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MICROLOCALIZATION OF SUBANALYTIC SHEAVES

Luca Prelli

Abstract. — We define the specialization and microlocalization functors for suban-
alytic sheaves. Applying these tools to the sheaves of tempered and Whitney holo-
morphic functions, we generalize some classical constructions. We also prove that
the microlocalizations of tempered and Whitney holomorphic functions have a nat-
ural structure of module over the ring of microdifferential operators, and are locally
invariant under contact transformations.

Résumé (Microlocalisation des faisceaux sous-analytiques). — On définit la spéciali-
sation et la microlocalisation pour les faisceaux sous-analytiques. En appliquant ces
outils aux faisceaux des fonctions holomorphes tempérées et de Whitney, on géné-
ralise des constructions classiques. On démontre aussi que les microlocalisations des
fonctions holomorphes tempérées et de Whitney ont une structure naturelle de mo-
dule sur ’anneau des opérateurs microdifférentiels, et sont localement invariants par
transformations de contact.
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INTRODUCTION

After the fundamental works of Sato on hyperfunctions and microfunctions and
the development of algebraic analysis, the methods of cohomological theory of sheaves
became very useful for studying systems of PDE on real or complex analytic man-
ifolds. Motivated by the study of solutions with growth conditions of a system
of PDE (Riemann-Hilbert correspondence, Laplace transform, etc.), Kashiwara and
Schapira in [16] introduced the notion of ind-sheaf, and defined the formalism of six
Grothendieck operations in this framework. They defined the subanalytic site (a site
whose open sets are subanalytic and the coverings are locally finite) and obtained the
ind-sheaves of tempered and Whitney holomorphic functions (which are objects of
the derived category of sheaves on this site) by including subanalytic sheaves into the
category of ind-sheaves. Then, in [28], a direct, self-contained and elementary con-
struction of the six Grothendieck operations for subanalytic sheaves was established.
Important examples of applications of subanalytic sheaves to D-modules can be found
in [24] and [25].

The microlocalization functor for sheaves on a real analytic manifold was originally
introduced by Sato to perform a microlocal analysis of the singularities of hyperfunc-
tion solutions of systems of linear PDE on complex manifolds. It was generalized to
the framework of ind-sheaves in [19]. It is natural to ask if it is possible to develop mi-
crolocalization on the subanalytic site avoiding the heavy theory of ind-sheaves. The
aim of this work is to extend some classical constructions for sheaves, as the functors
of specialization and microlocalization, to the framework of subanalytic sheaves.

We introduce first the category of conic subanalytic sheaves on an analytic manifold
endowed with an action of R*. In order to do that we have to choose a suitable defini-
tion: indeed there are several definitions, which are equivalent in the classical case but
not in the framework of subanalytic sheaves. We choose the one which satisfies some
desirable properties, as the equivalence with sheaves on the conic topology associated
to the action. Thanks to this equivalence we can also represent conic sheaves as limits



2 INTRODUCTION

of conic R-constructible sheaves. Then we extend the Fourier-Sato transform to the
category of conic subanalytic sheaves on a vector bundle. This construction was also
motivated by the sheaf theoretical interpretation given in [31] of the Laplace isomor-
phisms of Kashiwara and Schapira. At this point we can start studying subanalytic
sheaves from a microlocal point of view by introducing the functors of specialization
and microlocalization along a submanifold of a real analytic manifold. As an inter-
esting application, the specialization is the key tool used in order to give a functorial
construction of asymptotically developable functions (see also the recent developments
in [11]). We give an estimate of the support of microlocalization using the subanalytic
analogue of the notion of ind-microsupport of [17] and its functorial properties devel-
oped in [23]. We also show that the functor of microlocalization is related with the
functor of ind-microlocalization defined in [19]. Then, applying specialization (resp.
microlocalization) to the subanalytic sheaves of tempered and Whitney holomorphic
functions, we generalize tempered and formal specialization (resp. microlocalization).
In this way we get a unifying description of Andronikof’s [1] and Colin’s [6] “ad hoc”
constructions.

As an application, we prove that the microlocalizations of O and O have (in co-
homology) a natural structure of £-module and that locally they are invariant under
contact transformations. Only in the case of O these results were proven in [1]. Fur-
thermore, using DG-methods and ind-microlocalization, in [10] the author proved that
the microlocalization of tempered holomorphic functions is an object of the derived
category of £-modules. The £-module structure, combined with the estimate for the
support of microlocalization, was essential for the proof of a Cauchy-Kowalevskaya-
Kashiwara theorem with growth conditions given in [29].

In more details the contents of this work are as follows.

In Chapter 1 we recall the results on subanalytic sheaves of [16] and [28].

In Chapter 2 we construct the category of conic sheaves on a subanalytic site
endowed with an action of R*.

In Chapter 3 we consider a vector bundle E over a real analytic manifold and
its dual E* endowed with the natural action of R*. We define the Fourier-Sato
transform which gives an equivalence between conic subanalytic sheaves on E and
conic subanalytic sheaves on E*.

Then we define the functor 137 of specialization along a submanifold M of a real
analytic manifold X (Chapter 4) and its Fourier-Sato transform, the functor p3j
of microlocalization (Chapter 5). We introduce the functor phom™ for subanalytic
sheaves and we give an estimate of its support using the notion of microsupport of
[17]. Then we study its relation with the functor of ind-microlocalization of [19].

We apply these results in Chapter 6. We study the connection between special-
ization and microlocalization for subanalytic sheaves and the classical ones. Special-
ization of subanalytic sheaves generalizes tempered and formal specialization of [1]
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and [6], in particular when we specialize Whitney holomorphic functions we obtain the
sheaves of functions asymptotically developable of [22] and [36]. Moreover, thanks
to the functor of microlocalization, we are able to generalize tempered and formal
microlocalization introduced by Andronikof in [1] and Colin in [5] respectively.

Chapter 7 is dedicated to the study of the microlocalization of tempered and Whit-
ney holomorphic functions. We prove that the microlocalization of O and OV have
(in cohomology) a natural structure of £&-module and that locally they are invariant
under contact transformations.

We end this work with a short Appendix in which we recall the definitions and
we collect some properties of subanalytic subsets and ind-sheaves, then we study
the inverse image of the subanalytic sheaves of tempered and Whitney holomorphic
functions.
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CHAPTER 1

REVIEW ON SHEAVES ON SUBANALYTIC SITES

In the following X will be a real analytic manifold and k£ a field. References are
made to [18] and [37] for a complete exposition on sheaves on Grothendieck topologies,
to [16] and [28] for an introduction to sheaves on subanalytic sites. We refer to [3]
for the theory of subanalytic sets.

1.1. Sheaves on subanalytic sites

Let us recall some results of [16] and [28].

Denote by Op(Xsa) (resp. Op®(Xsa)) the category of open (resp. open relatively
compact) subanalytic subsets of X. One endows Op(Xs,) with the following topology:
S C Op(Xsa) is a covering of U € Op(Xs,) if for any compact K of X there exists a
finite subset Sp C S such that

KN UV:KﬁU.
veSy

We will call X, the subanalytic site, and for U € Op(Xs,) we denote by Ux_, the
category Op(Xs,) NU with the topology induced by Xg,.

Let Mod(kx,,) denote the category of sheaves on Xg,.

Then Mod(kx,,) is a Grothendieck category, i.e. it admits a generator and small
inductive limits, and small filtrant inductive limits are exact. In particular as a
Grothendieck category, Mod(kx.,) has enough injective objects.

Let Modg..(kx) be the abelian category of R-constructible sheaves on X, and
consider its subcategory Mody_.(kx) consisting of sheaves whose support is compact.

We denote by p: X — X, the natural morphism of sites. We have functors

P
MOd(kx) —p t— MOd(k'Xsa).
P!
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! and p, are the functors of inverse image and direct image respec-

The functors p~
tively. The sheaf pF is the sheaf associated with the presheaf Op(Xsa) 2 U — F(U).
In particular, for U € Op(X) let ky be the sheaf associated to the presheaf whose

sections on V € Op(X) are = k if V C U and = 0 otherwise. One has

ky ~ i kv,
PIRU gl PRV
Veu

where V' € Op(Xsa). Let us summarize the properties of these functors:

> the functor p, is fully faithful and left exact, the restriction of p, to Modg..(kx)

is exact;

1

> the functor p~" is exact;

> the functor py is fully faithful and exact;
> (p~1, pi) and (pr, p~ 1) are pairs of adjoint functors.

NoTATIONS 1.1.1. — Since the functor p, is fully faithful and exact on Modg..(kx),
we can identify Modg.¢(kx) with its image in Mod(kx,,). When there is no risk of
confusion we will write F' instead of p, F, for F' € Modg.c(kx).

Let F € Mod(kx_,). There exists a filtrant inductive system { F; };cr in Modg_.(kx)
such that F' ~ hi>n P« Fi.

i
Let X,Y be two real analytic manifolds, and let f : X — Y be a real analytic map.
We have a commutative diagram

(1.1.1) x— 1 .y

i i
Xsa ;} sza

We get external operations f~! and f,., which are always defined for sheaves on
Grothendieck topologies. For subanalytic sheaves we can also define the functor of
proper direct image

fu:Mod(kx.,) — Mod(ky,,), F+— h_r)n foFu ~ h_r)n f« Ik F
U K

where U ranges trough the family of relatively compact open subanalytic subsets of X
and K ranges trough the family of subanalytic compact subsets of X. The notation f
follows from the fact that fi o p. % p. o fi in general. If f is proper on supp(F’) then
f+«F ~ fuF, in this case fi commutes with p,. While functors f~! and ® are exact,
the functors Hom, f, and fi are left exact and admit right derived functors.

To derive these functors we use the category of quasi-injective objects. An ob-
ject F' € Mod(kx,,) is quasi-injective if for U,V € Op®(Xs,) with V' C U the re-
striction morphism T'(U; F') — T'(V; F) is surjective or, equivalently, if the functor
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1.2. MODULES OVER A kx,,-ALGEBRA 7

Homy,_(.,F) is exact on Modg_.(kx). Quasi-injective objects are injective with re-
spect to the functors f,, fu and, if G € Modg.(kx), with respect to the functors
Homg, (G, .),Hom(G, .).

The functor R f) admits a right adjoint, denoted by f', and we get the usual isomor-
phisms between Grothendieck operations (projection formula, base change formula,
Kiinneth formula, etc.) in the framework of subanalytic sites.

Let Z be a subanalytic locally closed subset of X. As in classical sheaf theory we
define

I'z : Mod(kx, ) — Mod(kx_.), F+— Hom(p.kz, F);
(')Z : MOd(kXSH) — Mod(kxsa), F+— F ®p*kz.

Finally we recall the properties of the six Grothendieck operations and their rela-
tions with the functors p=!, Rp,. and p;. We refer to [28] for a detailed exposition.

> The functor R* Hom(F, .) commutes with filtrant h_r)n if I € Modg..(kx).

v

The functors R* fi and H* f' commute with filtrant h—H>1

The functor p~! commutes with ®, f~! and Rfy.
The functor Rp, commutes with RHom, Rf, and f'.

The functor p; commutes with ® and f~1.

v v Vv V

The restrictions of ® and f~! to the category of R-constructible sheaves commute
with p.
> If f is a topological submersion (i.e. it is locally isomorphic to a projection
Y x R* - Y), then f' ~ f~!'® f'ky commutes with p~! and Rfy commutes
with py.
Moreover the functors Rf., Rfin and RHom(F, .) with F € Modg..(kx) have finite
cohomological dimension.

1.2. Modules over a kx_-algebra

A sheaf of kx_, -algebras (or a kx_, -algebra, for short) is an object R € Mod(kx_,)
such that I'(U; R) is a k-algebra for each U € Op(Xg,) and the restriction maps are
algebra morphisms.

A sheaf of (left) R-modules is a sheaf F' such that I'(U; F') has a structure of (left)
I'(U; R)-module for each U € Op(Xg,)-

Let us denote by Mod(R) the category of sheaves of (left) R-modules.

The category Mod(R) is a Grothendieck category and the forgetful functor

for : Mod(R) — Mod(kx..)

is exact.

SOCIETE MATHEMATIQUE DE FRANCE 2013



8 CHAPTER 1. REVIEW ON SHEAVES ON SUBANALYTIC SITES

The functors
Homp : Mod(R)°® x Mod(R) — Mod(kx_,),
®r : Mod(R°P) x Mod(R) — Mod(kx,,)
are well defined. Remark that in the case of R-modules the functor ®% is only right

exact and commutes with lim.

Let X,Y be two real analytic manifolds, and let f : X — Y be a morphism of real
analytic manifolds. Let R be a ky, -algebra. The functors f=1, f. and Rfy induce
functors

f7t: Mod(R) — Mod(f'R),
f : Mod(f~'R) — Mod(R),
fu: Mod(f~'R) — Mod(R).

Now we consider the derived category of sheaves of R-modules. Thanks to flat
objects we can find a left derived functor ®% of the tensor product ®z.

DEFINITION 1.2.1. — An object F' € Mod(R) is quasi-injective if its image via the
forgetful functor is quasi-injective in Mod(kx,, ).

Let X,Y be two real analytic manifolds, and let f : X — Y be a real analytic map.
Let R be a ky,,-algebra. One can prove that quasi-injective objects are injective with
respect to the functors f, and fy;. The functors Rf, and Rfy are well defined and
projection formula, base change formula remain valid for R-modules. Moreover we
have:

THEOREM 1.2.2. — The functor Rfy : DY (f~*R) — DT (R) admits a right adjoint.
We denote the adjoint functor by

f' DT (R) — DY (f~'R).

MEMOIRES DE LA SMF 135



CHAPTER 2

CONIC SHEAVES ON SUBANALYTIC SITES

We study here the category of conic sheaves on a subanalytic site. References are
made to [14] for the classical theory of conic sheaves and to [31] for applications of
conic subanalytic sheaves to the Laplace transform.

2.1. Conic sheaves on topological spaces

For the statements not proved here we refer to [14] and [28]. Let & be a field and X
be a real analytic manifold endowed with an analytic action x4 of R*. In other words
we have an analytic map

w: X xXRY — X
which satisfies, for each t1,to € RT:
N(mvtltZ) :/J(/i(xvtl)atQ) and N(xvl) =Z.
Note that p is open. Indeed let U € Op(X) and W € Op(R*). Then
pU, W) = | wu,v),
tew

and p(.,t) : X — X is a homeomorphism (with inverse p(.,t71)). We have a diagram

. I

X153 X xRt T2 X,
P

where j(z) = (z,1) and p denotes the projection. We have poj =poj =id.
DEFINITION 2.1.1. — (i) Let S be a subset of X. We set

R*S = u(S,RT).
If U belongs to Op(X), then RTU € Op(X) since p is open.

(ii) Let S be a subset of X. We say that S is conic if S = RTS. In other words, S
is invariant by the action of pu.
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(iii) An orbit of p is the set Rtz with « € X.

Let S1,52 C X and suppose that Sy is conic. Then it is easy to check that
R*(S1NSe) =R*TS; NSy

DEFINITION 2.1.2. — We say that a subset S of X is R*-connected if S N R*zx is
connected for each z € S.

DEFINITION 2.1.3. — A sheaf F € Mod(kx) is conic if p='F ~p~'F.

(i) We denote by Modg+(kx) the subcategory of Mod(kx) consisting of conic
sheaves.

(ii) We denote by DE, (kx) the subcategory of DP(kx) consisting of objects F such
that H7(F) belongs to Modg+ (kx) for all j € Z.
Let us assume the following hypothesis:

(i) every point € X has a fundamental neighborhood
(2.1.1) system consisting of R*-connected open subsets;

(ii) for any = € X the set Rtz is contractible.

In this situation (see [2]) either Rtz ~ R or Rtz = x.

PROPOSITION 2.1.4. — Let U € Op(X) be R*-connected and let F € DR, (kx).
Then
RI(R*U; F) % RI(U; F).

Denote by Xg+ the topological space X endowed with the conic topology, i.e.
U € Op(Xg+) if it is open for the topology of X and invariant by the action of R*.

Let us consider the natural map n : X — Xg+. The restriction of 7, induces an
exact functor denoted by 77, and we obtain a diagram

T
(2.1.2) Modg+ (kx) nﬁl Mod(kx,, )
"
Mod (k)

Let F € DL, (kx). Let ¢ be the natural map from R[(R*U; F) to R[(U;n~'F)
defined by

(2.1.3) RI(R*U; F) — RI(RTU; Ry~ ' F)
~ RT(R*U;n'F) — RT(U;n"'F).
PRrROPOSITION 2.1.5. — Let F be a sheaf over Xg+. Let U be an open set of X

and assume that U is RT-connected. Then the morphism ¢ defined by (2.1.3) is an
isomorphism.

MEMOIRES DE LA SMF 135



2.2. CONIC SHEAVES ON SUBANALYTIC SITES 11

THEOREM 2.1.6. — The functors Rn, and n~' induce equivalences of derived cate-
gories
b Bne b
DY, (kx) == DP(kx,.)

n
inverse to each others.

We need to introduce the subcategory of coherent conic sheaves.

DEFINITION 2.1.7. — Let U € Op(Xg+).
> U is said to be relatively quasi-compact if, for any covering {U; };c1 of Xg+, there

exists J C I finite such that U C (U, ; U;. We write
U & XR+.

> We will denote by Op°(Xg+) the subcategory of Op(Xg+) consisting of relatively
quasi-compact open subsets.

One can check easily that if U € Op®(X), then R*U € Op®(Xg+).

DEFINITION 2.1.8. — Let F' € Mod(kx, ).
(i) Fis Xg, g+-finite if there exists an epimorphism G —» F', with G ~ @ ky,, I
finite and U; € Op®(Xg+) subanalytic. el
(i) Fis Xg, g+-pseudo-coherent if for any morphism ) : G — F, where G is X, p+-
finite, ker ¢ is X, p+-finite.
(iii) F is Xgogr+-coherent if it is both X, g+-finite and X, r+-pseudo-coherent.
We will denote by Coh(Xg, g+) the subcategory of Mod(kx_, ) consisting of X, p+-
coherent objects.

2.2. Conic sheaves on subanalytic sites

DEFINITION 2.2.1. — A sheaf of k-modules F on X, is conic if the restriction mor-
phism I'(R*U; F) — I'(U; F) is an isomorphism for each R*-connected U € Op®(Xsa)
with R*U € Op(Xsa).
(i) We denote by Modg+ (kx.,) the subcategory of Mod(kx_,) consisting of conic
sheaves.
(ii) We denote by Dg, (kx,,) the subcategory of D"(kx_,) consisting of objects F
such that H?(F') belongs to Modg+ (kx,,) for all j € Z.

REMARK 2.2.2. — Let X be a real analytic manifold endowed with a subanalytic
action p of RT and consider the diagram

m
X xR T 2X,
p

where p denotes the projection.

SOCIETE MATHEMATIQUE DE FRANCE 2013



12 CHAPTER 2. CONIC SHEAVES ON SUBANALYTIC SITES

As in classical sheaf theory one can define the subcategory Mod"(kx,, ) of

Mod(kx.,) consisting of sheaves satisfying
plF ~plF

The categories Mod" (kx,,) and Modg+ (kx_,) are not equivalent in general.

Indeed, let X =R, set Xt = {z € R; z > 0} and let x be the natural action of R*
(i.e. p(x,t) = tx). Let us consider the sheaf pikx+ € Mod(kx,,). Then

p ok ~ pyn T kxe = pp ks = p” ik
Let
V:{xER;1<m<2} and Wm:{xER; %<x<m},

where m € N\ {0}. Recall that pikx+ ~ hi% puky >~ h_n>1 pskw,, . We have

vext m
P(Viprkys) = T D(Vil,) = ,
m

since V' C W, for m > 2. On the other hand, let
Vn+:{x€R;0<x<n},
where n € N. Since R*V = X+ we have

DXH; k) 2 B DV, prkes) 2= Tim Tim DV ks, ),
n n m

(in the second isomorphism we used the fact that V& € Op®(Xs,) for each n) and
L(V,;;kw,,) = 0 for each n,m € N. Hence ['(V; pikx+) 2 T(R*V; prkx+).

DEFINITION 2.2.3. — We denote by :

> Op(Xgar+) the full subcategory of Op(Xs,) consisting of conic subanalytic sub-
sets, i.e. U € Op(Xgar+) if U € Op(X;,) and it is invariant by the action of R*;

> Xgar+ the category Op(Xg, gr+) endowed with the topology induced by Xga;

> ppi @ Xpt+ — Xgar+ the natural morphism of sites.

Replacing 7" with Op®(Xg, g+) in [9] we get the following results:

THEOREM 2.2.4. — (i) Let G € Coh(Xg,r+) and let {F;} be a filtrant inductive

system in Mod(k‘xs Then we have an isomorphism

a Rt )'
li_r)n Homkxsayw (pp+, G, Fi) — HornkaYRJr (Pp+,. G, h_r>n F;).
Moreover the functor of direct image py.. . associated with the morphism py. in (2.2.1)
is fully faithful and exact on Coh(Xg, g+ ).
(ii) Let F' € Mod(kx_ .. ). There exists a small filtrant inductive system {F;}icr
in Coh(Xg, r+) such that F ~ h_n>1 Pr+ . Fi-

7
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2.2. CONIC SHEAVES ON SUBANALYTIC SITES 13

NOTATIONS 2.2.5. — Since pp is fully faithful and exact on Coh(Xg, g+ ), we can
identify Coh(Xg, gr+) with its image in Mod(kx_ ., ). When there is no risk of confu-
sion we will write I instead of pp, F, for F' € Coh(Xg,g+).

We can also find a left adjoint to the functor p&i.

PRrROPOSITION 2.2.6. — The functor p&i admits a left adjoint, denoted by pg.,.
It satisfies:

(i) the functor pg., is evact and commutes with ®;
(ii) for F' € Mod(kx_, ) and U € Op®(Xgar+), pg+ I is the sheaf associated with
th 3 . .
e presheaf U — h_I)Il T(V; F);
VaU
(iii) for U € Op(Xg+) one has

Prku >~ h_II)l ky .
VeU
VGOPC(Xsa,RJr)
DEFINITION 2.2.7. — An object ' € Mod(kx_ _. ) is quasi-injective if the functor
Homy, (., F) is exact in Coh(Xs, r+) or, equivalently (see Theorem 8.7.2 of [18])
sa,R
if for each U,V € Op“(Xg,r+) with V' C U the restriction morphism I'(U; F) —
I'(V; F) is surjective.

The category of quasi-injective objects is cogenerating since it contains injective
objects. Moreover it is stable by filtrant h_n)l and []. We have the following result

THEOREM 2.2.8. — The family of quasi-injective sheaves is injective with respect to
the functor Homg, (G, .) for each G € Coh(Xsr+).
sa,R

In particular:

PROPOSITION 2.2.9. — The family of quasi-injective sheaves is injective with respect
to the functor I'(U;.) for any U € Op(Xgur+)-

Let n: X — X+ and 7, : Xga — Xgu p+ be the natural morphisms of sites. We
have a commutative diagram of sites

(2.2.1) X & Xea
J{W lnsa
p‘ +
X]R+ 41{) Xsa,R+~

LEMMA 2.2.10. — Let F' € Coh(Xg, g+). Then n;lpRJr*F ~ p.n LF.
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14 CHAPTER 2. CONIC SHEAVES ON SUBANALYTIC SITES

Proof. — Since all these functors are exact on Coh(Xg, g+), we may reduce to the
case F' = ky with U € Op®(Xg, r+). Then we have

ﬂs;lﬂw*kU = U;alkU ~ ku,
on the other hand we have p,n~'ky ~ p.ky ~ ky and the result follows. O
REMARK 2.2.11. — Remark that p;on~" % 15! o ppy . In fact with the notations
of Remark 2.2.2 we have

p~txe = lim ok,
m

On the other hand, since X+ € Op(Xg, g+) we have ns_alpRﬂkX+ ~kxrt.

2.3. An equivalence of categories

Let X be a real analytic manifold endowed with an action g of R*. In the following
we shall assume the hypothesis below:
(i) every U € Op°(Xsa) has a finite covering consisting
of R*-connected subanalytic open subsets;
(23.1) (ii) for any U € Op®(Xsa) we have RTU € Op(Xg,);
(iii) for any x € X the set R*x is contractible;

(iv) there exists a covering {V,, }nen of X, such that

V., is R*-connected and V,, € V,, 41 for each n.

Let U € Op(Xs,) such that R*U is still subanalytic. Let ¢ be the natural map
from T'(R*U; F) to F(U;ns_alF) defined by

(2.32) T(R*U;F) — T(R*U; 1,10 F) ~ T(RTU; 0 F) — T(U; L1 F).

PROPOSITION 2.3.1. — Let F' € Mod(kx_ ,). Let U € Op(Xsa), assume that U is
R*-connected and RTU € Op(Xg,). Then the morphism ¢ defined by (2.3.2) is an
isomorphism.

Proof. — (i) Assume that U € Op®(Xsa) is R*-connected. Let F' € Mod(kx_ _. ),
then F = h_H)l Pr+, Fi, with F; € Coh(Xg, r+). We have the chain of isomorphisms
Homy,  (ku,ng' lgl Pr+ L)
7
~ Homy,_ (ku, h_H)l psn) LE}) ~ h_H)l Homy (ky,n ' F;)
~ h_r)n Homy, (kg+u, Fy) ~ Homkxsa‘w (kr+u, h_r>n Pr+. Fi),

A i
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2.3. AN EQUIVALENCE OF CATEGORIES 15

where the first isomorphism follows since n_,! o PRy = PO n~! by Lemma 2.2.10 and
the third one follows from the equivalence between conic sheaves on X and sheaves
on Xg+. In the fourth isomorphism we used the fact that R*U € Op®(Xg, g+)-

(ii) Let U € Op(Xsa) be Rt-connected. Let {V;,}nen € Cov(Xsa) be a covering
of X asin (2.3.1) (iv) and set U, = U NV,,. We have:

2.3. L(U;n2'F) ~ im T'(Uy;n'F) ~ lim T(RTU,; F) ~ T(RTU; F). O
(2.3.3) (U,nsa)gl(nsa)gl(U) ( )

COROLLARY 2.3.2. — Let F' € Mod(kx_ . ) and let U € Op(Xsa). Assume that U
is R*-connected and RTU € Op(Xsa). There is an isomorphism

nsa*FUns_alF =~ FR+UF'

Proof. — Let V € Op(Xgar+). Then R*(VNU) =V NR*U. We have the chain of

isomorphisms
D(Vine, Tong' F) = T(V N U, 'F) = T(RY(V N U); F)
~T(VARYW; F) ~T(V; T+ F),
where the second isomorphism follows from Proposition 2.3.1. O
We can extend Lemma 2.2.10 to Mod(kx_, ).
LEMMA 2.3.3. — Let F € Mod(kx_, ). Then ng'pp. F =~ pan~'F.

Proof. — Let F' € Mod(kx_, ) and let U € Op®(Xsa) be R*-connected. Then
L(U; pun™ 'F) = T(U;n ' F) ~T(R'U; F),
where the second isomorphism follows from Proposition 2.1.5. On the other hand
L(U;n5 pgs , F) 2 T(RTU; ppy [F) = T(RTUS F),

where the first isomorphism follows from Proposition 2.3.1. Hence by (2.3.1) (i)
e Priy = pun ™ F. O

Let us consider the category Modg+ (kx_,) of conic sheaves on Xg,. The restriction
of n,, induces a functor denoted by 7,, and we obtain a diagram

nsa*
(2.3.4) MOdR+ (sza) <—1> MOd(ka Bt )
Naa ’
J( nsa*
Mod(kx,,)
THEOREM 2.3.4. — The functors 7, and ng,! in (2.3.4) are equivalences of catego-

ries inverse to each others.
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16 CHAPTER 2. CONIC SHEAVES ON SUBANALYTIC SITES

Proof. — (i) Let F' € Modg+ (kx,,), and let U € Op°(Xs,a) be RT-connected. We have

T(U; F) ~T(R*U; F) =~ T(R*U; 7., F) ~ T(U; 13 0 F).

sa nsa*

The third isomorphism follows from Prop. 2.3.1. Then (2.3.1) (i) implies 7,7, ~ id.
(ii) For any U € Op®(Xg, g+) we have:

T(Us N F) 2 T(U; 3, F) =~ T(U; F)

where the second isomorphisms follows from Prop. 2.3.1. This implies 7,15 ~ id.
O

NOTATIONS 2.3.5. — Since ng! is fully faithful and exact we will often identify
Coh(Xg, r+) with its image in Modg+ (kx_,). Hence, for F' € Coh(Xg, g+) we shall
often write F instead of n_' F.

Thanks to Theorem 2.2.4 we can give another description of the category of conic
sheaves.

THEOREM 2.3.6. — Let F € Modg+(kx.,). Then there exists a small filtrant sys-
tem {F;} in Coh(Xsar+) such that F ~ h_n)l P LF.

(2

This implies that each F' € Modg+(kx.,) can be seen as the inductive limit
(in Modg+(kx,,)) of a small filtrant system {F;} with F; € Modg..r+(kx) such
that F; ~ (F;)y, for some U; € Xpg+.

REMARK 2.3.7. — Let F' € Coh(Xg, g+). The functor of inverse image commutes
with lim and
_)
p e 'F e~ pup T T E o~ pupT iy F 2 p T pun T F

Hence F € Coh(Xg, g+) implies F' € Mod"(kx_, ), where Mod"(kx_,) is the category
introduced in Remark 2.2.2. Let

G = h_n; p+G; € Modgs+ (kx,,)

7

with G; € Coh(Xg, g+). Since Mod”(kx_,) is stable by filtrant h_H)l we have that G

belongs to Mod” (kx.,). Hence Modg+ (kx_,) is a full subcategory of Mod" (kx,,) but
Modg+(kx.,) # Mod"(kx_,) in general. We have the chain of fully faithful functors

COh(Xsa’RJr) —> 1V[Od]RJr (sza) —> MOdu(kxsa).
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2.4. DERIVED CATEGORY 17

2.4. Derived category

Assume (2.3.1). Injective and quasi-injective objects of Mod(kx_, ) are not con-
tained in Modg+ (ks,). For this reason we are going to introduce a subcategory which
is useful when we try to find acyclic resolutions.

LEMMA 2.4.1. — Assume that X satisfies (2.3.1). Then the following property is
satisfied:
(2.4.1)

has a finite refinement {V;}7_, such that each ordered

{ Each finite covering of an R*-connected U € Op®(Xsa)
union Ule V; is Rt -connected for each j € {1,...,n}.

Proof. — Let U € Op®(Xsa) be R*-connected. Then each finite covering of U admits
a finite refinement consisting of R*-connected open subanalytic subsets. Let {U,}"%_;
be a finite covering of U, U, € Op®(Xsa) R*-connected for each o. We will construct
a refinement satisfying (2.4.1).

Fork=1,...,nandi=2,...,nset ox(i) =i —1if i <k, op(i) =i if i > k and

Vit :=Ur and Vi, = Uok(i) NR* (Uk N Uak(i)) for ¢ > 2.

For j = 2,...,n define recursively
j—1 n
Vij1 = U U Ve, and Vi = o (i) N R* (ijl N ng(i)) for i > 2.
r=1i=1

Remark that | J_, Uj_, ULy Voes = U2y R*U, NU. By Lemma 2.4.2 below all the
sets Vij; are RT-connected and {Vi;;}x ;i is a refinement of {U,}, satisfying (2.4.1)
(with the lexicographic order). O

LEMMA 2.4.2. — Assume that X satisfies (2.3.1) (iii). Let U, V,W be open and R*-
connected. Then U U (VNRT(UNV))U (W NRHUNW)) is R -connected.

Proof. — In what follows, when we write Rtz we suppose that Rtz ~R. If Rtz =«
everything becomes obvious.

(i) First remark that U NV (resp. UNW, VN W) is RT-connected. Indeed,
let 1,22 € UNV NR*x for some x € X. Then z1 = p(z, a), 2 = p(z,b). Every path
in Rtz connecting 27 and xo contains u(x, [a,b]). Since U and V are R*-connected
then U NV D u(x,[a,b]). Remark that here and below in the notation [a,b] we do
not necessarily have a < b.

(ii) Now let us prove that U U (VNR*(UNV)) is R*-connected. Let z1,z2 belong
to UU(VNRY(UNV))NRTz for some x € X. Then z1 = p(x,a), x2 = p(z,b).
We want to prove that

w(z,[a,b) CUU (VAR (UNV)).
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18 CHAPTER 2. CONIC SHEAVES ON SUBANALYTIC SITES

If 1,29 € U it follows since U is R*-connected and if z1,20 € VNRY(U NV) it
follows from (i). So we may assume that z; € U and 22 € VNRY(UNV). Since U is
R*-connected and x5 € R*zq, there exists y = u(x,¢) € UNV. Then u(x,[a,c]) C U.
In the same way pu(z,[b,c]) C VNRY(UNV) and hence

w(z,[a,c]Ub,c]) CUU (VAR (UNV)).

(iii) Let us show that UU (VNRY(UNV))U (W NRHU NW)) is RT-connected.
Let 1,20 € UU(VNRTY(UNV))U (W NRHUNW))NRrx for some z € X.
Then x1 = p(x, a), xo = p(x,db). We want to prove that

p(z,fa,b) CUU (VAR UNV))U(WNRY(UNW)).
By (i) and (ii) we may reduce to the case x1 € V, x5 € W. As in (ii), there exist
y1 = p(z,c) e UNV and yo = p(x,d) € UNW. Then u(z,[c,d]) € U, p(z,[a,c]) C
VNARYUNV) and p(z,[b,d)) C WNRT(UNW). Hence u(z,[c,d] U la,c] U[b,d]) is
mUUVNARY(UNV))UWNRHUNW)) and the result follows. O

DEFINITION 2.4.3. — A sheaf F' € Mod(kx,,) is R*-quasi-injective if for each R*-
connected U € Op®(Xga) the restriction morphism I'(X; F) — I'(U; F) is surjective.

Remark that the functor n_! sends quasi-injective objects of Mod(kx_ ., ) to
R*-quasi-injective objects since T(U;n,'F) ~ T(R*U; F) if U € OpC(Xsa),iS R*-
connected. Moreover the category of RT-quasi-injective objects is cogenerating since
injective objects are cogenerating in Mod(kx,, ).

PROPOSITION 2.4.4. — Let 0 - F' — F — F” — 0 be an exact sequence in
Mod(kx.,) and assume that F’' is R*-quasi-injective. Let U € Op(Xs.) be RF-
connected. Then the following sequence is exact:

0—->T(U;F')—TU;F)—T(U;F") = 0.

Proof. — (i) Let us consider a Rf-connected U € Op®(Xg,). Let s € T'(U; F"),
and let {V;}7_, be a finite covering of U satisfying (2.4.1) and such that there exists
s; € T'(V;; F) whose image is s”m. For n > 2 on Vi N V5 s1 — so defines a section
of T'(Vy N Va; F') which extends to s’ € T'(X; F’). Replace s; with s1 — s’. We may
suppose that s; = s on V3 N V5. Then there exists ¢ € I'(Vy U Vo; F) such that
t\sz =s;, for = 1,2. Thus the induction proceeds.

(ii) Let us consider a R*-connected U € Op(Xs,). By (2.3.1) (iv) there exists a
covering {V,, }nen of X such that V,, is R*-connected and V,, € V,, 11 for each n.
It follows from (i) that for each n the sequence

0 DU NV F) — T(UNV; F) — T(U NV F') = 0

is exact. Moreover the morphism I'(U N V,,11; F') — T'(U N V3 F') is surjective
for each n since F’ is R*-quasi-injective. Then by the Mittag-Leffler property (see
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Proposition 1.12.3 of [14]) the sequence
0 — lim D(U N Vp; F') — Lim DU N V3 F) — lm DU N Vi F7) — 0
— — —

is exact. Since gn U NV,;G) =~T(U; G) for each G € Mod(kx_,) the result follows.
n O

PROPOSITION 2.4.5. — Let F', F be R*-quasi-injective and consider the exact se-
quence 0 = F' — F — F” — 0 in Mod(kx,, ). Then F" is R*-quasi-injective.

Proof. — Let U € Op®(Xsa) be Rt-connected and let us consider the diagram
NX;F) —— T(X; F")
| [
ru.F)—2 U ).

The morphism « is surjective since F' is R*-quasi-injective and 3 is surjective by
Proposition 2.4.4. Then ~ is surjective. O

It follows from the preceding results that

PROPOSITION 2.4.6. — R*-quasi-injective objects are injective with respect to the
functor T'(U;.), with U € Op(Xg) and R -connected.

COROLLARY 2.4.7. — R*-quasi-injective objects are injective with respect to the
functor Ty, with U € Op(Xsa) and R* -connected.

Proof. — Let 0 — F' — F — F” — 0 be an exact sequence in Modg+(kx_,) and
assume that F’ is R*-quasi-injective. By Proposition 2.4.6 the sequence

0 TUNVF) —TUNV;F) —T(UNV;F") =0
is exact for any V' € Op(Xs,) and R*-connected. This implies that the sequence
0Tyl —TyF —TyF" =0
is exact. [

COROLLARY 2.4.8. — RT-quasi-injective objects are 1, -injective.

Proof. — Let 0 - F' — F — F"” — 0 be an exact sequence in Modg+(kx,,) and
assume that F’ is R*-quasi-injective. By Proposition 2.4.6 the sequence

0—->TU;F')—T(U;F)—T(U;F") =0
is exact for any U € Op(Xg, g+ ). This implies that the following sequence is exact:

0_>nsa*Fl—>nsa*F—>nsa*Fﬁ_>O' O

THEOREM 2.4.9. — The categories D*(kx_ . ) and DY, (kx,,) are equivalent.
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Proof. — In order to prove this statement, it is enough to show that n_! is fully
faithful. Let F € Db(kxsa .+) and let I* be an injective complex quasi-isomorphic
to F. Since ! sends inje(;tive objects to R*-quasi-injective objects which are 7, -
injective we have

Riguna F = ngng 1° = I° = F.
This implies Ry, , 7" = id, hence n_! is fully faithful. O

Hence for each F' € Db, (kx.,) we have F ~ n_'F’ with F’ € Db(sza.]R+ ). Remark
that Theorem 2.4.9 also implies that conic sheaves are 7,,,-acyclic. '

PROPOSITION 2.4.10. — Let F € Db(kxsa o). Let U € Op(Xsa) be R -connected

and such that R*U € Op(Xga). There is an isomorphism
RI(R*U; F) = RT(U;n;,'F).

Proof. — Let I* be a complex of injective objects quasi-isomorphic to F. Since ng}!
sends injective objects to RT-quasi-injective objects we have

RI(RYU; F) ~ T(RYU; I*) = T'(U; 0t I*) ~ RO(U; 0, F),
where the second isomorphism follows from Proposition 2.3.1. O

COROLLARY 2.4.11. — Let F' € Mod(kx_ .. ) and let U € Op(Xsa). Assume that U
is R*-connected and R*U € Op(Xga). There is an isomorphism

Rn,, . RTyn'F ~ R+ F.
Proof. — Let V € Op(Xgar+). As in Corollary 2.3.2,
RI(V; Ry, ., RUyn,'F) ~RT(VNU;n F) ~ RI(R*(V NU); F)
~RIN(VNR'U; F) ~RI'(V; R+ F),
where the second isomorphism follows from Proposition 2.4.10. O

We extend Lemma 2.3.3 to D" (kx_, ).

LEMMA 2.4.12. — Let F € D*(kx_, ). Then
Mo Rpps F =~ Rp.n ' F.

Proof. — (i) Let F' € Mod(kx,, ) be injective. Then for each R*-connected U in
Op®(Xsa), one sees that RI'(U; Rp.n~'F) ~ RI'(U;n~'F) ~ RT(R*U; F) is concen-
trated in degree zero. Hence n~'F is Rp.-acyclic by (2.3.1) (i).

(ii) Let F € Db(kxm) and let I* be a complex of injective objects quasi-isomorphic
to F. Then ng'Rpg, F ~ niltpp, I ~ p~'I* ~ Rp.n~'F, where the second
isomorphism follows from Lemma 2.3.3 and the third one follows from (i). O
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2.5. Operations

Let X be a real analytic manifold endowed with an analytic action of R*. We
study the operations in the category of conic sheaves on Xg,.

PROPOSITION 2.5.1. — The category Modg+ (kx.,) is stable under h_H>1 and gn

Proof. — This is a consequence of the equivalence with Mod(kg, g+ )- O

PROPOSITION 2.5.2. — Let F' € Modg+ (kx) and G € Modg+(kx.,). Then we have:
(i) p«F € Modg+(kx.,,);
(i) p~'G € Modg+ (kx).
Proof. — (i) Let U € Op®(Xsa) be Rt-connected. We have the chain of isomorphisms
L(U; poF) = D(U; F)  T(RTU; F) ~ T(RTU; po F).
(ii) We have G = hi>n p«Gj, with G; € Coh(Xg, g+). Then

J 1y <G~ i “19.G; ~ lim G;
p E)lp J glp Pxlaj E}l J
J J J
and h_r)n G; belongs to Modg+ (kx). O

J
PROPOSITION 2.5.3. — Let F,G € Modg+(kx,,). Then we have:
(i) F® G € Modg+(kx,,),
(ii) Hom(F,G) € Modg+(kx.,)-

Proof. — We have F'= lim p,F; and G = lim p,G;, with F;,G; € Coh(Xg,g+),
and _z> 7

(i) FRG ~ h_rr)l p«(F; ® G;) and F; ® G belongs to Coh(Xg, g+) for each 1, j;
,J
(ii) Hom(F,G) ~ lim lim p, Hom(F;, G;) and Hom(F;, G;) is conic for each ¢, j.
— O
i

Let f : X — Y be a conic morphism of real analytic manifolds. We have a
commutative diagram

(2.5.1) Xea Yea

lnsa Jnsa
f

AXVsaL,]R+ ? }/sa,]R+ .

PROPOSITION 2.5.4. — Let F € Modg+(kx,,) and G € Modg+ (ky,,). We have:
(i) foF € Modg+ (ky,, );
(ii) fﬁlG € Modg+ (sza)'
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Proof. — (i) Let U € Op°(Yza) be Rt-connected. Since f commutes with the action
of R*, the set f~(U) is R* connected. We have the chain of isomorphisms

L(f~NU);F) ~T(RTfY(U); F) ~T(f " (R*U); F).
Hence I'(U; f« F) ~ T'(R*U; f.F).
(ii) We have G = h_r>n p«Gj, with G; € Coh(Yy, g+). Then
! S Ep*Gj = h_r)nf_lp*Gj = h;)np*f_lGj
j j j

and f~'Gj is conic for each j. O

PROPOSITION 2.5.5. — Let F € Modg+(kx,,) and let G € Modg+ (ky,,). We have:
(1) nsa*f*F = f*nsa*F’

Proof. — Part (i) follows immediately from the commutativity of the diagram (2.5.1).
Let us prove (ii). We have

F7G = e 0. G ~ 0 ... G,

where the first isomorphism follows from Theorem 2.3.4 and the second one from the
commutativity of the diagram (2.5.1). Composing with 7,,, and using Theorem 2.3.4
once again, we obtain the required isomorphism. O

REMARK 2.5.6. — While (i) is true in Mod(kx_, ), the isomorphism (ii) works only
for conic sheaves. For example, let X = {0}, Y = R and let f : {0} — R be the
inclusion. Endow R with the action p induced by the multiplication. Let B. be the
open ball of radius € > 0 centered at {0}. In this case

gk, ~T(R;kp,) =0 and n,f ‘kp. ~ f ‘kp, ~k.
PROPOSITION 2.5.7. — Let F,G € Modg+(kx,,). Then we have:

(1) Ngaw (F @ G) = g, F @1, G
(i) Ngaw Hom(F, G) = Hom(Ngy, Fs 15, G).

Proof. — (i) We have the chain of isomorphisms

Nsas F @ N4 G = 015" (Mg B @ 140, G)
=~ nsﬂ* (n;il nsa* F ® ns_alnsa* G) =~ nsa* (F ® G)’
where the first and the third isomorphisms follow from Theorem 2.3.4.

(ii) We have the chain of isomorphisms
,rISB,* HOm(F, G) = nsa* Hom(ns_allrlsa* F7 G) = Hom(lrlsa* F7 7753.* G)7

where the first isomorphism follows from Theorem 2.3.4. O
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Now let us consider the operations in the derived category of conic subanalytic
sheaves.

PROPOSITION 2.5.8. — Let F € Dp, (kx). Then Rp,F € DY, (kx,,).

Proof. — There exists F' € D®(kx_, ) such that F' ~7~'F’. Then the result follows
from Lemma 2.4.12. O

PROPOSITION 2.5.9. — Let F,G € DY, (kx.,). Then RHom(F,G) € Dg, (kx.,). In
particular, if H¥F € Coh(Xg, g+) for each k € Z, then RHom(F,G) € DY, (kx.,).

Proof. — (i) Let us prove that if F',G" € Mod(kx_ ,,) and G’ is injective, then
RHom(nZ F',n;lG') is concentrated in degree zero. Let U € Op®(Xsa) be R*-
connected. Then
R (U; RHom(ng,' F'ng,' G')) = RHomy (1! F', RTwng,' G)
~ RHomy,  (F', R, RIung' G')
~RHomy, (F',RI'p+yG)
~ RHokasa,uw (Fgei, G'),

which is concentrated in degree zero since G’ is injective. The third isomorphism
follows from Corollary 2.4.11. By (2.3.1) (i) this implies that RHom(n; F',n,1G")
is concentrated in degree zero.

(ii) Let I* be a complex of injective objects of Mod(kx_ . ) such that n;'I* ~ G
and let F' € D"(kx_ _, ) such that n' F/ ~ F. By (i) we have

RHom(F,G) ~ Hom(n ' F',n I*)

sa

and Proposition 2.5.3 (ii) implies that Hom(n,'F’,n;'I*) is a complex of conic
sheaves. If F' € DP(Coh(Xg, r+)), then RHom(F,G) has bounded cohomology: it is
a consequence of the fact that Hom (K, .) has finite cohomological dimension for each
K € Modg..(kx) (Corollary 2.3.3 of [28]). O

PROPOSITION 2.5.10. — Let F € Dp, (kx.,). Then Rf.F € Dy, (ky.,).

Proof. — Remark that the functor ;! sends injective sheaves to f.-acycic sheaves.
This is a consequence of the fact that 1! sends injective sheaves to I'(U;-)-acyclic
sheaves for each R*-connected U € Op(Xs,). There exists F' € Db(sza,R+) such that
F ~n'F'. Let I* be a bounded injective resolution of F’. Then n_'I7 is conic and
f«-acyclic for each j. We have Rf,F ~ f.n !I* and f.n'17 is conmic for each j. O

PROPOSITION 2.5.11. — Let F,G € D, (kx.,). We have:

(11) 775% RHO'/TL(F, G) = RHom(nsa* Fa 775&* G)
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Proof. — Part (i) follows immediately from the commutativity of the diagram (2.5.1)
and the fact that conic sheaves are 7,,,-acyclic. The proof of (ii) goes as Proposi-
tion 2.5.7 (ii) since RHom(F,G) is conic and conic sheaves are 7, -acyclic. O

REMARK 2.5.12. — The commutation in the derived category between 7,, and the
functors f~! and ® follows immediately from Propositions 2.5.5 and 2.5.7 and the fact
that conic sheaves are 7, ,-acyclic.

PROPOSITION 2.5.13. — Let G € D}, (ky,,). Then f'G € DY, (kx.,).

Proof. — We may reduce to the case G € Modg+ (ky,, ). Then
G = lim p,Gj,
—
J
with G € Coh(Y;, r+). By Proposition 2.4.5 of [28] we have
H*f'G ~ lim p. H"f'G;
f lim G

for each k € Z and the result follows since H f !Gj is conic for each k € Z and for
each j. O

REMARK 2.5.14. — The functor fy : Mod(kx.,) — Mod(ky,,) does not send conic
sheaves to conic sheaves in general. In fact, let p : R3 — R? be the projection. It is a
conic map with respect to the natural action of R* on R? and R?. Set
U= {(x,y) € R?, (z — 1)2 +y? < 1}, B, = {(x,y) eR?% 2?2+ 42 < n},
B =B,N(R* xR), S§=R U x {1}).
Let us consider the conic sheaf kg. By definition of proper direct image we have
D(U;puF) = lim T(p~ ! (U); Tk F),
K

where K ranges through the family of subanalytic compact subsets of R?. Since U is
bounded we have

F(U;p!!ks) ~ h_I>n F(U X R; FKks) ~ h_I>n F(U X R; FRQX[—m,m]kS) ~ k,
K m

where m € N. On the other hand we have

PR*U;puks) = lim L(Byipuks) ~ lim lim D(By X R;Trax[—m,mlks) =0,

n n m

where m,n € N, since ['(B,} x R; I'k2x[—m,m]ks) = 0 for each m,n.

Hence we shall need a new definition of proper direct image for conic sheaves.
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DEFINITION 2.5.15. — We define functor fr+n of proper direct image for conic
sheaves in the following way, where F; € Coh(Xg, r+):
: Modg+ (k — Modg+ (k lim p, F; — lim py fi F;
fr+n : Modg+ (kx.,) odg+ (ky,,), fing. lin p N
Let us see an explicit formula for the sections of fg+y. Let U € Op®(Ys, g+) and
let F = h_r)n p«F with F; € Coh(Xg, r+). We have the chain of isomorphisms

(U ﬁ_lf>lp*f!Fi) ~ h_lf>1F(U;f1Fi) ~ h_r)n L(f~'(U);Tznx Fy)

i i i, Z,K
~ lim I'(f~YU);TznxF;) ~ lim D(f~YU);: Tz nx im p.F}).
'ZI_I»HK (fU);Tznk Fy) 2%1( (f—() ZﬁKinp )

Here Z ranges into the family of closed subanalytic subsets of f~1(U) such that
f :Z — U is proper, Z’' ranges through the family of closed conic subanalytic subsets
of f=1(U) such that f~!(y) NR*z = {point} for any y € Y, z € X, and K € Xp+
are conic and closed. The first isomorphism follows since U € Op®(Y, r+), the third
since F; is conic for each i and the last one since f~1(U) N K € Xg+. This formula
also explain why fgr+n does not depend on the choice of the family {F;}.

Note that if F' € Coh(Xg, g+) then frenpF ~ p fiF % fup.F. Moreover this
definition is compatible with the classical one. In fact frp+; commutes with p~! and
we have the following commutative diagram

Modg+ (kx) ———5 Modg+ (ky)

: -

MOdR+ (kxsa) MOdR+ (/ﬂy“)

Srtu

REMARK 2.5.16. — With the notation of Remark 2.5.14, we have
T(R*U; pr+nks) ~ T(U; pr+uks) ~ k.
In fact the restriction of p to SN {(z,y,2) € R?;, x > 0} is proper.

It is easy to prove that projection formula and base change formula for conic
sheaves are satisfied. Moreover, R*-quasi-injective objects are acyclic with respect to
the functor fr+n, since they are Hom(G, .)-injective for each G € Coh(Xj, g+ ).

In order to find a right adjoint to R fr+) we follow the method used to find a right
adjoint to the functor proper direct image for subanalytic sheaves. We shall skip the
details of the proof (which are an adaptation of the results of [28]). The subcate-
gory J. Xt of R*-quasi-injective objects and the functor fr+y have the following
properties:

(i) Jx, ., is cogenerating;

(ii) Mod(kx_ _, ) has finite quasi-injective dimension;
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(i) Jx_ .. is fr+u-injective;
(iv) Jx_, . is closed by small @
(v) fr+n commutes with small .

As a consequence of the Brown representability theorem (see [18], Corollary 14.3.7
for details) we find a right adjoint to the functor R fr+, denoted by f]fw.

By adjunction fﬂlw commutes with Rp, and as in [28] one can prove that H* f]fu
commutes with filtrant h_n>1

Hence fh, coincides with the restriction of f' to D, (ky.,).
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CHAPTER 3

FOURIER-SATO TRANSFORM FOR
SUBANALYTIC SHEAVES

We construct here the Fourier-Sato transform for subanalytic sheaves. References
are made to [14] for the classical Fourier-Sato transform.

3.1. Conic sheaves on vector bundles

Let E 5 Z be a real vector bundle, with dimension n over a real analytic mani-
fold Z. Then R* acts naturally on E by multiplication on the fibers. We identify Z
with the zero-section of E and denote by i : Z — E the embedding. We set

E=E\Z
and 7: E — Z denotes the projection.
LEMMA 3.1.1. — The category Op(Es,) satisfies (2.3.1).

Proof. — Let us prove (2.3.1) (i). Let U € Op®(Xsa) Let {V;}ien be a locally finite
covering of Z with V; € Op°(Zs,) such that 7 (Vi) =~ R™ x R™ and let {U;} be a
refinement of {V;} with U; € Op®(Zs,) and U; C V; for each i. Then U is covered by a
finite number of 7=1(U;) and U N71(U;) is relatively compact in 7=1(V;) for each i.
We may reduce to the case E >~ R™ x R"™. Let us consider the morphism of manifolds

:R"xS" xR — R™xR", (2,9,r) — (z,ri(ﬁ)),

where i : S~ < R" denotes the embedding. Then ¢ is proper and subanalytic. The
subset ¢~ 1(U) is subanalytic and relatively compact in R™ x S~ x R.

(a) By Lemma A.1.11 ¢~ (U \ Z) admits a finite cover {W,};cs such that the
intersections of each W; with the fibers of 7 : R™ x S""! x R — R™ x S"! are
contractible or empty. Then ¢(W;) is an open subanalytic relatively compact R*-
connected subset of R™ x R™ for each j. In this way we obtain a finite covering
of U\ Z consisting of R*-connected subanalytic open subsets.



28 CHAPTER 3. FOURIER-SATO TRANSFORM FOR SUBANALYTIC SHEAVES

(b) Let p € (= (UN Z)). Then 7~ 1(p) N ~1(U) is a disjoint union of intervals.
Let us consider the interval (m(p), M(p)), m(p) < M(p) € R containing 0. Set

Wz = {(p,r) € o~ (U); m(p) <r < M(p)}.

The set Wy is open subanalytic (it is a consequence of Proposition 1.2, Chap. 6
of [38]), contains ¢~ (UNZ) and its intersections with the fibers of 7 are contractible.
Then ¢(Wy) is an open R*-connected subanalytic neighborhood of U N Z and it is
contained in U.

By (a) there exists a finite covering {¢(W;)},cs of U\ Z consisting of R*-connected
subanalytic open subsets, and (Wz) UU,c; ¢(W;) =U.

By Proposition 8.3.8 of [14] the category Op(Es,) also satisfies (2.3.1) (ii).

Moreover (2.3.1) (iii) and (iv) are clearly satisfied. O

Now let us consider E endowed with the conic topology. In this situation, an object
U € Op(Eg+) is the union of U € Op(Fg+) and Uz € Op(Z) such that 7! (Uz) C U.
IfU,V € Op(Eg+), then U € Vif Uy € Vz in Z and UEVin Eg+ (this means that
7(U) € n(V) in E/R*, where 7 : E — E/R* denotes the projection).

Applying Theorem 2.4.9 we have the following:

THEOREM 3.1.2. — The categories DY, (kg_,) and Db(kES are equivalent.

a,Rt )

Consider the subcategory Modg’, p+ (kg) of Modg g+ (kg) consisting of sheaves
whose support is compact on the base (i.e. T(supp(F)) is compact in Z). Let us
consider the natural map 7 : E — Egy. The restriction of n~! to Coh(FEg, r+) gives
rise to a functor

(311) 77_1 : COh(Esa,R+) — MOdl?QZiC,R‘*' (kE>

1

Since the functor n~" is fully faithful and exact, we identify Coh(Es,g+) as a

subcategory of Modféic’]w (kg).
THEOREM 3.1.3. — The functor 71 in (3.1.1) is an equivalence of categories.

Proof. — (i) Let F € Modﬁ{fgw(l@). Let us show that F' is Eg, g+-finite. We may
reduce to the case E ~ R™ x R™ and Z ~ R™ x {0}. It is well known that if X is a
real analytic manifold and G € Mody_.(kx), then G is quasi-isomorphic to a bounded
complex of finite sums @y, kw, where W € Opg, (X).

Let us consider the diagram Z SN N Z, where 7 is the embedding. We have
7. € Mod§_.(kz). Since F is conic 7, F ~ i~ 1 F. We have an exact sequence
(3.1.2) Pk — I =0,
iel
where [ is finite and V; € Opg, (Z).
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Now let us consider the diagram S <y p T S, where § = E/R+ ~ R™ x §"~!
and 7 is the projection. We have jle‘E € Modg_.(ks). Since F‘E is conic, one has

F_lj_lF‘E ~ F‘E We have an exact sequence

(3.1.3) @kﬂflwﬂ — F, =0
J

where J is finite and U; € Opg,(5).
It is easy to check that the morphism 7 7, F @ FE — F' is an epimorphism and
we obtain the result by (3.1.2) and (3.1.3).

(ii) Let us show that F'is E, g+-pseudo-coherent. Let G = D, kw,, with I finite
and W; € Op°(Egr+), and consider a morphism ¢ : G — F. Since F and G are
R-constructible and conic, then ker belongs to Modg . g+ (kg), and its support is
still compact on the base. [

As a consequence of Theorems 2.3.6 and 3.1.3 one has the following:

THEOREM 3.1.4. — Let F € Modg+(kg,, ). Then there exists a small filtrant sys-
tem {F;} in Modfgb_g]w (kg) such that F ~ h_H)l p+F;.

We end this section with the following result, which will be useful in §3.2.

LEMMA 3.1.5. — Let F € Db (kg.,). Then:
(i) R7.F ~ i 'F;
(ii) RmF ~i'F.
Proof. — (i) The adjunction morphism defines
Rr,F~i 't 'R, F — i 'F.
Let V € Op°(Zsa). Then
lin R'I(U; F) ~ lim RFT(U; F) ~ RFT (7~ 1(V); F) ~ RFI(V; Rr.F),
Usv Uov
T(U)=V

where U € Op(FEs,) and R*-connected. The second isomorphism follows from Propo-
sition 2.4.10.

(ii) The adjunction morphism defines
i'F — i'T'RmyF ~ Ry F.

Let V € Op®(Zs.), and let K be a compact subanalytic R*-connected neighborhood
of Vin E. Then 7=}(V) \ K is R*-connected and subanalytic, and

RY(r7'WM\K) =77 (V)\ Z
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By Proposition 2.4.10 we have the isomorphism
RI(77Y(V);RI[zF) ~ R (77 (V); RI F).
It follows from the definition of Rmy that for any k € Z and V' € Op°(Zs,) we have

R*T(V; Ry F) ~ lim RFD (7~ Y(V);RTk F),
K
where K ranges through the family of compact subanalytic R*-connected neighbor-
hoods of V' in E. On the other hand for any k € Z we have
RFT(V3i'F) ~ RFHom(ivky, F) ~ R¥ Hom(i,i ‘7 'ky, F) ~ R*T'(+7(V); R 2 F)

and the result follows. O

3.2. Fourier-Sato transformation

Let E - Z be a real vector bundle, with dimension n over a real analytic man-
ifold Z and E* =5 Z its dual. We identify Z as the zero-section of E and denote
by i : Z < FE the embedding, we define similarly i : Z — E*. We denote by p; and ps
the projections from F x 7 E*:

P E X E* P2
/ Z \
E E*
\ T
Z

We set
Pi={(w,y) € EXE" (wy) >0}, Pi={(z,y) € ExE (w,y) <0}
and we define the functors
Upr = Rpy, oRT pr oply : DR (k=) — DRy (kg,,),
®pr = Rpano (Jp opy ' = Dgi (kp.,) — Dy (k)
Up = Rpa oRTpop; " : DRy (kp.,) — D+ (k)

®p = Rpio()popy: DRy (kps) — DR+ (kg,,).

REMARK 3.2.1. — These functors are well defined, more generally they send suban-
alytic sheaves to conic subanalytic sheaves.

LEMMA 3.2.2. — Let F' € DE, (kp.,). Then supp((RUp(py'F))p:) is contained
m Z Xz B
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Proof. — We may reduce to the case F' € Modg+(kg,,). Then F = hi>n p«F, with
F; € Modg g+ (kp). We have i

H*(RTp(py " lim p. Fy)pr) = limy H*(RTp(py ' puFi)pr)

%

~ lim p, H"(RLp(py ' F;) pr)

-l

1 k -1
~ hi>n,0*(H (RCp(py ' Fi)p1)) 5o e

K2

where the last isomorphism follows from Lemma 3.7.6 of [14]. O

LEMMA 3.2.3. — Let A and B be two closed subanalytic subsets of E such that
AUB=EF, and let F € D*(kg,,). Then RT4(Fg) ~ (RCAF)p.

Proof. — We have a natural arrow (I'4aF)p — T'a(Fp), and R(T4F)p ~ (RTAF)p
since (.)p is exact. Then we obtain a morphism (RI'4F)p — RI'4(Fg). It is enough
to prove that for any k € Z and for any F' € Mod(kg,,) we have

(R*T 4 F)p — R*T'a(Fp).

Since both sides commute with filtrant lim, we may assume F' € Modg . (kg). Then

the result follows from the corresponding one for classical sheaves. O
PROPOSITION 3.2.4. — The two functors ®p,Vp : DY, (kg,) — DL, (kgx) are
isomorphic.

Proof. — We have the chain of isomorphisms:

®p' F = Rpon(py ' F) pr = RpouRT p((py " F) pr) = Rpa (RFP(Ple))P,
~ Rpo. (RTp(py ' F)) 1, ~ Rpau RTp(py ' F).

The first isomorphism follows from Lemma 3.1.5 (ii), the second from Lemma 3.2.3,
the third one from Lemma 3.2.2 and the last one from Lemma 3.1.5 (i). O

DEFINITION 3.2.5. — Let F € Dp, (kg,, ).
(i) The Fourier-Sato transform is the functor
()" : DRy (kp,,) — D+ (kg=), F"=®pF ~VUpF.
(ii) The inverse Fourier-Sato transform is the functor

()Y : DRy (kgs) — DR+ (kg,,), FY =UpF ~®pF.
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It follows from the definition that the functors * and ¥ commute with Rp, and p~!.

We have quasi-commutative diagrams

Dﬂer(kE)@Dﬂ%(kE*) D§+(kE)<:v>D§+(kjE*)
P T
Dp. (kg..) ;) Dy (kg:) DY (kg..) @ D, (kg).

This implies that these functors are the extension to conic subanalytic sheaves of
the classical Fourier-Sato and inverse Fourier-Sato transforms.

THEOREM 3.2.6. — The functors ™ and v are equivalence of categories, inverse to
each others. In particular we have

HomD§+(kEsa)(F, G) ~ HomD£+(,€Es*a)(F/\’ ).

Proof. — Let F € D§+(kEsa). The functors * and ¥ are adjoint functors, then we
have a morphism F' — FV. To show that it induces an isomorphism it is enough to
check that R['(U; F) — RT(U; FY) is an isomorphism on a basis for the topology
of Fs,. Hence we may assume that U is Rt-connected. By Proposition 2.4.10 we may
suppose that U is an open subanalytic cone of E. We have the chain of isomorphisms:

RHom(ky, F*Y) = RHom(ky, ¥ p @ p F) ~ RHom(®prkyy, @pr F)
~ RHom(®p ky, ¥pF) ~ RHom(®pPp ki, F)
~ RHom(ky, F),
where the last isomorphism follows from Theorem 3.7.9 of [14] and from the fact

that the functors * and vV commute with Rp,. Similarly we can show that for G €
Dy, (kg- ) we have an isomorphism GV = G. O

REMARK 3.2.7. — We have seen that the functors ¥ and " commute with p, and p~1.

They do not commute with p; in general since it does not send conic sheaves to conic
sheaves. We have the following quasi-commutative diagram

DY, (kp) m————= D}, (kg~)

\%

J{pnﬁz lpuﬁ!

A

D§+ (kp,,) m———— D§+ (kE:a)

\%

PROPOSITION 3.2.8. — Let F € Dy, (kg.,). Denote by a the antipodal map.

(i) FM ~ F*® org|z[—n], where F* denotes the inverse image of F by the anti-
podal map.

(ii) Let U be a convex conic subanalytic open subset of E*. Then

RI(U; F") ~ RTy (E; F),
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where U° denotes the polar cone.

(iii) Let v be a closed convex proper cone of E* containing the zero section. Then
RT,(E*; F") ~ RI'(Inty°%; F) @ or g z[—n).
(iv) We have
(D'F)Y ~ D'(F"), (DF)Y ~ D(F")
(As usual, for X = E,E*, D'(.) = RHom(.,kx) and D(.) = RHom(. ,wx)).
Proof. — The result follows adapting Proposition 3.7.12 of [14]. O

Let us study some functorial properties of the Fourier-Sato transform. Let Z’
be another real analytic manifold and let f : Z/ — Z be a real analytic map. Set
E' = 7' xz E and denote by f; (resp. fr) the map from E’ to E (resp. from E'*
to E*).

PROPOSITION 3.2.9. — Let F € DR, (kg ). Then:
(RfrsF)" = Rfeu(F") and  (RfrrenF)" = Rfrpen(F").
Let G € DR, (kg,,). Then:
(f2G)" = f(GY) and  (f7'G)" = fH(G").
Proof. — The result follows adapting Proposition 3.7.13 of [14]. O

Let F;, i = 1,2 be two real vector bundles over Z, f : E; — E5 a morphism of
vector bundles. Set !f : E — Ef the dual morphism.

PROPOSITION 3.2.10. — (i) Let F € DL, (kg,,,). Then:

FFY) = (REF)Y, P = (REF) @ iy
YU FN) = (RfgraF), YHFY) = (RfgruF)Y @ w%;/lEl*.
(ii) Let G € DY, (kg,.,). Then:
(f'G)" = (RUf.GM), Wi/, ® F'G)Y = (RIF.GY),
(f7'G)Y = R'fr+nGY, (WEy /B, ® [TTG) =~ RYpenG.
Proof. — The result follows adapting Proposition 3.7.14 of [14]. O

Let E;, i = 1,2 be two vector bundles over a real analytic manifold Z. We set for
short £ = Ey Xz F> and E* = Ef Xz E}. We denote by " the Fourier-Sato transform
on F;,7=1,2 and F.

PropoOSITION 3.2.11. — Let F; € DﬁAkEi’w), 1=1,2. There is an isomorphism

K R~ (R F)
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Proof. — Let p{ and p; the i-th projection defined on Ej; xz EY, j = 1,2 and E' x E*
respectively. Let

P ={(zj,y;) <0} CE; xz Ef  (j=1,2),

P = {<(I1,1‘2), (yl,y2)> < 0} C Exy E*.

The Kiinneth formula gives rise to the isomorphisms:

P ZF2/\ ~ Rpoy (p1 ' FY prlez)P,

1 Xz Py’
(Fy p Fz)A ~ Rpon(py ' Fy p PR,

It is enough to show that for any sheaf F' € D+(k:(EXZE*)Sa) conic with respect to the
actions of R* on F; and E;-‘, 7 =1,2, the morphism RponFpr — Rpg!!Fpl'x 2P induces
an isomorphism Rkpgqu/ = Rkpgg!Fpl/XZpé for any k € Z. We may reduce to the

case F' concentrated in degree zero. Then as in § 2.3 one can show that F' = hi>n p«Fy,

i
with F; conic with respect to the actions of R* on E; and E%, j = 1,2, R-constructible
and with compact support on the base for each i. We have the chain of isomorphisms
RFpan( h_r>n p«Fi) pr =~ hl>n P« RFpor (Fi) pr

K3 (2
o~ h_H)l p*RkPQ!(Fi)P;xZP,;
1

~ R¥poy ( hgl p«Fi) P, Py

i

RFpoy commutes with p, by Lemma 3.1.5 and the second isomorphism follows from
Proposition 3.7.15 of [14]. O
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SPECIALIZATION OF SUBANALYTIC SHEAVES

We define here specialization for subanalytic sheaves. We refer to [14] for the
classical theory of specialization.

4.1. Review on normal deformation

Let X be a real n-dimensional analytic manifold and let M be a closed submanifold
of codimension £. As usual we denote by Ty X — M the normal bundle. We identify
M as the zero-section of Th; X and denote i : M < Tj; X the embedding.

We follow the notations of [14]. We consider the normal deformation of X, i.e. an
analytic manifold Xy, an application (p,t) : Xps — X x R, and an action of R\ {0}
on Xy (Z,r) — T - r satisfying

p~1(X \ M) isomorphic to (X \ M) x (R {0}),
t=1(c) isomorphic to X for each ¢ # 0,
t=1(0) isomorphic to T X.

Let s : Ty X < X be the inclusion, € the open subset of X, defined by {t > 0},
i : Q= Xy and p = poig. We get a commutative diagram

TuX 5 Xy

P T

M—X.

The morphism p is smooth and €2 is homeomorphic to X x R* by the map (p, t).

DEFINITION 4.1.1. — Let S be a subset of X. The normal cone to S along M,
denoted by Cjs(S), is the closed conic subset of Tp; X defined by

Cu(S)=TuX Np—1(S).
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Let us recall the following result of [14].

LEMMA 4.1.2. — Let V be a conic open subset of Tpr X.

(i) Let W be an open neighborhood of V in Xy and let U = p(W N Q). Then
VNCu(X\U)=2.

(ii) Let U be an open subset of X such that VN Cpy(X\U) = @. Then p~1(U)UV
is an open neighborhood of V in QU Ty X .

Let V' be a conic subanalytic subset in ThyX. We introduce the conditions (Va)
and (Vb) for V:

(1) {(Va) LV C Ty X \ (M),

(Vb): 7(V)C7(Vni(M)).
Note that each conic V' € Op(TyXsa) has a finite subanalytic open cover satisfying
conditions (Va) or (Vb), since V = (V \i(M)) Ut (7(V Ni(M)). In [11], the local
version of the following lemma was shown, however, the global one can be proved by
the same argument as that in [11] for the one divisor case.

LEMMA 4.1.3. — Let V' be a conic open subanalytic subset of Tpy X satisfying condi-
tions (Va) or (Vb) of (4.1.1). For any subanalytic open neighborhood W of V' in Xy,
there exists a subanalytic open neighborhood W C W of V' such that:

(4.12) (i) the fibers of the map p: W NQ — X are connected,
- (i) p(W N Q) is subanalytic in X.

4.2. Specialization of subanalytic sheaves
DEFINITION 4.2.1. — The specialization along M is the functor

Ve D(kx.) — D"(kp, x..), F+— s 'RTqp 'F.

THEOREM 4.2.2. — Let F € DP(kx_.).
(i) One has v§3F € DY (kry, x..)-
(ii) Let V be a conic subanalytic open subset of Tpy X satisfying the condition either
(Va) or (Vb) of (4.1.1). Then:
HY (ViviiF) = lim B (U F),
U
where U ranges through the family of Op(Xsa) such that Cp (X \U)NV = 2.

(ili) One has the isomorphisms

(VR?F)‘M ~ R, (Vi3 F) ~ i (RI‘MI/?\?[F)‘M ~ Ry F ~ (RFMF)‘M.
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Proof. — (i) We may reduce to the case F' € Mod(kx.,). Hence F' = h_rr>1 p«F; with
F; € Modg_(kx.,) for each i. We have i

1 1. . -1
1 W~ 1 D F;
p iﬂ p Ln PP
and p~'F; is R-constructible and conic for each . Hence p~'F is conic. Since the
functors RI'g and s~! send conic sheaves to conic sheaves we obtain
s 'RTgp 'F = 53 F € DR, (kry, x..)-
(ii) Let U € Op(Xsa) such that V. N Cp (X \ U) = @. We have the chain of
morphisms
RI(U; F) — RE(p™ ' (U);p™'F) — RT(p~ ' (U) N Qp7 ' F)

— RI'(p~ (U)UV;RTgp 'F) — RI(V; 53 F)
where the third arrow exists since p~1(U) U V is a neighborhood of V in Q by
Lemma 4.1.2 (ii). Let us show that it is an isomorphism. Let V be a conic open
subanalytic subset of ThsX satisfying the condition either (Va) or (Vb) of (4.1.1).
We have

Hk .. sa ~ i k . —1 ~ i k Lo—1
(ViviiF) = lim H*(W;RTgp™ ' F) = lm H*(W 0 Q:p™'F),

14% w
where W ranges through the family of subanalytic open neighborhoods of V' in X
By Lemma 4.1.3 we may assume that W satisfies (4.1.2). Since p~!F is conic, we have

HYWNQp™'F) =~ H* (p~ (p(W N Q));p7 ' F)

~ Hk(p(WﬂQ) X {1};p_1F) ~ Hk'(p(WﬂQ);F),
where the second isomorphism follows since every subanalytic neighborhood of
p(WNQ) x {1} contains an R*-connected subanalytic neighborhood (the proof is
similar to that of Lemma 4.1.3). By Lemma 4.1.2 (i) we have that p(WW N Q) ranges

through the family of subanalytic open subsets U of X such that VNCy (X \U) = @
and we obtain the result.

(iii) The result follows adapting Theorem 4.2.3 (iv) of [14]. O

PROPOSITION 4.2.3. — Let F' € Mod(kx.,) be quasi-injective. Then V53 F is concen-
trated in degree zero.

Proof. — Since V53 F is conic, it is enough to prove that HI(V;v53F) = 0, j # 0,
when V' is a conic subanalytic open subset of Tj;X satisfying the condition either
(Va) or (Vb) of (4.1.1). By Theorem 4.2.2 we have

HI(V: V2 F)~ lim H (U; F
( sVM ) E)l ( 9 )a

U
where U ranges through the family of Op(Xsa) such that Cy (X \U) NV = @, and
HI(U; F) =0 if j # 0 since F is quasi-injective. O
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Let us study the relation with the classical functor of specialization vy;.
PROPOSITION 4.2.4. — Let F € D(kx). Then p~'v52Rp.F ~ vy F.

Proof. — We have to show that for each x € Ty X we have
H*(p7 "2 Rpo F)y ~ HY(vpr F) .
Hence we have to prove the isomorphism
lin H*Y(V; 38 Rp, F) ~ lin HY(V;vpF),
eV eV
where V ranges through the family of open R*-connected relatively compact suban-

alytic subsets of Ty X (which is cofinal in the family of neighborhoods of x). This is
a consequence of Theorem 4.2.2 and Theorem 4.2.3 of [14]. O

REMARK 4.2.5. — Remark that the functor of specialization does not commute
with Rp, and p~! in general. In fact let V € Op¢,(Ths X) be Rt-connected and let
F e MOd(kx). Then

H*(V 38 Rp.F) ~ lim H*(U; F),
H
U
where U ranges through the family of Op(Xsa) such that Ca (X \U)NV = &, which
is not cofinal to the family of Op(X) such that Cp; (X \U)NV = @.
Now let V € OpS, (Ta X ) be RT-connected and let G € Mod(kx,,). Then
HY(Vivpmp ' G) ~ h_r}n lim HY(W; @),

<_
Uu weu

where U ranges through the family of Op(Xg,) such that Cp (X \U)NV = & and
W € Op(Xg). Then H*(p~ 152G, # H  (varp™1G),.
Some interesting examples of this fact will be given in §6.3.

Let f: X — Y be a morphism of manifolds, let N be a closed submanifold of Y of
codimension k and assume f(M) C N. We denote by f’ the map from TX to X xyTY
associated with f and by f, : X xy TY — TY the base change. We denote by T'f
the composite map. Similarly, replacing X,Y, TX, TY by M, N, Ty X, TnY we get
the morphisms f};, farr, Tarf-

We have a commutative diagram, where all the squares are cartesian

Sx > Qx Px

TuX X Qx X
J{TMf J(f' Jf J{f
VY i Yy it Qy Py Y
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Recall that the following diagram is not cartesian in general:

(4.2.1) Xy — 5 X
[
Yy —— Y.
DEFINITION 4.2.6. — (i) One says that f is clean with respect to N if f~1(N) is a
submanifold M of X and the map ¥}, : M xn T%Y — T3, X is surjective.
(ii) One says that f is transversal to N if the map tf"XXyT* v XxyTRY = T*Y
N
is injective.
If f is transversal to N and f~1(N) = M, then the square (4.2.1) is cartesian.

We will not prove the following results, which can be easily recovered adapting
81V.4.2 of [14], using the construction we did for subanalytic sheaves.

PROPOSITION 4.2.7. — Let F € D"(kx_)).
(i) There exists a commutative diagram of canonical morphisms

R(Ty f)renipF ————— v R fp+n F

| |

R(Ta f)aris F é——————— V2R, F.

(ii) Moreover if suppF — Y and Cy(suppF) — TNY are proper, and if
suppF N f~Y(N) C M, then the above morphisms are isomorphisms.
In particular if f is clean with respect to N, proper on suppF and
fYN) = M, then the above morphisms are isomorphisms.
PROPOSITION 4.2.8. — Let G € DP(ky.,).

(i) There exists a commutative diagram of canonical morphisms

Wry X/Tyy @ (Ta )G —— vitwxy ® [71G)

l l

(Twm )'vRG vitl'G
(ii) Moreoverif f: X —Y and f‘M : M — N are smooth the above morphisms are

isomorphisms.

Let X and Y be two real analytic manifolds and let M, N be two closed submani-
folds of X and Y respectively.

PROPOSITION 4.2.9. — Let F € D"(kx_,) and G € D®(ky.,). There is a natural
morphism
vigF v G — i N(F G).
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COROLLARY 4.2.10. — Let F,G € D®(kx,,). There is a natural morphism
VidF @ 137G — Vi3 (F Q G).

MEMOIRES DE LA SMF 135



CHAPTER 5

MICROLOCALIZATION OF SUBANALYTIC SHEAVES

With the construction of the Fourier-Sato transform and the specialization we have
all the tools to define the functor of microlocalization in the framework of subanalytic
sites. See [14] for the classical theory of microlocalization. Then we introduce the
functor phom™ for subanalytic sheaves, we study the relations with the notion of
microsupport of [17] and with the functor of ind-microlocalization of [19].

5.1. Microlocalization of subanalytic sheaves

Let us denote by T, X the conormal bundle to M in X, i.e. the kernel of the map
M xx T*X — T*M. We denote by 7 the projection T3, X — M.

DEFINITION 5.1.1. — Let F € DP(kx_, ). The microlocalization of F along M is the
Fourier-Sato transform of the specialization, i.e.
P F = (Vi F)".

THEOREM 5.1.2. — Let F € D(kx_,).

(i) p53F € DR (kry, x..)-

(ii) Let V' be an open convexr subanalytic cone of T, X satisfying (in Ty, X) the
condition either (Va) or (Vb) of (4.1.1). Then:

HI(V; 33 F) ~ lim HL(U; F),
U,z

where U ranges through the family of Op(Xsa) such that UNM = (V') and Z through

the family of closed subanalytic subsets such that Cpr(Z) C V°, where V° denotes the
polar cone.

(iii) One has the isomorphisms

(U3 F) g = B3 F) =~ iy Fy, (RUampiiF)|yy o Rmupii F o~ iy F @ iy k.
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Proof. — The result follows from the functorial properties of the Fourier-Sato trans-
form and Theorem 4.2.2. O

As in classical sheaf theory, we get the Sato’s triangle for subanalytic sheaves:

+
F‘M R wpx — RFMF‘M — R g b —

where 7 is the restriction of 7 to T3, X \ M.

PROPOSITION 5.1.3. — Let F € Mod(kx,,) be quasi-injective. Then p~'p53F is
concentrated in degree zero.

Proof. — The result follows from Theorem 5.1.2 (ii). O

REMARK 5.1.4. — Remark that the functor of microlocalization does not commute

with Rp, and p~! since specialization does not. If F € D"(kx) we have

—1, sa

P~ R B >~ py F

1 1

since the Fourier-Sato transform commutes with p=" and p™" o 13} o Rp, >~ vy

Let f: X — Y be a morphism of manifolds, let N be a closed submanifold of Y of
codimension k and assume f(M) C N. The map Tf defines the maps

tel

T*X 1 X 5y TV L Ty
and similarly one can define the maps f}, and fa/n.

Applying the Fourier-Sato transform to the morphisms of §4.2 we get the following
results (see also [14] §IV.4.3 for the classical case)

PROPOSITION 5.1.5. — Let F € D"(kx_)).

(i) There exists a commutative diagram of canonical morphisms
Rfvaminfay ‘W3 F —————— p2RfuF
Rfatm (fRrp5s F © wxyy @ W5 n) ¢ WG RSF.

(ii) Moreover if suppF — Y and Cp;(suppF) — TNY are proper, and if suppF N
fY(N) C M, then the above morphisms are isomorphisms. In particular if f is clean
with respect to N, proper on suppF and f~1(N) = M, then the above morphisms are
isomorphisms.

PROPOSITION 5.1.6. — Let G € DP(ky.,).
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(i) There exists a commutative diagram of canonical morphisms

Bfjrpen(@n/n ® frpmpeG) —— i (wx/y © f71G)

| |

Rf]/wsﬁf]'\/[ﬂ/l’?\z/%G M?\?JNG
(ii) Moreover, if f : X = Y and fly : M — N are smooth, then the above
morphisms are isomorphisms.

Let X and Y be two real analytic manifolds and let M, N be two closed submani-
folds of X and Y respectively.

PROPOSITION 5.1.7. — Let F € D"(kx_..) and G € D®(ky.,). There is a natural
morphism
pv NG — whiin (o G).

COROLLARY 5.1.8. — Let M be a closed submanifold of X and let v : Ty, X Xum
Ty X — Ty X be the morphism given by the addition. There is a natural morphism

RV}RM(MMF #531G) — 15 (F - G) @ wyx-

5.2. The functor phom**

We denote by A the diagonal of X x X, and we denote by ¢ the diagonal embedding.
The normal deformation of the diagonal in X x X can be visualized by the diagram

(5.2.1) TX — > S TA(XxX)— = s X x X2 0

T

A———L—HXXX

\u

Set p; = ¢q; op, i =1,2. While p and p;, i = 1,2, are smooth, p is not, and moreover
the square is not cartesian.

DEFINITION 5.2.1. — Let F € DR (kx) and G € DP(kx.,). We set
phom™(F, G) ==y RHom(q; ' F,q\G) = (v& RHom(q; ' F,q}G))".
As in the classical case, there is a useful description of the functor phom®®
LEMMA 5.2.2. — Let F € DE_(kx) and G € D*(kx_,). Then
phom™(F,G) ~ (s~ RHom((p; " F)a,pi'G) @ s 'p~ ' kx)"
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Proof. — (i) We first need the following result: let f : X — Y be a morphism of real
analytic manifolds and let U € Op(Xsa) such that f|;; is smooth. Let F' € DE_(ky)
and G € D®(ky,,). Then

(5.2.2) Ry f~' RHom(F,G) ~ Ry RHom(f'F, f'G).
We first reduce to the case G = h_n}l p+G; with G; € Modg_¢(ky) for each i. Let Ux_,
be the site induced by Xg, on U. We have

Hki;,j(saffl RHom(F, h_r)n pGy) ~ h_r)n pHYi [~ RHom(F, G;)

2 K2

12

lim p,H* R P ANl Y e
lim p Hom(iy [~ Fiy )

K2

1

lim p, HYiy" RMom(fF, f~1Gy)

~ H%i;! _RHom(f™F, hi>n pf1GY).

Xs
%

In the first and the last isomorphisms we used the commutation between p, and the
restriction to U given, for V € Op(Ux,,), by i(_])l(sap*F(V) = F(V) = p.i F(V).
The second isomorphism follows because f o iy is smooth. Composing with Ripy
we obtain the result.

(ii) Let F € DR (kx) and G € DP(kx_,). We have

where the second isomorphism follows from (5.2.2) with (U, X, f) replaced by
(Q,X x X,p). O

Let 7 denote the projection from TX (X x X) to A ~ X.

PROPOSITION 5.2.3. — Let F € D} (kx) and G € D"(kx_). There is a canonical
isomorphism m.phom™ (F,G) ~ RHom(F, Q).

Proof. — The result follows adapting Proposition 4.4.2 of [14]. O

REMARK 5.2.4. — The functor phom®” is well defined also if F' € DP(kx_, ). In this
case we do not know if phom®*(F, G) has bounded cohomology or not.
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REMARK 5.2.5. — Adapting the results of §4.2 and §5.1 one gets the functorial
properties of phom for subanalytic sheaves. Since the proofs are essentially the same
as the classical ones we will skip them and refer to [14].

Let 7 : T*X — X be the projection and consider the canonical 1-form w, the
restriction to the diagonal of the map '’ : T*X xx T*X — T*T*X. We have a
diagram

T*T*X " X )y T*X — " T*X

Arsx
LEMMA 5.2.6. — Let F € DE_(kx) and G € D"(kx_) We have
W phom® (n 7 F, 77 @) ~phom™(F, G).

Proof. — We have the isomorphism ‘)7 phom® (F,G) — phom™ (x = F, 7~ 1G).
Hence we get the isomorphisms
w tphom™ (n 7 F, 771G ~ wtnn - phom™ (F, G)
~ 571 mn L phom™ (F, G) ~ phom® (F, G). O

5.3. Microlocalization and microsupport

In [14] the authors prove that the support of phom(F, G) is contained in the inter-
section of the microsupports of F' and G. We extend this result to the functor phom™®.
Let X be a real analytic manifold and let 7*X 5 X be the cotangent bundle. We
recall the following two equivalent definitions of microsupport of a subanalytic sheaf
of [17]. For the notion of microsupport for classical sheaves we refer to [14]. For the
functorial properties of the microsupport of subanalytic sheaves we refer to [23].

DEFINITION 5.3.1. — The microsupport of F € DP(kx_, ), denoted by SS(F) is the
subset of T* X defined as follows. Let p € T* X, then p ¢ SS(F) if one of the following
equivalent conditions is satisfied:

(i) There exist a conic neighborhood U of p and a small filtrant system {F;} in
Cl*Y(Modg..(kx)) with SS(F;)NU = @ such that F is quasi-isomorphic to lim p, F;
in a neighborhood of 7(p). o

(ii) There exists a conic neighborhood U of p such that for any G € DY (kx) with
supp(G) € w(U) and such that SS(G) C UUT%X, one has

Home(kxsa)(Gv F) =0.

REMARK 5.3.2. — In [17] microsupport was defined for ind-sheaves. The above
definition follows from the equivalence between subanalytic sheaves and ind-R-
constructible sheaves (see [23] for details).
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We need the following result of [23].

LEMMA 5.3.3. — Let X,Y be two real analytic manifolds and let q1,qs be the pro-
jections from X x Y to X and Y respectively. Let G € D} (ky) and F € DP(kx.,).
Then

(5.3.1) SS(RHom(q; "G, qxF)) C SS(F) x SS(G)“.

Let M be a real closed submanifold of X. Let F' be a conic subanalytic sheaf on
T3 X, let S be a conic subset of Ty, X and set sF' = F ® pp, ks.

PROPOSITION 5.3.4. — Let F € DP(kx_). Then
parE =~ ssrynry, x (W F)-

Proof. — Let F € D"(kx..) and let p ¢ SS(F). There exist a conic subanalytic
neighborhood U of p and a small filtrant system {F;} in Cl*"(Modg..(kx)) with
SS(F;) NU = @ such that there exists W € Op(Xg.) with U C 7~}(W) and
Fy ~ 1£>n p«F;. We have

K2

H* 153 Fyy ~ hi>n p H pias Fyy,
hence (uj"\jF)‘U = 0 since supp(parF;) € SS(F;). This implies (455 F)y = 0 for each
V€ Op* (T3, X \ SS(F))sa,r+), hence p3i F' =~ gg(p) (131 F). H

COROLLARY 5.3.5. — Let G € D (kx), F € D"(kx_,). Then
(5.3.2) phom™ (F,G) ~ sg(mnss(a) (phom™(F,G)).
The result follows from Proposition 5.3.4 and (5.3.1). O
COROLLARY 5.3.6. — Let G € DY .(kx), F € D(kx_). Then
supp(p~ ' phom™ (F,G)) C SS(F) N SS(G).
Proof. — Applying p~! to (5.3.2) we obtain the result. O

Let f : X — Y be a morphism of real analytic manifolds and denote the base
change map by
[ X Xy TY — TY.

DEFINITION 5.3.7. — Let f : X — Y be a morphism of real analytic manifolds and
let F' € D(ky,,). One says that f is non characteristic for SS(F) if

fH(SS(F)NTxY C X xy T}Y.

If f is a closed embedding X is said to be non characteristic.
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PRrROPOSITION 5.3.8. — Let f : X — Y be a morphism of real analytic manifolds and
let F € DP(ky,,). Assume that f is non characteristic for SS(F). Then the natural
morphism

f_lF ®wX‘y — f'F

18 an 1somorphism.

Proof. — We may reduce to the case f closed embedding, hence we have to prove
the isomorphism F|y ® wx|y ~ RIx F| when SS(F)NTxY C TyY. Consider the
Sato’s triangle

+
F‘X ®WX‘Y — RFXF‘X — R % F —— .

Since SS(F)NT%Y C TyY we have R, 53 F = 0 by Proposition 5.3.4 and the result
follows. H

As usual, for F € DP(kx_,) we define
D'F = RHom(F, kx).
LEMMA 5.3.9. — Let F € DE_(kx) and let G € D(kx.,). Then
D'F G R’Hom(ql_lF, q2_1G).
Proof. — We may reduce to the case F' = ky with D'ky ~ ki and G € Mod(kx_, ).
Set G = h_I)Il p+G; with G; € Modg..(kx ), we have the chain of isomorphisms
Hk(Qz_lG)q;I(U) =~ lgl P*Hk(QQ_lGi)qfl(U)

lim p. R*T, 1 ) (05 ' Gi) = B'T 1) (05 G)

K3

R

where the second isomorphism follows from Proposition 3.4.4 of [14]. O

PROPOSITION 5.3.10. — Let F € DY (kx) and let G € D (kx.,). Suppose that
SS(F)NSS(G) CT%X. Then

D'F ® G — RHom(F,QG).
Proof. — Let § : A — X x X be the embedding and let us consider the Sato’s triangle
S ' RHom(q;'F,3G) ® WAl XX T §' RHom(q7'F, ¢5G)
— R, phom™ (F, Q) AN
We have §' RHom(q; ' F, ¢5G) ~ RHom(F,G). Moreover
6~ RHom(q;'F,5G) ® WA XX = S RHom(q;'F,q; 'G)
~0Y(D'F G)~DF®GaG,
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where the second isomorphism follows from Lemma 5.3.9. Then we obtain a distin-
guished triangle

D'F©G —s RHom(F,G) —s Riruphom™(F,G) ——
and the result follows since R7r,.puhom™ (F,G) = 0 by Corollary 5.3.5. O

5.4. The link with the functor p of microlocalization

We will study the relation between microlocalization for subanalytic sheaves and
the functor p of [19]. Let X be a real analytic manifold and consider the normal
deformation of A in X x X visualized by the diagram (5.2.1).

LEMMA 5.4.1. — Let G € DP(kx_,), then fori=1,2

(5.4.1) kg @ p; 'G ~ RHom(ko,p; 'G),

(5.4.2) ko @ p;'G ~ RHom(kg,p; ' G).

Proof. — Let us prove (5.4.1). Since for i = 1,2 p; is smooth, Proposition 3.1(3c>/£L23]
implies that SS(p;'G) N SS(kq) is contained on the zero section of T*(X x X).

Then the result is a consequence of Proposition 5.3.10, and the fact that D'kq ~ kg.
The proof of (5.4.2) is similar. O

Let o be a section of T*X — X and consider the following commutative diagram
with cartesian square
(5.4.3) TX

T"X xxTX ¢——TX

"X +——X.
We set
P = {((2.€), (x,0)) € T*X xx TX; (£,0) >0},
P = {((2,), (z,v)) € T*X xx TX; (§,v) <0},
P, = {(x,v) € TX; (o(x),v) >0} = o’ ~}(P),
P, = {(z,v) € TX; (o(x),v) <0} =o' "L(P")

The kernel K, is defined as follows
(5.4.4) Ko := Rpn(kg ® pikp,) ® p!5*w§|_X1Xx.
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PROPOSITION 5.4.2. — (i) Let F € DR (kx) and G € D"(kx_,). There is a natural
arrow

0 : RHom(F, K, 0o G) — o~ uhom™(F, G),
where K, o G means quu(qg GRK,).

(i) Let p : X — Xga be the natural functor of sites. Then p~1(y) is an isomor-
phism.

Proof. — (i), Let H € D"(krx,,). We have the chain of isomorphisms
O'il(HA) ~ 071R7T11!(7T2_1H ® kp/) ~ RTX”L')'lil(ﬂ'Q_lH & kp/) ~ RTX”(H & k’p{/’).

Consider the normal deformation of A in X x X visualized by the diagram (5.2.1).
We have

G) = (s RHom((p; ' Flo,p~'q; 'G) @ s~ 'p " qikx)"
~ (s~' RHom(p; 'F,Rlop; 'G) @ s_lp_lq!lij)/\
~ (s7' RHom(p; ' F,RTqop; 'G) ® T}lwgl}lxx)/\
~ (sil RHom(py 'F,py'G @ kg) ® Tglwg—){lxX)A,

whom>* (F

where the second isomorphism follows from Lemma 5.2.2 and the last one follows from
Lemma 5.4.1. Hence we get

o~ phom™ (F,G) ~ Rrxu(s™" RHom(p; ' F,p; ' G @ kg) @ 7 'y x @ kpy)
~ Rpgusu (s~ RHom(py ' F.py G ® ko) @ Ty Wi Y, x @ kpy)
~ Rpou( RHom(py 'F.pi G @ kg) @ p 6.3k, x @ kpy).
(i), On the other hand we have the chain of isomorphisms
Ky 0G ~ Rqu(q; "G ® Rpu(kg @ pikp,) @ po.w iy x )
~ Rpin(p; ‘G ® kg ® pkp, @ p~ ' pi6. WA\XXX)
~ Rpon (1 'G ® kg @ prkp, @ p~' prd. WA\XxX)
~ Rpon (7 'G @ kg @ pi(kp; @ p~ 10 (“)A|X><X))
Hence we get
RHom(F, Ky 0 G) ~ RHom(F, Rpau (py G ® kg ® pr(kp, @ p~ 0,02 x))
~ Rpon RHom (p; ' F,p;'G ® kg @ pi(kp, @ p~'6 wA|X><X))
~ Rpon ( RHom(p; ' F,py 'G @ kg) @ pi(kp, @ p~ J*WA\XxX))'

(i), The adjunction morphism defines a morphism py — p,. It induces the mor-
phism
¢ : RHom(F, K, 0 G) — o~ 'pphom®(F, G).
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(ii) Composing with p~1 top—p!

p () p~t RHom(F, Ky 0 G) = p~ o~ phom™ (F,G). O

we get p~ o p. ~id. Hence we get

Let m : T*X — X be the projection and consider the canonical 1-form w, the
restriction to the diagonal of the map *r’. Replace X with T* X and o with w in (5.4.4)
and consider the microlocal kernel

Ko = Rpu(kg © pikp,) © p!é*wg;}x\T*XxT*X
DEFINITION 5.4.3. — The functor of microlocalization of [19] is defined as
@ DP(kx.,) — DP(kpex.), F+— puF=K,on 'F.
REMARK 5.4.4. — The functor pu of [19] was defined for ind-sheaves. The above

definition for subanalytic sheaves corresponds to the original one thanks to the com-
patibility conditions of §A.2.

THEOREM 5.4.5. — (i) Let F € DR (kx) and G € DP(kx.,). There is a natural
arrow
(5.4.5) ¢ : RHom(n ' F, uG) — phom™(F,G).

(ii) Let p: T*X — T*Xg, be the natural functor of sites. Then p~1(p) is an iso-
morphism.

Proof. — (i) By Lemma 5.2.6 and Proposition 5.4.2 (i) we get the morphisms
phom™ (F,G) ~ w™ phom™ (' F,77'G) +— RHom(n ' F, uG).
(ii) The result follows from Proposition 5.4.2 (ii). O

EXAMPLE 5.4.6. — The morphism (5.4.5) is not an isomorphism in general. For
example let F' € Mod(kx_,). Then

RHom(n Ykx, uF) =~ RHom(kr-x, uF) ~ uF;
on the other hand we have
shom™ (kx, F) = j 5 F = j.F,

where j : T% X — T*X denotes the embedding of the zero section.

MEMOIRES DE LA SMF 135



CHAPTER 6

HOLOMORPHIC FUNCTIONS WITH
GROWTH CONDITIONS

We show how the functors we defined before generalize classical constructions.
In §6.3 we show the relation between specialization of Whitney holomorphic func-
tions with the functor of formal specialization of [6], and the sheaf of asymptotically
developable functions of [22] and [36]. In §6.4 we study the microlocalization of tem-
pered and Whitney holomorphic functions. We establish a relation with the functors
of tempered and formal microlocalization introduced by Andronikof in [1] and Colin
in [5].

6.1. Review on temperate and formal cohomology

From now on, the base field is C. Let M be a real analytic manifold. One denotes
> Dby the sheaf of Schwartz’s distributions,

> C57 the sheaf of C*°-functions,

> Aps the sheaf of analytic functions,

> Djs the sheaf of finite order differential operators with analytic coefficients.

Given a morphism f : M — N of real analytic manifolds, let Dp;_,ny and Dy pr
be the transfer bimodules. They are defined by

Dy—n=Aum Qf-14y f_lAN7
DN<—1M = .A\/M®_1 ®AM DM—>N ®f*1AN f—le@)—l’

where AY, (resp. AY;) denotes the sheaf of real analytic densities (i.e. the tensor prod-
uct in M (resp. N) between the sheaf of real analytic differential forms of maximal
degree and the orientation sheaf).

In [12] the author defined the functor

T’Hom( 7Db]\/[) : MOdR_C((CM) — MOd(DM)
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in the following way: let U be a subanalytic subset of M and Z = M \ U. Then the
sheaf THom(Cy, Dbyy) is defined by the exact sequence

0— szbM — DbM — T’HOTTL((CU,DI)]V[) — 0.

This functor is exact and extends as a functor in the derived category, from D _(Cx)
to D"(Dys). Moreover the sheaf THom(F,Dbys) is soft for any R-constructible
sheaf F'.

DEFINITION 6.1.1. — Let Z be a closed subset of M. We denote by Z7; , the sheaf
of C*°-functions on M vanishing up to infinite order on Z.

DEFINITION 6.1.2. — A Whitney function on a closed subset Z of M is an indexed
family F = (F¥)zenn consisting of continuous functions on Z such that for all m € N,
for all k € N |k| < m, for all x € Z, for all ¢ > 0, there exists a neighborhood U
of z such that for all y,z € UNZ

zZ—Y J 1 m—
e - Y B <ed, o
li+kl<m ’
‘We denote:

> Wyr 7 the space of Whitney C*°-functions on Z,
> Wii z the sheat U — Wi -

In [15] the authors defined the functor
- €38 : Moda.o(Cpy) — Mod(Day)
in the following way: let U be a subanalytic open subset of M and Z = M \ U. Then
Co®Cy =13, and Cz&C =W,

This functor is exact and extends as a functor in the derived category, from Dﬂg_c((c M)
to DP(Dyy). Moreover the sheaf F' ® Cy7 is soft for any R-constructible sheaf F'.

Now let X be a complex manifold, X the underlying real analytic manifold and X
the complex conjugate manifold. The product X x X is a complexification of Xg by
the diagonal embedding Xg <+ X x X. One denotes by O the sheaf of holomorphic
functions and by Dx the sheaf of finite order differential operators with holomorphic
coefficients. For F' € DY (Cx) one sets

THom(F,Ox) = RHomp_(Ox, THom(F,Dbx,)),
F®Ox = RHomp_(Ox, F ©C3,),

and these functors are called the functors of temperate and formal cohomology re-
spectively.
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6.2. Tempered and Whitney holomorphic functions

DEFINITION 6.2.1. — One denotes by Db, the presheaf of tempered distributions
on My, defined as

U+ I'(M; Dbyr) /T apnu (M; Dbay).

As a consequence of the Lojasievicz’s inequalities [20], for U,V € Op(Ms,) the
sequence

0 — Db, (UUV) — Db, (U) ® Db, (V) — Db, (UNV) — 0

is exact. Then Db}, is a sheaf on My,. Moreover, by definition Db}, is quasi-injective.

DEFINITION 6.2.2. — One denotes by Cy;"" the presheaf of Whitney C°°-functions
on M, defined as follows:

U —s T(M; HD'Cy & C53).
As a consequence of a result of [21], for U,V € Op(Ms,) the sequence
0= Cy"(UUV) —Cip"(U)@Cy™ (V) — CyM(UnV)

is exact. Then Cy;" is a sheaf on Mg,. Moreover if U € Op(Ms,) is locally cohomo-
logically trivial (l.c.t. for short), i.e. if D'Cy ~ C, the morphism

D(M;Cyp™) — T(U;Cyp™)
is surjective and RT'(U;Cy;™) is concentrated in degree zero.

We have the following result (see [16], [28]).
PROPOSITION 6.2.3. — For each F € Modgr.<(Cyps) one has the isomorphisms
p~' RHom(F,Dbly) ~ THom(F,Dby), p~' RHom(F,C5™) ~ D'F & CS.

Now let X be a complex manifold, X the underlying real analytic manifold and X
the complex conjugate manifold. One denotes by Of% and O¥ the sheaves of tempered
and Whitney holomorphic functions defined as follows:

oL = RHomp!DY(ngX,Dbé(R), O% = R?—lomplpy(pg@y,cg(ongw).

The relation with the functors of temperate and formal cohomology are given by
the following result (see [16], [28])

PROPOSITION 6.2.4. — For each F € DE_(Cx) one has the isomorphisms

THom(F,Ox) ~ p~ ' RHom(F,0%), D'F® Ox ~ p~* RHom(F,O%).
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6.3. Asymptotic expansions

Let M be a real analytic manifold. We consider a slight generalization of the sheaf
of Whitney C*°-functions of [16].

DEFINITION 6.3.1. — Let F' € Modg..(Cps). We define the presheaf Cl?jl)lz on Mg,
as follows:

U T(M; (H'D'Cy ® F) & C53).
Let U,V € Op(Ms,), and consider the exact sequence
0— Cynv — Cy ®Cy — Cyuv — 0,
applying the functor Hom(.,Cys) = H°D'(.) we obtain
0— H°D'Cyyy — H°D'Cy @ H°D'Cy — HD'Cynv,
applying the exact functors - ® F, - Q% Cy7 and taking global sections we obtain
0= Cip(UUV) — Cin(U) @ Cpip(V) — Cryin(UNV).

This implies that C;}’"? is a sheaf on My,. Moreover if U € Op(Mg,) is l.c.t., the
morphism F(M;Cﬁ"vg) — F(U;CE{VFV) is surjective and RF(U;C?V?{?) is concentrated
in degree zero. Let 0 - FF — G — H — 0 be an exact sequence in Modg_(Cyy), we

obtain an exact sequence in Mod(Cjy,,)

(6.3.1) 0— CEIVFV — CX;IVCZ‘ — C%z — 0.

We can easily extend the sheaf CLO‘VFV to the case of F € D2 (Cyy), taking a finite

resolution of F' consisting of locally finite sums ®Cy, with V lc.t. in Op®(Mg,).
0o,W

co,w .. . . :
The sheaves C M]sCy form a complex quasi-isomorphic to C M| p consisting of acyclic

objects with respect to I'(U; -), where U is l.c.t. in Op®(Mg,).
As in the case of Whitney C*°-functions one can prove that, if G € DR .(Cy),

p~ RHom(G.Ci) ~ (D'G @ F) & C55.

EXAMPLE 6.3.2. — Setting F' = C); we obtain the sheaf of Whitney C*°-functions.
Let N be a closed analytic submanifold of M. Then C;;l’(vcvM\N is the sheaf of Whitney
C*°-functions vanishing on NV with all their derivatives.

NOTATIONS 6.3.3. — Let Z be a locally closed subanalytic subset of M. We set for

short C%VZV instead of Cﬁl’gz.

Let N be a closed analytic submanifold of J\i, let Ty M = N be the normal vector
bundle and consider the normal deformation My as in §4.1.
Set F'=Cypn\n, G =Cp, H=Cy in (6.3.1). The exact sequence
0= Crinny — Car" — Cogin = 0
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induces an exact sequence

sa o0, W sa 00

W sa 00, W
0= vNCyiann — VNCy — UNCpyin — 0,

in fact let V be a l.c.t. conic subanalytic open subset of TyM and U € Op(Ms,)
such that Cny(M \ U) NV = &, then we can find a l.c.t. U’ C U satisfying the same
property. Moreover it is easy to see that V]S\?ijl’vl\v, ~ r*lcﬁm, hence we get the exact
sequence

sa 700, W sa 00, W —1C<>o,w

(6.3.2) 0= v Criany — VNCy — 7 Cpiy — 0.

REMARK 6.3.4. — Let G € D*(pDys). Then
VG e DP(pr~ i~ Dyy).

Now let us study the relation with the constructions of [6]. In that work the author
defined the functor of Whitney specialization as follows: let F' € D2 (Cy), then

woy(F,C55) = s~ RHomp, (D u (07 F)g 8 C ).

It is an object of DP(771i~1Dyy). The stalks are given by the following formula: let
v € TyM. Then

(6.3.3) H (wvy (F,CR)), =~ lim H*(M; Fy ®C39),
U
where U € Op(Mg,) l.c.t. such that v ¢ Cn(M \ U).

PROPOSITION 6.3.5. — Let ' € DR (Cur), there is a natural isomorphism in
DP(r=Yi=1Dyy)
wun (F,C30) =~ p~'vi? X’;‘g
0o,wW

This means that Whitney specialization is obtained by specializing the sheaf C MIF

Proof. — We have the chain of morphisms in D®(p~1Dy,)

p_lRFQp_lCﬁl’g — p_lRFQp!CE"V}?[—l]

~ p~ 'Rl RHomppy, (MDD c=™ )

MN—M> " N y|p=1F
~ RHomp, (D pIRLGCY )

IT/[’N—HVI’ My|p—'F
~ RH D “1p)s © 0=
= OmDMN( My —M> (P 'Fge MN)~

The first isomorphism follows from (A.4.3) and the last one follows since D’Cq ~ Cg.

Applying the functor s=! we obtain wyy(F,C$3) — pflyi\?Cﬁ"g. Let v € TnM.

By (6.3.3) and Theorem 4.2.2 (ii) it turns out that

H*(wvy (F,CR7)), ~ h_rr>1 H"(M; FRC53) ~ h_rr>1 Hk(U;C;;I’VI;) ~ B (p~lug M)
U U

where U € Op(Ms,) l.c.t. such that v ¢ Cn(M \ U). This completes the proof. O
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Assume that M ~ {(z,y) € R* x R**} and N ~ {0} x R"~*.

> A sector S of M is a subanalytic open subset S = U x V with U € Op(RZ %)
and V =W NB(0,¢), where W € Op(R£a7R+) and B(0,¢) is the open ball of center 0
and radius e.

> We say that S’ is a subsector of S if S\ N C S. We write for short S’ < S.

DEFINITION 6.3.6. — Let S be an open sector of M and let f € C3;. One says that
f is asymptotically developable on S along M, if there exists a formal series

> ar(x)y”
keNt
with C> coefficients aj such that, for all S’ < S, m € N, there exists C' > 0 such that
Yy €S, [fay) - D alo)yt| <l
|k|<m
One denotes by
> on(S) C CS3 the space of functions asymptotically developable along M,
> o ={f €C%(S), Vk e N, DFf € opr(9)}.

Recall (see [14]) that locally we may assume
M ~{(z,y) € RY x R”_e}, N ~ {0} x R*~*

and we may identify M ~ T M. A sector S C M means a sector in the local model.
We have the following result (see Proposition 2.10 of [6]).

PROPOSITION 6.3.7. — Let S be a sector of M. Then
D(R*S; p~t2Cer™) =~ o3 (S)

and T(R*S; p~ 32 X’;"L\N) is the subspace of functions asymptotically developable to

the identically zero series.

Applying the functor p~! to the exact sequence (6.3.2) we obtain the exact sequence

—1, sa00,W —1, sa00,wW -1 _1COO’W

0—=p vy MmN~ P UNCy T T MlN—>0,
where the surjective arrow is the map which associates with a function its asymptotic
expansion.
Let X be a complex manifold and let Z be a complex submanifold of X. Let
F € DR (Cx). We denote by O¥,|p the sheaf defined as follows:

OXp == RHom,p (nOx, C)O(ORIV;)

Let 0  F — G — H — 0 be an exact sequence in Modg <(Cx). Then the exact
sequence (6.3.1) gives rise to the distinguished triangle

W W W +
(6.3.4) Xir— O% ¢ — OXjpw — -
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If we consider the functor of specialization of formal cohomology of [6]
wrz(F,0x) = RHom —1p_ (Tﬁloy,wuz(F, C}?R)),

we have the isomorphism

wry(F,0x) ~ p v X|F-

Setting F' = Cx\z, G = Cx, H = Cz in (6.3.4) and applying the functor of special-
ization, we have the distinguished triangle

+

WFoy — plr oy,

(6.3.5) pTVEO% x\z — P
The sheaves p~1v3#O% and p’17*10§| , are concentrated in degree zero. This fol-
lows from the following result of [8]: in the local model if U € Op(Xs,) is convex,
then RI'(X;C ® Ox) is concentrated inAdegree zero. Moreover (see [15]) the sheaf
p*10§| , is isomorphic to the sheaf Ox|z, the formal completion of Ox along Z.
We have an exact sequence

0— p_lHOVSZaOEVqX\Z — p WPOx — T_l(QXTZ — p_lHluSZa(’)x‘X\Z — 0.

Let o%°!(S) be the space of holomorphic functions asymptotically developable in S,
having an asymptotic expansion with holomorphic coefficients. We have the following
results of [6].

PROPOSITION 6.3.8. — Let S be a sector of X. Then
T(R*S; p~'v3OY) ~ o3 (S)
and T'(R*S; pflz/SZaO‘)”(lX\Z) is the subspace of functions asymptotically developable to

the identically zero series.

PROPOSITION 6.3.9. — The distinguished triangle (6.3.5) induces an exact sequence
outside the zero section
—1 770, sayw —1_ samyw =1 n
(6.3.6) 0—p HWV X12|p,x P VZOX‘TZX — 7  Oxl|z —0.
On the zero section we have the exact sequence
(6.3.7) 0— Ox|, — Oxlz — p " H'WFOY x\ 4|z = 0.

Remark that on the exact sequence (6.3.7) we used Theorem 4.2.2 (iii) and the fact
that p~1O% ~ Ox.
EXAMPLE 6.3.10. — Set X = C and Z = {0}. Outside the zero section the sheaves
;)*II/SZ@LO;?| x\z and p~ 1 OY are the well-known sheaves Aj and A of Malgrange [22]
and Sibuya [36]. These sheaves were defined in the real blow-up of the origin of C
identified with S! x (R* U {0}). Let 7 be the projection on C. The sequence (6.3.6)
is a generalization of the exact sequence in Mod(Cg1)

0— Ay — A— 7 'C[[2]] = O,
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and the sequence (6.3.7) is a generalization of the exact sequence
0 — C{z} — C[[z]] — H'(S'; Ap) — 0.

EXAMPLE 6.3.11. — Let X = C and Z = {0}. The sheaf A is an example of
the fact that specialization does not commute with p=!. Indeed p~'O% ~ Ox and
A~ p7 52 0% 2% vz0x (outside the zero section).

6.4. Microlocalization of O% and O%

Let f : M — N be a smooth morphism of real analytic manifolds. We have the
following results (see the Appendix):
RHom,p,, (pDarns Dbly) =~ DY,
RHom,p,, (pDrar—n,Cop™) ~ fiew™.
Let us consider the normal deformation of the diagonal in M x M of diagram (5.2.1).

Let F € D .(Cpr). We recall the definitions of the Andronikof’s functor of microlo-
calization of tempered distributions

tphom(F, Dbyy) == (s~ (D ®p THom((pglF)Q,Dbm)[—l]))A

b
MEMXM XM

and Colin’s microlocalization of the Whitney tensor product
W 00 . —1 —1 _ W 00 \
F(%CM == (s~ RHom (DmfﬂM7 (py Fg ®ij)) .
They are objects of D”(Djy).

REMARK 6.4.1. — Let N be a closed submanifold of M and consider the projection
7w : THxM — N asin §5.1. Let H € D*(pDys). As in Remark 6.3.4, p53 H is an
element of D®(pym =%~ 1D);). In particular in the case of the diagonal § : A < M x M,
if F € DR .(Cpr) and G € DP(pDyy) we have phom™ (F,G) € DP(p D) (we do not
write 7! to lighten notations).

THEOREM 6.4.2. — Let F € DY _(Cpr). We have the isomorphisms in D® (D)

(6.4.1) p~ L phom™ (F, DbY,) ~ tuhom(F, Dbyy),
(6.4.2) p~tphom™(F,C0Y) =~ (D'F (%Cﬁ)“,
m

where (.)* denotes the direct image of the antipodal map.

Proof. — Let G € DP(Cyy,). By Lemma 5.2.2 we have

phom™ (F,G) ~ (s~ RHom((p; ' F)a,p; 'G) @ s 'p~1qiCar)".
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1

(i) Let us prove (6.4.1). Setting G = Db}, and composing with p~! we have

p~ ! phom* (F, Dby)
~ (571 -1 RHom((pglF)Q,pl_lDbfw) ® sflpflq!l(CM)A

~ (s7tp7! Rt ompp (PD i1 R’Hom((pglF)Q,DbRW))

® sflpflq!l(C;\/[)A
~! RHom((py ' F)a, Dbi—~—))

12
e

M (IDJ\mIQM’ p

®s plgiCy)"

~ (s 1RH0mpN (D —~ THom((py ' F)a, Db

M><M))
® s p i Cay)"
THom((py ' F)a, Dbm)[_l]))A

MxMBamr

~ -1 e~
- (S (DMEMXM ®DM><M

~ tphom(F, Dbyy).

I we have

(ii) Let us prove (6.4.2). Setting G = Cy;"" and composing with p~
p~ ! hom™ (F,Cyp™)
~ (s_l L RHom((p3 F)a,py 1COO W)@S_lp_lquM)A
s~ tp~ RHom((py ' F)a,p; 'Coy W))v

(57

= (871 -1 RHompp (o1 DM M8 R?—[om((pglF)Q,C%)))va
~ (
(

~

M x M

s~ RHomp

— -1 00,W Va
(Dirzgmae P~ BHom((py F)a,C22)))

M x M

~

~ (s_

where the last isomorphism follows since

. 1 w ) Va
s RﬂomDm(DmﬂM7D/(p2 F)Q@Cl\m))

—1 W o Va
o Pirmimiar (2 D'F)g @ Cigy)
D'((p3'F)a) ~ RToD’(py ' F) ~ RTqap; 'D'F ~ (p; 'D'F)5
Here we used Lemma 5.4.1 and the fact that ps is smooth. We have

o1 RMomp___ (DMXM—1>M’(p2 'D'F)s ®C]°Vj M))

Ve (D'F ®C3)°
"
and the result follows. O

Let X be a complex manifold and let F € DR (Cx). In [1] and [5] the authors
constructed the functors tpuhom(F, Ox) of tempered microlocalization and F' ® Ox
of formal microlocalization taking the Dolbeaut resolutions of the real ones.
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THEOREM 6.4.3. — Let F € DY (Cx). We have the isomorphisms
(6.4.3) p L phom™ (F,0%) ~ tuhom(F,Ox),
(6.4.4) p~tphom™(F,0%) ~ (D'F ® Ox)e,

“w

where (.)* denotes the direct image of the antipodal map.

Proof. — The result follows by taking Dolbeaut resolutions on the left and the right-
hand sides of (6.4.1) and (6.4.2). Let us see the proof of (6.4.3). Let F' € DE__(Cx).
As pointed out in Remark 6.4.1, the p;Dx-module structure of Db}mZ implies that
phom®*(F, Db% ) € D"(p!Dx). The coherence of O implies that

RHompp (pOx puhom® (F, Dbk )) ~phom™ (F, RHom,p_(mOx, Dbk, )).

I we have

Applying the functor p~
p ™ phom™ (F,0%) ~ p~' RHom,p_ (pOx.phom™ (F,Dbk,))
~ RHomp, (Ox, p~ ' phom™ (F, DbY.))
~ RHomp_ (Ox,tuhom(F, Dbx,))
~ tphom(F,Ox).

The proof of (6.4.4) is similar. O
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CHAPTER 7

INTEGRAL TRANSFORMS

We give some applications related to the microlocalization of subanalytic sheaves.
We show the existence of a natural action of tempered microdifferential operators on
tempered and formal microlocalization. We show also the invariance under contact
transformations of tempered and formal microlocalization.

7.1. £x-modules

Let X be a complex manifold of complex dimension dx. Following the notations
of [14] one sets
£% = B> (ua 0.
It is a sheaf of rings over 7*X and for each F € D"(Cx), j € Z the sheaf
HIphom(F, Ox) is naturally endowed with a structure of left £%-module.
> The sheaf £ is called the ring of microlocal operators on X.

> It contains a subring, denoted by £x and called the ring of (finite-order) micro-
differential operators. We will not recall all the properties of this sheaf and refer
to [32] for a detailed study.

In [1] the author introduced the sheaf EE’f of tempered microdifferential operators
L
e%l = H (tphom(Ca, Oxxx) ,® 005)).
XxX

It follows from Theorem 6.4.3 that

5§’f ~ p_lHquSAa(’)Zgié‘).

Let us recall the following results:
> the sheaf tuhom(Ca, Ox« x) is concentrated in degree dx;

> one has the ring inclusions £x C 5§’f C ER.
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7.2. Integral transforms

Let X,Y,Z be three manifolds. Let g;; be the (i, j)-th projection defined on X x
Y x Z and let p;; be the (i, j)-th projection defined on T*X x T*Y x T*Z. Let p{; be
the composition of p;; with the antipodal map a andlet 6 : X XY xZ = X XY xY xZ
be the diagonal embedding. We denote by py : T*Y Tx, (Y xY') the isomorphism
induced by the second projection. Consider the diagram

a a
P12 XP23

7.2.1 T (X XY)XxTY X Z)¢————T*X xT*Y xT*Z
(121)  TXXY)XT*(Y x 2) e

T | id XpaXa

T*(X XY) xy T(Y X Z)6z «——T*X xTX (Y xY) xT*Z

t6'J/ Pis

T*(X x Y x Z) T*X xY xT*Z

q13

q13~w

T*X x T*Z(—/

For F; € Db(k(XXY)Sa) and Fy € Db(k(yxz) ) set

Fi o Fy = Rguan(qy Fi ® go3' F)
and for Gy € Db(k(T*XxT*y)sa) and Go € Db(k(T*YXT*Z)Sa) set
G1 6 G2 = Rpfypey(piy ' G © p3; ' Ga).

We need this proposition which follows from the functorial properties of phom®® (it is
an adaptation of Proposition 4.4.11 of [14]).

PROPOSITION 7.2.1. — Let us consider the sheaves

K1 € DR (kxxy), Fi € D*(k(xxy)..), Ko € DR (kyxz), F» € D*(kiyxz)..)
Suppose that qi3 is proper on supp(ql_QlKl ® q2_31K2). There is a morphism
(7.2.2) phom™ (K1, Fy) & phom® (Ko, Fy) — phom™ (K o Ko, Fy o Fy).

PROPOSITION 7.2.2. — Let A\ = @,t. Let K1 € DR (Cxxy) and K3 € D} (Cyxz).
Suppose that qi3 is proper on supp(qy K1 ® q2_31K2). Morphism (7.2.2) defines a

morphism
(7.2.3) pwhom™ (K, O;(g’g’/)) & pphom™ (Ko, (9?}2’;2))

— phom®* (K7 o Ko, Og\((g’gZ))[—dy].
Proof. — Tt follows from (7.2.2) setting Fy = (’)%(2’5‘/), = (’)1)‘/(2’52) and using the
. . . A0, dy) _ AA(0,dz) A(0,dz)
integration morphism O%, "’ 0 Oy ;7" — Oy, ;7 [—dy]. O
COROLLARY 7.2.3. — Morphism (7.2.2) induces the ring structures on 5?} and 5§,f_
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Proof. — Apply p~! to (7.2.3) with X =Y = Z and K; = Ky = Ca[—dx]. O

PROPOSITION 7.2.4. — Let F € DY (Cx). Morphism (7.2.2) defines a morphism

(7.2.4) MSAaO;‘((g’?(X)[dX] @uhom™(F,0%) — phom™(F, 0%).

Proof. — We apply Proposition 7.2.1 with X =Y and Z = {point}. We set
(K, Kz, Fy, Fa) = (Cal=dx], F,OX 05, 0%).

In this case we have CaooF ~ F'. We obtain the desired morphism using the integration

morphism O;(g’;i(x) o0 O — Ox[—dx]. O

Applying the functor p=! to (7.2.4), we find the morphisms of [1] and [14] (recall
that p~tpuhom®(F, 0% ) ~ tuhom(F,Ox)).

COROLLARY 7.2.5. — Morphism (7.2.4) induces morphisms
(7.2.5) Exl @ p~tphom™(F, 0% ) — p~* phom™ (F, 0%),
(7.2.6) ER @uhom(F, Ox) — phom(F,Ox),

which, for each k € Z, induce a structure of 5§’f-module (resp. 5§-module) on the
sheaves H*p~Lpuhom®* (F, O%) (resp. H*phom(F,Ox)).

Now we will study the action of S?é’f on formal microlocalization. We first recall
the definition of the sheaf of tempered C°°-functions.

DEFINITION 7.2.6. — Let X be a real analytic manifold and let U € Op(X). Let
feT(U;C¥). One says that:
> f has poynomial growth at p € X if for a local coordinate system (z1,...,z,)

around p, there exists a compact neighborhood K of p and N € N such that
N
sup (d(:z:,K\U)) |f(:17)| < 00;

ze KNU

> f is tempered at p if all its derivatives have polynomial growth at p;

> f is tempered if it is tempered at any point.
DEFINITION 7.2.7. — One denotes by C;”t the presheaf of tempered C*°-functions
on X, defined as follows:

U+— {f eT(U;C%), fis tempered}.
As a consequence of a result of [15], for U,V € Op(Xs,) the sequence
0= CXHUUV)=Cc ) ac (V) = Cct(UNY)

is exact. Then C)O(o’t is a sheaf on Xg,. Moreover RT'(U; C;”t) is concentrated in degree
zero for any U € Op(Xg,).

Let THom(F,C¥) be the sheaf of [15].
When F = Cy, U € Op(Xy,) it is defined by V — Co2H(U N V).
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We have the following results (see [16]).

PROPOSITION 7.2.8. — For each F € DE_(Cx) one has the isomorphism
p ' RHom(F,C¥") ~ THom(F,C¥).

PROPOSITION 7.2.9. — Let X be a complex manifold, Xg the underlying real analytic
manifold and X the conjugate manifold. Then

0% ~ RHomp,DY(p!O)?,C;QR’t).
We prove the following result.

LEMMA 7.2.10. — Let f: X =Y be a smooth morphism of real analytic manifolds.
Then we have the isomorphism

FIet =5 RHom,py (Dx oy, CX0).

Proof. — First of all remark that there is a natural morphism
fIe — RHomppy (Dx—y,CY).

In order to prove that it is an isomorphism we may reduce to the case of a projection
m:Y xR —Y. We shall prove that the morphism

. oo,t oo,t
O : CY><]R CY><]R7

where ¢t denotes the variable in R, is surjective. Let U € Op°((Y X R)sa), then
by Lemma A.1.11 it admits a finite covering {U;}Y; such that each U; is simply
connected and the intersections of each U; with the fibers of 7 are contractible (or
empty). Hence we may reduce to the case that the intersections of U with the fibers
of m are contractible (or empty). Moreover we can assume that

U={(z,t) €Y xR; f(x) <t<g(x)},

where f, g : 7(U) — R are continuous subanalytic maps and 7(U) is simply connected.
Let us consider h,k : m(U) — R continuous subanalytic and ¢ € I'(w(U);Cs°) such
that f <h <@ <k <g. Let s € (U; () and define

(a,t)
$(z,t) = / s(x, 7)dr.
(

,p(x))
Then s € I'(U; C3°, ) and 0;5 = s. Moreover
|§(x,t)| < |g0(a:) — t} sup |s(x,7)|.
(zm)e{z}x[p(2)1]

Since U is bounded, there exists M > 0 such that |¢(z) —t| < M for each (z,t) € U.
Since s is tempered, for each © € w(U) and each 7 € [p(z),t] there exist ¢y, > 0
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such that
1
< y——
5o T < e G 7y, 00y
1

= U ain{d((z,£),90), d((z, h(@)), 00), d((z. k(@) 00V}

As a consequence of Lojaciewicz’s inequality (see Theorem 6.4 of [3]) there exist co > 0
and r9 > 0 such that

d((z, h(z)),0U),d((z, k(z)),0U) > ng(l‘,a(ﬂ'(U)))rQ > czd((m,t),aU)m.

Hence there exist ¢, 7 > 0 such that

Sz, t) < c;

T d((,t),00)"
and the result follows. O
LEMMA 7.2.11. — Let f: X = Y be a smooth morphism of real analytic manifolds.

Let M,N € D*(Dx). There is a natural morphism

L L
RHompy (Dx—y, M) & RHomp,(Dx_y,N) — RHomp, (Dxﬁy,M@nN).
1Ay Ax

Proof. — By Lemma 4.9 of [13] we have

L L
(7.2.7) Dy x @ Dxsy Dy, x © [~ 'Dy.
Ax fr Ay

Then if M is a Dx-module
L Lo L . L
(’DYeX ®M> ® [T Dy ~ (fDYeX ® f Dy) M
Dx f-1Ay ftAy Dx
L L L L
o~ (DY<—X ® DX—)Y) QM>Dy, . x ® (M ®DX—>Y)-
Ax Dx Dx Ax

Now when f is smooth
L
Dy x g@ -~ RHomp, (Dx_y, .)[dx — dy].
X
Then if NV is another Dx-module

L
R’HOWLDX(DX_A/,M)f (?A RHomp, (DX_>y,N)
TTAY

L L
~ RHomp, (DXa%M ® Dxsy ® RHompy ('DXAYaN))
.AX 71'Dy

Lf
— RHomp, (Dxﬁy,MﬁN). O
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LEMMA 7.2.12. — Let X be a real analytic manifold. Let F,G € DR .(Cx) and let S
be a closed subanalytic subset of X. There is a morphism

p~ ' RHom (F,(CX")s) ®ay p~ ' RHom (D' ((F ® G)s),C¥™)
— p~ ' RHom (D'(Gs),CX™).

Proof. — (i) Let Vi,Va € Op(Xa). The sheaf p~'Ty, (C¥")s is concentrated in
degree zero since Cy " is T'(U; -)-acyclic for each U € Op(Xsa). Moreover the sheaves

pt RHom(D'Cy,v,ns,Cx ") 2~ Cyinvans ® CX,
p71 R'Hom(D/(Cvzm&C?’w) ~ Cyyns ®CY

are also concentrated in degree zero. There is a morphism

(728) p_1FV1 (C)O(O7t)5' ®Ax (Cvﬂ'ﬂfzﬂs ®C§(o - (CVQQS ®C§(o

This follows since the multiplication of a function tempered on V; by a function van-
ishing with all its derivatives outside V; is a function vanishing with all its derivatives
outside Vj.

(ii) By Theorem 1.1 of [15] the morphism (7.2.8) extends to a morphism
(7.2.9) P Ty (CX")s ©®ax Grins @ CF — Gs @ CF,

functorial in G € Modg..(Cx). By adjuction this gives a morphism

(7.2.10) P, (€Y s — Homou, (Gryns © CF, Gs ® C).
By Theorem 1.1 of [15] the morphism (7.2.10) extends to a morphism
(7.2.11) p~  Hom (F,(CX1)s) — Homay, (F®G)s & CE,Gs ®CF).
functorial in F' € Modg.(Cx).
(iii) Let F, G € DR .(Cx). We have the following chain of morphisms
p~t RHom(F,(C¥")s) — R(p~ Hom (F,(CX")s))
— R(Homay (F®G)s ®CF,Gs ©CF))
— RHomy, (F®Q)s ©C¥,Gs ©CF),

lis exact and (.)s sends quasi-injective

where the first isomorphism follows since p~
objects to quasi-injective objects, the second arrow follows from (7.2.11) and the third
one is a canonical morphism of derived functors (see [18], Proposition 13.3.13).

By adjunction we obtain the desired morphism. O
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LEMMA 7.2.13. — Let us consider the normal deformation of the diagonal in X x X
of diagram (5.2.1). Let F,G € DE_(Cx). There is a morphism

p R RHom(qy ' F,q5 'CF") @y p v RHom (¢ ' D' (F ® G), ¢; ' CX™)

— p W RHom(¢; ' D'G, g 'CE™).

Proof. — (i) As in the proof of Theorem 6.4.2, if X is a real analytic manifold,
K € D} (Cx), A =t,w, we have

p R RHom(¢7 'K, g5 1CT™)

~p~tsTL RHom ((pl_lK)Q,pg_l(Z?’)‘)
~ p~tsT  RHom ((pi ' K)a, RHompp_— (p;Dm_)X,C;%))
).

~s ' RHomp___ (D T RHom((py ' K)q,C

XXX )/(_;7(—>X’p

00,
XxX
where the second isomorphism follows from Lemma 7.2.10.
(ii) By Lemma 5.4.1 for H € D _(Cx) we have
(p7'D'H)q ~D'((py'H)g) and RIap, 'CT" ~ (0,'CF ") 5.

(iii) By Lemma 7.2.11 with (X,Y) = (X x X, X), M = RHom(p] 'F, (€L )q),
N = RHom(D'(p; "(F @ G))g), C;LX‘%), we are reduced to find a morphism

p~t RHom (pi'F, (CZL)g) @a p~ ' RHom (D'((py'(F® G)a),C)

XxX
— p~ ' RHom (D' (1" G)g) . C2L%)

which follows replacing (X, S, F, G) with (m, Q,p; ' F,prtG) in Lemma 7.2.12.
O

Let us consider the complex case. Let X be a complex manifold.
LEMMA 7.2.14. — Let L,H € D*(Dx,). There is a natural morphism

L L
RHomp(Ox.,£) & RHomp(Ox . H) — RHomnp, (Oy,EA@) H)

Proof. — By definition we have

L L D
LR®H=Dxysxuxxs @ (L M).

Axy Xp X Xp
Hence we get

D L
L H— RHomp,, (DXWXRMR,ﬂ & ’H)
Axg
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There is a chain of morphisms
L
RHomp_(Ox, L) 5@ RHomp_(Ox, M)

L D
~Dyxxxx & (RHomp)?((’)X,/j) RHomD}?(Oy,H))

XxX
D 5 RM O Og.D 5L H
— DxxxXx Dfiix OMp, Dy ( < T Pxxx DX®D)S ))

L L L
— Dx_xxx ® RHomDYx)? (Ofvapfxf 7® PXXX ® (ﬁ H))

Dxxx < Dx Dx Dx

I D
— Dx_xxx ® RHomDYxY (O)?x)?7£ H)

Dxxx

L L
— Dxoxxx ® RHompg o (nyy,R’HomDX]R (IDXR—)X]RXXRWCA(@ ’H))

Dxxx Xg

L L
~Dx_xxx ® RHO’/TLDX (Dxﬁxxx,RﬂomDY(Oi,ﬁA(@ H))
XRr

Dxxx
L
— RHomp_ (Og,ﬁ ® H) O
Axg
LEMMA 7.2.15. — Let us consider the normal deformation of the diagonal in X x X

of diagram (5.2.1). Let F,G € DE_(Cx). There is a morphism
p v RHom(q; 'F,q5 ' O%) ®o, p~ & RHom (¢7 'D'(F @ G), 5 ' O%)
— p~ WX RHom(q; ' D'G, g5 ' O%).
Proof. — If X is a complex manifold, K € DS (Cx), A = t,w, we have
p~ VX RHom(qy 'K, g5 ' O%,)
~p~tsT' RHom ((pflK)Q,pglOﬁ‘()
~p~tsTt RHom ((pl_lK)Q,pQ_1 RHom,p (ngg,C})(o;‘))
~ R’;’—lorrzp)?((’)y,,0_15_1 RHom ((pl_lK)Q,pglc;O]R?A))
~ RHomp_(Ox,p ' v RHom (¢ 'K, qglc;’gj)).
Set
L=p v RHom(ql_lF, qgng{O“;t), H = p '3 RHom (ql_lD’(F ® QG), q2_1C§(°W’W)).

By Lemma 7.2.14 there is a natural morphism
L L
RHomp (O, L) & RHomp (Ox,H) — RHomp (O, £ & H).
OX AXLK

Then the result follows from Lemma 7.2.13. O
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LEMMA 7.2.16. — Let f : X — Y be a smooth morphism of complex manifolds.
Then there is a natural morphism

ng!QV)‘é[dx] — Q%[dy]
Proof. — By Theorem A.4.7 we have the isomorphism
'O [2dy] = RHom,py (pDx -y, O%)[2dx].

L
We have RHomppy (pPx—y,0%) ~ pDyx @ O%[dy —dx]. Hence we get
mDx

L
pDycx @ O% ~ flOY[dy — dx].
mDx
By adjunction we get
L
Rf!!(P!’DYeX %) 0}) — Oy [dy —dx].
prx

From this we can deduce

L
RAQY — Rf“(Q} @ p,Dxﬁy) — QY [dy — dx]. O
X

Let us consider the diagram (7.2.1) with Z = {point}. Set
px i T*X x T*Y —s T*X, py T*X X T*Y — T,
ax X XY — X, v X XY — Y.

PROPOSITION 7.2.17. — Let G € DD%_C((CX) and K € DH%_C((CXXy) such that qy is
proper on supp(q;(lG) Nsupp(K). Then we have a morphism

(7.2.12) p~tphom® (K, (’)Eggi)’))[dy] 6 p~ ! phom™® (D'(K o G),0¥)
— p~tuhom™(D'G, O%).
Proof. — We will prove the assertion in several steps. Set
Hy = p~ w3 RHom(q7 K, O3)) ~ p~ w3 RHom(q7 ' K, g5 O3 ) [2dx v ],
Hy = p~ '3 RHom (q; 'D'(K o G), ¢, 0%)
~ p~ w5 RHom (q7 ' D'(K o G),q5 ' OF ) [2dy|.

I we have

Since the Fourier-Sato transform commutes with p~
H ~ p~tphom® (K, Oégg,”)), H} ~ p~'phom™ (D' (K o G), O}).
(i) By the commutativity of the diagram (7.2.1) we have an isomorphism
Rp% ((H)* @ py ' H) ~ Raxm'qx 'R'66 1 (H]  H3).
(ii) By Proposition 3.7.15 of [14] we have an isomorphism
()" (Ho)" — (Hi Ha)",
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(iii) Denote by T'qy : T(X x Y) — TY the tangent map. By Propositions 3.7.13
and 3.7.14 of [14] we have the isomorphism

RUS[SVH,  Hy)" =~ (H, ® Tqy ' Ho) [—2dy].
(iv) We have the chain of morphisms
Tgy'vx RHom(qy ' D'(K  G),q; ' OF)
~ v RHom (ql_lq;lD’(K o G)7q2_1q;1(’)¥)
~ v RHom (¢ ' D' (a5 av. (K ® 45" G)), ¢3 "¢ OF)
— v RHom (q; 'D'(K ® ¢x'G), ¢5 ¢ OF)
— vX RHom (¢, 'D'(K ® ¢x'G),q3 ' O% v ),

where the first isomorphism follows since gy is smooth, the second one since
supp(q;(lG) N supp(K) is proper over Y.

(v) We have a morphism
(Hy ® Tqy ' Ho) [—2dy] — p~ ' phom™ (¢5' D'G, O;V((E’;,i")).
To prove the existence of this morphism we shall prove the morphism
Hy ® Tqy' Ha[—2dy| — p~'v& RHom (g7 "¢ ' D'G, qglox(f;l”)pdxw].
Hence by (iv) we may reduce to the case of the morphism
p~ R RHom(qr ' K, 45 ' O y) @ p~ WX RHom (g7 ' D'(K ® 4x' G) 43 'O y)
— p~ VX RHom (47 ' D'(ax' G) a3 ' OX oy )
This is a consequence of Lemma 7.2.15 with (X, F, G) replaced by (X x Y, K, q;(lG).
(vi) We have the chain of morphisms
Raxn'dy ™ p~ phom™ (g D'G, OY ™)
— p~ phom™ (Rax.qx' D'G, Rgxn Oy y™))
— p Lphom® (D'G, O%)[—dy],
where the second morphism is a consequence of the integration morphism
RgxnOXy") — O%[—dy]

defined in Lemma 7.2.16 (see also Remark 3.4 of [15]) and the fact that Rgx.qy' ~ id.
Composing morphisms (i)—(vi) we get the desired morphism. O

COROLLARY 7.2.18. — Let F € D (Cx). Morphism (7.2.12) defines a morphism
(7.2.13) Eﬁ’f ® p~tuhom®™ (F,0%) — p~tuhom™ (F,O%)

which induces a structure of Eﬁ’f-module on H*p~Luhom® (F,O%) for each k € Z.
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Proof. — We apply Proposition 7.2.17 setting X =Y and (G,K) = (D'F,Cx). In
this case we have D'(Cp o D'F) ~ D'D'F ~ F. O

In this way we find the morphism of [5]

EXY @ F®0x — F®Ox
1 p
(recall that p~1phom®*(F,O%) ~ (D'F %) Ox)%).

REMARK 7.2.19. — The integration morphism in Proposition 7.2.17 (vi) can be
directly constructed starting from the integration for Whitney C°°-functions. Let
f: X — Y be a smooth morphism. Given a l.c.t. U € Op®(Ys,) we have

L(U; fiCX™) = Te(Ys fip™t RHom(Cror 1), CF™Y)

=~ FC(X;(Cf71(U) Q‘% Cf))(ov) i} F(Y’ (CU % C;OV) ~ F(U;C;O’Wv).

REMARK 7.2.20. — Let us consider the compatibility between this morphism and
the one of Andronikof ([1], Proposition 3.3.10). Steps (i) to (iii) of Proposition 7.2.17
are the same. We need the compatibility between the multiplications. We will see the
compatibility between

p 'RT 0% @ p~! RHom(F,0%) — p~' RHom(F,O%)
and
p'RT 0% @ p~ ! RHom(F,0%) — p~' RHom(F, O%)
when Z C X is closed subanalytic and F € DY (Cx).
We reduce to the case of a real analytic manifold and we use the fact that
p RHom(G,CX) ~ THom(G,CE) and p~' RHom(G,CT™) ~ D'G & C
for G € DY .(Cx). Define
F & THom(G,CE) = THom(G, F & C)
saying that, if U,V are open subanalytic
Cu & THom(Cy,C¥) = THom(Cy,Cy & CF)

are C*°-functions tempered on V' and vanishing up to infinity outside U. Then we
have

THom(Cy,C¥) @ THom(F,C¥) — THom(Cz,C¥) @ THom(F,Cy & CY)
— THom(Fz,C¥) — THom(F,CY)
and
THom(Cy,C¥) @ D'F & CF — THom(Cyz,CL) @ (D'F); & CE
— THom(Cz,D'F & C¥) — D'F & C.
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The first and the third arrows of the two diagrams are clearly compatible. Let us see
the compatibility between the second arrows. Note that F' € DE__(Cx) plays no role
in these arrows (it denotes a growth conditions which is preserved after the multipli-
cation), so in order to better understand how they are constructed we set F' = Cx.

Let U = X\ Z. Then THom(Cz,C¥) and Cyg %C}}o are represented by the complexes
0— C¥ — THom(Cy,C¥),
Cu®CE = CF =0
where in both cases C¥ is the degree zero of the complex. The morphism is induced

by the following diagram, where the vertical arrows are given by multiplication

Cu ®CF ®CT — Cy ®CE @ THom(Cy,CF) & CF ®CF — CF @ THom(Cy,CY)

| l |

Cy ®CP Cy ®CF & C THom(Cy,C).

In the complex in the second line the first arrow is given by s — (s,s) and the
second one by (u,v) — u — v. Computing the cohomology, it is quasi-isomorphic to
THom(Cz,C¥).

7.3. Microlocal integral transformations

In the case of a contact transformation the hypothesis of properness of the previ-
ous section are not satisfied. Hence we are going to define microlocal operations on
phom™ (., O%) extending those of [14] and [1]. Let  C T*X. Denote by

> DP(Xa, Q) the category DP(Cx..)/Na;

> DP(X, Q) the category D®(Cx)/Naq;

> DR (X,Q) the category DB (Cx)/Nq;
where N = {F € D*(Cx_,); SS(F)NQ = @} (resp. F € DP(Cx), resp. F € DR (Cy)).

It follows from Corollary 5.3.5 that the functor

p~phom™ : DP (X, Q)°P x DP(Xg, Q) — DP(Q)
is well defined.
NoOTATIONS 7.3.1. — If there is no risk of confusion we will write for short
phom(., Oy ) instead of p~!uhom™ (., O%).
Denote by o the microlocal composition of kernels of [14] (and [1] for R-
“w

constructible sheaves). As usual, given K € D®(C(xxy),,) and F € D’(Cy,,) we set
VpF = KoF.
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PROPOSITION 7.3.2. — (i) Let X,Y be two complex analytic manifolds, let K €
DE (Cxxy), px € T*X, py € T*Y such that SS(K)N ({px} x T*Y) C (px,p}) in
a neighborhood of this point. Then for each F € DY (Cy) and G € DY (Cx) there
are morphisms

(7.3.1) phom (K, 0% ) (e o) [dy ] @ phom(F, O%) .,
— phom (P4 F, Ok )p
(7.3.2) pwhom(K, Ozgox"éy))(px po)[dy] @phom(D' (P G), OF),,

—> phom(D'G, 0% )py -

(ii) Let Z be another complex analytic manifold, let K; € Dﬁb{_c((CXXy) and Ko €
DE (Cyxz) be microlocally composable at (px,py,pz) € T*X x T*Y x T*Z, i.e.

(SS(K1) x7-y SS(K2)) Npist(px,0%) € {((0x,0%), (pv,p%)) }
in a neighborhood of ((px,py ), (py,p%)). Then there is a morphism

0,d 0,d
MhOm(Klv OéngY))(Px,p‘iz) ®Mh0m(K2, Oi/(xZZ))(py,p%)
£(0,d
— phom (K 2 K>, OgngZ))(pxyp%) [—dy]
Proof. — The result follows thanks to the morphisms defined in the previous section
and adapting the proof of Proposition 3.3.12 of [1]. O

7.4. Contact transformations

Let X,Y be two complex analytic manifolds of the same complex dimension n and
let Qx C T*X, Qy C T*Y be two open subanalytic subsets. Let x be a contact
transformation from Qx to Qy. Let A C Qx x Qf be the Lagrangian manifold
associated with the graph of x (i.e. (px,p}) € Aif py = x(px)). We denote by p;
and p§ the projections from A to Qx and Qy respectively.

Let (px,py) € Qx x Qy and consider K € D(?:_C(X x Y, (px,p})) satisfying the
following properties (for the definition of simple sheaf we refer to [14]):

(74.1) SS(K) C A and K is simple with shift 0 along A.
In this situation we have the following results of [17] and [1].
PROPOSITION 7.4.1. — Let K € DR (X x Y, (px,p%)) satisfying (7.4.1). Set
K* =r, RHom(K,wxxy|y),
where r: X XY =Y x X is the canonical map. Then the functors
Ol : D(Xea, px) — D" (Yaa, py),
P+ DP(Yaa, py) — D”(Xsa, px)

are equivalences of categories inverse to each other.
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LEMMA 7.4.2. — Let K € DR (X x Y, (px,p%)) satisfying (7.4.1). Then
phom (K, Ok ) is concentrated in degree zero.

PROPOSITION 7.4.3. — Let K € DR (X x Y, (px,p})) satisfying (7.4.1) and let
s € phom (K, Of,g(;gﬂ))(px’pay).
(i) For each F € DY (Y, py) there are morphisms induced by s
@5 phom(F, 0% )y [n] — phom (@4 F, O% )y,
Vs s phom (D' (D4 F), O%)py [n] — phom(D'F, OF),,, .
(ii) Let Z be a n-dimensional complex analytic manifold, Qyz C T*Z and let
X Qy — Qg
be a contact transformation. Let A’ be the Lagrangian submanifold associated
with the graph of x'. Let K' € DR _(Y x Z, (py,p%)) satisfying (7.4.1) and
s € phom(K', (’);((;’Z)). Then
P50y = (pop)sos and Y509y = (Yot )sox,
where s o s’ is the image of s ® s’ by the morphism
phom (K, O .y ) (px py) @hom(K', O 7) py )
— phom(K o K'[n], O&Xz)(px’p%).
(iii) Let P € 5%’;){ and Q € 85’51/ such that Ps = sQ). Then:
Pops=¢s0Q
(and similarly for vs).

Proof. — (i) Similar to Proposition 5.2.1 (i) of [1]. There exists a neighborhood 2
t(0,n)

of (px,p$ ) such that s € I'(Q;phom (K, O y/) and we may suppose that A is closed
in Q. Set K =phom (K, O;g(l?/)) Then

(7.4.2) s €T'(2,K) ~ Hom(Cy, K).

Moreover we can find a relatively compact neighborhood Vi of 7y (py) such that

VpF =Dy F = Kxxyy o F.

Now set
Fi ::uhom((prxvaa Oé()? Gi ::U'hom(D/Fa oy),
Fo = phom(F, O%)[n], Gy = pthom (D’(@KXXVy),Ox)[n].

Then the morphisms ¢, and 15 are given by the diagrams

JT"Q‘QY ; ((C(/l\ O.FQ)‘QX — (]Ca OFQ)‘QX — ]:1‘9)(,

QZ‘QX ;) ((Cl[l\ Og2)‘9y — (’Ca [¢] gz)‘ﬂy —_— gl‘Qy
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where the first arrows are given by (7.4.2) and the second ones by (7.3.1) and (7.3.2).
(ii) The arrow follows from (i) and the associativity of the composition.
(iii) See [1], Proposition 5.2.1 (iii). O
THEOREM 7.4.4. — Let x be a contact transformation from Qx to Qy and let A

be the Lagrangian manifold associated with the graph of x. Then there exist K in
DE (X x Y, (px,p%)) satisfying (7.4.1) and s € phom(K, O%&@)(px)pg/) such that:

(i) the correspondence Ex p, > P+ Q € Ey,p, such that Ps = sQ is an isomor-
phism of rings,
(ii) for each F € DR (Y, py) the morphisms induced by s
s :phom(F, Oy )y, [n] — pthom (P F, Ol )y
Vs :phom(D' (D4 F), O% )py [n] — phom(D'F, OF ), .
are isomorphisms compatible with (i).

Proof. — The proof is similar to the proof of Proposition 5.2.2 of [1]. O

REMARK 7.4.5. — Set F = ®4..G with G € D%_C(X,px) then &% F ~ G and
D'F ~ Uk D'G ~ &k D'G, where V.. = Rgy. o RHom(K*,-) o ¢ and the sec-
ond isomorphism follows from Proposition 7.1.9 of [14]. Hence, replacing X with YV’
and D'G with F we obtain the isomorphism

Mhom(Fv O}vg)py [TL] L),uhom(@’;(F, O%)PX‘
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APPENDIX A

REVIEW ON SUBANALYTIC SETS

A.1. Properties of subanalytic subsets

We recall briefly some properties of subanalytic subsets. Reference are made to [3]
for the theory of subanalytic subsets and to [7] and [38] for the more general theory
of o-minimal structures. Let X be a real analytic manifold.

DEFINITION A.1.1. — Let A be a subset of X.

(i) A is said to be semi-analytic if it is locally analytic, i.e. each z € A has a
neighborhood U, such that X NU, = {J,¢; ﬂjeJ Xij, where I, J are finite sets
and either X;; = {y € Uy; fij(y) > 0} or X;; = {y € Uy; fij(y) = 0} for some
analytic function f;;.

(ii) A is said to be subanalytic if it is locally a projection of a relatively compact
semi-analytic subset, i.e. each z € A has a neighborhood U, such that there
exists a real analytic manifold Y and a relatively compact semi-analytic subset
A" C X xY satisfying X NU, = 7(A4’), where 7 : X x Y — X denotes the
projection.

(iii) Let Y be a real analytic manifold. A continuous map f : X — Y is subanalytic
if its graph is subanalytic in X x Y.

Let us recall some results on subanalytic subsets.

PROPOSITION A.1.2. — Let A, B be subanalytic subsets of X. Then
AUB, AnB, A, 0A, A\B

are subanalytic.

PRrROPOSITION A.1.3. — Let A be a subanalytic subset of X. Then the connected
components of A are locally finite.
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PROPOSITION A.1.4. — Let f : X — Y be a subanalytic map. Let A be a relatively
compact subanalytic subset of X. Then f(A) is subanalytic.

DEFINITION A.1.5. — A simplicial complex (K, A) is the data consisting of a set K
and a set A of subsets of K satisfying the following axioms:

(s1)
(S2) if 7 is a non-empty subset of an element o of A, then 7 belongs to A;
(S3) for any p € K, {p} belongs to A;

(S4) for any p € K, the set {o € A;p € o} is finite.

any o € A is a finite and non-empty subset of K;

If (K,A) is a simplicial complex, an element of K is called a vertex. Let RX be
the set of maps from K to R equipped with the product topology. To o € A one
associates o] C RE as follows:

lo| = {;v e RY; z(p) =0for p¢ o, x(p) >0 for p € o and Zw(p) = 1}.
P
As usual we set:

1Kl=J lol. U0)=J I,

oEeA TEA
TOO

U(z) =U(o(z)),

where o(z) is the unique simplex such that = € |o|.

and for z € |K|:

THEOREM A.1.6. — Let X = |,.; Xi be a locally finite partition of X consisting of
subanalytic subsets. Then there exists a simplicial complex (K, A) and a subanalytic
homeomorphism 1 : |K| — X such that

(i) for any o € A, (|o]) is a subanalytic submanifold of X ;

(ii) for any o € A there exists i € I such that ¥ (|o|) C X;.

Let us recall the definition of a subfamily of the subanalytic subsets of R™ which
has some very good properties.

DEFINITION A.1.7. — A subanalytic subset A of R" is said to be globally subana-
lytic if it is subanalytic in the projective space P™*(R). Here we identify R™ with a
submanifold of P*(R) via the map (x1,...,2,) = (L:z1 -+ xy).

An equivalent way to define globally subanalytic subsets is by means of the map
Tn : R® — R"™ given by

( ) ( T In )
Tn\T1y..., Xy ) = [ .
' Vit ivad

In particular relatively compact subanalytic subsets are globally subanalytic.

DEFINITION A.1.8. — A map f : R™ — R” is said to be globally subanalytic if its
graph is globally subanalytic.
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PrOPOSITION A.1.9. — Let f: R™ — R" be a globally subanalytic map. Let A be a
globally subanalytic subset of R™. Then f(A) is globally subanalytic.

Now we recall the notion of cylindrical cell decomposition, a useful tool to study the
geometry of a subanalytic subset. We refer to [7] and [38] for a complete exposition.

A cyindrical cell decomposition (ccd for short) of R™ is a finite partition of R™ into
subanalytic subsets, called the cells of the ccd. 1t is defined by induction on n:

n=1. — A ccd of R is given by a finite subdivision a; < - -+ < ay of R. The cells
of R are the points {a;}, 1 < i < ¢, and the intervals (a;,a;+1), 0 < @ < ¢, where
ag = —oo and agp41 = +00.

n > 1. — A ccd of R” is given by a ccd of R ! and, for each cell D of R*!,
continuous subanalytic functions (p1 < - - < (p,e, : D — R. The cells of R" are :

> the graphs {(ac,CD7i(x)); T € D}, 1<¢</{p, and
> the bands {(amy) €D XR; (pi(r)<y< CD,i+1($)} for 0 < </{p,

where (p o = —oco and (p ¢, +1 = +oo0.

THEOREM A.1.10. — Let Ay,...,Ax be globally subanalytic subsets of R™. There
exists a ced of R™ such that each A; is a union of cells.

We end this section with the following useful result.

LEMMA A.1.11. — Let U be a globally subanalytic subset of R™ and 7 : R® — R*~!
the projection. Then U admits a finite open covering {U;} such that each U; is simply
connected and the intersection of each U; with the fibers of w is contractible or empty.

Proof. — Up to take the image of U by the homeomorphism

I In
R — (=1, 1), (21,..., 20 M< )
? LYY (@ L W= A

we may assume that U is bounded. Then it follows from a result of [40] that U can
be covered by finitely many open cells, and cells satisfy the desired properties. O

A.2. Ind-sheaves and subanalytic sites

Let us recall some results of [16]. One denotes by

> I(kx) the category of ind-sheaves of k-vector spaces on X, that is
I(kx) = Ind (Mod®(kx)),

where Mod®(kx) denotes the full subcategory of Mod(kx) consisting of sheaves with
compact support on X:

> DP(I(kx)) the bounded derived category of I(kx).
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There are three functors relating ind-sheaves and classical sheaves:
t:Mod(kx) — I(kx), Fr— “li_n>1”FU,
UeX
a:I(kx) — Mod(kx), “lUm”F; — lim Fj,
- —
K3 7
B:Mod(kx) — I(kx), left adjoint to .
These functors satisfy the following properties:
> the functor ¢ is fully faithful, exact and commutes with £i£1;
> the functor « is exact and commutes with lim and PLD;
> the functor § is fully faithful, exact and commutes with li_rr>1;
> (a,¢) and (B, a) are pairs of adjoint functors.

Since ¢ is fully faithful and exact we identify Mod(kx) (resp. DP(kx)) with a full
abelian subcategory of I(kx) (resp. DP(I(kx))).

The category I(kx) admits an internal hom denoted by Zhom and this functor
admits a left adjoint, denoted by ®. One can also define an external

Hom : I(kx) X I(kx) — MOd(kx)
and one has
Hom(F,G) = aThom(F,G) and Homy,)(F,G) =T'(X;Hom(F,G)).

The functor ® is exact while Zhom and Hom are left exact and admit right derived
functors RZhom and RHom.

Consider a morphism of real analytic manifolds f : X — Y. One defines the
external operations

71:]:]{: 1I(k “) 771_ “lim” 711_
7 l(ky) — Ikx), EG% lim™(f~Gi)o,

i LWUEX
fo:X(kx) — Iky),  “lmF; — lim lim f.T0F,
1 UveX 7

fuIlkx) — I(ky), th; F,— h;; fiF;,
where the notation fi is chosen to stress the fact that fi ot % ¢ o fi in general.
While f~! is exact, the other functors admit right derived functors. One can show
that the functor Rfy admits a right adjoint denoted by f' and we get the usual
formalism of the six Grothendieck operations. Almost all the formulas of the classic
theory of sheaves remain valid for ind-sheaves.

There is a strict relation between ind-sheaves and sheaves on the subanalytic site
associated with X. Set for short

Ig-c(kx) = Ind (Modg_.(kx)).
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THEOREM A.2.1. — One has an equivalence of categories
Igc(kx) = Mod(kx,,), “lim”"F; — lim p.F;.
— —

Let us recall the following functor defined in [16]:
It : Mod(k — I(k lim p. F; — “lim”F;.
7 : Mod(kx,,) (kx), tim p lim
K2 K]

It is fully faithful, exact and commutes with h_H}l and ®. It admits a right adjoint
Jr : I(kx) — Mod(kx_,)
satisfying, for each U € Op(Xsa), I'(U; J7F) = Homy, .y (ku, F'). This functor is right
exact and commutes with filtrant inductive limits. Moreover we have RJy o I+ ~ id
and
RJy RZhom(ITF,G) ~ RHom(F, RJTG).
We have the following relations:
RJroiv~Rp, and a~p loJr,
aolr~p !t and Irop ~§B.

Let f : X — Y be a morphism of real analytic manifolds and let U be an open

subanalytic subset of X.

LEMMA A.2.2. — Let F € D(kx.,) and G € D"(ky.,). We have
(i) It oRfuF ~ Rfyo ITF;
(it) Iro fT'G = f1 o I7G;
(iii) Iro f'G ~ f' o ITG;
) IrFy ~ (ITF)u;
(v) Ir oRTyF ~ RITy o I F.

(iv

A.3. Inverse image for tempered holomorphic functions

The results of § A.3 have already been proved in [16] using ind-sheaves, for sake of
completeness we reproduce here the proofs with slight modifications. Let f : M — N
be a morphism of oriented real analytic manifolds of dimension dy; and dy. Set

d=dy —dy.
LEMMA A.3.1. — Let F be an Apr-module locally free of finite rank. Then, for k # 0:
ka!!(Db]tW S prAns p'F) =0.

Proof. — Tt is a consequence of the fact that Db}, is quasi-injective and Proposi-
tion 1.6.5 of [28]. O

SOCIETE MATHEMATIQUE DE FRANCE 2013



82 APPENDIX A. REVIEW ON SUBANALYTIC SETS

LEMMA A.3.2. — Let M and N be orientable real manifolds. There is a natural
morphism of complexes

fu(Dby ® pQy)ldu] — Dby © pQyldn]-
prANm VAN

p

Proof. — Let U € Op®(Ns,). We have the chain of morphisms

F(U; fu (Dbfw ® p,ij—i)) ~ F(N; p~  Hom ((CU, fu(Db, ® p,Q{}Vy—i)))
prAM prANM
~T(N; fip™ Hom (7'Cu. Dby, @ p3y "))
prAM
~T(N;fi TH “1Cy, Dby ® Q=
( N om (f U MAM M ))
— To(N; THom (Cy, Dby 2 O3 ™))
AN
~ F(U;Db]t\, ® p!Q‘[i\,Nfi),
prAN

where the arrow is a consequence of Proposition 4.3 of [15]. O

PROPOSITION A.3.3. — There is a natural morphism in D®(pyD3Y):

L
(A.3.1) Rf”(Dbﬁ} ® pgDM%N) DY,
D

Proof. — The Spencer resolution of Dy, y gives rise to the quasi-isomorphism

Dysn <Dy @NOym @ Dy ~Dy@NOMn ® f Dy
Anr Anr Anr f~YAm

L
from which we obtain the following quasi-isomorphism for DbYY ® pDyn in

,Dm
D¥(pf D)

L [ ]
Dby ® pDyon = (Dbztw ® p!QM) ® (PI <DM®/\®M ® f_1DN>)
p Dy Anm ftAN

,Dm prAm
~ Db, ® PI(QM @ NOM ® f_le)
prAM Anm AN
~ Dby © o © D )ldal.
prAM f~tAn
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Applying Rfy we obtain:

REa(DU) & pDaron) = Ru(Dbly & (% @ £7'Dx) )ld]

~ Rfo(Dbly @ piy) @ pDyld]
1AM AN

Zﬁ!(DbFM ® ngM) ® p!DN[d]y[]
pr AN prAN
— Dby ® pQy ® pDyldy]
prAN prAN
~ Db]tv ® My = Db}tvv,
prAN

where the third isomorphism follows from Lemma A.3.1 and the arrow from

Lemma A.3.2. O
By adjunction we get a morphism
v L LtV
(A32) DbM QR mDyn — beN .
Dy
THEOREM A.3.4. — The morphism (A.3.2) is an isomorphism.

Proof. — Let F € DY (Cy) with compact support. We have the chain of isomor-
phisms

RHom(F, f'Dby) ~ RHom(Rfy F, Dby ) ~ RT'(N, THom(RfF,DbX))

~ RF(N, Rf,( THom(F, DbY,) Dé DMAN))

L L
~RT (M, THom(F, DbY,) & DM%N) ~ RHom (F Db & p!'DMHN>,
Dnm ,Dm
where the third isomorphism follows from Theorem 4.4 of [15]. O

By the equivalence between left and right D-modules, we have an isomorphism
L -
(A.3.3) pDneny @ Dby, =5 f'DbY,.
D

COROLLARY A.3.5. — When f is smooth we have an isomorphism
fIDbly = RHom,p,, (0 Dy, Dbly).
Proof. — The result is obtained by the following isomorphisms

L
RHompp,, (0 Pri—sn, Dbiy) ~ py RHomp,, (Dr—n, Dar) % Db},
Dy

L
~ pDne 2 Dbl [d] ~ f'Db[d] ~ Dbl
pPrPM

The first isomorphism is obtained by replacing Dy;_, v with its Koszul complex. The
second follows from the smoothness of f and the isomorphism

R’HompM (DM—)NapM) ~ DN(—M[d]
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The last isomorphism follows since we have the isomorphism f'(.)[d] ~ f~! when f
is smooth. O

From now on X will be a complex manifold of complex dimension dx, with struc-
ture sheaf Ox. We denote by X the complex conjugate manifold (with structure
sheaf Ox), and Xp the underlying real analytic manifold, identified with the diago-
nal of X x X. Let O% be the sheaf of tempered holomorphic functions on X. We
also consider the sheaf Q% € DP(pD):

QY == DY, & pOg[—d
= POxy P! X[ x]-
mDx

PRrROPOSITION A.3.6. — Let f : X — Y be a holomorphic map between complex
manifolds. Then
L
(A.3.4) QY @ pDx_yldx] ~ f'Q4 [dy].
mDx
Proof. — We have the chain of isomorphisms

L L
7o & poy) = OB & pfloy
pDx 1Dy

14

tv L
>~ DbXR X p!DXIR%Y]R
p

L -1
®@ pf Oy
pDxp f~1Dy

!

>~ (Db%{ & p!DX—>Y) & rPx_ v & pf 05
mDx mnDx pf~1 Dy

o L L w L L

~ (DbXR & pg'DX_)y) ® pOx ~ (DbXR ® pg@y) ® pDx_y ,
mDx mDx mnDx mDx

where the second isomorphism follows from Proposition A.3.4. O

By the equivalence between left and right D-modules, we have an isomorphism
L ~
prx
COROLLARY A.3.7. — When f is smooth we have an isomorphism
1Oy = RHom,py (pDx_y, O%).

Proof. — The proof is similar to that of Corollary A.3.5. O

A.4. Inverse image for Whitney holomorphic functions

Let f : M — N be a morphism of oriented real analytic manifolds of dimensions d s
and dy. Set
d=dn —dpy.

LEMMA A.4.1. — The sheaf f'Cx""[d] is concentrated in degree zero.
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Proof. — 1If f is smooth, then f'(.)[d] ~ f~!, and the result is clear. Let f be a
closed embedding. Then Rf, ~ Rfi ~ f; . Let F € DH'%_C((CM). We have the chain of
isomorphisms

RHom(D'F, f'C"")[d] ~ RHom(f, D' F[—d],C¥"™)
~ RHom (D' (£ F); CX™) ~ RI(N, fiF & C).
The second isomorphism follows since
Rf.DF ~ D(Rf\F)

(where D(.) = RHom(.,wnr)) if F € DR _(Cpr) and Rf. ~ Rfi ~ fi since f is a
closed embedding. Let U € Op®(Ms,) be locally cohomologically trivial. We have
D'Ciz ~ Cy, and if k # 0 we get

RFHT (U, f!c;[ovw) ~ R'T(X; HCq éé Cy) =0

since fiCy ® C%° is soft. Hence f'Cx"[d] is concentrated in degree zero on a basis
for the topology of Mg, and the result follows. O

LEMMA A.4.2. — There is a natural morphism in Mod(Cjz,)

P!AMP f@A Flexd — et

Proof. — Let U € Op®(Ms,) be locally cohomologically trivial. We have the chain of
morphisms

D(U; f'CX™[d]) ~ RT(N; RfiCg & C3F)
— RO(M; f ' RAC & CF5)
— RI(M;Cy ® C59) ~ T(U;C3™),

where the first isomorphism has been proved in Lemma A.4.1 and the first arrow fol-
lows from Theorem 3.3 of [15]. In this way we construct a pf~1Ay-linear morphism
ey d] — €™, The inclusion pr Ay — Cap" and multiplication imply the desired

morphism. O
PROPOSITION A.4.3. — There is a natural morphism in D®(pDay):
L
(A.4.1) pDyuony @ fFCXV[d — Cov.
pf~1Dn
Proof. — The Spencer resolution of Djy;_, n gives rise to the quasi-isomorphism

Dyrsn <Dy @ NOum @ Dy 2Dy @NOn ® f Dy
An Anr Anr —1AN

!
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from which we obtain

L
pDusy  ®  fley™d
p1f~1DN

~pDy @ mA\Om 7@3 pf Dy

L
® flex™d
pr A prf T AM pf~1Dn

~ oDy ® pNOy ®  FCV(d
P MP!AMP'/\ Mp!fflANf ~ld]

— pDy @ pN\OM @ Cop™ ~CpY,
prAM pAM

where the arrow follows from Lemma A.4.2. O

By adjunction we get a morphism
(A.4.2) FCXVd) — RHom,py, (0Dar—n,Cop™).
THEOREM A.4.4. — The morphism (A.4.2) is an isomorphism.
Proof. — Let F € DR .(Cyps). We have the chain of isomorphisms
RHom(D'F, f'C™)[d] ~ RT(Y; RAF & C)
~ RHomp,, (Darsn, F ® C59)
~ RHomp,, (Pry—n,p~ " RHom(D'F,Cyp™))
~ RHom,,p,, (1Dy—n, RHom(D'F,Cp™))
~ RHom (D’F, RHom,,p,, (p;DM%N,Cﬁ’W)),

where the second isomorphism follows from Theorem 3.5 of [15]. O

COROLLARY A.4.5. — When f is smooth we have an isomorphism

~

ey = RHomyp,, (0 Dy, Cop™).

Proof. — Tt follows from the fact that f'(.)[d] ~ f~! when f is smooth. O
REMARK A.4.6. — There is a similar isomorphism for CJO\?";V, F € D} .(Cy), namely
(A.4.3) flexpld] = RHomyp,, (p Dy, Chpff 1 p)-

The proof is the same as the one for C3;"". We only considered the case F' = Cx to
lighten notations.

From now on X will be a complex manifold of complex dimension dx, with struc-
ture sheaf Ox. We denote by X the complex conjugate manifold (with structure
sheaf Oy), and Xp the underlying real analytic manifold, identified with the diago-
nal of X x X. Let O% be the sheaf of Whitney holomorphic functions on X.
THEOREM A.4.7. — Let f: X — Y be a morphism of complex manifolds. Then

(A.4.4) 'O [2dy] = RHom,py (mDx -y, O%)[2dx].
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Proof. — Remark that, if M € D"(p/Dx,) we have
R”Homp!fqpv (p!filoy, RHomp!DXW (p!'DXKﬁy]R, M))
~ RHomypy (mDx—y, RHom, j-1p_ (pf ' Oy, RHomp _(pDx_3, M)))

L
= RHO?TL,,!'DX (P!DX—>Y; RHOmpzD}T (p!(ID)?H7 & fﬁlOY)a M))

prf 1Dy
~ RHom,py (pﬂ)x%y, R’Homplpf(pg(’)y,/\/l)).
We have the chain of isomorphisms
FO¥2dy] ~ f' RHom,p_(0Oy, C3o") [2dy]
~ RHom,, j-1p_(f ' pOy, f'C55")[2dy ]
~ RHom,, s-1p_ (pf "' Oy, RHomypy (mDxysve,Cx, ")) [2dx]
~ RHom,p (p!DX%y, R?—lommpf(pg(’)y,c;’(ou;w))[2dX]

~ RHom,py(pDx_y, O%)[2dx]. O
COROLLARY A.4.8. — When f is smooth we have an isomorphism
1Oy = RHom,py (pDx_y, O%).
Proof. — The proof is similar to that of Corollary A.4.5. O
REMARK A.4.9. — As above, there is a similar isomorphism for O%F, with F' in

DH%_C((Cy), namely
(A.4.5) f'OY p2dy] ~ RHom,py (mDx v, O%) ;-1 p)[2dx]-
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