationary) case; Poisson processes are replaced by stationary renewal
processes.

Our main preoccupation is the behavior of this model in the asymptotic of rare
seeds, namely when �! 0. We present four possible limit processes (depending on the
tail properties of the law of the stationary processes governing seeds) arising when we
suitably rescale space and accelerate time while letting �! 0. This is a considerable
generalization of the results obtained in [15].

This introduction consists of six subsections.

(i) In subsection 1.1.1, we briefly recall the concept of self-organized criticality and
recall a certain number of models supposed to enjoy self-organized critical properties.

(ii) We present in subsection 1.1.2 a quick history of the forest-fire process, its other
possible interpretations and its links with other models.

(iii) subsection 1.1.3 explains the importance of the geometry of the underlying
graph G and the links of the forest-fire model with percolation.

(iv) In subsection 1.1.4, we recall what has been done for the (Markov) forest-fire
process on Z from a rigorous mathematical point of view.

(v) subsection 1.1.5 is devoted to a brief exposition of the main ideas of the present
paper.

(vi) Finally, we give the plan of the paper in subsection 1.1.6.

1.1.1. Self-organized criticality. — One of the successes of statistical mechanics
is to explain how local interactions generate macroscopic e↵ects through simple models
on lattices. Among the most striking phenomena are those observed around so-called
critical values of the parameters of such models, such as scale-free patterns, power
laws, conformal invariance, critical exponents or universality.

1.1.1.1. Paradigm. — The study of self-organized critical systems has become rather
popular in physics since the end of the 80’s. These are simple models supposed to
clarify temporal and spatial randomness observed in a variety of natural phenomena
showing long range correlations, like sand piles, avalanches, earthquakes, stock market
crashes, forest fires, shapes of mountains, clouds, etc. It is remarkable that such
phenomena reminiscent of critical behavior arise so frequently in nature where nobody
is here to finely tune the parameters to critical values.

An idea proposed in 1987 by Bak-Tang-Wiesenfeld [5] to tackle this contradic-
tion is, roughly, that of systems growing toward a critical state and relaxing through
catastrophic events: avalanches, crashes, fires, etc. If the catastrophic events become
more and more probable when approaching the critical state, the system sponta-
neously reaches an equilibrium close to the critical state. This idea was developed
in [5] through the study of the archetypical sand pile model.

MÉMOIRES DE LA SMF 132
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This paradigm was used to investigate various phenomena, from physics to sociol-
ogy through biology, epidemiology or economics. The pertinence of the conclusions are
not always convincing. Discussion to decide if whether or not there is self-organized
criticality in nature or in one or another model, or even to decide what self-organized
criticality should exactly be, is beyond our purpose. Anyhow let us summarize the
usual features of these models:

. local dynamics but with possibly very long range e↵ects (at high speed) through
a simple mechanism;

. macroscopic states with scaling invariance properties, a priori related to the
critical state of a well-known system;

. long range spatial correlations and power laws for natural observables at fixed
times;

. presence of 1/f or 1/f↵-noise in the temporal fluctuations of natural observables.
We are not experts on this topic, but it seems to be one of the main motivation
of self-organized critical systems. It is the subject of the original article of Bak-
Tang-Wiesenfield [5] and of considerably many physical papers.

One of the specificities of these models is that the interaction is formally non local;
it is local in general, but may, when close to the critical region — whatever this
means — have long range e↵ects. This, together with a lack of monotonicity, yields
mathematical di�culties that justify a careful treatment.

To understand, explain or illustrate these phenomena, a multitude of models have
been proposed to explore various mechanisms that would produce these e↵ects. Sim-
ple models, non necessarily realistic, are nice for they try to catch the underlying
mechanisms. They have often been treated numerically, in the spirit of Bak-Tang-
Wiesenfield [5]. Forest fire models are among them and still need a mathematical
rigorous study. Sand pile models, while somehow more complicated, have been more
studied.

1.1.1.2. Sand pile models. — Let us explain in a few words what a sand pile model is.
First, we assume that we have a definition of what a stable sand pile is. Sand grains
fall at random on sites. When a grain falls, if the new pile is unstable, it is immedi-
ately re-organized to become stable, through (possibly many) successive elementary
steps. Such events are called avalanches. This model was introduced by Bak-Tang-
Wiesenfeld [5] and studied by Dhar [25]. Since, there has been a huge amount of
results and we will not try to be exhaustive; for surveys see for instance Holroyd-
Levine-Meszaros-Peres-Propp-Wilson [39], Goles-Latapy-Magnien-Morvan-Phan [34]
or Redig [56].

Let us give a slightly more precise description of the so-called Abelian sand pile
model. The state of the system is described by ⌘ 2 ZS , representing local slopes of the
sand pile. For instance, when S = Z, think that ⌘(i) = h(i + 1) � h(i) where h(i) is

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2013
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the height of the sand pile on the site i. A dynamic is defined on ZS using a matrix �
indexed by S⇥S, called toppling matrix. It has positive entries on the diagonal (think
of �i,i = � constant), negative entries when i, j 2 S are neighbors and null entries
elsewhere. It is dissipative if �i,i +

P

j 6=i�i,j < 0. Then define the toppling of a site i

as the mapping Ti : ZS ! ZS defined by

Ti(⌘)(j) = ⌘(j) ��i,j , 8j 2 S if ⌘(i) > �i,i;

Ti(⌘) = ⌘ otherwise.

Toppling at i consists, whenever the slope is too big at i, of spreading grains on
neighboring sites (possibly in a non conservative way). A pile is stable if for all i 2 S,
⌘(i)  �i,i (then, no toppling has any e↵ect). Observe that successive topplings at
di↵erent sites commute (which explains the term Abelian).

Now consider the situation where sand grains fall at random, on each site, at rate 1.
Each time a grain falls, immediately topple (possibly many times) until stability is
reached. Some dissipativity assumptions guarantee that this is always possible.

At first glance, arrival of a new sand grain on a site has only a local e↵ect:
a non trivial toppling at i may occur. But there can be a chain reaction creating
an avalanche. And indeed, the action may, in general, have a long range e↵ect.

These systems have a nice underlying group structure that depends on the size
and geometry of the underlying lattice, see e.g. Le Borgne-Rossin [13] for such an
algebraic point of view. The thermodynamic limits of the sand-pile models have been
investigated. In particular, existence and uniqueness of a stationary measure have
been proved. See for instance Maes-Redig-Saada [47] when S = Z and Járai [42]
when S = Zd. Some features of self-organized criticality have been observed for d > 1,
at least numerically, in the physical literature, see e.g. Lübeck-Usadel [46]. For
instance, they have studied the sizes of avalanches (number of topplings necessary
to stabilize after a grain has been added). A scaling limit was obtained recently by
Dürre [31].

1.1.1.3. Other models.— The Abelian sand pile seems to be the most popular sand
pile model. However it has a lot of variants: Zhang sand pile model (see Zhang [65],
Pietronero-Tartaglia-Zhang [51]), Oslo model (see Christensen-Corral-Frette-Feder-
Jossang [20], Amaral-Lauristsen [4]), Oslo rice pile model (see Brylawski [18]), chip
firing game (see Tardos [62]), etc.

Moreover, various di↵erent models have been introduced and studied with the eyes
of self-organized criticality. There is of course the forest fire model that we are going
to discuss in this paper. Let us mention briefly some other models: rotor-router model
(introduced by Priezzhev-Dhar-Dhar-Krishnamurthy [52] under the name Eulerian
walkers model), loop-erased random walks (Majumdar [48]), di↵usion/aggregation
models (Cafiero-Pietronero-Vespignani [19]), Scheidegger’s model of river basin
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(Scheidegger [57]), models describing earthquakes (Olami-Feder-Christensen [50]) or
crashes in stock markets (Staufer-Sornette [61, 59]), etc.

As we already mentioned those systems have often been subjected to numerical
experimentations and studies. Of course this is a di�cult task and it has sometimes
been misleading: long range e↵ects need huge simulations, the interpretation of which
is not always meaningful.

For surveys on self-organized criticality, see Bak-Tang-Wiesenfeld [6], Dhar [26],
Jensen [43] and the references therein.

1.1.2. Forest fire models. — Here we consider the classical forest fire model
on G = (S, A). Recall that on each site of S, seeds are falling at rate 1 and matches
are falling at rate �, according to some Poisson processes. A seed falling on a vacant
site makes it immediately occupied, and a match falling on an occupied site makes in-
stantaneously vacant the whole corresponding occupied connected component. Thus
the forest fire process is Markov (at least if one is able to prove that it exists and is
unique).

1.1.2.1. History and numerical studies. — The forest fire model was introduced in-
dependently by Henley [37] and Drossel-Schwabl [27]. In the literature, it is generally
referred to as the Drossel-Schwabl forest fire model. In their original paper, they con-
sider the case where S is a cube in Zd. They are interested in scaling laws and critical
exponents for this model. Orders of magnitude of relevant quantities are derived by
analytical computations using essentially mean field considerations. The results are
confirmed by computer simulations. In Drossel-Clar-Schwabl [28], the asymptotic
behavior of the density of vacant sites in the limit � ! 0 is obtained when S = Z
(using heuristic arguments, see subsubsection 1.1.4.3 below). After this work, numer-
ous numerical or semi-analytical studies have been produced. Among others, let us
mention Henecker-Peschel [40] and Pruessner-Jensen [53]. Numerical studies were
handled again by Grassberger [35], who computes, when S = Z2, the density of oc-
cupied sites, the fractal dimension of fires and the distribution of the fire sizes, in the
limit �! 0.

The first rigorous probabilistic treatment of this model is the paper by van den Berg
and Járai [9]. They give a rigorous description of the asymptotic density of vacant sites
in the limit �! 0 for the forest fire process on Z. To our knowledge, all the rigorous
results about the forest fire process concern the case where seeds and matches fall
according to Poisson processes. See Dürre [29], [30], [31] (existence and uniqueness
of the process on Zd with � > 0 fixed), van den Berg-Brouwer [7] (behavior of the
process near the critical time in dimension 2, as � ! 0) and Brouwer-Pennanen [17]
(estimates on the cluster size distribution in the asymptotic � ! 0, in dimension 1).
See also the papers by the authors [14] (study of the invariant distribution when � = 1
in dimension 1) and [15] (scaling limit of the one dimensional forest fire process in
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the asymptotic � ! 0). We will discuss all these results more specifically in this
introduction.

1.1.2.2. Real forest fires. — Real forest fires in nature are also a subject of preoc-
cupation and of study from di↵erent point of views. In particular there are various
statistical studies of sizes (and sometimes shapes) of real forest fires in di↵erent regions
(see for instance Holmes-Hugget-Westerling [38]). One of the recurrent observations
is that the distributions of those fires have heavy tails (power laws) and pleasant scale
invariance properties. Another one is the tentative description of the (fractal) geome-
try of fires (see for instance Mangiavillano [49]). For references, connection with real
life and practical interest of these studies, see Cui-Perera [23]. A few studies relate
the dynamics of real fires in a given region with theoretical models. One natural task
was to compare real data and numerical experiments done with the toy models we
have. On this aspect, let us mention the recent (and encouraging) works by Zinck-
Grimm-Johst [66], [67]. Other studies focus on the propagation of the fire itself, but
this is not our main preoccupation here since we have assumed that the propagation
is instantaneous.

A direction of study suggested by works on real forest fires is to consider fires in
inhomogeneous, for instance random, media. To our knowledge, this aspect has not
yet been investigated. Another one, that we address here, is to consider the non
Markov case: seeds and matches may not (and actually should not) fall according to
Poisson processes.

1.1.2.3. Other interpretations and variations. — The forest fire model has a very
simple (and natural) dynamic. It may accept a variety of interpretations. And var-
ious modifications can make it fit the description of other phenomena. Indeed, we
initially thought of it as a simplification of the avalanche process: snow flakes fall on
each site, a snow flake falling on a vacant site makes it occupied, and a snow flake
falling on an occupied site makes vacant the whole connected component of occupied
sites (such an event being called avalanche). This is nothing but the forest fire process
with � = 1, see [14]. More generally, the forest fire process may be used to model
phenomena involving geometric relations and a common behavior on connected com-
ponents; natural examples arise e.g. in epidemiology (change fire by virus). From
these points of view, some natural modifications could be explored such as making
the growth process have e↵ect only on sites which are neighbors of occupied sites (in
the spirit of the so-called contact process). Such variants should be dominated by
the standard contact process and by the forest fire process and may enjoy interesting
features.

In a di↵erent spirit, a directed version of the forest fire model has been studied as a
toy model for neural networks. Roughly, the idea is to think of growth as activation
and of fire as signal emission. The signal is transmitted along the (directed) connected
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component which is at the same time deactivated. The di↵erence is that the underly-
ing graph is a directed graph (usually a tree) and that the signal is (instantaneously)
sent according to the directed edge (instead of all the connected component). Let
us mention the work of van den Berg-Brouwer [7], which include remarks about this
model, and the work of van den Berg-Tóth [10].

1.1.2.4. Coagulation/Fragmentation. — A slight change of point of view about the
forest fire model makes explicit a parallel with a class of coagulation/fragmentation
processes. Assume e.g. that S = Z. Say that each edge (i, i + 1) has mass 1,
and that two neighbor edges (i � 1, i) and (i, i + 1) are connected (or belong to the
same particle) if ⌘(i) = 1. Then each time a seed falls on a vacant site, this glues
two particles (preserving the total mass). And each time a match falls on a site
(say, belonging to a forest containing k � 1 sites), this breaks a particle of mass k + 1
into k + 1 particles with mass 1.

We used this remark in [14] to study the evolution of the sizes of particles when
neglecting correlation, using a deterministic coagulation-fragmentation equation. Of
course, similar considerations can be handled on any graph G.

1.1.2.5. Recent results for related models in dimension 1. — Let us mention two
recent results about one-dimensional forest fire processes with a somehow di↵erent
flavor.

Volkov [64] considers a version of the forest fire process on N where ignition occurs
only at 0. He studies the weak limit of the distribution of the (suitably normalized)
delay between to fires involving n, as n ! 1.

Bertoin [12] considers a modified version of Knuth’s parking model where random
fires burn connected components of cars. On a circle of size n, cars arrive at each site
at rate 1. When a car arrives, it occupies the first vacant site (turning clockwise).
Molotov cocktails fall on each site at rate n�↵ where 0 < ↵ < 1 is fixed. Bertoin
studies the asymptotic behavior of the saturation time as n ! 1 and observes a
phase transition at ↵ = 2

3 .

1.1.2.6. Specific di�culties. — As we already mentioned, one of the di�culties with
forest fire models (and with self-organized critical systems in general) is that the
interaction is not local. The process, whenever it is Markov, is not Feller and some
classical results fail. In dimension one, this di�culty does not yield real problems
for the questions of existence and uniqueness of the process. This is essentially due
to the fact that obviously, the sizes of the forests always remain finite (even when
� is very small). This di�culty is more important in higher dimensions, because in
the absence of fires, clusters would become infinite in finite time (due to the fact
that in dimension d � 2, percolation occurs). Fires prevent us from the existence of
infinite clusters. But these arbitrarily huge clusters burning make di�cult the control
of the range of interactions. This di�culty also makes the usual proof of existence of
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stationary measures using compactness arguments fail (because indeed there is a lack
of continuity).

The lack of monotonicity of these models, although not fundamental, makes the use
of standard intuitions and techniques impossible. Monotonicity allows one to compare
the processes started from two di↵erent ordered initial configurations (coupled in a
suitable way). Monotonicity cannot hold here, because a configuration with more
trees will burn sooner.

1.1.3. Geometry of the lattice. — The geometry of the underlying lattice is
crucial in statistical mechanics. Recall for instance that phase transition for the Ising
model on Zd appears only for d � 2 (see Velenik [63]). For the forest fire models,
the influence of the geometry clearly comes through the behavior of the lattice with
respect to percolation. This geometrical influence was already striking in numerical
studies. See Grimmett [36] for a very complete book on percolation.

1.1.3.1. Growth without fires/Percolation. — Consider a graph G = (S, A). For all
0  p  1 consider an i.i.d. family {⌘(i), i 2 S} of Bernoulli random variables
with parameter p (a percolation trial with probability p). It is well known that there
is 0  pc  1, depending on the graph, such that for all p < pc, there are a.s. no
infinite connected components of occupied sites, while for p > pc, there is at least
one infinite connected component with probability 1. The real number pc is called
percolation threshold of G. It is rather natural to consider (dynamical) percolation
processes on G, that are couplings of percolation trials for all 0  p  1. For instance,
consider a family {Ti, i 2 S} of i.i.d. random variables on R+ with exponential
distribution with parameter 1. Put ⌘t(i) = 0 if t < Ti and ⌘t(i) = 1 if t � Ti. Then
for all t > 0, {⌘t(i), i 2 S} is a percolation trial with probability P (Ti  t) = 1� e�t.
Thus an infinite cluster appears at time tc defined by 1 � e�tc = pc.

It clearly appears that the percolation threshold plays a crucial role in understand-
ing the behavior of the forest fire process on a given lattice. The simple observation
is that the growth process, i.e. without fires (� = 0), is exactly a percolation process
on the lattice. For � small, and a fortiori for � ! 0 its study is a necessary prelimi-
nary. For instance, one aspect is the formation of infinite clusters (although in general
those clusters will never appear since, taking fires into account, they must burn before
they become infinite). Recall that the percolation threshold is 1 in dimension 1. It

is 0 < p
(d)
c < 1 on Zd and once there is an infinite cluster, there is a unique one.

While, for instance on a d-regular tree, just after the percolation threshold, there are
infinitely many infinite clusters: these situations are rather di↵erent and should yield
di↵erent behaviors for the corresponding forest fire processes. Observe that though,
for all � > 0, the forest fire process is easy to define for small times, things turn
out to be more complicated when we reach the critical time tc. Even in dimension 1
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the separate study of the percolation process makes sense as we shall see further,
subsection 1.1.4.4.

1.1.3.2. Modified percolation models. — It has also been fruitful to study modified
(for instance dynamical) versions of percolation processes. Models like frozen per-
colation (Aldous [3], see also Brouwer [16]), invasion-percolation (see for instance
Damron-Sapozhnikov-Vágvölgyi [24]), or self-destructive percolation (see van den
Berg-Brouwer [7] and more recently van den Berg-Brouwer-Vágvölgyi [8]) are closely
related to the forest fire processes. Let us focus one moment on this last example
since it has direct implications on forest fire processes.

A typical configuration for the self-destructive percolation model on Z2 with param-
eter (p, �) is generated in three steps: first generate a configuration for the ordinary
percolation model with parameter p. Next, make all sites in the infinite occupied
cluster vacant. Finally, make occupied each vacant site with probability �. Let ✓(p, �)
be the probability that 0 belongs, in the final configuration, to an infinite occupied
cluster. In a recent paper [8], van den Berg, Brouwer and Vágvölgyi prove that this
function is continuous outside of a set of the form {(pc, �) : � < �0}. It is conjec-
tured that this function has a discontinuity, roughly meaning that there is � > 0 such
that for any p > pc, the model with parameter (p, �) is sub-critical (there a.s. is no
infinite cluster).

In [7], van den Berg and Brouwer have proved that assumption of a strongly related
conjecture yields a result for a 2-dimensional forest fire process after the critical time:
there is t > tc such that for all m � 1,

lim inf
�!0

lim inf
n!1

Pr



a tree in [[�m, m]]2 burns before t

in the forest fire process on Sn = [[�n, n]]2

�

 1

2
·

1.1.3.3. Thermodynamic limit. — The forest-fire process on a finite graph is a fi-
nite state space continuous time Markov chain (if matches and seeds fall according
to Poisson processes). Existence and uniqueness of the process thus come for free.
Existence of an invariant measure as well. A basic argument also yields uniqueness of
the invariant measure (because the configuration with all sites vacant is recurrent).
Hence interesting phenomena may arise only when we let the size of the lattice tend
to infinity.

When S = Z, it is not very expensive to go directly to the limit: the process is
naturally uniquely defined on Z. This is easily seen through a graphical construction
of the process (see [15]), see also Proposition 2.1.4 below.

In dimension d > 1 the situation is more delicate. On Zd (and actually on any
graph with bounded vertex degree) existence has been proved recently by Dürre [29].
He also proved uniqueness, but in two steps: firstly, in [30], he shows that, for � > 0
large enough (the bound is related to the percolation threshold), the forest-fire process
is unique. Only very recently the same author, in [31], tackled the same question on

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2013



10 CHAPTER 1. INTRODUCTION

a graph with bounded vertex degree and for all � > 0. This is a much more subtle
task. To prove this result he has to introduce the so-called blur processes, to show
that the influence of matches falling far away from 0 is negligible.

1.1.3.4. Mean field model. — The mean field case is slightly di↵erent. Indeed, one
has to adopt the dual point of view (on edges). Furthermore, the process cannot be
defined directly on an infinite lattice since we consider the complete graph. The point
of view developed by Ráth and Tóth in [55] is based on the Erdös-Rényi construc-
tion [32]. For all n � 1, let Sn be a set (of vertices) with |Sn| = n, and consider
the complete graph Gn = (Sn, An). Start initially with all edges vacant. Then edges
appear independently at rate 1/n. Matches fall at rate �n on each site and destroy
instantaneously the whole corresponding occupied connected component. We con-
sider the asymptotic n ! 1. The various regimes (see Ráth-Tóth [55]) are quite
illuminating.

(I) If �n ⌧ 1/n, then fires are (asymptotically) negligible. Thus we have the same
asymptotics as in the Erdös-Réyni model: a giant component appears after
some time Tgel (the critical time in this formalism).

(II) If �n ' �/n, then a giant component appears, but is destroyed after some
time. Only the giant component may burn: there are no matches enough to
burn finite size forests.

(III) If 1/n ⌧ �n ⌧ 1, there are not enough fires to burn finite size forests, but too
many to let any infinite forest appear. Hence no giant component appears.

(IV) If �n ' �, then matches may kill finite forests, so that of course, no giant
component emerges.

To formalize these statements rigorously, Ráth-Tóth [55] consider the cluster size
distributions: ⌫n,k(t) is the number of vertices belonging to a connected component
of size k at time t divided by n. Consider also the concentrations cn,k(t) := ⌫n,k(t)/k.
As n ! 1, the limit concentrations (ck(t))k�1 should satisfy a system of di↵erential
equations closely related to Smoluchowski’s coagulation equations with multiplicative
kernel and mono-disperse initial condition:

c1(0) = 1, ck(0) = 0, k � 2,

d
dt

ck(t) = 1
2

k�1
X

i=1

i(k � i)ci(t)ck�i(t) � kck(t)
1
X

i=1

ici(t), k � 1.

Such equations, discussed in details in Aldous [2], have been introduced by Smolu-
chowski [58] in 1916. These equations are subjected to a phase transition known as
gelation: some mass is lost at some positive finite instant Tgel, due to the emergence
of a giant particle. For t > Tgel, we have to decide what to do with the giant particle.
It can e.g. interact with finite particles (Flory’s equation) or be removed from the
system (Smoluchowski’s equation). See Aldous [1] and [33] for such considerations.
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In the regime (I), the limit equations are the Flory equations: a giant particle
appears at time Tgel and then coexists with other particles (finite particles do coa-
lesce with the giant particle). In the regime (II), the limit equations are closer to the
Smoluchowski equations: a giant particle appears at time Tgel (the same one as pre-
viously) but once it is giant, it is replaced by particles with mass 1 (in a conservative
way). In the regimes (III) and (IV), some other modifications of the Smoluchowski
equations appear.

The most interesting results obtained by Ráth-Tóth in [55] are that in the
regime (III), the modified Smoluchowski coagulation system has a unique solution
which is the classical one for all t < Tgel and has a particular (critical-like) form
for t > Tgel, and (cn,k(t))t�0,k�1 converges to this unique solution as n ! 1. This
shows that the complete graph exhibits self-organized criticality in the sense that
beyond Tgel, it remains critical forever: no giant component appears but, after Tgel,
the size-distribution is, in some sense, critical.

1.1.3.5. Stationary measures. — The existence of invariant measures for the forest-
fire process in Zd (with any � > 0 fixed) has been proved by Stahl [60]. For the case
of Z the situation is simpler, see the next subsection.

1.1.4. Forest fire on Z. — Let us review in details known results about the forest
fire processes in dimension 1. We still focus on the usual case where seeds and matches
fall according to i.i.d. Poisson processes, with respective rates 1 and � > 0. We denote
⌘�t 2 {0, 1}Z the configuration at time t and, for i 2 Z, C(⌘�t , i) is the connected
component of occupied sites around i. Observe that (possible) infinite clusters in the
initial configuration would immediately disappear.

From the point of view of self-organized criticality, the interesting regime is the
asymptotic behavior of the forest-fire process as � ! 0: then fires are very rare, but
concern huge occupied components.

1.1.4.1. Stationary measures. — Existence of a stationary measure does not imme-
diately follow from standard compactness arguments since the process is not Feller.
However, in [17], Brouwer and Pennanen prove the existence of a stationary measure
for all fixed � > 0. In [14], we proved the uniqueness of this invariant distribution, as
well as the exponential convergence to equilibrium in the special case where � = 1.
We also proved that the invariant distribution is (spatially) exponentially mixing and
can be graphically constructed. The methods in [14] should be easily extended to the
case where � � 1 (and actually to � > 1 � "0 for some rather small "0 > 0) but our
proof completely breaks down for small values of � > 0.

1.1.4.2. Asymptotic density. — Van den Berg and Járai study in [9] the asymptotic
density of vacant sites in the limit � ! 0. Their result states that there are two
constants 0 < c < C such that for any initial configuration, for any � > 0 small
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enough, for t large enough (of order log(1/�)),

c

log(1/�)
 Pr

⇥

⌘�t (0) = 0
⇤

 C

log(1/�)
·

This is coherent with the intuition that the rarer fires are, the more space is occupied
by trees (although because of the lack of monotonicity, this is not straightforward).
We mentioned that such result was stated in Drossel-Clar-Schwabl [28]. But the proof
in [28] is not rigorous: it is based on the ansatz that the cluster sizes were following
a cuto↵ power law, for cluster-sizes up to some s�max defined by s�max log s�max = 1/�,
i.e.

s�max ' 1

� log(1/�)
·

In [9], van den Berg and Járai also show that the cluster sizes cannot follow the
predicted power law.

1.1.4.3. Sizes of clusters, first results. — In [17], Brouwer and Pennanen show that

this last ansatz holds true up to s
1
3
max. More specifically, they show that there are con-

stants 0 < c < C such that for all 0 < � < 1 and all stationary measures µ� (invariant
by translation) of the forest fire model on Z with parameter �, for all x < (s�max)

1
3 ,

c

(1 + x) log (1/�)
 µ�

�

�

�C(⌘, 0)
�

� = x
�

 C

(1 + x) log (1/�)
·

Observe that this estimate is valid for relatively small clusters that will not be seen
after rescaling (microscopic clusters).

1.1.4.4. Kingman’s Process. — We detail a classical construction related to the
Smoluchowski equation with constant kernel which is quite close to our point of
view. Most ideas and references for proofs can be found in Aldous [2]. Let us
consider the following percolation process on Z. Starting from the vacant con-
figuration, we let appear trees at each site at some rate r(t), that allows us to
control the speed of the process. Say that each edge (i, i + 1) has mass 1 (see
subsubsection 1.1.2.4). Let a seed fall on each site i at some random time Ti with
P (Ti > t) = 2/(t + 2) independently (this corresponds to the rate r(t) = 1/(t + 2),

because then exp
�

�
R t

0 r(s)ds
�

= 2/(t + 2)). Call D(t, i) the particle containing the
edge (i, i + 1) at time t (say that two neighbor edges (j � 1, j) and (j, j + 1) are glued
if ⌘t(j) = 1). At time t, the particle containing a given edge (e.g. (0, 1)) has mass m

with probability

⇢m(t) = m
⇣ 2

2 + t

⌘2⇣ t

2 + t

⌘m�1

and hence the concentration of clusters with mass m per unit length is nothing but

cm(t) =
⇣ 2

2 + t

⌘2⇣ t

2 + t

⌘m�1
.

We recognize the solution to Smoluchowski’s equation with constant coagulation ker-
nel and mono-disperse initial condition, see Aldous [2].
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Now consider a standard construction of the so-called Kingman coalescent pro-
cess. Take independent exponential random variables {⇠k, k � 2} of rates

�2
k

�

.
Since E[

P1
k=2 ⇠k] = 2, we can define random times 0 < · · · < ⌧3 < ⌧2 < ⌧1 < 1 by

⌧i =
1
X

k=i+1

⇠k.

Take {Ui, i � 1} independent random variables uniformly distributed on (0, 1). For
each i draw a vertical segment from (Ui, ⌧i) to (Ui, 0). At time t this construction
splits (0, 1) into i intervals, where ⌧i < t < ⌧i�1. Write X(t) for the list of the lengths
of these subintervals. This is a version of the stochastic coalescent called Kingman’s
coalescent. Observe that we also could have put the marks {(Ui, ⌧i), i � 1} using a
Poisson measure on [0, 1] ⇥ R+ with a well-chosen intensity measure.

Straightforward computations show that Kingman’s coalescent is a limit of the
previously defined percolation process in the following sense: consider the list of
(distinct) normalized clusters �D(t/�, bx/�c) when x runs along [0, 1] (cuto↵ the
boundary clusters at 0 and 1) at time t. When �! 0, it converges to X(t) in law (in
an appropriate topology). This construction shows how the growth process behaves
in the large scales. In some sense we have identified {0, . . . ,n�} ⇢ Z with [0, 1] ⇢ R
(here n� = 1/�) and obtained a limiting process for the rescaled percolation process.

We stress the fact that the convergence holds globally only for the specific speed
r(t) = 1/(t + 2) of the percolation process. This fact is related to the self-similarity
of the percolation (coalescent) process. In particular, for a constant rate (exponential
times for seeds), there is no hope for such a convergence to Kingman’s coalescent:
after normalization, the size of clusters at time t is of order �1�t and converges to 0
or 1 according to whether t < 1 or t > 1. Conversely, if the rate of growth has a
polynomial decay, there is a hope to have a limit process.

1.1.4.5. Asymptotic regime: relevant space/time scales. — As already mentioned, we
are interested in the behavior of the system in the large space and time scales in the
limit � ! 0. Hence the first di�culty is to decide what the relevant scales are. Let
us recall the heuristic developed in [15]. We need a time scale for which tree clusters
see about one fire per unit of time. But for � very small, clusters will be very large
just before they burn. We thus also have to rescale space, in order that just before
burning, clusters have a size of order 1.

Consider the cluster C(⌘�t , 0) around the site 0 (for example) at time t. For � > 0
very small and for t not too large, one might neglect fires and consider only the
growth process; it follows that |C(⌘�t , 0)| ' et for t not too large (because since seeds
fall according to Poisson processes with rate 1, each site is vacant at time t with
probability e�t). Then the cluster C(⌘�t , 0) burns at rate �|C(⌘�t , 0)| ' �et, so that
we decide to accelerate time by a factor a� := log(1/�). By this way, �|C(⌘�a�

, 0)| ' 1.
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Now we rescale space in such a way that during a time interval of order a�, some-
thing like one match falls per unit of (space) length. Since matches fall at rate �
on each site, our space scale has to be of order n� := 1/(�a�): this means that we
will identify {0, . . . ,n�} ⇢ Z with [0, 1] ⇢ R. Observe that there holds n� ' s�max,
where s�max was introduced in subsubsection 1.1.4.2.

Consider now the time/space rescaled cluster around 0

D�
t (0) =

1

n�
C(⌘�a�t

, 0).

The same di�culty as in subsubsection 1.1.4.4 appears: neglecting fires (which is
roughly valid for small values of t), we see that

�

�D�
t (0)

�

� ' n�1
� ea�t = �1�t log(1/�),

which goes to 0 for t < 1 and to 1 for t � 1. For t � 1, we hope that fires will be in
e↵ect, which will limit the size of clusters. But for t < 1, |D�

t (0)| will indeed tend to 0.
This means that we have lost some information. To describe the limit process, we
have to keep in mind more information and thus introduce another quantity (a sort
of degree of smallness) which measures the order of magnitude of the microscopic
clusters, that is clusters that we can not see at macroscopic scales (of which the sizes
are much smaller than n�).

1.1.4.6. Limit processes. — We have proved in [15] that in the asymptotic of rare
matches, the forest fire process converges, under the previously described normaliza-
tion, to some limit forest fire process. We described precisely the dynamics of this
limit process and have shown that it is unique, that it can be built by using a graphical
construction and thus can be perfectly simulated. Using the limit process, we have
also estimated the size of clusters. Very roughly, we have proved that in a very weak
sense, for � small enough and for t large enough (of order log(1/�)), the cluster-size
distribution resembles

Pr
⇥

C(⌘�t , 0) = x
⇤

' a

(x + 1) log(1/�)
11{x⌧n�} +

be�x/n�

n�

,

where a, b are two positive constants. Very roughly, we are able to replace the con-
dition x < (s�max)

1
3 of [17] by the condition x < (s�max)

1�" for any " 2 (0, 1) (but
our result is weaker, in the sense that it holds when integrated in x, and we have
to take the limit � ! 0). This means that there are two types of clusters: micro-
scopic clusters, described by a power-like law and macroscopic clusters, described by
an exponential-like law. This shows a phase transition around the critical size n�.

1.1.4.7. No self-organized criticality. — From the qualitative point of view the con-
clusion is rather di↵erent from that of Ráth and Tóth [55] (presented in subsubsec-
tion 1.1.3.4). Here, the (asymptotic) cluster-size distribution does not exhibit self-
organized criticality features. We proved the presence of a power law, but this power
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law describes clusters which are much smaller than the critical size. Large clusters
(clusters near the critical size) have a law with fast decay.

1.1.5. Main ideas of the present paper. — From the modelling point of view,
the Poisson assumption is quite reasonnable for ignitions, but clearly not well justified
for recoveries (seeds). Thus it seems interesting to study what happens when seeds
and matches are driven by other renewal processes. The goal of this paper is to extend
the previous study [15] described above to a more general class of renewal processes.
We assume that the renewal processes are stationary for simplicity, but this can be
more or less justified by the fact that it is the only way that time 0 does not play a
special role.

We thus consider the case where seeds (respectively matches) fall on each site of Z
independently, according to some stationary renewal processes, with stationary delay
distributed according to some law ⌫S (respectively ⌫�M ). This means that for any
time t � 0 and on any site i 2 Z, the time we have to wait for the next seed is a ⌫S-
distributed random variable. We have an assumption saying that as � ! 0, matches
are rarer and rarer. We also assume that ⌫S has a bounded support or a tail with
fast or regular or slow variations. We prove that, after re-scaling, the corresponding
forest fire process converges, as � ! 0, to a limit process. And we show that there
are four classes of limit processes, according to the fact that

. ⌫S has a bounded support (HS(BS)),

. ⌫S has a tail with fast decay (HS(1)),

. ⌫S has a tail with polynomial decay (HS(�)),

. ⌫S has a tail with logarithmic decay (HS(0)).

As we will see, the limit forest fire process built in [15] is quite universal: it
describes the asymptotics of a large class (roughly exponential decay for ⌫S) of forest
fire processes. A similar limit process arises when ⌫S has bounded support. But
some quite di↵erent limit processes arise when ⌫S has a heavy tail. We also develop
the necessary tools to study the cluster size distributions. Let us mention at once
that there is indeed presence of a critical size under (HS(BS)) and (HS(1)) but
not under (HS(�)) or (HS(0)). In the latter situation, there are only macroscopic
clusters. This is related to subsubsection 1.1.4.4.

It is striking that in [15] we made repeated use of the Markov property of Poisson
processes while it turns out the result still holds without this assumption (and with no
significant increase of the complexity). Indeed, proofs remain essentially elementary
except maybe from the combinatorial and computational point of view.

From the qualitative point of view, the main novelty is the rise of a new class of
processes (those corresponding to polynomial tails), reminiscent of the Kingman co-
alescent (with deaths). But for this case as for the others, the conclusion is that, as
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expected, self-organized criticality features do not show up for this model in dimen-
sion 1.

Let us finally insist on the fact that surprisingly (in view of the complexity and
length of the proofs), our assumptions are really light. Consider e.g. the case where ⌫S
has an unbounded support and a fast decay, which means (for us) that for any t > 0,

lim
x!1

⌫S((x,1))

⌫S((tx,1))
= t1,

where t1 = 0 if t < 1, 11 = 1, and t1 = 1 if t > 1. We do not need the least
additional condition.

1.1.6. Plan of the paper. — Chapter 2 is devoted to a complete exposition of
our results. We start in section 2.1 with notation and with the definitions of the
objects under study, and we state our assumptions. In section 2.2, we explain the
heuristic scales and the relevant quantities (rescaled macroscopic clusters and measure
of microscopic clusters). Then we describe precisely our results in sections 2.3 (case
with fast decay), 2.4 (case with bounded support), 2.5 (case with polynomial decay)
and 2.6 (case with logarithmic decay). We conclude this part with a quick discussion
about our modeling choices and with a short list of open problems and perspectives.
Chapter 3 (sections 3.1 to 3.11) contains all the proofs. In Chapter 4 we handle a
few numerical simulations to illustrate our results. Finally, Chapter 5 contains an
appendix about regularly varying functions and coupling.
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CHAPTER 2

NOTATION AND RESULTS

2.1. Definitions, notation and assumptions

2.1.1. Stationary renewal processes. — We first fix notation about stationary
renewal processes. We refer to Cocozza-Thivent [21] for a book on renewal processes.

Definition 2.1.1. — For µ a probability measure on (0,1) with finite expecta-
tion mµ, set

⌫µ(dt) = m�1
µ µ

�

(t,1)
�

dt,

which is also a probability measure on (0,1). Let T1 be a ⌫µ-distributed random vari-
able and let (Xk)k�1 be a sequence of i.i.d. random variables with law µ, independent
of T1. Set

Tk+1 = Tk + Xk for all k � 1 and Nt =
X

k�1

11{Tkt} for all t � 0.

We say that (Nt)t�0 is a stationary renewal process with parameter µ, or a SR(µ)-
process in short.

It is well-known, see e.g. [21, Corollaire 6.19, p. 169], that for (Nt)t�0 a SR(µ)-
process in the sense of Definition 2.1.1, the law of TNt+1 � t (i.e. the time we have
to wait for the next mark at time t) is ⌫µ for all t � 0. Another possible definition is
the following.

Definition 2.1.2. — For µ a probability measure on (0,1) with finite expecta-
tion mµ, set

⌫µ(dt) = m�1
µ µ

�

(t,1)
�

dt and ⇣µ(dt) = m�1
µ tµ(dt),

which are also probability measures on (0,1). Consider a collection of random vari-
ables (Xi)i2Z\{0} with law µ. Consider also X0 with law ⇣µ and U uniformly dis-
tributed on [0, 1]. Assume that all these random variables are independent. Define

T0 = �(1 � U)X0, T1 = UX0
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and then, for n � 1,

Tn+1 = Tn + Xn and T�n = T�(n�1) � X�n.

Then we say that (Tn)n2Z is a SR(µ)-process.

If (Tn)n2Z is a SR(µ)-process in the sense of Definition 2.1.2 and if one considers
the associated counting process Nt =

P

n�1 11{Tnt}, it is indeed a SR(µ)-process in
the sense of Definition 2.1.1. This can be checked immediately: it su�ces to observe
that the law of T1 is ⌫µ.

If we have a SR(µ)-process (Nt)t�0 as in Definition 2.1.1 and if we denote by
(Tn)n�1 its successive instants of jump, one can easily build (Tn)n0 in such a way
that (Tn)n2Z is a SR(µ)-process as in Definition 2.1.2.

For (Tn)n2Z a SR(µ)-process as in Definition 2.1.2, for any t 2 R, the random sets
[

n2Z
{Tn},

[

n2Z
{�Tn} and

[

n2Z
{Tn + t}

have the same law. Thus if we introduce nt such that Tnt + t < 0 < Tnt+1 + t, the
process (Tnt+n + t)n2Z is a SR(µ)-process. By the same way, the process (�T1�n)n2Z
is a SR(µ)-process.

2.1.2. The discrete model. — Next, we introduce the forest fire model. For
a, b 2 Z with a  b, we set

[[a, b]] = {a, . . . , b} ⇢ Z.

For ⌘ 2 {0, 1}Z and i 2 Z, we define the occupied connected component around i as

C(⌘, i) =

(

? if ⌘(i) = 0,

[[`(⌘, i), r(⌘, i)]] if ⌘(i) = 1,

where `(⌘, i) = sup{k < i : ⌘(k) = 0} + 1 and r(⌘, i) = inf{k > i : ⌘(k) = 0}� 1.

Definition 2.1.3. — Let µS and µM be two laws on (0,1) with finite ex-
pectations. For each i 2 Z, we consider a SR(µS)-process (NS

t (i))t�0 and a
SR(µM )-process (NM

t (i))t�0, all these processes being independent. A {0, 1}-valued
process (⌘t(i))i2Z,t�0 such that (⌘t(i))t�0 is a.s. càdlàg for all i 2 Z is said to be a
FF(µS , µM )-process if a.s., for all t � 0, all i 2 Z,

⌘t(i) =

Z t

0
11{⌘s�(i)=0}dNS

s (i) �
X

j2Z

Z t

0
11{j2C(⌘s�,i)}dNM

s (j).

Formally, we say that ⌘t(i) = 0 if there is no tree at site i at time t and ⌘t(i) = 1
else. Thus the forest fire process starts from an empty initial configuration, seeds
fall according to i.i.d. SR(µS)-processes and matches fall according to i.i.d. SR(µM )-
processes. When a seed falls on an empty site, a tree appears immediately. When
a match falls on an occupied site, it burns immediately the corresponding connected
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Figure 1. Graphical construction of the FF(µ
S

, µ
M

)-process.

Matches are represented as bullets and seeds as squares. On the sites �5

and 6, no seed fall during [0, T ], so that these sites remain vacant until T .

One can thus clearly deduce the values of the process in [[�5, 6]] during [0, T ]

using only the bullets and squares inside [[�5, 6]].

component of occupied sites. Seeds falling on occupied sites and matches falling on
vacant sites have no e↵ect.

Assume for a moment that the support of µS is unbounded (thus so is that
of ⌫µS ). Then the FF(µS , µM )-process can be shown to exist and to be unique
(for almost every realization of (NS

t (i), NM
t (i))i2Z,t�0), by using a genuine graphi-

cal construction. Indeed, to build the process until a given time T > 0, it su�ces
to work between sites i which are vacant until time T (because NS

T (i) = 0). In-
teraction cannot cross such sites. Since such sites are a.s. infinitely many (because
Pr[NS

T (i) = 0] = ⌫µS ((T,1)) > 0 by assumption), this allows us to handle a graphical
construction. This is illustrated by Figure 1. See Liggett [45] for many examples of
graphical constructions.

We will also study the more complicated case where µS has a bounded support
and this will lead to the following general result.

Proposition 2.1.4. — Let µS and µM be two laws on (0,1) with some finite ex-
pectations. For each i 2 Z, we consider a SR(µS)-process (NS

t (i))t�0 and a SR(µM )-
process (NM

t (i))t�0, all these processes being independent. Almost surely, there exists
a unique FF(µS , µM )-process.

This proposition is proved in section 3.1.
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2.1.3. Assumptions. — We now state the assumptions we will impose on the laws
µS and µM . First, we want to express the fact that matches are less and less frequent.
To do so, we consider a family of laws µ�

M , for � 2 (0, 1], as follows.

(HM )

8

>

>

>

<

>

>

>

:

For each � 2 (0, 1], µ�
M is the image measure of µ1

M by the
map t 7! t/� and the probability measure µ1

M on (0,1)
satisfies

R1
0 tµ1

M (dt) = 1. We set

⌫�M (dt) = ⌫µ�
M

(dt) = �µ�
M ((t,1))dt = �µ1

M ((�t,1))dt.

The idea we have in mind is that we slow down matches: for (NM
t )t�0 a SR(µ1

M )-
process, (NM

�t )t�0 is a SR(µ�
M )-process.

Assume that
R1
0 tµ1

M (dt) =  2 (0,1). Then eµ�
M = µ�

M satisfies (HM ). We thus
may of course assume that  = 1 without loss of generality.

Next, we put some conditions about µS .

(HS)

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

The probability measure µS on (0,1) has a finite mean
mS =

R1
0 tµS(dt). We set

⌫S(dt) = ⌫µS (dt) = m�1
S µS((t,1))dt.

Either µS has a bounded support or µS has an unbounded
support and

8 t > 0, lim
x!1

⌫S((x,1))

⌫S((tx,1))
2 [0,1) [ {1} exists.

Surprisingly, we will consider these assumptions in full generality: no supplemen-
tary technical condition is needed. In the whole paper, we admit the following con-
vention:

t1 =

8

<

:

0 if t 2 (0, 1)
1 if t = 1
1 if t 2 (1,1).

As proved in Lemma 5.1.1, (HS) implies either

(HS(BS))

8

>

>

<

>

>

:

The probability measure µS on (0,1) has a bounded sup-
port. We denote by mS the expectation of µS and define
TS = max supp µS and ⌫S(dt) = m�1

S µS((t,1))dt. Ob-
serve that supp ⌫S = [0, TS ].

or, for some � 2 [0,1) [ {1},

(HS(�))

8

>

>

>

>

>

<

>

>

>

>

>

:

The probability measure µS on (0,1) has an un-
bounded support, a finite mean mS and for ⌫S(dt) =
m�1

S µS((t,1))dt,

8 t > 0, lim
x!1

⌫S((x,1))

⌫S((tx,1))
= t� .

We finally introduce the following notation.
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notation 2.1.5. — (i) Assume (HS(�)) for some � 2 [0,1). We denote by �S
the inverse function of t 7! t/⌫S((t,1)). Note that �S : (0,1) 7! (0,1) is an
increasing continuous bijection.

(ii) Assume (HS(1)). We denote by �S the inverse function of t 7! t/⌫S((t,1))
and by  S the inverse function of t 7! ⌫S((0, t)). The functions �S : (0,1) 7! (0,1)
and  S : (0, 1) 7! (0,1) are increasing bijections.

(iii) Assume (HS(BS)). We denote by  S the inverse function of t 7! ⌫S((0, t)).
The function  S : (0, 1) 7! (0, TS) is an increasing continuous bijection.

2.1.4. Examples. — Concerning (HM ), the situation is clear. The Poisson case
studied in [15] corresponds to µ1

M (dt) = e�t11{t>0}dt, whence

µ�
M (dt) = ⌫�M (dt) = �e��t11{t>0}dt.

We study here a much more general case. However, this is not the main point of the
paper, since it will not generate some very interesting behaviors. Concerning (HS),
we present here four classes of examples, that will lead to di↵erent behaviors.

Example 1. — If µS = �TS , whence ⌫S(dt) = T�1
S 11[0,TS ](t)dt, then (HS(BS))

holds and  S(z) = TSz.

Example 2. — Assume that µS((t,1))
1⇠ e�t↵ for some ↵ > 0, so that ⌫S((t,1))

1⇠
ct1�↵ e�t↵ . Then (HS(1)) holds. Furthermore, �S(z)

1⇠ (log z)1/↵ and  S(z)
1⇠

[log(1/(1 � z))]1/↵.

Example 3. — Assume that µS((t,1))
1⇠ t�1�� for some � > 0, whence

⌫S((t,1))
1⇠ ct�� . Then (HS(�)) holds and �S(z)

1⇠ (cz)1/(�+1).

Example 4. — If µS((t,1))
1⇠ t�1(log t)�1�� for some � > 0, then ⌫S((t,1))

1⇠
c(log t)�� , so that (HS(0)) is satisfied and �S(z)

1⇠ cz(log z)�� .

The Poisson case treated in [15], which corresponds to the case where µS((t,1)) =
e�t = ⌫S((t,1)), is thus included in Example 2. Example 1 might seem slightly
strange from the modelling point of view, but it can happen e.g. if seeds are thrown
by a machine.

Observe that (HS) is not very restrictive, since it is satisfied by all reasonable
laws. Anyway, our results (not only the proofs) clearly break down without such an
assumption.

It is not so easy to build a law µS not meeting (HS), because t 7! ⌫S((t,1)) is
automatically quite smooth (Lipschitz continuous, decreasing and convex). One can
however verify that (HS) is not holding for

µS(dt) = 11{t>0}[20 � 3 cos log(1 + t) + sin log(1 + t)]/[9(1 + t)3)]dt,

for which ⌫S((t,1)) = [10 + sin log(1 + t)]/[10(1 + t)]. One easily checks that
⌫S((x,1))/⌫S((xe⇡/2,1)) has no limit as x ! 1, choosing e.g. the sequences
xn = e2n⇡ and xn = e2n⇡+⇡/2.
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2.1.5. Notation. — We denote:

. for I ⇢ Z, by |I| = #I the number of elements in I;

. for I = [[a, b]] = {a, . . . , b} ⇢ Z and ↵ > 0, we will set ↵I := [↵a,↵b] ⇢ R.
For ↵ > 0, we of course take the convention that ↵? = ?;

. for J = [a, b] an interval of R, |J | = b� a stands for the length of J and for
↵ > 0, we set ↵J = [↵a,↵b];

. for x 2 R, bxc stands for the integer part of x;

. we denote by I = {[a, b], a  b} the set of all closed finite intervals of R;

. for two intervals [a, b] and [c, d], we set

�
�

[a, b], [c, d]
�

= |a � c| + |b � d|, �
�

[a, b],?
�

= |b � a|;
. for two functions I, J : [0, T ] ! I [ {?}, we set

�T (I, J) =

Z T

0
�(It, Jt)dt;

. for (x, I), (y, J) in D([0, T ],R+ ⇥ I [ {?}), the set of càdlàg functions from
[0, T ] into R+ ⇥ I [ {?}, we define

dT

�

(x, I), (y, J)
�

= sup
t2[0,T ]

�

�x(t) � y(t)
�

�+ �T (I, J).

2.2. Heuristic scales and relevant quantities

For µS , µ�
M satisfying (HS) and (HM ), we consider the FF(µS , µ�

M )-process
(⌘�t (i))t�0,i2Z. We look for some time scale for which tree clusters see about one fire
per unit of time. But for � very small, clusters will be very large just before they
burn. We thus also have to rescale space.

Time scale. — For � > 0 very small and for t not too large, one might neglect fires,
so that roughly, each site is vacant with probability ⌫S((t,1)). Indeed, the time we
have to wait for the first seed follows, on each site, the law ⌫S . Thus

C(⌘�t , 0) ' [[�X, Y ]],

where X, Y are geometric random variables with parameter ⌫S((t,1)). Consequently,
for t not too large,

�

�C(⌘�t , 0)
�

� ' 1/⌫S((t,1)).

Under (HS(BS)), |C(⌘�t , 0)| becomes infinite at time TS , so there is no really need to
accelerate time: we are sure that |C(⌘�t , 0)| will be involved in a fire before TS . We will
accelerate time by a factor TS (in some sense, this allows us to assume that TS = 1).

Next we assume (HS(�)) for some � 2 [0,1) [ {1}. We observe that thanks
to (HM ),

⌫�M ((t,1)) ' 1 � �

Z t

0
µ1
M

�

(�s,1)
�

ds ' 1 � �t.
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Hence the probability that at least one match falls in the cluster C(⌘�, 0) during [0, t]
is roughly similar, under (HM ), to

1 �
�

⌫�M
�

(t,1)
��|C(⌘�

t ,0)| ' �t
�

�C(⌘�t , 0)
�

� ' �t/⌫S((t,1)).

We decide to accelerate time by a factor a�, where a� solves �a� = ⌫S((a�,1)). By
this way, the probability that a match falls in C(⌘�, 0) during [0,a�] should tend to
some nontrivial value.

To summarize, we have set, recalling notation 2.1.5 for the definition of �S ,
8

<

:

under (HS(BS)), a� = TS ,

under (HS(�)) with � 2 [0,1) [ {1}, a� = �S(1/�),
which solves �a� = ⌫S((a�,1)).

(2.2.1)

Under (HS(�)) for some � 2 [0,1) [ {1}, one easily checks that

lim
�!0

a� = 1 and thus lim
�!0

�a� = lim
�!0

⌫S
�

(a�,1)
�

= 0.

Space scale. — Now we rescale space in such a way that during a time interval with
length of order a�, something like one fire starts per unit of (space) length. Since on
each site, the probability that (at least) one match falls during [0,a�] equals

⌫M
�

(0,a�)
�

= �

Z a�

0
µ1
M

�

(�t,1)
�

dt ' �a�,

our space scale has to be of order

n� =
⌅

1/(�a�)
⇧

.(2.2.2)

This means that we will identify [[0,n�]] ⇢ Z with [0, 1] ⇢ R. We always have

lim
�!0

n� = 1.

Rescaled clusters. — We thus set, for � 2 (0, 1), t � 0 and x 2 R, recalling
subsection 2.1.5,

D�
t (x) :=

1

n�
C
�

⌘�a�t
, bn�xc

�

⇢ R.(2.2.3)

Using the computation handled in paragraph Time scale, we see that roughly, when
neglecting fires,

�

�D�
t (x)

�

� ' 1

n�⌫S((a�t,1))
' �a�

⌫S((a�t,1))
·

Under (HS(�)) for some � 2 [0,1) [ {1}, one gets

�

�D�
t (x)

�

� ' ⌫S((a�,1))

⌫S((a�t,1))
' t� .

Under (HS(BS)), we obtain roughly (assume that t 6= 1)
�

�D�
t (x)

�

� ' t1.
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Indeed, ⌫S((a�t,1)) = ⌫S((TSt,1)) does not depend on � and is positive if and only
if t < 1.

Case � 2 [0,1). — In this case, everything is fine: for all times of order a�t, the
good space scale is indeed n�. Thus we will describe the FF(µS , µ�

M )-process through
(D�

t (x))x2R,t�0.

Case � 2 {1, BS}. — Then we have a di�culty as in [15]: the previous estimate
(neglecting fires) suggests that for all x 2 R, for t < 1, |D�

t (x)| ! 0 and for t > 1,
|D�

t (x)| ! 1. For t > 1, fires might be in e↵ect and we hope that this will make
finite the possible limit of |D�

t (x)|. But fires can only reduce the size of clusters, so
that for t < 1, the limit of |D�

t (x)| will really be 0.

Since we would like to have an idea of the sizes of microscopic clusters, we have to
keep some information about the degree of smallness of microscopic clusters. We adopt
a di↵erent strategy than in [15], which is more adapted to the case where � = BS

and which leads us to a slightly more direct proof (even in the Poisson case).
We consider a function m� : (0, 1] 7! N satisfying

8

>

>

<

>

>

:

lim�!0 m� = 1, lim�!0(m�/n�) = 0,
� 7! m� is non-increasing
and additionally, under (HS(1)),
8z 2 [0, 1), lim�!0 m�⌫S((a�z,1)) = 1.

(2.2.4)

Such a function exists: under (HS(1)), see Lemma 5.1.2 and under (HS(BS)),
choose for example m� = b

p

1/�c.
Of course, there is no uniqueness of m�, but that does not matter: the only thing

we need is that the scale m� is smaller than the macroscopic scale n� ' 1/⌫S((a�,1))
and larger than all the microscopic scales 1/⌫S((a�z,1)) (for all z 2 (0, 1)). Since
only these scales will appear to be relevant, any choice of such a function m� will be
suitable.

We introduce, for � > 0, x 2 R, t > 0, recall subsection 2.1.5 and that by nota-
tion 2.1.5,  s is the inverse of t 7! ⌫S((0, t)),

8

>

>

<

>

>

:

K�
t (x) :=

�

�

�

i 2 [[bn�xc �m�, bn�xc + m�]] : ⌘�a�t
(i) = 1

 

�

�

2m� + 1
2 [0, 1],

Z�
t (x) :=

 S(K�
t (x))

a�
^ 1 2 [0, 1].

(2.2.5)

Observe that K�
t (x) stands for the local density of occupied sites around bn�xc at

time a�t. This density is local because m� ⌧ n�. We hope that for t < 1, neglecting
fires, K�

t (x) ' ⌫S((0,a�t)), whence Z�
t (x) ' t.

The quantity Z�
t (x) has no physical interpretation. We use it to transform the

local density K�
t (x) (which depends on t in a complicated way involving ⌫S) in a

quantity of which the behavior does not depend too much on ⌫S (at least for t < 1
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and neglecting fires). This will allow us to describe the limit process in an unified
way (not depending on ⌫S).

For all � > 0 small enough (we need that 2m� +1 < n�), we have Z�
t (x) = 1 if and

only if K�
t (x) = 1, i.e. if and only if all the sites are occupied around bn�xc. Indeed,

under (HS(BS)), Z�
t (x) = 1 implies that  S(K�

t (x)) = TS , so that

K�
t (x) = ⌫S

�

(0, TS)
�

= 1.

Under (HS(1)), Z�
t (x) = 1 implies that  S(K�

t (x)) � a�, so that

K�
t (x) � ⌫S

�

(0,a�)
�

= 1 � ⌫S
�

(a�,1)
�

= 1 � �a� � 1 � 1/n�,

whence K�
t (x) = 1. This last assertion comes from the facts that K�

t (x) takes its
values in {k/(2m� + 1) : k 2 {0, . . . , 2m� + 1} and that 2m� + 1 < n�.

Since the scale m� is larger than all the microscopic scales, Z�
t (x) = 1 will imply,

roughly, that the cluster containing bn�xc is macroscopic, i.e. has a length of order n�.

We will study the FF(µS , µ�
M )-process through (D�

t (x), Z�
t (x))x2R,t�0. The main

idea is that for � > 0 very small:

. If Z�
t (x) = z 2 (0, 1), then |D�

t (x)| ' 0 and the (rescaled) cluster containing x

is microscopic (in the sense that the non-rescaled cluster is small when compared
to n�), but we control the local density of occupied sites around x, which resem-
bles ⌫S((0,a�z)). Observe that this density tends to 1 as � ! 0 for all z 2 (0, 1)
under (HS(1)), while it remains bounded as �! 0 for all z 2 (0, 1) under (HS(BS)).

. If Z�
t (x) = 1 and D�

t (x) = [a, b], then the (rescaled) cluster containing x is
macroscopic and has a length equal to b � a, or

�

�C(⌘�a�t
, bn�xc)

�

� ' (b � a)n�

in the original scales.

Summary. — Assume (HS(�)) for some � 2 [0,1) [ {1, BS}.
. We accelerate time by the factor a�, defined by �a� = ⌫S((�a�,1)) if � belongs

to [0,1) [ {1} and by a� = TS if � = BS.

. Our space scale is n� = b1/(�a�)c.

. If � 2 [0,1), we will only study the rescaled clusters (D�
t (x))t�0,x2R, see (2.2.3).

. If � 2 {1, BS}, we will study the rescaled clusters (D�
t (x))t�0,x2R, as well as

the local densities of occupied sites (Z�
t (x))t�0,x2R, see (2.2.4)–(2.2.5).

2.3. Main result in the case � = 1

2.3.1. Definition of the limit process. — We describe the limit process in the
case where � = 1. It is exactly the same process as in the Poisson case studied
in [15]. We consider a Poisson measure ⇡M (dt, dx) on [0,1) ⇥ R, with intensity
measure dtdx, whose marks correspond to matches.
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Before stating a precise definition, let us describe briefly the limit process. Ini-
tially, all the sites are vacant. Matches fall according to ⇡M . All the zones remain
microscopic (meaning roughly that vacant sites are dense in R) until time 1. When
a match falls at some time t 2 (0, 1) at some place x 2 R, it destroys a microscopic
zone, that will be filled again after a delay t (at time 2t). Hence there is a barrier
at x during (t, 2t). At time 1, all the sites become occupied, except sites where there
is an active barrier. Hence if a fire falls, just after time 1, it destroys a macroscopic
zone, delimited by some active barriers. Such a destroyed macroscopic zone will need
a delay 1 to be completely filled again. During this delay, matches produce again
some barriers. And so on. See Figure 2 next page for an illustration.

The precise definition of the limit process is as follows.

Definition 2.3.1. — A process (Zt(x), Dt(x), Ht(x))t�0,x2R with values in
R+ ⇥ I ⇥ R+ such that a.s., for all x 2 R, (Zt(x), Ht(x))t�0 is càdlàg, is said to be
a LFF(1)-process if a.s., for all t � 0, all x 2 R,

8

>

>

<

>

>

:

Zt(x) =

Z t

0
11{Zs(x)<1}ds �

Z t

0

Z

R
11{Zs�(x)=1,y2Ds�(x)}⇡M (ds, dy),

Ht(x) =

Z t

0
Zs�(x)11{Zs�(x)<1}⇡M (ds ⇥ {x}) �

Z t

0
11{Hs(x)>0}ds,

(2.3.1)

where Dt(x) = [Lt(x), Rt(x)], with

Lt(x) = sup{y  x : Zt(y) < 1 or Ht(y) > 0},
Rt(x) = inf{y � x : Zt(y) < 1 or Ht(y) > 0}

and where Dt�(x) is defined in the same way.

2.3.2. Formal dynamics. — Let us explain the dynamics of this process. We
consider T > 0 fixed and set AT = {x 2 R : ⇡M ([0, T ] ⇥ {x}) > 0}. For each t � 0,
x 2 R, Dt(x) stands for the occupied cluster containing x. We call this cluster is
microscopic if Dt(x) = {x}. We have Dt(x) = Dt(y) for all y 2 Dt(x).

1. Initial condition. — We have Z0(x) = H0(x) = 0 and D0(x) = {x} for all x 2 R.

2. Occupation of vacant zones. — We consider here x 2 R \ AT . Then we have
Ht(x) = 0 for all t 2 [0, T ]. When Zt(x) < 1, then Dt(x) = {x} and Zt(x) stands
for the local density of occupied sites around x (or rather for a suitable function of
this local density). Then Zt(x) grows linearly until it reaches 1, as described by the
first term on the RHS of the first equation in (2.3.1). When Zt(x) = 1, the cluster
containing x is macroscopic and is described by Dt(x).

3. Microscopic fires. — Here we assume that x 2 AT and that the corresponding
mark of ⇡M happens at some time t where Zt�(x) < 1. In such a case, the cluster
containing x is microscopic. Then we set Ht(x) = Zt�(x), as described by the first
term on the RHS of the second equation of (2.3.1) and we leave unchanged the value
of Zt(x). We then let Ht(x) decrease linearly until it reaches 0, see the second term
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Figure 2. LFF(1)-process in a finite box.

The marks of ⇡
M

(matches) are represented as •’s. The filled zones represent zones in which

ZA

t

(x) = 1 and HA

t

(x) = 0, that is macroscopic clusters. The plain vertical segments represent

the sites where HA

t

(x) > 0. In the rest of the space, we always have ZA

t

(x) < 1. Until time 1, all

the clusters are microscopic. The 8 first matches fall in that zone. Thus at each of these marks, a

process HA starts and its life-time equals the instant where it has started. For example the segment

above (t1, x1) ends at time 2t1: we draw a dotted segment from (0, x1) to (t1, x1) and then a plain

vertical segment above (t1, x1) with the same length.

At time 1, all the clusters where there has been no mark become macroscopic and merge together.

But this is limited by vertical segments. Here we have at time 1 the clusters [�A, x6], [x6, x4], [x4, x8],

[x8, x5], [x5, x7] and [x7, A]. The segment above (t4, x4) ends at time 2t4 and thus at this time the

clusters [x6, x4] and [x4, x8] merge into [x6, x8]. The 9-th mark falls in the (macroscopic) zone [x6, x8]

and thus destroys it immediately.

This zone [x6, x8] will become macroscopic again only at time t9 + 1. A process HA starts at

x12 at time t12: we draw a dotted segment from (t9, x12) to (t12, x12) and then a plain vertical

segment above (t12, x12) with the same length (ZA

t12�(x12) = t12 � t9 because ZA

t9
(x12) has been set

to 0). The segment [x8, x7] has been destroyed at time t10 and thus will remain microscopic until

t10 + 1. As a consequence, the only macroscopic clusters at time t9 + 1 are [�A, x12], [x12, x8] and

[x7, A]. Then the zone [x8, x7] becomes macroscopic (but there have been marks at x13, x14), so that

at time t10 + 1, we get the macroscopic clusters [�A, x12], [x12, x14], [x14, x13] and [x13, A]. These

clusters merge by pairs, at times 2t12 � t9, 2t13 � t10 and 2t14 � t10, etc.

Here we have 0 2 (x11, x15) and thus ZA

t

(0) = t for t 2 [0, 1], ZA

t

(0) = 1 for t 2 [1, t10), then

ZA

t

(0) = t � t10 for t 2 [t10, t10 + 1), then ZA

t

(0) = 1 for t 2 [t10 + 1, t15),. . .We also see that

DA

t

(0) = {0} for t 2 [0, 1), DA

t

(0) = [x8, x5] for t 2 [1, 2t5), DA

t

(0) = [x8, x7] for t 2 [2t5, t10),

DA

t

(0) = {0} for t 2 [t10, t10 + 1), DA

t

(0) = [x12, x14] for t 2 [t10 + 1, 2t12 � t9), DA

t

(0) = [�A, x14]

for t 2 [2t12 � t9, 2t14 � t10), ... Of course, HA

t

(0) = 0 for all t � 0, but for example HA

t

(x11) = 0

for t 2 [0, t11), HA

t

(x11) = 2t11 � t10 � t for t 2 [t11, 2t11 � t10) and then HA

t

(x11) = 0 for

t 2 [2t11 � t10,1).
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on the RHS of the second equation in (2.3.1). At all times where Ht(x) > 0, the site x

acts like a barrier (see point 5 below).

4. Macroscopic fires. — Here we assume that x 2 AT and that the corresponding
mark of ⇡M happens at some time t where Zt�(x) = 1. This means that the cluster
containing x is macroscopic and thus this mark destroys the whole component Dt�(x),
that is for all y 2 Dt�(x), we set Dt(y) = {y}, Zt(y) = 0. This is described by the
second term on the RHS of the first equation in (2.3.1).

5. Clusters. — Finally the definition of the clusters (Dt(x))x2R becomes more
clear: these clusters are delimited by zones with local density smaller than 1 (i.e.
Zt(y) < 1) or by sites where a microscopic fire has (recently) started (i.e. Ht(y) > 0).

For A > 0, we call (ZA
t (x), DA

t (x), HA
t (x))t�0,x2[�A,A] the finite box version of

the LFF(1)-process: it has the same dynamics as the true LFF(1)-process, but we
restrict the space of tree positions to x 2 [�A, A]. See section 3.10 for a more precise
definition. On Figure 2, a typical path of this finite box LFF(1)-process is discussed.
See also Algorithm 3.6.3 (with the function FS(z, v) = z).

2.3.3. Well-posedness. — The existence and uniqueness of the LFF(1)-process
has been proved in [15, Theorem 3]. We will provide here a simpler proof, which also
works for the case where � = BS.

Theorem 2.3.2. — For any Poisson measure ⇡M (dt, dx) on [0,1) ⇥ R with in-
tensity measure dtdx, there a.s. exists a unique LFF(1)-process. Furthermore, it
can be constructed graphically and its restriction to any finite box [0, T ]⇥ [�n, n] can
be perfectly simulated.

The LFF(1)-process (Zt(x), Dt(x), Ht(x))t�0,x2R is furthermore Markov, since it
solves a well-posed time homogeneous Poisson-driven S.D.E.

2.3.4. The convergence result. — Recall subsection 2.1.5.

Theorem 2.3.3. — Assume (HM ) and (HS(1)). Recall that a�, n� and m�

were defined in (2.2.1) (2.2.2)-(2.2.4). Consider, for each � 2 (0, 1], the process
(Z�

t (x), D�
t (x))t�0,x2R associated with the FF(µS , µ�

M )-process, see Definition 2.1.3,
(2.2.3) and (2.2.5). Consider also the LFF(1)-process (Zt(x), Dt(x), Ht(x))t�0,x2R.

(a) For any T > 0, any finite subset {x1, . . . , xp} ⇢ R,
�

Z�
t (xi), D

�
t (xi)

�

t2[0,T ],i=1,...,p

goes in law to (Zt(xi), Dt(xi))t2[0,T ],i=1,...,p, in D([0, T ],R ⇥ I [ {?})p, as �
tends to 0. Here D([0,1),R⇥ I [ {?}) is endowed with the distance dT .

(b) For any finite subset {(t1, x1), . . . , (tp, xp)} ⇢ [0,1) ⇥ R, with tk 6= 1 for
k = 1, . . . , p, (Z�

ti(xi), D�
ti(xi))i=1,...,p goes in law to (Zti(xi), Dti(xi))i=1,...,p

in (R⇥ I [ {?})p. Here I [ {?} is endowed with �.
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(c) Recall notation 2.1.5 (ii). For all t > 0,

⇣ S

�

1 � 1/|C(⌘�a�t
, 0)|

�

a�
11{|C(⌘�

a�t,0)|�1}

⌘

^ 1

goes in law to Zt(0) as �! 0.

Point (c) will allow us to check some estimates on the cluster-size distribution.
Since we deal with finite-dimensional marginals in space, it is quite clear that the
process H does not appear in the limit, since for each x 2 R, a.s., for all t � 0,
Ht(x) = 0. (Of course, it is false that a.s., for all x 2 R, all t � 0, Ht(x) = 0).

We cannot guarantee the convergence in law of D�
t (0) to Dt(0) at time t = 1. This

is due to the fact that when neglecting fires, the probability that a macroscopic zone is
completely occupied at time a�t, tends to 1 if t > 1, but to a nontrivial value if t = 1.

For example, in the absence of fires, a zone with length n� is completely occupied
at time a�t with probability ⌫S((0,a�t))n� ' exp(�n�⌫S((a�t,1))), which tends to 1
if t > 1 and to 1/e if t = 1.

We believe that this is really not important and we decided to keep this definition
of the LFF(1)-process despite this light defect.

2.3.5. Heuristic arguments. — Let us explain here roughly the reasons why The-
orem 2.3.3 holds true. We consider, for � > 0 very small, a FF(µS , µ�

M )-process
(⌘�t (i))t�0,i2Z and the associated processes (Z�

t (x), D�
t (x))t�0,x2R.

0. Matches. — The times and positions at which matches fall will tend, in our
scales, to the marks of a Poisson measure with intensity measure 1. A hint for
this is the following. Consider e.g. the domain [0, T ] ⇥ [0, 1], which corresponds
to [0,a�T ] ⇥ [[0,n�]]. The probability that two matches fall on the same site during
[0,a�T ] is very small. Thus the number of matches falling in [0,a�T ] ⇥ [[0,n�]] has
approximately a Binomial distribution with parameters n� and ⌫M ([0,a�T ]). Since

n�⌫
�
M

�

[0,a�T ]
�

' 1

�a�

h

Z a�T

0
�µ1

M ((�a�t,1))dt
i

�! T

as � ! 0, the asymptotic number of matches falling in [0, T ] ⇥ [0, 1] should have a
Poisson distribution with parameter T .

1. Initial condition. — For all x 2 R, (Z�
0 (x), D�

0 (x)) = (0,?) ' (0, {x}) (recall
that  S(0) = 0).

2. Occupation of vacant zones. — Assume that a zone [a, b] becomes completely
vacant at some time t (because it has been destroyed by a fire).

(i) For s 2 [0, 1) and if no fire starts on [a, b] during [t, t + s], we have

D�
t+s(x) '

⇥

x ± 1/(n�⌫S(a�s,1))
⇤

' {x}

and Z�
t+s(x) ' s for all x 2 [a, b].
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Indeed, D�
t+s(x) ' [x � X/n�, x + Y/n�], where X and Y are approximately

geometric random variables with parameter ⌫S((a�s,1)). (Recall that for any t � 0
and for any site, ⌫S is the law of the time we have to wait until the next seed falls).
Thus

D�
t+s(x) '

⇥

x ± 1/(n�⌫S((a�s,1))
⇤

' {x}

due to (HS(1)), since ⌫S
�

(a�s,1)
�

� ⌫S
�

(a�,1)
�

' 1/n�. For the same reasons,

K�
t+s(x) ' ⌫S

�

(0,a�s)
�

,

whence Z�
t+s(x) ' s.

(ii) If no fire starts on [a, b] during [t, t + 1], then Z�
t+1(x) ' 1 and all the sites

in [a, b] are occupied (with very high probability) just after time t + 1.

Indeed, we have (b � a)n� sites and each of them is occupied at time t + 1 + "

with approximate probability ⌫S((0,a�(1+ ")]), so that all of them are occupied with
approximate probability

�

⌫S
�

(0,a�(1 + "))
��(b�a)n� ' exp

⇣

� (b � a)⌫S((a�(1 + "),1))/⌫S((a�,1))
⌘

,

which tends to 1 as �! 0 for any " > 0 by (HS(1)).

3. Microscopic fires. — Assume that a fire starts at some place x at some time t,
with Z�

t�(x) = z 2 (0, 1). Then the possible clusters on the left and right of x

cannot be connected during (approximately) [t, t + z], but can be connected after
(approximately) t + z.

Indeed, the match falls in a zone with approximate density ⌫S((0,a�z)), so that it
should destroy a zone A of approximate length 1/⌫S((a�z,1)) ⌧ n�. The probability
that a fire starts again in A after t is very small. Thus the probability that A is
completely occupied at time t + s is approximately

�

⌫S((0,a�s])
�1/⌫S((a�z,1)) ' exp

�

� ⌫S((a�s,1))/⌫S((a�z,1))
�

.

When �! 0, this quantity tends to 0 if s < z and to 1 if s > z thanks to (HS(1)).

4. Macroscopic fires. — Assume now that a fire starts at some place x, at some
time t and that Z�

t�(x) ' 1, so that D�
t�(x) is macroscopic (that is its length is of

order 1 in our scales, or of order n� in the original process). This will thus make
vacant the zone D�

t�(x). Such a (macroscopic) zone needs a time of order 1 to be
completely occupied, see point 2.

5. Clusters. — For t � 0, x 2 R, the cluster D�
t (x) resembles

⇥

x ± 1/(n�⌫S((a�z,1)))
⇤

' {x}

if Z�
t (x) = z 2 (0, 1). We then say that x is microscopic. Macroscopic clusters are

delimited either by microscopic zones, or by sites where there has been recently a
microscopic fire.
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Even if the above arguments are (hopefully) quite convincing, the rigorous proof
is long and tedious. The main idea is that even if each isolated event is easily treated
(for example, the fact that a vacant macroscopic zone needs a delay 1 to be completely
filled again relies on an immediate computation; estimating the delay needed to fill
again the zone destroyed by a microscopic fire is not di�cult, etc.), it is quite hard to
follow the process during an arbitrary large time interval. Indeed, we have to check
that the small errors due to one such event do not become large errors after some
time. For example, if a macroscopic zone is not filled at time 1, but slightly after (say
at time t0 > 1), this could reduce consequently the impact of a match falling in this
zone between 1 and t0, etc. The main ideas of the proof are however quite simple and
really rely on the above heuristic arguments.

2.3.6. Cluster-size distribution. — We will deduce from Theorem 2.3.3 the fol-
lowing estimates on the cluster-size distribution.

Corollary 2.3.4. — Assume (HM ) and (HS(1)). Recall that a� and n� were
defined in (2.2.1) and (2.2.2). Let (Zt(x), Dt(x), Ht(x))t�0,x2R be a LFF(1)-process.
For each � 2 (0, 1], let (⌘�t (i))t�0,i2Z be a FF(µS , µ�

M )-process.

(i) For some 0 < c1 < c2, for all t � 5
2 , all 0 < a < b < 1,

lim
�!0

Pr
�

|C(⌘�a�t
, 0)| 2 [1/⌫S((a�a,1)), 1/⌫S((a�b,1))]

�

= Pr
�

Zt(0) 2 [a, b]
�

2
⇥

c1(b � a), c2(b � a)
⇤

.

(ii) For some 0 < c1 < c2 and 0 < 1 < 2, for all t � 3
2 , all B > 0,

lim
�!0

Pr
�

|C(⌘�a�t
, 0)| � Bn�

�

= Pr (|Dt(0)| � B) 2 [c1 e�2B , c2 e�1B ].

This results shows that there is a phase transition around the critical size n�: the
cluster-size distribution changes of shape at n�.

Consider the case of Example 2, where µS((t,1))
1⇠ e�t↵ . Then

a� ⇠ (log(1/�))1/↵ and n� ⇠ 1/[�(log(1/�))1/↵].

Very roughly, Corollary 2.3.4 proves that when �! 0, the law of |C(⌘�, 0)|, for large
times, resembles

[log(1 + x)]1/↵�1

(1 + x)[log(1/�)]1/↵
11{x2[0,n�]}dx + (1/n�)e�x/n�11{x�0}dx.

The first term corresponds approximately to the law of 1/⌫S((a�U,1)), for U uni-
formly distributed on [0, 1] and the second term is an exponential law with mean n�.

The main idea is that two types of clusters are present: macroscopic clusters, of
which the size is of order n� ⇠ ��1[log(1/�)]�1/↵, with an exponential-like distribu-
tion; and microscopic clusters, of which the size is smaller than n�, with a law with
shape log(1 + x)1/↵�1/(1 + x).
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2.4. Main result in the case � = BS

This case is slightly more complicated than the case � = 1. The limit process
is essentially the same, except that the height of the barriers (vertical segments in
Figure 2) are more random.

2.4.1. Law of the heights of the barriers. — Start at time 0 with all sites
vacant. Let u 2 (0, 1). Assume that a match falls at site 0 at time TSu and neglect
all other fires. Call ⇥u the time needed for the destroyed zone to be completely
regenerated and ✓u the law of ⇥u/TS . Clearly, ✓u is supported by [0, 1]. We will show
in Lemma 3.9.1 below that ✓u can be defined as follows.

Definition 2.4.1. — Assume (HS(BS)). For t, s 2 [0,1), we denote by

gS(t, s) = Pr
⇥

NS
TSt > 0, NS

TS(t+s) > NS
TSt

⇤

,

where (NS
t )t�0 is a SR(µS)-process. For u 2 (0, 1), we consider the probability mea-

sure ✓u on [0, 1] defined by

8h 2 [0, 1], ✓u
�

[0, h]
�

= ⌫S
�

(TSu, TS)
�

+
⇣⌫S((TSu, TS))

1 � gS(u, h)

⌘2
gS(u, h).

Finally, we consider a function

FS : [0, 1] ⇥ [0, 1] �! [0, 1]

such that for each u 2 [0, 1] and for V a uniformly distributed random variable
on [0, 1], the law of FS(u, V ) is ✓u. We can choose FS in such a way that for
each u 2 [0, 1], v 7! FS(u, v) is nondecreasing.

Let u 2 [0, 1] be fixed. Since µS([0, TS ]) = 1, there holds gS(u, 1) = ⌫S([0, TSu]),
whence ✓u([0, 1]) = 1. To check that h 7! ✓u([0, h]) is nondecreasing, it su�ces to
observe that h 7! g(u, h) is nondecreasing. Notice that ✓u({0}) = ⌫S((TSu, TS)): this
corresponds to the situation where nothing has been destroyed because the match has
fallen on an empty site. For FS(u, .), one can e.g. use the generalized inverse function
of ✓u([0, .]).

2.4.2. Definition of the limit process. — Let ⇡M (dt, dx) be a Poisson measure
on [0,1)⇥R with intensity measure dtdx, whose marks correspond to matches. We
also consider an i.i.d. sequence (Vk)k�1 of uniformly distributed random variables
on [0, 1], independent of ⇡M . If

⇡M (dt, dx) =
X

k�1

�(Tk,Xk),

we (abusively) write

⇡M (dt, dx, dv) =
X

k�1

�(Tk,Xk,Vk).
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Observe that ⇡M (dt, dx, dv) is a Poisson measure on [0,1)⇥R⇥ [0, 1] with intensity
measure dtdxdv.

Definition 2.4.2. — A process (Zt(x), Dt(x), Ht(x))t�0,x2R with values in R+ ⇥
I ⇥ R+ such that a.s., for all x 2 R, (Zt(x), Ht(x))t�0 is càdlàg, is said to be a
LFF(BS)-process if a.s., for all t � 0, all x 2 R,

8

>

>

>

>

>

<

>

>

>

>

>

:

Zt(x) =

Z t

0
11{Zs(x)<1}ds �

Z t

0

Z

R
11{Zs�(x)=1,y2Ds�(x)}⇡M (ds, dy),

Ht(x) =

Z t

0

Z 1

0
FS(Zs�(x), v)11{Zs�(x)<1}⇡M (ds ⇥ {x}⇥ dv)

�
Z t

0
11{Hs(x)>0}ds,

(2.4.1)

where Dt(x) = [Lt(x), Rt(x)], with

Lt(x) = sup{y  x : Zt(y) < 1 or Ht(y) > 0},
Rt(x) = inf{y � x : Zt(y) < 1 or Ht(y) > 0}

and where Dt�(x) is defined in the same way.

The di↵erence with the LFF(1)-process is that when a match falls at (t, x)
with Zt�(x) < 1, we choose Ht(x) according to the law ✓Zt�(x), instead of simply
setting Ht(x) = Zt�(x).

2.4.3. Formal dynamics. — Let us explain the dynamics of this process. We
consider T > 0 fixed and set

AT =
�

x 2 R : ⇡M ([0, T ] ⇥ {x}) > 0
 

.

For each t � 0, x 2 R, Dt(x) stands for the occupied cluster containing x. We call
this cluster is microscopic if Dt(x) = {x}. We have Dt(x) = Dt(y) for all y 2 Dt(x).

1. Initial condition. — We have, for all x 2 R

Z0(x) = H0(x) = 0 and D0(x) = {x}.

2. Occupation of vacant zones. — We consider here x 2 R \ AT . Then we have
Ht(x) = 0 for all t 2 [0, T ]. When Zt(x) < 1, then Dt(x) = {x} and Zt(x) stands for
the local density of occupied sites around x (or rather for a suitable function of this
density) Then Zt(x) grows linearly until it reaches 1, as described by the first term
on the RHS of the first equation in (2.4.1). When Zt(x) = 1, the cluster containing x

is macroscopic and is described by Dt(x).

3. Microscopic fires. — Here we assume that x 2 AT and that the corresponding
mark of ⇡M happens at some time t where Zt�(x) < 1. In such a case, the cluster
containing x is microscopic. Then we set Ht(x) = FS(Zt�(x), V ), for some uniformly
distributed V on [0, 1] as described by the first term on the RHS of the second equation
of (2.4.1). We then let Ht(x) decrease linearly until it reaches 0, see the second term
on the RHS of the second equation in (2.4.1). At all times where Hs(x) > 0, the site x
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Figure 3. LFF(BS)-process in a finite box.

The marks of ⇡
M

(matches) are represented as •’s. The filled zones represent zones in

which ZA

t

(x) = 1 and HA

t

(x) = 0, that is macroscopic clusters. The plain vertical segments

represent the sites where HA

t

(x) > 0. In the rest of the space, we always have ZA

t

(x) < 1.

acts like a barrier (see point 5 below). All this means that at x, there is a barrier
during [t, t + Ht(x)), where Ht(x) is chosen at random, according to the law ✓Zt�(x).

4. Macroscopic fires. — Here we assume that x 2 AT and that the corresponding
mark of ⇡M happens at some time t where Zt�(x) = 1. This means that the cluster
containing x is macroscopic and thus this mark destroys the whole component Dt�(x),
that is for all y 2 Dt�(x), we set Dt(y) = {y}, Zt(y) = 0. This is described by the
second term on the RHS of the first equation in (2.4.1).

5. Clusters. — Finally the clusters (Dt(x))x2R are delimited by zones with density
smaller than 1 (i.e. Zt(y) < 1) or by sites where a microscopic fire has (recently)
started (i.e. Ht(y) > 0).

A typical path of a finite-box version (ZA
t (x), DA

t (x), HA
t (x))t�0,x2[�A,A] of the

LFF(BS)-process is discussed on Figure 3. It is very similar to Figure 2: the only
di↵erence is that each time there is a bullet falling at some (t, x) in a white zone, the
height of the segment above (t, x) is chosen at random, according to the law ✓Zt�(x).
And Zt�(x) equals the time passed since x was involved in a macroscopic fire (the
case LFF(1) corresponds to the law ✓z = �z). See also Algorithm 3.6.3 below.
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2.4.4. Well-posedness. — We will prove the following result.

Theorem 2.4.3. — For any Poisson measure ⇡M (dt, dx, dv) on [0,1)⇥R⇥[0, 1]
with intensity measure dtdxdv (and for ⇡M (dt, dx) =

R

v2[0,1] ⇡M (dt, dx, dv)), there

a.s. exists a unique LFF(BS)-process. Furthermore, it can be constructed graphically
and its restriction to any finite box [0, T ] ⇥ [�n, n] can be perfectly simulated.

The LFF(BS)-process (Zt(x), Dt(x), Ht(x))t�0,x2R is furthermore Markov, since it
solves a well-posed time homogeneous Poisson-driven S.D.E.

2.4.5. The convergence result. — We are now in a position to state the main
result of this section. Recall subsection 2.1.5.

Theorem 2.4.4. — Assume (HM ) and (HS(BS)). Recall that a� = TS, n� =
b1/(�TS)c and let m� satisfy (2.2.4). Consider, for each � 2 (0, 1], the process
(D�

t (x), Z�
t (x))t�0,x2R associated with the FF(µS , µ�

M )-process (⌘�t (i))t�0,i2Z, see Def-
inition 2.1.3, (2.2.3) and (2.2.5). Consider also the LFF(BS)-process

�

Zt(x), Dt(x), Ht(x)
�

t�0,x2R.

(a) For any T > 0, any finite subset {x1, . . . , xp} ⇢ R, (Z�
t (xi), D�

t (xi))t2[0,T ],i=1,...,p

goes in law to (Zt(xi), Dt(xi))t2[0,T ],i=1,...,p, in D([0, T ],R ⇥ I [ {?})p, as �
tends to 0. Here D([0,1),R⇥ I [ {?}) is endowed with the distance dT .

(b) For any finite subset {(t1, x1), . . . , (tp, xp)} ⇢ [0,1)⇥R, (Z�
ti(xi), D�

ti(xi))i=1,...,p

goes in law to (Zti(xi), Dti(xi))i=1,...,p in (R ⇥ I [ {?})p. Here I [ {?} is
endowed with �.

(c) For any t � 0, any k 2 N,

lim
�!0

Pr
⇥

|C(⌘�TSt, 0)| = k
⇤

= E [qk(Zt(0))] ,

where, for z 2 [0, 1],

(

q0(z) = ⌫S
�

(zTS , TS)
�

,

qk(z) = k
⇥

⌫S((zTS , TS))
⇤2⇥
⌫S((0, zTS))

⇤k
if k � 1.

(2.4.2)

Here we have no problem with t = 1: for the discrete process (in the absence
of fires), all the sites are occupied at time TS (which corresponds to time 1 after
normalization). Point (c) will be useful to prove some estimates about the cluster-
size distribution. Observe that for z 2 (0, 1), qk(z) is the probability that the cluster
around 0 has the size k at time TSz, in the absence of fires, if seeds fall according
to i.i.d. SR(µS)-processes.
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2.4.6. Heuristic arguments. — Let us explain roughly the reasons why Theo-
rem 2.4.4 holds true. We consider a FF(µS , µ�

M )-process (⌘�t (i))t�0,i2Z and the cor-
responding processes (Z�

t (x), D�
t (x))t�0,x2R. We assume below that � is very small.

0. Matches. — As in the case � = 1, the times and positions at which matches fall
will tend, in our scales, to the marks of a Poisson measure with intensity measure 1.

1. Initial condition. — We have, for all x 2 R, (Z�
0 (x), D�

0 (x)) = (0,?) ' (0, {x}).
2. Occupation of vacant zones. — Assume that a zone [a, b] becomes completely

vacant at some time t (because it has been destroyed by a fire).

(i) For s 2 [0, 1) and if no fire starts on [a, b] during [t, t+ s] (or [TSt, TS(t+ s)] in
the original scales) the density of vacant sites in [a, b] at time t+s should clearly
resemble ⌫S((0, TSs)). Hence for x 2 [a, b], Z�

t (x) '  S(⌫S((0, TSs))) = s and
D�

t+s(x) ' {x}.
(ii) If no fire starts on [a, b] during [t, t + 1] (or [TSt, TS(t + 1)] in the original

scales), then all the sites of [a, b] become occupied at time t + 1 (recall that
⌫S((0, TS ]) = 1).

3. Microscopic fires. — Assume that a fire starts at some place x at some time t,
with Z�

t�(x) = z 2 (0, 1). Then the possible clusters on the left and right of x

cannot be connected during (approximately) [t, t+⇥zTS ], but can be connected after
(approximately) t +⇥zTS , where ⇥z follows approximately the law ✓z. Indeed, ✓z is
designed for that: consider a zone where the density of occupied sites is z and assume
that the sites are exchangeable in this zone. Pick at random a cluster in this zone.
The law of its size depends on z. Then ✓z is the law of the time needed for a seed to
fall on each sites of this cluster (divided by TS).

4. Macroscopic fires. — Assume now that a fire starts at some place x, at some
time t and that Z�

t�(x) ' 1, so that D�
t�(x) is macroscopic (that is its length is of

order 1 in our scales, or of order n� in the original process). This will thus make
vacant the zone D�

t�(x). Such a (macroscopic) zone needs a time of order 1 to be
completely occupied, see point 2.

5. Clusters. — For t � 0, x 2 R, there are some vacant sites in the neighborhood
of x if Z�

t (x) < 1 (then we say that x is microscopic), or if there has been (recently)
a microscopic fire at x (see point 3). Now macroscopic clusters are delimited either
by microscopic zones, or by sites where there has been recently a microscopic fire.

To transform these heuristic arguments into a rigorous proof, we have essentially
the same di�culties as when � = 1 (see subsection 2.3.5): each isolated event is
easily treated, but it is quite hard to put everything together.

2.4.7. Cluster-size distribution. — We will deduce from Theorem 2.4.4 the fol-
lowing estimates on the cluster-size distribution.
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Corollary 2.4.5. — Assume (HM ) and (HS(BS)). Recall that a� and n� were
defined in (2.2.1) and (2.2.2). Let (Zt(x), Dt(x), Ht(x))t�0,x2R be a LFF(BS)-process.
For each � 2 (0, 1], let (⌘�t (i))t�0,i2Z be a FF(µS , µ�

M )-process.

(i) For some 0 < c1 < c2, for all t � 5
2 , all k 2 {0, 1, . . .},

lim
�!0

Pr
�

|C(⌘�TSt, 0)| = k
�

2 [c1qk, c2qk],

where, for k � 1

q0 =

Z 1

0
⌫S
�

(TSz, TS)
�

dz and qk = k

Z 1

0

⇥

⌫S((TSz, TS))]2[⌫S((0, TSz))
⇤k

dz.

(ii) For some 0 < c1 < c2 and 0 < 1 < 2, for all t � 3
2 , all B > 0,

lim
�!0

Pr
�

|C(⌘�TSt, 0)| � Bn�

�

= Pr (|Dt(0)| � B) 2 [c1 e�2B , c2 e�1B ].

Consider the case of Example 1, where µS = �1, TS = 1 and ⌫S(dt) = 11[0,1](t)dt.
Then n� ⇠ 1/� and one can check that q0 = 1

2 and qk = 2k/[(k + 1)(k + 2)(k + 3)]
for k � 1.

Corollary 2.4.5 shows the presence of two regimes: for � > 0 very small, there are
some finite (uniformly in �) clusters, as described in point (i) and some clusters of
order 1/�, as described in point (ii). Roughly, for � > 0 very small, the cluster-size
distribution resembles, for large times,

X

k�0

qk�k(dx) + �e��x11{x�0}dx.

2.5. Main results when � 2 (0,1)

2.5.1. Definition of the limit process. — Surprisingly, the limit process in this
case is more natural than in the previous cases, in the sense that there are only
macroscopic clusters and thus no microscopic fires: heavy tails can sometimes produce
natural objects. This is due to the fact that for � < 1, the scale space n� is correct
for all times. We describe the limit forest fire process by a graphical construction. The
limit forest fire process (Yt(x))x2R,t�1 will take its values in {0, 1}. In some sense,
Yt(x) = 0 means that there is no tree at x at time t.

For (Y (x))x2R with values in {0, 1}, we define the occupied component around
x 2 R as

C(Y, x) :=
⇥

`(Y, x), r(Y, x)
⇤

(2.5.1)

where `(Y, x) = sup
�

y  x : Y (y) = 0
 

and r(Y, x) = inf
�

y � x : Y (y) = 0
 

.

If Y (x) = 0, this implies C(Y, x) = {x}.
We consider a Poisson measure

⇡M (dt, dx)
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on [0,1)⇥R with intensity measure dtdx, whose marks correspond to matches. We
also introduce a Poisson measure

⇡S(dt, dx, d`)

on [0,1) ⇥ R⇥ [0,1), independent of ⇡M , with intensity measure

dtdx�(� + 1)`���2d`.

Roughly, when ⇡S has mark (⌧, X, L), this means that no seed fall on X during
[⌧ � L, ⌧ ]. In all the other zones, seeds fall continuously.

Before handling the precise construction of the limit process, let us say roughly
what happens. Matches fall according to ⇡M . Draw a vertical dotted segment at X

between ⌧ � L and ⌧ for each mark (⌧, X, L) of ⇡S . Start from time 0. All the
sites become immediately occupied, except sites for which there is a dotted vertical
segment crossing t = 0. These sites remain vacant until the height of these segments.
Thus we overwrite in plain the parts of these segments above zero. When there is a
fire at some time t0, it destroys a zone delimited by some active plain segments. But
all the sites in this zone are immediately occupied again, except those for which there
is a dotted vertical segment crossing t = t0. Such sites will remain vacant until the
height of these segments, so that we overwrite in plain the parts of these segments
above t0. And so on. Of course, plain segments represent vacant sites. See Figure 4
next page for an illustration.

We now handle the rigorous construction on a fixed time interval [0, T ]. First,
we set

Y 0
t (x) = 11{⇡S({(s,x,`) : s>t,s�`<0})=0}

for all t 2 [0, T ], all x 2 R. Observe that for all x 2 R, t 7! Y 0
t (x) is non-decreasing

on [0, T ]. Since
R1
0

R1
0 11{s>T,s�`<0}�(� + 1)`���2d`ds > 0, one can clearly find an

unbounded family {�i}i2Z ⇢ R such that for all t 2 [0, T ], all i 2 Z, Y 0
t (�i) = 0. We

take the convention that for all i 2 Z,

�i  �i+1, �0  0 < �1, lim
i!�1

�i = �1 and lim
i!1

�i = 1.

We now handle the construction on each box [0, T ] ⇥ [�i,�i+1] separately.
Let thus i be fixed. The Poisson measure ⇡M has a.s. a finite number ni of
marks (⇢i1,↵

i
1), . . . , (⇢

i
ni

,↵i
ni

) in [0, T ] ⇥ [�i,�i+1], ordered in such a way that
0 < ⇢i1 < · · · < ⇢ini

.

We consider the occupied cluster Ii1 = C(Y 0
⇢i
1�

,↵i
1) (which is included in [�i,�i+1]

by construction). For (t, x) 2 [0, T ] ⇥ [�i,�i+1], we set

Y 1
t (x) = 11{⇡S({(s,x,`) : s>t,s�`<⇢i

1})=0}

if (t, x) 2 [⇢i1, T ] ⇥ Ii1 and Y 1
t (x) = Y 0

t (x) else.
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Figure 4. LFF(�)-process with � 2 (0,1).

The plain segments represent vacant sites and the occupied clusters are delimited by these

segments. The marks of ⇡
M

(matches) are represented as •’s.
Step 0. – First, we draw on the whole space [0,1) ⇥ R all the •’s and we draw a vertical

dotted segment from (⌧ � L,X) to (⌧, X) when ⇡
S

has a mark at (⌧, X, L). Of course, such

segments are infinitely many so that it is not possible to draw all of them on a figure.

Step 1. – For each of these dotted segments that encounter the axis t = 0, we overwrite in

plain its part above t = 0. Then we denote by �0 and �1 the first places on the left and right

of 0 such that plain segments go beyond T . At this stage, we have built (Y 0
t

(x))
t2[0,T ],x2R.

Step 3. – At time ⇢01, we consider the component I01 (between plain segments) where the

match • falls. Then, for each dotted segment (lying in I01 ) that encounters the axis t = ⇢01, we

overwrite in plain its part above t = ⇢01. At this stage, we have built (Y 1
t

(x))
t2[0,T ],x2[�0,�1].

Step 3. – At time ⇢02, we consider the component I02 (between plain segments) where the

match • falls. Then, for each dotted segment (lying in I02 ) that encounters the axis t = ⇢02, we

overwrite in plain its part above t = ⇢02. We have built (Y 2
t

(x))
t2[0,T ],x2[�0,�1].

And so on. . .

Remark. If we draw a vertical dotted segment from (⌧ �L,X) to (⌧, X) when ⇡
S

has a mark at

(⌧, X, L) only if L > �, and if � > 0 is smaller than min{⇢01, ⇢02�⇢01, ⇢
0
3�⇢02}, then we get the exact

values of Y
t

(x) for all x 2 [�0,�1] and all t 2 [0, T ]\([0, �][ [⇢01, ⇢
0
1+�][ [⇢02, ⇢

0
2+�][ [⇢03, ⇢

0
3+�]).

Assume that for some k = 2, . . . , ni, (Y k�1
t (x))t2[0,T ],x2[�i,�i+1] has been built and

consider the occupied cluster Iik = C(Y k�1
⇢i
k�

,↵i
k) (which is still included in [�i,�i+1]).

For (t, x) 2 [0, T ] ⇥ [�i,�i+1], we define Y k
t (x) by setting

Y k
t (x) = 11{⇡S({(s,x,`) : s>t,s�`<⇢i

k})=0}

if (t, x) 2 [⇢ik, T ] ⇥ Iik and Y k
t (x) = Y k�1

t (x) else.
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We finally set Yt(x) = Y ni
t (x) for all t 2 [0, T ], all x 2 [�i,�i+1]. Doing this for

each i, this defines a process (Yt(x))t2[0,T ],x2R.

A typical path of the LFF(�)-process is drawn and discussed on Figure 4, from
which the following remark is clear.

Remark 2.5.1. — (i) If we build the process using some larger final time T 0 > T ,
this does not change the values of the process on [0, T ] ⇥ R. Thus the process can be
extended to [0,1) ⇥ R.

(ii) For � > 0, denote by ⇡�
S the restriction of ⇡S to [0,1) ⇥ R ⇥ [�,1). The

sequence (�i)i2Z clearly depends only on ⇡T
S . Then for each i 2 Z, we denote

T i,T
M =

�

t 2 [0, T ] : ⇡M ({t}⇥ [�i,�i+1]) > 0
 

[ {0}, �i,T = inf
s,t2T i,T

M
s 6=t

|t � s|.

Then for all � 2 (0, �i,T ^ T ), all x 2 [�i,�i+1] and all t 2 [0, T ] \
S

s2T i,T
M

[s, s + �],

the value of Yt(x) depends only on ⇡M ,⇡�
S.

Observe that for all t � 0, {Yt = 0} is countable and for all t > 0 such that
⇡M ({t}⇥ R) = 0, {Yt = 0} is discrete (it has no accumulation point).

Proposition 2.5.2. — Let ⇡M ,⇡S be two independent Poisson measures on
[0,1)⇥R and [0,1)⇥R⇥[0,1) with intensity measures dtdx and dtdx�(� + 1)`���2d`.
There a.s. exists a unique LFF(�)-process (Yt(x))t�0,x2R. It can be simulated exactly
on any finite box [0, T ]⇥ [�n, n]. For each t � 0 and x 2 R, we set Dt(x) = C(Yt, x),
recall (2.5.1).

This proposition is obvious from the previous construction. Of course, we can build
exactly the process on any finite box, but we cannot draw it exactly: when a match
falls in some occupied cluster I at some time t, the set {x 2 I : Yt(x) = 0} is dense
in I (but {x 2 I : Yt+"(x) = 0} is finite for all small " > 0).

Note that it would have been more natural to set Yt(x) = 0 for all x 2 I when a
match falls in some occupied cluster I at some time t. However, since then I becomes
occupied almost everywhere immediately after t, the present definition (which only
implies that {x 2 I : Yt(x) = 0} is dense in I) is simpler for mathematical purpose.

2.5.2. On the Markov property. — The LFF(�)-process (Yt(x))t�0 is clearly
not Markov, in particular because the heights of the barriers are not exponentially
distributed. The aim of this subsection is to build a Markov process that contains
more information than (Yt(x))t�0.

Let the Poisson measures ⇡M and ⇡S be given. Write ⇡S =
P

k�1 �(tk,xk,`k) and
introduce

⇡1
S =

X

k�1

�(tk�`k,xk,`k)11{tk�`k>0}, ⇡0
S =

X

k�1

�(tk,xk,`k)11{tk�`k<0}.
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Observe that ⇡0
S and ⇡1

S are independent. Furthermore, ⇡1
S has a mark (⌧, X, L) if

and only if there is a dotted vertical segment from (⌧, X) to (⌧ + L, X) (with ⌧ > 0)
and ⇡0

S has a mark (⌧, X, L) if and only if there is a dotted vertical segment from
(⌧ � L, X) to (⌧, X) (with ⌧ � L < 0 < ⌧). One can easily check that ⇡1

S is a Poisson
measure on [0,1)⇥R⇥ (0,1) with intensity measure dtdx�(�+1)`���2d`. We set,
for x 2 R,

�0(x) =

Z 1

0

Z 1

0
s⇡0

S

�

ds ⇥ {x}⇥ d`
�

,

which represents the height above 0 of the dotted (or plain) vertical segment at x that
crosses the axis t = 0, with of course �0(x) = 0 if there is no such dotted segment.
We then introduce, for x 2 R and t � 0,

�t(x) = �0(x) +

Z t

0

Z 1

0
max

�

`� �s�(x), 0
 

⇡1
S(ds ⇥ {x}⇥ d`) �

Z t

0
11{�s(x)>0}ds,

which represents the height above t of the dotted (or plain) vertical segment at x that
crosses the horizontal axis with ordinate t, with �t(x) = 0 if there is no such dotted
segment. Indeed, �t(x) clearly decreases linearly when it is positive, and jumps from
�s�(x) to max{�s�(x), `} when ⇡1

S has a mark at (s, x, `). Using the fact that a.s.,
for all x 2 R, there is at most one dotted segment at x, it is possible to replace
max{`� �s�(x), 0} by `. Finally, we define, for x 2 R and t � 0,

Ht(x) = �0(x) +

Z t

0

Z

R
11
{y2

�
C(Ys�,x)}

�s�(x)⇡M (ds, dy) �
Z t

0
11{Hs(x)>0}ds,

Yt(x) = 11{Ht(x)=0},

where
�
C (Ys�, x) stands for the interior of C(Ys�, x). Then Ht(x) is the height

above t of the plain segment at x that crosses the horizontal axis with ordinate t

(with Ht(x) = 0 if there is no such plain segment), and thus (Yt(x))t�0 is the LFF(�)-
process. Indeed, since we overwrite in plain all the dotted segments that cross the
axis t = 0, we clearly have H0(x) = �0(x). Then Ht(x) decreases linearly when it is
positive, and jumps to �s�(x) when x is involved in a fire at some time s (whence
necessarily Hs�(x) = 0): recall that we then overwrite in plain the dotted segment
at x that crosses the horizontal axis with ordinate s, of which the height above s it
given by �s�(x).

The process (�t(x), Ht(x), Yt(x))t�0,x2R is Markov, since it solves a well-posed
homogeneous Poisson-driven S.D.E.

2.5.3. The convergence result. — We now state our main result in the case
� 2 (0,1). We use subsection 2.1.5.

Theorem 2.5.3. — Assume (HM ) and (HS(�)) for some � 2 (0,1). Consider,
for each � 2 (0, 1], the process (D�

t (x))t�0,x2R associated with the FF(µS , µ�
M )-process,
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see Definition 2.1.3 and (2.2.3). Consider also a LFF(�)-process (Yt(x))t�0,x2R and
set Dt(x) = C(Yt, x) for all t � 0, all x 2 R as in Proposition 2.5.2.

(a) For any T > 0, any finite subset {x1, . . . , xp} ⇢ R, (D�
t (xi))t2[0,T ],i=1,...,p goes

in law to (Dt(xi))t2[0,T ],i=1,...,p in D([0, T ], I)p, as �! 0. Here D([0, T ], I) is
endowed with �T .

(b) For any finite subset {(t1, x1), . . . , (tp, xp)} ⇢ (0,1)⇥R, (D�
ti(xi))i=1,...,p goes

in law to (Dti(xi))i=1,...,p in Ip, I being endowed with �.

2.5.4. Heuristic arguments. — We assume below that � > 0 is very small.

0. Matches. — Exactly as in the case � = 1, we hope that matches will fall, in
our scales, according to a Poisson measure with intensity 1 (in mean, 1 match per unit
of time per unit of space, which corresponds to 1 match per n� sites during [0,a�] in
the original scales).

1. Occupation of vacant zones. — Consider a zone [a, b] (or [[ban�c, bbn�c]] in the
original scales). At time 0, this zone is completely empty. In this zone, each site will
be empty at time t if no seed has fallen during [0, t] (or [0,a�t] in the original scale).
This occurs with probability ⌫S((a�t,1)). Thus in the absence of fires, the number of
empty sites in [a, b] at time t follows a binomial distribution with parameters (b�a)n�

and ⌫S((a�t,1)). Recalling (2.2.1), (2.2.2) and (HS(�)), we see that

(b � a)n�⌫S((a�t,1)) ' (b � a)⌫S((a�t,1))/⌫S((a�,1)) �! (b � a)t�� .

Hence the number of empty sites in [a, b] at time t follows approximately a Poisson
law with parameter (b � a)t�� (when neglecting fires).

The link with the LFF(�)-process is simple: for any a < b and any t > 0, the
random variable ⇡S({(s, x, `) : x 2 [a, b], s > t, s � ` < 0)}) follows a Poisson law
with parameter

Z 1

t

ds

Z b

a

dx

Z 1

s

�(� + 1)`���2d` = (b � a)t�� .

2. Fires. — Now when a match falls at some place, this destroys the whole occupied
cluster. The destroyed cluster is then treated as in point 1.

The rigorous proof is, as usual, not so easy. The first step is to find a suitable
coupling between the seed processes (NS

t (i))t�0 and the Poisson measure ⇡S describing
times/places where seeds do not fall in the limit process. Next, we have to find a
(necessarily complicated) event on which the normalized discrete process resembles the
limit process and to show that this event occurs with high probability. For example,
this event has to guarantee us that for sites on which seeds fall continuously in the
limit process, seeds fall su�ciently often in the discrete process. We also need that
a small error in the time/place where a fire starts (or where a seed falls) does not
produce large errors after some time, etc.
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2.5.5. Cluster-size distribution. — We aim here to estimate the law of the oc-
cupied cluster around 0. No phase transition occurs here.

Corollary 2.5.4. — Let � 2 (0,1). Assume (HM ) and (HS(�)). Recall
that a� and n� were defined in (2.2.1) and (2.2.2). Consider the LFF(�)-
process (Yt(x))t�0,x2R and the associated (Dt(x))t�0,x2R. For each � 2 (0, 1],
let (⌘�t (i))t�0,i2Z be a FF(µS , µ�

M )-process. There are constants 0 < c1 < c2 and
0 < 1 < 2 such that for all t � 1 and all B > 0,

lim
�!0

Pr
⇥

|C(⌘�a�t
, 0)| � Bn�

⇤

= Pr [|Dt(0)| � B] 2 [c1 e�2B , c2 e�1B ].

2.6. Main results when � = 0

2.6.1. Definition of the limit process. — In this case, the limiting process is
trivial: we consider a Poisson measure ⇡S on R with intensity measure dx and we
put, for all t � 0, all x 2 R,

Yt(x) = 11{⇡S(x)=0}.

Denote by {�i}i2Z the marks of ⇡S with the convention that · · · < ��1 < �0 < 0 <

�1 < �2 < . . . . Then for all t � 0, all i 2 Z, recalling (2.5.1), C(Yt, x) = [�i,�i+1] for
all x 2 (�i,�i+1) and C(Yt,�i) = {�i}. Matches fall according to a Poisson measure
⇡M (dt, dx) on [0,1) ⇥ R with intensity measure dtdx.

The LFF(0)-process (Yt(x))t�0,x2R is obviously Markov and the following state-
ment is trivial.

Proposition 2.6.1. — Let ⇡S be a Poisson measure on R with intensity mea-
sure dx. There a.s. exists a unique LFF(0)-process (Yt(x))t�0,x2R. It can be simu-
lated exactly on any finite box [0, T ] ⇥ [�n, n]. For each t � 0 and x 2 R, we will
denote by Dt(x) = C(Yt, x) the occupied cluster around x (see (2.5.1)).

Of course, fires do not appear in the construction. Hence it is not necessary to
introduce ⇡M . However, it allows us to keep in mind that fires do occur. But these
fires generate empty zones that are immediately regenerated. The main idea is that
in our scales: on the great majority of sites, seeds fall almost continuously for all
times; but there are rare sites where the first seed will never fall. Hence when there
is a fire, this always concerns a zone where seeds fall continuously, so that one does
not observe the fire at the limit. A typical path of the LFF(0)-process is commented
on Figure 5 next page.

2.6.2. The convergence result. — We now state our last main result, using sub-
section 2.1.5.

Theorem 2.6.2. — Assume (HM ) and (HS(0)). Consider, for each � 2 (0, 1],
the process (D�

t (x))t�0,x2R associated to the FF(µS , µ�
M )-process, see Definition 2.1.3
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Figure 5. LFF(0)-process.

The marks of ⇡
M

(matches) are represented as •’s. We draw a plain vertical segment

above each mark of ⇡
S

. For all times, the occupied clusters are delimited by these vertical

segments. In some sense, fires have an instantaneous e↵ect, represented as dotted horizontal

segments, that we decided to neglect for obvious practical reasons.

and (2.2.3). Consider also the LFF(0)-process (Yt(x))t�0,x2R and the associated
(Dt(x))t�0,x2R.

(a) For any T > 0, any finite subset {x1, . . . , xp} ⇢ R, (D�
t (xi))t2[0,T ],i=1,...,p goes

in law to (Dt(xi))t2[0,T ],i=1,...,p in D([0, T ], I)p as �! 0. Here D([0,1), I) is
endowed with �T .

(b) For any finite subset {(t1, x1), . . . , (tp, xp)} ⇢ (0,1)⇥R, (D�
ti(xi))i=1,...,p goes

in law to (Dti(xi))i=1,...,p in Ip, I being endowed with �.

2.6.3. Heuristic arguments. — The only di↵erence with the case � 2 (0,1) is
the following. In some sense, for each site i, in our scales, either seeds fall continuously
on i, or the first seed never falls on i. A first hint for this is the following.

Consider a zone [a, b]. At time 0, this zone is completely vacant. Fix T > 0.
Then in the absence of fires, the number of vacant sites in [a, b] at time T (or in
[[ban�c, bbn�c]] at time a�T in the original scales) follows a binomial distribution with
parameters (b � a)n� and ⌫S((a�T,1)). Observe now that for any value of T > 0,

MÉMOIRES DE LA SMF 132



2.7. ON SOME OTHER MODELLING CHOICES 45

using (HS(0)), (2.2.1) and (2.2.2),

(b � a)n�⌫S
�

(a�T,1)
�

' (b � a)⌫S
�

(a�T,1)
�

/⌫S
�

(a�,1)
�

�! (b � a).

Hence the number of sites that are still vacant at time T follows approximately a
Poisson distribution with parameter (b � a). Since this parameter does not decrease
with T , this means that in our scales, sites are either immediately occupied or vacant
forever.

Here the rigorous proof is rather simple, but it still needs some care. We have
essentially the same di�culties as in the case where � 2 (0,1) (see subsection 2.5.4),
but they are more easily treated.

2.6.4. Cluster-size distribution. — Since the LFF(0)-process is very simple, we
obtain of course some more precise information on the asymptotic cluster-size distri-
bution.

Remark 2.6.3. — Assume (HM ) and (HS(0)). For each � 2 (0, 1], let a
FF(µS , µ�

M )-process (⌘�t (i))t�0,i2Z be given, see Definition 2.1.3. Consider the
LFF(0)-process (Yt(x))t�0,x2R and the associated (Dt(x))t�0,x2R. Then for t > 0 and
B > 0,

lim
�!0

Pr
⇥

|C(⌘�a�t
, 0)| � Bn�

⇤

= Pr
⇥

|Dt(0)| � B
⇤

=

Z 1

B

xe�xdx = (B + 1)e�B .

No proof is needed here: xe�x11{x>0} is just the density of |Dt(0)| = �1 ��0. The
convergence in law of |C(⌘�a�t

, 0)|/n� = |D�
t (0)| to |Dt(0)| follows from Theorem 2.6.2.

2.7. On some other modelling choices

For µ a probability law on (0,1), we say that Nt =
P

n�1 11{X1+···+Xnt} is a
natural renewal process with parameter µ, or a NR(µ)-process in short, if the random
variables Xi are i.i.d. with law µ. When extending the traditional forest fire model
(where all the renewal processes are Poisson), we had to make some choices.

1. Matches can fall according to i.i.d. (i) SR(µ�
M )-processes, (ii) NR(µ�

M )-
processes.

2. Seeds can fall according to i.i.d. (i) SR(µS)-processes, (ii) NR(µS)-processes.

3. When a fire destroys an occupied component [[a, b]], we can (i) keep the i.i.d.
renewal processes governing seeds as they are, (ii) forget everything and make start
some new i.i.d. renewal processes governing seeds in the zone [[a, b]].

Recall that when dealing with Poisson processes, choosing (i) or (ii) in points 1, 2, 3
does not change the law of the FF(µS , µ�

M )-process.

From the point of view of modelling, it seemed more natural to choose (i) in points 1
and 2: this is the only way that time 0 does not play a special role. We also decided
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to choose (i) in point 3, because its seems more close to applications. Let us discuss
briefly what could happen with other choices.

First, for matches (point 1), choosing (i) does not play a fundamental role. In-
deed, in our scales, only 0 or 1 match can fall on each site. Thus our results should
extend, without di�culty, to the choice 1 (ii), replacing (HM ) by the assumption
µ�
M ((0, t)) ' �t as � ! 0 (together with some additional regularity conditions if we

want a strong coupling as in Proposition 3.2.1).

Next, we believe that in point 2, our results should still hold if choosing (ii) when
� = 1. In the case where µS has a bounded support, one would have to assume
some regularity on µS (the case µS = �1 is trivial) and to modify the dynamics of
the LFF(BS)-process (the law ✓u should also depend on time). Our study would
completely break down when � 2 [0,1). In the latter case, the situation would be
quite intricate and we are not able to predict scales (and, a fortiori, to predict some
limit process). Let us explain briefly the situation. If � = 1, then ⌫S and µS have
a similar tail (see example 2). Thus the time and space scales we have considered
will fit both ⌫S and µS . On the contrary, if � 2 [0,1), the tails of µS and ⌫S are
really di↵erent. Consequently, if we accelerate time according to µS (in order that
for a NR(µS)-process, the cluster containing the site 0 burns before time 1 with a
positive probability), then this will be too slow for larger times (when a fire destroys
a cluster (a, b), this zone (a, b) will never regenerate).

Finally, in point 3, we also believe that choosing (ii) would not change our results
when � = 1 and not change too much the situation when µS has a bounded support.
When � 2 [0,1), we expect that this would not change time/space scales, but we
would have to modify the limit processes. For example if � = 0, we expect that each
time a fire burns a zone (a, b), this zone would regenerate immediately, except in a
random number of sites, that follows a Poisson distribution with parameter (b � a).
Next if � 2 (0,1), then when a fire burns a zone (a, b) at some time t, we would

have to pick another Poisson measure ⇡(a,b),t
S (ds, dx, d`) on [t,1) ⇥ (a, b) ⇥ (0,1),

independent of everything else and use this Poisson measure above (a, b) instead of
the original ⇡S .

2.8. Open problems and perspectives

Of course, the main interesting problem is to find a scaling limit of the forest-
fire process, e.g. when seeds and matches fall according to Poisson processes, in di-
mension 2 or more. We believe that the 2-dimensional limit process should enjoy
self-organized criticality. However, it is highly probable that our work, though quite
complete in dimension 1, does not give the least hint of what could happen in dimen-
sion 2. Indeed, all our study is based on the fact that connectedness is very simple in
dimension 1: a vacant site is su�cient to stop a fire. One immediately gets convinced
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that the situation is much more complicated in higher dimension. A possible inter-
mediary step, that we investigate, is to study the case where the underlying lattice is
a tree, in which connectedness is much simpler than in Z2.

A much easier problem, on which we also work, is to study (e.g. in the Poisson
case) the possible scaling limits of the forest-fire process, in dimension 1, when fires
propagate at finite speed. We then expect that several limit processes should arise:
(i) if fires propagate su�ciently fast, then we should recover the same limit process
as when fires propagate at infinite speed, (ii) when fires propagate at some precise
speed (to be determined as a function of �), then we should find a modified limit
process, in which the microscopic fires are unchanged, but in which the macroscopic
fires propagate at finite speed, (iii) when fires propagate slowly, a quite di↵erent limit
process should arise.

Other possible variants could be studied. First, one could consider the case where
the processes governing seeds are not independent. It should not be too di�cult
to get some results (probably with the same scaling limits as in the present paper),
under a suitable ergodicity assumption. We could also study the case where seeds
fall in a random media. For example, choose (independently) for each site some
parameter �i > 0 at random, and assume that seeds fall on this site according to
a Poisson process with rate �i. In the case where the support of the law governing
the �i’s is bounded from below, a scaling limit could reasonably be found and should
not di↵er much from the LFF(1)-process. More subtle phenomena could occur if
there are some sites with arbitrarily small rate (on which seeds will fall very rarely).
And so on.

It also would be very interesting to study the existence and uniqueness of invariant
probability measures for the four limit processes, as well as their convergence to
equilibrium. The case � = 0 is obvious, since the limit process LFF(0) is stationary.
But the three other cases seem quite intricate. Finite-box versions of these processes
obviously converge in law to a unique invariant probability measure. However, we
have no idea of how to check that correlations do not become longer and longer when
time increases for the true limit processes. Although this problem seems hard, it is
probably less di�cult to study invariant distributions for the limit processes than for
the original forest-fire processes.

Finally, it might be possible (possibly using the ideas of the present paper), to give
much stronger versions of Corollaries 2.3.4, 2.4.5, 2.5.4 and Remark 2.6.3 concerning
the asymptotics of the cluster-size distribution. For example in the Poisson case (use
Corollary 2.3.4 with µS((t,1)) = e�t), we deduce from our convergence result that
the probability that the cluster containing 0 is of size x, in the original scales and for
su�ciently large times, resembles

1

(1 + x)[log(1/�)]
11{x2[0,1/(� log(1/�))]} + � log(1/�)e�x� log(1/�)11{x�0}
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in a very weak sense. It would be interesting to prove a stronger version of this
claim. For example, it was proved rigorously in Brouwer-Pennanen [17] that there
are constants 0 < c < C such that for all 0 < � < 1 and all stationary mea-
sures µ� (invariant by translation) of the forest fire model on Z with parameter �, for
all x < (1/[� log(1/�)])

1
3 ,

c

(1 + x) log (1/�)
 µ�

�

|C(⌘, 0)| = x
�

 C

(1 + x) log (1/�)
·

Our result shows that at least a weakened version of such inequalities extends to much
higher values of x, possibly to all x < 1/[� log2(1/�)]. It would be very interesting to
prove that these inequalities really hold true for such values of x.
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CHAPTER 3

PROOFS

3.1. Graphical construction of the discrete process

The goal of this section is to prove Proposition 2.1.4 by using a graphical construc-
tion.

Proof of Proposition 2.1.4. — Our aim is to prove that for any T > 0, a.s., the
values of the FF(µS , µM )-process (⌘t(i))t2[0,T ],i2Z are uniquely determined by
(NS

t (i), NM
t (i))t�0,i2Z. Recall that

⌫S(dx) = m�1
S µS

�

(x,1)
�

dx and ⌫M (dx) = m�1
M µM

�

(x,1)
�

dx,

where mS and mM are the expectations of µS and µM . We consider h0 > 0 such that
⌫S([2h0,1)) > 0 (if ⌫S has an unbounded support, any value of h0 is possible) and
we put c0 = ⌫S((2h0,1))⌫M ((0, h0)) > 0. We also set K = bT/h0c.

For n 2 Z, we consider the event ⌦n,T , on which the following conditions are
satisfied:

(i) NS
h0

(n) = 0;

(ii) 8i 2 [[1, K]], NS
(i+1)h0

(n + i) = NS
(i�1)h0

(n + i);

(iii) 8i 2 [[1, K]], NM
ih0

(n + i) > NM
(i�1)h0

(n + i).

We first observe that for any n 2 Z, using the stationarity of the renewal processes,

Pr[⌦n,T ] = ⌫S
�

(h0,1)
�

cK0 =: cT > 0.

Next we prove that necessarily,

⌦n,T ⇢
�

8t 2 [0, T ], 9 i 2 [[n, n + K]], ⌘t(i) = 0
 

.

This is not hard:

(i) implies that ⌘t(n) = 0 for t 2 [0, h0], since no seed falls on n during this
interval;

(iii) implies that for i 2 [[1, K]], a match falls on n + i during ((i � 1)h0, ih0] ;
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(ii) guarantees us that no seed falls on n + i during ((i � 1)h0, (i + 1)h0], whence
the site n + i is necessarily vacant during (at least) (ih0, (i + 1)h0].

Consequently, on ⌦n,T , there is always at least one vacant site in [[n, n+K]] during

[0, h0] [
⇣

[

i=1,...,K

(ih0, (i + 1)h0]
⌘

� [0, T ]

(with our choice for K, we have (K + 1)h0 � T ).

Hence conditionally on ⌦n,T , during [0, T ], the fires starting on the right of n + K

do not a↵ect the values of the forest fire process on the left of n; and the fires starting
on the left of n do not a↵ect the values of the forest fire process on the right of n+K.

Since Pr[⌦n,T ] = cT > 0, we can find · · · < n�1 < n0 < 0 < n1 < n2 . . . such that
T

`2Z ⌦n`,T is realized (use that ⌦n,T is independent of ⌦m,T if |m � n| > K).
We deduce that for any i 2 Z, the values of (⌘t(i))t2[0,T ] are entirely determined by

the values of (NS
t (j), NM

t (j))t2[0,(K+1)h0] for a finite number of j’s, namely (at most)
j 2 [[nk, n` + K]], where k < ` satisfy nk + K < i < n`.

We have shown that for any T > 0, (⌘t(i))t�0,i2Z is entirely and uniquely defined
by the values of (NS

t (i), NM
t (i))t2[0,(K+1)h0],i2Z.

3.2. Convergence of matches

In this section, we consider any function � 7! a� bounded from below and such
that n� = b1/(�a�)c ! 1. For A > 0 and i 2 Z, we set

A� = bAn�c, I�A = [[�A�, A�]], i� = [i/n�, (i + 1)/n�).

The following result will be used to prove our four main theorems.

Proposition 3.2.1. — Assume (HM ). Let A > 0 and T > 0 be fixed. We can
find, for any � 2 (0, 1], a coupling between a Poisson measure ⇡M (dt, dx) on [0,1)⇥R
with intensity measure dtdx and a family of i.i.d. SR(µ�

M )-processes (NM,�
t (i))i2Z,t�0

such that for

⌦M
A,T (�) :=

�

8t 2 [0, T ], 8i 2 I�A, �NM,�
a�t

(i) 6= 0 i↵ ⇡M ({t}⇥ i�) 6= 0
 

,

one has lim�!0 Pr[⌦M
A,T (�)] = 1.

This means that in our scales, with a high probability, the matches used in the
discrete processes can be prescribed by a Poisson measure, as in the limit processes.

Proof. — We divide the proof into several steps. Observe that

B� :=
[

i2I�
A

i� =
⇥

� A�/n�, (A� + 1)/n�

�

(which is approximately [�A, A]). It of course su�ces to build ⇡M restricted to
[0, T ] ⇥ B� and the family (NM,�

t (i)) for i 2 I�A and t 2 [0,a�T ].
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Step 1. — We observe that a possible way to build ⇡M (restricted to [0, T ] ⇥ B�)
is the following:

(i) Consider a family of i.i.d. r.v. (Z�
i )i2I�

A
following a Poisson distribution with

parameter T |i�| = T/n�.

(ii) For each i with Z�
i > 0, pick some i.i.d. r.v. (T i,�

1 , Xi,�
1 ), . . . , (T i,�

Z�
i
, Xi,�

Z�
i
) with

uniform law on [0, T ] ⇥ i� (conditionally on Z�
i ). Set finally

⇡M =
X

i2I�
A

Z�
i

X

k=1

�(T i,�
k ,Xi,�

k ).

Step 2. — Next, we note it is possible to build the family (NM,�
t (i))i2I�

A,t2[0,a�T ]

as follows: introduce

qk(�, T ) = Pr[NM,�
a�T

(i) = k] and ⇣�,Tk (dt1, . . . , dtk)

the law of the k jump instants of NM,�(i) in [0,a�T ] conditionally on {NM,�
a�T

(i) = k}.
(i) Consider a family of i.i.d. r.v. ( eZ�

i )i2I�
A

with law (qk(�, T ))k�0.

(ii) For each i with eZ�
i > 0, pick ( eT i,�

1 , . . . , eT i,�
eZ�
i

) according to ⇣�,TeZ�
i

(dt1, . . . , dteZ�
i
)

(conditionally on eZ�
i ).

Set finally NM,�
t (i) =

PeZ�
i

k=1 11{t�eT i,�
k } for t 2 [0,a�T ], i 2 I�A.

Step 3. — We show in this step that for each i 2 I�A, one can couple Z�
i (as in

step 1(i)) and eZ�
i (as in step 2 (i)) in such a way that

Pr[Z�
i = eZ�

i = 0] � 1 � �a�T
�

1 + "T (�)
�

,

Pr[Z�
i = eZ�

i = 1] � �a�T
�

1 � "T (�)
�

,

where lim�!0 "T (�) = 0. Below, the function "T may change from line to line.

It is classically possible (see Lemma 5.1.3 (i)) to build a coupling in such a way that

Pr[Z�
i = eZ�

i = 0] � Pr[Z�
i = 0] ^ Pr[ eZ�

i = 0],

Pr[Z�
i = eZ�

i = 1] � Pr[Z�
i = 1] ^ Pr[ eZ�

i = 1].

We now use (HM ): recalling that
R1
0 µ1

M ((s,1))ds = 1,

Pr[ eZ�
i = 0] = ⌫�M

�

(a�T,1)
�

= �

Z 1

a�T

µ1
M

�

(�s,1)
�

ds

=

Z 1

�a�T

µ1
M

�

(u,1)
�

du = 1 �
Z �a�T

0
µ1
M

�

(u,1)
�

du � 1 � �a�T.
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Since Pr[Z�
i = 0] = e�T/n� = e�T/b1/(�a�)c = 1 � �a�T (1 + "T (�)), this concludes

the proof of the first lower-bound. Next, recalling Definition 2.1.1 and (HM ),

Pr[ eZ�
i = 1] =

Z a�T

0
µ�
M

�

(a�T � s,1)
�

⌫�M (ds)

=

Z a�T

0
µ1
M

�

(�(a�T � s),1)
�

�µ1
M

�

(�s,1)
�

ds

=

Z �a�T

0
µ1
M

�

(�a�T � u,1)
�

µ1
M

�

(u,1)
�

du

= �a�T
�

1 � "T (�)
�

,

since �a� ! 0 as �! 0. But now

Pr[Z�
i = 1] = (T/n�)e�T/n� = �a�T

�

1 � "T (�)
�

,

because n� = b1/(�a�)c and this concludes the step.

Step 4. — We now check that for each i 2 I�A, conditionally on {Z�
i = eZ�

i = 1},
we can couple T i,�

1 and eT i,�
1 (see steps 1 (ii) and 2 (ii)) in such a way that for

rT (�) = Pr
⇥

T i,�
1 = eT i,�

1 /a� | Z�
i = eZ�

i = 1
⇤

,

lim�!0 rT (�) = 1. We first recall that T i,�
1 is uniformly distributed on [0, T ] (con-

ditionally on {Z�
i = 1}). We next remark that the conditional law of eT i,�

1 knowing

{ eZ�
i = 1} (which we called ⇣�,T1 ) is nothing but

⇣�,T1 (dt) =
⌫�M (dt)µ�

M ((a�T � t,1))11{t2[0,a�T ]}
R a�T

0 µ�
M ((a�T � s,1))⌫�M (ds)

=
µ1
M ((�(a�T � t),1))�µ1

M ((�t,1))11{t2[0,a�T ]}

�a�T (1 � "T (�))
dt,

where we used the same computations as in step 3. Consequently, the conditional law
of eT i,�

1 /a� knowing { eZ�
i = 1} has a density g�,T of the form

g�,T (t) =
1 + "T (�)

T
µ1
M

�

(�a�(T � t),1)
�

µ1
M

�

(�a�t,1)
�

11{t2[0,T ]}.

Observe that lim�!0 g�,T (t) = T�111{t2[0,T ]}, since �a� ! 0. Hence, classical ar-

guments (see Lemma 5.1.3 (ii)) show that conditionally on {Z�
i = eZ�

i = 1}, we can

couple T i,�
1 and eT i,�

1 in such a way that

Pr
⇥

T i,�
1 = eT i,�

1 /a� | Z�
i = eZ�

i = 1
⇤

�
Z T

0
min

⇣ 1

T
, g�,T (t)

⌘

dt,

which tends to 1 as �! 0 by dominated convergence.

Step 5. — We finally may build the complete coupling.

(i) For each i 2 I�A, we consider some coupled random variables (Z�
i , eZ�

i ) as
in step 3.
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(ii) For i 2 I�A such that Z�
i = eZ�

i = 0, there is nothing to do.

(iii) For i 2 I�A such that Z�
i = eZ�

i = 1, couple T i,�
1 and eT i,�

1 as in step 4 and pick

Xi,�
1 uniformly in i�.

(iv) If i 2 I�A does not meet one of the two above conditions (ii) and (iii), then we

build (T i,�
1 , Xi,�

1 ), . . . , (T i,�

Z�
i
, Xi,�

Z�
i
) and eT i,�

1 , . . . , eT i,�
eZ�
i

in any way (e.g., follow

the rules of step 1 (ii) and step 2 (ii) independently).

(v) For i 2 I�A, t 2 [0, Ta�], set

⇡M =
X

i2I�
A

Z�
i

X

k=1

�(T i,�
k ,Xi,�

k ) and NM,�
t (i) =

eZ�
i

X

k=1

11{t�eT i,�
k }.

Step 6. — Define the event

e⌦M
A,T (�) =

\

i2I�
A

⇣

{Z�
i = eZ�

i = 0} [ {Z�
i = eZ�

i = 1, T i,�
1 = eT i,�

1 /a�}
⌘

.

Then we have e⌦M
A,T (�) ⇢ ⌦M

A,T (�) (where ⌦M
A,T (�) was defined in the statement).

Indeed, on e⌦M
A,T (�), for any i 2 I�A, t 2 [0, T ], we have �NM,�

a�t
(i) 6= 0 i↵ ( eZ�

i = 1 and

a�t = eT i,�
1 ) i↵ (Z�

i = 1 and t = T i,�
1 ) i↵ ⇡M ({t}⇥ i�) > 0.

Finally, using steps 3 and 4 and that |I�A| = 2A� + 1,

Pr[⌦M
A,T (�)] �

⇣

Pr[Z�
0 = eZ�

0 = 0] + Pr
h

Z�
0 = eZ�

0 = 1, T 0,�
1 = eT 0,�

1 /a�

i⌘2A�+1

�
�

1 � �a�T (1 + "T (�)) + �a�T (1 � "T (�))rT (�)
�2A�+1

.

Recall that lim�!0 "T (�) = 0, that lim�!0 rT (�) = 1 and that A�  A/(�a�). Hence
for some (other) function "T with limit 0 at 0,

Pr[⌦M
A,T (�)] � (1 � �a�T"T (�))2A/(�a�)+1

.

This last quantity tends to 1 as �! 0, which concludes the proof.

3.3. Convergence proof when � 2 (0,1)

We split this section into three parts. First, we handle some preliminary compu-
tations on SR(µS)-processes. Next, we show how to couple the set of times/locations
where no seed fall (in the discrete model) with the Poisson measure ⇡S . Then we
conclude the convergence proof. In the whole section, we assume (HM ) and (HS(�))
for some � 2 (0,1). We recall that a� and n� are defined in (2.2.1) and (2.2.2).
For A > 0 and i 2 Z, we set

A� = bAn�c, I�A = [[�A�, A�]], i� =
⇥

i/n�, (i + 1)/n�

�

.
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3.3.1. Preliminary computations. — First, we will need the following estimate.

Lemma 3.3.1. — For any ` 2 (0,1) fixed,

µS

�

(a�`,1)
�

⇠ mS�`
���1� as �! 0.

Proof. — Recall that µS((t,1))dt = mS⌫S(dt). For ↵ > 0, one may write, using the
monotonicity of x 7! µS((x,1)),

µS((a�`,1))

�
� 1

↵�a�

Z a�(`+↵)

a�`

µS

�

(x,1)
�

dx

=
mS

↵�a�

⇥

⌫S((a�`,1)) � ⌫S((a�(`+ ↵),1))
⇤

=
mS

↵



⌫S((a�`,1))

⌫S((a�,1))
� ⌫S((a�(`+ ↵),1))

⌫S((a�,1))

�

.

For the last equality, we used that by definition, ⌫S((a�,1)) = �a�. Due to (HS(�)),
we deduce that for any ↵ > 0,

lim inf
�!0

µS((a�`,1))

�
� mS

↵

⇥

`�� � (`+ ↵)��
⇤

� mS�(`+ ↵)���1.

One gets an upper bound by the same way: for any ↵ 2 (0, `),

lim sup
�!0

µS((a�`,1))

�
 lim sup

�!0

1

↵�a�

Z a�`

a�(`�↵)
µS

�

(x,1)
�

dx  mS�(`� ↵)���1.

We have proved that for any ↵ 2 (0, `),

mS�(`+ ↵)���1  lim inf
�!0

µS((a�`,1))

�
 lim sup

�!0

µS((a�`,1))

�
 mS�(`� ↵)���1.

Making ↵ tend to 0 allows us to conclude.

Next, we compute the asymptotic probability that on a given site, no seed fall
during some large time interval. By large, we mean with a length of order a�.

Lemma 3.3.2. — Let (Tn)n2Z be a SR(µS)-process (see subsection 2.1.1). For
� > 0, t � 0 and ` > 0, we set

S�
t (`) = #

�

n 2 Z : Tn 2 [0,a�t], Tn � Tn�1 � a�`
 

,

which represents the number of delays with length greater than a�` that end in [0,a�t].

(i) For t > 0 and ` > 0 fixed, as �! 0, Pr
⇥

S�
t (`) = 1

⇤

⇠ t�a��`
���1.

(ii) For t > 0 and ` > 0 fixed, lim sup�!0(�a�)�2 Pr
⇥

S�
t (`) � 2

⇤

< 1.

(iii) On the event {S�
t (`) = 1}, we put

⌧ := Tn and L = Tn � Tn�1,

where n is the unique index such that Tn 2 [0, t] and Tn � Tn�1 � a�`. For all
s 2 [0, t], all x 2 (`,1),

lim
�!0

Pr[⌧/a�  s, L/a� � x | S�
t (`) = 1] = (s/t)(x/`)���1.
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Proof. — Let us recall that the SR(µS)-process (Tn)n2Z is built as follows: one consid-
ers an i.i.d. sequence (Xi)i2Z\{0} of µS-distributed r.v., X0 a xµS(dx)/mS-distributed
r.v. and U uniformly distributed on [0, 1]. Then we set

T0 = �(1 � U)X0, T1 = UX0

and for all n � 1,

Tn+1 = Tn + Xn and T�n = T�n+1 � X�n.

We also introduce, for � > 0, ` > 0 and 0  s  t

S�
s,t(`) = #

�

n 2 Z : Tn 2 [a�s,a�t], Tn � Tn�1 � a�`
 

.

Step 1. — First assume that ` � t. Then by construction, S�
t (`) 2 {0, 1} and

�

S�
t (`) = 1

 

=
�

T1  a�t, T1 � T0 � a�`
 

=
�

UX0  a�t, X0 � a�`
 

.

Hence

E
⇥

S�
t (`)

⇤

= Pr
⇥

UX0  a�t, X0 � a�`
⇤

=

Z 1

a�`

xµS(dx)

mS

Z 1

0
du11{uxa�t}

=

Z 1

a�`

xµS(dx)

mS

a�t

x
=

a�t

mS
µS

�

(a�`,1)
�

.

We used here that since ` � t, for x � a�`, there holds a�t/x  1.

Step 2. — We now show that for any ` > 0, any t � 0,

E[S�
t (`)] =

a�t

mS
µS

�

(a�`,1)
�

.

Consider n � 1 such that t/n  ` and observe that

S�
t (`) =

n�1
X

i=0

S�
it/n,(i+1)t/n(`).

By stationarity, we have E[S�
it/n,(i+1)t/n(`)] = E[S�

t/n(`)] for i = 0, . . . , n � 1, which

is nothing but a�t
nmS

µS((a�`,1)) by step 1. The conclusion follows by linearity of
expectation.

Step 3. — We now check point (ii). Let

⇢1 = inf
�

Tn : n 2 N, Tn � Tn�1 � a�`, Tn > 0
 

,

⇢2 = inf
�

Tn : n 2 N, Tn � Tn�1 � a�`, Tn > ⇢1
 

.

Then Pr[S�
t (`) � 2] = Pr[⇢2  a�t]. We also observe that

Pr[⇢1  a�t] = Pr
⇥

S�
t (`) � 1

⇤

 E
⇥

S�
t (`)

⇤

= a�tµS

�

(a�`,1)
�

/mS .
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Denote by ⇣�,` the law of ⇢1/a�. Then a renewal argument shows that

Pr
⇥

S�
t (`) � 2

⇤

=

Z t

0
⇣�,`(dr)f(�, `, t � r),

where

f(�, `, s) = Pr
⇥

9 n � 1; Xn � a�`; X1 + · · · + Xn  a�s
⇤

.

We can rewrite this as (recall that T1 = UX0 ⇠ ⌫S)

f(�, `, s)

= Pr[9 n � 1; Xn � a�`; UX0 + X1 + · · · + Xn  a�s + UX0]

 Pr
⇥

9 n � 0; Xn � a�`; UX0 + X1 + · · · + Xn  a�(s + 1)
⇤

+ Pr[UX0 � a�]

= Pr
⇥

S�
s+1(`) � 1

⇤

+ ⌫S
�

(a�,1)
�

=
a�(s + 1)

mS
µS

�

(a�`,1)
�

+ �a�

thanks to step 2. As a conclusion,

Pr[S�
t (`) � 2] 

⇣a�(t + 1)

mS
µS

�

(a�`,1)
�

+ �a�

⌘

Z t

0
⇣�,`(dr)

=
⇣a�(t + 1)

mS
µS

�

(a�`,1)
�

+ �a�

⌘

Pr[⇢1  a�T ]


⇣a�(t + 1)

mS
µS((a�`,1)) + �a�

⌘a�t

mS
µS

�

(a�`,1)
�

.

Due to Lemma 3.3.1, this last term is equivalent to (�a�)2[(t+1)�`���1 +1]t�`���1,
from which point (ii) follows.

Step 4. — Steps 2 and 3 imply point (i). Indeed, we clearly have

Pr
⇥

S�
t (`) = 1

⇤

 E
⇥

S�
t (`)

⇤

=
a�t

mS
µS

�

(a�`,1)
�

⇠ t�a��`
���1

by Lemma 3.3.1. Next, using that S�
t (`)  1 + t/` by construction,

Pr
⇥

S�
t (`) = 1

⇤

= E
⇥

S�
t (`)11{S�

t (`)=1}
⇤

= E
⇥

S�
t (`)

⇤

� E
⇥

S�
t (`)11{S�

t (`)�2}
⇤

� a�t

mS
µS

�

(a�`,1)
�

� (1 + t/`) Pr[S�
t (`) � 2].

Point (ii) allows us to conclude easily.

Step 5. — It remains to check (iii). We thus fix 0  s  t and 0 < ` < x. Then as
�! 0, and due to point (i)

Pr
⇥

⌧/a� < s, L/a� > x | S�
t (`) = 1

⇤

=
Pr[S�

s (x) = 1]

Pr[S�
t (`) = 1]

⇠ s�a��x���1

t�a��`���1
= (s/t)(x/`)���1.

MÉMOIRES DE LA SMF 132



3.3. CONVERGENCE PROOF WHEN � 2 (0,1) 57

3.3.2. Coupling of seeds. — We aim to couple the Poisson measure ⇡S(dt, dx, d`)
used to define the LFF(�)-process with times/places where seeds do not fall in the
FF(µS , µ�

M )-process. We would like that roughly, ⇡S({t}⇥ i� ⇥ {`}) = 1 if and only
if no seed falls on i during [a�(t � `),a�t] (and if this is the maximal interval, that
is seeds fall in i at times a�(t � `) and a�t). We have to consider the finite Poisson
measure ⇡S restricted to the set {` > �}, for some arbitrarily small � > 0.

Proposition 3.3.3. — Let A > 0, T > 0, ↵ > 0 and � > 0 be fixed. For any
� 2 (0, 1], it is possible to find a coupling between a Poisson measure ⇡S(dt, dx, d`) on
[0,1)⇥R⇥ [0,1) with intensity measure �(�+ 1)`���2dtdxd` and an i.i.d. family
of SR(µS)-processes ( eT i

n)i2Z,n2Z (recall subsection 2.1.1) in such a way that for

S�
T (�, i) = ⇡S

�

[0, T ] ⇥ i� ⇥ [�,1)
�

,

eS�
T (�, i) = #

�

n � 1 : eT i
n 2 [0,a�T ], eT i

n � eT i
n�1 � a��

 

,

setting

⌦S
A,T,�,↵(�) :=

\

i2I�
A

⇣

�

S�
T (�, i) = eS�

T (�, i) = 0
 

[
n

S�
T (�, i) = eS�

T (�, i) = 1,

�

�

�

⌧�T (�, i) � e⌧�T (�, i)

a�

�

�

�

+
�

�

�

L�
T (�, i) �

eL�
T (�, i)

a�

�

�

�

< ↵
o⌘

,

there holds

lim
�!0

Pr
�

⌦S
A,T,�,↵(�)

�

= 1.

On the event {S�
T (�, i) = eS�

T (�, i) = 1}, we have denoted by (⌧�T (�, i), L�
T (�, i)) the

unique element (t, `) 2 [0, T ] ⇥ [�,1) such that ⇡S({t} ⇥ i� ⇥ {`}) = 1 and we have
put e⌧�T (�, i) = eT i

n and eL�
T (�, i) = eT i

n � eT i
n�1, where n � 1 is the unique element of N

such that eT i
n 2 [0,a�T ] and eT i

n � eT i
n�1 � a��.

Proof. — We fix T > 0, A > 0, � > 0 and ↵ > 0. We divide the proof into several
steps. Observe that

B� :=
[

i2I�
A

i� =
⇥

� A�/n�, (A� + 1)/n�

�

(which is approximately [�A, A]). It of course su�ces to build ⇡S restricted to
[0, T ] ⇥ B� ⇥ [�,1) (we abusively still denote by ⇡S this restriction) and the fam-
ily ( eT i

n) for i 2 I�A and n � 0 (with our notation, we have eT i
0  0  eT i

1).

Step 1. — A possible way to build ⇡S (restricted to [0, T ] ⇥ B� ⇥ [�,1)) is the
following.

(i) Consider a family of i.i.d. r.v. (S�
T (�, i))i2I�

A
following a Poisson distribution

with parameter

T |i�|
Z 1

�

�(� + 1)`���2d` = �����1T/n�.
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(ii) For each i 2 I�A with S�
T (�, i) > 0, pick some i.i.d. r.v.

�

(T i,�
k , Xi,�

k , Li,�
k )

 

k=1,...,S�
T (�,i)

with density 11�
t2[0,T ],x2i�,`>�

 (� + 1)n��
�+1`���2/T . Put

⇡S =
X

i2I�
A

S�
T (�,i)
X

k=1

�(T i,�
k ,Xi,�

k ,Li,�
k ).

Step 2. — Next, we note it is possible to build the family ( eT i
n)i2I�

A,n�0 as follows:

denote by qk(�) = Pr[eS�
T (�, i) = k] and by ⇤�

k the law of ( eT i
n)n�0 conditionally on

{eS�
T (�, i) = k}.
(i) Consider a family of i.i.d. r.v. (eS�

T (�, i))i2I�
A

with law (qk(�))k�0.

(ii) For each i 2 I�A, pick ( eT i
n)n�0 according to ⇤�

eS�
T (�,i)

(conditionally on eS�
T (�, i)).

Step 3. — For each i, it is possible to couple S�
T (�, i) and eS�

T (�, i), distributed as
in step 1 (i) and step 2 (i), in such a way that

Pr
⇥

S�
T (�, i) = eS�

T (�, i) = 0
⇤

� 1 � �a���
���1T

�

1 + "T,�(�)
�

,

Pr
⇥

S�
T (�, i) = eS�

T (�, i) = 1
⇤

� �a���
���1T

�

1 � "T,�(�)
�

,

where lim�!0 "T,�(�) = 0. It is classically possible (see Lemma 5.1.3 (i)) to build a
coupling in such a way that

Pr
⇥

S�
T (�, i) = eS�

T (�, i) = 0
⇤

� Pr
�

S�
T (�, i) = 0

�

^ Pr
�

eS�
T (�, i) = 0

�

,

Pr
⇥

S�
T (�, i) = eS�

T (�, i) = 1
⇤

� Pr
�

S�
T (�, i) = 1

�

^ Pr
�

eS�
T (�, i) = 1

�

.

First, we infer from Lemma 3.3.2 that

Pr
�

eS�
T (�, i) = 0

�

� 1 � �a���
���1T

�

1 + "T,�(�)
�

,

Pr
�

eS�
T (�, i) = 1

�

� �a���
���1T

�

1 � "T,�(�)
�

.

Next, since S�
T (�, i) follows a Poisson distribution with parameter �����1T/n� ⇠

�a���
���1T , we have

Pr
�

S�
T (�, i) = 0

�

= e������1T/n� � 1 � �a���
���1T

�

1 + "T,�(�)
�

and there holds

Pr
�

S�
T (�, i) = 1

�

= [�����1T/n�] e������1T/n� � �a���
���1T

�

1 � "T,�(�)
�

.

This concludes the step.

Step 4. — We now check that for each i 2 I�A, conditionally on
�

S�
T (�, i) = eS�

T (�, i) = 1
 

,
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we can couple (T i,�
1 , Li,�

1 , Xi,�,1) and ( eT i
n)n�0 in such a way that lim�!0 rT,�,↵(�) = 1

for (see the statement)

rT,�,↵(�) = Pr
h

�

�

�

⌧�T (�, i) � e⌧�T (�, i)

a�

�

�

�

+
�

�

�

L�
T (�, i) �

eL�
T (�, i)

a�

�

�

�

< ↵ | Z�
i = eZ�

i = 1
i

.

To this end, consider ( eT i
n)n�0 with law ⇤�

1 (recall step 2). Denote by

p��,T (dt, d`)

the law of (e⌧�T (�, i)/a�, eL�
T (�, i)/a�) (under ⇤�

1 ). We know from Lemma 3.3.2 (iii) that
p��,T (dt, d`) goes weakly, as �! 0, to

p�,T (dt, d`) := T�1(� + 1)��+1`���211{t2[0,T ],l��}dtd`.

Indeed, observe that p�,T ([0, s] ⇥ [x,1)) = (s/T )(x/�)���1 for s 2 [0, T ] and x > �.

But p�,T (dt, d`) is nothing but the law of (⌧�T (�, i), L�
T (�, i)) = (T i,�

1 , Li,�
1 ) condi-

tionally on {S�
T (�, i) = 1} (recall step 1 (ii)). We easily conclude: first, we couple

(e⌧�T (�, i)/a�, eL�
T (�, i)/a�) and (⌧�T (�, i), L�

T (�, i)) in such a way that they are close
to each other (with a distance smaller than ↵) with high probability (tending to 1
when �! 0), using Lemma 5.1.3 (iii). Then we choose Xi,�

1 at random, uniformly

in i�, independently of everything else and finally, we pick ( eT i
n)n�0 conditionally on

{eS�
T (�, i) = 1} and (e⌧�T (�, i), eL�

T (�, i)).

Step 5. — We finally may build the complete coupling.

(i) For each i 2 I�A, consider some coupled r.v. (S�
T (�, i), eS�

T (�, i)) as in step 3.

(ii) For i 2 I�A such that S�
T (�, i) = eS�

T (�, i) = 1, couple (T i,�
1 , Li,�

1 , Xi,�
1 ) and

( eT i
n)n�0 as in step 4.

(iii) For i 2 I�A not meeting the above condition (ii), follow the rules of step 1 (ii) to

build (T i,�
k , Xi,�

k , Li,�
k )1kS�

T (�,i) and the rules of step 2 (ii) to build { eT i
n}n�0

(e.g. independently).

This defines { eT i
n}n�0,i2I�

A
and ⇡S :=

P

i2I�
A

PS�
T (�,i)

k=1 �(T i,�
k ,Xi,�

k ,Li,�
k ).

Step 6. — With this coupling, using steps 3 and 4 and that |I�A| = 2A� + 1,

Pr[⌦S
A,T,�,↵]

�
⇣

Pr[S�
T (�, i) = eS�

T (�, i) = 0] + Pr[S�
T (�, i) = eS�

T (�, i) = 1,

|⌧�T (�, i) � e⌧�T (�, i)/a�| + L�
T (�, i) � eL�

T (�, i)/a�| < ↵]
⌘2A�+1

�
�

1 � �a���
��1T (1 + "T,�(�)) + �a���

��1T (1 � "T,�(�))rT,�,↵(�)
�2A�+1

.

Recall that lim�!0 "T,�(�) = 0, that lim�!0 rT,�,↵(�) = 1 and that A�  A/(�a�).
Hence for some function "T,�,↵ with limit 0 at 0,

Pr[⌦S
A,T,�,↵] �

�

1 � �a���
��1T"T,�,↵(�)

�2A/(�a�)+1
.

This last quantity tends to 1 as �! 0, which concludes the proof.
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3.3.3. Convergence. — We are now able to conclude. Intuitively, the situation
is clear: using Proposition 3.2.1, we couple the time/positions at which matches fall
in the LFF(�)-process with those of the FF(µS , µ�

M )-process; and using Proposi-
tion 3.3.3, we couple the time/positions at which no seed fall in the LFF(�)-process
with time/positions at which no seed fall during a time interval of length of order a�

in the FF(µS , µ�
M )-process. Then we only have to show carefully that this is su�cient

to couple the FF(µS , µ�
M )-process and the LFF(�)-process in such a way that they

remain close to each other. But there are many technical problems: our couplings
concern only finite boxes [0, T ] ⇥ [�A, A], do not allow to treat small time intervals
with no seed falling, etc. We thus have to localize the processes in space and time and
to work on an event (with high probability) on which everything works as desired.

Proof of Theorem 2.5.3. — We fix T > 0, x1 < · · · < xp and t1, . . . , tp 2 [0, T ]. We
introduce B > 0 such that �B < x1 < xp < B. We fix " > 0 and a > 0. Our
aim is to check that for all � > 0 small enough, there exists a coupling between
a FF(µS , µ�

M )-process (⌘�t (i))t�0,i2Z and a LFF(�)-process (Yt(x))t�0,x2R such that,
recalling (2.2.3) and Proposition 2.5.2,

Pr
h

p
X

k=1

�T (D�(xk), D(xk)) +
p
X

k=1

�(D�
tk

(xk), Dtk(xk)) � a
i

 ".(3.3.1)

This will of course conclude the proof.

Step 1. — Consider two independent Poisson measures ⇡S(dt, dx, d`) with inten-
sity measure �(�+1)`���2dtdxd` and ⇡M (dt, dx) with intensity measure dtdx. Set,
for A > B,

⌦S,1
A,T :=

�

⇡S({(t, x, `) : x 2 [B, A], t > T + 1, ` > t + 1}) > 0
 

\
�

⇡S({(t, x, `) : x 2 [�A,�B], t > T + 1, ` > t + 1
 

) > 0}.

A simple computation shows that

Pr[⌦S,1
A,T ] � 1 � 2 exp

⇣

�
Z A

B

dx

Z 1

T+1
dt

Z 1

t+1
�(� + 1)`���2

⌘

,

so that we can choose A large enough in such a way that Pr[⌦S,1
A,T ] � 1� 1

6". This will
ensure us that there are �g 2 [�A,�B] and �d 2 [A, B] with Yt(�g) = Yt(�d) = 0 for
all t 2 [0, T + 1] (recall Figure 4). This fixes the value of A for the whole proof.

Next we consider T0 > T + 1 large enough, so that for

⌦S,2
A,T,T0

=
�

⇡S({(t, x, `) : t > T0, t � ` < T + 1, x 2 [�A, A]}) = 0
 

,

Pr[⌦S,2
A,T,T0

] � 1 � 1
6". This is possible, because

Pr[⌦S,2
A,T,T0

] = exp
⇣

�
Z A

�A

dx

Z 1

T0

dt

Z 1

t�(T+1)
�(� + 1)`���2d`

⌘

,
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which clearly tends to 1 as T0 increases to infinity. This will ensure us that all the
dotted vertical segments in [�A, A] that intersect [0, T+1] end before T0 (see Figure 4).
This fixes the value of T0 for the whole proof. Next we call

XM =
�

x 2 [�A, A] : ⇡M ([0, T ] ⇥ {x}) > 0
 

,

TM =
�

t 2 [0, T ] : ⇡M ({t}⇥ [�A, A]) > 0
 

[ {0}.

Classical results about Poisson measures allow us to choose KM > 0 (large)
and cM > 0 (small) in such a way that Pr[⌦M,1

KM ,cM
] � 1 � 1

6" for

⌦M,1
KM ,cM

=
n

|TM |  KM , min
t,s2TM
s 6=t

|t � s| > cM , min
t2TM

k=1,...,p

|t � tk| > cM ,

min
x2XM

k=1,...,p

|x � xk| > cM

o

.

We can now fix � > 0 for the whole proof, in such a way that

� < 1
4cM and � <

a

8ApKM
·

We use this � to cuto↵ the Poisson measure ⇡S (in order that it has only a finite
number of marks) without a↵ecting the values of the LFF(�)-process in the zone
under study.

Next, we consider the finite Poisson measure ⇡A,�,T0

S defined as the restriction of ⇡S
to the set [0, T0] ⇥ [�A, A] ⇥ [�,1). We define

X �
S =

�

x 2 [�A, A] : ⇡S([0, T0] ⇥ {x}⇥ [�,1)) > 0
 

,

T �
S =

⇣

[

(t,x,`)2 supp ⇡
A,�,T0
S

{t, t � `}
⌘

\ [0, T ].

Then for KS > 0 large enough and cS > 0 small enough, the event

⌦S,3
KS ,cS ,� =

n

|T �
S |  KS , min

t2TM

s2T �
S
|t�s|

> cS , min
t2T �

S
k=1,...,p

|t�tk|
> cS ,

min
x,y2X �

S
x 6=y

|x�y|
> cS , min

x2X �
S

y2XM
|x�y|

> cS , min
x2X �

S
k=1,...,p

|x�xk|
> cS

o

satisfies Pr[⌦S,3
KS ,cS ,�] � 1 � 1

6". Finally, we fix ↵ > 0 in such a way that

↵ < 1
4cS , ↵ < 1

4cM , ↵ < 1
2 and ↵ < a/(8Ap(2KS + KM )).

Step 2. — Using Proposition 3.2.1, we know that for all � > 0 small enough, it is
possible to couple a family of i.i.d. SR(µ�

M )-processes (NM,�
t (i))t�0,i2Z with ⇡M in

such a way that

⌦M
A,T (�) :=

�

8t 2 [0, T ], 8i 2 I�A, �NM,�
a�t

(i) 6= 0 i↵ ⇡M ({t}⇥ i�) 6= 0
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satisfies Pr[⌦M
A,T (�)] � 1 � 1

6". We infer from Proposition 3.3.3 that for all � > 0

small enough, it is possible to couple an i.i.d. family of SR(µS)-processes ( eT i
n)i2Z,n�0

with ⇡S in such a way that for

S�
T0

(�, i) = ⇡S
�

[0, T0] ⇥ {i�}⇥ [�,1)
�

,

eS�
T0

(�, i) = #
�

n � 1 : eT i
n 2 [0,a�T0], eT i

n � eT i
n�1 � a��

 

,

setting

⌦S
A,T0,�,↵(�) :=

\

i2I�
A

⇣

�

S�
T0

(�, i) = eS�
T0

(�, i) = 0
 

[
n

S�
T0

(�, i) = eS�
T0

(�, i) = 1,

�

�

�

⌧�(�, i) � e⌧�(�, i)

a�

�

�

�

+
�

�

�

L�(�, i) �
eL�(�, i)

a�

�

�

�

< ↵
o⌘

,

Pr(⌦S
A,T0,�,↵

(�)) � 1 � 1
6". On the event {S�

T0
(�, i) = eS�

T0
(�, i) = 1}, we have de-

noted by (⌧�(�, i), L�(�, i)) the unique element (t, `) 2 [0, T0] ⇥ [�,1) such that
⇡S({t}⇥ i� ⇥ {`}) = 1 and we have put

e⌧�(�, i) = eT i
n and eL�(�, i) = eT i

n � eT i
n�1,

where n � 1 is the unique element of N such that eT i
n 2 [0,a�T0] and eT i

n� eT i
n�1 � a��.

We put

NS
t (i) =

X

n�1

11{eT i
n�t}

for all i 2 Z, all t � 0, which is a family of i.i.d. SR(µS)-processes in the sense of
Definition 2.1.1, see subsection 2.1.1.

Step 3. — We work with the FF(µS , µ�
M )-process (⌘�t (i))t�0,i2Z built from

(NS
t (i))t�0,i2Z and (NM,�

t (i))t�0,i2Z and the LFF(�)-process (Yt(x))t�0,x2R built
from ⇡S and ⇡M , all these processes being coupled as in step 2. We consider the asso-
ciated clusters (D�

t (x))t�0,x2R and (Dt(x))t�0,x2R, see (2.2.3) and Proposition 2.5.2.
We will work on the event

⌦� = ⌦S,1
A,T \ ⌦S,2

A,T,T0
\ ⌦M,1

KM ,cM
\ ⌦S,3

KS ,cS ,� \ ⌦
M
A,T (�) \ ⌦S

A,T0,�,↵(�).

Thanks to the previous steps, we know that Pr[⌦�] � 1�" for all � > 0 small enough.
We introduce

S = ([t2TM [t, t + � + ↵]) [ ([t2T �
S
[t � ↵, t + ↵]).

We will prove in the next steps that for � > 0 small enough, on ⌦�, for all k = 1, . . . , p,
for all t 2 [0, T ],

�(D�
t (xk), Dt(xk))  4/n� + 2A11{t2S},(3.3.2)

which will imply that

�T (D�(xk), D(xk))  4T/n� + 2A|S|.

This will conclude the proof. Indeed, on ⌦�, we know that t1, . . . , tp do not belong

to S (thanks to ⌦S,3
KS ,cS ,� and ⌦M,1

KM ,cM
and since cS > ↵ and cM > � + ↵) and that
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the Lebesgue measure of S is smaller than KM� + (2KS + KM )↵. Thus on ⌦�, since
� < a/(8ApKM ) and ↵ < a/(8Ap(2KS + KM )),

p
X

k=1

�T
�

D�(xk), D(xk)
�

+
p
X

k=1

�
�

D�
tk

(xk), Dtk(xk)
�

 p
⇥

2A(KM� + (2KS + KM )↵) + 4T/n� + 4/n�

⇤

 a/2 + (4T + 4)p/n�,

which is smaller than a for all � > 0 small enough. This implies (3.3.1) for all � > 0
small enough.

Step 4. — Here we localize the processes, on the event ⌦�. Due to ⌦S,1
A,T , we

know that ⇡S has some marks (⌧g,�g, Lg) and (⌧d,�d, Ld) such that �A < �g <

�B, B < �d < A, ⌧g > T + 1, ⌧d > T + 1, Lg > ⌧g + 1 and Ld > ⌧d + 1. This
implies, by definition of the LFF(�)-process, that Yt(�g) = Yt(�d) = 0 for all t 2
[0, T + 1]. Consequently, for all t 2 [0, T ] and all x 2 [�g,�d] � [�B, B], we have
Dt(x) ⇢ [�g,�d].

Set now g� = bn��gc and d� = bn��dc. These are those sites of I�A ⇢ Z such that
�g 2 (g�)� and �d 2 (d�)�. We claim that on ⌦�, for all t 2 [0,a�T ],

⌘�t (g�) = ⌘�t (d�) = 0.

Consequently on ⌦�, we clearly have C(⌘�a�t
, i) ⇢ [[g� +1, d�� 1]] for all t 2 [0, T ] and

all i 2 [[g� + 1, d� � 1]].

Indeed, consider e.g. the case of d�. Due to ⌦S
A,T0,�,↵

(�) and since S�
T0

(�, d�) > 0
(because ⇡S has the mark (⌧d,�d, Ld) that falls in [0, T0]⇥ (d�)� ⇥ [�,1)), we deduce
that S�

T0
(�, d�) = eS�

T0
(�, d�) = 1 and that

�

�

e⌧�(�, d�)/a� � ⌧d
�

�+
�

�eL�(�, d�)/a� � Ld

�

� < ↵ < 1.

But no seed falls on d�, by definition, during (e⌧�(�, d�)�eL�(�, d�), e⌧�(�, d�)). This last
interval contains [0,a�T ]: since ↵ < 1

2 , e⌧�(�, d�) � a�(⌧d�↵) � a�(T +1�↵) > a�T

and e⌧�(�, d�) � eL�(�, d�)  a�(⌧d � Ld + 2↵)  a�(�1 + 2↵) < 0. This proves that
⌘�t (d�) = 0 for all t 2 [0,a�T ].

Using furthermore ⌦S,2
A,T,T0

(0), we deduce that on ⌦�, (Yt(x), Dt(x))t2[0,T ],x2[�g,�d]

is completely determined by the values of ⇡S and ⇡M restricted to the boxes [0, T0]⇥
[�g,�d] ⇥ (0,1) and [0, T ] ⇥ [�g,�d]. By the same way, (⌘�t (i))t2[0,a�T ],i2[[g�,d�]]

is completely determined by (NS
t (i), NM,�

t (i))t2[0,a�T ],i2[[g�,d�]]. And we recall that
[�B, B] ⇢ [�g,�d] ⇢ [�A, A].

Step 5. — In this whole step, we work on ⌦�. We denote by (⇢i,↵i)i=1,...,n the
marks of ⇡M in [0, T ]⇥[�g,�d], ordered chronologically (0 = ⇢0 < ⇢1 < · · · < ⇢n < T ).
For each k, we recall that in the FF(µS , µ�

M )-process, there is match falling at time
a�⇢k on the site bn�↵kc (recall ⌦M

A,T (�) and that x 2 i� i↵ i = bn�xc). Furthermore,
these are the only fires in [0,a�T ] ⇥ [[g�, d�]]. For k = 0, . . . , n, let us consider the
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properties

(Hk) : 8 i 2 [[g�, d�]], ⌘�a�⇢k
(i) = inf

x2i�
Y⇢k(x);

(H⇤
k) : 8 i 2 [[g�, d�]], 8 t 2 [⇢k, ⇢k+1) \ S, ⌘�a�t

(i) = inf
x2i�

Yt(x).

We observe that (H0) holds: for any i 2 Z, ⌘�0 (i) = 0 and inf x2i� Y0(x) = 0 because
the set {x 2 R : Y0(x) = 0} is a.s. dense in R. Indeed, recall that Y0(x) = 0 as soon
as ⇡S({(t, x, `) : l > t}) > 0 and that

R1
0 dt

R1
t
�(� + 1)`���2d` = 1.

We are going to prove that for k 2 {0, . . . , n � 1}, (Hk) implies (H⇤
k) and (Hk+1).

Assume thus that (Hk) holds for some k 2 {0, . . . , n � 1}.
We first prove that (H⇤

k) holds.

We recall that for all i 2 [[g�, d�]], S�
T0

(�, i) = eS�
T0

(�, i) is either 0 or 1. On

{S�
T0

(�, i) = eS�
T0

(�, i) = 1}, we have
�

�⌧�(�, i) � e⌧�(�, i)/a�

�

� < ↵ and
�

�L�(�, i) � eL�(�, i)/a�

�

� < ↵.

Recalling furthermore ⌦M,1
KM ,cM

and ⌦S,3
KS ,cS ,�, using that ↵ < 1

4cM , we deduce that:

. either ⌧�(�, i) and e⌧�(�, i)/a� both belong to the same interval (⇢q(i), ⇢q(i)+1) for
some q(i) 2 {0, . . . , n � 1} or are both greater than ⇢n (then we say that q(i) = n);

. either ⌧�(�, i) � L�(�, i) and (e⌧�(�, i) � eL�(�, i))/a� both belong to the same
interval (⇢q0(i), ⇢q0(i)+1) for some q0(i) 2 {0, . . . , n � 1} or are both greater than ⇢n
(then we adopt the convention that q0(i) = n), or are both smaller than 0 (then we
say that q0(i) = �1).

We next observe that since � < cM , the values of
�

Yt(x), Dt(x)
�

t2[0,T ]\[s2TM
[s,s+�],x2[�g,�d]

depends on ⇡S only through its restriction to [0, T0]⇥ [�g,�d]⇥ [�,1). Furthermore,
for any t 2 [0, T ] \ [s2TM [s, s + �] and any x 2 [�g,�d], Dt(x) has its extremities
in X �

S . Have a look at Figure 4 and use the fact that all the dotted segments with
length smaller than � cannot concern two fires. See also Remark 2.5.1 (ii).

We now distinguish several situations to prove (H⇤
k). We use, in all the cases below,

that there are no fires in the time interval (⇢k, ⇢k+1) in the LFF(�)-process in the
box [�g,�d] and no fire during (a�⇢k,a�⇢k+1) for the FF(µS , µ�

M )-process in the box
[[g�, d�]], recall ⌦M

A,T (�). Let i 2 [[g�, d�]].

Case (a): ⌘�a�⇢k
(i) = 1. Then by (Hk), infx2i� Y⇢k(x) = 1. An obvious monotonic-

ity argument shows that for all t 2 (⇢k, ⇢k+1), ⌘�a�t
(i) = infx2i� Yt(x) = 1.

Case (b): ⌘�a�⇢k
(i) = 0 and S�

T0
(�, i) = eS�

T0
(�, i) = 0. Then infx2i� Yt(x) = 1 for all

t 2 [⇢k +�, ⇢k+1), because in i�, there is no dotted segment with length greater than �
that intersect [0, T ] (see Figure 4). Next, eS�

T0
(�, i) = 0 means that all the delays we

wait for a seed (on the site i during [0,a�T0]) are smaller than a��. Consequently,

MÉMOIRES DE LA SMF 132



3.3. CONVERGENCE PROOF WHEN � 2 (0,1) 65

⌘�a�t
(i) = 1 for all t 2 [⇢k + �, ⇢k+1). Hence ⌘�a�t

(i) = infx2i� Yt(x) = 1 for all
t 2 [⇢k + �, ⇢k+1) � (⇢k, ⇢k+1) \ S.

Case (c): ⌘�a�⇢k
(i) = 0 and S�

T0
(�, i) = eS�

T0
(�, i) = 1 and q(i) < k. Then

infx2i� Yt(x) = 1 for all t 2 [⇢k + �, ⇢k+1), because the only dotted segment in i� with
length greater than � that intersects [0, T ] has ended before ⇢k (because q(i) < k).
Next, the only delay (between two seeds on i during [0,a�T ]) greater than a�� is
ended before a�⇢k (because q(i) < k), so that ⌘�a�t

(i) = 1 for all t 2 [⇢k + �, ⇢k+1).
Hence ⌘�a�t

(i) = infx2i� Yt(x) = 1 for all t 2 [⇢k + �, ⇢k+1) � (⇢k, ⇢k+1) \ S.

Case (d): ⌘�a�⇢k
(i) = 0, S�

T0
(�, i) = eS�

T0
(�, i) = 1 and q0(i) � k. Then

infx2i� Yt(x) = 1 for all t 2 [⇢k + �, ⇢k+1). Indeed, the only dotted segment in i� with
length greater than � that intersects [0, T ] starts (strictly) after ⇢k (because q0(i) � k).
Next, the only delay (between two seeds on i during [0,a�T ]) greater than a�� will
start strictly after a�⇢k (because q0(i) � k), so that ⌘�a�t

(i) = 1 for all t 2 [⇢k+�, ⇢k+1).
Hence ⌘�a�t

(i) = infx2i� Yt(x) = 1 for all t 2 [⇢k + �, ⇢k+1) � (⇢k, ⇢k+1) \ S.

Case (e): ⌘�a�⇢k
(i) = 0 and S�

T0
(�, i) = eS�

T0
(�, i) = 1 and q0(i) < k  q(i). Then

⌘�a�t
(i) = 0 for all t 2

⇥

⇢k, (e⌧
�(�, i)/a�) ^ ⇢k+1

�

,

⌘�a�t
(i) = 1 for all t 2

⇥

(e⌧�(�, i)/a�) ^ ⇢k+1, ⇢k+1

�

(because no seed fall on i during [e⌧�(�, i) � eL�(�, i), e⌧�(�, i)) 3 ⇢k and a seed falls
on i at time e⌧�(�, i)). By (Hk), we also know that infx2i� Y⇢k(x) = 0. Calling
(⌧�(�, i), x0, L

�(�, i)) the only mark of ⇡S that falls in [0, T0] ⇥ i� ⇥ [�,1), we claim
that necessarily, Y⇢k(x0) = 0. Indeed, all the other dotted segments in i� that inter-
sect [0, T ] have a length smaller than � < cM  ⇢k�⇢k�1. Thus if infx2i� Y⇢k�(x) = 0,
necessarily, Y⇢k�(x0) = 0 and thus Y⇢k(x0) = 0. If now infx2i� Y⇢k�(x) = 1, then i� is
connected at time time ⇢k�, whence the fire at time ⇢k burns completely i� (because
infx2i� Y⇢k(x) = 0 by assumption), so that in particular, Y⇢k(x0) = 0. Then we have
to separate two situations.

. If ⌧�(�, i) < ⇢k + �, then we easily deduce that infx2i� Yt(x) = 1 for t 2 [⇢k +
�, ⇢k+1). Recalling that ⌘�a�t

(i) = 1 for all t 2 [(e⌧�(�, i)/a�) ^ ⇢k+1, ⇢k+1) and that
|e⌧�(�, i)/a��⌧�(�, i)| < ↵, we easily conclude that ⌘�a�t

(i) = 1 for t 2 [⇢k+↵+�, ⇢k+1).
Thus ⌘�a�t

(i) = infx2i� Yt(x) for t 2 [⇢k + � + ↵, ⇢k+1) � [⇢k, ⇢k+1) \ S.

. If now ⌧�(�, i) � ⇢k + �, then we have, by construction, infx2i� Yt(x) = 0 for
t 2 [⇢k, ⌧�(�, i) ^ ⇢k+1) and infx2i� Yt(x) = 1 for t 2 [⌧�(�, i) ^ ⇢k+1, ⇢k+1). Recalling
the values of ⌘�a�t

(i) and that |e⌧�(�, i)/a� � ⌧�(�, i)| < ↵, one easily concludes that
⌘�a�t

(i) = infx2i� Yt(x) for t 2 [⇢k, ⇢k+1) \ S (because ⌧�(�, i) 2 T �
S whence [⌧�(�, i) �

↵, ⌧�(�, i) + ↵] ⇢ S).

We have proved (H⇤
k) and this implies that

8 i 2 [[g�, d�]], ⌘�a�⇢k+1�(i) = inf
x2i�

Y⇢k+1�(x).
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It remains to prove (Hk+1).

Consider the ignited cluster [a, b] = D⇢k+1�(↵k+1) in the LFF(�)-process. Then
the ignited cluster in the FF(µS , µ�

M )-process at time a�⇢k+1 (due to a match falling
on the site bn�↵k+1c) is nothing but I�k+1 := {i 2 [[g�, d�]] : i� ⇢ D⇢k+1�(↵k+1)},
at least if � is small enough (such that 1/n� < cS). Indeed, we have ⌘�a�⇢k+1�(i) =
infx2i� Y⇢k+1�(x) = 1 for all i such that i� ⇢ D⇢k+1�(↵k+1) and (on the two boundary
sites) ⌘�a�⇢k+1�(i) = infx2i� Y⇢k+1�(x) = 0 for i such that i� 6⇢ D⇢k+1�(↵k+1) with
i� \ D⇢k+1�(↵k+1) 6= ?. And for � > 0 small enough (such that 1/n� < cS),
bn�↵k+1c 2 I�k+1 (because [a+1/n�, b�1/n�] ⇢ I�k+1 by the previous study, because
D⇢k+1�(↵k+1) = [a, b] has its extremities a, b in X �

S , because ↵k+1 2 XM and because

the distance between X �
S and XM is greater than cS , recall ⌦S,3

KS ,cS ,�, so that actually,
↵k+1 2 [a + cS , b � cS ]).

Then on the one hand, for all i 2 [[g�, d�]], we have

inf
x2i�

Y⇢k+1(x) = inf
x2i�

Y⇢k+1�(x) if i� \ D⇢k+1�(↵k+1) = ?,

inf
x2i�

Y⇢k+1(x) = 0 if i� \ D⇢k+1�(↵k+1) 6= ?.

The first case is obvious and the second one follows from the fact that a.s.,

⇡S
�

{(t, x, `) : t � ⇢k+1, x 2 i� \ D⇢k+1�(↵k+1), t � ` < ⇢k+1}
�

= 1

(but this concerns marks (t, x, `) with a very small length ` > 0).

On the other hand, for all i 2 [[g�, d�]], we have ⌘�⇢k+1
(i) = ⌘�⇢k+1�(i) if i /2 I�k+1

and ⌘�⇢k+1
(i) = 0 if i 2 I�k+1.

As a conclusion, for all i 2 [[g�, d�]],

. if i� ⇢ D⇢k+1�(↵k+1), i.e. if i 2 I�k+1, then we have seen that ⌘�a�⇢k+1
(i) =

0 = infx2i� Y⇢k+1(x);

. if i� \ D⇢k+1�(↵k+1) = ? (hence i /2 I�k+1), then we have seen that
⌘�a�⇢k+1

(i) = ⌘�a�⇢k+1�(i) = infx2i� Y⇢k+1�(x) = infx2i� Y⇢k+1(x);

. if i /2 I�k+1 but i� \ D⇢k+1�(↵k+1) 6= ?, then we have seen that
infx2i� Y⇢k+1(x) = 0 and ⌘�a�⇢k+1

(i) = 0 because ⌘�a�⇢k+1�(i) = 0 (since then

i lies at the boundary of I�k+1).

Hence (Hk+1) holds.

Step 6. — We finally can prove (3.3.2) on ⌦� and this will conclude the proof. First,
we know from step 4 that for all t 2 [0, T ], all k = 1, . . . , p, Dt(xk) ⇢ [�g,�d] ⇢ [�A, A]
and that C(⌘�a�t

, ba�xkc) ⇢ [[g� + 1, d� � 1]] whence D�
t (xk) ⇢ [�A, A] (because

(g� + 1)/n� � �g � �A and (d� � 1)/n�  �d  A). This obviously implies that
�(Dt(xk), D�

t (xk))  2A.

Next, step 5 implies that for all t 2 [0, T ] \ S (or rather for all t 2 [0, ⇢n) \ S, but
the extension is straightforward), for all i 2 [[g�, d�]], ⌘�a�t

(i) = infx2i�(Yt(x)). This
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implies that for all t 2 [0, T ] \ S, for all k = 1, . . . , p, �(D�
t (xk), Dt(xk))  4/n� as

desired.
Indeed, assume that Dt(xk) = [a, b] ⇢ [�g,�d] for some t 2 [0, T ] \ S. Recall that

a, b 2 X �
S . We have Yt(y) = 1 for all y 2 (a, b) and Yt(a) = Yt(b) = 0. Hence we

deduce that

⌘�a�t
(i) = 1 for all i 2

⇥⇥

ban�c+1, bbn�c� 1
⇤⇤

and ⌘�a�t

�

ban�c
�

= ⌘�a�t

�

bbn�c
�

= 0.

Next, we observe that for � > 0 small enough, ban�c < bxkn�c < bbn�c. Indeed,
on ⌦�, we have, since a, b 2 X �

S , |xk � a| > cS and |b � xk| > cS . We finally obtain

C
�

⌘�a�t
, bxkn�c

�

=
⇥⇥

ban�c + 1, bbn�c � 1
⇤⇤

,

whence D�
t (xk) = [(ban�c + 1)/n�, (bbn�c � 1)/n�]. Recalling that Dt(x) = [a, b],

one easily deduces that �(D�
t (xk), Dt(xk))  4/n�.

3.4. Cluster-size distribution when � 2 (0,1)

This section is entirely devoted to the

Proof of Corollary 2.5.4. — We thus fix � 2 (0,1) and assume (HM ) and (HS(�)).
For each � > 0, we consider a FF(µS , µ�

M )-process (⌘�t (i))t�0,i2Z. Let also
(Yt(x))t�0,x2R be a LFF(�)-process. We know from Theorem 2.5.3 that |C(⌘�t , 0)|/n�

goes in law to |Dt(0)|, for any t > 0. In step 1 below, we will check that for t > 0,
the law of |Dt(0)| does not charge points. Thus for any B � 0, t > 0, we will have

lim
�!0

Pr
⇥

|C(⌘�t , 0)| � n�B
⇤

= Pr
⇥

|Dt(0)| � B
⇤

.

In steps 2 to 6, we will check that there are some constants 0 < c1 < c2 and
0 < 1 < 2 such that if t > 1, for any B � 2, Pr[|Dt(0)| > B] 2 [c1 e�2B , c2 e�1B ].
One immediately checks that this implies

Pr
⇥

|Dt(0)| > B
⇤

2 [c1 e�22 e�2B , (c2 _ e21)e�1B ]

for all t > 1, B > 0 and this will conclude the proof.

Step 1. — The goal of this step is to check that for any t > 0 fixed, the law of
|Dt(0)| does not charge points.

Consider the first mark (Td,�d, Ld) of ⇡S on the right of 0 (�d > 0) such that
[0, t] ⇢ [Td � Ld, Td]. Consider a similar mark (Tg,�g, Lg) of ⇡S with �g < 0.

Then Ys(�g) = Ys(�d) = 0 for all s 2 [0, t], so that fires falling outside [�g,�d]
cannot a↵ect 0 during [0, t].

Next, denote by (TM , XM ) the instant/position of the last match falling before t

in [�g,�d]. Then a.s., t � TM > 0, and Dt(0) is of the form [a, b], for some marks
(Ta, a, La) and (Tb, b, Lb) of ⇡S satisfying �g  a < 0 < b < �d, Ta � La < TM ,
Tb � Lb < TM , Ta > t and Tb > t. There are a.s. a finite number of such marks
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(because a.s.,
R1
t

ds
R1
s�TM

�(� + 1)`���2d` = (t � tM )�� < 1), and their (spatial)
positions clearly have densities, whence the result.

Step 2. — For t > 1, a 2 R, we consider the event ⌦t,a defined as follows, see
Figure 6 next page:

(i) ⇡M has exactly one mark (TM , XM ) in [t � 1, t] ⇥ [a, a + 1] and there holds
(TM , XM ) 2 [t � 2

3 , t � 1
2 ] ⇥ [a + 1

4 , a + 3
4 ];

(ii) ⇡S has one mark (Tg, Xg, Lg) such that Tg � Lg < t � 1 < t < Tg and
Xg 2 [a, a + 1

4 ] and one mark (Td, Xd, Ld) such that Td � Ld < t� 1 < t < Td

and Xd 2 [a + 3
4 , a + 1] (recalling Figure 4, there are dotted vertical segments

in [a, a + 1
4 ] and in [a + 3

4 , a + 1] that run across [t � 1, t]);

(iii) all the other marks (T, X,L) of ⇡S with X 2 [a, a+1] and [T�L, T ]\[t�1, t] not
empty satisfy L < 1

4 (recalling Figure 4, all the other vertical dotted segments
in [a, a + 1] that intersect [t � 1, t] have a length smaller than 1

4 ).

Step 3. — In this step, we prove that on ⌦t,a, we have either Ys(Xg) = 0 for all
s 2 [t � 1

2 , t] or Ys(Xd) = 0 for all s 2 [t � 1
2 , t]. We distinguish two situations.

. First assume that [Xg, Xd] is connected at time TM� (that is YTM�(x) = 1
for all x 2 [Xg, Xd]). Since XM 2 [Xg, Xd], the fire destroys the cluster and
thus we deduce that Ys(Xg) = 0 for all s 2 [TM , Tg) � [t � 1

2 , t] and that
Ys(Xd) = 0 for all s 2 [TM , Td) � [t � 1

2 , t].

. Next assume that [Xg, Xd] ⇢ [a, a + 1] is not connected at time TM� (that
is, there is some x0 2 [Xg, Xd] such that YTM�(x0) = 0). Then we claim
that either YTM�(Xg) = 0 (then Ys(Xg) = 0 for all s 2 [TM , Tg) � [t� 1

2 , t])
or YTM�(Xd) = 0 (then Ys(Xd) = 0 for all s 2 [TM , Td) � [t� 1

2 , t]). Indeed,
recall that all the dotted segments that intersect [t � 1, t] in (Xg, Xd) have
a length smaller than 1

4 . Thus if [Xg, Xd] is disconnected at time TM� due
to a fire that started before t � 1, it can be only with x0 = Xg or x0 = Xd,
whence the conclusion. But if now [Xg, Xd] is disconnected at time TM� due
to a fire that started at some time ⌧ 2 [t�1, TM ) at some place � /2 [a, a+1]
(since there are no fires in [a, a + 1] during [t� 1, TM )), this necessarily also
concerns one of the extremities Xg or Xd of [Xg, Xd]. Thus in any case, we
obtain either YTM�(Xg) = 0 or YTM�(Xd) = 0 as desired.

Step 4. — Let us prove that p := Pr[⌦t,a] > 0. This value will obviously does not
depend on a 2 R, t � 1, by homogeneity in (s, x) of the Poisson measures ⇡M (ds, dx)
and ⇡S(ds, dx, d`). Define the zones

AM =
�

t � 2
3 , t � 1

2

�

⇥
�

a + 1
4 , a + 3

4

�

,

BM =
�

(t � 1, t) ⇥ (a, a + 1)
�

\ AM ,

AS =
�

(s, x, `), x 2 (a, a + 1
4 ), s > t > t � 1 > s � `

 

,
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Figure 6. The event ⌦
t,A

.

BS =
�

(s, x, `), x 2 (a + 3
4 , a + 1), s > t > t � 1 > s � `

 

,

CS =
�

(s, x, `), x 2 (a + 1
4 , a + 3

4 ), s > t > t � 1 > s � `
 

,

DS =
�

(s, x, `), x 2 (a, a + 1), [s � `, s] \ [t � 1, t] 6= ?, ` > 1
4

 

\ (AS [ BS [ CS).

The zones AM and BM are disjoint and for ⇣M (ds, dx) = dsdx, ⇣M (AM ) = 1
12

and ⇣M (BM ) = 11
12 . The zones AS , BS , CS , DS are also disjoint and simple computa-

tions show that, for ⇣S(ds, dx, d`) = �(� + 1)`���2dsdxd`, ⇣S(AS) = ⇣S(BS) = 1
4 ,

⇣S(CS) = 1
2 and ⇣S(DS) = 4�(5� + 1) � 1. Consequently, recalling that ⇡M and ⇡S

are independent Poisson measures with intensity measures ⇣M and ⇣S ,

Pr[⌦t,a,�] = Pr
�

⇡M (AM ) = 1,⇡M (BM ) = 0,⇡S(AS) = ⇡S(BS) = 1,

⇡S(CS) = ⇡S(DS) = 0
�
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= ⇣(AM )e�⇣M (AM ) e�⇣M (BM )⇣S(AS)e�⇣S(AS)

⇣S(BS)e�⇣S(BS) e�⇣S(CS) e�⇣S(DS)

= 1
12 e�

1
1 2 e�

11
12 ( 14 )2 e�

1
2 e�4�(5�+1)+1 =: p > 0.

Step 5. — We clearly have, for any t � 1, any B � 2,

�

|Dt(0)| � B} ⇢ {8 x 2 [0, 1
2B], Yt(x) = 1

 

[
�

8 x 2 [� 1
2B, 0], Yt(x) = 1

 

,

whence Pr[|Dt(0)| � B]  2 Pr[8 x 2 [0, 1
2B], Yt(x) = 1] by symmetry. Furthermore,

step 3 implies that

{8 x 2 [0, 1
2B], Yt(x) = 1} ⇢ ⌦c

t,0 \ ⌦c
t,1 \ · · · \ ⌦c

t,b 12B�1c
.

Using then step 4 (and some obvious independence arguments), we get

Pr
⇥

|Dt(0)| � B
⇤

 2(1 � p)b
1
2B�1c+1  2(1 � p)

1
2B�1.

Consequently, for all t � 1, all B � 2, Pr[|Dt(0)| � B]  c2 e�1B , with c2 = 2/(1�p)
and 1 = � 1

2 [log(1 � p)].

Step 6. — Next, we consider the event e⌦t,B on which:

(i) ⇡M ([t � 1
2 , t] ⇥ [0, B]) = 0;

(ii) all the marks (T, X,L) of ⇡S with X 2 [0, B] satisfy either T < t or
T � L > t � 1

2 ) (this means that there is no dotted vertical segment running
across [t � 1

2 , t] in [0, B]).

An easy computation as in step 4 implies that

Pr[e⌦t,B ] = exp
⇣

�
Z t

t� 1
2

Z B

0
dsdx �

Z 1

t

ds

Z B

0
dx

Z 1

s�t+ 1
2

d`�(� + 1)`���2
⌘

= exp
�

� 1
2B � 2�B

�

.

We claim that on ⌦t,�1\ e⌦t,B \⌦t,B , we have [0, B] ⇢ Dt(0), whence |Dt(0)| � B.
Indeed, we know from step 3 that there is �0 2 [�1, 0] and �1 2 [B, B + 1] such that
Ys(�0) = Ys(�1) = 0 for all s 2 [t � 1

2 , 1]. Thus the fires starting outside [�0,�1] do
not a↵ect the zone [�0,�1] during [t� 1

2 , t]. Furthermore, there are no fires starting in
[�0,�1] during [t� 1

2 , t]. At last, since all the dotted segments in [0, B] intersecting {t}
have started after t � 1

2 . We easily conclude that Yt(x) = 1 for all x 2 [0, B].

Using finally some obvious independence arguments, we get

Pr
⇥

|Dt(0)| � B
⇤

� Pr[⌦t,�1 \ e⌦t,B \ ⌦t,B ] � p2 exp
�

� 1
2B � 2�B

�

= c1 e�2B ,

with c1 = p2 and 2 = 1
2 + 2� .
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3.5. Convergence proof when � = 0

This case is simpler than the case � 2 (0,1), but a little work is however needed.
We also divide the section into three parts: preliminaries, coupling of seeds and
convergence proof. In the whole section, we assume (HM ) and (HS(0)). We recall
that a� and n� are defined in (2.2.1) and (2.2.2). For A > 0 and i 2 Z, we set

A� = bAn�c, I�A = [[�A�, A�]], i� = [i/n�, (i + 1)/n�).

3.5.1. Preliminaries. — The proof will use the following estimate.

Lemma 3.5.1. — For any ` 2 (0,1) fixed, we have lim�!0 �
�1µS((a�`,1)) = 0.

Proof. — Using the monotonicity of µS((x,1)) and since µS((x,1))dx = mS⌫S(dx),

µS((a�`,1))

�
 2

�a�`

Z a�`

a�`/2
µS

�

(x,1)
�

dx

=
2mS

�a�`

⇥

⌫S((a�`/2,1)) � ⌫S((a�`,1))
⇤

=
2mS

`

⇥

⌫S((a�`/2,1))/⌫S((a�,1)) � ⌫S((a�`,1))/⌫S((a�,1))
⇤

.

For the last equality, we used that by definition, ⌫S((a�,1)) = �a�. Using (HS(0)),
we easily conclude.

The following statement contains some crucial facts about accelerated SR(µS)-
processes under (HS(0)).

Lemma 3.5.2. — Let (Tn)n�1 be a SR(µS)-process (see subsection 2.1.1). For
� > 0, t � 0 and ` > 0, we set

R�
t (`) = #

�

n � 1 : Tn 2 [0,a�t], Tn+1 � Tn � a�`
 

,

which represents the number of delays with length greater than a�` that start in [0,a�t].

(i) For any T > 0, Pr[T1 � a�T ] = ⌫S((a�T,1)) ⇠ �a� as �! 0.

(ii) For any T > 0, any ` > 0, as �! 0

E
⇥

R�
T (`)

⇤

= a�TµS

�

(a�`,1)
�

/mS = o(�a�).

Proof. — Point (i) is immediate: ⌫S is the law of T1 and since �a� = ⌫S((a�,1)) by
definition, one has ⌫S((a�T,1)) = �a�⌫S((a�T,1))/⌫S((a�,1)). One concludes us-
ing (HS(0)). Point (ii) is slightly more delicate. First, we complete the SR(µS)-process
(Tn)n�1 in (Tn)n2Z, see subsection 2.1.1. Then we observe that since T0 < 0 < T1,

R�
T (`) = #

�

n 2 Z : Tn 2 [0,a�T ], Tn+1 � Tn � a�`
 

.

Next, we set

⌧n = a�T � T�n
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and we introduce n0 such that ⌧n0 < 0 < ⌧n0+1. We put

eTn = ⌧n0+n.

Then ( eTn)n2Z is also a SR(µS)-process (see subsection 2.1.1). We have

R�
T (`) = #

�

n 2 Z : a�T � Tn 2 [0,a�T ], (a�T � Tn) � (a�T � Tn+1) � a�`
 

= #
�

n 2 Z : eT�n�n0 2 [0,a�T ], eT�n�n0 � eT�n�1�n0 � a�`
 

= #
�

n 2 Z : eTn 2 [0,a�T ], eTn � eTn�1 � a�T
 

= #
�

n � 1 : eTn 2 [0,a�T ], eTn � eTn�1 � a�`
 

=: eS�
T (`).

We used that eT0 < 0 < eT1 by construction. But eS�
T (`) is the number of delays with

length greater than a�` that end in [0,a�T ], for the SR(µS)-process ( eTn)n2Z. Thus
exactly as in the proof of Lemma 3.3.2 (steps 1 and 2), we get

E
⇥

eS�
T (`)

⇤

= m�1
S a�TµS

�

(a�`,1)
�

,

so that

E
⇥

R�
T (`)

⇤

= m�1
S a�TµS

�

(a�`,1)
�

.

Finally, Lemma 3.5.1 implies that E[R�
T (`)] = o(�a�).

3.5.2. Coupling of seeds. — We aim here to couple the Poisson measure ⇡S(dx)
used to build the LFF(0)-process with a family of SR(µS)-processes, in such a way
that roughly:

. if ⇡S(i�) > 0, then the first seed never falls on i;

. if ⇡S(i�) = 0, then seeds fall almost continuously on i.

The precise statement is as follows.

Proposition 3.5.3. — Let A > 0, T > 0, � > 0 be fixed. For any � 2 (0, 1], it is
possible to find a coupling between a Poisson measure ⇡S on R with intensity measure
dx and a family (NS

t (i))t�0,i2Z of SR(µS)-processes in such a way that for

⌦S
A,T,�(�) =

\

i2I�
A

⇣n

⇡S(i�) = 0, inf
t2[0,T��]

[NS
a�(t+�)(i) � NS

a�t
(i)] > 0

o

[
�

⇡S(i�) = 1, NS
a�T

(i) = 0
 

⌘

,

one has lim�!0 Pr[⌦S
A,T,�(�)] = 1.

Proof. — We split the proof in several steps. As usual, it su�ces to build ⇡S on
B� =

S

i2I�
A

i� ' [�A, A] and to build NS
t (i) for t 2 [0,a�T ] and i 2 I�A.
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Step 1. — Denote by (NS
t )t�0 a SR(µS)-process and by (Tn)n�1 its jump instants.

Recall the notation of Lemma 3.5.2. Then we observe that
�

NS
a�T

= 0} = {T1 > a�T
 

,
�

inf
t2[0,T��]

[NS
a�(t+�) � NS

a�t
] > 0

 

=
�

T1 < a��, R
�
T (�) = 0

 

.

These two events are furthermore disjoint. By Lemma 3.5.2, we deduce that for some
functions "T (�) and "T,�(�) tending to 0 when �! 0

Pr
⇥

inf
t2[0,T��]

[NS
a�(t+�) � NS

a�t
] > 0

⇤

� 1 � Pr
⇥

T1 > a��
⇤

� E
⇥

R�
T (�)

⇤

� 1 � �a�

�

1 + "T,�(�)
�

and pT (�) := Pr[NS
a�T

= 0] = Pr[T1 > a�T ] = �a�(1 + "T (�)).

Step 2. — Next, we prove that it is possible to couple a family (Z�
i )i2I�

A
of i.i.d.

Poisson-distributed random variables with parameter |i�| = 1/n� and a family of
( eZ�

i )i2I�
A

of i.i.d. Bernoulli random variables with parameter pT (�) (see step 1) in
such a way that for

e⌦T,A(�) =
�

8i 2 I�A, Z�
i = eZ�

i 2 {0, 1}
 

,

there holds lim�!0 Pr[e⌦T,A(�)] = 1. As usual, this follows from Lemma 5.1.3 (ii) and
relies on the straightforward computations (here the function "T changes from line
to line)

Pr[Z�
i = 0] ^ Pr[ eZ�

i = 0] = (e�1/n�) ^
�

1 � pT (�)
�

� 1 � �a�

�

1 + "T (�)
�

,

recall that n� ⇠ 1/(�a�), and

Pr[Z�
i = 1] ^ Pr[ eZ�

i = 1] = (e�1/n�/n�) ^ pT (�) � �a�

�

1 � "T (�)
�

from which

Pr
⇥

e⌦T,A(�)
⇤

�
⇥

1 � �a�(1 + "T (�)) + �a�(1 � "T (�))
⇤|I�

A| �
⇥

1 � �a�"T (�)
⇤|I�

A|
.

This last quantity tends to 1 as �! 0, because |I�A| ⇠ 2A/(�a�).

Step 3. — We finally build the complete coupling.

(a) Consider (Z�
i , eZ�

i )i2I�
A

as in step 2.

(b) For each i 2 I�A such that Z�
i > 0, pick some i.i.d. random variables

(Xi,�
1 , . . . , Xi,�

Z�
i
) uniformly distributed in i�. Then ⇡S =

P

i2I�
A

PZ�
i

k=1 �Xi,�
k

is

a Poisson measure with intensity measure dx on B� =
S

i2I�
A

i�.

(c) For each i 2 I�A such that eZ�
i = 1, set NS

a�T
(i) = 0. For each i 2 I�A such that

eZ�
i = 0, pick (NS

t (i))t2[0,a�T ] conditionally on NS
a�T

(i) 6= 0. This defines a

family of i.i.d. SR(µS) processes on [0,a�T ] (because Pr[ eZ�
i = 1] = pT (�) =

Pr[NS
a�T

(i) = 0]).
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Step 4. — With this coupling, we have e⌦T,A(�) \ ⌦S

A,T,�(�) ⇢ ⌦S
A,T,�(�), where

⌦
S

A,T,�(�) =
\

i2I�
A

�

inf
t2[0,T��]

[NS
a�(t+�)(i) � NS

a�t
(i)] > 0 or NS

a�T
(i) = 0

�

.

It thus only remains to check that lim�!0 Pr[⌦
S

A,T,�(�)] = 1. But using step 1 and

recalling that |I�A| ⇠ 2A/(�a�), we get

Pr
⇥

⌦
S

A,T,�(�)
⇤

�
⇥

1 � �a�(1 + "T,�(�)) + �a�(1 + "T (�))
⇤|I�

A|
,

which tends to 1 as �! 0, as usual, since |I�A| ⇠ 2A/(�a�).

3.5.3. Convergence. — We now prove the convergence result in the case � = 0.

Proof of Theorem 2.6.2. — We fix T > 0, x1 < · · · < xp and t1, . . . , tp 2 (0, T ]. We
introduce B > 0 such that �B < x1 < xp < B. We fix " > 0 and a > 0. Our aim is
to check that for � > 0 small enough, there exists a coupling between a FF(µS , µ�

M )-
process (⌘�t (i))t�0,i2Z and a LFF(0)-process (Yt(x))t�0,x2R such that, recalling (2.2.3)
and Proposition 2.6.1, there holds

Pr
h

p
X

k=1

�T
�

D�(xk), D(xk)
�

+
p
X

k=1

�
�

D�
tk

(xk), Dtk(xk)
�

� a
i

 ".(3.5.1)

This will conclude the proof.

Step 1. — Consider two independent Poisson measures ⇡S(dx) and ⇡M (dt, dx)
with intensity measures dx and dtdx. First, we consider A > B large enough, in
such a way that for

⌦S,1
A =

�

⇡S([�A,�B]) > 0,⇡S([B, A]) > 0
 

,

there holds Pr(⌦S,1
A ) � 1 � 1

4". This fixes the value of A. Next we call

XS =
�

x 2 [�A, A],⇡S({x}) > 0
 

,

TM =
�

t 2 [0, T ] : ⇡M ({t}⇥ [�A, A]) > 0
 

[ {0},
XM =

�

x 2 [�A, A],⇡M ([0, T ] ⇥ {x}) > 0
 

.

Classical results about Poisson measures allow us to choose K > 0 (large) and c > 0
(small) in such a way that for

⌦K,c =
�

|TM | + |XS |  K, min
t2TM

k=1,...,p

|t � tk| > c, min
x,y2XS[XM

x 6=y

|x � y| > c,

min
x2XS[XM
k=1,...,p

|x � xk| > c
 

,

there holds Pr [⌦K,c] � 1 � 1
4".
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Step 2. — Next, we know from Proposition 3.2.1 that for all � > 0 small enough,
it is possible to couple a family of i.i.d. SR(µ�

M )-processes (NM,�
t (i))t�0,i2Z} with ⇡M

in such a way that for

⌦M
A,T (�) :=

�

8t 2 [0, T ], 8i 2 I�A, �NM,�
a�t

(i) 6= 0 i↵ ⇡M ({t}⇥ i�) 6= 0
 

,

there holds Pr[⌦M
A,T (�)] � 1 � 1

4". We now fix � > 0 such that

� < c/4 and � < a/(4AKp).

Proposition 3.5.3 tells us how to couple, for all � > 0 small enough, a family of i.i.d.
SR(µS)-processes (NS

t (i))t�0,i2Z with ⇡S in such a way that for

⌦S
A,T,�(�) =

\

i2I�
A

⇣

�

⇡S(i�) = 0, inf
t2[0,T��]

[NS
a�(t+�)(i) � NS

a�t
(i)] > 0

 

[
�

⇡S(i�) = 1, NS
a�T

(i) = 0
 

⌘

,

there holds Pr[⌦S
A,T,�(�)] � 1 � 1

4".

Step 3. — We consider ⇡M , ⇡S , (NS
t (i))t�0,i2Z} and (NM,�

t (i))t�0,i2Z} coupled as
in step 2. Then we build the corresponding FF(µS , µ�

M )-process (⌘�t (i))t�0,i2Z and
the associated rescaled clusters (D�

t (x))t�0,x2R, see (2.2.3) and we build the LFF(0)-
process associated to ⇡S and the corresponding clusters (Dt(x))t�0,x2R. We will work
on the event

⌦� = ⌦S,1
A \ ⌦K,c \ ⌦M

A,T (�) \ ⌦S
A,T,�(�).

We know that for all � > 0 small enough, Pr[⌦�] � 1 � ". We introduce

S =
[

t2TM

[t, t + �].

We will prove in the next step that on ⌦�, for all � > 0 small enough, for all
k 2 {1, . . . , p}, for all t 2 [0, T ] \ S,

�
�

D�
t (xk), Dt(xk)

�

 4/n� + 2A11{t2S},(3.5.2)

which will imply that

�T
�

D�(xk), D(xk)
�

 4T/n� + 2A|S|.

This will conclude the proof, since for k = 1, . . . , p, tk /2 S (recall ⌦K,c and that � < c)
and since the Lebesgue measure of S is smaller than K� (recall ⌦K,c and that � < c).
Thus (3.5.2) implies, since � < a/(4AKp),

p
X

k=1

�T
�

D�(xk), D(xk)
�

+
p
X

k=1

�
�

D�
tk

(xk), Dtk(xk)
�

 p [4T/n� + 2AK� + 4/n�]

 a/2 + 4p(T + 1)/n�,

which is smaller than a for all � > 0 small enough. Thus (3.5.1) holds for all � > 0
small enough.
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Step 4. — It remains to check (3.5.2). In the whole step, we work on ⌦�. Let thus
k 2 {1, . . . , p} be fixed. Consider the first marks �g,�d of ⇡S on the left and right

of xk. Then by definition, we have Dt(xk) = [�g,�d] for all t 2 [0, T ]. By ⌦S,1
A and

since xk 2 (�B, B), we know that �A < �g < �d < A. Define

g� = bn��gc and d� = bn��dc.

Due to ⌦S
A,T,�(�) and since ⇡S({�g}) = ⇡S({�d}) = 1 and ⇡S((�g,�d)) = 0 by

construction, we know that

(i) NS
a�T

(g�) = NS
a�T

(d�) = 0 (because �g 2 (g�)� and �d 2 (d�)�);

(ii) for all i 2 [[g� + 1, d� � 1]], inft2[0,T��][N
S
a�(t+�)(i) � NS

a�t
(i)] > 0 (because

i� ⇢ (�g,�d)).

Observe now that for � > 0 small enough (it su�ces that 1/n� < c), there holds
g� < bxkn�c < d� (use that �g,�d 2 XS and that �g < xk < �d so that due to ⌦K,c,
�g + c < xk < �d � c).

Point (i) implies that ⌘�a�t
(g�) = ⌘�a�t

(d�) = 0 for all t 2 [0,a�T ]. Consequently,
for all t 2 [0, T ], there holds C(⌘�a�t

, bxkn�c) ⇢ [[g� + 1, d� � 1]]. This implies that
D�

t (xk) ⇢ [(g� + 1)/n�, (d� � 1)/n�] ⇢ [�g,�d]. Recalling that Dt(xk) = [�g,�d] and
that �A < �g < �d < A, we deduce that

�
�

Dt(xk), D
�
t (xk)

�

 2A for all t 2 [0, T ].

Another consequence is that the matches falling outside [[g�, d�]] (and a fortiori
outside I�A) have no influence on bxkn�c during [0,a�T ].

It only remains to check that for t 2 [0, T ] \ S, if � > 0 is small enough,
�(Dt(xk), D�

t (xk))  4/n�. We thus fix t 2 [0, T ] \ S and consider

t0 = max{s 2 TM : s < t}.

Then by definition of S, t � t0 > �. Consequently, point (ii) guarantees us that

8i 2 [[g� + 1, d� � 1]], NS
a�t

� NS
a�t0

> 0.

A seed falls on each of these sites during [a�t0,a�t]. Furthermore, there are no matches
falling on [[g� + 1, d� � 1]] during [a�t0,a�t], by definition of t0 and due to ⌦M

A,T (�).

Consequently, we have ⌘�a�t
(i) = 1 for all i 2 [[g� + 1, d� � 1]]. All this implies that

C(⌘�a�t
, bxkn�c) = [[g� + 1, d� � 1]], whence

D�
t (xk) =

⇥

(g� + 1)/n�, (d� � 1)/n�

⇤

=
⇥

(bn��gc + 1)/n�, (bn��dc � 1)/n�

⇤

.

Recalling that Dt(xk) = [�g,�d], we easily conclude.
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3.6. Well-posedness of the limit process when � 2 {1, BS}

The aim of this section is to prove Theorems 2.3.2 and 2.4.3, and to localize the limit
processes. All the results below have already been proved in [15] for the LFF(1)-
process. We provide here a consequently simpler proof, that allows us to treat simul-
taneously the cases � = BS and � = 1.

Remark 3.6.1. — Under (HS(1)), we put ✓u = �u and FS(u, v) = u for all
u 2 [0, 1], all v 2 [0, 1]. Using this function FS, the LFF(BS)-process is nothing but
the LFF(1)-process.

We consider a Poisson measure ⇡M (dt, dx, dv) on [0,1)⇥R⇥ [0, 1] with intensity
measure dtdxdv and abusively write ⇡M (dt, dx) =

R

v2[0,1] ⇡M (dt, dx, dv), which is

a Poisson measure on [0,1) ⇥ R with intensity measure dtdx.

Definition 3.6.2. — Let � 2 {1, BS}. If � = 1, consider FS as in Re-
mark 3.6.1. If � = BS, consider FS as in Definition 2.4.1. Let A > 0 be fixed.
A R+ ⇥ I ⇥R+-valued process (ZA

t (x), DA
t (x), HA

t (x))t�0,x2[�A,A] such that a.s., for
all x 2 [�A, A], (ZA

t (x), HA
t (x))t�0 is càdlàg, is called a LFFA(�)-process if a.s., for

all t � 0, all x 2 [�A, A],

ZA
t (x) =

Z t

0
11{ZA

s (x)<1}ds �
Z t

0

Z

[�A,A]
11{ZA

s�(x)=1,y2DA
s�(x)}⇡M (ds, dy),

HA
t (x) =

Z t

0

Z 1

0
FS

�

ZA
s�(x), v

�

11{ZA
s�(x)<1}⇡M (ds ⇥ {x}⇥ dv) �

Z t

0
11{HA

s (x)>0}ds,

where DA
t (x) = [LA

t (x), RA
t (x)], with

(

LA
t (x) = (�A) _ sup{y 2 [�A, x]; ZA

t (y) < 1 or HA
t (y) > 0}

RA
t (x) = A ^ inf{y 2 [x, A]; ZA

t (y) < 1 or HA
t (y) > 0}

(3.6.1)

and where DA
t�(x) is defined similarly.

Observe that for � 2 {1, BS}, for any A > 0, the LFFA(�)-process is obviously
well and uniquely defined and can be built as follows.

Algorithm 3.6.3. — Consider the marks (Tk, Xk, Vk)k=1,...,n of ⇡M in [0, T ] ⇥
[�A, A] ⇥ [0, 1], ordered chronologically and set T0 = 0.

Step 0. — Put ZA
0 (x) = HA

0 (x) = 0 and DA
0 (x) = {x} for all x 2 [�A, A]. Assume

that for some k 2 {0, . . . , n � 1},
�

ZA
t (x), DA

t (x), HA
t (x)

�

t2[0,Tk],x2[�A,A]

has been built.

Step k + 1. — Then for t 2 (Tk, Tk+1) and x 2 [�A, A], put

ZA
t (x) = min(1, ZA

Tk
(x) + t � Tk),
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set HA
t (x) = max(0, HA

Tk
(x) � t + Tk) and then define DA

t (x) as in (3.6.1). Finally,
build (ZA

Tk+1
(x), DA

Tk+1
(x), HA

Tk+1
(x)) as follows.

. If ZA
Tk+1�(Xk+1) = 1, set HA

Tk+1
(x) = HA

Tk+1�(x) for all x 2 [�A, A] and

consider [a, b] := DA
Tk+1�(Xk+1). Set

ZA
Tk+1

(x) =

(

0 for all x 2 (a, b),

ZA
Tk+1�(x) for all x 2 [�A, A] \ [a, b].

ZA
Tk+1

(a) =

(

0 if ZA
Tk+1�(a) = 1,

ZA
Tk+1�(a) if ZA

Tk+1�(a) < 1,

ZA
Tk+1

(b) =

(

0 if ZA
Tk+1�(b) = 1,

ZA
Tk+1�(b) if ZA

Tk+1�(b) < 1.

. If ZA
Tk+1�(Xk+1) < 1, set

HA
Tk+1

(Xk+1) = FS

�

ZA
Tk+1�(Xk+1), Vk+1

�

,

put ZA
Tk+1

(Xk+1) = ZA
Tk+1�(Xk+1) and

�

ZA
Tk+1

(x), HA
Tk+1

(x)
�

=
�

ZA
Tk+1�(x), HA

Tk+1�(x)
�

for all x 2 [�A, A] \ {Xk+1}.
. Using the values of (ZA

Tk+1
(x), HA

Tk+1
(x))x2[�A,A], compute (DA

Tk+1
(x))x2[�A,A]

as in (3.6.1).

We now state a refined version of Theorems 2.3.2 and 2.4.3.

Proposition 3.6.4. — Let � 2 {1, BS}. Let ⇡M be a Poisson measure on
[0,1) ⇥ R⇥ [0, 1] with intensity measure dtdxdv.

(i) There exists a unique LFF(�)-process (Zt(x), Dt(x), Ht(x))t�0,x2R.

(ii) It can be perfectly simulated on [0, T ] ⇥ [�n, n] for any T > 0, any n > 0.

(iii) For A > 0, let (ZA
t (x), DA

t (x), HA
t (x))t�0,x2[�A,A] be the unique LFFA(�)-

process. There holds

Pr
⇥

(Zt(x), Dt(x), Ht(x))t2[0,T ],x2[�A/2,A/2](3.6.2)

= (ZA
t (x), DA

t (x), HA
t (x))t2[0,T ],x2[�A/2,A/2]

⇤

� 1 � CT e�↵TA,

for some constants ↵T > 0 and CT > 0 not depending on A > 0.

To prove this result, we need a lower-bound of the length of the barriers.

Lemma 3.6.5. — Let � 2 {1, BS}. If � = 1, consider FS as in Remark 3.6.1.
If � = BS, consider FS as in Definition 2.4.1. There exists v0 2 [0, 1) such that for
all z 2 [ 34 , 1), all v 2 [v0, 1], F (z, v) � 1

2 .
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Proof. — If � = 1, the result is obvious with v0 = 0, since FS(z, v) = z � 1
2 for all

z 2 [ 12 , 1], v 2 [0, 1]. Consider now the case � = BS. First observe that

gS(t, s)  Pr
⇥

NS
TS(t+s) � NS

TSt > 0
⇤

= ⌫S
�

[0, TSs]
�

.

Hence for all z 2 [ 34 , 1),

✓z
�

[0, 1
2 )
�

 ⌫S
�

[ 34TS , TS ]
�

+
⌫S([ 34TS , TS ])2

⌫S([ 12TS , TS ])2
⌫S
�

[0, 1
2TS ]

�

 ⌫S
�

[0, 1
2TS ] [ [ 34TS , TS ]

�

=: v0 < 1,

since supp ⌫S = [0, TS ]. We deduce that for z 2 [ 34 , 1],
Z 1

0
dv11{FS(z,v)< 1

2}
= ✓z

�

[0, 1
2 )
�

 v0.

Recalling that v 7! FS(z, v) is nondecreasing, we deduce that FS(z, v) � 1
2 for

v 2 [v0, 1].

Proof of Proposition 3.6.4. — We split the proof into steps. We work on [0, T ].

Step 1. — We observe that for a mark (⌧, X, V ) of ⇡M with X 2 [�A, A] and
V � v0 (see Lemma 3.6.5), we have HA

t (X) > 0 or ZA
t (X) < 1 for all t 2 [⌧, ⌧ + 1

4 ]
(and the same result applies to the LFF(�)-process if it exists).

Indeed, assume first that ZA
⌧�(X) 2 [0, 3

4 ). Then for t 2 [⌧, ⌧ + 1
4 ],

ZA
t (X) = ZA

⌧�(X) + t � ⌧ < 1.

Assume next that ZA
⌧�(X) 2 [ 34 , 1). Then

H⌧ (X) = FS(ZA
⌧�(X), V ) � 1

2

due to Lemma 3.6.5, so that for t 2 [⌧, ⌧ + 1
2 ) � [⌧, ⌧ + 1

4 ]

Ht(X) = H⌧ (X) � t + ⌧ > 0.

If finally ZA
⌧�(X) = 1, then ZA

⌧ (X) = 0, whence, for t 2 [⌧, ⌧ + 1) � [⌧, ⌧ + 1
4 ]

ZA
t (X) = t � ⌧ < 1.

Step 2. — For a 2 R, we consider the event ⌦a defined as follows: for
{(Tk, Xk, Vk)}k=1,...,n the marks of ⇡M restricted to [0, T ] ⇥ [a, a + 1) ⇥ [v0, 1]
ordered chronologically, for T0 = 0, Tn+1 = T , we put

⌦a =
�

max
i=0,...,n

(Ti+1 � Ti) < 1
4

 

.

We immediately deduce from step 1 that for any a 2 R, any A > |a| + 1,

⌦a ⇢
�

8 t 2 [0, T ], 9 x 2 (a, a + 1), HA
t (x) > 0 or ZA

t (x) < 1
 

.

Thus on ⌦a, clusters on the left of a cannot be connected to clusters on the right of
a + 1 during [0, T ]. Hence matches falling at the right of a + 1 (resp. on the left of a)
do not a↵ect the zone (�1, a) (resp. (a + 1,1)) during [0, T ].
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Step 3. — Obviously, qT := Pr(⌦a) is positive and does not depend on a. Fur-
thermore, ⌦a is independent of ⌦b for all a, b 2 Z with a 6= b. Hence there are a.s.
infinitely many a 2 Z such that ⌦a is realized.

Then it is routine to deduce the well-posedness of the LFF(�)-process. The perfect
simulation algorithm on a finite-box [0, T ] ⇥ [�n, n] is also easy: simulate ⇡M on
[0, T ]⇥ [a1, a2] in such a way that ⌦a1 \⌦a2 is realized and that a1+1 < �n < n < a2.
Then apply the same rules as for the LFFA(�)-process. This will give the true LFF(�)-
process inside [a1 + 1, a2] � [�n, n], because matches falling outside [a1, a2 + 1] have
no e↵ect on the process in the box [a1 + 1, a2] during [0, T ].

Finally, we can clearly bound from below the left hand side of (3.6.2) by

Pr
h⇣

[

a2[�A,� 1
2A�1]\Z

⌦a

⌘

\
⇣

[

a2[ 12A,A�1]\Z
⌦a

⌘i

� 1 � 2 Pr[⌦c
0]

bAc�b 1
2Ac�2

� 1 � 2(1 � qT )
1
2A�4,

whence (3.6.2) with CT = 2/(1 � qT )4 and ↵T = � 1
2 log(1 � qT ).

3.7. Localization of the discrete processes when � 2 {1, BS}

We recall that a�, n� and m� are defined in (2.2.1), (2.2.2) and (2.2.4). For A > 0
and i 2 Z, we set

A� = bAn�c, I�A = [[�A�, A�]], i� =
⇥

i/n�, (i + 1)/n�

�

.

For ⌘ 2 {0, 1}I�
A and i 2 I�A, we define the occupied connected component

around i as

CA(⌘, i) =

⇢

? if ⌘(i) = 0,
[[`A(⌘, i), rA(⌘, i)]] if ⌘(i) = 1,

where

`A(⌘, i) = (�A�) _
�

sup{k < i : ⌘(k) = 0} + 1
�

,

rA(⌘, i) = A� ^
�

inf{k > i : ⌘(k) = 0}� 1
�

.

Definition 3.7.1. — Assume (HM ) and (HS(�)) with � 2 {1, BS}. Let
� 2 (0, 1] and A > 0 be fixed. For each i 2 I�A, we consider a SR(µS)-process

(NS
t (i))t�0 and a SR(µ�

M )-process (NM,�
t (i))t�0, all these processes being indepen-

dent. Consider a {0, 1}-valued process (⌘�,At (i))i2I�
A,t�0 such that a.s., for all i 2 I�A,

(⌘�,At (i))t�0 is càdlàg. We say that (⌘�,At (i))i2I�
A,t�0 is a FFA(µS , µ�

M )-process if

a.s., for all i 2 I�A, all t � 0,

⌘�,At (i) =

Z t

0
11{⌘�,A

s� (i)=0}dNS
s (i) �

X

j2I�
A

Z t

0
11{j2CA(⌘�,A

s� ,i)}dNM,�
s (j).
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For x 2 [�A, A] and t � 0, we introduce

D�,A
t (x) =

1

n�
CA

�

⌘�,Aa�t
, bn�xc

�

⇢ [�A�/n�, A�/n�] ' [�A, A],(3.7.1)

K�,A
t (x) =

|{i 2 [[bn�xc �m�, bn�xc + m�]] \ I�A : ⌘�,Aa�t
(x) = 1}|

|[[bn�xc �m�, bn�xc + m�]] \ I�A|
2 [0, 1],

Z�,A
t (x) =

 S(K�,A
t (x))

a�
^ 1 2 [0, 1].(3.7.2)

We generalize [15, Proposition 11], with a consequently less intricate proof.

Proposition 3.7.2. — Assume (HM ) and (HS(�)), for some � 2 {1, BS}. Let
T > 0 and � 2 (0, 1). For each i 2 Z, we consider a SR(µS)-process (NS

t (i))t�0

and a SR(µ�
M )-process (NM,�

t (i))t�0, all these processes being independent. Let
(⌘�t (i))t�0,i2Z be the corresponding FF(µS , µ�

M )-process, and for each A > 0, let

(⌘�,At (i))t�0,i2I�
A

be the corresponding FFA(µS , µ�
M )-process. Recall (2.2.3)–(2.2.5)

and (3.7.1)-(3.7.2). There are some constants ↵T > 0 and CT > 0 such that for
all A � 1, all � 2 (0, 1] small enough,

Pr
h

(⌘�t (i))t2[0,a�T ],i2I�
A/2

=
�

⌘�,At (i)
�

t2[0,a�T ],i2I�
A/2

,

�

Z�
t (x), D�

t (x)
�

t2[0,T ],x2[� 1
2A, 12A]

=
�

Z�,A
t (x), D�,A

t (x)
�

t2[0,T ],x2[� 1
2A, 12A]

i

� 1 � CT e�↵TA.

Proof in the case where � = 1. — It of course su�ces to prove the result for all A

large enough (we will assume that A > 8T ). We consider the true FF(µS , µ�
M )-process

(⌘�t (i))t�0,i2Z. For a 2 R, we introduce

J�
a :=

⇥⇥

ban�c, b(a + 1)n�c � 1
⇤⇤

.

Step 1. — We show here that for all a 2 R, there exists an event ⌦�
a,0, depending

only on (NS
s (i), NM,�

s (i))i2J�
a ,s2[0,3a�/4] such that

(i) on ⌦�
a,0, a.s., there is i 2 J�

a such that ⌘�a�s
(i) = 0 for all s 2 [0, 3

4 ];

(ii) lim�!0 Pr[⌦�
a,0] = 1.

This is very easy: consider simply ⌦�
a,0 = {9 i 2 J�

a , NS
3a�/4

(i) = 0}. Clearly,

point (i) is satisfied, since there is a site of J�
a on which no seed falls during [0, 3

4a�].
Since |J�

a | = n� ⇠ 1/(�a�) = 1/⌫S((a�,1)), we deduce from (HS(1)) that

Pr[⌦�
a,0] = 1 � ⌫S

�

(0, 3
4a�)

�n� = 1 �
�

1 � ⌫S(( 34a�,1))
�n�

' 1 � e�⌫S(( 3
4a�,1))/⌫S((a�,1)) �! 1

as �! 0, whence (ii).

Step 2. — We now check that for all a 2 R, all t � 1
2 , there exists an event ⌦�

a,t,

depending only on (NS
s (i), NM,�

s (i))i2J�
a ,s2[(t� 1

2 )a�,(t+
1
4 )a�] such that
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Figure 7. The event ⌦�

a,t

.

A match falls on i
M

at time t
M

, no seed fall on j
g

and j
d

during [a
�

(t � 1
2
),a

�

(t + 1
4
)].

All the sites of [[i
M

� k
�

, i
M

+ k
�

]] receive at least one seed during [a
�

(t� 1
2
),a

�

(t� 1
12 )].

Finally, there is at least one site of [[i
M

� k
�

, i
M

+ k
�

]] on which no seed falls during

[a
�

(t� 1
12

),a
�

(t+ 1
4
)].

(i) on ⌦�
a,t, a.s., there is i 2 J�

a such that ⌘�a�s
(i) = 0 for all s 2 [t, t + 1

4 ];

(ii) q� := Pr[⌦�
a,t] does not depend on t, a and q := lim inf�!0 q� > 0.

This is much more delicate. We put

k� =
⌅

1/⌫S(( 38a�,1))
⇧

.

Observe that due to (HS(1)), k� ⌧ n� = b1/⌫S((a�,1))c

We introduce the event ⌦�
a,t on which (see Figure 7):

(a) we have �NM,�
tM (iM ) > 0 for some iM 2 [[b(a+ 1

3 )n�c, b(a+ 2
3 )n�c]], some tM in

[(t� 1
12 )a�, ta�] and this is the only match falling in J�

a during [(t� 1
2 )a�, ta�];

(b) there are jg 2 [[ban�c, b(a + 1
4 )n�c]] and jd 2 [[b(a + 3

4 )n�c, b(a + 1)n� � 1c]]
such that NS

a�(t+
1
4 )

(jg) � NS
a�(t� 1

2 )
(jg) = NS

a�(t+
1
4 )

(jd) � NS
a�(t� 1

2 )
(jd) = 0;

(c) for all i 2 [[iM � k�, iM + k�]], NS
a�(t� 1

12 )
(i) � NS

a�(t� 1
2 )

(i) > 0;

(d) there is j0 2 [[iM � k�, iM + k�]] such that NS
a�(t+

1
4 )

(j0) � NS
a�(t� 1

12 )
(j0) = 0.

We first prove point (i), considering two cases.
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. If the zone [[iM � k�, iM + k�]] is completely occupied at time tM�, then it
burns at time tM and since no seed falls on j0, which belongs to this zone, during
[tM ,a�(t + 1

4 )] � [a�t,a�(t + 1
4 )], we deduce that ⌘�a�s

(j0) = 0 for all s 2 [t, t + 1
4 ].

. Assume now that there is i0 2 [[iM � k�, iM + k�]] that is vacant at time tM�.
Recall that there is no fire in J�

a during [a�(t � 1
2 ), tM ) and that on each site of

[[iM�k�, iM+k�]], at least one seed falls during [a�(t� 1
2 ),a�(t� 1

12 )] ⇢ [a�(t� 1
2 ), tM ).

Then necessarily, a fire starting at some i0M /2 J�
a at some time t0M 2 [a�(t � 1

2 ), tM )
has made vacant i0. Assume e.g. that i0M < ban�c and observe that i0M < jg < i0.
The fire (t0M , i0M ) has then also necessarily made vacant jg. Since no seed falls on jg
during [a�(t� 1

2 ),a�(t+ 1
4 )], we deduce that jg remains vacant during [t0M ,a�(t+ 1

4 )] �
[a�t,a�(t + 1

4 )].

We now prove (ii). The quantity Pr[⌦�
a,t] does obviously not depend on a 2 R nor

on t � 1
2 by invariance by spatial translation and by time stationarity. We infer from

Proposition 3.2.1 that for ⇡M (ds, dx) a Poisson measure on [0,1)⇥R with intensity
measure dsdx, the probability of (a) tends, as �! 0, to

q := Pr
⇣

⇡M
�

[t � 1
12 , t] ⇥ [a + 1

3 , a + 2
3 ]
�

= 1,

⇡M
�

([t � 1
2 , t] ⇥ [a, a + 1]

�

\
�

[t � 1
12 , t] ⇥ [a + 1

3 , a + 2
3 ]
�

) = 0
⌘

,

which is clearly positive. Next, the probability of (b) tends to 1. Indeed, treating e.g.
the case of jg, there holds, recalling that n� ' 1/⌫S((a�,1)),

Pr
h

9 j 2 [[ban�c, b(a + 1
4 )n�c]], NS

a�(t+
1
4 )

(j) = NS
a�(t� 1

2 )
(j)

i

' 1 � ⌫S
�

(0, 3
4a�)

�

1
4n�

' 1 � e�⌫S(( 3
4a�/4,1))/[4⌫S((a�,1))],

which tends to 1 as � ! 0 due to (HS(1)). The probability of (c) (conditionally
on (a)) also tends to 1. Indeed, its value is nothing but

⌫S((0, 5
12a�))2k�+1 ' e�2⌫S(( 5

12a�,1))/⌫S(( 3
8a�,1))

which tends to 1 due to (HS(1)), since 5
12 > 3

8 . Finally, the probability of (d)
(conditionally on (a)) also tends to 1, since it equals

1 �
�

⌫S
�

(0, 1
3a�)

��2k�+1 ' 1 � e�2⌫S(( 1
3a�,1))/⌫S(( 3

8a�,1)),

which tends to 1 due to (HS(1)), since 1
3 < 3

8 .

Step 3. — Let now T > 0 be fixed. Set K = b4T c. For a 2 R, we set

e⌦�
a,T = ⌦�

a,0 \
K
\

k=2

⌦�
a+(k�1), 14k

.

Then it is clear from steps 1 and 2 (observe that ( 14K + 1
4 � T )) that
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(i) on e⌦�
a,T , for all t 2 [0, T ] there is i 2 [[ban�c, [[b(a + K)n� � 1c]] such that

⌘�a�t
(i) = 0;

(ii) p� = Pr[e⌦�
a,T ] does not depend on a and p := lim inf�!0 p� � qK�1 > 0;

(iii) e⌦�
a,T depends only on (NS

a�t
(i), NM,�

a�t
(i))t2[0,T+1],i2[[ban�c,b(a+K)n�c�1]].

Step 4. — We deduce that for all a 2 Z, conditionally on ⌦�
a,T , clusters on the

left of ban�c � 1 are never connected (during [0,a�T ]) to clusters on the right of
b(a + K)n�c. Thus on ⌦�

a,T , fires starting on the left of ban�c � 1 do not a↵ect the
zone [b(a+K)n�c,1)\Z and fires starting on the right of b(a+K)n�c do not a↵ect
the zone (�1, ban�c � 1] \ Z.

We deduce that for A � 2K, the FFA(µS , µ�
M )-process and the FF(µS , µ�

M )-process
coincide on I�A/2 during [0,a�T ] as soon as there are a1 2 [�A,� 1

2A � K] and

a2 2 [ 12A, A � K] with ⌦�
a1,T

\ ⌦�
a2,T

realized. Furthermore, ⌦�
a,T is independent of

⌦�
b,T for all a, b 2 Z with |a � b| > K. Thus we can bound the probabilities of the

statement from below, for A � 2K and � > 0 small enough (so that Pr[⌦�
a,T ] � 1

2p),
by

1 � Pr
h

bA/(2K)c
\

`=1

(⌦�
b�Ac+`K,T )c

i

� Pr
h

bA/(2K)c
\

`=1

(⌦�
bA/2c+`K,T )c

i

� 1 � 2
�

1 � 1
2p
�bA/(2K)c � 1 � 2

�

1 � 1
2p
�A/(2K)�1

.

This concludes the proof: choose CT = 2/(1 � 1
2p) > 0 (p depends only on T ) and

↵T = � log(1 � 1
2p)/(2K) > 0.

When � = BS, the proof is similar, but consequently simpler.

Proof when � = BS. — Recall that a� = TS and consider the true FF(µS , µ�
M )-

process (⌘�t (i))t�0,i2Z. For a 2 R, let

J�
a =

⇥⇥

ban�c, b(a + 1)n�c � 1
⇤⇤

.

Step 1. — We show here that for all a 2 R, there exists an event ⌦�
a,0, depending

only on (NS
s (i), NM,�

s (i))i2J�
a ,s2[0, 34a�] such that

(i) on ⌦�
a,0, a.s., there is i 2 J�

a such that ⌘�a�s
(i) = 0 for all s 2 [0, 3

4 ];

(ii) lim�!0 Pr[⌦�
a,0] = 1.

This is done as in the case where � = 1. Consider simply

⌦�
a,0 =

�

9 i 2 J�
a , NS

3
4a�

(i) = 0
 

.

Clearly, (i) is satisfied. To check (ii), recall that |J�
a | = n� ! 1, whence

Pr[⌦�
a,0] = 1 � ⌫S

�

(0, 3
4TS)

�n� �! 1,

because ⌫S((0, 3
4TS)) < 1 (recall that supp ⌫S = [0, TS ]).
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Step 2. — We now check that for all a 2 R, all t � 1
2 , there exists an event ⌦�

a,t,

depending only on (NS
s (i), NM,�

s (i))i2J�
a ,s2[(t� 1

4 )a�,(t+
1
4 )a�] such that

(i) on ⌦�
a,t, a.s., there is i 2 J�

a such that ⌘�a�s
(i) = 0 for all s 2 [t, t + 1

4 ];

(ii) q� := Pr[⌦�
a,t] does not depend on t, a and q := lim inf�!0 q� > 0.

This is much easier than in the case where � = 1: simply set

⌦�
a,t =

�

9 i0 2 J�
a , NS

a�(t+
1
4 )

(i0) = NS
a�(t� 1

4 )
(i0), N

M,�
a�t

(i0) > NM,�

a�(t� 1
4 )

(i0)
 

.

Point (i) is obviously checked since no seed fall on i0 during [a�(t� 1
4 ),a�(t+ 1

4 )] and

a match falls on i0 during [a�(t� 1
4 ),a�t]. Next, Pr

�

⌦�
a,t

�

= 1� r
|J�

a |
� , where (for any

i 2 Z, any t � 1
4 )

r� : = Pr
⇥

NS
a�(t+

1
4 )

(i0) > NS
a�(t� 1

4 )
(i0) or NM,�

a�t
(i0) = NM,�

a�(t� 1
4 )

(i0)
⇤

= Pr
⇥

NS
1
2a�

(i) > 0 or NM
1
4a�

(i) = 0
⇤

= ⌫S
�

[0, 1
2TS ]

�

+ ⌫�M
�

( 14TS ,1)
�

� ⌫S
�

[0, 1
2TS ]

�

⌫�M
�

( 14TS ,1)
�

.

Due to (HM ),

⌫�M
�

( 14TS ,1)
�

= 1 � �

Z

1
4TS

0
µ1
M (�t,1)dt = 1 � � 1

4TS

�

1 + "(�)
�

,

for some function " such that lim�!0 "(�) = 0. Setting ↵ = ⌫S([0, 1
2TS ]) 2 (0, 1),

we deduce that

r� = ↵+ 1 � 1
4�TS

�

1 + "(�)
�

� ↵
�

1 � 1
4�TS(1 + "(�))

�

= 1 � 1
4�(1 � ↵)TS

�

1 + "(�)
�

.

Recalling that |J�
a | ' n� ' 1/(�TS), we finally conclude that

Pr
�

⌦�
a,t

�

' 1 � r
1/(�TS)
� ! 1 � e�

1
4 (1�↵) =: q > 0.

Steps 3 and 4 are exactly the same as when � = 1.

3.8. Localization of the results when � 2 {1, BS}

We recall that a�, n� are defined in (2.2.1) and (2.2.2). For A > 0 and i 2 Z, we
set as usual

A� = bAn�c, I�A = [[�A�, A�]], i� = [i/n�, (i + 1)/n�).

In the next sections, we will prove the following localized version of Theorems 2.3.3
and 2.4.4, separating the cases � = 1 and � = BS.

Proposition 3.8.1. — Let � 2 {1, BS}. Assume (HM ) and (HS(�)). Let A > 0
be fixed. Consider, for each � 2 (0, 1], the process (Z�,A

t (x), D�,A
t (x))t�0,x2[�A,A]

associated with the FFA(µS , µ�
M )-process and the LFFA(�)-process

�

ZA
t (x), DA

t (x), HA
t (x)

�

t�0,x2[�A,A]
.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2013



86 CHAPTER 3. PROOFS

(a) For any T > 0, any {x1, . . . , xp} ⇢ [�A, A], (Z�,A
t (xi), D

�,A
t (xi))t2[0,T ],i=1,...,p

goes in law to

�

ZA
t (xi), D

A
t (xi)

�

t2[0,T ],i=1,...,p
,

in D([0, T ],R ⇥ I [ {?})p, as � tends to 0. Here D([0,1),R ⇥ I [ {?}) is
endowed with the distance dT .

(b) For any {(t1, x1), . . . , (tp, xp)} ⇢ [0,1)⇥ [�A, A] (assume also that tk 6= 1 for

k = 1, . . . , p if � = 1), (Z�,A
ti (xi), D

�,A
ti (xi))i=1,...,p goes in law to

�

ZA
ti (xi), D

A
ti(xi)

�

i=1,...,p

in (R⇥ I [ {?})p. Here I [ {?} is endowed with �.

(c)-(i) Assume first that � = 1. For all t > 0,

⇣ S(1 � 1/|CA(⌘�,Aa�t
, 0)|)

a�
11{|CA(⌘�,A

a�t ,0)|�1}

⌘

^ 1

goes in law to ZA
t (0) as �! 0.

(c)-(ii) Assume next that � = BS. For any t � 0, any k 2 N, there holds

lim
�!0

Pr
⇥

|CA(⌘�,ATSt , 0)| = k
⇤

= E
⇥

qk(Z
A
t (0))

⇤

,

where qk(z) was defined, for k � 0 and z 2 [0, 1], in (2.4.2).

Assuming for a moment that this proposition holds true, we conclude the proofs
of Theorems 2.3.3 and 2.4.4.

Proof of Theorem 2.3.3. — Let us first prove (a). Consider a continuous bounded
functional  : D([0, T ],R⇥I[{?})p 7! R. We have to prove that lim�!0 G�( ) = 0,
where

G�( ) = E
⇥

 
�

(Z�
t (xi), D

�
t (xi))t2[0,T ],i=1,...,p

�⇤

� E
⇥

 
�

(Zt(xi), Dt(xi))t2[0,T ],i=1,...,p

�⇤

.
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Using now Propositions 3.6.4 and 3.7.2, we observe that for any A > 2 maxi=1,...,p |xi|,
for all � 2 (0, 1] small enough,
�

�G�( )
�

�  2k k1 Pr
h

�

Z�,A
t (x), D�,A

t (x)
�

t2[0,T ],x2[� 1
2A, 12A]

6=
�

Z�
t (x), D�

t (x)
�

t2[0,T ],x2[� 1
2A, 12A]

i

+ 2k k1 Pr
h

�

ZA
t (x), DA

t (x)
�

t2[0,T ],x2[� 1
2A, 12A]

6=
�

Zt(x), Dt(x)
�

t2[0,T ],x2[� 1
2A, 12A]

i

+
�

�

�

E
⇥

 
�

(Z�,A
t (xi), D

�,A
t (xi))t2[0,T ],i=1,...,p

�⇤

� E
⇥

 
�

(ZA
t (xi), D

A
t (xi))t2[0,T ],i=1,...,p

�⇤

�

�

�

 4k k1CT e�↵TA +
�

�

�

E
⇥

 
�

(Z�,A
t (xi), D

�,A
t (xi))t2[0,T ],i=1,...,p

�⇤

� E
⇥

 
�

(ZA
t (xi), D

A
t (xi))t2[0,T ],i=1,...,p

�⇤

�

�

�

.

Thus Proposition 3.8.1 (a) implies that lim sup�!0 |G�( )|  4k k1CT e�↵TA.
We conclude by making A tend to infinity.

Point (b) is checked similarly. The proof of (c) is also similar, since D�
t (0) =

D�,A
t (0) implies that C(⌘�a�t

, 0) = CA(⌘�,Aa�t
, 0).

Proof of Theorem 2.4.4. — It is deduced from Propositions 3.6.4, 3.7.2 and 3.8.1 ex-
actly as Theorem 2.3.3.

3.9. Convergence proof when � = BS

The aim of this section is to prove Proposition 3.8.1 in the case where � = BS and
this will conclude the proof of Theorem 2.4.4. In the whole section, we thus assume
(HM ) and (HS(BS)). The parameters A > 0 and T > 0 are fixed and we omit the
subscript/superscript A in the whole proof.

We recall that a�, n� and m� are defined in (2.2.1), (2.2.2) and (2.2.4). For A > 0
and i 2 Z, we set as usual

A� = bAn�c, I�A = [[�A�, A�]], i� =
⇥

i/n�, (i + 1)/n�

�

.

For [a, b] an interval of [�A, A] and � 2 (0, 1), we introduce, assuming �A < a < b < A,

(3.9.1)

8

>

<

>

:

[a, b]� = [[bn�a + m�c + 1, bn�b �m�c � 1]] ⇢ Z,

[�A, b]� = [[�A�, bn�b �m�c � 1]] ⇢ Z,

[a, A]� = [[bn�a + m�c + 1, A�]] ⇢ Z.

For x 2 (�A, A) and � 2 (0, 1), we introduce

x� =
⇥⇥

bn�x �m�c , bn�x + m�c
⇤⇤

⇢ Z.(3.9.2)
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3.9.1. Height of the barriers. — We need the following lemma. It describes
the time needed for a destroyed (microscopic) cluster to be regenerated. Below, we
assume that the zone around 0 is completely vacant at time TSt0. Then we consider
the situation where a match falls on the site 0 at some time TSt1 2 (TSt0, TS(t0 + 1))
and we compute the law of ⇥t0,t1 , which is the delay needed for the destroyed cluster
to be fully regenerated (divided by TS).

Lemma 3.9.1. — Consider a family of i.i.d. SR(µS)-processes (NS
t (i))t�0,i2Z. Let

0  t0 < t1 < t0 + 1 be fixed. Put

⇣t0,t(i) = min
�

NS
TS(t0+t)(i) � NS

TSt0(i), 1
�

,

⇣t1,t(i) = min
�

NS
TS(t1+t)(i) � NS

TSt1(i), 1
�

for all t > 0 and i 2 Z. Define

⇥t0,t1 = inf
�

t > 0 : 8 i 2 C(⇣t0,t1�t0 , 0), ⇣t1,t(i) = 1
 

2 [0, 1].

The the law of ⇥t0,t1 is ✓t1�t0 , recall Definition 2.4.1.

Proof. — We can assume that t0 = 0 by stationarity. We put u = t1 = t1 � t0 and
write, for h 2 [0, 1],

Pr[⇥t0,t1  h] = Pr
⇥

NS
TSu(0) = 0

⇤

+
X

k�1

k�1
X

j=0

Pr
h

NS
TSu(j � k) = NS

TSu(j + 1) = 0, 8i 2 [[j � k + 1, j]],

NS
TSu(i) > 0, NS

TS(u+h)(i) > NS
TSu(i)

i

.

This yields, since gS(u, h) = Pr[NS
TSu > 0, NS

TS(u+h) > NS
TSu],

Pr[⇥t0,t1  h] = ⌫S
�

[TSu, TS ]
�

+
X

k�1

k
⇥

⌫S([TSu, TS ])
⇤2 ·

⇥

gS(u, h)
⇤k

= ⌫S
�

[TSu, TS ]
�

+
[⌫S([TSu, TS ])]2

[1 � gS(u, h)]2
gS(u, h) = ✓u

�

[0, h]
�

,

recall Definition 2.4.1.

3.9.2. Persistent e↵ect of microscopic fires. — Here we study the e↵ect of
microscopic fires. First, they produce a barrier, and then, if there are alternatively
macroscopic fires on the left and right, they still have an e↵ect. This phenomenon is
illustrated on Figure 8 next page in the case of the limit process.

We say that R = ("; t0, t1, . . . , tK ; s) satisfies (PP) (like ping-pong) if

(i) K � 2, " 2 {�1, 1};
(ii) 0 < t0 < t1 < · · · < tK < s < tK + 1;

(iii) for all k = 0, . . . , K � 1, tk+1 � tk < 1;

(iv) t2 � t0 > 1 and for all k = 2, . . . , K � 2, tk+2 � tk > 1.
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Figure 8. Persistent e↵ect of a microscopic fire. Here R = (1; t0, t1, t2, t3, t4; s).

We set "k = (�1)k" for k � 0.

Consider a family of i.i.d. SR(µS)-processes (NS
t (i))t�0,i2Z.

We introduce, for each � 2 (0, 1), the process (⇣�,Rt (i))t�t0,i2[[�m�,m�]] defined as
follows:

. for all t 2 [t0, t1), all i 2 [[�m�,m�]], ⇣�,Rt (i) = min(NS
TSt(i) � NS

TSt0
(i), 1);

. for all i 2 [[�m�,m�]], ⇣�,Rt1 (i) = ⇣�,Rt1� (i)11{i 62C(⇣�,R
t1� ,0)};

. for k = 1, . . . , K � 1,

(*) for all t 2 (tk, tk+1), i 2 [[�m�,m�]],

⇣�,Rt (i) = min
�

⇣�,Rtk
(i) + NS

TSt(i) � NS
TStk

(i), 1
�

,

(*) for all i 2 [[�m�,m�]],

⇣�,Rtk+1
(i) = ⇣�,Rtk+1�(i)11i 62C(⇣�,R

tk+1�,✏km�)
;

. for all t 2 (tK ,1), i 2 [[�m�,m�]],

⇣�,Rt (i) = min
�

⇣�,RtK (i) + NS
TSt(i) � NS

TStK (i), 1
�

.

Roughly, we start at time TSt0 with an empty configuration and seeds fall according
to (NS

t (i))t�0,i2Z. At time TSt1, there is a (microscopic) fire at 0. Then alternatively
on the left and right, far away from 0 (at �m� or at m�), there is a (macroscopic)
fire at time TStk.
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Consider the event

⌦S
R(�) =

�

9 �m� < i1 < i2 < i3 < m� : ⇣�,Rs (i1) = ⇣�,Rs (i3) = 0, ⇣�,Rs (i2) = 1
 

.

Lemma 3.9.2. — Let R = ("; t0, t1, . . . , tK ; s) satisfy (PP). Consider ⇥t0,t1 de-

fined in Lemma 3.9.1 and (⇣�,Rt (i))t�t0,i2[[�m�,m�]] defined above. There holds

lim
�!0

Pr
�

⌦S
R(�) | ⇥t0,t1 > t2 � t1

�

= 1.

Proof. — We assume that " = 1 and that K is even for simplicity. Fix ↵ = 1/K.

First fire. — We put C = C(⇣�,Rt1� , 0). Since t1 � t0 < 1 (so that each site is
vacant with probability ⌫S((TS(t1 � t0), TS)) > 0 at time t1), the probability that
C ⇢ [[�b↵m�c, b↵m�c]] clearly tends to 1. Thus the match falling at time t1 at 0
destroys nothing outside [[�b↵m�c, b↵m�c]] (with probability tending to 1).

Second fire. — Since t2 � t0 > 1 (so that TS(t2 � t0) > TS), at least one seed has
fallen, during [t0, t2) on each site of [[b↵m�c+1,m�]]. Thus the fire at time t2 destroys
completely this zone, but does not a↵ect [[�m�,�b↵m�c�1]], because t2 < t1+⇥t0,t1

and because by definition of ⇥t0,t1 , there is an empty site in C ⇢ [[�b↵m�c, b↵m�c]]
during [t1, t1 +⇥t0,t1 ].

Third fire. — Since t3 � t2 < 1, the probability that there is a vacant site in
[[b↵m�c + 1, b2↵m�c]] at time t3 tends to 1 as �! 0.

Next, all the sites of [[�m�,�b↵m�c � 1]] are occupied at time t3� (because they
have not been a↵ected by a fire and because t3�t0 > t2�t0 > 1). Thus the fire at time
t3 destroys the zone [[�m�,�b↵m�c� 1]] and does not a↵ect the zone [[b2↵m�c,m�]].

Fourth fire. — Since t4 � t3 < 1, the probability that there is (at least) a vacant
site in [[�b2↵m�c,�b↵m�c � 1]] at time t4 tends to 1 as �! 0.

Next, all the sites of [[b2↵m�c,m�]] are occupied at time t4� (because they have
not been a↵ected by a fire during (t2, t4) with t4 � t2 > 1). Thus the fire at time t4
destroys the zone [[b2↵m�c,m�]] and does not a↵ect the zone [[�m�,�b2↵m�c]].

Last fire and conclusion. — Iterating the procedure, we see that with a probability
tending to 1 as �! 0, the fire at time tK destroys the zone

⇥⇥

b( 12K↵)m�c,m�

⇤⇤

=
⇥⇥

b 1
2m�c,m�

⇤⇤

.

Then one easily concludes: since 0 < s � tK < 1, the probability that there is at
least one site in [[b 1

2m�c, b 2
3m�c]] with no seed falling during [tK , s] tends to 1, the

probability that there is at least one site in [[b 2
3m�c+1, b 5

6m�c]] with at least one seed
falling during [tK , s] tends to 1, and the probability that there is at least one site in
[[b 5

6m�c + 1,m�]] with no seed falling during [tK , s] tends to 1.
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3.9.3. The coupling. — We are going to construct a coupling between the
FFA(µS , µ�

M )-process (on the time interval [0, TST ]) and the LFFA(BS)-process
(on [0, T ]).

First, we couple a family of i.i.d. SR(µ�
M )-processes (NM,�

t (i))t�0,i2Z with a Poisson
measure ⇡M (dt, dx) on [0, T ] ⇥ [�A, A] with intensity measure dtdx as in Proposi-
tion 3.2.1.

We call n := ⇡M ([0, T ]⇥ [�A, A]) and we consider the marks (Tq, Xq)q=1,...,n of ⇡M
ordered in such a way that 0 < T1 < · · · < Tn < T .

Next, we introduce some i.i.d. families of i.i.d. SR(µS)-processes (NS,q
t (i))t�0,i2Z,

for q = 0, 1, . . . , independent of ⇡M and (NM,�
t (i))t�0,i2Z.

Then we build a family of i.i.d. SR(µS)-processes, independent of (NM,�
t (i))t�0,i2Z

and of ⇡M , as follows.

. For q 2 {1, . . . , n}, for all i 2 (Xq)� (recall that (Xq)� = [[bn�Xq�m�c, bn�Xq+
m�c]]) set

�

NS,�
t (i)

�

t�0
=
�

NS,q
t (i � bn�Xqc)

�

t�0
.

(We have a problem if i belongs to (Xq)� \ (Xr)� for some q < r. Then set e.g.

(NS,�
t (i))t�0 = (NS,q

t (i� bn�Xqc))t�0. This will occur with a very small probability,
so that this choice is not important).

. For all other i 2 Z set
�

NS,�
t (i)

�

t�0
=
�

NS,0
t (i)

�

t�0
.

The FFA(µS , µ�
M )-process (⌘�t (i))t�0,i2I�

A
is built upon the seed processes

(NS,�
t (i))t�0,i2Z and match processes (NM,�

t (i))t�0,i2Z.

The advantage of the previous construction is the following. When a match falls
at some Xq for the LFFA(BS)-process, it will fall at bn�Xqc in the discrete process,
and thus if it is microscopic, it will involve the same seed processes for all values of �.

It also considerably simplifies the dependence/independence considerations.

Finally, we build the LFFA(BS)-process. We consider the Poisson measure
⇡M previously introduced, and for all 0 < t0 < t1 < t0 + 1, for all q = 1, . . . , n,
we consider ⇥q

t0,t1 defined from (NS,q
t (i))t�0,i2Z as in Lemma 3.9.1. We define

(Zt(x), Dt(x), Ht(x))t2[0,T ],x2[�A,A] as follows:

Algorithm 3.9.3. — Consider the marks (Tk, Xk)k=1,...,n of ⇡M in [0, T ] ⇥ [�A, A],
ordered chronologically and set T0 = 0.

Step 0. — Put Z0(x) = H0(x) = 0 and D0(x) = {x} for all x 2 [�A, A].

Assume that for some k 2 {0, . . . , n� 1}, (Zt(x), Dt(x), Ht(x))t2[0,Tk],x2[�A,A] has
been built.

Step k + 1. — For t 2 (Tk, Tk+1) and x 2 [�A, A], put

Zt(x) = min(1, ZTk(x) + t � Tk), Ht(x) = max(0, HTk(x) � t + Tk),
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and then define Dt(x) as in (3.6.1). Finally, build (ZTk+1(x), DTk+1(x), HTk+1(x)) as
follows.

(i) If ZTk+1�(Xk+1) = 1, set HTk+1(x) = HTk+1�(x) for all x 2 [�A, A] and
consider [a, b] := DTk+1�(Xk+1). Set

ZTk+1(x) =

⇢

0 for all x 2 (a, b),

ZTk+1�(x) for all x 2 [�A, A] \ [a, b].

ZTk+1(a) =

⇢

0 if ZTk+1�(a) = 1,

ZTk+1�(a) if ZTk+1�(a) < 1,

ZTk+1(b) =

⇢

0 if ZTk+1�(b) = 1,

ZTk+1�(b) if ZTk+1�(b) < 1.

(ii) If ZTk+1�(Xk+1) < 1, set

HTk+1(Xk+1) = ⇥k+1
Tk+1�ZTk+1�(Xk+1),Tk+1

,

ZTk+1(Xk+1) = ZTk+1�(Xk+1),

and for all x 2 [�A, A] \ {Xk+1},
�

ZTk+1(x), HTk+1(x)
�

=
�

ZTk+1�(x), HTk+1�(x)
�

.

(iii) Using the values of (ZTk+1(x), HTk+1(x))x2[�A,A], compute (DTk+1(x))x2[�A,A]

as in (3.6.1).

Lemma 3.9.4. — The process (Zt(x), Dt(x), Ht(x))t2[0,T ],x2[�A,A] built in Algo-
rithm 3.9.3 is a LFFA(BS)-process.

Proof. — The only di↵erence between Algorithms 3.6.3 and 3.9.3 is that in step k + 1,
point (ii), we use ⇥k+1

Tk+1�ZTk+1�(Xk+1),Tk+1
instead of FS(ZTk+1�(Xk+1), Vk+1).

But due to Lemma 3.9.1 and Definition 2.4.1, these two variables have the same law
✓ZTk+1�(Xk+1) (conditionally on Tk+1, Xk+1 and (Zt(x), Dt(x), Ht(x))t2[0,Tk+1),x2[�A,A]).

Indeed, it su�ces to use that in Algorithm 3.6.3, Vk+1 is independent of ZTk+1�(Xk+1),

while in Algorithm 3.9.3, the family (NS,k+1
t (i))t�0,i2Z is independent of

(Tk+1, ZTk+1�(Xk+1)).

Finally, we observe that (Zt(x), Dt(x), Ht(x))t2[0,T ],x2[�A,A] depends only on ⇡M

and on ((NS,q
t (i))t2[0,T ],i2Z)q�1. It is independent of (NS,0

t (i))t2[0,T ],i2Z.

3.9.4. A favorable event. — First, we know from Proposition 3.2.1 that

⌦M
A,T (�) :=

�

8t 2 [0, T ], 8i 2 I�A, �NM,�
TSt (i) 6= 0 i↵ ⇡M ({t}⇥ i�) 6= 0

 

satisfies

lim
�!0

Pr[⌦M
A,T (�)] = 1.
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Next, we recall that the marks of ⇡M are called (T1, X1), . . . , (Tn, Xn) and are ordered
chronologically. We introduce TM = {0, T1, . . . , Tn}, BM = {X1, . . . , Xn}, as well as
the set CM of connected components of [�A, A] \BM (sometimes referred to as cells).

For ↵ > 0, we consider the event

⌦M (↵) =
�

min
s,t2TM
s 6=t

|t � s| � ↵, min
x,y2BM[{�A,A}

x 6=y

|x � y| � ↵,
 

,

which clearly satisfies lim↵!0 Pr[⌦M (↵)] = 1. Observe that for any given ↵ > 0, there
is �↵ > 0 such that for all � 2 (0,�↵), on ⌦M (↵),

. for all x, y 2 BM [ {�A, A} with x 6= y, x� \ y� = ?;

. the family {c�, c 2 CM} [ {x�, x 2 BM} is a partition of I�A (recall (3.9.1) and
(3.9.2)).

Indeed, it su�ces that sup(0,�↵)[m�/n�] < 1
4↵.

Let q 2 {1, . . . , n}. We call Uq the set of all possible R = (", t0, . . . , tK ; s) satis-
fying (PP) with " 2 {�1, 1}, with {t0, . . . , tK , s} ⇢ TM and with ⇥q

t0,t1 > t2 � t1.

We introduce, for q = 1, . . . , n and R 2 Uq, the event ⌦S,q
R (�) defined as in subsec-

tion 3.9.2 with the SR(µS)-processes (NS,q
t (i))t�0,i2Z. Then we put

⌦S
1 (�) =

n
\

q=1

\

R2Uq

⌦S,q
R (�),

which satisfies lim�!0 Pr
�

⌦S
1 (�)

�

= 1 thanks to Lemma 3.9.2 (since for each q,

(NS,q
t (i))t�0,i2Z is independent of ⇡M and since conditionally on ⇡M , the set Uq

is finite).

We also consider the event ⌦S
2 (�) on which the following conditions hold: for all

t1, t2 2 TM with 0 < t2 � t1 < 1, for all q = 1, . . . , n, there are

�m� < i1 < i2 < � 1
2m� < i3 < 0 < i4 < 1

2m� < i5 < i6 < m�

such that

. for j = 1, 3, 4, 6, NS,q
TSt2

(ij) � NS,q
TSt1

(ij) = 0;

. for j = 2, 5, NS,q
TSt2

(ij) � NS,q
TSt1

(ij) > 0.

There holds lim�!0 Pr
�

⌦S
2 (�)

�

= 1. Indeed, it su�ces to prove that almost surely,
lim�!0 Pr

�

⌦S
2 (�)|⇡M

�

= 1. Since there are a.s. finitely many possibilities for q, t1, t2

and since ⇡M is independent of (NS,q
t (i))t�0,i2Z, it su�ces to work with a fixed

q 2 {1, . . . , n} and some fixed 0 < t2 � t1 < 1.

Observe that for each i, Pr(NS,q
TSt2

(i) � NS,q
TSt1

(i) = 0) = ⌫S((TS(t2 � t1), TS)) < 1

and Pr(NS,q
TSt2

(i) � NS,q
TSt1

(i) > 0) = ⌫S((0, TS(t2 � t1))) < 1 by definition of TS and
since t2 � t1 < 1. Recall also that m� tends to infinity. Thus during [TSt1, TSt2],
the probability that a seed falls on each site of [[�m� + 1,�b 1

4m�c]] tends to 0, the
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probability that no seed at all falls on [[�b 1
4m�c + 1,�b 1

2m�c � 1]] tends to 0, the
probability a seed falls on each site of [[�b 1

2m�c,�1]] tends to 0, etc.

We finally introduce the event

⌦(↵,�) = ⌦M
A,T (�) \ ⌦M (↵) \ ⌦S

1 (�) \ ⌦S
2 (�).

We observe that ⌦(↵,�) is independent of (NS,0
t (i))t�0,i2Z and that for any " > 0,

choosing ↵ > 0 small enough, Pr[⌦(↵,�)] > 1 � " for all � > 0 small enough.

3.9.5. Heart of the proof. — We now handle the main part of the proof.

Consider the LFFA(BS)-process. Observe that by construction, we have, for
c 2 CM and x, y 2 c, Zt(x) = Zt(y) for all t 2 [0, T ], thus we can introduce Zt(c).

If x 2 BM , it is at the boundary of two cells c�, c+ 2 CM and then for all t 2 [0, T ]
we set

Zt(x�) = Zt(c�) and Zt(x+) = Zt(c+).

If x 2 (�A, A) \ BM , we put Zt(x�) = Zt(x+) = Zt(x) for all t 2 [0, T ].

For x 2 BM and t � 0 we set

eHt(x) = max
�

Ht(x), 1 � Zt(x), 1 � Zt(x�), 1 � Zt(x+)
�

.

Observe that x is microscopic or acts like a barrier at time t if and only if eHt(x) > 0.

Actually Zt(x) always equals either Zt(x�) or Zt(x+) and these can be distinct
only at a point where has occurred a microscopic fire (that is if x = Xq for some
q 2 {1, . . . , n}, if ZTq�(Xq) < 1 and if t > Tq).

For all x 2 (�A, A) and t 2 [0, T ], we put

⌧t(x) = sup
�

s  t : Zs(x+) = Zs(x�) = Zs(x) = 0
 

2 [0, t] \ TM .

For c 2 CM and t 2 [0, T ], we clearly have ⌧t(x) = ⌧t(y) for all x, y 2 c, so that we
can also define ⌧t(c).

Observe, using Algorithm 3.9.3, that

for x /2 BM , Zt(x) = min (t � ⌧t(x), 1) for all t 2 [0, T ];(3.9.3)

for q = 1, . . . , n, Zt(Xq) = min (t � ⌧t(Xq), 1) for all t 2 [0, Tq).(3.9.4)

Indeed, ⌧t(x) stands for the last time before t where x was involved in a macroscopic
fire (with the convention that a macroscopic fire occurs at time 0). Thus for x /2 BM ,
if t � ⌧t(x) � 1, Zt(x) = 1, and if t � ⌧t(x) < 1, Zt(x) = t � ⌧t(x). For x = Xq, the
same reasoning holds during [0, Tq).
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We also define for all t 2 [0, T ], all c 2 CM and all x 2 (�A, A) here (c� is defined
by (3.9.1) and x� by (3.9.2))

⌧�t (c) = sup
�

s  t : 8i 2 c�, ⌘�TSt�(i) = 1 and ⌘�TSt(i) = 0
 

2 [0, t],

⇢�t (c) = sup
�

s  t : 9i 2 c�, ⌘�TSt�(i) = 1 and ⌘�TSt(i) = 0
 

2 [0, t],

⌧�t (x) = sup
�

s  t : 8i 2 x�, ⌘�TSt�(i) = 1 and ⌘�TSt(i) = 0
 

2 [0, t]

with the convention that ⌘�0�(i) = 1 for all i 2 I�A. Observe that on ⌦M
A,T (�), we have

⌧�t (c), ⇢�t (c), ⌧�t (x) 2 [0, t] \ TM for all t 2 [0, T ], all c 2 CM and all x 2 (�A, A).

For t 2 [0, T ], consider the event

⌦�
t =

�

8s 2 [0, t], 8c 2 CM , ⌧�s (c) = ⇢�s (c) = ⌧s(c) and 8x 2 BM , ⌧�s (x) = ⌧s(x)
 

.

We define ⌦�
t� similarly, replacing [0, t] by [0, t). The aim of the subsection is to prove

the following result.

Lemma 3.9.5. — For any ↵ > 0, any � 2 (0,�↵), ⌦�
T a.s. holds on ⌦(↵,�).

Proof. — We work on ⌦(↵,�) and assume that � 2 (0,�↵). Clearly, ⌧0(x) = ⌧�0 (x) = 0
and ⌧0(c) = ⌧�0 (c) = ⇢�0 (c) = 0 for all x 2 BM , all c 2 CM , so that ⌦�

0 a.s. holds.
We will show that for q = 0, . . . , n � 1, ⌦�

Tq
implies ⌦�

Tq+1
. This will prove that ⌦�

Tn

holds. The extension to ⌦�
T will be straightforward (see step 1 below).

We thus fix q 2 {0, . . . , n � 1} and assume ⌦�
Tq

. We repeatedly use below that on
the time interval (Tq, Tq+1), there are no fires at all (in [�A, A]) for the LFFA(BS)-
process and no fires at all (in I�A) during (TSTq, TSTq+1) for the FFA(µS , µ�

M )-process
(use ⌦M

A,T (�)).

Step 1. — To start with, we observe that since there are no fires between TSTq

and TSTq+1, we have

⌧�t (x) = ⌧�Tq
(x), ⌧�t (c) = ⌧�Tq

(c) and ⇢�t (c) = ⇢�Tq
(c)

for all x 2 BM , all c 2 CM , all t 2 [Tq, Tq+1) (because ⌘�TSt(i) is nondecreasing on
[Tq, Tq+1) for all i 2 I�A). By the same way,

⌧t(x) = ⌧Tq (x) and ⌧t(c) = ⌧Tq (c)

for all x 2 BM , all c 2 CM , all t 2 [Tq, Tq+1) (because Zt(x), Zt(x+), Zt(x�) are
nondecreasing on [Tq, Tq+1) for all x 2 [�A, A]). Hence for t 2 [Tq, Tq+1), ⌦�

t = ⌦�
Tq

.

Thus ⌦�
Tq

implies ⌦�
Tq+1�.

Step 2. — Let c 2 CM . Observe that on ⌦�
Tq+1�, there holds, for all i 2 c�,

⌘�TSTq+1�(i) = min
�

NS,0
TSTq+1�(i) � NS,0

TS⌧Tq (c)
(i), 1

�

.(3.9.5)

Indeed, seeds are falling on i according to (NS,0
t (i))t�0. Furthermore, we know from

step 1 that

⇢�Tq+1�(c) = ⌧�Tq+1�(c) = ⌧Tq+1�(c) = ⌧Tq (c).
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By definition of ⌧�Tq+1�(c), ⌘�TS⌧Tq
(i) = 0 for all i 2 c�. And by definition of ⇢�Tq+1�(c),

no fire a↵ects c� during (TS⇢
�
Tq+1�(c), TSTq+1).

Step 3. — We show here that if ZTq+1�(Xq+1) < 1, there exist j1, j2, j3, j4
in (Xq+1)� such that

j1 < j2 < bn�Xq+1c < j3 < j4,

⌘�TSTq+1�(j2) = ⌘�TSTq+1�(j3) = 0,

⌘�TSTq+1�(j1) = ⌘�TSTq+1�(j4) = 1.

Recall that for i 2 (Xq+1)�, the seeds fall according to (NS,q+1
t (i�bn�Xq+1c))t�0. Re-

call also that ⌧�Tq+1�(Xq+1) = ⌧Tq+1�(Xq+1) (by Step 1), so that by definition, (Xq+1)�
is completely vacant at time TS⌧Tq+1�(Xq+1). Recall finally that ⌧Tq+1�(Xq+1) 2 TM
(and so does Tq+1).

Observe that by (3.9.4), ZTq+1�(Xq+1) < 1 implies that Tq+1 � ⌧Tq+1�(Xq+1) < 1.
Since we work on ⌦S

2 (�), we know that there are some sites

i1 < i2 < i3 < bn�Xq+1c < i4 < i5 < i6

in (Xq+1)� such that at least one seed has fallen on i2 and i5 and no seed has fallen
on i1, i3, i4, i6 during [TS⌧Tq+1�(Xq+1), TSTq+1). All this implies that

⌘�TSTq+1�(i2) = ⌘�TSTq+1�(i5) = 1 and ⌘�TSTq+1�(i3) = ⌘�TSTq+1�(i4) = 0

(because the vacant sites i1, i6 protect the occupied sites i2, i4 from fires falling outside
(Xq+1)� and because no fire falls on (Xq+1)� during [0, TSTq+1)).

Step 4. — Next we check that if ZTq+1�(c) = 1 for some c 2 CM , then

⌘�TSTq+1�(i) = 1 for all i 2 c�.

Recalling (3.9.3), we see that ZTq+1�(c) = 1 implies that Tq+1 � ⌧Tq+1�(c) � 1 and
thus Tq+1 � ⌧Tq (c) � 1 by step 1. Using (3.9.5), we conclude that for all i 2 c�,

⌘�TSTq+1�(i) = min
�

NS,0
TSTq+1�(i) � NS,0

TS⌧Tq (c)(i)
, 1
�

= 1

(at least one seed falls on each site during a time interval of length greater than TS).

Step 5. — We now prove that if eHTq+1�(x) = 0 for some x 2 BM ,

⌘�TSTq+1�(i) = 1 then for all i 2 x�.

Preliminary considerations. — Let k 2 {1, . . . , n} such that x = Xk, which is
at the boundary of two cells c�, c+ 2 CM . We know that eHTq+1�(x) = 0, whence
HTq+1�(x) = 0 and ZTq+1�(x) = ZTq+1�(c+) = ZTq+1�(c�) = 1. This implies that
Tq+1 � 1, because Zt(x) = t for all t < 1, all x 2 [�A, A].

No fire has concerned (c�)� during (TS⇢
�
Tq+1�(c�), TSTq+1) (by definition of

⇢�Tq+1�(c�)). But step 1 implies that ⇢�Tq+1�(c�) = ⌧Tq+1�(c�)  Tq+1 � 1, because
ZTq+1�(c�) = 1, see (3.9.3). Using a similar argument for c+, we conclude that no
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match falling outside (Xk)� can a↵ect (Xk)� during (TS(Tq+1 � 1), TSTq+1) (because
to a↵ect (Xk)�, a match falling outside (Xk)� needs to cross c� or c+).

Case 1. – First assume that k � q + 1. Then we know that no fire has fallen
on (Xk)� during [0, TSTq+1). Due to the preliminary considerations, we deduce
that no fire at all has concerned (Xk)� during (TS(Tq+1 � 1), TSTq+1). This
time interval is of length greater than TS . Thus (Xk)� is completely occupied
at time TSTq+1�.

Case 2. – Assume that k  q and ZTk�(Xk) = 1, so that there already has
been a macroscopic fire in (Xk)� (at time a�Tk). Since then ZTk(Xk) = 0 and
ZTq+1�(Xk) = 1, we deduce that Tq+1 � Tk � 1. We conclude as in case 1 that
no fire at all has concerned (Xk)� during (TS(Tq+1 � 1), TSTq+1), which implies
the claim.

Case 3. – Assume that k  q and ZTk�(Xk) < 1 and Tq+1�Tk � 1. Then there
already has been a microscopic fire in (Xk)� (at time TSTk). But there are no
fire in (Xk)� during (TSTk, TSTq+1) and we conclude as in case 2.

Case 4. – Assume finally that k  q and ZTk�(Xk) < 1 and Tq+1�Tk < 1. There
has been a microscopic fire in (Xk)� (at time TSTk). Since HTq+1�(Xk) = 0, we
deduce (see Algorithm 3.9.3) that Tk +⇥k

Tk�ZTk�(Xk),Tk
 Tq+1.

Consider the zone C(⌘�TSTk�, bn�Xkc) destroyed by the match falling at time TSTk.
This zone is completely occupied at time TS(Tk + ⇥Tk�ZTk�(Xk),Tk

)  TSTq+1 by
definition of ⇥Tk�ZTk�(Xk),Tk

, see Lemma 3.9.1, using here again the preliminary
considerations.

We deduce that C(⌘�TSTk�, bn�Xkc) is completely occupied at time TSTq+1�.

Consider now i 2 (Xk)� \ C(⌘�TSTk�, bn�Xkc). Then i has not been killed by the
fire falling on bn�Xkc. Thus i cannot have been killed during (TS(Tq+1 � 1), TSTq+1)
(due to the preliminary considerations) and is thus occupied at time TSTq+1�. This
implies the claim.

Step 6. — Let us now prove that if eHTq+1�(x) > 0 and ZTq+1�(x+) = 1 for some
x 2 BM , there are i1, i2 2 x� such that

i1 < i2 and ⌘�TSTq+1�(i1) = 1, ⌘�TSTq+1�(i2) = 0.

Recall that x is at the boundary of two cells c�, c+. We have either HTq+1�(x) > 0
or ZTq+1�(c�) < 1 (because ZTq+1�(c+) = 1 by assumption). Clearly, x = Xk for
some k  q, with ZTk�(Xk) < 1 (else, we would have Ht(x) = 0 and Zt(c�) = Zt(c+)
for all t 2 [0, Tq+1)). Thus, recalling (3.9.4), Tk�ZTk�(Xk) = ⌧Tk�(Xk) = ⌧�Tk�(Xk),
so that (Xk)� is completely empty at time TS(Tk � ZTk�(Xk)).

Case 1. – Assume first that HTq+1�(x) > 0. Then by construction, see Algo-
rithm 3.9.3,

Tk +⇥k
Tk�ZTk�(Xk),Tk

> Tq+1 > Tk.
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Consider C = C(⌘�TSTk�, bn�Xkc). By ⌦S
2 (�), we have

C ⇢
⇥⇥

bn�Xk � 1
2m�c, bn�Xk + 1

2m�c
⇤⇤

,

because Tk � ZTk�(Xk) and Tk belong to TM and 0 < ZTk�(Xk) < 1. The
component C is destroyed at time TSTk. By Definition of ⇥k

Tk�ZTk�(Xk),Tk
, see

Lemma 3.9.1, we deduce that C is not completely occupied at time

TSTq+1 < TS(Tk +⇥k
Tk�ZTk�(Xk),Tk

).

Consequenty, there is i2 2 [[bn�Xk � 1
2m�c, bn�Xk + 1

2m�c]] such that

⌘�TSTq+1�(i2) = 0.

Finally, using again ⌦S
2 (�) there is necessarily (at least) one seed falling on a

site in [[bn�Xk �m� + 1c, bn�Xk � 1
2m� � 1c]] ⇢ (Xk)� during (TSTq, TSTq+1).

This shows the result.

Case 2. – Assume next that HTq+1�(x) = 0 and that

Tq+1 �
⇥

Tk � ZTk�(Xk)
⇤

< 1.

Recall that (Xk)� is completely empty at time TS(Tk � ZTk�(Xk)). Since
Tk � ZTk�(Xk) and Tq+1 belong to TM and since their di↵erence is smaller
than 1 by assumption, ⌦S

2 (�) guarantees us the existence of i1 < i2 < i3, all in
(Xk)�, such that (at least) one seed falls on i2 and no seed fall on i1 nor on i3
during (TS(Tk � ZTk�(Xk)), TSTq+1). One easily concludes that i2 is occupied
and i3 is vacant at time TSTq+1�, as desired.

Case 3. – Assume finally that HTq+1�(x) = 0 and that

Tq+1 �
⇥

Tk � ZTk�(Xk)
⇤

� 1.

Since HTq+1�(x) = 0, there holds ZTq+1�(c�) < 1 = ZTq+1�(c+) and
Tk +⇥k

Tk�ZTk�(Xk),Tk
 Tq+1. We aim to use the event ⌦S

1 (�). We intro-

duce

t0 = Tk � ZTk�(Xk) = ⌧Tk�(Xk) = ⌧�Tk�(Xk).

Observe that ⌧Tk�(c�) = ⌧Tk�(c+) = ⌧Tk�(x) because there is no match falling
(exactly) on x during [0, Tk). Thus Zt0(x) = Zt0(c�) = Zt0(c+) = 0.

Set now t1 = Tk and s = Tq+1. Observe that 0 < t1 � t0 < 1 (because
ZTk�(Xk) < 1). Necessarily, Zt(c�) has jumped to 0 at least one time between t0 and
Tq+1� (else, one would have ZTq+1�(c�) = 1, since Tq+1� t0 � 1 by assumption) and
this jump occurs after t0 + 1 > t1 (since a jump of Zt(c�) requires that Zt(c�) = 1,
and since for all t 2 [t0, t0 + 1), Zt(c�) = t � t0 < 1).

We thus may denote by t2 < t3 < · · · < tK , for some K � 2, the successive times
of jumps of the process (Zt(c�), Zt(c+)) during (t0 + 1, s). We also put " = 1 if t2 is
a jump of Zt(c+) and " = �1 else. Then we observe that Zt(c�) and Zt(c+) do never
jump to 0 at the same time during (t0, s] (else, it would mean that they are killed by
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the same fire at some time u, whence necessarily, Hr(u) = 0 and Zr(c�) = Zr(c+) for
all r 2 (u, s]).

Furthermore, there is always at least one jump of (Zt(c�), Zt(c+)) in any time
interval of length 1 (during [t0 + 1, s)), because else, Zt(c+) and Zt(c�) would both
become equal to 1 and thus would remain equal forever.

Finally, observe that two jumps of Zt(c�) cannot occur in a time interval of length 1
(since a jump of Zt(c�) requires that Zt(c�) = 1) and the same thing holds for c+.

Consequently, the family R = {", t0, . . . , tK ; s} necessarily satisfies condition (PP).
Next, t2 � t1 < ⇥k

Tk�ZTk�(Xk),Tk
= ⇥k

t0,t1 , because else, we would have

Ht2�(Xk) = 0 and thus the fire destroying c+ (or c�) at time t2 would also de-
stroy c� (or c+), we thus would have Zt2(c+) = Zt2(c�) = 0, so that Zt(c+) and
Zt(c�) would remain equal forever.

Finally, we check that (⌘�TSt(i))t�t0,i2x� = (⇣�,R,k
t (i + bn�xc))t�t0,i2x� , this last

process being built with the family of seed processes (NS,k
TSt(i))t�t0,i2x� as in subsec-

tion 3.9.2. Both are empty at time t0. Seeds fall according to the same processes. In
both cases, a first match falls on bn�xc at time t1. In both cases (say that " = 1)
a fire destroys the occupied connected component containing bn�xc + m� at time t2
(by definition for ⇣�,R and since Zt2�(c+) = 1 implies, exactly as in step 4, that
⌘�TSt2�(i) = 1 for all i in (c+)�, so that the fire destroying c+ at time t2 also destroys
the occupied connected component around bn�xc + m�, which is at the boundary
of c+). And so on.

We thus can use ⌦S
1 (�) and conclude that there are some sites i1 < i2 in x� with

⌘�TSTq+1�
(i1) = 1 and ⌘�TSTq+1�

(i2) = 0 as desired.

Step 7. — We finally conclude the proof. We put z := ZTq+1�(Xq+1) and consider
separately the cases where z 2 (0, 1) and z = 1. Observe that z = 0 never happens,
since by construction, ZTq+1�(Xq+1) = min(ZTq (Xq+1)+(Tq+1�Tq), 1) > 0 and since
Tq+1 > Tq.

Case z 2 (0, 1). – Then in the LFFA(BS)-process, see Algorithm 3.9.3,

ZTq+1(x) = ZTq+1�(x) > 0 for all x 2 [�A, A],

whence ⌧Tq+1(x) = ⌧Tq+1�(x) and ⌧Tq+1(c) = ⌧Tq+1�(c) for all x 2 BM , all
c 2 CM .

Using step 3, we see that the match falling on bn�Xq+1c at time TSTq+1 destroys
nothing outside [[j2 + 1, j3 � 1]]. As a conclusion, we obviously have

⌧�Tq+1
(x) = ⌧�Tq+1�(x) and ⇢�Tq+1

(c) = ⌧�Tq+1
(c) = ⌧�Tq+1�(c)

for all x 2 BM \ {Xq+1} and all c 2 CM . There also holds ⌧�Tq+1
(Xq+1) = ⌧�Tq+1�(x)

because j1 (see step 3), which is occupied at time TSTq+1� and not killed at time
TSTq+1 (thanks to j2), does belong to (Xq+1)�.
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We conclude that when z 2 (0, 1), ⌦�
Tq+1� implies ⌦�

Tq+1
. Using Step 1, we deduce

that ⌦�
Tq

implies ⌦�
Tq+1

when z 2 (0, 1).

Case 1. – Then there are a, b 2 BM [ {�A, A} such that DTq+1�(Xq+1) = [a, b].
We assume that a, b 2 BM , the other cases being treated similarly. Recalling
Algorithm 3.9.3, we know that for all c 2 CM with c ⇢ (a, b), ZTq+1�(c) = 1, for all

x 2 BM \ (a, b), eHTq+1�(x) = 0, while finally eHTq+1�(a) > 0 and eHTq+1�(b) > 0.
For the LFFA(BS)-process, we have

(i) ⌧Tq+1(c) = Tq+1 for all c 2 CM with c ⇢ (a, b);

(ii) ⌧Tq+1(x) = Tq+1 for all x 2 BM \ (a, b);

(iii) ⌧Tq+1(c) = ⌧Tq+1�(c) for all c 2 CM with c \ (a, b) = ?;

(iv) ⌧Tq+1(x) = ⌧Tq+1�(x) for all x 2 BM \ (a, b).

Next, using steps 4, 5, using step 6 for a (and a very similar result for b), we imme-
diately check that the fire occurring at bn�Xq+1c at time TSTq+1

. destroys completely all the cells c 2 CM with c ⇢ (a, b);

. destroys completely all the zones x� with x 2 BM \ (a, b);

. does not destroy at all the cells c 2 CM with c\ (a, b) = ? and the zones x� with
x 2 BM \ [a, b];

. does not destroy completely a� nor b�.

Consequently, we have

(i) ⇢�Tq+1
(c) = ⌧�Tq+1

(c) = Tq+1 for all c 2 CM with c ⇢ (a, b);

(ii) ⌧�Tq+1
(x) = Tq+1 for all x 2 BM \ (a, b);

(iii) ⇢�Tq+1
(c) = ⇢�Tq+1�(c) and ⌧�Tq+1

(c) = ⌧�Tq+1�(c) for all c 2 CM with c \ (a, b) =
?;

(iv) ⌧�Tq+1
(x) = ⌧�Tq+1�(x) for all x 2 BM \ (a, b).

We conclude that when z = 1, ⌦�
Tq+1� implies ⌦�

Tq+1
. Using step 1, we deduce that ⌦�

Tq

implies ⌦�
Tq+1

when z = 1.

3.9.6. Conclusion. — To achieve the proof, we will need the following result.

Lemma 3.9.6. — Let (NS
t (i))t�0,i2Z be a family of i.i.d. SR(µS)-processes.

(i) Put K�
t = (2m� + 1)�1|{i 2 [[�m�,m�]] : NS

TSt(i) > 0}| and

U�
t =

⇣ S(K�
t )

TS

⌘

^ 1,

recall notation 2.1.5. Then for any T > 0, sup[0,T ] |U�
t � t ^ 1| tends a.s. to 0 as �

tends to 0.

(ii) For any k � 0, Pr[|C(min(NS
TSt, 1), 0)| = k] = qk(t ^ 1), where qk(z) was

defined (2.4.2).
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Proof. — We start with (i). First observe that t 7! U�
t and t 7! t^1 are nondecreasing

and t 7! t ^ 1 is continuous. By the Dini Theorem, it su�ces to prove that for
all t 2 [0, T ], a.s., lim U�

t = t ^ 1. To do so, observe that (2m� + 1)K�
t has a

binomial distribution with parameters 2m� + 1 and ⌫S((0, TSt)). Thus K�
t tends a.s.

to ⌫S((0, TSt)). Hence U�
t tends a.s. to ( S(⌫S((0, TSt)))/TS)^1 = t^1 by definition

of  S .

We now check (ii). If t � 1, then obviously, min(NS
TSt(i), 1) = 1 for all i 2 Z,

whence |C(min(NS
TSt, 1), 0)| = 1 a.s. Consequently,

Pr
⇥

|C(min(NS
TSt, 1), 0)| = k

⇤

= 0 = qk(1).

For t < 1, the result relies on a simple computation involving the i.i.d. ran-
dom variables min(NS

TSt(i), 1), which have a Bernoulli distribution with parameter
⌫S((0, TSt)): if k = 0, there holds

Pr
⇥

|C(min(NS
TSt, 1), 0)| = 0

⇤

= Pr
⇥

NTSt(i) = 0
⇤

= ⌫S
�

(TSt, TS)
�

= q0(t).

For k � 1,

Pr
⇥

|C(min(NS
TSt, 1), 0)| = k

⇤

=
k�1
X

j=0

Pr
⇥

NS
TSt(j � k) = NS

TSt(j + 1) = 0, 8i 2 [[j � k + 1, j]], NS
TSt(i) = 1

⇤

= k
⇥

⌫S((TSt, TS))]2 · [⌫S((0, TSt))
⇤k

= qk(t),

which ends the proof.

We finally give the

Proof of Proposition 3.8.1 when � = BS. — Let us fix x0 2 (�A, A), t0 2 (0, T ] and
" > 0. We will prove that with our coupling (see subsection 3.9.3), there holds

(a) lim�!0 Pr
⇥

�(D�
t0(x0), Dt0(x0)) > "

⇤

= 0;

(b) lim�!0 Pr
⇥

�T (D�(x0), D(x0)) > "
⇤

= 0;

(c) lim�!0 Pr
⇥

sup[0,T ] |Z�
t (x0) � Z�

t (x0)| � "
⇤

= 0;

(d) lim�!0 Pr
⇥

|C(⌘�TSt0
, bn�x0c)| = k

⇤

= E
⇥

qk(Zt(x0))
⇤

.

Recall that qk(z) was defined, for k � 0 and z 2 [0, 1] in (2.4.2). These points will
clearly imply the result.

First, we introduce, for ⇣ > 0, the event ⌦x0
A,T (⇣) on which x0 /2

Sn
q=1[Xq�⇣, Xq+⇣].

The probability of this event obviously tends to 1 as ⇣ ! 0.
On ⌦x0

A,T (⇣), for � > 0 small enough (say, small enough such that 4m�/n� < ⇣),

bn�x0c /2
Sn

q=1(Xq)�. We then call c0 2 CM the cell containing x0.

Step 1. — We first show that (a) (which holds for an arbitrary value of t0 2 (0, T ])
implies (b).

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2013



102 CHAPTER 3. PROOFS

Indeed, we have by construction, for any t 2 [0, T ], �(D�
t (x0), Dt(x0)) < 4A.

Hence by dominated convergence, (a) implies that lim�!0 E
⇥

�(D�
t (x0), Dt(x0))

⇤

= 0,
whence again by dominated convergence, lim�!0 E

⇥

�T (D�(x0), D(x0))
⇤

= 0.

Step 2. — Due to Lemma 3.9.5, we know that on ⌦(↵,�) \ ⌦x0
A,T (⇣), we have

⌧�t (c0) = ⇢�t (c0) = ⌧t(x0) for all t 2 [0, T ].

This implies that for all i 2 (c0)�, for all t 2 [0, T ],

⌘�TSt(i) = min
�

NS,0
TSt(i) � NS,0

TS⌧t(x0)
(i), 1

�

.

We also recall that by construction, (⌧t(x0))t�0 is independent of (NS,0
t (i))t�0,i2Z.

Step 3. — Here we prove (d), for some fixed k � 0. Let � > 0 be fixed. We first
consider ↵0 > 0, ⇣0 > 0 and �0 > 0 such that for all � 2 (0,�0),

Pr
⇥

⌦(↵0,�) \ ⌦x0
A,T (⇣0)

⇤

> 1 � �.

Then we consider �k  �0 in such a way that for � 2 (0,�k),
⇥⇥

bn�x0c � k � 1, bn�x0c + k + 1
⇤⇤

⇢ (c0)�

on ⌦x0
A,T (⇣0) (it su�ces that 2k < ⇣0n� for all � 2 (0,�k)).

We easily conclude: for � 2 (0,�k), recalling (3.9.3), using Lemma 3.9.6 (ii) to-
gether with a (spatial and temporal) stationarity argument, using step 2 and that
(NS,0

t (i))t�0,i2Z is independent of ⌦x0
A,T (⇣) \ ⌦(↵,�) and ⌧t(x0), we obtain

�

�Pr
⇥

|C(⌘�TSt, bn�x0c)| = k
⇤

� E
⇥

qk(Zt(x0))
⇤

�

�

=
�

�Pr
⇥

|C(⌘�TSt, bn�x0c)| = k
⇤

� E
⇥

qk(min(t � ⌧t(x0), 1))
⇤

�

�

 Pr
⇥�

⌦(↵,�) \ ⌦x0
A,T (⇣)

�c⇤
< �.

This concludes the proof of (d).

Step 4. — We next prove (c). For � > 0 fixed, we consider ↵0 > 0, ⇣0 > 0 and
�0 > 0 be as in step 3. Consider the successive values 0 = s0 < s1 < · · · < s` < T

of (⌧t(x0))t2[0,T ]. Set also s`+1 = T . Recall the definition of Z�
t (x), see (2.2.5), and

compare to Lemma 3.9.6 (i). Let k 2 {0, . . . , `} be fixed. Denote by (Uk,�
t )t�0 the

process defined as in Lemma 3.9.6 (i) with the seed process
�

NS,0
sk/TS+t(i � bn�x0c) � NS,0

sk/TS
(i � bn�x0c)

�

t�0,i2Z

(this is indeed a family of SR(µS)-processes by stationarity and since s1, . . . , s` are
independent of (NS,0

t (i))t�0,i2Z). Then due to Lemma 3.9.6 (i), for all � > 0 small
enough, say � 2 (0,�1),

Pr
�

sup
[sk,sk+1)

|Uk,�
t�sk

� (t � sk) ^ 1| � "
�

 �.
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But on ⌦(↵,�)\⌦x0
A,T (⇣), we have Z�

t (x0) = Uk,�
t�sk

for all t 2 [sk, sk+1), see step 2. It
also holds, recall (3.9.3), that Zt(x0) = (t� sk)^ 1 for t 2 [sk, sk+1). As a conclusion,
for all � > 0 small enough,

Pr
�

sup
[sk,sk+1)

|Z�
t (x0) � Zt(x0)| � "

�

 Pr
�

(⌦(↵,�) \ ⌦x0
A,T (⇣))c

�

+ Pr
�

sup
[sk,sk+1)

|Uk,�
t�sk

� (t � sk) ^ 1| � "
�

 2�.

Observing finally that `  ⇡M ([0, T ] ⇥ (�A, A)) and that

E
⇥

⇡M ([0, T ] ⇥ (�A, A))
⇤

= 2TA,

we easily deduce that for all � > 0 small enough,

Pr
�

sup
[0,T ]

|Z�
t (x0) � Zt(x0)| � "

�

 2TA�.

Point (c) immediately follows.

Step 5. — It remains to prove (a). Let � > 0. Put T ⇤
M = TM [ {t0}. Define

the events ⌦⇤
M (↵), ⌦S,⇤

1 (�) and ⌦S,⇤
2 (�) as ⌦M (↵), ⌦S

1 (�) and ⌦S
2 (�), replacing TM

by T ⇤
M . Define also ⌦⇤(�,↵) = ⌦M

A,T (�)\⌦⇤
M (↵)\⌦S,⇤

1 (�)\⌦S,⇤
2 (�). Clearly, choosing

↵1 > 0 and ⇣1 > 0 small enough, we have Pr[⌦⇤(�,↵1) \ ⌦x0
A,T (⇣1)] � 1 � � for all

� > 0 small enough, say � 2 (0,�2). On ⌦⇤(�,↵1) \ ⌦x0
A,T (⇣1), we can argue exactly

as in the proof of Lemma 3.9.5 to check that

(i) if Zt0(x0) < 1, then Dt0(x0) = {x0} and C(⌘�TSt, bn�x0c) ⇢ (x0)� (see Step 3
of the proof of Lemma 3.9.5), whence D�

t0(x0) ⇢ [x0 �m�/n�, x0 + m�/n�].
We deduce that �(Dt0(x0), D�

t0(x0))  2m�/n�;

(ii) if Zt0(x0) = 1 and Dt0(x0) = [a, b] for some a, b 2 BM [ {�A, A}, then

. for all c 2 CM with c ⇢ [a, b], ⌘�TSt(i) = 1 for all i 2 c� (see Step 4 of the
preceding proof);

. for all x 2 BM \ (a, b), ⌘�TSt(i) = 1 for all i 2 x� (see step 5 of the preceding
proof);

. there are i 2 a� and j 2 b� such that ⌘�TSt(i) = ⌘�TSt(j) = 0 (see step 6 of
the preceding proof);

so that
⇥⇥

bn�ac+m� +1, bn�bc�m�� 1
⇤⇤

⇢ C(⌘�TSt, bn�x0c) ⇢
⇥⇥

bn�ac�m�, bn�bc+m�

⇤⇤

,

and thus

[a + m�/n�, b �m�/n�] ⇢ D�
t0(x0) ⇢ [a �m�/n�, b + m�/n�],

whence as previously, �(Dt0(x0), D�
t0(x0))  2m�/n�. Thus for all � 2 (0,�2), on

⌦⇤(�,↵1) \ ⌦x0
A,T (⇣1), we always have

�
�

Dt0(x0), D
�
t0(x0)

�

 2m�/n�.
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We conclude that for � > 0, for all � 2 (0,�2) small enough (so that 2m�/n� < "),
there holds

Pr
⇥

�(Dt0(x0), D
�
t0(x0)) > "

⇤

 Pr
⇥

(⌦⇤(�,↵) \ ⌦x0
A,T (⇣))c

⇤

< �.

This concludes the proof.

3.10. Convergence proof when � = 1

The aim of this section is to prove Proposition 3.8.1 in the case where � = 1 and
this will conclude the proof of Theorem 2.3.3. This section generalizes consequently
[15, section 4] and the proof we present here is quite di↵erent and slightly less intricate.
We follow essentially the ideas of the previous section. Some points are easier (because
the height of the barriers are deterministic in the limit process), but some other points
are more complicated (in particular, the height of the barriers are not constant as a
function of �).

In the whole section, we assume (HM ) and (HS(1)). The parameters A > 0 and
T > 0 are fixed and we omit the subscript/superscript A in the whole proof.

We recall that a�, n� and m� are defined in (2.2.1), (2.2.2) and (2.2.4). For A > 0
and i 2 Z, we set as usual

A� = bAn�c, I�A = [[�A�, A�]], i� =
⇥

i/n�, (i + 1)/n�

�

.

For [a, b] an interval of [�A, A] and � 2 (0, 1), we introduce, assuming �A < a < b < A,

(3.10.1)

8

>

<

>

:

[a, b]� = [[bn�a + m�c + 1, bn�b �m�c � 1]] ⇢ Z,

[�A, b]� = [[�A�, bn�b �m�c � 1]] ⇢ Z,

[a, A]� = [[bn�a + m�c + 1, A�]] ⇢ Z.

For x 2 (�A, A) and � 2 (0, 1), we introduce as usual

x� =
⇥⇥

bn�x �m�c , bn�x + m�c
⇤⇤

⇢ Z.(3.10.2)

3.10.1. Speed of occupation. — We start with some easy estimates.

Lemma 3.10.1. — Consider a family of i.i.d. SR(µS)-processes (NS
t (i))t�0,i2Z.

Let a < b.

(i) For t < 1, lim�!0 Pr[ 8i 2 [[bam�c, bbm�c]], NS
a�t

(i) > 0] = 0.

(ii) For t � 1, lim�!0 Pr[ 8i 2 [[bam�c, bbm�c]], NS
a�t

(i) > 0] = 1.

(iii) For t < 1, lim�!0 Pr[ 8i 2 [[ban�c, bbn�c]], NS
a�t

(i) > 0] = 0.

(iv) For t > 1, lim�!0 Pr[ 8i 2 [[ban�c, bbn�c]], NS
a�t

(i) > 0] = 1.

(v) For t > 0 and i 2 Z, lim�!0 Pr[NS
a�t

(i) > 0] = 1.
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Proof. — To check points (i) and (ii), it su�ces to note that

⌫S
�

(0,a�t)
�(b�a)m� ⇠ e�(b�a)m�⌫S((a�t,1)),

which tends to 0 if t < 1 (see (2.2.4)) and to 1 if t � 1 (because then m�⌫S((a�t,1)) 
m�⌫S((a�,1)) ' m�/n� ! 0). To check points (iii) and (iv), observe that

⌫S
�

(0,a�t)
�(b�a)n� ⇠ e�(b�a)n�⌫S((a�t,1)) ⇠ e�(b�a)⌫S((a�t,1))/⌫S((a�,1))

tends to 0 if t < 1 and to 1 if t > 1 due to (HS(1)). Finally, (v) follows from the
fact that 1 � ⌫S((a�t,1)) obviously tends to 1.

3.10.2. Height of the barriers. — We describe here the time needed for a de-
stroyed (microscopic) cluster to be regenerated. Roughly, we assume that the zone
around 0 is completely vacant at time a�t0. Then we consider the situation where
a match falls on the site 0 at some time a�t1 2 (a�t0,a�(t0 + 1)) and we denote
by ⇥�

t0,t1 the delay needed for the destroyed cluster to be fully regenerated (divided
by a�). We show that

⇥�
t0,t1 ' t1 � t0 when � is small.

Lemma 3.10.2. — Consider a family of i.i.d. SR(µS)-processes (NS
t (i))t�0,i2Z.

Let 0  t0 < t1 < t0 + 1 be fixed. Put

⇣�t0,t(i) = min
�

NS
a�(t0+t)(i) � NS

a�t0
(i), 1

�

,

⇣�t1,t(i) = min
�

NS
a�(t1+t)(i) � NS

a�t1
(i), 1

�

for all t > 0 and i 2 Z. Define

⇥�
t0,t1 = inf

�

t > 0 : 8 i 2 C(⇣�t0,t1�t0 , 0), ⇣�t1,t(i) = 1
 

2 [0, 1].

Then for all � > 0,

lim
�!0

Pr
⇥

|⇥�
t0,t1 � (t1 � t0)| � �

⇤

= 0.

Proof. — We can assume that t0 = 0 by stationarity. We put u = t1 = t1 � t0.
Exactly as in the case where � = BS (see subsection 3.9.1), we obtain, for h > 0,

Pr[⇥�
t0,t1  h] = ⌫S

�

(a�u,1)
�

+
[⌫S((a�u,1))]2

[1 � g�S(u, h)]2
g�S(u, h),

where

g�S(u, h) = Pr
⇥

NS
a�u

(0) > 0, NS
a�(u+h)(0) > NS

a�u
(0)

⇤

.

For h > u, we observe that g�S(u, h) � 1 � ⌫S((a�h,1)) � ⌫S((a�u,1)), whence

Pr[⇥�
t0,t1  h] �

⇣ ⌫S((a�u,1))

⌫S((a�h,1)) + ⌫S((a�u,1))

⌘2
⇥

1�⌫S((a�h,1))�⌫S((a�u,1))
⇤

,

which tends to 1 as � ! 0 due to (HS(1)), since a� increases to infinity and
since h > u.
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For h < u, there holds g�S(u, h)  1 � ⌫S((a�h,1)), so that

Pr
⇥

⇥�
t0,t1  h

⇤

 ⌫S((a�u,1)) +

✓

⌫S((a�u,1))

⌫S((a�h,1))

◆2

[1 � ⌫S((a�h,1))],

which tends to 0 due to (HS(1)) and since h < u. This concludes the proof.

3.10.3. Persistent e↵ect of microscopic fires. — We handle a study similar to
subsection 3.9.2. Recall that R = ("; t0, t1, . . . , tK ; s) satisfies (PP) if

(i) K � 2, " 2 {�1, 1};
(ii) 0 < t0 < t1 < · · · < tK < s < tK + 1;

(iii) for all k = 0, . . . , K � 1, tk+1 � tk < 1;

(iv) t2 � t0 > 1 and for all k = 2, . . . , K � 2, tk+2 � tk > 1,

and that we set "k = (�1)k" for k � 0.
For a family of i.i.d. SR(µS)-processes (NS

t (i))t�0,i2Z, we introduce, for each �

in (0, 1), the process (⇣�,Rt (i))t�t0,i2[[�m�,m�]] defined as follows:

. for all t 2 [t0, t1), all i 2 [[�m�,m�]], ⇣�,Rt (i) = min(NS
a�t

(i) � NS
a�t0

(i), 1),

. for all i 2 [[�m�,m�]], ⇣�,Rt1 (i) = ⇣�,Rt1� (i)11{i 62C(⇣�,R
t1� ,0)},

. for k = 1, . . . , K � 1,

(*) for all t 2 (tk, tk+1), i 2 [[�m�,m�]],

⇣�,Rt (i) = min
�

⇣�,Rtk
(i) + NS

a�t
(i) � NS

a�tk
(i), 1

�

,

(*) for all i 2 [[�m�,m�]],

⇣�,Rtk+1
(i) = ⇣�,Rtk+1�(i)11i 62C(⇣�,R

tk+1�,✏km�)
;

. for all t 2 (tK ,1), i 2 [[�m�,m�]],

⇣�,Rt (i) = min
�

⇣�,RtK (i) + NS
a�t

(i) � NS
a�tK

(i), 1
�

.

Consider the event

⌦S
R(�) =

�

9 �m� < i1 < i2 < i3 < m� : ⇣�,Rs (i1) = ⇣�,Rs (i3) = 0, ⇣�,Rs (i2) = 1
 

.

Lemma 3.10.3. — Let R = ("; t0, t1, . . . , tK ; s) satisfy (PP). For each � 2 (0, 1],
consider the process (⇣�,Rt (i))t�t0,i2[[�m�,m�]] defined above. If t2 � t1 < t1 � t0, there
holds

lim
�!0

Pr
�

⌦S
R(�)

�

= 1.

Compare to Lemma 3.9.2: the condition ⇥t0,t1 > t2�t1 is replaced by the condition
t1 � t0 > t2 � t1. This is very natural, in view of Lemma 3.10.2.

Proof. — In view of Lemma 3.10.1, the proof is very similar to that of Lemma 3.9.2.
We assume that " = 1 and that K is even for simplicity. Fix ↵ = 1/K.
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First fire. — We put C = C(⇣�,Rt1� , 0). Since t1 � t0 < 1, C ⇢ [[�b↵m�c, b↵m�c]]
with probability tending to 1 (use Lemma 3.10.1 (i) and space/time stationarity).
Thus the match falling at time t1 destroys nothing outside [[�b↵m�c, b↵m�c]].

Second fire. — Since t2 � t0 > 1, at least one seed has fallen, during [t0, t2) on
each site of [[b↵m�c + 1,m�]] with probability tending to 1 (use Lemma 3.10.1 (ii)
and space/time stationarity). Thus the fire at time t2 destroys completely the zone
[[b↵m�c+1,m�]]. Furthermore, it does not a↵ect [[�m�,�b↵m�c�1]] with probability
tending to 1, because t2 < t1 + ⇥�

t0,t1 with probability tending to 1 (⇥�
t0,t1 ' t1 � t0

by Lemma 3.10.2 and t2 � t1 < t1 � t0 by assumption) and because there is an empty
site in C ⇢ [[�b↵m�c, b↵m�c]] during [t1, t1 +⇥�

t0,t1 ] (by definition of ⇥�
t0,t1).

Third fire. — Since t3 � t2 < 1, the probability that there is a vacant site in
[[b↵m�c + 1, b2↵m�c]] at time t3 tends to 1 as � ! 0 (use Lemma 3.10.1 (i) and
space/time stationarity).

Next, all the sites of [[�m�,�b↵m�c�1]] are occupied at time t3� with probability
tending to 1 (because they have not been a↵ected by a fire during [t0, t3) and because
t3 � t0 > t2 � t0 > 1, see Lemma 3.10.1 (ii)). Thus the fire at time t3 destroys the
zone [[�m�,�b↵m�c � 1]] and does not a↵ect the zone [[b2↵m�c,m�]].

Last fire and conclusion. — Iterating the procedure, we see that with a probability
tending to 1 as �! 0, the fire at time tK destroys the zone

⇥⇥

b( 12K↵)m�c,m�

⇤⇤

=
⇥⇥

b 1
2m�c,m�

⇤⇤

.

Then one easily concludes: since 0 < s � tK < 1, the probability that there is at
least one site in [[b 1

2m�c, b 2
3m�c]] with no seed falling during [tK , s] tends to 1 (by

Lemma 3.10.1 (i)), the probability that there is at least one site in [[b 2
3m�c+1, b 5

6m�c]]
with at least one seed falling during [tK , s] tends to 1 (by Lemma 3.10.1 (v)), and the
probability that there is at least one site in [[b 5

6m�c + 1,m�]] with no seed falling
during [tK , s] tends to 1 (by Lemma 3.10.1 (i)).

3.10.4. The coupling. — We are going to construct a coupling between the
FFA(µS , µ�

M )-process (on the time interval [0,a�T ]) and the LFFA(1)-process
(on [0, T ]).

First, we couple a family of i.i.d. SR(µ�
M )-processes (NM,�

t (i))t�0,i2Z with a Poisson
measure ⇡M (dt, dx) on [0, T ] ⇥ [�A, A] with intensity measure dtdx as in Proposi-
tion 3.2.1.

We call n := ⇡M ([0, T ] ⇥ [�A, A]) and we consider the marks (Tq, Xq)q=1,...,n of
⇡M ordered in such a way that 0 < T1 < · · · < Tn < T .

Next, we introduce some i.i.d. families of i.i.d. SR(µS)-processes (NS,q
t (i))t�0,i2Z,

for q = 0, 1, . . . , independent of ⇡M and (NM,�
t (i))t�0,i2Z.

Then we build a family of i.i.d. SR(µS)-processes (independent of (NM,�
t (i))t�0,i2Z

and ⇡M ) as follows.
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. For q 2 {1, . . . , n}, recall that (Xq)� = [[bn�Xq �m�c, bn�Xq + m�c]]), and for
all i 2 (Xq)�, set

�

NS,�
t (i)

�

t�0
=
�

NS,q
t (i � bn�Xqc)

�

t�0
.

(In the rare case where i belongs to (Xq)� \ (Xr)� for some q < r, set e.g.

(NS,�
t (i))t�0 = (NS,q

t (i� bn�Xqc))t�0. This will occur with a very small probability,
so that this choice is not important).

. For all other i 2 Z set
�

NS,�
t (i)

�

t�0
=
�

NS,0
t (i)

�

t�0
.

The FFA(µS , µ�
M )-process (⌘�t (i))t�0,i2I�

A
is built from the seed processes

(NS,�
t (i))t�0,i2Z and from the match processes (NM,�

t (i))t�0,i2Z.
Finally, we build the LFFA(1)-process (Zt(x), Dt(x), Ht(x))t2[0,T ],x2[�A,A] from

⇡M (use Algorithm 3.9.3 replacing ⇥k+1
Tk+1�ZTk+1�(Xk+1),Tk+1

by ZTk+1�(Xk+1)) and

observe that it is independent of (NS,q
t (i))t2[0,T ],i2Z,q�0.

3.10.5. A favorable event. — First, we know from Proposition 3.2.1 that

⌦M
A,T (�) :=

�

8t 2 [0, T ], 8i 2 I�A, �NM,�
a�t

(i) 6= 0 i↵ ⇡M ({t}⇥ i�) 6= 0
 

satisfies lim�!0 Pr[⌦M
A,T (�)] = 1. Next, we recall that the marks of ⇡M are called

(T1, X1), . . . , (Tn, Xn) and are ordered chronologically. We introduce

TM = {0, T1, . . . , Tn}, BM = {X1, . . . , Xn},

as well as the set CM of connected components of [�A, A] \ BM (sometimes referred
to as cells). We also introduce

SM = {2t � s : s, t 2 TM , s < t},

which has to be seen as the possible limit values of t + ⇥�
s,t ' t + t � s, recall

Lemma 3.10.2.

For ↵ > 0, we consider the event

⌦M (↵) =
n

min
s,t2TM[SM

s 6=t

|t � s| � ↵, min
s,t2TM[SM

s 6=t

|t � (s + 1)| � ↵,

min
x,y2BM[{�A,A}

x 6=y

|x � y| � ↵
o

,

which clearly satisfies lim↵!0 Pr[⌦M (↵)] = 1. As in the case � = BS, for any
given ↵ > 0, there is �↵ > 0 such that for all � 2 (0,�↵), on ⌦M (↵),

. for all x, y 2 BM [ {�A, A}, with x 6= y, x� \ y� = ?;

. the family {c�, c 2 CM} [ {x�, x 2 BM} is a partition of I�A (recall (3.10.1)
and (3.10.2)).
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Let q 2 {1, . . . , n}. We call Uq the set of all possible R = (", t0, . . . , tK ; s) satisfying
(PP) with " 2 {�1, 1}, with {t0, . . . , tK , s} ⇢ TM and with t1� t0 > t2� t1. We intro-
duce, for q = 1, . . . , n and R 2 Uq, the event ⌦S,q

R (�) defined as in subsection 3.10.3

with the SR(µS)-processes (NS,q
t (i))t�0,i2Z. Then we put

⌦S
1 (�) =

n
\

q=1

\

R2Uq

⌦S,q
R (�),

which satisfies lim�!0 Pr
�

⌦S
1 (�)

�

= 1 thanks to Lemma 3.10.3.

We also consider the event ⌦S
2 (�) on which the following conditions hold: for

all t1, t2 2 TM [ SM with 0 < t2 � t1 < 1, for all q = 1, . . . , n, there are

�m� < i1 < i2 < � 1
2m� < i3 < 0 < i4 < 1

2m� < i5 < i6 < m�

such that

. for j = 1, 3, 4, 6, NS,q
a�t2

(ij) � NS,q
a�t1

(ij) = 0,

. for j = 2, 5, NS,q
a�t2

(ij) � NS,q
a�t1

(ij) > 0.

There holds lim�!0 Pr
�

⌦S
2 (�)

�

= 1. Indeed, it su�ces to prove that almost
surely, lim�!0 Pr

�

⌦S
2 (�)|⇡M

�

= 1. Since there are a.s. finitely many possibilities

for q, t1, t2 and since ⇡M is independent of (NS,q
t (i))t�0,i2Z, it su�ces to work with

a fixed q in {1, . . . , n} and some fixed 0 < t2 � t1 < 1. The result then follows from
Lemma 3.10.1 (i)-(v) together with space/time stationarity.

Next we introduce the event ⌦S
3 (�) on which the following conditions hold: for all

t1, t2 2 TM [ SM ,

. for all c 2 CM , if 0 < t2 � t1 < 1, there is i 2 c� with NS,�
a�t2

(i) � NS,�
a�t1

(i) = 0;

. for all x 2 BM , if 0 < t2 � t1 < 1, there is i 2 x� with NS,�
a�t2

(i) � NS,�
a�t1

(i) = 0;

. if t2 � t1 > 1, for all c 2 CM , for all i 2 c�, NS,�
a�t2

(i) � NS,�
a�t1

(i) > 0;

. if t2 � t1 > 1, for all x 2 BM , for all i 2 x�, NS,�
a�t2

(i) � NS,�
a�t1

(i) > 0.

There holds lim�!0 Pr
�

⌦S
3 (�)

�

= 1. As previously, it su�ces to work with some
fixed t1, t2, x 2 (�A, A) and c = (a, b) ⇢ (�A, A). Observing that |x�| ⇠ 2m� and
that |c�| ⇠ (b � a)n�, Lemma 3.10.1 and space/time stationarity shows the result.

We also need ⌦S
4 (�,�), defined for � > 0 as follows: for all q = 1, . . . , n, for

all t0, t1 2 TM with t0 < t1 < t0 + 1, there holds |⇥q,�
t0,t1 � (t1 � t0)| < �. Here

⇥q,�
t0,t1 is defined as in Lemma 3.10.2 with the seed processes family (NS,q

t (i))t�0,i2Z.
Lemma 3.10.2 directly implies that for any � > 0, lim�!0 Pr[⌦S

4 (�,�)] = 1.

We finally introduce the event

⌦(↵, �,�) = ⌦M
A,T (�) \ ⌦M (↵) \ ⌦S

1 (�) \ ⌦S
2 (�) \ ⌦S

3 (�) \ ⌦S
4 (�,�).

We have shown that for any " > 0, there exists ↵ > 0 such that for any � > 0, there
holds lim inf�!0 Pr[⌦(↵, �,�)] > 1 � ".
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3.10.6. Heart of the proof. — We now handle the main part of the proof, fol-
lowing closely subsection 3.9.5.

Consider the LFFA(1)-process. Observe that by construction, we have, for c 2 CM
and x, y 2 c, Zt(x) = Zt(y) for all t 2 [0, T ], thus we can introduce Zt(c).

If x 2 BM , it is at the boundary of two cells c�, c+ 2 CM and then we set Zt(x�) =
Zt(c�) and Zt(x+) = Zt(c+) for all t 2 [0, T ].

If x 2 (�A, A) \ BM , we put Zt(x�) = Zt(x+) = Zt(x) for all t 2 [0, T ].

For x 2 BM and t � 0 we set eHt(x) = max(Ht(x), 1�Zt(x), 1�Zt(x�), 1�Zt(x+)).

Actually Zt(x) always equals either Zt(x�) or Zt(x+) and these can be distinct
only at a point where has occurred a microscopic fire (that is if x = Xq for some
q 2 {1, . . . , n} with Tq < t and ZTq�(Xq) < 1).

For all x 2 (�A, A) and t 2 [0, T ], we put

⌧t(x) = sup
�

s  t : Zs(x+) = Zs(x�) = Zs(x) = 0
 

2 [0, t] \ TM .

For c 2 CM and t 2 [0, T ], we can define ⌧t(c) as usual.

Observe, using Algorithm 3.9.3, that as when � = BS,

for x /2 BM , Zt(x) = min (t � ⌧t(x), 1) for all t 2 [0, T ],(3.10.3)

for q = 1, . . . , n, Zt(Xq) = min (t � ⌧t(Xq), 1) for all t 2 [0, Tq).(3.10.4)

We also define for all t 2 [0, T ], all c 2 CM and all x 2 (�A, A)

⌧�t (c) = sup
�

s  t : 8i 2 c�, ⌘�a�t�(i) = 1 and ⌘�a�t
(i) = 0

 

2 [0, t],

⇢�t (c) = sup
�

s  t : 9i 2 c�, ⌘�a�t�(i) = 1 and ⌘�a�t
(i) = 0

 

2 [0, t],

⌧�t (x) = sup
�

s  t : 8i 2 x�, ⌘�a�t�(i) = 1 and ⌘�a�t
(i) = 0

 

2 [0, t]

with the convention that ⌘�0�(i) = 1 for all i 2 I�A. Observe that on ⌦M
A,T (�), we have

⌧�t (c), ⇢�t (c), ⌧�t (x) 2 [0, t] \ TM for all t 2 [0, T ], all c 2 CM and all x 2 (�A, A).

For t 2 [0, T ], consider the event

⌦�
t =

�

8s 2 [0, t], 8c 2 CM , ⌧�s (c) = ⇢�s (c) = ⌧s(c) and 8x 2 BM , ⌧�s (x) = ⌧s(x)
 

.

Lemma 3.10.4. — Let ↵ > � > 0. For any � 2 (0,�↵), ⌦�
T a.s. holds on

⌦(↵, �,�).

Proof. — We work on ⌦(↵, �,�) and assume that � 2 (0,�↵). Clearly,

⌧0(x) = ⌧�0 (x) = 0 and ⌧0(c) = ⌧�0 (c) = ⇢�0 (c) = 0

for all x 2 BM , all c 2 CM , so that ⌦�
0 a.s. holds. We will show that for q = 0, . . . , n�1,

⌦�
Tq

implies ⌦�
Tq+1

. This will prove that ⌦�
Tn

holds. The extension to ⌦�
T will be

straightforward (see step 1 below).
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We thus fix q 2 {0, . . . , n � 1} and assume ⌦�
Tq

. We repeatedly use below that on
the time interval (Tq, Tq+1), there are no fires at all (in [�A, A]) for the LFFA(BS)-
process and no fires at all (in I�A) during (a�Tq,a�Tq+1) for the FFA(µS , µ�

M )-process
(use ⌦M

A,T (�)).

Step 1. — Exactly as in the proof of Lemma 3.9.5, step 1, ⌦�
Tq

implies ⌦�
Tq+1�.

Step 2. — Exactly as in the proof of Lemma 3.9.5, step 2, we observe that for
c 2 CM , on ⌦�

Tq+1�, there holds, for all i 2 c�,

⌘�a�Tq+1�(i) = min
�

NS,0
a�Tq+1�(i) � NS,0

a�⌧Tq (c)
(i), 1

�

.(3.10.5)

Step 3. — If ZTq+1�(Xq+1) < 1, there exist j1, j2, j3, j4 2 (Xq+1)� such that

j1 < j2 < bn�Xq+1c < j3 < j4,

⌘�a�Tq+1�(j2) = ⌘�a�Tq+1�(j3) = 0,

⌘�a�Tq+1�(j1) = ⌘�a�Tq+1�(j4) = 1.

The proof is the same as Lemma 3.9.5, step 3.

Step 4. — Next we check that if ZTq+1�(c) = 1 for some c 2 CM , then

⌘�a�Tq+1�(i) = 1 for all i 2 c�.

Recalling (3.10.3), we see that ZTq+1�(c) = 1 implies that Tq+1 � ⌧Tq+1�(c) � 1
and thus Tq+1 � ⌧Tq (c) � 1 by step 1. Using ⌦M (↵) and that Tq+1, ⌧Tq (c) 2 TM , we
deduce that Tq+1 � ⌧Tq (c) > 1. Using (3.10.5), we conclude that for all i 2 c�,

⌘�a�Tq+1�(i) = min
�

NS,0
a�Tq+1�(i) � NS,0

a�⌧Tq (c)(i)
, 1
�

= 1

by ⌦S
3 (�).

Step 5. — We now prove that if eHTq+1�(x) = 0 for some x 2 BM , then

⌘�a�Tq+1�(i) = 1 for all i 2 x�.

Preliminary considerations. — Let k 2 {1, . . . , n} such that x = Xk, which is
at the boundary of two cells c�, c+ 2 CM . We know that eHTq+1�(x) = 0, whence
HTq+1�(x) = 0 and ZTq+1�(x) = ZTq+1�(c+) = ZTq+1�(c�) = 1. This implies that
Tq+1 � 1 (because Zt(x) = t for all t < 1 and all x 2 [�A, A]) and thus Tq+1 � 1 + ↵

due to ⌦M (↵).

No fire has concerned (c�)� during (a�⇢
�
Tq+1�(c�),a�Tq+1) (by definition

of ⇢�Tq+1�(c�)). But step 1 implies that ⇢�Tq+1�(c�) = ⌧Tq+1�(c�)  Tq+1 � 1
because ZTq+1�(c�) = 1, see (3.10.3). Recalling ⌦M (↵), we deduce that

⇢�Tq+1�(c�) < Tq+1 � 1 � ↵.

Using a similar argument for c+, we conclude that no match falling outside (Xk)�
can a↵ect (Xk)� during (a�(Tq+1� 1�↵),a�Tq+1) (because to a↵ect (Xk)�, a match
falling outside (Xk)� needs to cross c� or c+).
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Case 1. – First assume that k � q + 1. Then we know that no fire has fallen on
(Xk)� during [0,a�Tq+1). Due to the preliminary considerations, we deduce that
no fire at all has concerned (Xk)� during (a�(Tq+1�1�↵),a�Tq+1). Using ⌦S

3 (�),
we conclude that (Xk)� is completely occupied at time a�Tq+1�.

Case 2. – Assume that k  q and ZTk�(Xk) = 1, so that there already has been a
macroscopic fire in (Xk)� (at time a�Tk). Since ZTk(Xk) = 0 and ZTq+1�(Xk) = 1,
we deduce that Tq+1�Tk � 1, whence Tq+1�Tk � 1+↵ as usual. We conclude as
in Case 1 that no fire at all has concerned (Xk)� during (TS(Tq+1�1�↵), TSTq+1),
which implies the claim by ⌦S

3 (�).

Case 3. – Assume that k  q and ZTk�(Xk) < 1 and Tq+1 � Tk � 1, whence
Tq+1 � Tk � 1 + ↵ due to ⌦M (↵). Then there already has been a microscopic fire
in (Xk)� (at time a�Tk). But there are no fire in (Xk)� during (a�Tk,a�Tq+1) �
(TS(Tq+1 � 1 � ↵), TSTq+1) and we conclude as in case 2.

Case 4. – Assume finally that k  q and ZTk�(Xk) < 1 and Tq+1�Tk < 1, whence
Tq+1 � Tk  1 � ↵ due to ⌦M (↵). There has been a microscopic fire in (Xk)� (at
time a�Tk). Since HTq+1�(Xk) = 0, we deduce (see Algorithm 3.9.3 and recall that
⇥k

Tk�ZTk�(Xk),Tk
is replaced by ZTk�(Xk)) that Tk + ZTk�(Xk)  Tq+1, whence

Tk + ZTk�(Xk)  Tq+1 � ↵ by ⌦M (↵) (SM was designed for that purpose).

Consider the zone C = C(⌘�a�Tk�, bn�Xkc) destroyed by the match falling at

time a�Tk. This zone is completely occupied at time a�(Tk + ⇥k,�
Tk�ZTk�(Xk),Tk

):

this follows from the definition of ⇥k,�
Tk�ZTk�(Xk),Tk

, see Lemma 3.9.1 and from the

preliminary considerations. Using ⌦S
4 (�,�), we deduce that

Tk +⇥k,�
Tk�ZTk�(Xk),Tk

 Tk + ZTk�(Xk) + � < Tq+1,

since � < ↵. Hence C is completely occupied at time a�Tq+1�.

Consider now i 2 (Xk)� \ C. Then i has not been killed by the fire starting
at bn�Xkc. Thus i cannot have been killed during (a�(Tq+1 � 1 � ↵),a�Tq+1) (due
to the preliminary considerations) and we conclude, using ⌦S

3 (�), that i is occupied
at time a�Tq+1�. This implies the claim.

Step 6. — Let us now prove that if eHTq+1�(x) > 0 and ZTq+1�(x+) = 1 for some
x 2 BM , there are i1, i2 2 x� such that i1 < i2 and ⌘�a�Tq+1�(i1) = 1, ⌘�a�Tq+1�(i2) = 0.
Recall that x is at the boundary of two cells c�, c+.

We have either HTq+1�(x) > 0 or ZTq+1�(c�) < 1 (because ZTq+1�(c+) = 1 by
assumption). Clearly, x = Xk for some k  q, with ZTk�(Xk) < 1 (else, we would
have Ht(x) = 0 and Zt(c�) = Zt(c+) for all t 2 [0, Tq+1)). Thus, recalling (3.10.4),

Tk � ZTk�(Xk) = ⌧Tk�(Xk) = ⌧�Tk�(Xk),

so that (Xk)� is completely empty at time a�(Tk � ZTk�(Xk)).
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Case 1. – Assume first that HTq+1�(x) > 0. Then by construction, see Algo-
rithm 3.9.3 (with ⇥Tk�ZTk�(Xk),Tk

replaced by ZTk�(Xk)), there holds

Tk + ZTk�(Xk) > Tq+1 > Tk,

whence by ⌦M (↵), Tk + ZTk�(Xk) > Tq+1 + ↵ > Tk + 2↵.

Consider C = C(⌘�a�Tk�, bn�Xkc). By ⌦S
2 (�), we have

C ⇢
⇥⇥

bn�Xk � 1
2m�c, bn�Xk + 1

2m�c
⇤⇤

(because (Xk)� is completely empty at time a�(Tk � ZTk�(Xk)), because Tk �
ZTk�(Xk) and Tk belong to TM and because 0 < ZTk�(Xk) < 1).

The component C is destroyed at time TSTk. By Definition of ⇥k,�
Tk�ZTk�(Xk),Tk

,

see Lemma 3.10.2, we deduce that C is not completely occupied at time

a�(Tk +⇥k,�
Tk�ZTk�(Xk),Tk

).

But by ⌦S
4 (�,�) we see that ⇥k,�

Tk�ZTk�(Xk),Tk
� ZTk�(Xk) � �, whence

Tk +⇥k,�
Tk�ZTk�(Xk),Tk

� Tk + ZTk�(Xk) � � > Tq+1

since � < ↵. All this implies that C is not completely occupied at time a�Tq+1�.

Finally, using again ⌦S
2 (�) there is necessarily (at least) one seed falling on a site

in [[bn�Xk�m�+1c, bn�Xk� 1
2m��1c]] ⇢ (Xk)� during (a�Tq,a�Tq+1). This shows

the result.

Case 2. – Assume next that HTq+1�(x) = 0 and Tq+1 � [Tk � ZTk�(Xk)] < 1.
Recall that (Xk)� is completely empty at time a�(Tk � ZTk�(Xk)). Since Tk �
ZTk�(Xk) and Tq+1 belong to TM and since their di↵erence is smaller than 1
by assumption, ⌦S

2 (�) guarantees us the existence of i1 < i2 < i3, all in (Xk)�,
such that (at least) one seed falls on i2 and no seed fall on i1 nor on i3 during
(a�(Tk � ZTk�(Xk)),a�Tq+1). One easily concludes that i2 is occupied and i3 is
vacant at time a�Tq+1�, as desired.

Case 3. – Assume finally that HTq+1�(x) = 0 and Tq+1 � [Tk � ZTk�(Xk)] � 1,
whence Tq+1�[Tk�ZTk�(Xk)] � 1+↵ by ⌦M (↵). Since HTq+1�(x) = 0, there holds
ZTq+1�(c�) < 1 = ZTq+1�(c+) and Tk+ZTk�(Xk)  Tq+1, so that Tk+ZTk�(Xk) 
Tq+1 � ↵.
We aim to use the event ⌦S

1 (�). We introduce

t0 = Tk � ZTk�(Xk) = ⌧Tk�(Xk) = ⌧�Tk�(Xk).

Observe that ⌧Tk�(c�) = ⌧Tk�(c+) = ⌧Tk�(x) because there has been no fire (exactly)
at x during [0, Tk). Thus

Zt0�(x) = Zt0�(x�) = Zt0�(x+) = 1 and Zt0(x) = Zt0(c�) = Zt0(c+) = 0.

Set now t1 = Tk and s = Tq+1. Observe that 0 < t1 � t0 < 1. Necessarily,
Zt(c�) has jumped to 0 at least one time between t0 and Tq+1� (else, one would
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have ZTq+1�(c�) = 1, since Tq+1 � t0 � 1 by assumption) and this jump occurs
after t0 + 1 > t1 (since a jump of Zt(c�) requires that Zt(c�) = 1, and since for all
t 2 [t0, t0 + 1), Zt(c�) = t � t0 < 1).

We thus may denote by t2 < t3 < · · · < tK , for some K � 2, the successive times
of jumps of the process (Zt(c�), Zt(c+)) during (t0 + 1, s). We also put " = 1 if t2 is
a jump of Zt(c+) and " = �1 else. Then we prove exactly as in Lemma 3.9.5, step 6,
case 3 that R = {", t0, . . . , tK ; s} necessarily satisfies the condition (PP).

Next, t2 � t1 < ZTk�(Xk) = t1 � t0, because else, we would have Ht2�(Xk) = 0
and thus the fire destroying c+ (or c�) at time t2 would also destroy c� (or c+), we
thus would have Zt2(c+) = Zt2(c�) = 0, so that Zt(c+) and Zt(c�) would remain
equal forever.

Finally, we check as in Lemma 3.9.5, step 6, case 3 that
�

⌘�a�t
(i)
�

t�t0,i2x�
=
�

⇣�,R,k
t (i + bn�xc)

�

t�t0,i2x�
,

this last process being built upon the family (NS,k
t (i))t�t0,i2x� as in subsection 3.10.3.

We thus can use ⌦S
1 (�) and conclude that there are some sites i1 < i2 in x� with

⌘�TSTq+1�
(i1) = 1 and ⌘�TSTq+1�

(i2) = 0 as desired.

Step 7. — The conclusion follows from the previous steps exactly as in the proof
of Lemma 3.9.5, step 7: it su�ces to replace everywhere TS by a�.

3.10.7. Conclusion. — To achieve the proof, we will need the following result.

Lemma 3.10.5. — Let (NS
t (i))t�0,i2Z be a family of i.i.d. SR(µS)-processes, and

define

⇣�t (i) = min
�

NS
a�t

(i), 1
�

.

(i) Put K�
t = (2m� + 1)�1|{i 2 [[�m�,m�]] : ⇣�t (i) > 0}| and

U�
t =

⇣ S(K�
t )

a�

⌘

^ 1,

recall notation 2.1.5. Then for any " > 0, any T > 0,

lim
�!0

Pr
h

sup
[0,T ]

|U�
t � t ^ 1| > "

i

= 0.

(ii) Put also C�
t = C(⇣�t , 0) and define

V �
t =

�

a�1
�  S(1 � 1/|C�

t |)11{|C�
t |>0}

�

^ 1.

Then for any " > 0, for all t 2 [0, 1),

lim
�!0

Pr
⇥

C�
t ⇢ [[�m�,m�]], |V �

t � t| < "
⇤

= 1.

Proof. — We split the proof into three steps.

Step 1. — Here we show that for t � 0 fixed,

lim
�!0

Pr
⇥

|U�
t � t ^ 1| > "

⇤

= 0.
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Case 1. – Assume first that t � 1. Then Lemma 3.10.1 (ii) implies that
lim�!0 Pr[K�

t = 1] = 1. But K�
t = 1 implies that U�

t = [ S(1)/a�] ^ 1 = 1
(because  S(1) = 1).

Case 2. – Assume next that t < 1. Then the random variable X�
t = (2m� + 1)K�

t

has a binomial distribution with parameters 2m�+1 and ⌫S((0,a�t)). Let " 2 (0, t)
be fixed. Then, using Bienaymé-Chebyshev’s inequality,

Pr
⇥

K�
t  ⌫S((0,a�(t � ")))

⇤

= Pr
⇥

X�
t  (2m� + 1)⌫S((0,a�(t � ")))

⇤

 Pr
⇥

|X�
t � (2m� + 1)⌫S((0,a�t))| � (2m� + 1)⌫S((a�(t � "),a�t))

⇤

 (2m� + 1)⌫S((0,a�t))⌫S((a�t,1))

(2m� + 1)2⌫2S((a�(t � "),a�t))
 ⌫S((a�t,1))

(2m� + 1)⌫2S((a�(t � "),a�t))
·

This last quantity tends to 0. Indeed, (HS(1)) implies that

⌫S
�

(a�(t � "),a�t)
�

⇠ ⌫S
�

(a�(t � "),1)
�

� ⌫S
�

(a�t,1)
�

and it su�ces to use that m�⌫S((a�t,1)) ! 1 by (2.2.4), since t < 1.

By the same way, for " > 0,

Pr
⇥

K�
t � ⌫S((0,a�(t + ")))

⇤

= Pr
⇥

X�
t � (2m� + 1)⌫S((0,a�(t + ")))

⇤

 Pr
⇥

|X�
t � (2m� + 1)⌫S((0,a�t))| � (2m� + 1)⌫S((a�t,a�(t + ")))

⇤

 (2m� + 1)⌫S((0,a�t))⌫S((a�t,1))

(2m� + 1)2⌫2S((a�t,a�(t + ")))
 ⌫S((a�t,1))

(2m� + 1)⌫2S((a�t,a�(t + ")))
,

which also tends to 0, because (HS(1)) implies that

⌫S
�

(a�t,a�(t + "))
�

⇠ ⌫S
�

(a�t,1)
�

,

and because m�⌫S((a�t,1)) ! 1, since t < 1.
To conclude the step it su�ces to note that for 0 < t � " < t < t + " < 1,

K�
t 2 (⌫S((0,a�(t�"))), ⌫S((0,a�(t+")))) implies that U�

t 2 (t�", t+") by definition
of  S .

Step 2. — Using a well suited version of the Dini theorem, we conclude the proof
of (i). Indeed, let " > 0 and consider a subdivision 0 = t0 < t1 < · · · < t` = T ,
with ti+1 � ti < 1

2". Using step 1, we see that

lim
�!0

Pr
⇥

max
i=0,...,`

|U�
ti � ti ^ 1| > 1

2"
⇤

= 0.

Observe that t 7! U�
t is a.s. nondecreasing and that t 7! t ^ 1 is nondecreasing and

Lipschitz continuous. We deduce that

sup
[0,T ]

|U�
t � t ^ 1|  1

2
"+ max

i=0,...,`
|U�

ti � ti ^ 1|.

One immediately concludes.
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Step 3. — It remains to prove (ii). Let thus t < 1 and " > 0 be fixed. We can of
course assume that 0 < t � " < t < t + " < 1.

First, lim�!0 Pr[C�
t ⇢ [[�m�,m�]]] = 1 due to Lemma 3.10.1 (i).

Next, each site is vacant with probability ⌫S((a�t,1)). It is thus classical
that as � ! 0, ⌫S((a�t,1))|C�

t | goes in law to a random variable X with den-
sity xe�x11x>0. Indeed,

. for Y� a geometric random variable with parameter �, the random variable
�Y� goes in law, as � ! 0, to an exponentially distributed random variable
with parameter 1;

. |C�
t | is the sum of two independent geometric random variables, both with

parameter ⌫S((a�t,1));

. xe�x11x>0 is the density of the sum of two independent exponentially dis-
tributed random variables with parameter 1.

For � > 0, consider 0 < a < 1 < b such that Pr[X 2 (a, b))] � 1 � �. Then

lim
�!0

Pr
⇥

|C�
t | 2 (a/⌫S((a�t,1)), b/⌫S((a�t,1))

⇤

� 1 � �.

But due to (HS(1)), |C�
t | 2 (a/⌫S((a�t,1)), b/⌫S((a�t,1)) implies, if � is small

enough, that |C�
t | 2 (1/⌫S((a�(t � "),1)), 1/⌫S((a�(t + "),1)), whence finally

V �
t 2

�

a�1
�  S(⌫S((0,a�(t � ")))),a�1

�  S(⌫S((0,a�(t + "))))
�

= (t � ", t + ").

We have proved that for all � > 0, lim inf�!0 Pr[|V �
t �t| < "] � 1��, which concludes

the proof.

We finally give the

Proof of Proposition 3.8.1 when � = 1. — Let us fix x0 2 (�A, A), t0 2 (0, T ] \ {1}
and " > 0. We will prove that with our coupling (see subsection 3.9.3), there holds

(a) lim�!0 Pr
⇥

�(D�
t0(x0), Dt0(x0)) > "

⇤

= 0;

(b) lim�!0 Pr
⇥

�T (D�(x0), D(x0)) > "
⇤

= 0;

(c) lim�!0 Pr
⇥

sup[0,T ] |Z�
t (x0) � Zt(x0)| � "

⇤

= 0;

(d) lim�!0 Pr
⇥

|W�
t0(x0) � Zt0(x0)| > "

⇤

= 0, where

W�
t0(x0) =

⇣ S(1 � 1/|CA(⌘�a�t0
, bn�x0c)|)11{|CA(⌘�

a�t0
,bn�x0c)|>0}

a�

⌘

^ 1.

These points will clearly imply the result.
First, we introduce, for ⇣ > 0, the event ⌦x0

A,T (⇣) on which x0 /2
Sn

q=1[Xq�⇣, Xq+⇣].
The probability of this event obviously tends to 1 as ⇣ ! 0.

On ⌦x0
A,T (⇣), we have, for � > 0 small enough (say, such that 4m�/n� < ⇣),

bn�x0c /2
Sn

q=1(Xq)�. We then call c0 2 CM the cell containing x0.

Step 1. — As in the case where � = BS, (a) implies (b) (the fact that t0 = 1 is
excluded in (a) is of course not a problem, because {1} is Lebesgue-negligible).
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Step 2. — Due to Lemma 3.10.4, we know that if 0 < � < ↵, on ⌦(↵, �,�)\⌦x0
A,T (⇣),

⌧�t (c0) = ⇢�t (c0) = ⌧t(x0) for all t 2 [0, T ]. This implies that for all i 2 (c0)�, for
all t 2 [0, T ],

⌘�TSt(i) = min
�

NS,0
a�t

(i) � NS,0
a�⌧t(x0)

(i), 1
�

.

We also recall that by construction, (⌧t(x0))t�0 is independent of (NS,0
t (i))t�0,i2Z.

Step 3. — Here we prove (d). Let � > 0 be fixed. We first consider ↵0 > 0,
�0 2 (0,↵0), ⇣0 > 0 and �0 > 0 such that for all � 2 (0,�0),

Pr
⇥

⌦(↵0, �0,�) \ ⌦x0
A,T (⇣0)

⇤

> 1 � �.

Then we consider �1  �0 in such a way that for � 2 (0,�1),
⇥⇥

bn�x0c �m�, bn�x0c + m�

⇤⇤

⇢ (c0)�

(this can be done properly by using ⌦x0
A,T (⇣) and the fact that m�/n� ! 0).

Introduce C�
t and V �

t as in Lemma 3.10.5 (ii), using the seed processes

(NS,�
t+⌧t(x0)/a�

(i + bn�x0c) � NS
⌧t(x0)/a�

(i + bn�x0c))t�0,i2Z.

Then by step 2, we observe that C�
t0�⌧t(x0)

⇢ [[�m�,m�]] implies that, on

⌦(↵, �,�) \ ⌦x0
A,T (⇣) and for � < �1,

CA

�

⌘�a�t0
, bn�x0c

�

=
�

i + bn�x0c : i 2 C�
t0�⌧t(x0)

 

,

whence W�
t0(x0) = V �

t0�⌧t0 (x0)
. All this implies, using Lemma 3.10.5 (ii), that

lim inf
�!0

Pr
⇥

|W�
t0(x0) � (t0 � ⌧t0(x0))| < " | t0 � ⌧t0(x0) < 1

⇤

� 1 � �.

Recalling finally (3.10.3), we deduce that

lim inf
�!0

Pr
⇥

|W�
t0(x0) � Zt0(x0)| < " | t0 � ⌧t0(x0) < 1

⇤

� 1 � �.

If now t0�⌧t0(x0) > 1, then step 2 and ⌦S
3 (�) imply that (c0)� is completely occupied

at time a�t0. Hence
�

�C(⌘�a�t0
, bn�x0c)

�

� �
�

�(c0)�
�

� ' |c|n� � ↵n�

by ⌦M (↵). Consequently,

W�
t0(x0) �

⇥

a�1
�  S(1 � 1/(↵n�))

⇤

^ 1 '
⇥

a�1
�  S(1 � ⌫S((a�,1))/↵)

⇤

^ 1.

For " > 0, ⌫S((a�,1))/↵  ⌫S(((1� ")a�,1)) for all � small enough: use (HS(1)).
Thus for all � small enough, on ⌦(↵, �,�) \ ⌦x0

A,T (⇣), we have

W�
t0(x0) �

⇥

a�1
�  S(1 � ⌫S(((1 � ")a�,1)))

⇤

^ 1 = 1 � "

by definition of  S . Thus

lim inf
�!0

Pr
⇥

W�
t0(x0) 2 (1 � ", 1] | t0 � ⌧t0(x0) > 1

⇤

� 1 � �.

Recalling (3.10.3), we deduce that

lim inf
�!0

Pr
⇥

|W�
t0(x0) � Zt0(x0)| < " | t0 � ⌧t0(x0) > 1

⇤

� 1 � �.
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Finally, we observe that a.s., t0 � ⌧t0(x0) 6= 1. Indeed, we have excluded t0 = 1 and
the only value charged with positive probability by ⌧t0(x0) is 0. Thus

lim inf
�!0

Pr
⇥

|W�
t0(x0) � Zt0(x0)| < "

⇤

� 1 � �.

Since this holds for any � > 0, this concludes the proof of (d).

Step 4. — Next, (c) is proved exactly as when � = BS (change the beginning: let
first � > 0, ↵0 > 0, ⇣0 2 (0,↵0) and �0 > 0 be as in step 3; replace everywhere TS by
a�; and make use of Lemma 3.10.5 instead of Lemma 3.9.6).

Step 5. — Finally, (a) is also proved as when � = BS. The only di↵erence is that
when put T ⇤

M = TM [ {t0}, we need that t0 6= 1 (because 0 2 TM and ⌦⇤
M (↵) will

thus require that for |t0 � 1| > ↵).

3.11. Cluster-size distribution when � 2 {1, BS}

The aim of this section is to prove Corollaries 2.3.4 and 2.4.5.

3.11.1. Study of the LFF(1) and LFF(BS)-processes. — We first extend [15,
Lemma 17].

Lemma 3.11.1. — Let � 2 {1, BS}. Let (Zt(x), Dt(x), Ht(x))t�0,x2R be a
LFF(�)-process. There are some constants 0 < c1 < c2 and 0 < 1 < 2 such that
the following estimates hold.

(i) For any t 2 (1,1), any x 2 R, any z 2 [0, 1), Pr[Zt(x) = z] = 0.

(ii) For any t 2 [0,1), any B > 0, any x 2 R, P [|Dt(x)| = B] = 0.

(iii) For all t 2 [0,1), all x 2 R, all B > 0, Pr[|Dt(x)| � B]  c2 e�1B.

(iv) For all t 2 [ 32 ,1), all x 2 R, all B > 0, Pr[|Dt(x)| � B] � c1 e�2B.

(v) For all t 2 [ 52 ,1), all 0  a < b < 1, all x 2 R,
c1(b � a)  Pr

�

Zt(x) 2 [a, b]
�

 c2(b � a).

Proof. — By invariance by translation, it su�ces to treat the case x = 0. When
� = BS, the function FS was defined in Definition 2.4.1. Recall that the LFF(1)-
process can be viewed as a LFF(BS)-process with the function FS(z, v) = z, see
Remark 3.6.1.

We consider a Poisson measure ⇡M (dt, dx, dv) on [0,1)⇥R⇥ [0, 1] with intensity
measure dtdxdv. We also denote by ⇡M (dt, dx) =

R

v2[0,1] ⇡M (dt, dx, dv).

Point (i). — For t 2 [0, 1], we have a.s. Zt(0) = t. But for t > 1 and z 2 [0, 1),
Zt(0) = z implies that the cluster containing 0 has been killed at time t � z, so that
necessarily ⇡M ({t � z}⇥ R) > 0. This happens with probability 0.

Point (ii). — For any t > 0, |Dt(0)| is either 0 or of the form |Xi � Xj | (with
i 6= j), where (Ti, Xi)i�1 are the marks of the Poisson measure ⇡M (ds, dx) restricted
to [0, t] ⇥ R. We easily conclude as previously that for B > 0, Pr(|Dt(0)| = B) = 0.
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Figure 9. The event ⌦
t,B

.

Point (iii). — First if t 2 [0, 1), we have a.s. |Dt(0)| = 0 and the result is obvious.
Recall now that v0 2 [0, 1) was defined in Lemma 3.6.5 and that for (⌧, X, V ) a mark
of ⇡M such that V � v0, we have Ht(X) > 0 or Zt(X) < 1 for all t 2 [⌧, ⌧ + 1

4 ] (see
the proof of Proposition 3.6.4, step 1). This implies that for t � 1,

�

Dt(0) � B
 

⇢
�

[0, 1
2B] is connected at time t or

[� 1
2B, 0] is connected at time t

 

⇢
�

⇡M ([t � 1
4 , t] ⇥ [0, 1

2B] ⇥ [v0, 1]) = 0
 

[
�

⇡M ([t � 1
4 , t] ⇥ [� 1

2B, 0] ⇥ [v0, 1]) = 0
 

.

Consequently, Pr[|Dt(0)| � B]  2e�
1
8 (1�v0)B as desired.

Point (iv). — Fix t � 3
2 and B > 0. Consider the event ⌦t,B = ⌦1

t,B \ ⌦2
t \ ⌦3

t,B ,
illustrated by Figure 9, where

. ⌦1
t,B = {⇡M ([t � 3

2 , t] ⇥ [0, B] ⇥ [0, 1]) = 0};
. ⌦2

t is the event that in the box [t� 3
2 , t]⇥ [�1, 0]⇥ [0, 1], ⇡M has exactly five

marks (Si, Yi, Vi)i=1,...,5 with Y5 < Y4 < Y3 < Y2 < Y1, mini=1,...,5 Vi > v0
and t� 3

2 < S1 < t�1, S1 < S2 < S1+
1
4 , S2 < S3 < S2+

1
4 , S3 < S4 < S3+

1
4 ,

S4 < S5 < S4 + 1
4 and S5 + 1

4 > t.

. ⌦3
t,B is the event that in the box [t � 3

2 , t] ⇥ [B, B + 1] ⇥ [0, 1], ⇡M has

exactly five marks (eSi, eYi, eVi)i=1,...,5 with eY1 < eY2 < eY3 < eY4 < eY5,

mini=1,...,5
eVi > v0 and t � 3

2 < eS1 < t � 1, eS1 < eS2 < eS1 + 1
4 ,

eS2 < eS3 < eS2 + 1
4 , eS3 < eS4 < eS3 + 1

4 , eS4 < eS5 < eS4 + 1
4 and eS5 + 1

4 > t.

We of course have p := Pr(⌦2
t ) = Pr(⌦3

t,B) > 0, and this probability does not

depend on t � 3
2 nor on B > 0. Furthermore, Pr(⌦1

t,B) = e�
3
2B . These three events

being independent, we conclude that Pr(⌦t,B) � p2 e�3B/2. To conclude the proof
of (iv), it thus su�ces to check that ⌦t,B ⇢ {[0, B] ⇢ Dt(0)}. But on ⌦t,B , using the
same arguments as in Point (iii), we observe that:
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. the fire starting at (S2, Y2) can not a↵ect [0, B], because since S2 2 [S1, S1 + 1
4 ),

HS2�(Y1) > 0 or ZS2�(Y1) > 0, with Y2 < Y1 < 0;

. then the fire starting at (S3, Y3) can not a↵ect [0, B], because since
S3 2 [S2, S2 + 1

4 ), HS3�(Y2) > 0 or ZS3�(Y2) > 0, with Y3 < Y2 < 0;

. then the fire starting at (S4, Y4) can not a↵ect [0, B], because since
S4 2 [S3, S3 + 1

4 ), HS4�(Y3) > 0 or ZS4�(Y3) > 0, with Y4 < Y3 < 0;

. then the fire starting at (S5, Y5) can not a↵ect [0, B], because since
S5 2 [S4, S4 + 1

4 ), HS5�(Y4) > 0 or ZS5�(Y4) > 0, with Y5 < Y4 < 0;

. furthermore, the fires starting on the left at �1 during (S1, t] cannot a↵ect
[0, B], because for all t 2 (S1, t], there is always a site xt 2 {Y1, Y2, Y3, Y4} ⇢
[�1, 0] with Ht(xt) > 0 or Zt(xt) < 1;

. the same arguments apply on the right of B.

As a conclusion, the zone [0, B] is not a↵ected by any fire during (S1 _ eS1, t]. Since
the length of this time interval is greater than 1, we deduce that for all x 2 [0, B],

Zt(x) = min
�

ZS1_eS1
(x) + t � S1 _ eS1, 1

�

� min(t � S1 _ eS1, 1) = 1,

Ht(x) = max
�

HS1_eS1
(x) � (t � S1 _ eS1), 0

�

 max
�

1 � (t � S1 _ eS1), 0
�

= 0,

whence [0, B] ⇢ Dt(0).

Point (v). — For 0  a < b < 1 and t � 1, we have Zt(0) 2 [a, b] if and only there
is ⌧ 2 [t � b, t � a] such that Z⌧ (0) = 0. And this happens if and only if

Xt,a,b :=

Z t�a

t�b

Z

R
11{y2Ds�(0)}⇡M (ds, dy) � 1.

We deduce that

Pr
�

Zt(0) 2 [a, b]
�

= Pr
�

Xt,a,b � 1
�

 E
⇥

Xt,a,b

⇤

=

Z t�a

t�b

E
⇥

|Ds(0)|
⇤

ds  C(b � a),

where we used point (iii) for the last inequality.
Next, we have {⇡M ([t� b, t� a]⇥Dt�b(0)) � 1} ⇢ {Xt,a,b � 1}: it su�ces to note

that a.s.,

{Xt,a,b = 0} ⇢
�

Xt,a,b = 0, Dt�b(0) ⇢ Ds(0) for all s 2 [t � b, t � a]
 

⇢
�

⇡M ([t � b, t � a] ⇥ Dt�b(0)) = 0
 

.

Now since Dt�b(0) is independent of ⇡M (ds, dx) restricted to (t�b,1)⇥R, we deduce
that for t � 5

2

Pr
�

Zt(0) 2 [a, b]
�

� Pr
⇥

⇡M ((t � b, t � a] ⇥ Dt�b(0)) � 1
⇤

� Pr
⇥

|Dt�b(0)| � 1
⇤

(1 � e�(b�a)) � c(1 � e�(b�a)),

where we used point (iv) (here t � b � 3
2 ) to get the last inequality. This concludes

the proof, since 1 � e�x � 1
2x for all x 2 [0, 1].
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3.11.2. The case � = 1. — We can now handle the

Proof of Corollary 2.3.4. — We thus assume (HM ) and (HS(1)) and consider, for
each � > 0, a FF(µS , µ�

M )-process (⌘�t (i))t�0,i2Z. Let also (Zt(x), Dt(x), Ht(x))t�0,x2R
be a LFF(1)-process.

Point (ii). — Using Lemma 3.11.1 (iii)-(iv) and recalling that
�

�C(⌘�a�t
, 0)

�

�/n� =
�

�D�
t (0)

�

�

by (2.2.3), it su�ces to check that for all t � 3
2 , all B > 0,

lim
�!0

Pr
⇥

|D�
t (0)| � B

⇤

= Pr
⇥

|Dt(0)| � B
⇤

.

This follows from Theorem 2.3.3 (b), which implies that |D�
t (0)| goes in law to |Dt(0)|

and from Lemma 3.11.1 (ii).

Point (i). — Due to Lemma 3.11.1 (v) we only need that for all 0 < a < b < 1,
all t � 5

2 ,

lim
�!0

Pr
�

|C(⌘�a�t
, 0)| 2 [1/⌫S((a�a,1)), 1/⌫S((a�b,1))]

�

= Pr
�

Zt(0) 2 [a, b]
�

.

But using Theorem 2.3.3 (c) and Lemma 3.11.1 (i), we know that

lim
�!0

Pr
⇥

 S

�

1 � 1/|C(⌘�a�t
, 0)|

�

11{|C(⌘�
a�t,0)|�1} 2 [a�a,a�b]

⇤

= Pr
�

Zt(0) 2 [a, b]
�

.

Using finally the definition of  S (see notation 2.1.5 (ii)), we see that for all c 2 N, all
0 < ↵ < �,

 S (1 � 1/c) 11{c�1} 2 [↵,�] if and only if c 2
⇥

1/⌫S((↵,1)), 1/⌫S((�,1))
⇤

.

One immediately concludes.

3.11.3. The case � = BS. — We finally give the

Proof of Corollary 2.4.5. — We thus assume (HM ) and (HS(BS)) and consider, for
each � > 0, a FF(µS , µ�

M )-process (⌘�t (i))t�0,i2Z. Let also (Zt(x), Dt(x), Ht(x))t�0,x2R
be a LFF(BS)-process.

Point (ii). — Using Lemma 3.11.1 (iii)–(iv) and recalling that
�

�C(⌘�a�t
, 0)

�

�/n� =
�

�D�
t (0)

�

�

by (2.2.3), it su�ces to check that for all t � 3
2 , all B > 0,

lim
�!0

Pr
⇥

|D�
t (0)| � B

⇤

= Pr
⇥

|Dt(0)| � B
⇤

.

This follows from Theorem 2.4.4 (b), which implies that |D�
t (0)| goes in law to |Dt(0)|

and from Lemma 3.11.1 (ii).

Point (i). — Theorem 2.4.4 (c) asserts that for all t � 0, all k � 0,

lim
�!0

Pr
⇥

|C(⌘�TSt, 0)| = k
⇤

= E
⇥

qk(Zt(0))
⇤

,
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where qk(z) was defined in (2.4.2). Using next Lemma 3.11.1 (v) and recalling that
Zt(0) 2 [0, 1] a.s., we see that for t � 5

2 , the law of Zt(0) is of the form

gt(z)11{0z1}dz + ↵t�1(dz),

for some function gt : [0, 1] 7! R+ satisfying c  gt  C, where the constants
0 < c < C do not depend on t � 5

2 . One immediately deduces that for any k � 0,

E[qk(Zt(0))] 2 [cqk, Cqk]. Indeed, there holds qk =
R 1
0 qk(z)dz and qk(1) = 0. This

concludes the proof.
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NUMERICAL SIMULATIONS

4.1. Simulations

We would like to present some simulations of the discrete forest fire process. In all
the simulations below, we choose µ�

M (dt) = �e��t11t�0dt and we consider di↵erent
laws µS . We simulate the FFA(µS , µ�

M ) process with A = 2.5, for some given value
of �. Since there are too much concerned sites, it is not possible to draw the whole
picture. We thus extract a zone in which some interesting events occur.

In all the pictures below, time evolves vertically, with t = 0 at the bottom. On each
site, we plot white (resp. black) segments when the site is vacant (resp. occupied).
Matches are represented by bullets.
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Figure 10. Simulation with � = BS.

We used µ
S

= �1, ⌫
S

(dt) = 11{t2[0,1]} dt, a� = T
S

= 1 and � = 10�3. Here everything happens,

roughly, as described by the limit process (compare with Figure 3).

At the begining, all the sites are vacant. Many sites remain vacant for a while, but we

observe that all become occupied after some time, except one, which has burnt due to the first

match.

This first match produces a microscopic fire, involving very few sites (we cannot see it on

the picture because the bullet is slightly too large, but these sites were occupied just before the

match).

The second fire is macroscopic: it concerns many sites. It it is limited on the right by a

vacant site, which is due to the e↵ect of the first (microscopic) fire.

The third fire concerns few sites and is microscopic.

The fourth fire is macroscopic and is limited on the left by the a vacant site, produced by

the second fire (which was macroscopic and destroyed a large zone which is not filled again).

The fifth fire is macroscopic and is limited by a vacant site produced by the third fire, which

was microscopic.

Finally, the last fire is macroscopic, and is limited on both sides by vacant sites let by the

two previous (macroscopic) fires.

Observe that the time needed to completely fill again a macroscopic zone is roughly always

the same (look at the time needed after time 0, after the second fire, after the fourth fire).

Note also that the e↵ect of the first (microscopic) fire persists for quite a long time: it limits

the second fire, which limits the fourth fire, which itself limits the sixth fire.
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Figure 11. Simulation with � = 1.

Here µ
S

((t,1)) = e�t

2
/2, ⌫

S

(dt) = (
p

2/⇡)e�t

2
/211{t�0} dt and � = 10�3. We used the

approximate value a
�

'
p

2 log(1/�). The picture is not so far from the limit process (compare

with Figure 2), but there are some defaults.

The first fire is rather microscopic, but has however quite a large length.

The second fire, which is clearly macroscopic, is limited not by a previous microscopic fire,

but by a site where the first seed has needed an unusual large time to fall.

Also, the limit process predicts that the length of the barrier produced by a microscopic fire

equals the delay between the time at which the match falls and the last time where the zone

was involved in a maroscopic fire. We see here that this is roughly the case for the first fire, but

the e↵ect of the third and fourth (microscopic) fires are too long.
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Figure 12. Simulation with � = 5.

We considered µ
S

((t,1)) = (1 + t/�)���1 and ⌫
S

((t,1)) = (1 + t/�)�� with � = 5 and

� = 5.10�3. We used the approximate value a
�

' (1/�)1/(�+1). This picture resembles much

the limit process (see Figure 4): all the fires involve a macroscopic number of sites and we

observe that sites where no seed fall during a large time interval are rather rare.
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Figure 13. Simulation with � = 2.

Same thing as Figure 12 with � = 2 and � = 10�3. This picture is in perfect adequacy with

the limit process (see Figure 4), at least from a qualitative point of view: when a fire starts, it

burns a macroscopic zone, which is rather quickly filled again, except for some quite rare sites.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2013



128 CHAPTER 4. NUMERICAL SIMULATIONS

Figure 14. Simulation with � = 0.

We used µ
S

((t,1)) = e(e + t)�1[log(e + t)]�2, ⌫
S

((t,1)) = [log(e + t)]�1 and � = 10�7.

We used the approximate value a
�

' 1/[� log(1/�)]. This picture is quite satisfactory when

compared to the limit process (see Figure 5): there are six sites where the first seed never falls

and the fires have quite a low e↵ect, in the sense that most of the burnt sites become occupied

again almost immediately.
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APPENDIX

5.1. Appendix

5.1.1. Regularly varying functions. — The proof below is closely related to the
theory of regularly varying functions and is probably completely standard.

Lemma 5.1.1. — Assume (HS). Then either (HS(BS)) holds or there exists �
in [0,1) [ {1} such that (HS(�)) holds.

Proof. — We thus assume (HS) and that the support of µS is unbounded. Hence,
for all t > 0,

'(t) := lim
x!1

⌫S((x,1))

⌫S((xt,1))
2 [0,1) [ {1}

exists. The function ' is clearly nondecreasing and satisfies '(1) = 1.

Step 1. — We first show that for all t > 0, '(1/t) = 1/'(t), with the convention
that 1/0 = 1 and 1/1 = 0. This is not hard:

'(1/t) = lim
x!1

⌫S((x,1))

⌫S((x/t,1))
= lim

y!1

⌫S((yt,1))

⌫S((y,1))
= 1/'(t).

Step 2. — By the same way, one easily checks that for 0 < s  t, one has
'(st) = '(s)'(t) as soon as '(s) > 0 or '(t) < 1. It su�ces to write

'(st) = lim
x!1

⌫S((x,1))

⌫S((xst,1))
= lim

x!1

⌫S((x,1))

⌫S((xs,1))

⌫S((xs,1))

⌫S((xst,1))
= '(s)'(t).

Step 3. — We assume first that '(s) > 0 for all s 2 (0, 1). By Step 1, one easily
deduces that '(s) 2 (0,1) for all s > 0. We thus have a nondecreasing function
' : (0,1) 7! (0,1) such that '(st) = '(s)'(t) for all 0 < s  t and such that
'(1) = 1. One classically concludes that there exists � 2 [0,1) such that '(t) = t� .

Step 4. — We now assume that '(↵) = 0 for some ↵ 2 (0, 1). We want to show
that if so, then '(t) = 0 for all t 2 (0, 1). This will imply that '(t) = 1 for t > 1 by
step 1, whence '(t) = t1.



130 CHAPTER 5. APPENDIX

Let thus ↵⇤ = sup{↵ > 0 : '(↵) = 0}. Suppose by contradiction that ↵⇤ 2 (0, 1).
By monotonicity, we have '(↵) = 0 for all ↵ 2 (0,↵⇤). By step 1, we know that
'(s) 2 (0,1) for all s 2 (↵⇤, 1/↵⇤). Due to step 2, we deduce that for all small " > 0,
'((↵⇤�")(1/↵⇤�")) = 0. But for " > 0 small enough, we have (↵⇤�")(1/↵⇤�") > ↵⇤
(because ↵⇤ < 1). This contradicts the definition of ↵⇤.

Next, we prove the existence of the scale m� satisfying (2.2.4).

Lemma 5.1.2. — Assume (HS(1)). Recall (2.2.1), (2.2.2). There exists a func-
tion m� : (0, 1] 7! N satisfying (2.2.4).

Proof. — Recalling that lim�!0 a� = 1 and using (HS(1)), we observe that for
any n � 1,

lim
�!0

⌫S
�

((1 � 1/n)a�,1)
�

/⌫S
�

(a�,1)
�

= 1.

Thus there exists �n 2 (0, 1] such that for all � 2 (0,�n],

⌫S
�

((1 � 1/n)a�,1)
�

/⌫S
�

(a�,1)
�

� n.

We of course may choose �1 = 1 and choose the sequence (�n)n�1 decreasing to 0.
Then we define "� : (0, 1] 7! (0, 1] by setting, for all n � 1, "� = 1/n for � 2 (�n+1,�n].
There holds lim�!0 "� = 0. Finally, we put

m� =
⌅

1/⌫S((a�(1 � "�),1))
⇧

.

This function is obviously non-increasing. Next, recalling that n� = b1/⌫S((a�,1))c,
we see that for all n � 1, all � 2 (�n+1,�n),

m�

n�
' ⌫S((a�,1))

⌫S((a�(1 � "�),1))
=

⌫S((a�,1))

⌫S((a�(1 � 1/n),1))
 1

n
,

whence lim�!0(m�/n�) = 0. Finally, fix z 2 (0, 1) and consider n large enough, so
that 1 � 1/n > z. Then for � 2 (0,�n), there holds "�  1/n, whence

⌫S
�

(a�z,1)
�

m� ' ⌫S((a�z,1))

⌫S((a�(1 � "�),1))
� ⌫S((a�z,1))

⌫S((a�(1 � 1/n),1))
! 1

as �! 0 due to (HS(1)), since z < 1 � 1/n.

5.1.2. Coupling. — Finally, we recall some well-known facts about coupling.

Lemma 5.1.3. — (i) Let (pk)k�0 and (qk)k�0 be two probability laws on {0, 1, . . .}.
One can couple

X ⇠ (pk)k�0 and Y ⇠ (qk)k�0

such that for all k � 0,

Pr[X = Y = k] � pk ^ qk.
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(ii) For f, g two probability densities on R, one can couple X ⇠ f(x)dx and Y ⇠
g(x)dx in such a way that

Pr[X = Y ] �
Z

R
min(f(x), g(x))dx.

(iii) If we have a sequence of laws µn on some Polish space, converging weakly
to some law µ, then it is possible to find some random variables Xn ⇠ µn

and X ⇠ µ such that a.s., limn!1 Xn = X.

Proof. — First observe that (iii) is nothing but the Skorokhod representation theo-
rem. To prove (i), set rk = pk ^ qk and r =

P1
0 rk. Consider a Bernoulli r.v. C with

parameter r, a (rk/r)k�0-distributed r.v. Z, a ((pk � rk)/(1� r))k�0-distributed r.v.
U and a ((qk�rk)/(1�r))k�0-distributed r.v. V . Assume that all these objects are in-
dependent and put (X, Y ) = C(Z, Z)+(1�C)(U, V ). Some immediate computations
show that X ⇠ (pk)k�0 and Y ⇠ (qk)k�0 and for k � 0, Pr[X = Y = k] � rk.

The proof of (ii) is similar: put h = min(f, g) and r =
R

R h(x)dx. Consider a
Bernoulli r.v. C with parameter r, a r.v. Z with density h/r, a r.v. U with density
(f � h)/(1 � r) and a r.v. V with density (g � h)/(1 � r). Assume that all these
objects are independent and put (X, Y ) = C(Z, Z) + (1�C)(U, V ). Some immediate
computations show that X ⇠ f(x)dx, Y ⇠ g(y)dy and Pr[X = Y ] � r.
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[32] Erdős (P.) & Rényi (A.) – On the evolution of random graphs, Bull. Inst.
Internat. Statist., t. 38 (1961), pp. 343–347.

[33] Fournier (N.) & Laurençot (P.) – Marcus Lushnikov processes, Smolu-
chowski’s and Flory’s models, Stochastic Process. Appl., t. 119 (2009), pp. 167–
189.

[34] Goles (E.), Latapy (M.), Magnien (C.), Morvan (M.) & Phan (H. D.) –
Sand pile models and lattices: a comprehensive survey, Theoret. Comput. Sci.,
t. 322 (2004), pp. 383–407.

[35] Grassberger (P.) – Critical behaviour of the Drossel-Schwabl forest fire model,
New J. Physics, t. 4 (2002), pp. 17.
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