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We show that a simple Levi compatibility condition determines stability of
WKB solutions to semilinear hyperbolic initial-value problems issued from
highly-oscillating initial data with large amplitudes. The compatibility condi-
tion involves the hyperbolic operator, the fundamental phase associated with
the initial oscillation, and the semilinear source term; it states roughly that
hyperbolicity is preserved around resonances.

If the compatibility condition is satisfied, the solutions are defined over time
intervals independent of the wavelength, and the associated WKB solutions are
stable under a large class of initial perturbations. If the compatibility condition
is not satisfied, resonances are exponentially amplified, and arbitrarily small
initial perturbations can destabilize the WKB solutions in small time.

In the unstable case, the key observation is that resonances correspond to
weakly hyperbolic frequencies; the amplification proof then relies on a short-
time Duhamel representation formula for solutions of zeroth-order pseudo-
differential equations.

Our examples include coupled Klein-Gordon systems, and systems describ-
ing Raman and Brillouin instabilities.

Nous prouvons qu’une condition de compatibilité de type Levi détermine la
stabilité de solutions WKB de systèmes hyperboliques issues de données ra-
pidement oscillantes. La condition de compatibilité fait intervenir l’opérateur
hyperbolique, la phase fondamentale associée aux oscillations initiales, et le
terme source semi-linéaire ; la condition de compatibilité est satisfaite quand
l’hyperbolicité est préservée au voisinage des résonances.

Si la condition de compatibilité est satisfaite, les solutions sont définies sur
des intervalles de temps indépendants de la longueur d’onde, et les solutions
WKB associées sont stables sous l’effet d’une grande classe de perturbations
initiales. Si la condition de compatibilité n’est pas satisfaite, les résonances
sont exponentiellement amplifiées et des perturbations initiales arbitrairement
petites peuvent déstabiliser les solutions WKB en temps très court.

Dans le cas instable, nous observons que les résonances correspondent à des
fréquences faiblement hyperboliques ; l’analyse de l’amplification se base sur
une formule de représentation de Duhamel en temps court pour les solutions
d’équations pseudo-différentielles d’ordre zéro.

Nous illustrons nos résultats par des systèmes de Klein-Gordon couplés, et
des sytèmes décrivant les amplifications Raman et Brillouin.
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MÉMOIRES DE LA SMF 142

A STABILITY CRITERION FOR
HIGH-FREQUENCY OSCILLATIONS

Yong Lu

Benjamin Texier
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A STABILITY CRITERION FOR HIGH-FREQUENCY
OSCILLATIONS

Yong Lu, Benjamin Texier

Abstract. — We show that a simple Levi compatibility condition determines stability
of WKB solutions to semilinear hyperbolic initial-value problems issued from highly-
oscillating initial data with large amplitudes. The compatibility condition involves the
hyperbolic operator, the fundamental phase associated with the initial oscillation, and
the semilinear source term; it states roughly that hyperbolicity is preserved around
resonances.

If the compatibility condition is satisfied, the solutions are defined over time in-
tervals independent of the wavelength, and the associated WKB solutions are stable
under a large class of initial perturbations. If the compatibility condition is not satis-
fied, resonances are exponentially amplified, and arbitrarily small initial perturbations
can destabilize the WKB solutions in small time.

In the unstable case, the key observation is that resonances correspond to weakly
hyperbolic frequencies; the amplification proof then relies on a short-time Duhamel
representation formula for solutions of zeroth-order pseudo-differential equations.

Our examples include coupled Klein-Gordon systems, and systems describing Ra-
man and Brillouin instabilities.

© Mémoires de la Société Mathématique de France 142, SMF 2015
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Résumé (Un critère de stabilité pour des oscillations haute fréquence)
Nous prouvons qu’une condition de compatibilité de type Levi détermine la sta-

bilité de solutions WKB de systèmes hyperboliques issues de données rapidement
oscillantes. La condition de compatibilité fait intervenir l’opérateur hyperbolique, la
phase fondamentale associée aux oscillations initiales, et le terme source semi-linéaire ;
la condition de compatibilité est satisfaite quand l’hyperbolicité est préservée au voi-
sinage des résonances.

Si la condition de compatibilité est satisfaite, les solutions sont définies sur des in-
tervalles de temps indépendants de la longueur d’onde, et les solutions WKB associées
sont stables sous l’effet d’une grande classe de perturbations initiales. Si la condition
de compatibilité n’est pas satisfaite, les résonances sont exponentiellement amplifiées
et des perturbations initiales arbitrairement petites peuvent déstabiliser les solutions
WKB en temps très court.

Dans le cas instable, nous observons que les résonances correspondent à des fré-
quences faiblement hyperboliques ; l’analyse de l’amplification se base sur une formule
de représentation de Duhamel en temps court pour les solutions d’équations pseudo-
différentielles d’ordre zéro.

Nous illustrons nos résultats par des systèmes de Klein-Gordon couplés, et des
sytèmes décrivant les amplifications Raman et Brillouin.
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CHAPTER 1

INTRODUCTION

We study highly-oscillating solutions to semi-linear systems of the form

(1.1) ∂tu +
1
ε
A0u +

∑
1≤j≤d

Aj∂xj
u =

1√
ε
B(u, u),

in the small wavelength limit ε → 0. The unknown u depends on time t ∈ R+ and
space x ∈ Rd; it takes values in RN . The first-order differential operator is symmetric
hyperbolic, in the sense that A0 ∈ RN×N is skew-symmetric, and the Aj ∈ RN×N are
symmetric. The source term is B(u, u) ∈ RN , where B : RN × RN → RN is bilinear;
it has a large prefactor 1/

√
ε which blows up in the limit ε → 0.

Thus in (1.1) we are considering large perturbations of symmetric hyperbolic sys-
tems. In other words, the regime in (1.1) is supercritical: we are considering the
propagation, over times O(1), of solutions with amplitude O(1) to systems (1.1) with
characteristic frequencies O(1/ε) and large O(1/

√
ε) source terms.

The underlying physical problems concern the propagation of light, and relevant
data are highly oscillating, of the form

(1.2) u(ε, 0, x) = �e a(x)eik·x/ε + εKφ(ε, x),

where a has a high Sobolev regularity, k is a given wavenumber in Rd, and εKφ is a
small, real perturbation that is smooth in x and may depend singularly on ε.

In this setting, the existence and uniqueness of local-in-time solutions to (1.1)-(1.2)
for fixed ε > 0 in smooth Sobolev spaces Hs, with s > d/2, is classical. The a priori
existence time is only O(ε1/2). Indeed, the symmetric hyperbolic operator conserves
Sobolev norms, so that an energy estimate leads to a differential inequality of the form
(�) y′ ≤ ε−1/2y2, where y(0) is an appropriate Sobolev norm of the datum, typically
a semiclassical norm in which derivatives appear as ε∂x, so that the fast oscillations
are bounded: y(0) = O(1); from (�) we deduce an existence time O(ε1/2).
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We consider the situation in which (1.1) admits a family of WKB approximate
solutions which are defined over time intervals independent of ε, and examine their
stability with respect to small initial perturbations.

That is, given an approximate solution ua issued from the highly-oscillating da-
tum ua(0, x) = �e a(x)eik·x/ε, with an existence time Ta that is uniformly bounded
from below as ε → 0, given an initial perturbation εKφ, possibly with a very small
amplitude εK , we examine the question whether the exact solution to (1.1) issued
from (1.2) is defined over time intervals independent of ε and stays close to ua.

Our answer to the above question takes the form of a scalar stability index, which
involves the initial wavenumber k, the initial amplitude a, the source term B, and
the hyperbolic operator. The associated stability condition is a Levi condition, after
E. E. Levi [33], in the sense that it involves both the principal and subprincipal
symbols (A and B, respectively).

Our examples include systems describing the Raman and Brillouin instabilities,
and coupled Klein-Gordon systems.

1.1. Background

The class of problems (1.1) originates in Joly, Métivier and Rauch’s article on the
Maxwell-Bloch equations (see [25], and paragraph 6.3 of Dumas’ survey [17]). There
these authors considered Maxwell-Bloch systems in the critical regime of geometric
optics, that is

(1.3) ∂tu +
1
ε
A0u +

∑
1≤j≤d

Aj∂xj
u = B(u, u), u(ε, 0, x) = �e a(x)eik·x/ε.

By critical, we mean here that (1.3) is a regime in which nonlinear effects ought to
be detected in the small wavelength limit ε → 0 in time O(1). Indeed, the nonlinear
source has prefactor O(1), and the amplitude of the datum is O(1).

Joly, Métivier and Rauch observed that for Maxwell-Bloch systems in the scal-
ing (1.3), the limiting equations are linear transport equations. They called trans-
parency this phenomenon, and explained how it originates in compability conditions
involving the hyperbolic operator, the oscillations in the datum, and the source B.

Following Joly, Métivier and Rauch, it was verified by the second author that
the Euler-Maxwell equations satisfy a form of transparency [47, 49], and by the
first author that the Maxwell-Landau-Lifschitz equations also are transparent in one
spatial dimension [34]. Cheverry, Guès and Métivier showed in [8] that for systems of
conservation laws, linear degeneracy of a field implies transparency. Jeanne showed
in [22] that the Yang-Mills equations provide another example of a physical system
exhibiting transparency properties.
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1.2. RESONANCES, TRANSPARENCY, AND WKB SOLUTIONS 3

These results imply in particular that for the aforementioned physical systems,
relevant regimes are supercritical, meaning that the appropriate scalings (of the ob-
servation time or the amplitudes) lead to systems with large nonlinear source terms,
as in (1.1).

Being a compatibility condition bearing on a nonlinear term, transparency is anal-
ogous to the null form conditions which imply global existence for nonlinear wave
equations, as in the classical work of Klainerman [27]. The link between transparency
and null forms is one of the topics covered by Lannes in his Bourbaki review [30].

As formulated in [25], the two main questions in the analysis of the high-frequency
limit in supercritical regimes are:

(a) does there exist WKB approximate solutions?
(b) are WKB solutions stable with respect to initial perturbations?

If the answer to question (a) is positive, then typically the leading terms of WKB
solutions satisfy limiting equations that are much simpler than the original system.
If the answer to question (b) is positive, then the limiting equations can be used to
describe the original system, in particular in numerical simulations.

The article [25] shows existence and stability of WKB solutions to Maxwell-Bloch
equations in a supercritical regime (different from (1.1); we briefly comment on the
difference in Remarks 6.24 and 6.26 in the Appendix). Later on existence and stability
of some supercritical WKB solutions was shown for Yang-Mills in [22], for Euler-
Maxwell in [49], for systems of conservation laws in [8], for Maxwell-Landau-Lifshitz
in [34].

The present work all but completes the analysis of systems in the scaling (1.1), as
we exhibit a scalar index, which when positive implies instability and when negative
implies stability.

1.2. Resonances, transparency, and WKB solutions

We introduce here the notions of resonance and transparency, which play a preem-
inent role in Joly, Métivier and Rauch’s article [25] and the present work.

Consider the initial-value problem (1.1)-(1.2) with φ = 0. Under an appropriate
polarization condition bearing on the initial amplitude a, the spatial oscillations in the
datum are propagated in time by the hyperbolic operator in (1.1), at some temporal
frequency ω = ω(k). Thus we posit the ansatz

(1.4) u(ε, t, x) = u0,−1(t, x)e−i(k·x−ωt)/ε + u0,1(t, x)ei(k·x−ωt)/ε + O(
√

ε),

for an approximate solution u to (1.1)-(1.2). The bilinear term B(u, u) in (1.1) will
create harmonics of the fundamental phases ±(ω, k), so that the O(

√
ε) term in (1.4)

will likely include oscillations eiq(k·x−ωt)/ε, with q ∈ {−2, 0, 2}, in addition to the
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fundamental harmonics {−1, 1}. A refinement of (1.4) is then
(1.5)

u(ε, t, x) =
∑

p∈{−1,1}
u0,p(t, x)eip(k·x−ωt)/ε +

√
ε

∑
|q|≤2

u1,q(t, x)eiq(k·x−ωt)/ε + O(ε).

We inject (1.5) into (1.1) and sort out oscillating frequencies and powers of ε. Thus
conditions

(1.6)
(
− ipω + A0 + A(ipk)

)
u0,p = 0, p ∈ {−1, 1},

and

(1.7)
(
−iqω+A0+A(iqk)

)
u1,q+

(
∂t+A(∂x)

)
u0,q =

∑
q1+q2=q

B(u0,q1 , u0,q2), |q| ≤ 2.

with notation

A(�e ) :=
∑

j

Ajej , for any �e = (e1, . . . , ed) ∈ Rd,

imply that (1.5) is an approximate solution to (1.1), with a remainder of size O(ε).
In the case A0 �= 0, the family of matrices −ipω + A0 + A(ipk), for p ∈ Z, is not 1-
homogeneous in (ω, k). As a result, only a finite number of these matrices is singular,
for instance only those corresponding to p ∈ {−1, 0, 1}. Then, equation (1.6) holds
with non-trivial u0,p only if for all (t, x), u0,p(t, x) is pointing in the direction of a
element of the kernel of −ipω + A0 + A(ipk) :
(1.8)

u0,p(t, x) ≡ 〈u0,p(t, x), �ep〉�ep, �ep ∈ ker
(− ipω + A0 + A(ipk)

)
, p ∈ {−1, 0, 1}.

Condition (1.8) is the polarization condition (1). The mean mode for the initial da-
tum (1.2) vanishes identically. In our context, no mean mode is created by the nonlin-
earity (2): u0,0(t, x) ≡ 0. At this stage (1.6) is solved and we turn to (1.7). For q = 0,

denoting Π(0) the orthogonal projector onto the kernel of the skew-symmetric matrix
A0, we find

Π(0)
(
B(u0,1, u0,−1) + B(u0,−1, u0,1)

)
= 0.

With the polarization (1.8), the above condition takes the form

(1.9) Π(0)
(
B(�e1, �e−1) + B(�e−1, �e1)

)
= 0.

The compatibility condition (1.9) was called transparency by Joly, Métivier and Rauch
(Assumption 2.1 in [25]). This condition is a necessary condition for the existence of
WKB solutions for general data (1.2) (3). Under (1.9), a WKB approximate solution

1. For Maxwell’s equations, with u = (B, E), condition (1.8) takes the explicit form ωB0,±1 =

k × E0,±1, corresponding to polarization of light.
2. We show in Appendix 6.6 that this is a consequence of the bilinearity of B, assumption (6.47)

on the set of characteristic harmonics, and transparency in the form (6.48). The creation of a mean

mode is called rectification; it was studied in depth in [29, 13].
3. The case in which (1.9) does not hold is briefly discussed in Remark 6.25 on page 120.
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can be constructed, and the leading amplitudes u0,±1 are seen to satisfy nonlinear
transport equations. This is explained in detail in Appendix 6.6.

The central question of the present work is whether such WKB solutions are stable
under small initial perturbations. This is a perturbative analysis: the question is
whether small data generate solutions to

(1.10) ∂tv +
1
ε
A0v + A(∂x)v =

1√
ε

(
B(ua, v) + B(v, ua)

)
+ εKara

which grow in time. Here εKara is the consistency error of the WKB solution.
In this discussion we assume an infinite order of approximation Ka = ∞, so
that εKara ≡ 0. We denote B(ua)v = B(ua, v) + B(v, ua) in the following. In ua,

the important term is the leading term u0, so that in (1.10) we may simplify B(ua)
into B

(
e−iθu0,−1 + eiθu0,1

)
, with θ := (k · x − ωt)/ε. The solution to (1.10) is then

given by

(1.11) v(t) = Lε(t)v(0) +
1√
ε

∫ t

0

Lε(t − t′)B
(
e−iθu0,−1(t′) + eiθu0,1(t′)

)
v(t′) dt′,

where Lε(t) := exp
(
− t

ε

(
A0 + A(ε∂x)

))
. Assuming a smooth spectral decomposition

(1.12) A0 + A(iξ) =
∑

j

iλj(ξ)Πj(ξ),

where λj are real eigenvalues and Πj orthogonal projectors, the solution (1.11) then
appears as the sum, over p, i, j, of
(1.13)

e−itλi(εD)/εΠi(εD)v(0) +
1√
ε

∫ t

0

e−i(t−t′)λi(εD)/εΠi(εD)B
(
eipθu0,p

)
Πj(εD)v(t′) dt′,

in which the first term is the free evolution under the solution operator of the initial
perturbation. The goal is to bound the second term in (1.13), that is the Duhamel
term encoding the accumulated response of B(ua), considered as a linear source.
In (1.13), the operators λj(εD) and Πj(εD) are Fourier multipliers in semi-classical
quantization (4). There holds, by linearity of B,

Πi(εD)B(eipθu0,p) = eipθΠi(εD + pk)B(u0,p),

so that the Duhamel term in (1.13) takes the form

1√
ε
ei(pk·x−tλi(εD+pk))/ε

∫ t

0

eit′(−pω+λi(εD+pk))/εΠi(εD+pk)B(u0,p(t′))Πj(εD)v(t′)dt′.

In the following we overlook the unitary prefactor ei(... ) in front of the integral. For
short times t � √

ε, it makes sense to approximate u0,p by its datum a or a∗, and v

4. Notations pertaining to symbols and pseudo-differential operators are set up in Appendix 6.1,

where also classical results on action and composition of such operators are recalled.
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6 CHAPTER 1. INTRODUCTION

by the free evolution term in (1.11) (5). Thus we are looking at

1√
ε

∫ t

0

eit′(−ω+λi(εD+k))/εΠi(εD + k)B(a)e−it′λj(εD)/εΠj(εD)v(0) dt′,

where we let p = 1 for definiteness. For t′ = O(
√

ε), up to operators which are O(
√

ε)
and regularizing, the function B(a) and the Fourier multiplier e−it′λj(εD)/ε com-
mute (6), and we arrive at

(1.14)
1√
ε

∫ t

0

eit′(−ω+λi(εD+k)−λj(εD))/εΠi(εD + k)B(a)Πj(εD)v(0) dt′.

The question is whether we can bound (1.14) uniformly in ε. This would provide
short-time uniform bounds for the solution v to (1.10), and thus would represent a
first step in a proof of stability of the WKB solution.

The key frequencies are ξ such that the phase in (1.14) is stationary. These are the
resonances, defined as the solutions ξ ∈ Rd to

(1.15) −ω + λi(ξ + k) − λj(ξ) = 0.

Far from these resonant frequencies, we can integrate by parts in time in the Fourier
formulation of (1.14) and gain a factor ε. Near resonant frequencies, unless the inter-
action coefficient Πj(ξ + k)B(a)Πj(ξ) is small, the integral is ∼ (1/

√
ε), which could

lead to an amplification by ec/
√

ε of v.

For systems in u = (u1, u2) ∈ RN1×(N−N1) and triangular source terms

B(u, u) =
(

0
B2(u1, u1)

)
,

this sketch of analysis was made rigorous in [12], following [25] (7). That is, smallness
of the interaction coefficients at the resonances was seen as a sufficient condition for
stability of the WKB solutions.

1.3. A criterion for stability

As discussed just above, previous analyses [25, 11, 12, 49, 34] gave only sufficient
conditions for stability of WKB solutions in supercritical regimes. We give here a
condition that is almost necessary and sufficient (8). The first step in our analysis is a
reduction to 2 × 2 interacting systems. Then, depending on symbolic spectrum of the
propagator, we either symmetrize the interacting system and prove stability, or use a
Duhamel representation in order to prove instability.

5. In other words, we are considering the first Picard iterate for (1.10).
6. For a precise statement, we refer to estimate (6.6) in Appendix 6.1.
7. The scaling in [12] is actually slightly different from (1.1), and yet another scaling was consid-

ered in [25]. Remark 6.24 expands on this point.
8. The degenerate case Γ = 0 (with notation introduced in (2.11)) is not covered by our analysis,

hence an “almost” necessary and sufficient condition.
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Reduction to 2× 2 interacting systems. The resonance relation (1.15) appears only
implicitly in the sketch of analysis given in Section 1.2 above. We make it play an
explicit role by introduction of the variables

vi = opε(χij)
(
e−i(k·x−ωt)/εopε(Πi)u̇

)
, vj = opε(χijΠj)u̇,

where u̇ is the perturbation variable, defined by u =: ua + u̇, the Πj are the spectral
projectors introduced in (1.12), and χij is a frequency cut-off that is supported in
a neigborhood of the resonant set {λi(· + k) = ω + λj(·)}, which we assume to be
bounded.

The question of the stability of ua reduces to the question of the growth in time
of (vi, vj), for all relevant couples of indices (i, j). We denote Ṽ the total variable,
that is the collection of relevant couples (vi, vj).

Our first key observation is that under a mild partial transparency condition for
the resonances (formulated as Assumption 2.8(ii), page 23), the normal form of the
time-evolution system in (vi, vj) has the following features:

– it is decoupled from the system in the other components of the solution (cor-
responding to resonances (i′, j′), with (i′, j′) �= (i, j)),
– it has non-oscillating sources, and
– resonances {λi(· + k) = ω + λj(·)} appear as the locus of weak hyperbolicity.

This normal form of the system in (vi, vj) is

(1.16) ∂tǓij +
1
ε
opε

(
i(λi(· + k) − ω) −√

εbij

−√
εbji iλj

)
Ǔij = f,

where Ǔij is the (i, j)-component of the total solution Ǔ after the change of variable
to normal form:

Ǔ = (Id +
√

εopε(Q))−1Ṽ (t, x), for some appropriate symbol Q,

and the interaction coefficients are

bij := Πi(ξ + k)B(u0,1(t, x))Πj(ξ), bji := Πj(ξ)B(u0,−1(t, x))Πi(ξ + k).

Here we are using notation u0,±1, λi, λj from Section 1.2 and opε(·) from Appendix 6.1.
In equation (1.16), the source f = f(u) is bounded in u.

System (1.16) is nominally 2N × 2N. However, if the projectors Πj , Πj have rank
equal to one, then the matrix of the propagator has rank two, essentially making (1.16)
a 2 × 2 system.

Spectrum of the symbol of the propagator. The eigenvalues of the symbol of the
propagator in (1.16), a 2 × 2 complex matrix, is

(1.17)
i

2
(
λi(ξ + k) − ω − λj(ξ)

)± 1
2

(
4εtr bijbji − (λi(ξ + k) − ω − λj(ξ))2

)1/2

.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2015



8 CHAPTER 1. INTRODUCTION

Thus it appears that the crucial quantity is the sign of the trace of the product of the
interaction coefficients at the resonance:

sign tr bijbij at ξ such that λi(ξ + k) − ω − λj(ξ) = 0.

If the sign of positive, then real eigenvalues occur in (1.17), meaning a loss of hy-
perbolicity around the resonance. Otherwise, eigenvalues are purely imaginary. In
the latter case, sign tr bijbji < 0, the propagator in (1.16) can be symmetrized. For

scalar bij and bji, a symmetrizer is indeed
(

1 0
0 −b∗ij/bji

)
. Uniform estimates, hence

stability, follow.

Duhamel representation and instability. In the case of real eigenvalues in (1.17),
indicating instability, the task ahead is to convert a spectral information at the level
of symbols into bounds for the corresponding system of pseudo-differential equa-
tions (1.16).

This is achieved with the Duhamel representation formula introduced by the sec-
ond author in [46]. This representation extends the Fourier analysis of the above
Section 1.2 (of which a good example is (1.13)) by incorporating the zeroth-order
source terms bij and bji into the propagator. Since resonances are points of weak
hyperbolicity, and since at such points the stability analysis must include lower-order
terms, the source terms bij and bji indeed belong in the propagator.

The instability occurs in time O(
√

ε| ln ε|). Indeed, the source term in (1.1) or (1.16)
has a O(1/

√
ε) prefactor. Hence a potential growth ∼ etB/

√
ε. If we start from a

small ∼ εK initial perturbation, then the instability is recorded only when the time
exponential etB/

√
ε reaches a fraction of the size of the initial perturbation εK , mean-

ing an instability time of order
√

ε| ln ε|.
For this reason in the unstable case we rescale in time

Uij(t, x) := Ǔij(
√

εt, x),

so that Uij solves

∂tUij +
1√
ε
opε

(
i(λi(· + k) − ω) −√

εbij

−√
εbji iλj

)
Uij =

√
εf,

where bij , bji and f are evaluated at (
√

εt, x).
We then localize around resonant frequencies. Since the resonant set is assumed

to be bounded, this means multiplying the equation to the left by opε(χ), where χ is
a smooth, compactly supported frequency cut-off that is identically equal to one in a
neighborhood of the resonances. Then V := opε(Uij) solves

(1.18) ∂tV +
1√
ε
opε

(
χ

(
i(λi(· + k) − ω) −√

εbij

−√
εbji iλj

))
V =

√
εfV ,

where bij , bji and fV are evaluated at (
√

εt, x), and fV enjoys the same bounds as f.
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The representation formula of [46] states that the solution operator to (1.18) is well
approximated, in time O(| ln ε|), by the para-differential operator opψ

ε (S0), where S0

is the finite-dimensional solution operator, defined for all (x, ξ) by

(1.19)

⎧⎪⎨⎪⎩ ∂tS0 +
1√
ε
χ(ξ)

(
i(λi(ξ + k) − ω) −√

εbij(
√

εt, x, ξ)
−√

εbji(
√

εt, x, ξ) iλj(ξ)

)
S0 = 0,

S0(τ ; τ, x, ξ) ≡ Id.

That is, the solution to (1.18) admits the representation

(1.20) V = opψ
ε (S0(0; t))V (0) +

√
ε

∫ t

0

opψ
ε (S0(t′; t))f̃(t′) dt′,

where f̃ � fV . Appendix 6.2 is devoted to a proof of (1.20).
A key consequence is that in time O(| ln ε|) bounds for (1.18) can be deduced from

bounds on S0 : the approximation result of [46] simplifies the analysis of an ordinary
differential equation in infinite dimensions (namely, (1.18) (9)) into the analysis of a
family of ordinary differential equations in finite dimensions (namely, (1.19)).

Bounds for S0 do not derive trivially from consideration of the spectrum (1.17),
since the resonant locus is at a distance O(

√
ε) from the singular locus{

ξ ∈ Rd, 2
(
εtr bijbji

)1/2 = λi(ξ + k) − ω − λj(ξ)
}

,

where eigenvalues (1.17) coalesce. In particular, the eigenprojectors are not uniformly
bounded in ε near the resonances, and bounds for (1.19) cannot be derived by simply
diagonalizing the system. Appendix 6.3 is devoted to a precise derivation of these
bounds in the unstable case of a positive trace.

From (1.20), armed with optimal bounds for S0, meaning a lower rate of exponential
growth that is arbitrarily close to the upper rate of growth, the task ahead is to derive
lower bounds for the free component of the solution opψ

ε (S0(0; t))Ǔij(0), and upper
bounds for the time-integral term in (1.20).

Lower bounds for opψ
ε (S0(0; t))Uij(0) with a maximal rate of growth are achieved

by a careful choice of the initial perturbation Uij(0). Essentially, we choose to initially
excite frequencies that grow at the highest rate. This is the purpose of Section 3.1.4

in the proof of Theorem 2.7. Upper bounds for
∫ t

0

opψ
ε (S0(t′; t))f̃(t′) derive from

bounds for opψ
ε (S0), which are deduced from bounds on S0 via Calderón-Vaillancourt

type theorems. Details are given in Sections 3.1.3 and 3.1.5 in the main proof. The
comparison of lower bounds with upper bounds in Section 3.1.6 concludes the proof.

There is a specific difficulty associated with the large prefactor (1/
√

ε) in (1.19).
This prefactor implies indeed that S0 has large variations in ξ : ∂ξS0 ∼ S0/

√
ε. This

9. The propagator in (1.18) is indeed bounded L2 → L2; this is a consequence of the Calderón-

Vailancourt theorem [5, 9], of which a very simple proof is given in [21]. A precise statement is

given in Appendix 6.1.
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is problematic in view of Calderón-Vaillancourt type theorems, which typically assert
boundedness of pseudo-differential operators given boundedness of the symbols and
their (x, ξ)-derivatives. We overcome this issue by using a result from Hörmander [20]
(formulated as Proposition 6.7 in Appendix 6.1) which gives operator bounds involv-
ing spatial L1 norms of the symbols, and no ξ-derivatives. This requires a spatial
localization step, since the symbols that we handle are a priori not L1 in space.

1.4. On the class of initial perturbations

A salient feature of our analysis in the stable case is that we allow for initial pertur-
bations φ(ε, x), which do not necessarily depend on (ε, x) periodically through k · x/ε.

In particular, we give a geometric optics result for a class of perturbations which is
much larger than the class of perturbations allowed in a number of results of the JMR
school [23, 15, 24, 25, 29, 13, 11, 16, 12].

In these references, WKB solutions ua and initial perturbations φ which are 2π-
periodic in the fast variable (k · x−ωt)/ε allow for a representation of the solution in
the form of a profile, that is a map u of (t, x, θ) with a 2π-periodic dependence in θ,

the trace of which over θ = (k · x − ωt)/ε is equal to the original solution:

u(t, x) = u
(
t, x,

k · x − ωt

ε

)
.

This representation de-singularizes the initial datum, which for profiles appears as

u(0, x, θ) = �e
(
a(x)eiθ

)
+ εKφ(x, θ),

where φ is 2π-periodic in θ, by assumption. In particular, the leading term �e aeiθ

is bounded in Hs(Rd
x × Tθ). The drawback is that the equation in u is more sin-

gular than the original system (1.1), since it features the singular differential opera-

tor
1
ε
(−ω∂θ +

∑
j

kjAj∂θ). This operator, however, contributes zero to L2 estimates

in (x, θ), by symmetry.

By contrast, in the present work we do not insist on a periodic dependence in
the fast variable k · x/ε for the initial perturbation φ in (1.2). In particular, φ(ε, x)
may take the form φ0(x/ε), where φ0 is only assumed a high Sobolev regularity. In
this context, ε-uniform Sobolev estimates may be derived only for ε-weighted norms,
defined as

(1.21) ‖u‖ε,s :=
(∫

Rd

(1 + |εξ|2)s|û(ξ)|2 dξ

)1/2

,

and an important tool is the Sobolev product estimate

(1.22) ‖uv‖ε,s ≤ C
(|u|L∞‖v‖ε,s + |(ε∂x)su|L∞ |v|L2

)
,

which can be proved by approximating the product uv by the para-product of v

by u. Details are given in Appendix 6.1.3. In our use of (1.22), u is the approximate
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solution ua, with a periodic dependence in (k ·x−ωt)/ε, and v is the solution to (1.1),
with a priori a singular dependence in x via x/ε, just like the initial perturbation. In
particular, |ua|L∞ and |(ε∂x)sua|L∞ are both bounded uniformly in ε, implying the
bound

‖uav‖ε,s ≤ C(ua)‖v‖ε,s, for s ≥ 0.

By comparison, the Moser-type estimate

(1.23) ‖uv‖ε,s ≤ C
(|u|L∞‖v‖ε,s + |v|L∞‖u‖ε,s

)
would here give only

‖uav‖ε,s ≤ C(ua)
(‖v‖ε,s + |v|L∞

) ≤ ε−d/2C(ua)‖v‖ε,s, for s > d/2,

since the Sobolev embedding Hs ↪→ L∞, for s > d/2, has a large norm when Hs is
equipped with (1.21):

(1.24) |u|L∞ ≤ Cd,sε
−d/2‖u‖ε,s, s > d/2, Cd,s > 0.

However, for semi-linear terms of the type v2 (or B(v, v)) where v is the solution,
both (1.22) and (1.23) lead to ε−d/2 losses, via (1.24). This is the main drawback of
our approach: while it allows for quite general perturbations, it requires smallness
of these, typically in the form of the lower bound K > (1 + d)/2, in order to prove
stability.

1.5. Overview of the results

We give five theorems:

• the first, Theorem 2.7 (page 20), states that stability of WKB solutions is deter-
mined by a scalar index, which when positive indicates instability, and when negative
indicates stability. The degenerate case of a vanishing stability index covers different
possible situations with regard to stability, one of them treated in [49]. For a dis-
cussion of the precise meaning of stability/instability in our context, see in particular
Section 2.2. Theorem 2.7 is formulated under the strong assumption that there be
only one non-transparent resonance (Assumption 2.6). The reason for this assump-
tion is that it simplifies the exposition of our main ideas by allowing for relatively
simple notation.

• In Theorem 2.9 (page 24), we allow for several non-transparent resonances, with
the same conclusions as in Theorem 2.7. This is the framework that is encountered
in many examples, in particular the coupled Klein-Gordon systems described in Sec-
tions 1.7 and 5.2, 5.3. The proof (Section 4.1) relies on the same ideas as the proof
of Theorem 2.7, the extra difficulty being only notational.

The last three results are variations on Theorem 2.9 and its proof:

• We first remark, in Theorem 2.11, that all non-transparent resonances are ampli-
fied. That is, we can observe an instability even though we initially turn on a resonance
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that is not associated with the maximal rate of growth. Here our assumptions are
weakest, in particular are essentially only local in frequency, but the amplification is
accordingly weaker.

• Next we remark that instability occurs in asymptotically vanishing balls, provided
that we give up a little on the amplification rate. This is Theorem 2.12.

• Finally, in Theorem 2.13 we prove that if arbitrarily small perturbations of
the WKB datum generate exact solution that persist and are bounded uniformly
in (ε, t, x) over time intervals T

√
ε| ln ε|, with T large enough, then the amplifica-

tion goes from O(εK) to O(εK′
), with K arbitrarily large and K ′ arbitrarily small,

in time O(
√

ε| ln ε|). Of course, if small perturbations do not generate solutions over
such asymptotically small time intervals, or if these solutions are unbounded, then
this means instability, in another form, for the WKB solution.

1.6. On related instability results

The article [25], cited in Section 1.1 as the main inspiration of the current work,
contains limited instability results. In Section 10 and 11 of [25], Joly, Métivier and
Rauch show that under a condition (Assumption 10.3 in [25]) that is very simi-
lar to our instability condition Γ > 0 below, WKB solutions are unstable. They
do so for linear equations, and, most importantly, for constant amplitudes, that is,
for WKB solutions of the form �a eik·x/ε, where �a ∈ RN is fixed. This allows an
analysis by Fourier transform. For the solution u, there holds |u|L2 ≥ |û|L2(Bε),

with Bε = {ξ ∈ Rd, |εξ − ξ0| ≤ h
√

ε}, where ξ0 is a distinguished resonant fre-
quency and h > 0 is small. This reduces the analysis to our Lemma 6.16.

For systems of conservation laws, under the strong assumption of a constant eigen-
value, Cheverry, Guès and Métivier prove an instability result for high-frequency
WKB solutions. This assumption is (6.5) and Hypothèse 6.1 in [8]; constancy is in u,

in the context of [8] eigenvalues are 1-homogeneous in ξ. Then Cheverry studied in [7]
the viscous relaxation of these instabilities.

We note that our approach to instabilities in nonlinear equations differs funda-
mentally from the approach of Grenier in his classical work [18], in which Grenier
formulated spectral assumptions bearing on linear differential operators. By contrast,
our spectral assumptions are formulated for symbols of linear pseudo-differential op-
erators. In particular, our spectral assumptions are, at least theoretically, readily
verifiable, since they bear on spectra of matrices. The key Lemma that allows us
to transpose the spectral information at the symbolic level into estimates for cor-
responding systems of partial differential equations is the Duhamel representation
Theorem 6.14, drawn from [46].

The article [32] also uses the Duhamel representation of [46], to prove a strong
Lax-Mizohata result for weakly non-hyperbolic quasi-linear systems.
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1.7. Examples

Our first class of examples (Section 5.1) are three-wave interaction systems, of the
form

(1.25)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂tu1 + c1∂xu1 =
b1√
ε
ū2u3,

∂tu2 + c2∂xu2 =
b2√
ε
ū1u3,

∂tu3 + c3∂xu3 =
b3√
ε
u1u2,

and

(1.26)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂tu1 +

c1

ε
∂xu1 =

b1

ε
ū2u3,

∂tu2 +
c2

ε
∂xu2 =

b2

ε
ū1u3,

∂tu3 + c3∂xu3 = b3u1u2.

We show in Section 5.1.2 how these systems are derived in the high-frequency
limit from the Euler-Maxwell equations describing laser-plasma interactions. Sys-
tems (1.25) and (1.26) can be used to describe Raman and Brillouin scattering,
respectively.

In the case b2b3 > 0, for any c1, c2, c3, our instability results apply to the reference
solutions(

a(x − c1t), 0, 0
)

for (1.25), and
(
a(εx − c1t), 0, 0

)
for (1.26),

and give a description of the growth of the Raman and Brillouin waves u3.

Our second class of examples (Sections 5.2 and 5.3) comprises coupled Klein-
Gordon systems of the form

(1.27)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tu +

⎛⎝ 0 ∂x 0
∂x· 0 0
0 0 0

⎞⎠u +
1
ε

⎛⎝ 0 0 0
0 0 α0ω0

0 −α0ω0 0

⎞⎠u =
1√
ε
B1(u, v),

∂tv +

⎛⎝ 0 θ0∂x 0
θ0∂x· 0 0

0 0 0

⎞⎠ v +
1
ε

⎛⎝ 0 0 0
0 0 ω0

0 −ω0 0

⎞⎠ v =
1√
ε
B2(u, v),

where (u, v) = (u1, u2, u3, v1, v2, v3) ∈ Rd+2 × Rd+2, x ∈ Rd. The parameters satisfy
0 < ω0, 0 < α0, and 0 < θ0 < 1. The eigenvalues (as in (1.12)) are{

0, ±
√

α2
0ω

2
0 + |ξ|2, ±

√
ω2

0 + θ2
0|ξ|2

}
.

The characteristic varieties for α0 = 1 and α0 �= 1, depicting the branches of eigen-
values as functions of ξ, are pictured on Figure 4 page 89 and Figure 5 page 95,
respectively.
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If α0 = 1, the masses (corresponding to threshold frequency ω0) are equal. In
the context of laser-plasma interactions, the masses are both equal to the plasma
frequency, and systems (1.27) are simplified Euler-Maxwell systems. This case is
covered in Section 5.2. The case of different masses is covered in Section 5.3.

In both cases, we give examples of bilinear terms B1 and B2 to which our results,
stability or instability of WKB solutions, apply.

1.8. Open problems

We conclude this introduction with a list of open problems, listed in what we
perceive as an increasing level of difficulty:

Allow for rank-two interaction coefficients. It would be interesting, especially in
view of the extension of our results to the Euler-Maxwell equations (see Section 5.1.2),
to handle rank-two interaction coefficients. This would mean extending the bounds
of Appendix 6.3 to symbolic flows defined by interaction matrices of the form

M =

⎛⎜⎝ iμ1 0 −√
εb+

ijx

0 iμ1 −√
εb−ijy

−√
εb−jix −√

εb−jiy iμ2

⎞⎟⎠ .

Weaken the partial transparency condition (2.18). In our first class of Klein-Gordon
examples (Section 5.2), condition (2.18) is satisfied only in one space dimension.
We note that condition (2.18) is used only in the proof of Proposition 4.2 (normal
form reduction) which decouples the components of the solution associated with non-
transparent resonances. Given a specific set of non-transparent resonances, we could
probably make appropriate coordinatization choices so as to forgo, or at least weaken,
condition (2.18).

Consider larger initial perturbations. We take into account the presence of high
frequencies ∼ 1/ε by measuring L2 norms of ε-derivatives. The main drawback of
this approach is a very poor control of sup norms, as already seen in (1.24). By
using (1.24), we are essentially uniformly bounding a(x) sin(x/ε) by Cε−d/2, even if a

is smooth and compactly supported.
This raises the question: Does there exist a Banach algebra of distributions in which

high-frequency families {ϕ(x, x/ε)}0<ε<1, with ϕ ∈ C∞
c , are uniformly bounded, and

in which good pseudo-differential bounds are available?
The minimal requirements for pseudo-differential bounds would be inclusion of the

space of pseudo-differential operators of order zero into the space of linear bounded
operators from the Banach algebra to itself, and stability under composition.

The space FL1 of distributions with L1 Fourier transform satisfies the first two
conditions (algebra, uniform bounds for oscillating families), but not the third
(pseudo-differential bounds). The Sobolev space Hs equipped with the semi-classical
norm ‖ · ‖ε,s satisfies the last two conditions, but is not a Banach algebra.
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In the absence of a positive answer to the above question, we perform in Sec-
tion 3.1.5 estimates in both FL1 and Hs, so as to combine the advantages of both
functional settings. This gives an existence time T0 (2.12), that approaches the “op-
timal” existence time T∞ = K/(γ|a|L∞), using notation introduced in Section 2. The
optimal character of T∞ is seen on Theorem 2.13: this existence time allows for
the amplification exponent K ′ to be arbitrarily small, hence for the instability to be
almost Lyapunov.

Allow for more singular scalings. Laser pulses typically propagate in one spatial
dimension x and have large transverse variations in transverse directions y : they have
the form

a(x, y) sin((kx − ωt)/ε) sin(y/
√

ε),

where a is a slowly varying amplitude. A corresponding scaling would be, instead
of (1.1), the more singular

(1.28) ∂tu +
(1

ε
A0 +

1√
ε
A(∂y) + A∂x

)
u =

1√
ε
B(u, u),

with data oscillating in x at frequencies ∼ 1/ε. In this scaling, the Zakharov equations
with non-zero group velocity were formally derived from the Euler-Maxwell equations
in [48]. A stability analysis of WKB solutions to (1.28) would lead to considera-
tion of symbolic flows of interaction matrices as in (1.19). The important difference
would an

√
ε-semiclassical scaling of the relevant pseudo-differential operators, with

the catastrophic consequence
1√
ε

(
op√

ε(MS0) − op√
ε(M)op√

ε(S0)
)

= op√
ε(i∂ξM∂yS0) +

√
ε
(
. . .

)
,

meaning an error O(1), instead of O(
√

ε), in the first step of the construction of a
solution operator. Then, op√

ε(S0) would not appear as an approximation of the solu-
tion operator. What would constitute a good approximation of the solution operator,
then ?
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CHAPTER 2

ASSUMPTIONS AND RESULTS

For the family of systems (1.1), reproduced here:

∂tu +
1
ε
A0u +

∑
1≤j≤d

Aj∂xj u =
1√
ε
B(u, u),

we make the following assumptions.

Assumption 2.1 (Smooth spectral decomposition). — We assume that the matri-
ces Aj , for 1 ≤ j ≤ d, are real symmetric, that the matrix A0 is real skew-symmetric,
and that the family of hermitian matrices

{
A0/i+

∑
1≤j≤d ξjAj

}
ξ∈Rd has the spectral

decomposition

(2.1) A0/i +
∑

1≤j≤d

ξjAj :=
∑

1≤j≤J

λj(ξ)Πj(ξ),

for some fixed J, where λj are smooth eigenvalues and Πj are smooth eigenprojectors,
satisfying bounds, for all β ∈ Nd, for some Cβ > 0 :

(2.2) |∂β
ξ λj(ξ)| ≤ Cβ(1 + |ξ|2)(1−|β|)/2, |∂β

ξ Πj(ξ)| ≤ Cβ(1 + |ξ|2)−|β|/2.

We do not assume that eigenvalues do not cross; indeed, for physical systems, cross-
ing does typically occur at least for ξ = 0 : examples are given in Sections 5.1, 5.2, 5.3
of Chapter 5 and Appendix 6.7. The smoothness condition in Assumption 2.1 means
that at coalescence points, there is an ordering of the eigenvalues so that regularity is
preserved. Bounds (2.2) mean that λj ∈ S1 and Πj ∈ S0. The classical classes Sm of
pseudo-differential operators of order m are introduced in Appendix 6.1.

Assumption 2.1 is discussed in Appendix 6.5. There we give, in particular, a
sufficient condition for bounds (2.2) to hold.

Assumption 2.2 (WKB approximate solution). — For some Ka ∈ N, some Ta > 0,

all ε > 0, there exists ua an approximate solution to (1.1), in the sense that there
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holds in [0, Ta] :

(2.3) ∂tua +
1
ε
A0ua +

∑
1≤j≤d

Aj∂xj ua =
1√
ε
B(ua, ua) + εKarε

a.

The approximate solution has the form of a WKB expansion
(2.4)

ua(ε, t, x) = e−i(k·x−ωt)/εu0,−1(t, x) + ei(k·x−ωt)/εu0,1(t, x) +
√

εva(ε, t, x) ∈ RN ,

where
– the phases (ω, k) and (−ω,−k) ∈ R1+d are characteristic for the hyperbolic
operator, in the sense that

(2.5)
(
∂t +

1
ε
A0 +

∑
1≤j≤d

Aj∂xj

)(
e±i(k·x−ωt)/ε�e±1

)
= 0, �e−1 = (�e1)∗,

where �e−1 and �e1 are fixed, unit vectors in CN and (�e1)∗ denotes component-by-
component complex conjugation, and the leading amplitudes u0,±1 are polarized
along �e±1, in the sense that

(2.6) u0,1(t, x) = g(t, x)�e1, u0,−1 = g(t, x)∗�e−1, g ∈ C1([0, Ta], Hsa(Rd)),

where g∗ denotes complex conjugation of the amplitude g ∈ C,

– there holds va, rε
a ∈ C0([0, Ta], Hsa(Rd)), with

(2.7) sup
ε>0

(
sup

|α|≤sa

|(ε∂x)α(va, rε
a)|L∞([0,T ],L2) + |F(va, rε

a)|L∞(0,Ta],L1)

)
< ∞.

We give in Appendix 6.6 sufficient conditions for Assumption 2.2 to hold true.
An example of non-oscillating data, corresponding to (ω, k) = (0, 0), is described in
Section 5.1.

We note that it suffices for va and rε
a to be trigonometric polynomials in θ, as

is typically the case in WKB expansions, in order for the above uniform bound
on |F(va, rε

a)|L1 to hold.

Notation 2.3. — Given �u ∈ RN , we denote B(�u) : RN → RN the map defined by

B(�u)v := B(�u, v) + B(v, �u).

Definition 2.4 (Resonances, interaction coefficients). — Given (i, j) ∈ {1, . . . , J}2,

with J as in Assumption 2.1, we define the set of resonant frequencies associated
with (i, j) by

Rij :=
{
ξ ∈ Rd, ω = λi(ξ + k) − λj(ξ)

}
.

The families of matrices

Πi(ξ + k)B(�e1)Πj(ξ) ∈ CN×N and Πj(ξ)B(�e−1)Πi(ξ + k) ∈ CN×N ,

indexed by ξ ∈ Rd, are called the interaction coefficients associated with (i, j).
The scalar function ξ → λi(ξ+k)−λj(ξ)−ω is called the resonant phase associated

with (i, j).
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We often say the (i, j) resonance, and the (i, j) interaction coefficients.
We note that auto-resonances, i.e. resonances associated with (i, i), for 1 ≤ i ≤ J,

are taken into account in this definition. We also note that Rij �= Rji in general.

We introduce the property of transparency:

Definition 2.5 (Transparency). — An interaction coefficient Πi(· + k)B(�e1)Πj is
said to be transparent if the associated resonant phase can be factored out, that is if
for some C > 0, there holds for all ξ ∈ Rd the bound

(2.8) |Πi(ξ + k)B(�e1)Πj(ξ)| ≤ C|λi(ξ + k) − ω − λj(ξ)|.
Similarly, an interaction coefficient ΠjB(�e−1)Πi(·+ k) is said to be transparent if for
some C > 0, there holds for all ξ

(2.9) |Πj(ξ)B(�e−1)Πi(ξ + k)| ≤ C|λi(ξ + k) − ω − λj(ξ)|.
If both interaction coefficients associated with resonance (i, j) are transparent, then
the resonance is said to be transparent.

We can now state our main, and provisory, assumption:

Assumption 2.6. — We suppose
(i) (boundedness) the set R12 is nonempty and bounded,
(ii) (partial transparency) for all (i, j) �= (1, 2), the (i, j) resonance is transpar-
ent;
(iii) (rank-one coefficients) for all ξ in an open set containing R12, the ranks of
the (1, 2) interaction coefficients are at most 1.

Assumption 2.6(i) is discussed in Appendix 6.7; there we show in particular that As-
sumption 2.6(i) satisfied as soon as the eigendecomposition (2.1) is smooth at infinity,
and λ1 and λ2 non asymptotic at infinity, that is |λj(ξ)| = cj |ξ|+ o(|ξ|) with c1 �= c2.

Assumption 2.6(ii) is here only to simplify the exposition; we will see in Section 2.3
that our results fully extend to the case of several non-transparent resonances, under
a mild partial transparency condition.

Assumption 2.6(iii) is satisfied as soon as (but not only if) λ1 and λ2 are simple
eigenvalues.

2.1. Main result

We denote Γ the trace of the product of the (1, 2) interaction coefficients:

(2.10) Γ(ξ) := tr Π1(ξ + k)B(�e1)Π2(ξ)B(�e−1)Π1(ξ + k).

In the context of Assumption 2.6, the stability index is

(2.11) Γ := max
(

max
ξ∈R12

�eΓ(ξ), max
ξ∈R12

|�m Γ(ξ)|
)
,

so that
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– if Γ > 0, then for some ξ ∈ R12, there holds Γ(ξ) /∈ (−∞, 0].

– If Γ < 0, then for all ξ ∈ R12, Γ(ξ) ∈ (−∞, 0).
In the unstable case, corresponding to Γ > 0, the limiting observation time T0 and

amplification exponent K0 are

(2.12) T0 := max
( K

|B|0|â|L1
,

K − d/2
γ|a|L∞

)
, K0 := min

(
K

(
1 − γ|a|L∞

|B|0|â|L1

)
, d/2

)
,

where

(2.13) |B|0 := max
ξ∈R12

max
(
|Π1(ξ + k)B(�e1)Π2(ξ)|, |Π2(ξ)B(�e−1)Π1(ξ + k)|

)
,

and

(2.14) γ :=
∣∣∣ max

ξ∈R12
�e

(
Γ(ξ)1/2

)∣∣∣.
In the definition of |B|0 above, we denote |Z| the norm of a matrix Z ∈ CN×N , deriving
from the L∞ norm in CN : |Z| := max|u|=1 |Zu|, where |u| = |u1, . . . , uN | := maxi |ui|.
These norms in finite dimensions are used throughout the paper.

Theorem 2.7. — Under Assumptions 2.1 (regularity of the spectral decomposi-
tion), 2.2 (existence of WKB solutions) and 2.6 (resonances and transparency), the
sign of index Γ determines stability of the WKB approximate solution ua with respect
to initial perturbations, as follows:

• If Γ > 0, then for some initial perturbation φ(ε, ·) ∈ C∞
c such that

sup
0<ε<1

(‖ φ(ε, ·)‖ε,s + |φ(ε, ·)|L∞
)

< ∞

for all s, the solution u to (1.1) issued from the initial datum

(2.15) u(0, x) = ua(0, x) + εKφ(ε, x)

satisfies:

for any K > 0, if Ka + 1/2 ≥ K, for any K ′ > K0, for some T < T0, some ε0 > 0,

for all ε ∈ (0, ε0), u ∈ C0([0, T
√

ε| ln ε|], Hs(Rd)) for d/2 < s ≤ sa, and

(2.16) sup
0<ε<ε0

sup
0≤t≤T

√
ε| ln ε|

ε−K′ |(u − ua)(t)|L2(B(x0,ρ)) = ∞,

for some x0 ∈ Rd, some ρ > 0.

• If Γ < 0, then for any φ(ε, ·) ∈ Hs such that sup0<ε<1 ‖φ(ε, ·)‖ε,s < ∞ for
all s ≤ sa, the solution u to (1.1) issued from the initial datum (2.15) satisfies:

for any K ≥ (d + 1)/2, if Ka ≥ (d + 1)/2, for some ε0 > 0, some C(Ta) > 0,

for all ε ∈ (0, ε0), u ∈ C0([0, Ta], Hs(Rd)), for d/2 < s ≤ sa, and

(2.17) sup
t∈[0,Ta]

‖(u − ua)(t)‖ε,s ≤ C(Ta)‖(u − ua)(0)‖ε,s.
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In the above Theorem, we use the semiclassical Sobolev norm ‖·‖ε,s defined in (1.21)
on page 10. The time Ta is any existence time for the WKB solution ua, such that the
bounds stated in Assumption 2.2 hold, the index sa is the Sobolev index of regularity
of ua, and T0 is the limiting observation time defined in (2.12).

Theorem 2.7 is proved in Sections 3.1 and 3.2.

2.2. Comments

On our assumptions:

• Assumption 2.1 asserts regularity of the spectral decomposition, and bounds
at infinity. We show in Appendix 6.5 that these conditions at infinity follow from
smoothness of the spectral decomposition of an associated “short-wave” operator.

• In Assumption 2.2, the polarization condition (2.6) and the bound (2.7) on the
correctors and remainder are standard. What is not clear, however, is that sys-
tem (1.1) admits WKB solutions at all. Indeed, as noted by Joly, Métivier and
Rauch [25], and briefly discussed on page 4 above, in the context of supercritical
geometric optics, for WKB solutions to exist the large source term must satisfy com-
patibility conditions, which are similar to, and weaker than, transparency in the sense
of Definition 2.5. In the context of (1.1), these conditions are given in Appendix 6.6.
Also, in Proposition 6.22, we give sufficient conditions for Assumption 2.8 to imply
Assumption 2.2.

• Point (i) of Assumption 2.6 is typically easy to check, and discussed in Ap-
pendix 6.7. Point (ii) is too strong (indeed in examples there is typically more than
one non-transparent resonance); this is remedied in Assumption 2.8. In theory, the
verification of a transparency condition is a simple matter; see our computations in
Section 5.2 in the case of coupled Klein-Gordon equations. In practice, the compu-
tations are sometimes involved, see in particular [49] in the case of Euler-Maxwell.
Point (iii) simplifies the linear algebra in Appendix 6.3. As mentioned in Section 1.8,
it would be interesting to handle two-dimensional eigenspaces, especially in view of
the extension of our results to the Euler-Maxwell system in three space dimensions,
for which the longitudinal modes are two-dimensional.

On the nature of the instability and parameters T0 and K0 :

• The smaller the amplification exponent K0 defined in (2.12), the stronger the
amplification. There holds K0 = K − T0γ|a|L∞ : that is, the limitation on the ampli-
fication exponent is the existence time T0. An existence proof up to time K/(γ|a|L∞)
would allow for K0 = 0, corresponding to an O(1) deviation; this observation is
exploited in Theorem 2.13 below.

• For the existence part in Theorem 2.7, two approaches are combined in the proof.
This explains why T0 in (2.12) is the maximum of two quantities.
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We first use the constant-coefficient nature of the hyperbolic operator in (1.1), and
the semilinear nature of the source term in the right-hand side of (1.1). Such equations
are amenable to estimates in FL1, the Banach algebra of functions with Fourier
transforms in L1. The key is that the FL1 norm controls the L∞ norm. Combined
a priori estimates in FL1 and Hs yield the existence time K/(|B|0|â|L1), where |B|0
is defined in (2.13). Details are given in Section 3.1.5.1. Here we note that γ ≤ |B|0.
Indeed, if the trace Γ(ξ) is positive, then Γ(ξ) is the only non-zero eigenvalue of the
product of the interaction coefficients. In particular, the modulus |Γ(ξ)| is bounded
from above by the norm of the product of the interaction coefficients: |Γ(ξ)| ≤ |B|20,
which implies γ ≤ |B|0. We could hope for the better existence time K/(γ|â|L1).
The issue here is that we are unable to use the precise Duhamel representation of
Section 3.1.3. Indeed, this representation introduces pseudo-differential operators,
the action of which cannot be easily estimated in FL1. Remark 3.15 expands on this
point.

In a second approach, we perform Sobolev estimates. A control of the L∞ norm
is then given by Sobolev embedding. An issue here is that in semiclassical norms
this embedding has a large ∼ ε−d/2 norm. Hence, via the Duhamel representation of
Section 3.1.3, in which we use Theorem 6.14, the existence time (K − d/2)/(γ|a|L∞).

• In accordance with the above two comments, the amplification exponent K0 is
the minimum of two positive quantities. The first is equal to a fraction of K, which
goes to 0 as |a|L∞/|â|L1 → 1 and γ → |B|0.

In general, however, and in particular as K becomes larger, for a given system and
a given initial amplitude, the amplification factor will be equal to d/2. That is, even
though the deviation from ua is small (∼ εd/2), the amplification in Theorem 2.7, on
top of being localized in space and asymptotically instantaneous in time, is absolute,
meaning that the perturbation grows from O(εK) to O(εK′

), with K/K ′ → ∞
as K → ∞. In other words, the flow at t = 0 is not Hölder continuous: the ra-
tio |u − ua|L2(B(x0,ρ))/|(u − ua)(0)|αε,s is unbounded in the limit ε → 0, with a Hölder
exponent α = K ′/K which tends to 0 as K → ∞. Still, the instability is weaker than
a Lyapunov instability, which would correspond to K0 = 0.

On the initial perturbation in the unstable case:

In the unstable case, we pick the initial perturbation that will lead to a maximal
amplification. In the more general context of Theorem 2.13, these initial perturbations
are precisely described in (2.27) below. Essentially, u(0)− ua(0) has an εK prefactor,
oscillates at frequency (ξ0 + k)/ε, where ξ0 is a distinguished resonant frequency, is
spatially localized around a point at which |a| is maximum, and is pointing in an
eigendirection of the product of the interaction coefficients.

On the stability result and the class of initial perturbations:
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A relative weakness of our stability result is that initial perturbations are
small ∼ εK , with K ≥ (1 + d)/2, where 1/2 accounts for the large prefactor
in (1/

√
ε)B(u, u), while d/2 accounts for the Sobolev embedding (1.24); this point

was briefly discussed in Section 1.8.
A strong point, however, is that stability is meant here with respect to a large class

of initial perturbations, as mentioned in Section 1.4 above. We allow indeed initial
perturbations of the form ϕ(x/ε), where ϕ is smooth, as opposed to perturbations
in the form of profiles, that is, with a dependence in x/ε that is identical to the one
in ua(0). In particular, the perturbations that we use in the unstable case are allowed
in the stable case.

We finally note that, by Sobolev embedding, the stability estimate (2.17) implies
the pointwise estimate |(u − ua)(t, x)| ≤ C(Ta)εK−d/2.

2.3. Extensions

We give here four results that complement Theorem 2.7.

2.3.1. Several non-transparent resonances. — We announced that the role of
Assumption 2.6 was only to simplify the exposition. Here is a more general, and more
satisfactory, version of Assumption 2.6, in which we do not assume that the set of
non-transparent resonances is reduced to a singleton:

Assumption 2.8. — We suppose
(i) (boundedness) The resonant set R =

⋃
i,j

Rij is bounded.

(ii) (partial transparency) For some subset R0 ⊂ R : given (i, j) ∈ R \ R0,

the (i, j) resonance is transparent; given (i, j) ∈ R0, the (i, j) interaction coeffi-
cients are transparent on a neighborhood of

(2.18)
Rij

⋂((Ri′i − k
)⋃(Rjj′ + k

))
, for all i′, j′ with (i′, i) ∈ R0 and (j, j′) ∈ R0,

and on a neighborhood of
(2.19)
Rij

⋂(
Rii′

⋃
Rj′j

)
, for all i′ �= j, all j′ �= i, with (i, i′) ∈ R0 and (j′, j) ∈ R0.

Besides, R0 does not contain auto-resonances: for all 1 ≤ i ≤ J, (i, i) /∈ R0.

(iii) (rank-one coefficients) For all (i, j) ∈ R0, for all ξ in an open set con-
taining Rij , the ranks of the (i, j) interaction coefficients are at most 1; except
for (i, j) ∈ R0 such that one interaction coefficient is identically equal to zero,
in which case we make no assumption on the rank of the other coefficient.
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In condition (ii), transparency of an interaction coefficient over a frequency set
means factorization of the phase, as in (2.8) or (2.9), for ξ restricted to the frequency
set in question.

We note the inclusions

Rij

⋂
Rii′ ⊂ {λj = λi′}, Rij

⋂
Rj′j ⊂ {λi(· + k) = λj′(· + k)}.

Thus condition (ii) in Assumption 2.8 means that, while we allow for an arbitrarily
large subset R0 of non-transparent resonances, we cannot allow for some (i, j) inter-
action coefficient to be non-transparent in all of the resonant set Rij : we need to
assume transparency at these exceptional frequencies in Rij which correspond to a
translate of another non-transparent resonance involving λi or λj (condition (2.18)) or
to a coalescing point in the spectrum involving λi or λj and another branch associated
with a non-transparent resonance (condition (2.19)).

Given a resonance (i, j) ∈ R0, we let

Γij(ξ) := tr Πi(ξ + k)B(�e1)Πj(ξ)B(�e−1)Πi(ξ + k).

The stability index is

(2.20) Γ := max
(i,j)∈R0

max
(

max
ξ∈Rij

�eΓij(ξ), max
ξ∈Rij

|�m Γij(ξ)|
)
.

The observation time T0 and amplification rate K0 are defined as in (2.12), with |B|0
defined by

(2.21) |B|0 := max
(i,j)∈R0

max
ξ∈Rij

max
(
|Πi(ξ+k)B(�e1)Πj(ξ)| , |Πj(ξ)B(�e−1)Πi(ξ+k)|

)
,

and γ defined by

(2.22) γ := max
(i,j)∈R0

γij , γij :=
∣∣∣ max

ξ∈Rij

�e
(
Γij(ξ)1/2

)∣∣∣.
Theorem 2.9. — The conclusions of Theorem 2.7 still hold when Assumption 2.6 is
replaced by Assumption 2.8, with stability index Γ defined in (2.20).

Theorem 2.9 is proved in Section 4.1.

2.3.2. All non-transparent resonances are amplified. — Next we modify the
partial transparency condition of Assumption 2.8 into a separation condition. The re-
sult (Theorem 2.11 below) states that any non-transparent resonance that is separated
from other resonances gives rise to an amplification.

Recall that the notation R, introduced in Assumption 2.8, denotes the set of reso-
nant indices.

Assumption 2.10. — We suppose
(i) (boundedness) The resonant set R is bounded.
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(ii) (separation) For any resonant pair (i, j) that is distinct from (1, 2), there
holds

(2.23)
(R12 + qk

)⋂
Rij = ∅, 0 ≤ |q| ≤ 1.

(iii) (rank-one coefficients) For all ξ in an open set containing R12, the ranks
of the (1, 2) interaction coefficients are at most 1.

The separation condition (2.23) asserts non-intersection of resonant sets, a much
stronger property than the partial transparency condition of Assumption 2.8, but
only relative to the (1, 2) resonance. With regard to other resonances, we make no as-
sumption besides boundedness of resonant sets and separation from R12 as prescribed
by (2.23).

In the context of Assumption 2.10, the limiting observation time is

T ′
0 := min

(
max

( K − 1/2
|B||â|L1

,
K − (d + 1)/2

|B||a|L∞

)
,

1
2(|B| − γ12)|a|L∞

)
,

and the amplification exponent is

(2.24) K ′
0 := K − T ′

0γ12|a|L∞ ,

with γ12 defined in (2.22).

Theorem 2.11. — Under Assumptions 2.1, 2.2 and 2.10, if γ12 > 0, then the WKB
solution ua is unstable, in the sense of Theorem 2.7, where T0 and K0 are replaced
with T ′

0 and K ′
0 defined above.

Theorem 2.11 is proved in Section 4.2.
The limiting time T ′

0 is the minimum of two quantities. The first looks very much
like (but is smaller than) the limiting time T0 in Theorems 2.7 and 2.9. The main
difference is that we have |B| here in the denominator in T ′

0, where we had |B|0,
possibly much smaller than |B|, in the denominator in T0 (2.12). The second term
in the definition of T ′

0 is independent of K and, for K large enough, smaller than the
first. The point is that the instability here is only relative to the initial size of the
perturbation: there holds for K large enough (depending on B and a):
(2.25)

sup
0<ε<ε0

sup
0≤t≤T̃0

√
ε| ln ε|

|u(t) − ua(t)|L2(B(x0,ρ))

‖u(0) − ua(0)‖ε,s
= ∞, T̃0 :=

1
2(|B| − γ12)|a|L∞

,

and the way that the above diverges to ∞ is quantified by K ′
0. In other words, the

flow is not Lipschitz continuous from ‖ · ‖ε,s to ‖ · ‖L2(B(x0,ρ)) at t = 0.

The important point in Theorem 2.11 is that we do not assume maximality of
the growth rate γ12. That is, in order to record an Hadamard instability, it is not
necessary to initially activate unstable frequencies with the larger rate of growth.

An interesting feature of Assumption 2.10 is that, given boundedness of R, the
separation condition (ii) is local in frequency, and bears only on the eigenvalues of the
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hyperbolic operator. The assumption of boundedness of R is not local, but typically
easily verified by asymptotic expansions of the eigenvalues at infinity, as discussed in
Appendix 6.7.

2.3.3. Improved spatial localization. — Next we remark that we can improve
on the radius of the instability ball in the statement of Theorem 2.7, at the price of
a smaller amplification rate. That is, introducing the observation time

T ′′
0 := max

( K − 1/2
|B|0|â|L1

,
K − (d + 1)/2

γ|a|L∞

)
,

and the amplification exponent

(2.26) K ′′
0 := K +

βd

2
− T ′′

0 γ|a|L∞ ,

we have the following result, with stability index Γ defined in (2.20).

Theorem 2.12. — Under Assumptions 2.1, 2.2 and 2.8, in the unstable case Γ > 0,

the conclusion of Theorem 2.7 still holds with ρ = εβ , for any β < 1/d, with ε0 = ε0(β),
if T0 and K0 are replaced with T ′′

0 and K ′′
0 as above.

Theorem 2.12 is proved in Section 4.3. Note that the observation time T ′′
0 is

strictly smaller than T0 (2.12), hence the amplification exponent K ′′
0 is strictly greater

than K0. That is, the deviation estimate is better localized, but we are able to follow
the solution only on a shorter time interval, meaning a smaller magnitude of the
deviation from ua.

2.3.4. A greater deviation estimate. — As noted in Section 2.2, the limitation
on the amplification exponent K0 in Theorems 2.7 and 2.9 is the upper bound T0 on
the existence time. In our final result, we assume a better existence time, and from
there deduce a greater deviation estimate.

In the context of Assumption 2.8, the maximum γ of the coefficients γij , for (i, j)
ranging over the set R0 of non-transparent resonances is attained at (i0, j0). We
consider the same datum as in Theorems 2.7 and 2.9, that is

(2.27) u(0, x) := ua(0, x) + εKeix·(ξ0+k)/εϕi0j0(x)�ei0j0 ,

where
– ξ0 is such that γ =

∣∣maxξ∈Ri0j0
�e

(
Γi0j0(ξ)

1/2
)∣∣ is attained at ξ0.

– x0 is such that |a|L∞ is attained at x0.

– ϕi0j0 ∈ C∞
c (Rd) is a spatial truncation around x0 (precisely defined in Section

4.1.3).

– �ei0j0 generates the range of matrix Πi0(ξ0 +k)B(�e1)Πj0(ξ0)B(�e−1)Πi0(ξ0 +k).

Let T∞ :=
K

γ|a|L∞
.
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Theorem 2.13. — Under Assumptions 2.1, 2.2 and 2.8, in the unstable case Γ > 0,

for any K > 0, if Ka + 1/2 ≥ K, for d/2 < s ≤ sa :
– either for some T < T∞, for any ε small enough, the initial-value problem
(1.1)-(2.27) does not have a solution u ∈ C0([0, T

√
ε| ln ε|], Hs(Rd)),

– or for some T < T∞, for any ε0 > 0, the solution u to (1.1)-(2.27) satisfies

sup
0<ε<ε0

sup
0≤t≤T

√
ε| ln ε|

|u(t, ·)|L∞ = ∞,

– or for any K ′ > 0, for some T < T∞, there holds the deviation estimate

(2.28) sup
0<ε<ε0

sup
0≤t≤T

√
ε| ln ε|

ε−K′ |(u − ua)(t)|L2(B(x0,εβ)) = ∞,

for some x0 ∈ Rd, some β > 0, some ε0 > 0.

The proof (Section 4.4) shows that β → 0 as K ′ → 0 : the localization becomes
less precise as the amplification becomes larger.

Theorem 2.13 states that, with (u−ua)(0) given in (2.27), in particular compactly
supported and O(εK) in L∞ and ‖ · ‖ε,s norms, where K and s are arbitrarily large:

– either the solution to (1.1)-(2.27) is not defined in time [0, T
√

ε| ln ε|], meaning
a catastrophic collapse of the existence time around ua (if we consider ua as a
solution, with an existence time Ta > 0, independent of ε),
– or the solution is defined in time [0, T

√
ε| ln ε|] but is unbounded, meaning in

particular that |u − ua|L∞ is unbounded, in the limit ε → 0,

– or the deviation |u − ua| goes from O(εK), as measured in ‖ · ‖ε,s norm,
to O(εK′

), as measured in an L2(B(x0, ε
β)) norm, over a time interval of

length O(
√

ε| ln ε|), with K ′ arbitrarily small.
In conclusion, under the assumptions of Theorem 2.13, in the case Γ > 0 the WKB

solution can certainly be deemed unstable, although there is some imprecision as to
the terms of the instability.
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CHAPTER 3

MAIN PROOF

3.1. Proof of Theorem 2.7: instability

Under the assumptions of Theorem 2.7, we suppose Γ > 0, and proceed to prove
instability of ua.

3.1.1. Overview of the instability proof. — Section 3.1.2.1 contains the first
important change of variable, in which resonances appear explicitly as crossing points
for the eigenvalues of the propagator. In Section 3.1.2.2, we perform a normal form
reduction; this essentially reduces the linear source term B(ua) to the pair of interac-
tion coefficients associated with resonance (1, 2). Then in Section 3.1.2.3, we localize
the analysis around a distinguished point (x0, ξ0), with ξ0 ∈ R12, in the cotangent
space. In Section 3.1.3, we use the Duhamel representation formula of Appendix 6.2
in order to describe semi-explicitly the component of the solution associated with res-
onance (1, 2). Section 3.1.4 is devoted to the derivation of lower bounds for the action
of the solution operator on the datum. In Section 3.1.5, we give existence results and
upper bounds in time O(

√
ε| ln ε|). These are based on the representation formula,

and also on FL1 and Sobolev bounds. The comparison of lower bounds with upper
bounds in Section 3.1.6 concludes the proof.

3.1.2. Preparation. — By symmetry of the hyperbolic operator, for ε > 0 the
solution u to (1.1) issued from (2.15) is defined over a short time interval [0, T (ε)], for
some T (ε) > 0. It has a high Sobolev regularity: u ∈ C0([0, T (ε)], Hsa(Rd)), where sa

is the Sobolev regularity index introduced in Assumption 2.2. The perturbative un-
known u̇, defined by

(3.1) u =: ua + u̇,

solves

(3.2) ∂tu̇ +
1
ε
A0u̇ +

∑
1≤j≤d

Aj∂xj u̇ =
1√
ε
B(ua)u̇ +

1√
ε
B(u̇, u̇) − εKarε

a,
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with the datum u̇(ε, 0, x) = εKφ(ε, x). In (3.2), the term rε
a is the WKB remainder

introduced in Assumption 2.2, and we used Notation 2.3 for B(·).
The goal is to choose φ so that u̇ grows exponentially in time.

It is understood in this proof that Sobolev indices s are strictly smaller
than sa − d/2, where sa is the Sobolev index of regularity of ua. We need
s > d/2 in order to prove short-time existence (since the system is semilinear), but
the deviation estimate (2.16) is expressed in a localized L2 norm.

We frequently use the notation a � b to indicate that an inequality a ≤ Cb holds
true, with a constant C > 0 depending only on fixed parameters, such as dimensions,
in particular not on a, b, nor on ε.

3.1.2.1. Projection and frequency shift. — We decompose u̇ according to the eigen-
modes of the hyperbolic operator and shift the component associated with Π1 as we
define U = (U1, . . . , UJ) ∈ RNJ by

(3.3) U1 := e−iθopε(Π1)u̇, Uj := opε(Πj)u̇, 2 ≤ j ≤ J,

with notation

(3.4) θ := (k · x − ωt)/ε.

The projectors Πj(ξ) are eigenprojectors of A(iξ)+A0 (Assumption 2.1), and opε(Πj)
are the associated Fourier multipliers (6.1). The perturbation unknown u̇ can be
reconstructed from U via

(3.5) u̇ = eiθU1 +
∑

2≤j≤J

Uj .

From (3.2)-(3.3), we find that U = (U1, U2 |U3, . . . , UJ) ∈ R2N × R(J−2)N solves

(3.6) ∂tU +
1
ε
opε(iA)U =

1√
ε
opε(B)U + F.

The symbol of the propagator is the diagonal matrix

(3.7) A := diag
(
λ1,+1 − ω, λ2 |λ3, . . . , λJ

)
,

with the notation λ1,+1(ξ) := λ1(ξ + k), where k is the spatial frequency of the WKB
datum. More generally, we will often use the notation

(3.8) σ+p(x, ξ) := σ(x, ξ + pk).

In the symbol A, the frequency shift is caused by the fast spatial oscillation in the
definition of U1 : there holds indeed the identity

opε(σ)(eipθv) = eipθopε(σ+p)v, for all σ, p, v.

The symbol of the singular source term is

B :=

(
B[1,2] B[1,2,J]

B[J,1,2] B[J,J]

)
,
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where the top left block is

B[1,2] :=
∑

p=±1

(
eipθΠ1,+(p+1)BpΠ1,+1 ei(p−1)θΠ1,+pBpΠ2

ei(p+1)θΠ2,+(p+1)BpΠ1,+1 eipθΠ2,+pBpΠ2

)
∈ R2N×2N ,

using notation Πj,+q(ξ) := Πj(ξ + qk), for q ∈ Z, in accordance with (3.8), and

(3.9) Bp := B(u0,p), p ∈ {−1, 1},
where u0,±1 are the leading amplitudes in the WKB solution, introduced in (2.4).
The other blocks in the source are

B[1,2,J] :=
∑

p=±1

(
ei(p−1)θΠ1,+pBpΠ3 . . . ei(p−1)θΠ1,+pBpΠJ

eipθΠ2,+pBpΠ3 . . . eipθΠ2,+pBpΠJ

)
∈ R2N×(J−2)N ,

B[J,1,2] :=
∑

p=±1

⎛⎜⎝ ei(p+1)θΠ3,+(p+1)BpΠ1,+1 eipθΠ3,+pBpΠ2

...
...

ei(p+1)θΠJ,+(p+1)BpΠ1,+1 eipθΠJ,+pBpΠ2

⎞⎟⎠ ∈ R(J−2)N×2N ,

and
B[J,J] :=

∑
p=±1

(
eipθΠi,+pBpΠj

)
3≤i,j,≤J

∈ R(J−2)N×(J−2)N .

In (3.6), the remainder F is the sum of
– the quadratic term

ε−1/2
(
e−iθopε(Π1)B(u̇, u̇), opε(Π2)B(u̇, u̇), . . . , opε(ΠJ)B(u̇, u̇)

)
,

– the projected WKB remainder

εKa

(
e−iθopε(Π1)rε

a, opε(Π2)rε
a, . . . , opε(ΠJ)rε

a

)
,

– the contribution of the higher-order WKB terms vε
a :(

e−iθopε(Π1)B(vε
a)u̇, opε(Π2)B(vε

a)u̇, . . . , opε(ΠJ)B(vε
a)u̇

)
,

– and remainder terms arising from compositions of pseudo-differential opera-
tors; these terms have the form

ε−1/2eiq1θ
(
opε(Πi,+q2)Bq3opε(Πj,+q4)u̇ − opε

(
Πi,+q2Bq3Πj,+q4

)
u̇
)
,

where qj ∈ Z and Bq3 is defined in (3.9).
From this description of F, we deduce the following bound:

Lemma 3.1. — There holds for s ≥ 0 the bound

‖F‖ε,s � (1 + ε−1/2|u̇|L∞)‖u̇‖ε,s + εKa ,

and the bound
|F̂ |L1 � (1 + ε−1/2|F u̇|L1)|F u̇|L1 + εKa .

In Lemma 3.1 we are using the semi-classical Sobolev norms ‖ · ‖ε,s introduced
in (6.2).
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Proof. — By (6.3) and (6.14), the quadratic terms satisfy for s ≥ 0 :

ε−1/2
∥∥opε(Πj)B(u̇, u̇)

∥∥
ε,s

� ε−1/2|u̇|L∞‖u̇‖ε,s.

By (6.3) and the product law (6.15),∥∥opε(Πj)B(vε
a)u̇

∥∥
ε,s

� |vε
a|L∞‖u̇‖ε,s + |(ε∂s

x)vε
a|L∞‖u̇‖L2 ,

and with (2.7), this gives

‖opε(Πj)B(vε
a)u̇‖ε,s � ‖u̇‖ε,s.

By the commutator estimate (6.6), given v ∈ Hs, if sa is large enough then∥∥opε(Πi,+q2)Bq3v − opε

(
Πi,+q2Bq3

)
v‖ε,s � ε|u0,±1|Hsa ‖v‖ε,s,

We apply this bound to v = opε(Πj,+q4)u̇, satisfying ‖v‖ε,s ≤ ‖u̇‖ε,s and find∥∥eiq1θε−1/2
(
opε(Πi,+q2)Bq3opε(Πj,+q4)u̇ − opε

(
Πi,+q2Bq3Πj,+q4

)
u̇
)∥∥

ε,s
� ε1/2‖u‖ε,s.

The bound in FL1 is found similarly, using |B(u̇, u̇)|FL1 � |F u̇|2L1 , and (6.7).

The point of the change of variable (3.3) is that R12 = {ω = λ1,+1 − λ2} is now
included in the locus of coalescing eigenvalues of symbol A.

We will see in the next paragraph that, under Assumption 2.6, in the source term B
only the top left block B[1,2] matters.

3.1.2.2. Normal form reduction. — The resonant set R12 introduced in Definition 2.4
is bounded by Assumption 2.6, hence compact by continuity of the eigenvalues.
For h > 0, to be chosen small enough below (1), we consider the neighborhood Rh

12

of R12, corresponding to resonant phases bounded by h:

(3.10) Rh
12 :=

{
ξ ∈ Rd, |λ1(ξ + k) − λ2(ξ) − ω| ≤ h

}
,

We let χ0 be a smooth cut-off function in frequency space, such that 0 ≤ χ0 ≤ 1,

with χ0 ≡ 1 on a neigborhood of Rh
12, and χ0 ≡ 0 further away from the (1, 2)

resonant locus, for instance on Rd \ R2h
12 .

The top left block in the symbol B of the singular source term decomposes as

B[1,2] = Br + Bnr,

with the notation

(3.11) Br :=
(

0 Π1,+1B1Π2

Π2B−1Π1,+1 0

)
.

The following proposition will imply that the operator with symbol

D :=
(

(1 − χ0)Br + Bnr B[1,2,J]

B[J,1,2] B[J,J]

)
,

1. This will be done in Section 3.1.6, at the end of this proof; see Remark 3.18 on page 51.

MÉMOIRES DE LA SMF 142



3.1. PROOF OF THEOREM 2.7: INSTABILITY 33

can be eliminated from the evolution equation (3.6) in U, up to negligible uniform
remainders, defined as follows:

Definition 3.2. — By uniform remainder, we mean any family R0 = R0(ε, t) of
linear bounded operators Hs → Hs, for t ∈ [0, Ta], where Ta is an existence time
for ua, with semi-classical Sobolev norms that are bounded in ε and t : for some C > 0,

for all v ∈ Hs, all ε > 0, all t ∈ [0, Ta], there holds ‖R0v‖ε,s ≤ C‖v‖ε,s.

Proposition 3.3. — Under Assumption 2.6, there exists Q ∈ S0, with ∂tQ ∈ S0,

such that

(3.12) ε[∂t, opε(Q)] + [opε(iA), opε(Q)] = opε(D) + εR0,

where R0 is a uniform remainder.

Proof. — The source D contains oscillations in ei�θ, with |�| ≤ 2. We denote
D =

∑
|�|≤2 ei�θD�. Accordingly, we look for Q in the form

(3.13) Q(ε, t, x, ξ) =
∑
|�|≤2

ei�θQ�(t, x, ξ), Q�(t, x, ξ) ∈ RJN×JN ,

where the symbols Q� are tensor products:

(3.14) Q�(t, x, ξ) = κ�(t, x)Q̃�(ξ), κ� scalar, κ� ∈ C1([0, Ta], Hsa), Q̃� ∈ S0.

Such symbols Q satisfy Q ∈ S0, ∂tQ ∈ S0, and, by (6.3) and (6.15), the associated
operators opε(Q) are uniform remainders.

In the coordinatization (3.6), the variable U belongs to CNJ , so that we are looking
for the Fourier coefficients Q� of Q in the form of CNJ×NJ matrices, which depend
on (ε, t, x, ξ). We will denote Z(i,j) ∈ CN×N the (i, j) block of a matrix Z ∈ CNJ×NJ .

In particular, we will use notation (Q�)(i,j) ∈ CN×N to denote block (i, j) of Q�.

With Q in the form (3.13), there holds

ε[∂t, opε(Q)] =
∑
|�|≤2

ei�θ
(
− i�ωQ� + εopε(∂tQ�)

)
.

The symbol A being diagonal, there holds

[opε(A), opε(Q)](i,j) = opε(μi)opε(Q(i,j) − opε(Q(i,j))opε(μj)

=
∑
|�|≤2

ei�θ
(
opε(μi,+�)opε((Q�)i,j) − opε((Q�)i,j)opε(μj)

)
,

where the μj are the diagonal entries of A, so that

(3.15) μ1 := λ1,+1 − ω, μj := λj , for j ≥ 2.

By (3.14),
opε(μi,+�)opε((Q�)i,j) = opε(μi,+�)

(
κ�opε

(
(Q̃�)(i,j)

))
,
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and with the commutator estimate (6.6) and the assumed regularity of κ�,

opε(μi,+�)
(
κ�opε(Q̃�))(i,j)

)
= opε(μi,+�(Q�)i,j) + εR0,

where R0 is a uniform remainder. This implies

[opε(A), opε(Q)](i,j) =
∑
|q|≤2

eiqθopε

((
μi,+q − μj

)
(Qq)(i,j)

)
+ εR0,

where R0 is a uniform remainder.
From the above, we deduce that in order to solve (3.12), it is sufficient to solve

(3.16) i
(− �ω + μi,+� − μj

)
(Q�)(i,j) = (D�)(i,j), |�| ≤ 2, 1 ≤ i, j ≤ NJ.

We consider equation (3.16) for all possible values of �, using the definition of B in
Section 3.1.2.1:

• For � = 0, equation (3.16) reduces to the system

i
(
λ1,+1 − ω − λ2

)
(Q0)(1,2) = (1 − χ0)Π1,+1B1Π2 (top left block),

i
(
λ2 − λ1,+1 + ω

)
(Q0)(2,1) = (1 − χ0)Π2B−1Π1,+1 (top left block),

i
(
λ1,+1 − ω − λj

)
(Q0)(1,j) = Π1,+1B1Πj , 3 ≤ j ≤ J (top right block),

i
(
λj − λ1,+1 + ω

)
(Q0)(j,1) = ΠjB−1Π1,+1, 3 ≤ j ≤ J (bottom left block).

The first two equations involve the (1, 2) resonance relation. On the support of 1−χ0,

the phase λ1,+1−ω−λ2 is bounded away from zero. Thus we can divide the right-hand
sides by the phase and thereby define (Q0)(1,2) and (Q0)(2,1) as an element of S0. The
last two equations involve the (1, j) resonance relation. The phase λ1,+1−ω−λj might
vanish for some ξ ∈ Rd, but the transparency assumption (Assumption 2.6(ii)) ensures
that this phase factors out in the right-hand sides, so that we can solve for (Q0)(1,j)

and (Q0)(j,1) in S0.

• For |�| = 1, equation (3.16) reduces to

i
(
λ1,+(�+1) − �ω − λ1,+1

)
(Q�)(1,1) = Π1,+(�+1)BqΠ1,+1 (top left block),

i
(
λi,+� − �ω − λj

)
(Q�)(i,j) = Πi,+�B�Πj , 2 ≤ i, j ≤ J (all blocks)

The first equation involves the (1, 1) resonance relation, and the second involves
the (i, j) resonance relation. We use again Assumption 2.6 to solve for the corre-
sponding coefficient of Q in S0.

• For |�| = 2, equation (3.16) reduces to

i(λ1,−1 + ω − λj)(Q−1)(1,j) = Π1,−1B−1Πj , 2 ≤ j ≤ J,

i(λj,+2 − ω − λ1,+1)(Q1)(j,1) = Πj,+2B1Π1,+1, 2 ≤ j ≤ J.

In both equation we find the (j, 1) resonant phase as a prefactor in the left-hand side
and an interaction coefficient associated with (j, 1) in the right-hand side; both phase
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and interaction coefficient are translated by ±ω. For instance, the first equation can
be written

−i
(
λj(ξ + ω) − λ1(ξ) − ω

)
(Q−1(t, x, ξ + k))(1,j) = Π1(ξ)B(u0,−1(t, x))Πj(ξ + k),

which we can solve for (Q−1)(1,j) ∈ S0, by Assumption 2.6.

Remark 3.4. — With Q defined in the above Proposition, there holds Q(i,j) ∈ S−1,

unless λi and λj are bounded, or i = j. In both these cases, Q(i,j) ∈ S0. Indeed, the
symbol λi(ξ + k) − λi(ξ) is typically bounded in ξ, as shown in Lemma 6.20.

By estimates (6.3) and (6.15), with the symbol Q given in Proposition 3.3 is
associated an operator opε(Q), which is a uniform remainder, in particular satis-
fies ‖opε(Q)v‖ε,s � ‖v‖ε,s, for all v ∈ Hs. For ε small enough, Id +

√
εopε(Q) is

invertible for all t. We consider the change of variable

(3.17) Ǔ(t) :=
(
Id +

√
εopε

(
Q(

√
εt)

))−1

U(
√

εt),

corresponding to a normal form reduction and a rescaling in time.

Corollary 3.5. — The equation in Ǔ is

(3.18) ∂tǓ +
1√
ε
opε(iA)Ǔ = opε(B̌)Ǔ +

√
εF̌ , B̌ :=

(
χ0(ξ)Br(

√
εt, x, ξ) 0

0 0

)
where Br is defined in (3.11), and F̌ satisfies the same bounds as F in Lemma 3.1.

Proof. — By definition of Ǔ and (3.6), there holds

∂tǓ = (Id + Q)−1
(
− 1√

ε
opε(iA) + opε(B(

√
εt))

)
(Id + Q)Ǔ

− (Id + Q)−1
(
εopε

(
(∂tQ)(

√
εt)

)
Ǔ +

√
εF

)
,

where Q is short for
√

εopε

(
Q(

√
εt)

)
. There holds

opε(iA)(Id + Q) = (Id + Q)opε(iA) +
√

ε
[
opε(iA), opε(Q(

√
εt))

]
,

so that

(Id + Q)−1opε(iA)(Id + Q) = opε(iA) +
√

ε(Id + Q)−1
[
opε(iA), opε(Q(

√
εt))

]
.

Besides,

(Id + Q)−1opε(B(
√

εt))(Id + Q) = (Id + Q)−1opε(B(
√

εt)) +
√

εR0,

where R0 denotes a uniform remainder, in the sense of Definition 3.2. The equation
in Ǔ thus appears as

∂tǓ +
i√
ε
opε(A)Ǔ

= (Id + Q)−1
(
opε(B(

√
εt)) − [opε(iA), opε(Q(

√
εt))] − εopε(∂tQ(

√
εt))

)
Ǔ +

√
εF̌ ,
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with the source
F̌ := R0Ǔ − (Id + Q)−1F.

By Proposition 3.3, the leading term in the right-hand side in the equation in Ǔ

reduces to (Id + Q)−1opε(B̌). Now, expanding the inverse of Id + Q in Neumann
series and using the fact that opε(Q) is a uniform remainder, we see that there holds
the identity (Id + Q)−1 = Id +

√
εR0, so that

(Id + Q)−1opε(B̌) = opε(B̌) +
√

εR0.

Thus the above equation in Ǔ reduces to (3.18). Since opε(Q) is a uniform remainder,
there holds ‖Ǔ‖ε,s � ‖U‖ε,s � ‖u̇‖ε,s and ‖(Id + Q)−1F‖ε,s � ‖F‖ε,s, hence the
bound ‖F̌‖ε,s � ‖F‖ε,s.

Remark 3.6. — Note that we do not really need Q bounded, only
√

εQ small. In
this sense we could approach the resonance much closer. We will do exactly so in
Appendix 6.3, specifically in the proof of Lemma 6.17, where we derive bounds for
the symbolic flow.

3.1.2.3. Space-frequency localization. — By the assumed polarization condition (see
equation (2.6) in Assumption 2.2), there holds

tr
(
Π1(ξ + k)B(u01(0, x))Π2(ξ)B(u0,−1(0, x))Π1(ξ + k)

)
= |a(x)|2Γ(ξ),

where a is the leading amplitude in the initial datum (1.2), and Γ is introduced
in (2.10).

By continuity and decay of a at spatial infinity, there exists x0 ∈ Rd such that

(3.19) 0 < |a(x0)| = sup
x∈Rd

|a(x)|.

By compactness of R12 and positivity of the stability index Γ (defined in (2.11)), the
function �eΓ(ξ)1/2 is not identically zero on R12. Then, for some ξ0 ∈ R12,

(3.20) 0 < γ =
∣∣∣ max

ξ∈R12
�e

(
Γ(ξ)1/2

)∣∣∣ is attained at ξ0.

Notation 3.7. — Given two cut-offs θ1, θ2 ∈ C∞
c (Rd), with 0 ≤ θ1, θ2 ≤ 1, we

denote
θ1 ≺ θ2

to indicate that θ2 is an extension of θ1, in the sense that (1 − θ2)θ1 ≡ 0. In other
words: θ2 ≡ 1 on the support of θ1.

We denote ϕ0, ϕ, ϕ1 smooth spatial cut-offs, and χ0, χ, χ1 smooth frequency cut-
offs, such that ϕj ∈ C∞

c (Rd
x), χj ∈ C∞

c (Rd
ξ), with 0 ≤ ϕj ≤ 1, 0 ≤ χj ≤ 1, ϕj ≡ 1 on

a neighborhood of x0, χj ≡ 1 on the neighborhood Rh
12 of the resonant set R12, and

ϕ0 ≺ ϕ ≺ ϕ1, χ0 ≺ χ ≺ χ1.
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We will further (see in particular Propositions 3.14 and 3.17 and Remark 3.18) choose
the support of χ1 to be small enough, and the support of ϕ0 to be large enough.
Corresponding small parameters are h > 0 for the frequency truncations (as in the
first paragraph of Section 3.1.2.2) and δϕ0 > 0 for the spatial truncations (see the
proof of Proposition 3.14 below).

We let

(3.21) V := opε

(
χ
)(

ϕǓ
)
,

and

(3.22) W = (W1, W2) :=
(
opε

(
χ
)(

(1 − ϕ)Ǔ
)
,
(
1 − opε(χ)

)
Ǔ
)
,

so that

(3.23) Ǔ = V + W1 + W2.

Lemma 3.8. — The system in (V,W ) is

(3.24)

⎧⎪⎪⎨⎪⎪⎩
∂tV +

1√
ε
opψ

ε (M)V =
√

εFV ,

∂tW +
1√
ε
opε

(
iA)W = opε(D)W +

√
εFW ,

with symbols

M := iχ1A−√
εϕ1B̌, A :=

( A 0
0 A

)
, D :=

(
(1 − ϕ0)χ1B̌ 0

0 0

)
,

and source terms FV , FW satisfying the same bound as F in Lemma 3.1.

Proof. — There holds

∂tV = − i√
ε
opε(χ)

(
ϕopε(A)Ǔ

)
+ opε(χ)

(
ϕopε(B̌)Ǔ

)
+

√
εopε(χ)

(
ϕF̌

)
.

Using the identity opε(χ) ≡ opε(χ1)opε(χ), we compute

opε(χ)
(
ϕopε(A)Ǔ

)
= opε(χ)[ϕ, opε(A)]Ǔ + [opε(χ), opε(A)](ϕǓ) + opε(χ1A)V.

Similarly, using the identity ϕ1ϕ ≡ ϕ,

opε(χ)
(
ϕopε(B̌)Ǔ

)
= opε(χ)

(
ϕ1[ϕ, opε(B̌)]Ǔ) + [opε(χ), ϕ1]opε(B̌)

(
ϕǓ)

+ ϕ1[opε(χ), opε(B̌)](ϕǓ) + ϕ1opε(B̌)V.

Commutators being O(ε) (in the sense of Proposition 6.6), the leading order term in
the above right-hand side is the fourth term ϕ1opε(B̌).

We now use the tensor product structure of every entry of B̌ in order to express
the operator opε(ϕ1B̌) as a para-differential operator. Going back to the definition of
symbol B̌ in (3.18) and Br in (3.11), we denote

Br
12 = g(t, x)Π1,+1B(�e1)Π2
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the top right entry of Br, and similarly B̌12 the corresponding entry in B̌ :

ϕ1opε(B̌12) = ϕ1(x)g(
√

εt, x)opε(χ0Π1,+1B(�e1)Π2).

By Remark 6.4,

ϕ1(x)g(
√

εt, x)opε(χ0Π1,+1B(�e1)Π2) − opψ
ε

(
ϕ1g(

√
εt)χ0Π1,+1B(�e1)Π2)

)
=

(
ϕ1(x)g(

√
εt, x) − opψ

ε (ϕ1g(
√

εt, x)
)
opε(χ0Π1,+1B(�e1)Π2),

hence, by Proposition 6.8,∥∥(ϕ1opε(B̌12) − opψ
ε (ϕ1B̌12)

)
V
∥∥

ε,s
� ε‖ϕ1g(

√
εt)‖ε,s|Ṽ |L∞ ,

with Ṽ := opε(χ0Π1,+1B(�e1)Π2)V. By (6.5), |Ṽ |L∞ � |V |L2 , since χ0 is smooth and
compactly supported.

The same is true of course for the other entry of B̌, and we arrive at

(3.25)
∥∥(ϕ1opε(B̌) − opψ

ε (ϕ1B̌)
)
V
∥∥

ε,s
� ε‖V |L2 .

Gathering the above results, and using opε(χ1A) ≡ opψ
ε (χ1A) (Remark 6.4), we

obtain (3.24)(i), with the source term

FV :=
√

εopε(χ)
(
ϕF̌

)− i√
ε

(
opε(χ)[ϕ, opε(A)]Ǔ + [opε(χ), opε(A)]

(
ϕǓ)

)
+ opε(χ)

(
ϕ1[ϕ, opε(B̌)]Ǔ) + [opε(χ), ϕ1]opε(B̌)

(
ϕǓ) + ϕ1[opε(χ), opε(B̌)](ϕǓ)

+ ε−1/2
(
ϕ1opε(B̌) − opψ

ε (ϕ1B̌)
)
V.

The fact that FV satisfies the same bound as F̌ and F follows from (3.25) and the
elementary results of Appendix 6.1.1.

The equation in W1 is derived in the same way, the only difference being the use
of (1 − ϕ0)(1 − ϕ) ≡ (1 − ϕ) in place of ϕ1ϕ ≡ ϕ.

Finally, the equation in W2 involves the source term opε(1 − χ)opε(B̌)Ǔ . The
symbol (1 − χ)B̌ vanishes identically, by (1 − χ)χ0 = 0 and definition of B̌ in (3.18).
Hence, by estimate (6.6), there holds opε(1−χ)opε(B̌) = εR0, where R0 is a uniform
remainder (in the sense of Definition 3.2 page 33).

System (3.24) is the prepared system, in which
– the symbol M is the key term; it involves the diagonal hyperbolic operator A in
a neighborhood of the (1, 2) resonance, and the interaction coefficients associated
with (1, 2) via Br,

– the source term in the right-hand side of the equation in W1 will be made
small, by choice of a spatial cut-off ϕ0 with a large support, exploiting decay at
infinity of the leading profile of the WKB solution;
– the equation in W2 is non-singular, a consequence of the normal form reduction
of Section 3.1.2.2.
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3.1.3. Duhamel representation. — In this Section we use Theorem 6.14 from
Appendix 6.2 and write an integral representation formula for the variable V intro-
duced in (3.21). From this representation we derive an upper bound for ‖V ‖ε,s.

The symbol M of the propagator in the equation (3.24)(i) in V is

(3.26) M(ε, t, x, ξ) = iχ1A−√
εϕ1B̌ =

⎛⎜⎜⎜⎜⎜⎜⎝
iχ1μ1 −√

ε b̃12 0 · · · 0
−√

ε b̃21 iχ1μ2 0 · · · 0
0 0 iχ1λ3 · · · 0
...

...
...

. . .
...

0 0 0 · · · iχ1λJ

⎞⎟⎟⎟⎟⎟⎟⎠
where

– the cut-offs functions ϕ1, χ1 were introduced just below Notation 3.7 on
page 36,

– the shifted eigenvalues μ1 = λ1(· + k) − ω and μ2 = λ2 were introduced in
(3.15),

– the N × N extra-diagonal blocks are

(3.27) b̃12 := χ0(ξ)ϕ1(x)g(
√

εt, x)b+
12(ξ), b̃21 = χ0(ξ0)ϕ1(x)g(

√
εt, x)∗b−21(ξ),

where

(3.28) b+
12(ξ) := Π1(ξ + k)B(�e1)Π2(ξ), b−21(ξ) := Π2(ξ)B(�e−1)Π1(ξ + k),

are the interaction coefficients associated with resonance (1, 2), in the sense of
Definition 2.5.

By regularity of the eigenprojectors (Assumption 2.1) and the approximate solution
(Assumption 2.2), Assumption 6.9 is satisfied, where x
 is the maximum of all |x|
with x in the support of ϕ1.

The symbolic flow S0 of M is defined as the solution to the initial-value problem

(3.29) ∂tS0 +
1√
ε
MS0 = 0, S0(τ, τ) = Id.

Proposition 3.9. — For all T > 0, all 0 ≤ τ ≤ t ≤ T | ln ε|, α ∈ Nd, there holds

|∂α
x S0(τ, t)| � | ln ε|∗ exp

(
(t − τ)γ+

)
,

where

(3.30) γ+ := |a|L∞
∣∣ max

ξ∈Rh
12

�e
(
Γ(ξ)1/2

)∣∣,
and | ln ε|∗ denotes | ln ε|N∗

for some large constant N∗ > 0 depending on all param-
eters, but not on ε nor on τ, t.

Note that γ+ is 1-homogeneous in a, while γ, defined in (2.14), does not depend
on a.
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Proof. — The proof is postponed to Appendix 6.3. It uses elementary linear alge-
bra, rendered non-trivial by the fact that the resonant frequencies are asymptotically
close to crossing points in the spectrum of M, and a non-stationary phase argument
analogous (and complementary) to the normal form reduction of Section 3.1.2.2.

Proposition 3.9 verifies that the flow of M defined in (3.26) satisfies Assump-
tion 6.10.

Thus, Theorem 6.14 from Appendix 6.2 page 106 applies, and the unique solution
to (3.24)(i) satisfies the representation

(3.31) V = opψ
ε (S(0; t))V (0) +

√
ε

∫ t

0

opψ
ε (S(t′; t))F̃V (t′) dt′,

where S(t′; t) :=
∑

0≤q≤q0
Sq, the leading term S0 being the symbolic flow (3.29),

and the correctors Sq, for 1 ≤ q ≤ q0, being defined in (6.19). The order q0 of the
expansion is a function of Γ and T0, as seen on equation (6.29) page 107. The source
term F̃V can be expressed in terms of FV and the datum V (0), as in (6.26). The
bound (6.27) implies

(3.32) ‖F̃V ‖ε,s ≤ ‖FV ‖ε,s + ‖V (0)‖ε,s.

Proposition 3.9 and Lemma 6.12 imply that opψ
ε (S(t′; t)) satisfies the bound

(3.33) ‖opψ
ε (S(t′; t))v‖ε,s � | ln ε|∗e(t−t′)γ+‖v‖ε,s, v ∈ Hs.

From there, we deduce the bound, for s ≥ 0 :

‖V (t)‖ε,s � etγ+ | ln ε|∗‖V (0)‖ε,s + ε1/2| ln ε|∗
∫ t

0

e(t−t′)γ+‖FV (t′)‖ε,s dt′.

According to Lemmas 3.1 and 3.8, there holds

(3.34) ‖FV ‖ε,s �
(
1 + ε−1/2|u̇(ε1/2t)|L∞

)‖u̇(
√

εt)‖ε,s + εKa .

Going up the chain of changes of variables (3.21)-(3.22), (3.17), (3.5), we see that

(3.35) ‖u̇(
√

εt)‖ε,s � ‖(V,W )(t)‖ε,s.

Since by assumption K ≤ Ka + 1/2, we conclude that
(3.36)

‖V (t)‖ε,s � εK | ln ε|∗etγ+

+ ε1/2| ln ε|∗
∫ t

0

e(t−t′)γ+
(1 + ε−1/2|u̇(ε1/2t′)|L∞

)‖(V,W )(t′)‖ε,s dt′.

3.1.4. Lower bound. — We now choose the datum

(3.37) u̇(0, x) := εKeix·(ξ0+k)/εϕ0(x)�e0,

where ϕ0 is the spatial truncation introduced just below Notation 3.7 on page 36, and
the fixed vector �e0 satisfies

(3.38) �e0 = Π1(ξ0 + k)B(�e1)Π2(ξ0)B(�e−1)Π1(ξ0 + k)�e0, |�e0| = 1.
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The matrix Π1(ξ0+k)B(�e1)Π2(ξ0)B(�e−1)Π1(ξ0+k) has rank one by assumption (rank
at most one by Assumption 2.6(iii), and at least one by Γ �= 0), so that by (3.38) the
vector �e0 is defined as the unitary generator of its image.

Lemma 3.10. — With the choice (3.37), the datum for V is

V (0) = εKeix·ξ0/εV0 + εK+1/2Ṽ ε
0 , V0 := ϕ0(x)

(
�e0, 0, . . . , 0

)
, sup

0<ε<ε0

‖Ṽ ε
0 ‖ε,s < ∞.

Proof. — We denote in this proof fε
0 any family of Hs maps such that

sup
0<ε<ε0

‖fε
0‖ε,s < ∞.

With this notation, given a Fourier multiplier P ∈ S0 and f ∈ C∞
c , there holds

(3.39) opε(P )f = P (0)f + εfε
0 .

With the choice (3.37), there holds

U1(0) = εKe−ik·x/εopε(Π1)
(
eix·(ξ0+k)/εϕ0�e0

)
= εKeix·ξ0/εopε(Π1,+(ξ0+k))ϕ0�e0.

This implies, by (3.39),

U1(0) = εKeix·ξ0/εϕ0(x)Π1(ξ0 + k)�e0 + εfε
0 = εKeix·ξ0/εϕ0(x)�e0 + εfε

0 ,

the second equality by Π1(ξ0 + k)�e0 = �e0. Next we compute, for j ≥ 2, using (3.39)
again,

opε(Πj)
(
eix·(ξ0+k)/εϕ0�e0

)
= eix·(ξ0+k)/εϕ0(x)Πj(ξ0 + k)�e0 + εfε

0 .

This gives Uj(0) = εfε
0 , since Πj(ξ0 + k)�e0 = 0 for j ≥ 2. From there, we obtain

Ǔ1(0) = U1(0) −√
εR0U(0) = εKeix·ξ0/εϕ0(x)�e0 +

√
εfε

0 ,

and
V1(0) = εKopε(χ)

(
ϕeix·ξ0/εϕ0

)
�e0 + εK+1/2fε

0 = εKopε(χ+ξ0)ϕ0�e0,

since ϕϕ0 ≡ ϕ0, and then with (3.39),

V1(0) = εKeix·ξ0/εχ(ξ0)ϕ0(x)�e0 + εK+1/2fε
0 .

Since χ(ξ0) = 1, we obtained the first component of V (0). We conclude with

Vj(0) = opε(χ)
(
ϕ(εfε

0 −√
εR0U(0))

)
=

√
εfε

0 , j ≥ 2.

Lemma 3.11. — For the datum V (0) described in the above Lemma, there holds for
small enough ρ > 0, for some C(ρ) > 0 :

(3.40)
∣∣opψ

ε (S(0; t))V (0)
∣∣
L2(B(x0,ρ))

≥ C(ρ)εK
(
etγ− − ε1/2| ln ε|∗etγ+

)
,

where γ− := γ min
|x−x0|≤ρ

|a(x)|, with γ as in (2.14).
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We recall that notation | ln ε|∗, introduced in the statement of Proposition 3.9,
denotes | ln ε|N∗

, for some N∗ > 0 independent of ε, t.

Note that the lower rate of growth γ− in (3.40) is 1-homogeneous in a, just like
the upper rate of growth γ+ (3.30) and unlike coefficient γ (2.14).

Proof of Lemma 3.11. — By Lemma 3.10, the datum V (0) decomposes as a leading
term and a remainder εK+1/2Ṽ ε

0 . By (3.33), there holds

‖opψ
ε (S(0; t))(εK+1/2Ṽ ε

0 )‖L2 � εK+1/2| ln ε|∗etγ+
.

We turn to the action of opψ
ε (S) on the leading term eix·ξ0/εV0 in V (0). By Remark 6.2,

opψ
ε (S(0; t))

(
eix·ξ0/εV0

)
= eix·ξ0/ε

∫
eix·ξS(0; t, x, ξ0 + εξ) V̂0(ξ) dξ,

where S(0; t, x, ξ) :=
(
F−1ψ � S̃(0; t)

)(x

ε
, ξ

)
, with S̃(0; t, x, ξ) = S(0; t, εx, ξ). This

gives
opψ

ε (S(0; t))
(
eix·ξ0/εV0

)
= eix·ξ0/εS(0; t, x, ξ0)V0(x) + εṼ0,

where the remainder Ṽ0 is the sum Ṽ0 = Ṽ01 + Ṽ02 :

Ṽ01 :=
∑
|α|=1

∫
eix·ξ

(∫ 1

0

(
∂α

ξ S
)
(0; t, x, ξ0 + ετξ) dτ

)
∂̂α

x V0(ξ) dξ,

Ṽ02 :=
∑
|α|=1

∫
Rd

F−1(∂α
η ψ)(y, ξ0)

(∫ 1

0

∂α
x S(0; t, x − ετy, ξ0) dτ

)
dy V0(x).

There holds

|Ṽ01|L2(B(x0,ρ)) ≤ ρd/2 sup
ξ∈Rd

|∂ξS(·, ξ)|L∞(B(x0,ρ))‖V0‖H1+d/2+ .

By Remark 6.3 and Lemma 6.11,

|∂ξS|L∞ � |S|L∞ + |∂ξS|L∞ � ε−1/2| ln ε|∗etγ+
.

By Remark 6.3 and Proposition 3.9,

|Ṽ02|L2(B(x0,ρ)) � sup
x∈Rd

|∂xS(0; t, ·, ξ0)||V0|L2(B(x0,ρ)) � | ln ε|∗etγ+
.

It remains to bound from below the function S(0; t, x, ξ0)V0 on B(x0, ρ). Note that
here ξ is frozen at ξ0, so that the regularity issues of Appendix 6.3 do not come into
play.

The symbolic flow S is defined just above Lemma 6.13 on page 105 as

S(0; t) = S0 + ε1/2
(
S1 + · · · + εq0−1/2Sq0

)
.

Lemma 6.11 implies the uniform bound

ε1/2
∣∣S1 + · · · + εq0−1/2Sq0

∣∣ � ε1/2| ln ε|∗etγ+
.
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According to Section 6.3.2, and especially (6.37) on page 111, the leading term S0

decomposes as

S0(0; t, x, ξ0) = exp
(
tM(0, x, ξ0)/

√
ε
)

+ ε1/2Σ, where |Σ| � etγ+
.

We are left with the matrix exponential exp
(
tM(0, x, ξ0)/

√
ε
)
, where M is given

explicitly in (3.26). At ξ = ξ0, there holds μ1 = μ2, so that

exp
(
tM(0, x, ξ0)/

√
ε
)

= diag
(
eitλ2(ξ0)/

√
ε exp

(
tM̃(x)

)
,
(
eitλj(ξ0)/

√
ε
)
3≤j≤J

)
.

The matrix M̃ is

M̃(x) :=
(

0 b̃12(0, x, ξ0)
b̃21(0, x, ξ0) 0

)
,

where b̃12 and b̃21 are defined in (3.27). It has rank two, by Assumption 2.6(iii), and
spectrum {

0, ±tr (b̃12(0, x, ξ0)b̃21(0, x, ξ0)1/2
}

=
{
0, ±|a(x)|(γ + iα

)}
,

where α := �m
(
Γ(ξ0)1/2

)
. (For a detailed computation, see the paragraphs just above

the statement of Lemma 6.16 in Appendix 6.3 on page 109.) By definition of x0 and ξ0

in Section 3.1.2.3 on page 36, there holds γ �= 0, and |a(x)| �= 0 locally around x0. As
a consequence, locally around x0 the matrix M̃ has a smooth spectral decomposition

M̃(x) = a(x)(γ + iα)
(
P+(x) − P−(x)

)
,

with rank-one projectors. The ranges of the eigenprojectors (eigenspaces of M̃) are

RanP±(x) =
{

c
(
�e0, ± b̃21(0, x, ξ0)

|a(x)|γ �e0

)
, c ∈ C

}
.

In particular,

(3.41) P±(x)
(
�e0, 0

) ≡
(
1 +

(
b̃21(0, x, ξ0)γ−1|a(x)|−1

)2
)−1/2

(�e0, 0).

This gives for x close to x0 :∣∣ exp
(
tM̃(x)

)
V0(x)

∣∣ ≥ C(x)eta(x)γ − ∣∣P−(x)(�e0, 0)
∣∣,

where C(x) �= 0 in a neighborhood of x0, and the result follows by

(3.42)

(∫
B(x0,ρ)

e2ta(x)γ dx

)1/2

≥ C(ρ)etγ−
,

with C(ρ) = O(ρd).

Remark 3.12. — In (3.41) we see that P±V0 = (�, 0). For opψ
ε (S(0; t))V, which, at

a given (t, x), is a vector in CNJ :

opψ
ε (S(0; t)V (0) =

(
(opψ

ε (S(0; t)V (0))1, opψ
ε (S(0; t)V (0))2, . . .

)
∈ CN×N×...,

this implies that the leading term is (opψ
ε (S(0; t)V (0))1. This observation will be useful

at the end of Section 3.1.6.
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3.1.5. Existence over logarithmic times and upper bound. — We denote
(3.43)

(V (0), W (0)), with V (0) as described by Lemma 3.10, and ‖W (0)‖ε,s = O(εK),

the datum derived from u̇(0) (3.37) in the coordinates (V,W ) of the prepared sys-
tem (3.24).

We prove here existence and uniqueness of a solution (V,W ) to (3.24) issued
from (3.43), over the interval [0, T0

√
ε| ln ε|), where the limiting time T0 is defined

in (2.12).
The difficulty is in the treatment of the L∞ norm.
In a first part (Section 3.1.5.1), we perform estimates in FL1 norm on the prepared

system (3.24) and combine these with Sobolev estimates on W from (3.24) and the
upper bound (3.36) for V that we derived from the Duhamel representation (3.31);
here we use the bound |u|L∞ ≤ |û|L1 .

In a second part (Section 3.1.5.2), we only use Sobolev estimates on W from (3.24)
and the upper bound (3.36); there we use the Sobolev embedding |u|L∞ � ε−d/2‖u‖ε,s,

for s > d/2.

3.1.5.1. In FL1 and Hs. — An observation time T1 is given, such that

(3.44) T1 <
K

|B|0|â|L1
,

where notation |B|0 is introduced in (2.13).

Lemma 3.13. — If ϕ0 ≡ 1 on a large enough ball around x0, and if ε is small
enough, then the initial value problem (3.24)-(3.43) is well-posed in FL1 over the
interval [0, T1| ln ε|], and there holds the bound

(3.45) sup
0≤t≤T1| ln ε|

|F(V,W )(t)|L1 ≤ εη1 ,

for some η1 = η1(ε, T1) > 0, with η1 → 0 as T1 → K/(|B|0|â|L1) and ε → 0.

Above, FL1 is the Banach algebra of maps u with Fourier transform û in L1.

Proof. — While a para-differential formulation of (3.24) was useful for the Duhamel
representation of Section 3.1.3, we return here to a purely pseudo-differential formu-
lation of (3.24). This simply means changing opψ

ε (M) into opε(M) in the left-hand
side, an operation that takes one term out of the source FV (namely, the term in the
third line of the definition of FV in the proof of Lemma 3.8).

Being symmetric hyperbolic and semilinear, the initial-value problem (3.2)-(3.37)
is locally well-posed in FL1. Since the prepared system (3.24) derives from (3.2)
via Fourier multipliers, and since Fourier multipliers operate in FL1 (as evidenced
by (6.4)), the initial-value problem (3.24)-(3.43) is also locally well-posed in time.

From (3.37), we infer, via (6.4), that there holds |(V,W )(0)|FL1 � εK , on top of
the bounds given in Lemma 3.10 and (3.43).
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The local-in-time existence theory (based on the Cauchy-Lipschitz theorem)
gives a notion of maximal existence time, which we denote T
(ε). The func-
tion t → |F(V,W )(t)|L1 is continuous over [0, T
(ε)). Consider the set

J :=
{

t ∈ (0, T
(ε)) ∩ (0, T1

√
ε| ln ε|], ∀ t′ ∈ (0, t), |F(V,W )(t′)|L1 ≤ εη1

}
,

where 0 < η1 < K will be appropriately chosen below, depending on T1.

We are going to prove that, for ε small enough, J is non-empty, open and closed
in (0, T1

√
ε| ln ε|]. This will prove well-posedness over [0, T1

√
ε| ln ε|], by connectedness.

By |F(V,W )(0)|L1 = O(εK) � εη1 and continuity of t → |F(V,W )(t)|L1 , we see
that J is not empty. The fact that J is closed follows immediately from its definition.

Now given t ∈ J, there certainly holds (t − ζ, t] ⊂ J for some ζ > 0. Therefore we
only have to prove that [t, t + ζ) ∩ (0, T1

√
ε| ln ε|] ⊂ J for some ζ > 0.

After applying the Fourier transform to both equations in (3.24) and factorizing
the oscillations, we find, for a given t ∈ J :

V̂ (t) = e−it(χ1A)(εξ)/
√

εV̂ (0) +
∫ t

0

e−i(t−t′)(χ1A)(ε∂x)/
√

ε
(
F(

opε(ϕ1B̌)V
)
+
√

εF̂V

)
dt′.

and

Ŵ (t) = e−itA(εξ)/εŴ (0) +
∫ t

0

e−i(t−t′)A(εξ)/ε
(
F(

opε(D)W
)

+ F̂W

)
dt′.

The symbols A and A are diagonal and real, so that |eitA(ξ)| ≤ 1, |eitA(ξ)| ≤ 1.

Besides, by Young’s convolution inequality, and recalling that the norm in use in CN

is the sup norm, ∣∣∣opε(ϕ1B̌)V
∣∣∣
FL1

≤ |B|0|ϕ̂1|L1 |û0(
√

εt)|L1 |V̂ |L1 ,

where |B|0 is defined in (2.13), and similarly∣∣opε(D)W
∣∣
FL1 ≤ |(1 − ϕ0)u0(

√
εt)|FL1 |B||Ŵ |L1 .

There holds over [0, T1| ln ε|] :

|û0(
√

εt)|L1 ≤ |â|L1+C0

√
ε| ln ε|, |(1−ϕ0)u0(

√
εt)|FL1 ≤ |(1−ϕ0)a|FL1+C0

√
ε| ln ε|,

where C0 > 0 is independent of ε, t, and depends on ∂tu0, which according to Assump-
tion 2.2 belongs to C0Hsa , hence to FL1. As ϕ0 → 1 (the function identically equal
to 1), there holds |ϕ̂1|L1 → 1 and |(1 − ϕ0)a|FL1 → 0. In particular, for any δϕ0 > 0,

we can choose ϕ0, ϕ1 such that

|ϕ̂1|L1 ≤ 1 + δϕ0 , |(1 − ϕ0)a|FL1 ≤ δϕ0 .

Thus we obtain

|V̂ (t)|L1 � εK + |B|0(1 + δϕ0)(|â|L1 + C0

√
ε| ln ε|)

∫ t

0

|V̂ (t′)|L1dt′ +
√

ε

∫ t

0

|F̂V |L1dt′,

|Ŵ (t)|L1 � εK + |B|(δϕ0 + C0

√
ε| ln ε|)

∫ t

0

|Ŵ (t′)|L1 dt′ +
√

ε

∫ t

0

|F̂W |L1 dt′.
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With the FL1 bound for (FV , FW ) derived from Lemma 3.1 and |u̇|FL1 � |V,W |FL1 ,

a consequence of (6.4), this yields, using t ∈ J and Ka + 1/2 ≥ K :

|(V̂ , Ŵ )(t)|L1 � εK | ln ε|∗ +
(
|B|0(1 + δϕ0)(|â|L1 + C0

√
ε| ln ε|) + εη1

)
×

∫ t

0

|(V̂ , Ŵ )(t′)|L1dt′,

for δϕ0 small enough (depending on B and |â|L1). We now let

(3.46) 2η1 := K − |B|0|â|L1T1.

Then, for ε small enough, and δϕ0 small enough, depending in particular on T1, there
holds

3
2
η1 < K − |B|0|â|L1T1 −

(
εη1 + C0

√
ε| ln ε||B|0(1 + δϕ0) + δϕ0 |B|0|â|L1

)
T1.

With the above bound in |(V̂ , Ŵ )|L1 and Gronwall’s lemma, this implies, for ε small
enough,

(3.47) |F(V,W )(t)|L1 ≤ ε(3/2)η1 , t ∈ J.

Then, by continuity of t → |F(V,W )(t)|L1 , we obtain |F(V,W )(t + ζ)|L1 ≤ εη1

if ζ and ε are small enough. This concludes the verification that J is open in the
interval (0, T1

√
ε| ln ε|). The bound (3.47) is then valid over [0, T1

√
ε| ln ε|], and this

is (3.45).

Proposition 3.14. — If ϕ0 ≡ 1 on a large enough ball around x0, and if ε is small
enough, the solution (V,W ) to system (3.24) issued from (3.43) is defined over the
interval [0, T1| ln ε|], and there holds the bound

(3.48) ‖(V,W )(t)‖ε,s � εK | ln ε|∗etγ+
.

The observation time T1 is introduced at the beginning of this Section, and the
amplification rate γ+ is defined in (3.30). The spatial cut-off ϕ0 is introduced just
below Notation 3.7 and intervenes in the equation (3.24)(ii) in W.

Proof. — We compute 2�e (Λs∂tW, ΛsW )L2 , where Λs is the Fourier multiplier de-
fined by Λs := opε

(
1 + | · |2)s/2

)
, and W solves (3.24)(ii). By symmetry, the contri-

bution of A is zero, so that

(3.49) ∂t

(‖W‖2
ε,s

) ≤ 2
(|Λsopε(D)W |L2 + ε1/2‖FW ‖ε,s

)‖W‖ε,s.

By (6.6),

(3.50) |opε(D)ΛsW |L2 � |(1 − ϕ0)u0|L∞‖W‖ε,s ≤ δϕ0‖W‖ε,s,

where δϕ0 > 0 can be made arbitrarily small by letting ϕ0 ≡ 1 on a very large ball
around x0, since u0 decays at spatial infinity. The commutator is estimated by (6.8)
(here, we use again the fact that every entry of D is a tensor product D1(x)D2(ξ)):

(3.51)
∣∣[Λs, opε(D)]W

∣∣
L2 � ε‖ua‖Hsa ‖W‖ε,s−1.
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By Lemma 3.13, there holds for t ≤ T1| ln ε| :

(3.52) |u̇(
√

εt)|L∞ ≤ |F u̇(
√

εt)|L1 � |F(V,W )(t)|L1 ≤ εη1 ,

where η1 is defined in (3.46). A bound for FW is given in Lemmas 3.1 and 3.8.
With (3.52), this bound is

‖FW ‖ε,s � (1 + ε−1/2+η1)‖V,W‖ε,s + εKa .

We obtained, for ε small enough,

(3.53)
‖W (t)‖2

ε,s � ε2K + δϕ0

∫ t

0

‖W (t′)‖2
ε,s dt′ + εη1

∫ t

0

‖(V,W )(t′)‖2
ε,s dt′

+ εKa+1/2

∫ t

0

‖W (t′)‖ε,s dt′.

Going back to the upper bound (3.36) for V and exploiting (3.52), we see that there
also holds

(3.54) ‖V (t)‖ε,s � εK | ln ε|∗etγ+
+ εη1 | ln ε|∗

∫ t

0

e(t−t′)γ+‖(V,W )(t′)‖ε,s dt′.

From (3.53) and (3.54), and Ka + 1/2 ≥ K, we find that the scalar quan-
tity y(t) := maxt′∈[0,t] ‖V (t′)‖ε,s + ‖W (t′)‖ε,s satisfies the bound

y(t) � εKεtγ+ | ln ε|∗ +
∫ t

0

δϕ0y(t′) dt′ + εη1 | ln ε|∗
∫ t

0

e(t−t′)γ+
y(t′) dt′.

By application of the Gronwall Lemma of Appendix 6.4, this gives (3.48), under extra
conditions on the small constant δϕ0 , implying conditions on the support of ϕ0, which
are η1 − δϕ0T1 > 0 and γ|a|L∞ > δϕ0 .

The fact that the a priori bound (3.48) translates into a bound from below for
the existence time follows from a classical continuation argument, similar to the one
detailed in the proof of Lemma 3.13.

Remark 3.15. — It would be tempting to use FL1 bounds in conjunction with the
Duhamel representation (3.31) of V, instead of FL1 bounds for the equation (3.24)(i)
in V, in the hope of obtaining a better estimate on the existence time, one that would
involve γ|â|L1 instead of |B|0|â|L1 . This would require FL1 → FL1 estimates on
pseudo-differential operators which, as far as we know, are not known to exist.

Remark 3.16. — Going back to the proof of Proposition 3.14 and using in (3.53)
the bound (3.48), we see that W enjoys the better upper bound

‖W (t)‖ε,s � εK−T1δϕ0/2 + εK+(η1−T1δϕ0 )/2| ln ε|∗etγ+
, t < T1| ln ε|.

This will be useful in Section 3.1.6.
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3.1.5.2. In Hs. — We revisit here the estimates of the proof of Proposition 3.14, and
give a slightly different existence result. We now consider an observation time T2 such
that

(3.55) T2 <
K − d/2
γ|a|L∞

.

Recall that h > 0 intervenes in the upper rate γ+ defined in (3.30); it plays the role
of a security distance from the resonance. By continuity, there holds γ+ → |a|L∞γ in
the limit h → 0.

Proposition 3.17. — If ϕ0 ≡ 1 on a large enough ball around x0, and if ε is small
enough, the solution (V,W ) to (3.24) issued from (3.43) is defined over [0, T2| ln ε|],
and there holds the bound

(3.56) ‖(V,W )(t)‖ε,s � εK | ln ε|∗etγ+
.

Proof. — We go back to the proof of Proposition 3.14. Instead of appealing to
Lemma 3.13 to gain control of the L∞ norm of u̇, we use the Sobolev embedding

(3.57) |v|L∞ ≤ Cs,dε
−d/2‖v‖ε,s, Cs,d > 0, v ∈ Hs, s > d/2,

and control of ‖u̇‖ε,s by ‖V,W‖ε,s, as in (3.35), as follows:
Local-in-time well-posedness in Hs is granted by symmetric hyperbolicity, the semi-

linear nature of the nonlinearity, and s > d/2. Let T∗(ε) be the maximal existence
time (2) in Hs. Consider the set

J :=
{

t ∈ [0, T∗(ε)) ∩ (0, T2

√
ε| ln ε|], ∀ t′ ∈ (0, t), |u̇(t′)|L∞ ≤ εη2

}
,

where η2 > 0 will be chosen appropriately below, depending on T2.

We now prove that, given t ∈ J, for some ζ > 0 there holds [t, t + ζ) ⊂ J. Just like
in the proof of Lemma 3.13, this will imply T∗(ε) > T2

√
ε| ln ε| by a connectedness

argument.
From (3.57) and Lemmas 3.1 and 3.8, for t ∈ J we deduce for the source term FW

the bound
‖FW ‖ε,s �

(
1 + ε−1/2+η2

)‖V,W‖ε,s + εKa .

Combined with estimates (3.49)-(3.50)-(3.51) in W, this gives the bound, for t ∈ J :

‖W (t)‖2
ε,s � ε2K + δϕ0

∫ t

0

‖W (t′)‖2
ε,s dt′ + εη2

∫ t

0

‖(V,W )(t′)‖2
ε,s dt′

+ εKa+1/2

∫ t

0

‖W (t′)‖ε,s dt′.

2. The fact that notation T∗(ε) was already used, with a different meaning, in the proof of

Lemma 3.13 should not be a factor of confusion, since this use of T∗(ε) is confined to the present

proof. Same for J below.
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By (3.36), for t ∈ J :

‖V (t)‖ε,s � εK | ln ε|∗etγ+
+ Cεη2 | ln ε|∗

∫ t

0

e(t−t′)γ+‖(V,W )(t′)‖ε,s dt′.

By application of Lemma 6.18 we deduce from the above bounds the inequality

(3.58) ‖V,W (t)‖ε,s � εK | ln ε|∗etγ+
, t ∈ J,

for δϕ0 small enough (depending on η2, T2 and γ). By (3.57) and (3.35), this implies

|u̇(t)|L∞ � εK−d/2| ln ε|∗etγ+
, t ∈ J.

We let
2η2 := K − d/2 − T2γ|a|L∞ .

Then, if h is small enough, there holds (3/2)η2 < K − d/2 − T2γ
+. This implies,

for ε small enough, the upper bound |u̇(t)|L∞ ≤ ε(3/2)η2 , and we conclude as in the
proof of Proposition 3.14: the bound (3.58), which we now know to be valid over the
interval [0, T2

√
ε| ln ε|], is the bound (3.56).

3.1.6. Endgame: proof of the deviation estimate (2.16). — Let T < T0 be
given, where the limiting observation time T0 is defined in (2.12). By Propositions 3.14
and 3.17, the solution (V,W ) to the prepared system (3.24) is defined over [0, T | ln ε|].

Consider first the case

(3.59) T0 =
K

|B|0|â|L1
, so that K0 = K

(
1 − γ|a|L∞

|B|0|â|L1

)
,

and the bounds of Section 3.1.5.1 apply.

From the Duhamel representation (3.31) and the bound (3.33) for the action of
opε(S), we find the lower bound

(3.60)

∣∣V (
T | ln ε|)∣∣

L2(B(x0,ρ))
≥ ∣∣opε(S(0;T | ln ε|))V (0)

∣∣
L2(B(x0,ρ))

− C
√

ε| ln ε|∗
∫ T | ln ε|

0

e(T | ln ε|−t′)γ+ |F̃V (t′)|L2dt′.

From the upper bounds (3.32) and (3.34) for FV , and (3.35) and Proposition 3.14, we
deduce

√
ε|F̃V (t)|L2 � εK+1/2 + εKa+1/2 + (ε1/2 + |u̇(

√
εt)|L∞)εKetγ+

.

By Lemma 3.13, there holds |u̇(
√

εt)|L∞ ≤ εη1 for t < T, under condition (3.59).
Together with Ka + 1/2 ≥ K, this implies that the above upper bound in F̃V takes
the form

(3.61)
√

ε|F̃V (t)|L2 � εK + εK+η1etγ+
.

We now use in (3.60) the lower bound for opε(S(0; t))V (0) given in Lemma 3.11 and
bound (3.61). This shows that |V (T | ln ε|)|L2(B(x0,ρ)) is bounded from below by

C(ρ)εK−Tγ− − C| ln ε|∗εK+1/2−Tγ+ − CT | ln ε|∗εK+η1−Tγ+
.
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Up to a multiplicative constant, we can rewrite this lower bound

εK−Tγ−(
1 − C| ln ε|∗εη1−T (γ+−γ−)

)
.

The smaller the exponent K −Tγ−, the better the above lower bound. Under (3.59),
there certainly holds

K0 ≤ K − Tγ−,

since γ− ≤ γ|a|L∞ . However, for any K ′ > K0, by choosing ρ small enough in
Lemma 3.11, and by choosing T0 − T small enough, we can achieve

(3.62) K0 < K − Tγ− < K ′.

Besides, given T < T0, we can choose h in (3.10) and ρ small enough, possibly even
smaller than above, so that, for ε small enough, the minimal amplification rate γ−

defined just below (3.40) and the maximal amplification rate γ+ defined in (3.30) are
close enough so that

(3.63) γ+ − γ− <
η1

T
,

where η1 is defined in (3.46). This implies

(3.64)
∣∣V (

T | ln ε|)∣∣
L2(B(x0,ρ))

≥ 1
2
C(ρ)εK−Tγ−

,

for T0 − T, h, ρ, and ε small enough. Now with (3.23),∣∣Ǔ(
T | ln ε|)∣∣

L2(B(x0,ρ))
≥ ∣∣V (

T | ln ε|)∣∣
L2(B(x0,ρ))

− |W (T | ln ε|)|L2(Rd).

By Remark 3.16 page 47, there holds

‖W (T | ln ε|)|L2 � εK+(η1−T1δϕ0 )/2−Tγ+ .

If we now make sure, by choice of h, ρ, that

(3.65) γ+ − γ− <
η1 − δϕ0T1

2T1
,

then the exponent K −Tγ− in the lower bound for V (T | ln ε|) is strictly smaller than
the exponent K + (η1 − δϕ0T1)/2 − Tγ+ in the upper bound for W (T | ln ε|), and the
above shows that |Ǔ(T | ln ε|)|L2(B(x0,ρ)) enjoys the same lower bound (3.64) as V.

Still going up the chain of changes of variables, we arrive by (3.17) at

|U |L2(B(x0,ρ)) ≥ |Ǔ |L2(B(x0,ρ)) − ε1/2|R0Ǔ |L2(Rd).

Since |R0Ǔ |L2 � |V,W |L2 , it suffices to use Proposition 3.14 again. This time there
is no need to further shrink our parameters, and we obtain that U satisfies the same
lower bound as V.

Finally, by Remark 3.12, the leading term in V (T | ln ε|) is the first compo-
nent V1(T | ln ε|) ∈ CN , in the sense that all other components are smaller by a
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factor ε1/2, so that V1(T | ln ε|) enjoys the lower bound (3.64). The same is true
for Ǔ1(T | ln ε|), and finally for U1, which shows that

(3.66) |u̇(
√

εt)|L2(B(x0,ρ)) ≥ CeK−Tγ−
.

The lower bound (3.66) implies the deviation estimate (2.16), and concludes the proof
of the instability statement in Theorem 2.7, in the case (3.59).

In the case
K

|B|0|â|L1
<

K − d/2
γ|a|L∞

, so that K0 = d/2,

we use the bounds of Section 3.1.5.2 instead of the bounds of Section 3.1.5.1, and
arrive at (2.16) in exactly the same fashion as above.

Remark 3.18. — The choice of parameters is made in the following order: un-
der (3.59), given K ′ > K0, we choose T1 so that (3.62) holds for all ρ < ρ0(T1).
Associated with this T1, we have η1 defined in (3.46). Depending on η1, T1 and γ,

we choose ϕ0 so that the conditions on δϕ0 that are formulated in the proofs of
Propositions 3.14 and 3.17 hold. Then, we choose h and ρ < ρ0(T1), so that (3.63)
and (3.65) hold. From there, the final deviation estimate (2.16) holds if ε is small
enough, depending on all the other parameters.

3.2. Proof of Theorem 2.7: stability

We assume Γ < 0 and define a perturbation unknown by

(3.67) u =: ua + εκu̇, with (1 + d)/2 ≤ κ ≤ min(K, Ka).

In a first step, we follow closely the analysis of Section 3.1. The unknown u̇ satisfies

∂tu̇ +
1
ε
A0u̇ +

∑
1≤j≤d

Aj∂xj
u̇ =

1√
ε
B(ua)u̇ + εκ−1/2B(u̇, u̇) − εKa−κrε

a.

By the change of variables (3.3), we arrive at (3.6), and verify as in the proof of
Lemma 3.1 that the source term F satisfies the bound

‖F‖ε,s �
(
1 + εκ−1/2|u̇|L∞

)‖u̇‖ε,s + εKa−κ.

By the Sobolev embedding |u̇|L∞ ≤ Cε−d/2‖u̇‖ε,s, and (1 + d)/2 ≤ κ, this yields

(3.68) ‖F‖ε,s � (1 + ‖u̇‖ε,s)‖u̇‖ε,s + εKa−κ.

Then we perform a normal form reduction as in Section 3.1.2.2. By Assumption 2.6,
Proposition 3.3 page 33 holds true. This gives a symbol Q, by which we define

Ǔ(t) :=
(
Id +

√
εopε(Q(t))

)−1
U(t),

corresponding to (3.17) without the rescaling in time. Indeed, we prove here stability
in time O(1), whereas the instability analysis of Section 3.1 takes place in short
time O(

√
ε| ln ε|).
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As in Corollary 3.5, we find that the equation in Ǔ is

∂tǓ +
i

ε
opε(A)Ǔ =

1√
ε
opε(B̌)Ǔ + F̌ , B̌ :=

(
χ0Br 0

0 0

)
,

where A is defined in (3.7) page 30, Br in (3.11) page 32, and F̌ satisfies bound (3.68).
The compactly supported frequency cut-off χ0, introduced in Section 3.1.2.2 page 32,
is identically equal to one in a neighborhood of the resonant set R12.

3.2.1. Symmetrizer. — By Assumption 2.2, there holds u0,1 = g(t, x)�e1,

and u0,−1 = g(t, x)∗�e−1, with g ∈ C and constant vectors �e±1. In particular,
the symbol Br, defined in (3.11) page 32, appears as

Br =
(

0 g(t, x)b+
12(ξ)

g(t, x)∗b−21(ξ) 0

)
,

where b+
12 and b−21 (3.28) are the interaction coefficient associated with resonance (1, 2).

Since Γ < 0, going back to the definition of Γ in (2.10)-(2.11), we see that Γ(ξ) < 0 on
the whole resonant set R12. In particular, if the support of χ1 is small enough (that
is, contains R12 and not much more), there holds

(3.69) Γ(ξ) = tr b+
12b

−
21(ξ) < 0, for all ξ in the support of χ1.

Lemma 3.19. — Let C12, C21 : ξ ∈ Ω → C12(ξ), C21(ξ) ∈ CN×N be smooth families
of matrices defined in a bounded open set Ω ⊂ Rd, and such that

(3.70) rankC12 ≡ rankC21 ≡ 1 and trC12C21 �= 0, ξ ∈ Ω̄.

Then, there exists smooth scalar maps c12, c21 and a block-diagonal, smooth family of

change of basis P =
(

P11 0
0 P22,

)
such that trC12C21 = c12c21, and, given complex

numbers ν12, ν21 ∈ C :
(3.71)(

0 ν12C12

ν21C21 0

)
= P−1

(
0 C̃12

C̃21 0

)
P, C̃ij =

(
νijcij 0

0 0C(N−1)×(N−1)

)
,

with

(3.72) sup
ξ∈Ω

|∂α
ξ P (ξ)| + |∂α

ξ P−1(ξ)| < ∞, α ∈ Nd.

Proof. — In a first step, we work with fixed ξ ∈ Ω. Given a vector x ∈ CN , we
denote x� = (x, 0) ∈ C2N and x� = (0, x) ∈ C2N .

By rankC12C21 ≤ rankC21 = 1 and trC12C21 �= 0, there holds rankC12C21 = 1,

and for some λ12 �= 0 and some e ∈ CN , there holds C12C21e = λ12e. The vector e

generates the range of C12.

By symmetry, the same holds for C21C12 : for some vector f ∈ CN , there
holds C21C12f = λ21f, with λ12 �= 0. The vector f generates the range of C21.
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Besides, rank C12C21 = rankC21 implies dim kerC12C21 = dim kerC21 = N − 1,

hence equality of the kernels: kerC21 = kerC12C21. Denoting {a1, · · · , aN−1} a basis
of kerC21, we find that {e, a1, · · · , aN−1} is a basis of CN , since e /∈ ker C21. Then
the family {e�, a�

1, · · · , a�
N−1} is a basis of CN × {0}.

Similarly, denoting {b1, · · · , bN−1} a basis of kerC12 = kerC21C12, since f does
not belong to kerC12, the family {f, b1, . . . , bN−1} is a basis of CN , and the fam-
ily {f�, b1,�, · · · , bn−1,�} is a basis of {0} × CN .

Consider now C21e and C12f ∈ CN . The vector C21e belongs to the range of C21,

hence it is colinear to f. There cannot be C21e = 0, since then C12C21e = 0, which does
not hold. Hence C21e = c21f, for some c21 �= 0. Similarly, C12f = c12e, with c12 �= 0.

In particular, C12C21e = c12c21e, so that trC12C21 = c12c21.

Then, given the matrix C :=
(

0 ν12C12

ν21C21 0

)
, there holds the iden-

tity Ca�
i = ν21(0, C21ai) = 0, and similarly, Cbi� = ν12(C12bi, 0) = 0. Besides, there

holds Ce� = ν21(0, C21e) = ν21c21f�, and Cf� = ν12(C12f, 0) = ν12c12e
�.

The above implies that for the matrix P defined by columns as

(3.73) P = col
(
e�, a�

1, · · · , a�
n−1, f�, b1�, · · · , bn−1�

)
there holds (3.71).

The trace of C12C21 is bounded away from 0 on the compact Ω̄. It is also equal
to λ12. This means that the image and kernel of C12C21 are strictly separated over
the domain Ω̄, implying smoothness of the projection onto the kernel and parallel
to the image. This, in turn, implies existence of a smooth basis of the kernel (see
Kato’s treatise [26], Section II.4.2). Since kerC12C21 = ker C21, this means that we
can choose the ai to vary smoothly over Ω. Similarly, we can choose the bi to vary
smoothly over Ω.

We can also choose e and f to vary smoothly in ξ, since these are eigenvectors
associated to simple eigenvalues. Then P is smooth, and everywhere invertible, with
determinant bounded away from 0 on Ω̄. This gives regularity of P−1 by the coma-
trix formula, which translates into estimate (3.72). Finally, the cij are smooth by
consideration of (3.71).

Assumption 2.6(iii) ensures that the rank condition (3.70) is satisfied by the ma-
trices C12 = b+

12, C21 = b−21. Thus we apply Lemma 3.19 to these matrices, with
coefficients ν12 = g(t, x), ν21 = g(t, x)∗, and suppχ1 = Ω̄. This gives a change of
basis P. We coordinatize

Ǔ =: (Ǔ12, W
(s)
2 ) ∈ C2N × C(J−2)N ,

and let

V (s) := opε(χ1P
−1)Ǔ12, W

(s)
1 := opε(1 − χ1)Ǔ12, W (s) = (W (s)

1 , W
(s)
2 ).
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so that
Ǔ12 = opε(P )V (s) + W

(s)
1 .

Here the exponent (s) indicates that these local unknowns are used only in this stabil-
ity proof, and distinguishes these from unknowns V,W1, W2 in the instability proof.
This is relatively heavy notation, but we will not carry it very far.

Lemma 3.20. — There holds

(3.74)

⎧⎪⎨⎪⎩
∂tV

(s) +
1
ε
opε(M12)V (s) = FV ,

∂tW
(s) +

1
ε
opε(iA)W (s) = FW ,

where

M12 :=
(

i(λ1,+1 − ω) −√
εgχ0b12(ξ)

−√
εg∗χ0b21(ξ) iλ2

)
, bij :=

(
mij 0
0 0C(N−1)×(N−1)

)
,

with mij(ξ) such that

Γ(ξ) = trΠ1(ξ + k)B(�e1)Π2(ξ)B(�e−1)Π1(ξ + k) = m12(ξ)m21(ξ).

The diagonal Fourier multiplier A0 is

A0 :=
( A 0

0 A3,J

)
, A3,J := diag(λ3, . . . , λJ).

The sources FV and FW satisfy bound (3.68).

Proof. — The change of basis P being block-diagonal (3.73), there holds

P

(
λ1,+1 − ω 0

0 λ2

)
=

(
λ1,+1 − ω 0

0 λ2

)
P.

Besides, by estimate (6.6):

opε(χ1P )opε(χ0Br) = opε(χ0PBr) + εR0,

where R0 is a uniform remainder in the sense of Definition 3.2, so that

opε(χ1P )opε(χ0Br)Ǔ12 = opε(χ0PBrP−1)V (s)+opε(χ0PBr)W (s)
1 +εR0(V (s)+W

(s)
1 ).

But then

opε(χ0PBr)W (s)
1 = opε(χ0PBr)opε(1 − χ1)Ǔ12 = εR0Ǔ12,

since χ0(1 − χ1) ≡ 0. By Lemma 3.19, there holds for ξ in the support of χ1 the
identity

PBrP−1 =
(

0 gb12

g∗b21 0

)
.

The above verifies the form of the equation in V (s). For the equation in W
(s)
1 , we use

opε(1 − χ1)opε(χ0Br) = opε

(
(1 − χ1)χ0Br) + εR0 = εR0,

by (6.6) and (1 − χ1)χ0 ≡ 0.
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The symmetrizer is defined as the Fourier multiplier

S(ξ) :=
(

IdN 0
0 −m∗

12(ξ)m21(ξ)−1IdN

)
, for ξ ∈ suppχ1,

where m∗
12 denotes complex conjugate of m12. We then choose any extension to all

of Rd
ξ so that S is smooth, real diagonal, with diagonal entries bounded and bounded

away from zero. We note that since m12m21 ∈ R, there holds m∗
12/m21 ∈ R, so that,

in particular, S∗ ≡ S.

The coefficients mij are bounded on the support of χ1. Besides, by (3.69) and the
fact that Γ = m12m21, they are bounded away from zero on the support of χ1. This
implies the bounds

(3.75) |u|L2 � |opε(S
1/2)u|L2 , u ∈ L2,

and

(3.76) ‖opε(S)u‖ε,s � ‖u‖ε,s, u ∈ Hs.

The fact that S is a symetrizer is expressed in the following lemma:

Lemma 3.21. — There holds for all u ∈ Hs the bound

(3.77) �e
(
opε(S)opε(M12)u +

(
opε(S)opε(M12)

)∗
u, u

)
L2

� ε‖u‖2
L2 .

Recall that if z ∈ C, then z∗ denotes complex conjugate, if z ∈ CN×N , then z∗

denotes complex transpose, and if z is linear bounded L2 → L2, then z∗ denotes the
adjoint operator. We use the latter in (3.77), and all three in the forthcoming proof.

Proof. — We compute

opε(S)opε

(
i(λ1,+1 − ω) 0

0 λ2

)
= opε

(
i(λ1,+1 − ω) 0

0 iλ2

)
opε(S),

and

opε

(
i(λ1,+1 − ω) 0

0 λ2

)∗
= −opε

(
i(λ1,+1 − ω) 0

0 λ2

)
, opε(S)∗ = opε(S),

so that the diagonal entries of M12 contribute nothing to (3.77). Next we compute

opε(−m∗
12m

−1
21 )opε(χ0g

∗b21) = g∗opε(χ0b∗
12) + εR0,

via (6.6) and definition of bij . This implies

(3.78) opε(S)opε

(
0 gχ0b12

g∗χ0b21 0

)
= opε

(
0 gχ0b12

−g∗χ0b∗
12 0

)
+ εR0.

Besides, using (6.6) once more,

opε

(
0 gχ0b12

g∗χ0b21 0

)∗
= opε

(
0 gχ0b∗

21

g∗χ0b∗
12 0

)
+ εR0,
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so that

(3.79) opε

(
0 gχ0b12

g∗χ0b21 0

)∗
opε(S)∗ = opε

(
0 −gχ0b12

g∗χ0b∗
12 0

)
+ εR0.

With (3.78) and (3.79), the contribution of the extra-diagonal entries of M12 to the
left-hand side of (3.77) has the form ε�e (R0u, u)L2 . This concludes the proof.

3.2.2. Uniform bounds. — We use the Fourier multiplier Λs = opε

(
(1+ | · |2)s/2

)
,

and compute

∂t

(∣∣opε(S
1/2)ΛsV (s)

∣∣2
L2

)
= 2�e

(
opε(S)Λs∂tV

(s), ΛsV (s)
)
L2 .

Following (3.74), the above right-hand side decomposes into two terms. The first is

−2
ε
�e

(
opε(S)opε(M12)ΛsV (s), ΛsV (s)

)
L2

= −2
ε

(
opε(S)opε(M12)ΛsV (s) +

(
opε(S)opε(M12)

)∗
ΛsV (s), ΛsV (s)

)
L2

,

and, by Lemma 3.21, is controlled by ‖V (s)‖2
ε,s. The second term is∣∣∣2�e

(
opε(SΛsFV , ΛsV (s)

)
L2

∣∣∣ � ‖FV ‖ε,s‖V (s)‖ε,s

�
(
(1 + ‖u̇‖ε,s)‖u̇‖ε,s + εKa−κ

)
‖V (s)‖ε,s,

the first inequality by (3.76) and the second by estimate (3.68). Gathering the above
estimates and using ‖u̇‖ε,s � ‖V (s), W (s)‖ε,s and Ka − κ ≥ 0, we obtain

(3.80) ∂t

(∣∣opε(S
1/2)ΛsV (s)

∣∣2
L2

)
� ‖V (s)‖ε,s + ‖V (s), W (s)‖2

ε,s.

Besides, from (3.74) we deduce

(3.81) ∂t(‖W (s)‖2
ε,s) � ‖FW ‖ε,s‖W (s)‖ε,s � ‖W (s)‖ε,s + ‖V (s), W (s)‖2

ε,s.

From (3.80)-(3.81) and the lower bound (3.75), we deduce the stability estimate

‖V (s), W (s)‖ε,s ≤ εK−κC(Ta), 0 ≤ t ≤ Ta.

The stability estimate (2.17) then follows from ‖u̇‖ε,s � ‖V (s), W (s)‖ε,s, and definition
of u̇ in (3.67).
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CHAPTER 4

OTHER PROOFS

4.1. Proof of Theorem 2.9

The differences with the main proof (Sections 3.1 and 3.2) are essentially notational.

An issue that we face right away as we consider more than one non-transparent
resonance is the definition of the frequency-shifted and projected variable U. Consider
indeed the case of a set R0 of non-transparent resonances equal to

R0 = {(1, 2), (2, 3), (3, 1)}.
It is easy to see that shifted and projected variables, following (3.3), are not appropri-
ate. That is, if we let U1 = e−iθopε(Π1)u̇ and U2 = opε(Π2)u̇ to account for the (1, 2)
resonance, and then U3 = eiθopε(Π3)u̇ to account for the (2, 3) resonance, then the
frequency shifts in U1 and U3 are not suitable for the (3, 1) resonance.

We overcome this issue by localizing the definitions of the projected variables (Sec-
tion 4.1.1). This is relatively straightforward, but notations are heavy.

Then, by taking advantage of the partial transparency hypothesis (Assump-
tion 2.8(ii)), all couplings are eliminated, except for those describing non-transparent
resonances. This is done in Section 4.1.2.

No further difficulty arises, and the estimates, both in the stable and unstable case,
are similar to the estimates in Sections 3.1 and 3.2.

4.1.1. Coordinatization. — The perturbation variable u̇ is defined by

u =: ua + εκu̇,

with κ = 0 in the unstable case, as in (3.1), and (1 + d)/2 ≤ κ ≤ min(K, Ka) in the
stable case, as in (3.67).

Associated with (i, j) ∈ R0, we define smooth frequency cut-offs χij , χ�
ij , such

that χij ≺ χ�
ij (in the sense of Notation 3.7 page 36), with χij ≡ 1 on Rij , and such

that the support of χ�
ij is a small neighborhood of Rij . All truncations are compactly
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supported (owing to Assumption 2.8(i)) and take values in [0, 1]. The normal form
reduction of Section 4.1.2 will require the supports of χ�

ij to be not much larger
than Rij .

Let i such that (i, j) ∈ R0 for some j. We let I+
i = {j ∈ [1, J ], (i, j) ∈ R0}. A local

variable associated with resonance (i, j) is defined by

(4.1) u+
ij := opε(χij)e−iθopε(Πi)u̇, j ∈ I+

i .

We let I−i = {j′ ∈ [1, J ], (j′, i) ∈ R0}, so that if i is such that (j′, i) ∈ R0 for some
index j′, then I−i is not empty. A local variable is defined by

(4.2) u−
ij′ := opε(χj′i)opε(Πi)u̇, j′ ∈ I−i .

We now let

(4.3) vi := opε

(
1 −

∑
j∈I+

i

(χij)−1 −
∑

j′∈I−
i

χj′i

)
opε(Πi)u̇,

where (χij)−1 := χij(· − k), in accordance with (3.8), so that

(4.4) opε(Πi)u̇ = vi +
∑
j∈I+

i

eiθu+
ij +

∑
j′∈I−

i

u−
ij′ ,

and of course u̇ is then reconstructed by summation of (4.4) over i ∈ [1, J ]. By
convention, sums over empty sets are equal to zero.

Remark 4.1. — If (1, 2) ∈ R0, then the variables that describe the (1, 2) resonance
are u+

12 and u−
21. Indeed, 2 ∈ I+

1 and 1 ∈ I−2 . Thus u+
12 and u−

21 will play here the role
played by variables U1 and U2 in Section 3.1.2.1.

We now introduce a more compact notation. Variables are indexed by resonant
indices (i, j), the position + or − in the resonance (meaning first or second term: i

or j in (i, j)), and also the nature of the variable: “inner” variables are denoted by
the letter u and “outer” variables are denoted v.

We introduce the set of indices

(4.5) A :=
{
(i, out), i ∈ [1, J ]

} ⋃ {
(i, j, p, in), (i, j) ∈ R0, p ∈ {+,−}}.

The associated local variables are (uα)α∈A :

uα :=

{
u±

ij , α = (i, j,±, in)

vi, α = (i, out).

We denote χα the truncation in uα; this is the truncation that appears in (4.1) or
(4.2) or (4.3), explicitly:

χα :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
χij , α = (i, j,+, in),

χji, α = (i, j,−, in),

1 −
∑
j∈I+

i

(χij)−1 −
∑

j′∈I−
i

χj′i, α = (i, out).
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With the notation

δα :=

{
1, α = (i, j,+, in), for some (i, j),

0, otherwise,

it appears from (4.1)-(4.2)-(4.3) that there holds

(4.6) uα = opε

(
χ�

αΠi,+δα

)
uα, χα ≺ χ�

α.

The derivation of the coupled system satisfied by the uα is essentially identical to
the computations of Section 3.1.2.1. We find

(4.7) ∂tuα +
1
ε
opε(iμα)uα =

1√
ε

∑
p=±1

∑
β∈A

opε(Bpαβ)uβ + Fα,

where
– the symbols of the propagators are

μα :=

{
λi,+1 − ω, α = (i, j,+, in),

λi, α ∈ {
(i, j,−, in), (i, out)

}
;

– using (4.4) and (4.6), we find that the symbols of the coupling terms are

(4.8) Bpαβ := ei(p−δα+δβ)θBpαβ , Bpαβ := χα,+(p−δα+δβ)χ
�
βΠi,+(p+δβ)BpΠi′,+δβ

,

for p ∈ {−1, 1}, (α, β) ∈ A × A, where Bp is defined in (3.9) page 31;
– as in Lemma 3.1 page 31, the source term Fα satisfies

(4.9) ‖Fα‖ε,s � (1 + εκ−1/2|u̇|L∞)‖u̇‖ε,s + εKa−κ.

4.1.2. Normal form reduction. — The goal is to derive from (4.7) a reduced sys-
tem in which non-resonant and non-transparent coupling terms do not appear. This
is done by a change of variables that is very much similar to the one conducted in
Section 3.1.2.2, and now described in some detail. The difference with Section 3.1.2.2
is that in the current context of several non-transparent resonances, a partial trans-
parency assumption bearing on non-transparent resonances (Assumption 2.8(ii)) has
to be introduced in order for the normal form reduction to go through as before.

Recall that R0 denotes uniform remainders in the sense of Definition 3.2. Here in
a slight misuse of notation we also denote R0 any symbol such that the associated
pseudo-differential operators are uniform remainders in the sense of Definition 3.2.

Proposition 4.2. — Under Assumption 2.8(ii), given (α, β) ∈ A × A, p ∈ {−1, 1},
equation

(4.10) i
(− �ω + μα,+� − μβ

)
Q�αβ = Bpαβ + εR0, � = p − δα + δβ

has a solution Q�αβ ∈ S0 except if (a) p = 1, α = (i, j, 1, in), β = (j, i,−1, in)
with (i, j) ∈ R0, or (b) p = −1, α = (i, j,−1, in), β = (j, i, 1, in), with (j, i) ∈ R0.
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Proof. — Following (3.28), we denote b+
ij and b−ji the interaction coefficients associated

with a given resonance (i, j) :

(4.11) b+
ij = Πi+1B(�e1)Πj , b−ji = ΠjB(�e−1)Πi,+1.

We let α = (i, j, q, in) or α = (i, out), and β = (i′, j′, q′, in) or β = (i′, out). On the
complement of the support of Bpαβ a trivial solution to (4.10) is Q�αβ = 0, so that it
is sufficient to consider (4.10) for frequencies such that χα,+(p−δα+δβ) �= 0 and χ�

β �= 0.

We go over most cases in detail. In all cases Assumption 2.8(ii) is invoked. We call
“phase” the scalar −�ω +μα,+� −μβ in factor of the unknown Q�αβ , and “source” the
right-hand side Bpαβ in the homological equation (4.10).

• “in-in” coupling terms: here α = (i, j, q, in), β = (i′, j′, q′, in). There are four
subcases.

•• If q = q′ = 1, then the source terms and phases for p = 1 and p = −1 are

B1αβ = g(t, x)χij,+1χ
�
i′j′b

+
ii′,+1, with phase (λi,+1 − ω − λi′)+1, and

B−1αβ = g(t, x)∗χij,−1χ
�
i′j′b

−
ii′ , with phase −(λi′,+1 − ω − λi),

respectively. We recall notation from (2.6): u0,1 = g(t, x)�e1, u0,−1 = g(t, x)∗�e−1.

If (i, i′) /∈ R0, meaning that (i, i′) is a transparent resonance (or is not a resonant
pair), then by definition the phase (λi,+1 − ω − λi′)+1 factorizes in the interaction
coefficient b+

ii′,+1. This implies that the symbol

(4.12) g(t, x)
(
λi,+1 − ω − λi′

)−1

+1
χij,+1χ

�
i′j′b

+
ii′,+1

is bounded, belongs to S0, and provides a solution to (4.10).
Otherwise (i, i′) ∈ R0. By definition of the truncations associated with non-

transparent resonances, the phase λi,+1 −ω−λi′ is bounded away from zero over the
support of 1 − χii′ . Thus for p = 1 it suffices to solve (4.10) for the source terms

χii′,+1B1αβ = gχii′,+1χij,+1χ
�
i′j′b

+
ii′,+1, with phase (λi,+1 − ω − λi′)+1.

We now invoke the transparency condition (2.18) from Assumption 2.8. Indeed,
by (2.18), the interaction coefficient b+

ii′,+1 is transparent on the support of χii′,+1χ
�
i′j′ ,

if the supports of these cut-offs are tightly cut around the corresponding resonance
sets. Again, this implies that (4.12) is bounded, belongs to S0 and solves (4.10).

In the case p = −1, the same argument applies.

•• If q = 1, q′ = −1, then the source terms are

B1αβ = gχijχ
�
j′i′b

+
ii′ , B−1αβ = g∗χij,−2χ

�
j′i′b

−
ii′,−1.

Again, if (i, i′) /∈ R0 (for p = −1, if (i′, i) /∈ R0), the corresponding equation (4.10) is
solved by dividing the source by the phase. Thus it suffices to solve (4.10) for

χii′B1αβ = gχii′χijχ
�
j′i′b

+
ii′ , with phase λi,+1 − ω − λi′ ;

χi′i,−1B−1αβ = gχi′i,−1χij,−2χ
�
j′i′b

−
ii′,−1, with phase −(λi′,+1 − ω − λi)−1,
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assuming (i, i′) ∈ R0 in the case p = 1 and (i′, i) ∈ R0 in the case p = −1.

For B1αβ (p = 1), we use (2.19) if j′ �= i or i′ �= j. Indeed, given ξ ∈ Rii′ , if in
addition ξ belongs the support of χij , then ξ belongs to a neighborhood of Rij . Since
frequencies that belong to Rii′ ∩Rij necessarily belong to {λi′ = λj}, we can indeed
use the partial transparency condition (2.19).

The remaining case for p = 1 is (i′, j′) = (j, i). Then, there holds α = (i, j, 1, in) and
β = (j, i,−1, in). But then (i, i′) /∈ R0, otherwise we would be in excluded case (a).

For B−1αβ , we use (2.18) again.

In the remainder of this proof, upon consideration of an interaction coefficient,
we will always assume that the relevant resonance, that is (i, i′) if p = 1 and (i′, i)
if p = −1, is non-transparent. Otherwise the reduction is trivial, meaning that we do
not need to appeal to the partial transparency conditions (2.18) and (2.19) and may
simply solve (4.10) by dividing the source by the phase, without having to consider the
form of the truncation functions.

•• If q = −1, q′ = 1, then the source terms are

B1αβ = gχji,+2χ
�
i′j′b

+
ii′,+1, B−1αβ = g∗χjiχ

�
i′j′b

−
ii′ .

It suffices to solve for

χii′,+1B1αβ = gχii′,+1χji,+2χ
�
i′j′b

+
ii′,+1, with phase (λi,+1 − ω − λi′)+1;

χi′iB−1αβ = g∗χi′iχjiχ
�
i′j′b

−
ii′ , with phase −(λi′,+1 − ω − λi),

For the first source term (p = 1), we use (2.18). For the other source term (p = −1)
we use (2.19) unless (i′, j′) = (j, i), in which case α = (i, j,−1, in) and β = (j, i, 1, in).
Then, (j, i) /∈ R0, otherwise we would be in excluded case (b). Hence the interaction
coefficient b−i′i = b−ji is transparent on the support of χi′i.

•• If q = q′ = −1, then the source terms are

B1αβ = gχji,+1χ
�
j′i′b

+
ii′ , B−1αβ = g∗χjiχ

�
j′i′b

−
ii′,−1.

It suffices to solve for

χii′B1αβ = gχii′χji,+1χ
�
j′i′b

+
ii′ , with phase λi,+1 − ω − λi′ ;

χi′i,−1B−1αβ = g∗χi′i,−1χji,−1χ
�
j′i′b

−
ii′,−1, with phase −(λi′,+1 − ω − λi)−1,

For both terms (2.18) applies.

• “in-out” coupling terms: we consider first u±
ij/vi′ coupling terms, that is corre-

sponding to α = (i, j, q, in), β = (i′, out).

•• If q = 1 and p = 1, the source and phase are

gχij

(
1 −

∑
j′∈I+

i′

(χi′j′)−1 −
∑

j′∈I−
i′

χj′i′
)�

b+
ii′ and λi,+1 − pω − λi′ .
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Since we may assume (i, i′) ∈ R0, there holds i ∈ I−i′ , and the phase is bounded away
from zero on (1 − χii′)�. Therefore it suffices to solve for the source terms

gχii′χijχ
�
i′j′,−1b

+
ii′ , j′ ∈ I+

i′ , and gχii′χijχ
�
j′i′b

+
ii′ , j′ ∈ I−i′ , j′ �= i.

Conditions (2.18) and (2.19) apply to the first and second terms above, respectively.

•• If q = 1 and p = −1, the source and phase are

g∗χij,−2

(
1 −

∑
j′∈I+

i′

χi′j′,−1 −
∑

j′∈I−
i′

χj′i′
)�

b−ii′,−1 and − (λi′,+1 − ω − λi)−1.

We apply the same reasoning as in the previous case: we may assume i ∈ I+
i′ , so

that the phase factorizes in the source term over the support of 1 − χi′i, and as a
consequence it suffices to solve for the source terms

g∗χi′i,−1χij,−2χ
�
i′j′,−1b

−
ii′,−1, j′ ∈ I+

i′ , j′ �= i, and g∗χi′i,−1χij,−2χ
�
j′i′b

−
ii′,−1, j′ ∈ I−i′ .

Conditions (2.19) and (2.18) apply to the first and second terms above, respectively.

•• If q = −1 and p = 1, the source and phase are

gχji,+1

(
1 −

∑
j′∈I+

i′

(χi′j′)−1 −
∑

j′∈I−
i′

χj′i′
)�

b+
ii′ and λi,+1 − ω − λi′ .

Here i ∈ I−i′ , so that in the above source term, we can multiply by χii′ and neglect
the term (1 − χii′)�. The remaining source terms are

gχii′χji,+1χ
�
i′j′,−1b

+
ii′ , j′ ∈ I+

i′ , and gχii′χji,+1χ
�
j′i′b

+
ii′ , j′ ∈ I−i′ , j′ �= i.

Conditions (2.18) and (2.19) apply to the first and second terms above, respectively.

•• If q = −1 and p = −1, the source and phase are

g∗χji,−1

(
1 −

∑
j′∈I+

i′

(χi′j′)−1 −
∑

j′∈I−
i′

χj′i′
)�

b−ii′,−1 and − (λi′,+1 − ω − λi)−1.

By the same arguments as above, it suffices to handle the source terms

g∗χi′i,−1χji,−1χ
�
i′j′,−1b

−
ii′,−1, j′ ∈ I+

i′ j′ �= i, and g∗χi′i,−1χji,−1χ
�
j′i′b

−
ii′,−1, j′ ∈ I−i′ .

Conditions (2.19) and (2.18) apply to the first and second terms above, respectively.

Next we turn to vi/u±
i′j′ coupling terms, corresponding to indices α = (i, out)

and β = (i′, j′, q′, in) :

•• If q′ = 1 and p = 1, the source and phase are

g
(
1 −

∑
j∈I+

i

χij,+1 −
∑

j∈I−
i

χji,+2

)
χ�

i′j′b
+
ii′,+1 and (λi,+1 − ω − λi′)+1.

By the same arguments as above, it suffices to handle the source terms

gχii′,+1χij,+1χ
�
i′j′b

+
ii′,+1, j ∈ I+

i , j �= i′, and gχii′,+1χji,+2χ
�
i′j′b

+
ii′,+1, j ∈ I−i .
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Conditions (2.19) and (2.18) apply to the first and second terms above, respectively.

•• The other three terms associated with vi/u±
i′j′ couplings are entirely similar.

• “out-out” coupling terms and phases are, in the case p = 1 :

g
(
1 −

∑
j∈I+

i

χij −
∑

j∈I−
i

χji,+1

)(
1 −

∑
j′∈I+

i′

χi′j,−1 −
∑

j′∈I−
i′

χj′i′
)
b+
ii′ , λi,+1 − ω − λi′ ,

and in the case p = −1 :

g∗
(
1−

∑
j∈I+

i

χij,−2−
∑

j∈I−
i

χji,−1

)(
1−

∑
j′∈I+

i′

χij,−1−
∑

j′∈I−
i′

χj′i′
)�

b−ii′,−1, (λi′,+1−ω−λi)−1.

Employing the same arguments as in the “in-out” case, we are reduced to considering
the source terms, for p = 1 :

gχii′
(
χij1+χj2i,+1

)(
χi′j′

1,−1+χj′
2i′

)
b+
ii′ , j1 ∈ I+

i \{i′}, j2 ∈ I−i , j′1 ∈ I+
i′ , j′2 ∈ I−i′ \{i}.

To the terms involving j1 and j′2, condition (2.19) applies. To the terms involving j2
and j′1, condition (2.18) applies. The case p = −1 is handled in the same way.

Remark 4.3. — At first sight it might like look condition (2.18) is too strong for our
purposes, since it involves intersections of only two resonant sets, while the interaction
coefficients Bpαβ involve three frequency cut-offs. A look at (4.12) shows however that
we cannot do with less than (2.18). Indeed, given (i, i′) ∈ R0, for the normal form
reduction to go through the symbol in (4.12) has to be bounded for all values of j, j′

(such that (i, j) and (i′, j′) ∈ R0), including j = i′.

System (4.7) has size N × |A|, where |A| is the cardinal of A defined in (4.5). We
let

Q(α,β) =
∑

p∈±1

ei(p+δβ−δα)θQ�αβ , � = p + δβ − δα,

where Q�αβ is given by Proposition 4.2 for relevant indices, meaning all p, α, β at the
exclusion of cases (a) and (b), and Q�αβ := 0 otherwise. We then form a large ma-
trix Q ∈ CN |A|×N |A| by assembling the N ×N blocks Q(α,β), and, similarly to (3.17),
let

(4.13) Ǔ :=
(
Id +

√
εopε

(
Q(

√
εt)

))−1

U(
√

εt), U := (uα)α∈A, Ǔ =: (ǔα)α∈A,

It can then be checked, exactly as in the proof of Corollary 3.5, that Ǔ solves the
reduced system

(4.14) ∂tǔα +
1√
ε
opε(iμα)ǔα = opε(B̌αβ)ǔβ +

√
εF̌α,
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where the only remaining source terms correspond to constructive interactions be-
tween non-transparent resonances, that is

(4.15) B̌αβ :=

⎧⎪⎨⎪⎩
B1αβ , if α = (i, j, 1, in), β = (j, i,−1, in), with (i, j) ∈ R0,

B−1αβ , if α = (i, j,−1, in), β = (j, i, 1, in), with (j, i) ∈ R0,

0, otherwise.

According to (4.8), if α = (i, j, 1, in) and β = (j, i,−1, in), then B1αβ simplifies into

B1αβ = χ�
ijΠi,+1B1Πj ,

and if α = (i, j,−1, in) and β = (j, i, 1, in), then B−1αβ simplifies into

B−1αβ = χ�
jiΠiB−1Πj,+1.

In particular, in (4.14) there are no fast oscillations in the source. System (4.14) is
the reduced system, analogous to system (3.18) in the case of one non-transparent
resonance.

4.1.3. Space-frequency localization. — We now isolate the family, indexed by
the set R0, of 2N × 2N subsystems in (4.14) that correspond to non-zero coupling
terms B̌αβ , just like the subsystem corresponding to resonance (1, 2) was naturally
isolated from the rest of (3.18).

We let Ǔij :=
(
ǔ+

ij , ǔ−
ji

)
, and

(4.16)
Vij := opε(χij)

(
ϕijǓij

)
, Wij1 := opε

(
χij

)(
(1 − ϕij)Ǔij

)
, Wij2 :=

(
1 − opε(χij)

)
Ǔij ,

so that, just like in (3.23), Ǔij = Vij +Wij1+Wij2. The spatial cut-off ϕij is identically
equal to one in a large neighborhood of x0; it is associated with truncations ϕ�

ij , ϕ�
ij

such that ϕ�
ij ≺ ϕij ≺ ϕ�

ij .

We then verify exactly as in Lemma 3.8 that, with this further coordinatization,
the reduced system (4.14) takes the form of the prepared system

(4.17)

⎧⎪⎪⎨⎪⎪⎩
∂tVij +

1√
ε
opψ

ε (Mij)Vij =
√

εFVij
, (i, j) ∈ R0,

∂tW +
1√
ε
opε(iA)W = opε(D)W +

√
εFW,

where
– the interaction matrices Mij are

(4.18) Mij(ε, t, x, ξ) := χ�
ij

(
i(λi,+1 − ω) −√

εϕ�
ijgΠi,+1B1Πj

−√
εϕ�

ijg
∗ΠjB−1Πi,+1 iλj

)
.
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– the variable W is the collection of all uα for which the source terms B̌αβ are
all equal to zero (1), and all (Wij1, Wij2), for (i, j) ∈ R0,

– the Fourier multiplier A is diagonal and purely imaginary,
– the source term D depends linearly on (1 − ϕ�

ij)u0,±1. In particular it can be
made arbitrarily small, by choosing the support of ϕ�

ij large enough, since u0,±1

are decaying at infinity,
– the source terms FVij and FW are bounded as was Fα in (4.9).

In (4.17), we see 2N × 2N interaction systems, indexed by (i, j) ∈ R0, that are
weakly coupled with a large system in W. The system in W is symmetric hyper-
bolic with very small linear and nonlinear source terms. The coupling terms between
the subsystem indexed by R0 and the system in W are the source terms F in the
right-hand sides. We call these coupling terms weak because of the ε1/2 prefactors.
System (4.17) is the prepared system, analogous to system (3.24).

4.1.4. Conclusion. — From (4.17), the estimates are as in the case of one non-
transparent resonance.

Assumption 2.8(iii) allows for large-rank interaction coefficients for those reso-
nances (i, j) ∈ R0 for which one interaction coefficient is identically zero. In such
cases, the bounds for the symbolic flow are trivial. Indeed, equation (3.29) page 39
reduces to

∂tS +
1√
ε

(
iχiμi −√

εb̃ij

0 iχ1μj

)
S = 0,

a triangular system of ordinary differential equations. The corresponding bounds are

(4.19) |∂α
x S(τ ; t)| � 1 + (t − τ)r,

where r is the rank of b+
ij .

For the other pairs (i, j) ∈ R0, we have an amplification coefficient γij defined
in (2.22). With γij are associated an upper rate of growth γ+

ij , defined as in (3.30), and,
unless γij = 0, a lower rate of growth γ−

ij , defined as in the statement of Lemma 3.11.
Both depend on how tightly we cut around the resonance. This is quantified by
parameters h > 0 (in frequency space) and ρ > 0 (in physical space).

In the unstable case Γ > 0, we isolate (i0, j0) such that

γ = γi0j0 = max
(i,j)∈R0

γij > 0.

The other components have slower (maybe not strictly slower) rates of growth.
Given (i, j) ∈ R0, if γij > 0 we use the Duhamel representation formula as in

Section 3.1.3, and this gives an upper bound for Vij that is analogous to (3.36).

1. Corresponding, by definition of B̌αβ in (4.15), to all α such that for all β, there holds condi-

tion (α, β) �= ((i, j, 1, in), (j, i,−1, in)), for any (i, j) ∈ R0, and (α, β) �= ((i, j,−1, in), (j, i, 1, in)), for

any (j, i) ∈ R0.
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Given (i, j) ∈ R0, if γij < 0, then we use a symmetrizer to estimate Vij as in
Section 3.2, and if γij = 0, we simply use bound (4.19).

This gives upper bounds as in Propositions 3.14 and 3.17:

(4.20) ‖(Vij)(i,j)∈R0 ,W)(t′)‖ε,s � εK−κ| ln ε|∗etγ+
,

where κ intervenes in the definition of u̇ in the first line of Section 4.1.1. The upper
rate of growth γ+ is defined from γ by (3.30). The above estimate is valid for T < T0,

where T0 is defined in (2.12).
By an appropriate choice of the initial datum (namely, (2.27)), we derive a lower

bound for the distinguished variable Vi0j0 as in Section 3.1.4, and conclude as in
Section 3.1.6.

In the stable case Γ < 0, all resonances (i, j) ∈ R0 are symmetrizable. We define
a symmetrizer by blocks, and proceed as in Section 3.2.

4.2. Proof of Theorem 2.11

4.2.1. Preparation. — The perturbation variable is defined by

(4.21) u =: ua + ε1/2u̇,

The ε1/2 prefactor will provide the necessary cushion as we follow the growth of a
component of the solution that might not have maximal growth. There holds the
bound ‖u̇(0)‖ε,s = O(εK−1/2).

We use the coordinatization of Section 4.1.1, leading to system (4.7) in the vari-
able U := (uα)α∈A. The source Fα satisfies (4.9) with κ = 1/2; explicitly

(4.22) |Fα|L2 � (1 + |u̇|L∞)|u̇|L2 + εKa−1/2.

In the present context, the non-transparent resonance (1, 2) plays a distinguished
role. The associated variables are (u+

12, u
−
21) ∈ C2N , as defined in (4.1)-(4.2). We now

eliminate from the system in U all the coupling terms Bpαβ which involve u+
12 or u−

21,

at the exception of the crucial interaction coefficients b+
12 and b−21 :

Proposition 4.4. — Under Assumption 2.10(ii), equation

(4.23) i
(− �ω + μα,+� − μβ

)
Q�αβ = Bpαβ + εR0, � = p − δα + δβ

has a solution Q�αβ ∈ S0 for α = (1, 2, +, in) and all (p, β) unless Bpαβ = χ�
12b

+
12,

and also for α = (2, 1,−, in) and all (p, β) unless Bpαβ = χ�
12b

−
21. In (4.23), R0 is

such that opε(R0) is a uniform remainder in the sense of Definition 3.2.

Proof. — We revisit the proof of Proposition 4.2. We are going to use the separation
condition (2.23).

In a first step, α = (1, 2, +, in) and β = (i′, j′, q′, in) are given. There are
four corresponding coupling terms. For p = 1 and q = 1, the source has prefac-
tor χij,+1χi′j′χii′,+1, which vanishes identically by the separation condition (2.23).
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The same holds, with a different combination of cut-offs, for indices p = 1 and q = −1,

and for indices p = −1 and q = −1. The remaining term is χ�
12b

+
12.

Next β = (i′, out) is given, with the same α. Here the reduction is non trivial:
we use the fact that any phase is bounded away from its corresponding resonant set
to reduce the analysis to frequency sets which are intersections of supports of cut-
offs functions, as in the proof of Proposition 4.2. After this is done, we find in the
case p = 1 products χii′χij(χi′j′,−1 + χj′′i′), with j′′ �= i, in factor of the source. By
separation, these products vanish identically. The case p = −1 is similar.

The case α = (2, 1,−, in) is treated in the same way, by examination of the corre-
sponding cases in the proof of Proposition 4.2: all “in-in” coupling terms are trivial,
save for b−21, and all “in-out” coupling terms are trivial, except on frequency sets over
which the phase is bounded away from zero.

With Proposition 4.4, we define a change of variable Q as we did in Section 4.1.2,
and from there define Ǔ by (4.13). The variable Ǔ12 = (ǔ+

12, ǔ
−
21) describing reso-

nance (1, 2) satisfies

(4.24) ∂tǓ12 +
1√
ε

(
iμ1 −χ�

12g(
√

εt, x)b+
12

−χ�
12g(

√
εt, x)∗b−21 iμ2

)
Ǔ12 =

√
εF̌12,

while the other variables in Ǔ, which we denote (uα′)α′∈A′ , satisfy

(4.25) ∂tuα′ +
1√
ε
opε(iμα′)ǔα′ =

∑
p=±1

∑
β′∈A′

opε(Bpα′β′)ǔβ′ +
√

εF̌α′ .

where A′ is the set of indices alien to the (1, 2) resonance:

A′ := A \ {
(1, 2, +, in), (2, 1,−, in)

}
.

Equations (4.24) and (4.25) are coupled only via the source terms F.

Next we introduce unknowns V12, W12,1, W12,2 that are local to the (1, 2) resonance,
as in (4.16), and arrive at the prepared system:

(4.26)

⎧⎪⎪⎨⎪⎪⎩
∂tV12 +

1√
ε
opψ

ε (M12)V12 =
√

εFV12 ,

∂tW +
1√
ε
opε(iA)W = opε(D)W +

√
εFW,

analogous to (4.17), where
– W =

(
(uα′)α′∈A′ , W12,1, W12,2), so that U can be reconstructed from (V12,W)

(as in (3.17) and (3.23)), and there holds ‖V12‖ε,s + ‖W‖ε,s � ‖U‖ε,s;
– the interaction matrix M12 is defined in (4.18), with (i, j) = (1, 2);
– the Fourier multiplier A is diagonal and purely imaginary;
– the important difference with (4.17) is in the source D, which here is

D =

(
D12 0
0

∑
p=±1(Bpα′β′)α′,β′∈A′

)
, D12 =

(
(1 − ϕ�

12)B̌12 0
0 0

)
,

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2015



68 CHAPTER 4. OTHER PROOFS

where B̌12 is defined as B̌ in (3.18). The point is that D is not small: there
holds (2)

(4.27) |D(t, x, ξ)| ≤ |u0(
√

εt, x)||B|.
– the source terms FV12 and FW satisfy bound (4.22).

4.2.2. Upper bounds. — The estimates for (4.26) differ from the analogous ones
conducted in Section 3.1.5 only in the estimate (4.27) for D.

Proposition 4.5. — Given

(4.28) T < max
( K − 1/2
|B||â|L1

,
K − (d + 1)/2

|B||a|L∞

)
,

if ε is small enough, then the solution to (4.26) issued from ‖(V12,W)(0)‖ε,s = O(εK),
with s > d/2, is defined over [0, T | ln ε|], with the estimate

(4.29) ‖(V12,W)(t)‖ε,s � εK−1/2| ln ε|∗et|B||a|L∞ .

Proof. — We follow Section 3.1.5.
First step: FL1 estimates. We follow the proof of Lemma 3.13. Modulo differences

in notation, the only change is in the bound for D. Here we have, using (4.27):

|opε(D)W|FL1 ≤ |B||û0(
√

εt)|L1 |Ŵ|L1 .

This leads to

|(V̂12,Ŵ)(t)|L1 � εK−1/2| ln ε|∗+
(
|B|(1+δϕ0)(|â|L1 +O(εη1)

)∫ t

0

|(V̂12,Ŵ)(t′)|L1 dt′,

having assumed the bound |V̂12,Ŵ|L1 ≤ εη1 up to time t. Above δϕ0 > 0 can be made
arbitrarily small. By the same argument as in the proof of Lemma 3.13, this shows
that the above bound propagates: there holds sup0≤t≤T1| ln ε| |(V12,W)(t)|FL1 ≤ εη1 ,

for any T1 < (K − 1/2)/(|B||â|L1), for some η1 = η1(T1).

Second step: Sobolev estimates based on FL1 estimates. We follow the proof of
Proposition 3.14. In the present context, the only significant difference is that instead
of (3.50), we have here

|opψ
ε (D)ΛsW|L2 ≤ |B||u0(

√
εt)|L∞‖W‖ε,s.

With the above first step, the source satisfies

(4.30) ‖FW‖ε,s � ‖V12,W‖ε,s + εKa−1/2.

This implies the upper bound

‖W‖2
ε,s � ε2(K−1/2) +

(|B||a|L∞ + ε1/2| ln ε|) ∫ t

0

‖V12,W‖2
ε,s + εKa

∫ t

0

‖W(t′)‖ε,s dt′.

2. Multiplicative constants do matter here, since upper bounds translate into growth rates.

In (4.27), | · | denotes the sup norms in CN and CN×N , in accordance with notation set up on

page 20.
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The estimate for V12 is identical to the estimate in V (3.54). Just like in
the proof of Proposition 3.14, this implies, via Lemma 6.18, the bound (4.29)

for t ≤ K − 1/2
|B||â|L1

. Here we are using Lemma 6.18 with δ0 = |B||a|L∞ , γ0 = γ12, and

with max(δ0, γ0) = |B| |a|L∞ .

Third step: Sobolev estimates based on the L∞ ↪→ Hs embedding. In the proof
of Proposition 3.17, we replace εη2 with C(T2) > 0 in the definition of J. Indeed, in
Proposition 3.17, the role of η2 > 0 was to guarantee smallness of the nonlinear terms.
Here so long as u̇ is bounded, the nonlinear terms are small, since (4.21) implied the
better estimate (4.30). This gives, exactly as in the proof of Proposition 3.17, the

bound (4.29) for t ≤ K − (d + 1)/2
|B||a|L∞

.

4.2.3. Conclusion. — The lower bound is exactly as in the main proof (Sec-
tion 3.1.4). Starting from (3.60) with V12 in place of V, this gives

(4.31)
|V12(T | ln ε|)|L2(B(x0,ρ)) ≥ C(ρ)εK−Tγ−

12 − C| ln ε|∗εK+1/2−Tγ+
12

− C
√

ε| ln ε|∗
∫ T | ln ε|

0

e(T | ln ε|−t′)γ+
12 |FV12(t

′)|L2dt′.

The source FV12 satisfies estimate (4.30). With Proposition 4.5 and its proof, this
gives

|FV12(t)|L2 ≤ εK−1/2| ln ε|∗εt|B||a|L∞ + εKa−1/2,

so that |V12(T | ln ε|)|L2(B(x0,ρ)) is bounded from below by

εK−1/2−Tγ−
12 − C| ln ε|∗εK−Tγ+

12 − C| ln ε|∗εK−T |B||a|L∞ ,

up to a multiplicative constant. We now impose for the final observation time the
upper bound

(4.32)
1
2
− T (|B| − γ12)|a|L∞ > 0,

corresponding to T < T̃0, with notation introduced in (2.25). For T satisfying (4.28)
and (4.32), for h, ρ, c and ε small enough, there holds the lower bound

|V12(T | ln ε|)|L2(B(x0,ρ)) ≥ CεK−1/2−Tγ−
12 .

Hence the limiting amplification exponent K ′
0 satisfies K ′

0 ≥ K − Tγ12|a|L∞ , corre-
sponding to (2.24). The end of the proof, going up the chain of changes of variables
from V12 to u̇, is identical to Section 3.1.6.
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4.3. Proof of Theorem 2.12

We posit here u =: ua + ε1/2u̇, as in (4.21), and then follow closely the proof of
Theorem 2.9. The ε1/2 factor in the definition of u̇ modifies the estimates for the
source terms F, as in the proof of Theorem 2.11. This gives an existence time

T ′′
0 = max

( K − 1/2
|B||â|L1

,
K − (d + 1)/2

γ|a|L∞

)
,

with γ defined in (2.22). Indeed, the numerators are as in (4.28), since the ansatz is
as in (4.21), and the denominators are as in T0 (2.12), since the assumptions are the
same as in Theorem 2.9. On [0, T

√
ε| ln ε|], the upper bounds are identical to (4.20),

except for the size O(εK−1/2) of the initial datum:

(4.33) ‖(Vij)(i,j)∈R0 ,W)(t′)‖ε,s � εK−1/2| ln ε|∗etγ+
,

with γ = γi0j0 (2.22), where Vij and W are defined exactly as in Section 4.1.3. The
estimate for the source term FVi0j0

is identical to (4.30):

(4.34) |FVi0j0
|L2 � ‖(Vij)(i,j)∈R0 ,W‖L2 + εKa .

Now the difference is in the lower bound, which we consider on a small
ball B(x0, ε

β). We follow the proof of Lemma 3.11, until we arrive at (3.42).
In the present context, we replace (3.42) with(∫

B(x0,εβ)

e2ta(x)γ dx

)1/2

≥ Cεβd/2etγ|a|L∞ ,

for ε small enough. Since by assumption βd/2 < 1/2, this term is indeed the leading
term in the lower bound for the action of the solution operator on the initial datum,
and there holds

(4.35)
∣∣opψ

ε (S(0; t))Vi0j0(0)
∣∣
L2(B(x0,εβ))

≥ CεK
(
εβd/2etγ− − ε1/2| ln ε|∗etγ+

)
.

From (4.33), (4.34) and (4.35), via an integral representation of Vi0j0 (Section 3.1.3),
we deduce as in (3.60) and (4.31) the lower bound

|Vi0j0(T | ln ε|)|L2(B(x0,εβ)) ≥ CεK+βd/2−1/2−Tγ|a|L∞ − C| ln ε|∗εK−Tγ+
.

Since β < 1/d, given an observation time T < T ′′
0 , as soon as h is small enough, the

exponent K + βd/2− 1/2− Tγ|a|L∞ is strictly smaller than the exponent K − Tγ+,

yielding a deviation estimate. The lower bound for the amplification exponent is

K +
βd

2
− T ′′

0 γ|a|L∞ ,

corresponding to K ′′
0 given in (2.26).
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4.4. Proof of Theorem 2.13

We assume that given T < T∞, for ε small enough, the solution to (1.1)-(2.27)
is defined over [0, T

√
ε| ln ε|], belongs to C0([0, T

√
ε| ln ε|], Hs(Rd)), and is uniformly

bounded in (ε, t, x). From there, we proceed to prove the deviation estimate (2.28).
Let K ′ > 0 be given. The smaller K ′, the better the amplification in (2.28). In

particular we may assume K ′ to be smaller than 1/2. We posit

u =: ua + εK′
u̇,

and, following the proof of Theorem 2.9, we arrive at a system that is identical
to (4.17). The upper bound for the source terms is here

‖FVij
, FW ‖ε,s ≤ (1 + εK′−1/2|u̇|L∞)‖Vij , W‖ε,s + εKa−K′

,

for t ∈ [0, T
√

ε| ln ε|], for all T < T∞.

Next we follow the proof of Proposition 3.17 in order to derive an upper bound.
The control of L∞ is here a priori given, so that we can forgo the Sobolev embedding.
In particular, the above estimate for the source term simplifies into

‖FVij
, FW ‖ε,s ≤ (1 + ε−1/2+K′

C(T ))|u̇|L2 + εKa−K′
,

for some C(T ) > 0. This gives

‖(Vij)(i,j)∈R0 ,W)(t′)‖ε,s � εK−K′ | ln ε|∗etγ+
, t ∈ [0, T

√
ε| ln ε|], for all T < T∞,

where γ = γi0j0 (2.22). For the lower bound, we consider small balls with radius εβ ,

as in Section 4.3. We arrive at

|Vi0j0(T | ln ε|)|L2(B(x0,εβ)) ≥ CεK−K′+βd/2−Tγ|a|L∞ − C| ln ε|∗εK−K′+1/2−Tγ+

− C
√

ε| ln ε|∗
∫ T | ln ε|

0

e(T | ln ε|−t′)γ+ |FVi0j0
(t′)|L2dt′.

With the above upper bound for FV12 , this gives

|Vi0j0(T | ln ε|)|L2(B(x0,εβ)) ≥ CεK−K′+βd/2−Tγ|a|L∞ − C| ln ε|∗εK−K′+1/2−Tγ+

− C| ln ε|∗εK−Tγ+
.

Since K ′ < 1/2, among the last two terms in the above upper bound, the biggest is
the second one. For T∞ − T small enough, and ρ, h and β small enough, there holds

0 < K − K ′ + βd/2 − Tγ|a|L∞ < K − Tγ+,

and we conclude as in the other cases.
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CHAPTER 5

EXAMPLES

5.1. Raman and Brillouin instabilities

We consider here systems

(5.1) ∂tu + A(∂x)u =
1√
ε
B(u, u), A(∂x) =

∑
1≤j≤d

Aj∂xj ,

where A satisfies Assumption 2.1, and B is bilinear CN ×CN → CN . We analyze the
stability of special solutions of the form

(5.2) ua(t, x) = a(η · x − τt) ∈ CN ,

with

(5.3) τ ∈ sp A(η), a(y) ≡ (a(y), �e )�e, �e ∈ Ker A(η) − τ Id, B(�e,�e ) = 0,

where (·, ·) denotes the Hermitian scalar product in CN .

The systems (5.1) and solutions (5.2) that we are considering here are not exactly
typical of our main framework (1.1)-(1.2). We chose however to present our applica-
tion to the Raman and Brillouin instabilities first, since these are connected to the
Euler-Maxwell equations, which later on will be relevant for Klein-Gordon systems
(Sections 5.2 and 5.3).

The untypical features of (5.1)-(5.3) are as follows:
– the hyperbolic operator in (5.1) is non-dispersive, in the sense that A0 = 0.

As a consequence, the symbol A(ξ) is 1-homogeneous in ξ.

– The datum for (5.2) is not highly-oscillating, and the reference solution is
complex-valued. The reason is that the solution u to (5.1) describes a vector of
complex envelopes of highly-oscillating fields. That is, systems (5.1) and solu-
tions (5.2) can be thought of as resulting from a WKB approximation, and the
stability analysis is performed on the limiting system.

The solutions (5.2)-(5.3) satisfy Assumption 2.2, with va = 0, rε
a = 0, if a has a

large Sobolev regularity. Here (ω, k) = (0, 0) : the reference solution is not highly
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oscillating. In particular, in this context, resonances (Definition 2.4 page 18) are
crossing points on the variety:

Rij = {ξ ∈ Rd, λi(ξ) = λj(ξ)},
where λi and λj are eigenvalues of A. By homogeneity of A, the eigenvalues are
1-homogeneous in ξ. In particular, if ξ ∈ Sd−1 is a resonant frequency, then the
whole line defined by ξ is resonant. As a consequence, the resonant set is bounded
(Assumption 2.8(i)) only if eigenvalues cross only at ξ = 0.

A variant of (5.1) is given by systems

(5.4) ∂tu +
1
ε
A(∂x)u =

1
ε
B(u, u),

with the same assumptions on A and B. We posit the ansatz

(5.5) u(ε, t, x) = v
(
ε, ε−1/2t, ε1/2x

)
.

Then, u solves (5.4) if and only if v solves (5.1). Special solutions to (5.1) of the
form (5.2) correspond to special solutions of (5.4) of the form

(5.6) ua(ε, t, x) = a
(
ε1/2

(
η · x − τt

ε

))
.

Note that an instability in short time O(
√

ε| ln ε|) for (5.1) translates into an instability
in shorter time O(ε| ln ε|) for (5.4), expressing the fact that (5.4) is more singular
than (5.1).

5.1.1. Three-wave interaction systems. — We consider here specifically

(5.7)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂tu1 + c1∂xu1 =
b1√
ε
ū2u3,

∂tu2 + c2∂xu2 =
b2√
ε
ū1u3,

∂tu3 + c3∂xu3 =
b3√
ε
u1u2,

where t ∈ R+, x ∈ R, ui ∈ C, with velocities ci ∈ R and coefficients bi ∈ R. The
reference solution (5.2)-(5.3) is explicitly

(5.8) ua(t, x) =
(
a(x − c1t), 0, 0

) ∈ R3,

corresponding to �e = (1, 0, 0) ∈ C3, (τ, η) = (c1, 1).

Theorem 5.1. — The assumptions of Theorem 2.7 are satisfied by (5.7)-(5.8), with
stability index sgnΓ = sgn b2b3. In the case b2b3 > 0, this implies instability of arbi-
trarily small initial perturbations of (a(x), 0, 0) in time O(

√
ε| ln ε|), in the sense of

Theorems 2.7, 2.12 and 2.13.
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Proof. — Assumption 2.1 is trivially satisfied, since the hyperbolic operator is in
diagonal form. Assumption 2.2 is obviously satisfied by the exact solution (5.8).
Eigenvalues cross only at ξ = 0. As noted above, this implies that the only resonance
is ξ = 0, and Assumption 2.6(i) is satisfied. The linearized source B(ua) is block-
diagonal

B(ua) =

⎛⎝ 0 0 0
0 0 b2ā

0 b3a 0

⎞⎠ ,

and (2, 3) is the only non-transparent resonance, so that Assumption 2.6(ii) is satisfied.
The trace of the product of the (rank-one, satisfying Assumption 2.6(iii)) interaction
coefficients is Γ23 = b2b3|a|2, implying the result.

As an example of systems (5.4), we consider

(5.9)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂tu1 +

c1

ε
∂xu1 =

b1

ε
ū2u3,

∂tu2 +
c2

ε
∂xu2 =

b2

ε
ū1u3,

∂tu3 + c3∂xu3 = b3u1u2,

corresponding to scaling (5.4), where, as in (5.7), t ∈ R+, x ∈ R, ci ∈ R, bi ∈ R,

and ui ∈ C, with reference solution

(5.10) ua(ε, t, x) =
√

ε
(
a
(
ε1/2

(
x − c1t/ε

))
, 0, 0

)
∈ C3,

corresponding to (5.6) with �e = (1, 0, 0) ∈ C3, (τ, η) = (c1, 1).

Theorem 5.2. — If b2b3 > 0, then the solution (5.10) to system (5.9) is un-
stable under small initial perturbations of the form εK+1/2φ(ε, ε1/2x), satisfying
bound sup0<ε<1 ‖φ(ε, ·)‖ε,s < ∞. The amplification occurs in time O(ε| ln ε|), in
L2(Rd) norm.

Naturally, the above“amplification” is meant in the sense of Theorems 2.7 and 2.13.
There are three notable differences with Theorem 5.1: the form of the admissible
perturbations and the time intervals and radii of the balls over which the instability
may be recorded. From our general analysis, we can also deduce a stability result in
the case b2b3 < 0; its time range, however, is only O(

√
ε).

Proof. — Given the datum

ε1/2
(
a(ε1/2x), 0, 0

)
+ εK+1/2φ(ε, ε1/2x),

we posit the ansatz, similar to (5.5):⎛⎝ u1

u2

u3

⎞⎠ =

⎛⎝ ε1/2v1

ε1/2v2

v3

⎞⎠ (ε−1/2t, ε1/2x).
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Then (v1, v2, v3) solves (5.7), and Theorem 5.1 applies. The instability occurs
in time O(

√
ε| ln ε|) for the corresponding system in the scaling (5.1), hence in

time O(ε| ln ε|) for (5.9). It occurs in small balls B(x0, ρ) or B(x0, ε
β) for (v1, v2, v3),

hence in large balls B(x0, ε
−1/2ρ) in the scaling (5.9).

We can find more than one change of variables leading from (5.9) to (5.7). In
particular, we can prove instability of reference solutions of amplitude O(1) to (5.9),
assuming slow variations in space, as follows. Consider the family of solutions to (5.9):

(5.11) ua(ε, t, x) =
(
a(εx − c1t), 0, 0

)
Theorem 5.3. — The stability of solution (5.11) to (5.9) under perturbations of the
form εKφ(ε, εx), with sup0<ε<1 ‖φ(ε, ·)‖ε,s < ∞, and φ = (φ1, φ2, ε

1/2φ3), is deter-
mined by the sign of b2b3. Instability occurs in time O(

√
ε| ln ε|) and is measured in

norm L2(Rd).

(In)stability is meant in the sense of Theorems 2.7 and 2.13.

Proof. — Given the datum(
a(εx) + φ1(ε, εx), φ2(ε, εx), ε1/2φ3(ε, εx)

)
,

we posit the ansatz ⎛⎝ u1

u2

u3

⎞⎠ =

⎛⎝ v1

v2

ε1/2v3

⎞⎠ (t, εx).

Then (v1, v2, v3) solves (5.7), and Theorem 5.1 applies. The instability occurs in small
balls for (v1, v2, v3), hence in large balls in the scaling (5.9).

Remark 5.4. — We note that for homogeneous (x-independent) fields ui, the con-
dition b2b3 > 0 implies spectral instability of the equilibrium (a, 0, 0). In Section 9.2
of [38], Rauch observes that for (5.7) or (5.9) with ε = 1, in the case of coefficients
satisfying b1 < 0, b2 > 0, b3 > 0, the quantity a1|u1|2L2 + a2|u2|2L2 + a3|u3|2L2 , with
a1b1+a2b2+a3b3 = 0, is conserved, implying Lyapunov stability of the trivial solution,
in contrast with instability of the progressing wave (5.8) as given by Theorem 5.1.
Section 9.2 of [38] also contains a blow-up result in the case bi > 0.

5.1.2. Derivation of three-wave interaction systems from Euler-Maxwell.
— The Euler-Maxwell equations describe laser-plasma interactions [6, 14, 44]. In
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the non-dimensional form introduced in [48], they are

(EM)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tB + ∇× E = 0,

∂tE −∇× B =
1
ε
((1 + ne + f(ne))ve − 1

ε

θi

θe
(1 + ni + f(ni))vi,

∂tve + θe(ve · ∇)ve = −θe∇ne − 1
ε
(E + θeve × B),

∂tne + θe∇ · ve + θe(ve · ∇)ne = 0,

∂tvi + θi(vi · ∇)vi = −α2θi∇ni +
1
ε

θi

θe
(E + θivi × B),

∂tni + θi∇ · vi + θi(vi · ∇)ni = 0,

where (B, E) ∈ R6 is the electromagnetic field, (ve, vi) ∈ R6 are the electronic and
ionic velocities, and (ne, ni) ∈ R2 are the electronic and ionic fluctuations of density
from a constant background. The function f is f(x) = ex−1−x. The small parameter
with respect to which the WKB will be performed is

ε =
1

ωpet0
,

where ωpe is the electronic plasma frequency ωpe =

√
4πe2n0

me
and t0 is the duration

of the laser pulse. The other parameters are

θe =
1
c

√
γeTe

me
, θi =

1
c

√
γiTi

mi
, α =

Ti

Te
,

with −e the charge of the electrons, +e the charge of the ions, me and mi the
masses, n0 the background density, c the speed of light, γe and γi the specific heat ra-
tios, Te and Ti the temperatures. For plasmas created by lasers, the parameters θe, θi

and α are typically small, and ε is even smaller. Since the mass of the ions is much
larger than the mass of the electrons, there holds θi � θe.

In the right-hand side of the Ampère equation in (EM), we find the current density,
and in the right-hand sides of the equations of conservation of momentum, we find
the pressure terms in ∇n and the Lorentz forces in v × B.

We denote x ∈ R the direction of propagation of the laser pulse, and coordinatize

(x, y) = (x, y1, y2) ∈ R3, M = (Mx, My) = (Mx, My1 , My2) ∈ C3.

The hyperbolic operator in (EM) splits into transverse and longitudinal components.
We denote

u⊥ = (By1 , By2 , Ey1 , Ey2 , vey1 , vey2), u‖ = (Bx, Ex, vex, ne, vix, ni).
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Then, (EM) takes the form⎧⎪⎨⎪⎩
(
∂t + A⊥ +

1
ε
A⊥0

)
u⊥ = F⊥(u),(

∂t + A‖ +
1
ε
A‖0

)
u‖ = F‖(u),

where F⊥, F‖ contain all nonlinear terms: convection, current density and Lorentz
force. The transverse and longitudinal hyperbolic operators have the form (1.1)
with A0 �= 0. The transverse eigenvalues iω are the eigenvalues of A⊥(i�k) + A⊥0,

where
�k = (k, 0, 0) ∈ R3;

they satisfy

(5.12) (−iω)4
(
ω2 − k2 − 1 − θ2

i

θ2
e

)2

= 0.

The longitudinal eigenvalues iω are the eigenvalues of A‖(i�k) + A‖0; they satisfy

(5.13) (−iω)2
(
(ω2 − α2k2θ2

i )(ω2 − 1 − k2θ2
e) − (ω2 − k2θ2

e)
θ2

i

θ2
e

)
= 0.

The above longitudinal dispersion relation takes the alternate form

(5.14) 1 =
1

ω2 − k2θ2
e

+
θ2

i

θ2
e

1
ω2 − k2α2θ2

i

,

which we will find useful in Section 5.1.2.5.
We denote (t) the branches of non-trivial solutions of (5.12). We denote (�) and

(s) the branches of non-trivial solutions to (5.13). The (t) branches correspond to
electromagnetic waves with a transverse polarization, typically light sources. The
waves corresponding to the (�) branches are called electronic plasma waves. They
encode part of the response of the plasma to an incident light source. The (s) branches
comprise acoustic waves.

These satisfy the following expansions in the limit θi → 0 :

(5.15) ω2
(�) = 1 + k2θ2

e + O(θi)2, ω2
(s) = k2θ2

i

(
α2 +

1
1 + k2θ2

e

)
+ O(θ4

i ),

locally uniformly in k. For large k,

(5.16) ω(�) = ±θek + O
(1

k

)
, ω(s) = ±αθik + O

(1
k

)
.

The characteristic variety for the Euler-Maxwell equations, meaning the collection of
all branches of solutions ω(k) to (5.12) and (5.13) is pictured on Figure 1.

Remark 5.5. — The proof by Guo, Ionescu and Pausader [19] of existence of small,
global solutions to the Euler-Maxwell equations is based on an interesting reformula-
tion of (EM) as three coupled dispersive equations (system (3.9) in [19]) with disper-
sion relations given by two Klein-Gordon modes and an acoustic mode, in agreement
with Figure 1.
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Figure 1. The characteristic variety for the Euler-Maxwell equations.

5.1.2.1. Polarization and compatibility conditions. — Given β = (ω, k), we de-
note Π(β) the orthogonal projector onto the kernel of the total operator(

−iω + A⊥(i�k) + A⊥0 0
0 −iω + A‖(i�k) + A‖0

)
.

We denote β⊥ a transverse phase, and β‖ a longitudinal phase. The transverse
polarization condition Π(β⊥)u = u is explicitly (with β⊥ = (ω, k)):
(5.17)

u‖ = 0, (By1 , By2) = kω−1(Ey2 ,−Ey1), veyj
=

1
ipω

Eyj
, viyj

= − 1
ipω

θi

θe
Eyj

.

The longitudinal polarization condition Π(β‖)u = u is explicitly (with β‖ = (ω, k)):

(5.18)

u⊥ = 0, Bx = 0,

vex = −
(
− iω + iω−1k2θ2

e

)−1

Ex, viz =
(
− iω + iω−1α2k2θ2

i

)−1 θi

θe
Ex,

ne = −kθe

ω

(
− iω + iω−1k2θ2

e

)−1

Ex,

ni =
α2kθi

ω

θi

θe

(
− iω + iω−1α2k2θ2

i

)−1

Ex.
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The transverse compatibility condition Π(β⊥)u = 0 is explicitly (with β⊥ = (ω, k)):

(5.19)
k

ω
By2 = Ey1 −

1
iω

(
ve − θi

θe
vi

)
y1

, − k

ω
By1 = Ey2 −

1
iω

(
ve − θi

θe
vi

)
y2

.

The longitudinal compatibility condition Π(β‖)u = 0 is explicitly (with β‖ = (ω, k)):

(5.20)
iω

ω2 − k2θ2
e

(kθe

ω
ne + vex

)
− θi

θe

iω

ω2 − k2α2θ2
i

(kα2θi

ω
ni + vix

)
+ Ex = 0.

5.1.2.2. Initial data and ansatz. — We consider initial data with two oscillating
phases:

(5.21) u(ε, 0, x, y) = �e
(
a1(x, y)eik1x/ε + a2(x, y)eik2x/ε

)
,

where the amplitudes a1 and a2 satisfy polarization conditions

Π(β1)a1 = a1, Π(β2)a2 = a2,

where β1 and β2 are transverse phases. In accordance with (5.21), we consider the
two-phase ansatz

u(ε, t, x, y) = u
(

ε, t, x, y,
k1x − ω1t

ε
,
k2x − ω2t

ε

)
,

where u is 2π-periodic in both fast variables:

u(ε, t, x, y, θ1, θ2) =
∑
p1∈Z

p2∈Z

eip1θ1+ip2θ2up1p2(ε, t, x, y).

Each amplitude up1p2 is decomposed into powers of ε :

(5.22) u(ε, t, x, y, θ1, θ2) = ε
∑
j≥0

∑
p1∈Z

p2∈Z

eip1θ1+ip2θ2εjuj,p1p2(t, x, y).

We inject (5.22) into the equation in u and sort out powers of ε. We will see that
a formal solution that is consistent at order 2 has leading terms which solve the
three-wave interaction systems.

Remark 5.6. — It was shown in [48] that for the Euler-Maxwell equations, the
weakly nonlinear regime of geometric optics leads to linear transport equations. The
weakly nonlinear regime is precisely the one we consider with the ansatz (5.22). (By
constrast, the scaling in (1.1) corresponds to higher amplitudes for Euler-Maxwell,
namely u = O(

√
ε).) However, we derive in Section 5.1.2.5 below nonlinear transport

equations, namely the three-wave interaction systems of Section 5.1.1. The discrep-
ancy with [48] simply comes from the fact that we are looking at two-phase expansions
here, while the result of [48] holds for single-phase expansions. The Euler-Maxwell
equations are less transparent when two phases are considered, since there are more
potential couplings. For instance, the fundamental phase corresponding to Fourier
modes (1, 0) is produced by the bilinear interaction (1, 0) = (0, 0) + (1, 0), but also
by (1, 0) = (1, 1) + (0,−1). As seen in Section 5.1.2.5 below, transparency implies
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Figure 2. Resonance associated with the Raman instability.

the cancellation u0,(0,0) = 0, so that the interaction (1, 0) = (0, 0) + (1, 0) is not
constructive, but the interaction (1, 0) = (1, 1) + (0,−1) is constructive, as seen on
equations (5.28)-(5.29).

5.1.2.3. Choice of phases. — The phases β1 and β2 are chosen to be transverse, and
such that

(5.23) β = β1 + β2

is a longitudinal characteristic phase. We let

β1 = (ω1, k1), β2 = (ω2, k2), β = (ω, k).

In particular, in the following the notation β does not denote a generic characteristic
phase, but the longitudinal characteristic phase resulting from β1 + β2.

By symmetry, −β1,−β2 and −β also are characteristic phases. We assume that
the phases pβ, pβ1 and pβ2, for p /∈ {−1, 0, 1}, are not characteristic, corresponding
to the typical situation for a given (k1, k2).

If β is an electronic plasma wave, then the resonance (5.23) is associated with
the phenomenon known as Raman instability (“scattering of light from optical
phonons” [3], paragraph 8.1). This case is examined in Section 5.1.3. The corre-
sponding (t)(t)(�) resonance is pictured on Figure 2.
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Figure 3. Resonance associated with the Brillouin instability.

If β is an acoustic wave, then in (5.23) we are looking at the Brillouin instability
(“scattering of light from acoustic phonons” [3], paragraph 8.1). This case is examined
in Section 5.1.4. The corresponding (t)(t)(s) resonance is pictured on Figure 3.

The notation uj,p1,p2 , introduced in (5.22), denotes the (p1, p2) Fourier mode of
the profile uj , which is the O(εj) term in the expansion of u into powers of ε. In the
following, we often use the slightly different notation

(5.24) uj,pβ1 := uj,p,0, uj,pβ2 := uj,0,p, uj,pβ := uj,p,p, p ∈ {−1, 0, 1}.
5.1.2.4. WKB equations: O(1). — The equations for the terms O(1) are

(−iω + A⊥(ik) + A⊥0)u0⊥ = 0, (−iω + A‖(ik) + A‖0)u0‖ = 0,

corresponding to the dispersion relations for the phases β, β1, β2 and the polarization
conditions for the amplitudes:

(5.25) Π(pβj)u0,pβj
= u0,pβj

, Π(pβ)u0,pβ = u0,pβ , j ∈ {1, 2}, p ∈ {−1, 0, 1},
explicitly given by (5.17) and (5.18) for p ∈ {−1, 1}. In accordance with Sec-
tion 5.1.2.3, these are the only non-trivial harmonics. In (5.25) we used nota-
tion (5.24).

We note that (5.25) for p = 0 implies E0,0 = 0 : the mean mode of the leading
amplitude in the electric field vanishes identically.
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5.1.2.5. WKB equations: O(ε). — The equations for the terms O(ε) are

(−iω + A⊥(ik) + A⊥0)u1⊥ = F1⊥, (−iω + A‖(ik) + A‖0)u0‖ = F1‖.

We project onto the kernels. The compatibility conditions

(5.26) Π(pβ1)F1⊥,pβ1 = 0, Π(pβ2)F1⊥,pβ2 = 0,

give the evolution equations in u0,pβ1 and u0,pβ2 , and the compatibility condition

(5.27) Π(pβ)F1‖,pβ = 0

gives the evolution equations in u0,pβ . There are two types of terms in these evolution
equations: transport operators at the group velocities, and bilinear coupling terms.
We consider in succession the mean mode (0, 0), the transverse modes pβ1 and pβ2,

and the longitudinal modes pβ, with p = ±1.

Mean mode. The Lorentz force terms are transparent: there holds, given u0 and
phases as described in Sections 5.1.2.2 to 5.1.2.4:(

ve0 × B0

)
(0,0)

= 0,
(
vi0 × B0

)
(0,0)

= 0.

From there, and E0,0 = 0 (Section 5.1.2.4), we find by direct computation on the
Euler-Maxwell equations that the mean mode is constant. Given the form of the
datum, we infer u0,(0,0) = 0 : the mean mode of the leading amplitude vanishes
identically.

Transverse modes. The nonlinear terms satisfy a form of transparency. This was
first observed in [48] (see Proposition 2.1 from that reference). Given u0 and phases
as described in Sections 5.1.2.2 to 5.1.2.4:(

ve0zikve0y + (ve0 × B0)y

)
pβj

= 0, j ∈ {1, 2}, p ∈ {−1, 1},(
vi0zikvi0y − θi

θe
(vi0 × B0)y

)
pβj

= 0, j ∈ {1, 2}, p ∈ {−1, 1}.

This implies that only the current density contributes to the evolution equations (5.26)
for the transverse amplitudes u0,pβj

. With (5.19), and the specific form of F1⊥ and F1‖
as given by the Euler-Maxwell equations, we find that these equations are

∂tE0y,pβj +
kj

ωj
∂xE0y,pβj =

(
ne0ve0y − θi

θe
ni0vi0y

)
pβj

, p ∈ {−1, 1}.

By the form of the transverse dispersion relation (5.12), the ratio kj/ωj is the group
velocity (1):

kj

ωj
=

dω(t)

dk
|k=kj

.

1. We further comment on the form of the transport equations in geometric optics on page 118.
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The coupling terms are made explicit, in terms of the electrical amplitudes, by use of
the polarization conditions (5.17) and (5.18). We obtain

(5.28) ∂tE0y,β1 +
k1

ω1
∂zE0y,β1 =

1
ω2

( kθe

ω2 − k2θ2
e

− θ3
i

θ3
e

α2kθi

ω2 − α2k2θ2
i

)
E0z,βĒ0y,β1 .

and

(5.29) ∂tE0y,β2 +
k2

ω2
∂xE0y,β2 =

1
ω1

( kθe

ω2 − k2θ2
e

− θ3
i

θ3
e

α2kθi

ω2 − α2k2θ2
i

)
E0z,βĒ0y,β2 .

By symmetry, E0y,−βj
≡ Ē0y,βj

.

Longitudinal modes. Next we turn to the equation (5.27) in u0,pβ , for |p| = 1. The
convective terms are transparent:(

ve0x · ik
(

ne0

ve0x

))
pβ

= 0,

(
vi0x · ik

(
ni0

vi0x

))
pβ

= 0.

The current density terms also are transparent:(
ne0ve0x − θi

θe
ni0vi0x

)
pβ

= 0.

Thus the only nonlinear term in the longitudinal equation comes from the Lorentz
force. Just like for the transverse equations, in order to spell out equation (5.27), we
use the compatibility condition (5.20) together with the explicit expression of F1‖ as
read on the Euler-Maxwell equations. We find

(5.30)

(
1 +

ω2 + k2θ2
e

e2
+

θ2
i

θ2
e

ω2 + α2k2θ2
i

i2

)
∂tE0x,β + 2k

(θ2
eω

e2
+

θ2
i

θ2
e

α2θ2
i ω

i2

)
∂xE0x,β

= Lorentz force term,

with notation
e := ω2 − k2θ2

e , i := ω2 − k2α2θ2
i .

From (5.14), we compute by term-by-term differentiation

0 = 2ω(k)ω′(k)
( 1
e2

+
θ2

i

θ2
e

1
i2

)
− 2k

(θ2
e

e2
+

θ2
i

θ2
e

α2θ2
i

i2

)
, ω′ =

dω(�)

dk
or ω′ =

dω(s)

dk
.

Together with (5.14), this shows that, for p = 1, (5.30) is a transport equation at
group velocity:

∂tE0x,β+ω′(k)∂xE0x,β =
(
1+

ω2 + k2θ2
e

e2
+

θ2
i

θ2
e

ω2 + α2k2θ2
i

i2

)−1

×(
Lorentz force term

)
.

The β-harmonics of the electronic Lorentz force term is

(ve0×B0

)
β

= ve0,β1×B0,β2+ve0,β2×B0,β1 =

⎛⎝ ve0y1,β1 × B0y2,β2 − ve0y2,β1B0y1,β2

0
0

⎞⎠.
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With the polarization (5.17), the x component of the β-harmonics of the electronic
Lorentz force appears as

k

iω1ω2

(
E0y1,β1E0y2,β2 + E0y1,β1E0y2,β2

)
.

Taking into account the ionic component of the Lorentz force, and the compatibility
condition (5.20), the longitudinal transport equation finally takes the form
(5.31)

∂tE0x,β + ω′(k)∂xE0x,β

=
kω

ω1ω2

( θe

ω2 − k2θ2
e

+
θ2

i

θ2
e

θi

ω2 − k2α2θ2
i

)(
E0y1,β1E0y1,β2 + E0y2,β1E0y2,β2

)
.

In the case of one spatial transverse dimension y ∈ R, or E0y2 ≡ 0, the system of
equations (5.28)-(5.29)-(5.31) fall into the category of three-wave interaction systems
as described in Section 5.1.1.

Remark 5.7. — What about stability of the WKB expansion that was sketched
here? Correctors can be constructed in a classical way, implying consistency of the
WKB approximation in the sense of (2.3). Short-time stability of small initial per-
turbations then follows by Sobolev estimates for the singular equations satisfied by
the profiles, since the regime is weakly nonlinear.

Remark 5.8. — In paragraph 2.2 of Boyd’s treatise [3], three-wave interactions sys-
tems such as (5.28)-(5.29)-(5.31) are derived from Maxwell’s equations, under the
assumption of an ad hoc expansion for the nonlinear polarization encoding the non-
linear response of the medium. Another derivation, this time from the three-level
Maxwell-Bloch equations, is given in Section 12 of [25], by means of a similar two-
phase expansion in a weakly nonlinear regime. In [2], Schrödinger-Bloch systems
were derived in the high-frequency limit from three-level Maxwell-Bloch systems,
and formal arguments were given to further derive three-wave interaction systems
from Schrödinger-Bloch systems. In [41], three-wave interaction systems are rigor-
ously derived from the gravity-capillary water-wave system. Another derivation from
Euler-Maxwell is given in [10].

5.1.3. Raman. — The Raman instability corresponds to a growth of the electronic
plasma waves. Here β belongs to the (�) branch of the variety. With (5.15), if the
spatial transverse dimension is equal to one, or E0y2 ≡ 0, the three-wave interaction
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system (5.28)-(5.29)-(5.31) is

(5.32)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂tEβ1 +
k1

ω1
∂xEβ1 =

(
kθe

ω2
+ O(θ2

i )
)

Ēβ2Eβ ,

∂tEβ2 +
k2

ω2
∂xEβ2 =

(
kθe

ω1
+ O(θ2

i )
)

Ēβ1Eβ ,

∂tEβ +
(

kθ2
e

ω
+ O(θ2

i )
)

∂xEβ =
(

kωθe

ω1ω2
+ O(θ2

i )
)

Eβ1Eβ2 ,

locally uniformly in k, where Eβj
stands for E0y1,βj

, and similarly Eβ = E0x,β .

We consider in (5.32) the parameters k and ω, ω1, ω2 to be fixed, θe to be small,
and θi to be even smaller than θe. For the solution U = (Eβ1 , Eβ2 , Eβ) to (5.32), we
posit the ansatz

U(θe, t, x) = V (θ3/2
e t, θ3/2

e x).

Then, V solves the 3-wave interaction system (5.7), with ε = θe, and there
holds sgn b2b3 = sgn

ω

ω2
> 0. Theorem 5.1 asserts instability of the reference solu-

tion Va(t, x) = (a(x − c1t), 0, 0), with c1 =
k1

ω1
, under initial perturbations of the

form εKφ(ε, x), in time O(
√

ε| ln ε|), in small balls B(x0, ρ).
In the scaling of (5.32), this translates as instability, in the sense of Theorem 2.7,

of the reference solution

Ua(t, x) =
(
Eβ1

(
θ3/2

e

(
x − k1

ω1
t
))

, 0, 0
)
,

under initial perturbations of the form θK
e φ(θe, θ

3/2
e x), satisfying the uniform

bound sup0<θe<1 ‖φ(θe, ·)‖θe,s < ∞. The instability occurs in long time O(θ−1
e | ln θe|)

and is recorded in norm L2(Rd).
The coupling in (5.32) is weak, implying that instability are recorded only in long

time, for which our analysis applies only if initial perturbations are slowly varying
in x.

As shown in particular in Section 3.1.6, the amplification is maximal for the com-
ponents of the solution associated with the unstable resonance. Here, this means
in particular that small perturbations of the initially null electromagnetic plasma
field Eβ are amplified, corresponding to the Raman instability.

Remark 5.9. — The two-dimensional model of Colin and Colin [10] is a refinement
of system (5.32) for the description of Raman scattering.

5.1.4. Brillouin. — The Brillouin instability corresponds to a growth of the acous-
tic waves. Here β belongs to the (s) branch of the variety. With (5.15), if the spatial
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transverse dimension is equal to one, or E0y2 ≡ 0, the three-wave interaction sys-
tem (5.28)-(5.29)-(5.31) is

(5.33)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂tEβ1 +
k1

ω1
∂xEβ1 =

( −1
ω2kθe

+ O(θ2
i )

)
Ēβ2Eβ ,

∂tEβ2 +
k2

ω2
∂xEβ2 =

( −1
ω1kθe

+ O(θ2
i )

)
Ēβ1Eβ ,

∂tEβ +
(
θiα + O(θ2

i )
)
∂xEβ =

( −1
ω1ω2

θi

θe
α + O(θ2

i )
)

Eβ1Eβ2 ,

where α :=
(

α2 +
1

1 + k2θ2
e

)1/2

, and Eβj
stands for E0y1,βj

, similarly Eβ = E0z,β .

We consider in (5.33) the parameters k and ω, ω1, ω2 to be fixed, θe to be small,
and θi to be even smaller than θe; for instance

(5.34) θe = ε1/2, θi = ε.

For the solution U = (Eβ1 , Eβ2 , Eβ) to (5.32), we posit the ansatz

U(ε, t, x) = V (ε1/2t, ε−1/2x).

Then, V solves the 3-wave interaction system (5.9), with ε defined in (5.34), and

sgn b2b3 = sgn
θiα

kω2
= sgn

( ω

ω2

α

α
+ O(θi)

)
> 0.

Theorem 5.2 applies. In the scales of (5.33), it asserts instability of the reference
solution √

ε
(
Eβ1(x − k1

ω1
t), 0, 0

)
under initial perturbations of the form εKφ(ε, x), in time O(

√
ε| ln ε|), in L2(B(x0, ρ))

or L2(B(x0, ε
β)) norms.

Theorem 5.3 also applies. It asserts instability of the reference solution(
Eβ1

(√
ε(x − k1

ω1
t)
)
, 0, 0

)
under initial perturbations of the form εKφ(ε, ε1/2x), with φ3 = O(ε1/2), in
time O(| ln ε|), as measured in L2(Rd).

The proof of Section 3.1 shows that small perturbations of the initially null acoustic
field Eβ are amplified, corresponding to the Brillouin instability.

5.2. Coupled Klein-Gordon systems with equal masses

Our second class of examples comprises coupled Klein-Gordon systems in Rd, with
equal masses and different velocities. Our motivation here is the Euler-Maxwell sys-
tem describing laser-plasma interactions, which, when linearized around zero, pre-
cisely gives two such Klein-Gordon systems and an acoustic system, as we saw in
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Section 5.1.2 above. This form of the linearized Euler-Maxwell system induces us to
think that high-frequency instabilities in the full Euler-Maxwell could be captured by
the model systems that we now describe.

We denote

∂t + A1(∂x) +
1
ε
L0, ∂t + A1(θ0∂x) +

1
ε
L0

the Klein-Gordon operators, with 0 < θ0 < 1, implying different velocities, and

(5.35) A1(∂x) =

⎛⎝ 0 −∂x 0
∂x· 0 0
0 0 0

⎞⎠ , L0 =

⎛⎝0 0 0
0 0 ω0

0 −ω0 0

⎞⎠ ,

where ω0 > 0, and x ∈ Rd. Expressed in terms of the unknown U = (u, v) ∈ R2(d+2)

with u = (u1, u2, u3) where u1 ∈ Rd, u2 ∈ R, u3 ∈ R, and v = (v1, v2, v3) ∈ Rd+1+1,

the coupled systems have the form

(5.36)

⎧⎪⎪⎨⎪⎪⎩
(
∂t + A1(∂x) + L0

)
u =

1√
ε
B1(U,U),(

∂t + A1(θ0∂x) + L0

)
v =

1√
ε
B2(U,U),

where B1 and B2 are bilinear R2(d+2) × R2(d+2) → R2(d+2). The eigenvalues λ(ξ) of
matrix A1(ξ) + L0/i are

(5.37) λ1(ξ) =
√

ω2
0 + |ξ|2 = −λ4(ξ),

and a multiplicity-d null branch. Similarly, the eigenvalues of matrix A1(θ0ξ) + L0/i

are

(5.38) λ2(ξ) =
√

ω2
0 + θ2

0|ξ|2 = −λ3(ξ),

and a multiplicity-d null branch. We denote λ5 ≡ 0 the null branch for the whole
system, with total multiplicity 2d. The eigenvalues are depicted on Figure 4. There are
two fast Klein-Gordon branches, corresponding to (5.37), and two slow Klein-Gordon
branches (slow since θ0 < 1), corresponding to (5.38).

Thus we see that in approximating Euler-Maxwell by a system of the form (5.36),
disregarding the specific form of the right-hand side of (5.36), we are simply approx-
imating the speed of sound by zero and neglecting convective terms.

We will show that for these Klein-Gordon operators, some bilinear coupling
terms B1, B2 allow for non-trivial WKB solutions that are unstable, which we believe
to be the situation for Euler-Maxwell (in the case of highly-oscillating data; non-
oscillating data are known to generate stable WKB solutions [49]). In Euler-Maxwell,
it is the current density in the Ampère equation and the Maxwell-Lorentz force in the
equation of conservation of momentum that couple the Klein-Gordon and acoustic
systems, as we saw in Section 5.1.2.
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Figure 4. Coupled Klein-Gordon with equal masses.

For definiteness we will perform computations on the following explicit expressions
for these coupling terms: coordinatizing

U = (u1, u2, u3, v1, v2, v3), U ′ = (u′
1, u

′
2, u

′
3, v

′
1, v

′
2, v

′
3),

we let

(5.39)

B1(U,U ′) =
1
2

⎛⎝ 0
u3v

′
3 + v3u

′
3 + v3v

′
3

0

⎞⎠ ,

B2(U,U ′) =
1
2

⎛⎝ 0
−u2u

′
2 + v2v

′
3 + v3v

′
2

0

⎞⎠ .

We denote

A(∂x) :=
(

A1(∂x) 0
0 A1(θ0∂x)

)
, A0 :=

(
L0 0
0 L0

)
, B(·, ·) :=

(
B1(·, ·)
B2(·, ·)

)
.

Then equation (5.36) takes the form (1.1).
For system (5.36), we check that Assumption 2.1 is satisfied (a simple property of

the Klein-Gordon operators), that for most initial wavenumbers Assumption 2.2 is
satisfied as well (the result of WKB computations performed in Section 5.2.2), and
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finally, in Section 5.2.3, that Assumption 2.8 is satisfied in one space dimension d = 1,

with Γ > 0.

Thus the conclusions of Theorems 2.9, 2.12 and 2.13 apply, proving instability of
the WKB solutions described below, if d = 1.

5.2.1. Verification of Assumption 2.1: smooth spectral decomposition. —
The spectral decomposition is

A1(ξ) + L0/i = λ1(ξ)P1(ξ) − λ1(ξ)P3(ξ) + 0 · P5(ξ).

The eigenvalues are separated, implying regularity of both eigenvalues and eigenpro-
jectors (see for instance Theorem 1.8 in Chapter 2 of [26]).

It remains to prove bounds (2.2). By Lemma 6.19 in Appendix 6.5, these follow
from a regularity result at infinity. The associated symbol at infinity is

A∞(ω̄, x) = A1(ω̄) − ixL0 =

⎛⎝ 0 ω̄ 0
ω̄· 0 −ixω0

0 ixω0 0

⎞⎠ , (ω̄, x) ∈ Sd−1 × R.

It has simple eigenvalues ±(
ω̄2 + x2ω2

0

)1/2
, and a multiplicity-three null eigenvalue.

Given ω̄ ∈ Sd−1, the eigenvalues are separated in a neighborhood of x = 0. Hence the
spectral decomposition of A∞ is smooth at (ω̄, 0), for all ω̄ ∈ Sd−1, and Lemma 6.19
applies, implying bounds (2.2) for A(∂x) + L0. Naturally, this also applies to the
operator A1(θ0∂x) + L0, hence to the total operator A(∂x) + A0.

5.2.2. Verification of Assumption 2.2: WKB expansion. — We select a char-
acteristic temporal frequency ω ∈ R associated with the initial wavenumber k ∈ Rd,

such that the following conditions are satisfied:
– The phase β = (ω, k) belongs to the fast positive Klein-Gordon branch on the
variety:

ω =
√

ω2
0 + |k|2.

– The only harmonics of β on the fast Klein-Gordon branches are p ∈ {−1, 1} :

p2ω2 = ω2
0 + p2|k|2 =⇒ p ∈ {−1, 1}.

– No harmonics of β belongs to the slow branches on the variety:

p2ω2 �= ω2
0 + p2θ2

0|k|2, for all p ∈ Z.

– There are no auto-resonances: the equations in ξ ∈ Rd

λ1(ξ + k) = ±ω + λ1(ξ), λ2(ξ + k) = ±ω + λ2(ξ)

have no solution.
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While this may seem like a lot of requirements on the fundamental phase, a look
at Figure 4 should suffice to convince the reader that for most phases β on the fast
positive Klein-Gordon branch, these assumptions are satisfied.

The zeroth harmonics p = 0 belongs to the variety. With the above, this implies
in particular that condition (6.47) on page 115, describing {−1, 0, 1} as the set of
characteristic harmonics of the fundamental phase (ω, k), is satisfied.

By Proposition 6.21 in Appendix 6.6, in order to verify Assumption 2.2, it then
suffices to check that the weak transparency condition (6.48) is satisfied.

In this view, borrowing notation from Appendix 6.6, we denote Π(pβ) the or-
thogonal projector onto ker(−ipω + A(ipk) + A0). For |p| = 1, these kernels are
one-dimensional, generated by �e1 and �e−1 = (�e1)∗, with notation

(5.40) �e1 :=
1√
2

(
− k

ω
, 1,

iω0

ω
, 0Cd+2

)
∈ C2(d+2),

so that
Π(β)U = (U,�e1 )�e1, Π(−β)U = (U,�e∗1)�e

∗
1,

denoting (·, ·) the Hermitian scalar product in C2(d+2). The orthogonal projector Π(0)
onto the six-dimensional kernel of A(0) + A0/i is

Π(0)U = (u1, 0, 0, v1, 0, 0),

implying, for B given by (5.39), the identities

Π(0)B ≡ 0, B(Π(0)·, ·) ≡ 0, B(·,Π(0)·) ≡ 0,

which yield (6.48).

5.2.3. Verification of Assumption 2.8: resonances and transparency. — We
verify here the conditions (i) boundedness, (ii) partial transparency, and (iii) rank-one
interaction coefficients of Assumption 2.8.

By the form of the characteristic variety, and the choice of β, resonant pairs are

R :=
{
(1, 2), (1, 5), (2, 5), (3, 4), (5, 3), (5, 4)

}
.

A resonant frequency is pictured on Figure 4, corresponding to a (1, 2) resonance,
which we may denote β1 = β + β2, or λ1(ξ + k) = ω + λ2(ξ).

(i) Boundedness of R. Here we apply Lemma 6.27 page 121, as we may since
the assumptions of Lemma 6.19 have been verified in Section 5.2.1. The asymptotic
branches on the variety are obviously distinct (Figure 4).

(ii) Partial transparency. From the definition of B in (5.39) and �e1 in (5.40), we
see that

B(�e1)U =
1√
2

(
0Cd+2 ,

iω0

ω
v3, 0, 0Cd ,−u2, 0

)
,

B(�e−1)U =
1√
2

(
0Cd+2 ,

−iω0

ω
v3, 0, 0Cd ,−u2, 0

)
.
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An element in the image of Π5(ξ), the orthogonal projector onto the kernel of the
matrix A(ξ) + A0/i, has the form

U5(ξ) =
(
u1, 0,

−iξ · u1

ω0
, v1, 0,

−iθ0ξ · v1

ω0

)
, (u1, v1) ∈ C6.

In particular, for all U ∈ C2(d+2), B(�e±1)U belongs to the orthogonal of the range
of Π5(ξ), so that

(5.41) Π5(·)B(�e±1) ≡ 0.

The other projectors are

Πj(ξ)U =
1√
2

(
U,Ωj(ξ)

)
Ωj(ξ),

where
Ωj(ξ) :=

1√
2

(
− ξ

λj
, 1,

iω0

λj
, 0Cd+2

)
, j = 1, 4;

and
Ωj′(ξ) :=

(
0Cd+2 ,−θ0ξ

λj′
, 1,

iω0

λj′

)
, j′ = 2, 3.

From there, we compute

Π2(ξ)B(e±1)Π5(ξ′) ≡ 0, Π3(ξ)B(�e±1)Π5(ξ′) ≡ 0.

Together with (5.41) this implies that resonances (2, 5) and (5, 3) are transparent.
Besides,

(5.42)

(
Ω1(ξ′), B(�e1)Ω2(ξ)

)
=

−ω2
0

2ωλ2(ξ)
,(

Ω2(ξ), B(�e−1)Ω1(ξ′)
)

=
(
Ω3(ξ), B(�e1)Ω4(ξ′)

)
=

−1
2

,(
Ω1(ξ + k), B(�e1)U5(ξ)

)
=

θ0ξ · v1

2ω
,(

Ω4(ξ), B(�e−1)U5(ξ + k)
)

= −θ0(ξ + k) · v1

2ω
.

Thus
R0 :=

{
(1, 2), (1, 5), (3, 4), (5, 4)

}
,

a subset of R which does not contain auto-resonances. The associated resonant sets
are

R12 =
{

ξ :
√

ω2
0 + |ξ + k|2 = ω +

√
ω2

0 + θ2
0|ξ|2

}
,

R15 = {ξ : |ξ + k| = |k|},

R34 =
{

ξ :
√

ω2
0 + |ξ|2 = ω +

√
ω2

0 + θ2
0|ξ + k|2

}
,

R54 = {ξ : |ξ| = |k|},

(5.43)

where we recall ω =
√

ω2
0 + |k|2.
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We now turn to the verification of condition (2.18) in the partial transparency
condition Assumption 2.8(ii). The only relevant intersection here is

R15

⋂(
R54 + k

)
= {ξ : |ξ + k| = |k|}

⋂( {ξ : |ξ − k| = |k|} )
= {0}.

The ratio interaction coefficient over phase is(
Ω1(ξ + k), B(�e1)U5(ξ)

)
λ1(ξ + k) − ω

=
θ0ξ · v1

4ω

√
ω2

0 + |ξ + k|2 +
√

ω2
0 + |k|2

|ξ|2 + 2ξ · k .

This ratio is bounded in a neighborhood of ξ = 0 only in one space dimension. Hence
Assumption 2.8(i) holds in one space dimension only.

We finally turn to the verification of condition (2.19). There holds

R12

⋂
R15 ⊂ {λ2 = λ5} = ∅.

Similarly, by (5.43)(iii)(-iv),

R34

⋂
R54 = ∅.

(iii) Rank-one coefficients: the eigenvalues λj , for j ∈ {1, 2, 3, 4}, are simple eigen-
values, implying that the interaction coefficients have rank at most one. The kernel,
associated with λ5 ≡ 0, has multiplicity 5, but by (5.41) the interaction coefficients b−51
and b+

54 are identically zero. This verifies Assumption 2.8(iii).

5.2.4. Stability index. — There holds

Π1(ξ + k)B(�e1)Π2(ξ)B(�e−1)Π1(ξ + k)

=
(
Ω1(ξ + k), B(�e1)Ω2(ξ)

)(
Ω2(ξ), B(�e−1)Ω1(ξ + k)

)
Π1(ξ + k),

so that the trace of the product of the (1, 2) interaction coefficients is equal to

Γ12(ξ) =
(
Ω1(ξ + k), B(�e1)Ω2(ξ)

)(
Ω2(ξ), B(�e−1)Ω1(ξ + k)

)
,

and with (5.42)(i) and (5.42)(ii) we find

Γ12(ξ) =
ω2

0

4ωλ2(ξ)
.

Besides,

Γ34(ξ) =
ω2

0

4ωλ2(ξ + k)
, Γ15(ξ) = Γ54(ξ) ≡ 0.

This gives Γ > 0, implying instability.
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5.3. Coupled Klein-Gordon systems with different masses

Our third class of examples is made up of coupled Klein-Gordon systems with
different velocities and different masses. As we will see, the assumption that masses
are different implies a much smaller resonant set than in our previous example.

Borrowing notation from Section 5.2, in particular (5.35), we consider systems⎧⎪⎪⎨⎪⎪⎩
∂tu + A1(∂x)u +

1
ε
α0L0u =

1√
ε
B3(U, U),

∂tv + A1(θ0∂x)v +
1
ε
L0v =

1√
ε
B4(U, U).

We assume here α0 > 1, in contrast with (5.36). We consider the bilinear forms B3

and B4 defined by

B3(U, U ′) =
1
2

⎛⎝ 0
u3v

′
3 + v3u

′
3 + v3v

′
3

0

⎞⎠ ,

B4(U, U ′) =
−ι

2

⎛⎝ 0
u2u

′
2 + u2v

′
2 + v2u

′
2

0

⎞⎠ , ι ∈ {−1, 1},

(5.44)

with

U =
(
u1, u2, u3, v1, v2, v3

) ∈ C2(d+2), U ′ =
(
u′

1, u
′
2, u

′
3, v

′
1, v

′
2, v

′
3

) ∈ C2(d+2).

For the rest, in particular t, x,A1, L0 and θ0, the notations are borrowed from Sec-
tion 5.2.

The spectral decomposition is

A(ξ) + A0/i =
5∑

j=1

λj(ξ)Πj(ξ),

with eigenvalues

λ1(ξ) :=
√

α2
0ω

2
0 + |ξ|2 = −λ4(ξ), λ2(ξ) :=

√
ω2

0 + θ2
0|ξ|2 = −λ3(ξ), λ5(ξ) ≡ 0.

The verification of Assumption 2.1 goes exactly as in Sections 5.2.1. In the upcom-
ing Sections, we check that Assumptions 2.2 and 2.8 are satisfied, then verify that
there holds sgnΓ = sgn ι. Stability ensues if ι = −1, and instability if ι = 1.

5.3.1. Verification of Assumption 2.2: WKB expansion. — We select a fun-
damental phase β = (ω, k) ∈ R1+d as follows:

– The phase β belongs to the slow positive Klein-Gordon branch on the variety:

ω =
√

ω2
0 + θ2

0|k|2.
– The only harmonics of β on the slow Klein-Gordon branches are −1 and 1.

– No harmonics of β belong to the fast branches on the variety.
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Figure 5. Coupled Klein-Gordon with different masses.

– There are no auto-resonances.
For more details, and comments on these conditions, see Section 5.2.2. In addition,
we restrict the range of k as we assume

(5.45) |k|2 <
1
θ2
0

(α2
0 − 1)ω2

0 .

It is easy to verify that condition (5.45) implies that there are no (1, 5) resonances,
and no (5, 4) resonances.

Denoting Π(pβ) the orthogonal projector onto ker(−ipω + A(ipk) + A0), we find
the identities

Π(0)U = (u1, 0, 0, v1, 0, 0), Π(β)U = (U,�e1)�e1, Π(−β)U = (U,�e−1 )�e−1,

for any U = (u1, u2, u3, v1, v2, v3), where

(5.46) �e1 :=
(
0Cd+2 ,−θ0k

ω
, 1,

iω0

ω

)
, �e−1 = (�e1)∗.

Then, as in Section (5.2.2), there holds

Π(0)B ≡ 0, B
(
Π(0), ·) ≡ 0, B

(·,Π(0)
) ≡ 0,

and condition (6.48) is satisfied. By Proposition 6.21, Assumption 2.2 is then satisfied.
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5.3.2. Verification of Assumption 2.8: resonances and transparency. — By
the form of the characteristic variety, and choice of β (in particular, condition (5.45)),
resonant pairs are

R =
{
(1, 2), (2, 5), (3, 4), (5, 3)

}
.

A (1, 2) resonant frequency is pictured on Figure 5.

(i) Boundedness of R. The asymptotic branches on the variety are obviously distinct
(Figure 5). Lemma 6.27 then implies boundedness of R.

(ii) Partial transparency. From the definition of B in (5.44) and �e1 in (5.46), we
see that

B(�e1)U =
1√
2

(
0Cd ,

iω0

ω
(u3 + v3), 0, 0Cd ,−ιu2, 0

)
,

B(�e−1)U=
1√
2

(
0Cd ,

−iω0

ω
(u3 + v3), 0, 0Cd ,−ιu2, 0

)
.

An element in the image of Π5(ξ), the orthogonal projector onto the kernel of the
matrix A(ξ) + A0/i, has the form

U5(ξ) =
(
u1, 0,

−iξ · u1

α0ω0
, v1, 0,

−iθ0ξ · v1

ω0

)
, (u1, v1) ∈ C2d.

In particular, for all U ∈ C2(d+2), B(�e±1)U belongs to the orthogonal of the range
of Π5(ξ), so that

(5.47) Π5(·)B(�e±1) ≡ 0.

The other projectors are

Πj(ξ)U =
1√
2

(
U,Ωj(ξ)

)
Ωj(ξ),

where

Ωj(ξ) :=
1√
2

(
− ξ

λj
, 1,

iα0ω0

λj
, 0Cd+2

)
, j = 1, 4;

and

Ωj′(ξ) :=
(
0Cd+2 ,−θ0ξ

λj′
, 1,

iω0

λj′

)
, j′ = 2, 3.

From there, we compute

(5.48) Π2(ξ)B(�e±1)Π5(ξ′) ≡ 0, Π3(ξ)B(�e±1)Π5(ξ′) ≡ 0.

Together with (5.47) this implies that resonances (2, 5) and (5, 3) are transparent.
Besides,(

Ω1(ξ′), B(�e1)Ω2(ξ)
)

=
−ω2

0

2ωλ2(ξ)
,

(
Ω2(ξ′), B(�e−1)Ω1(ξ)

)
=

−ι

2
.

In particular, the (1, 2) resonance is non-transparent: (1, 2) ∈ R0. Similarly, the (3, 4)
resonance belongs to R0.
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The partial transparency is automatically satisfied because the sets in (2.18)
and (2.19) are all empty, a direct consequence of the form of R0 (in which no index
appears more than once).

(iii) Rank-one coefficients: the eigenvalues λj , for j ∈ {1, 2, 3, 4}, are simple eigen-
values, implying that the interaction coefficients have rank at most one.

5.3.3. Stability index. — Computing as in Section 5.2.4 and using (5.48), we find

Γ12(ξ) = ι
ω2

0

4ωλ2(ξ)
, Γ34(ξ) = ι

ω2
0

4ωλ2(ξ + k)
,

implying sgnΓ = sgn ι.
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CHAPTER 6

APPENDIX

6.1. Symbols and operators

Given m ∈ R, we denote Sm the set of matrix-valued symbols a ∈ C s̄(Rd
x; C∞(Rd

ξ)),
such that for all α ∈ Nd with |α| ≤ s̄, for all β ∈ Nd, for some Cαβ > 0, for all (x, ξ),

|∂α
x ∂β

ξ a(x, ξ)| ≤ Cαβ〈ξ〉m−|β|, 〈ξ〉 := (1 + |ξ|2)1/2.

That is, we consider symbols with a finite, but large, spatial regularity s̄, in connection
with the finite Sobolev regularity sa of the approximate solution ua, postulated in
Assumption 2.2.

We call Sm the space of classical symbols of order m. Given a ∈ Sm, the associated
family of pseudo-differential operators in semi-classical quantization is denoted opε(a)
and formally defined by their action on functions or distributions u in the variable x :

(6.1) opε(a)u :=
∫

eix·ξa(x, εξ)û(ξ) dξ, ε > 0.

The semi-classical Sobolev norms ‖ · ‖ε,s are defined by

(6.2) ‖u‖2
ε,s :=

∫
(1 + |εξ|2)s|û(ξ)|2 dξ.

6.1.1. Estimates for Fourier multipliers. — Fourier multipliers are pseudo-
differential symbols (by extension, the associated operators) which do not depend on x.

Examples of Fourier multipliers in the text are given by the eigenprojectors Πj and the
eigenvalues λj . The interaction coefficients B, bij , the normal form Q, and the inter-
action matrix M all depend on (x, ξ), but as tensor products M(x, ξ) = M1(x)M2(ξ)
they are handled just like Fourier multipliers.

Given a Fourier multiplier a ∈ S0, the associated operators opε(a) map Hs to Hs,

for all s, and for all u ∈ Hs,

(6.3) ‖op(a)u‖ε,s � |a|L∞‖u‖ε,s, a = a(ξ).
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Also, denoting | · |FL1 the L1 norm of the Fourier transform: |u|FL1 := |û|L1 , there
holds, by Young’s convolution inequality, the bound

(6.4)
∣∣a(x)opε(b)u

∣∣
FL1 ≤ |b|L∞ |a|FL1 |u|FL1 , b = b(ξ) ∈ L∞.

Pointwise estimates follow from Hausdorff-Young and Cauchy-Schwartz:

(6.5) |opε(a)u|L∞ ≤ C|a|L2 |u|L2 , a = a(ξ).

Given a Fourier multiplier a ∈ S1, and f ∈ Hs+d/2+η for some η > 0, there holds for
all u ∈ Hs,

(6.6)
∥∥[opε(a), f

]
u
∥∥

ε,s
� ε |∇a|L∞‖f‖Hs+d/2+η‖u‖ε,s, a = a(ξ),

and

(6.7)
∣∣∣F([

opε(a), f
]
u
)∣∣∣

L1
� ε |∇a|L∞ |∂̂xf |L1 |û|L1 , a = a(ξ).

Similarly, for the Fourier multiplier Λs := opε

(〈·〉s), given f ∈ Hs+d/2+η for
some η > 0, there holds for all u ∈ Hs−1 :

(6.8)
∣∣[Λs, f

]
u
∣∣
L2 � ε‖f‖Hs+d/2+η‖u‖ε,s−1.

6.1.2. Estimates for pseudo-differential operators. — Genuine pseudo-
differential operators arise in the proof via S, the flow of M. Essentially, S is the
exponential exp(tM), hence cannot be written as a function of x times a Fourier
multiplier.

We first introduce para-differential symbols, which are regularized pseudo-
differential symbols. Then we give an action result (Proposition 6.5) and a composi-
tion result (Proposition 6.6), before giving a comparison result (Proposition 6.8).

Given φ0 ∈ C∞
c (Rd), 0 ≤ φ0 ≤ 1, and real numbers 0 < A < B < 2A such that

φ0 ≡ 1 for |ξ| ≤ A, and φ0 ≡ 0 for |ξ| ≥ B.

We let
φj(ξ) := φ0(2−jξ) − φ0(2−(j−1)ξ), for j ≥ 1,

so that for j ≥ 1, φj has support included in the annulus Cj := {A2j−1 ≤ |ξ| ≤ B2j},
and is constant equal to one in the annulus C̃j := {B2j−1 ≤ |ξ| ≤ A2j}.

The function ψ : Rd × Rd → R defined for N ≥ 2 by

ψ(η, ξ) =
∑
k≥0

φ0(2−k+Nη)φk(ξ).

is called a Bony admissible cut-off [1]. It satisfies

ψ(η, ξ) ≡
{

1, |η| ≤ 2−N 〈ξ〉,
0, |η| ≥ 21−N 〈ξ〉.
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Definition 6.1. — Given a Bony admissible cut-off ψ and a ∈ Γm
k , we call para-

differential symbol associated with a the symbol

aψ(x, ξ) := F−1
(
ψ(·, ξ)â(·, ξ)

)
(x) =

((F−1ψ(·, ξ)) � a(·, ξ)
)
(x),

where convolution takes place in the spatial variable x. The smooth func-
tion F−1ψ(·, ξ)(x) is the inverse Fourier transform of ψ in its first variable η.

The pseudo-differential operator opψ(a) = op(aψ) is said to be the para-differential
operator associated with a in classical quantization.

We define the para-differential operator (precisely, the ε-dependent family of oper-
ators) associated with a in semi-classical quantization by

(6.9) opψ
ε (a) := h−1

ε opψ(ã)hε, with ã(x, ξ) := a(εx, ξ),

where
(hεu)(x) := εd/2u(εx), ‖hεu‖Hs = ‖u‖ε,s.

Remark 6.2. — Note that the maps a → ã and a → aψ do not commute:

opψ
ε (a) = h−1

ε op
((

ã
)ψ)

hε �= h−1
ε op

(
ãψ

)
hε = opε(a

ψ),

so that the para-differential operator associated with a in semi-classical quantization
is not opε(aψ). The classical symbol of opψ

ε (a) is

(x, ξ) → a(x, ξ) =
(
F−1ψ � ã

)(x

ε
, εξ

)
=

∫
F−1ψ(y, εξ)a(x − εy, εξ) dy,

in the sense that opψ
ε (a) ≡ op1(a).

Remark 6.3. — An admissible cut-off ψ satisfies the bound

‖∂β
ξ F−1(∂α

η ψ)(·, ξ)‖L1(Rd) ≤ Cβ〈ξ〉−|β|−|α|, α, β ∈ Nd, Cαβ > 0.

Remark 6.4. — By property ψ(0, ξ) ≡ 1 of the Bony admissible cut-off, pseudo- and
para-differential operators agree for Fourier multipliers:

opψ
ε (a) ≡ opε(a), a = a(ξ).

For tensor products a(x, ξ) = a1(x)a2(ξ), there holds (a1a2)ψ ≡ aψ
1 a2, so that

opψ
ε (a) = opψ

ε (a1)opε(a2) ≡ opψ
ε (a1)opψ

ε (a2), a1 = a1(x), a2 = a2(ξ).

Proposition 6.5. — Given m ∈ R, a ∈ Sm, there holds for s ∈ R, all u ∈ Hs+m

the bound
‖opψ

ε (a)u‖ε,s � Mm
0,d(a)‖u‖ε,s+m,

where

(6.10) Mm
k,k′(a) = sup

(x,ξ)∈R
d×R

d

|α|≤k,|β|≤k′

〈ξ〉−(m−|β|)|∂α
x ∂β

ξ a(x, ξ)|.

Proof. — See for instance Theorem 4.3.5 of [35].
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Proposition 6.6. — For all m1, m2 ∈ R, all r ∈ N∗, with r ≤ s̄, given a1 ∈ Sm1

and a2 ∈ Sm2 , there holds

opψ
ε (a1)opψ

ε (a2) = opψ
ε

(
a1�εa2

)
+ εrRψ

r (a1, a2),

with the notation

a1�εa2 =
∑
|α|<r

ε|α| (−i)|α|

α!
∂α

ξ a1∂
α
x a2,

and the bound, for d∗ = 2d + r + 1, for all s ∈ R, all u ∈ Hs+m1+m2−r,∥∥Rψ
r (a1, a2)u

∥∥
ε,s

�
(
Mm1

0,d∗(a1)Mm2
r,d (a2) + Mm1

r,d∗(a1)Mm2
0,d(a2)

)
‖u‖ε,s+m1+m2−r.

Proof. — See for instance Theorem 6.1.4 of [35], or Proposition B.21 of [36].

The need for a different action result, one which involves a smaller number of ξ-
derivatives, was evoked in Section 1.3 in the introduction.

Proposition 6.7. — Given a ∈ S0, there holds for s ≥ 0, r ∈ N with r ≤ s, u ∈ Hs

the bound
(6.11)

‖opψ
ε (a)u‖ε,s �

∑
0≤|α|≤d+1
0≤|β|≤r−1

εβ sup
ξ∈Rd

|∂α+β
x a(·, ξ)|L1(Rd

x)‖u‖ε,s + εrM0
r,d(a)‖u‖ε,s−r,

with norms Mm
k,k′ defined in (6.10).

Proof. — Theorem 18.8.1 in Hörmander’s treatise [20] asserts the bound, for b ∈ S0

and u ∈ L2 :
|op1(b)u|L2 �

∑
|α|≤d+1

sup
ξ∈Rd

|∂α
x b(·, ξ)|L1(Rd

x)|u|L2 .

If s = 0, it suffices to apply the above to b = a, with notation drawn from Remark 6.2.
In the case s > 0, we introduce a commutator:

‖opψ
ε (a)u‖ε,s ≤ |opψ

ε (a)Λsu|L2 +
∣∣[Λs, opψ

ε (a)
]
u
∣∣
L2 .

For the first term in the above upper bound, we use the result for s = 0. For the
commutator, we use Remark 6.4 and Proposition 6.6:∣∣[Λs, opψ

ε (a)
]
u
∣∣
L2 =

∣∣[opψ
ε (〈·〉s), opψ

ε (a)
]
u
∣∣
L2 ≤ |opψ

ε (〈·〉s�εa)u|L2 +εr|Rψ
r (〈·〉s, a)u|L2 .

There holds

opψ
ε

(
∂α

ξ 〈·〉s∂α
x a

)
u ≡ opψ

ε

(
〈·〉−(s−|α|)∂α

ξ 〈·〉s∂α
x a

)
Λs−|α|u,

so that, by (6.11) for s = 0 :

|opψ
ε (∂α

ξ 〈·〉s∂α
x a)u|L2 �

∑
|β|≤d+1

sup
ξ∈Rd

|∂α+β
x a(·, ξ)|L1(Rd

x)‖u‖ε,s−|α|.

Besides, by Proposition 6.6, |Rψ
r (〈·〉s, a)u|L2 � M0

r,d(a)‖u‖ε,s−r.
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We finally give two para-linearization estimates:

Proposition 6.8. — For all r ∈ N∗, s ≥ r, given a ∈ Hs, there holds for all u ∈ L∞,

(6.12)
∥∥(a − opψ

ε (a)
)
u
∥∥

ε,s
� ‖(ε∂x)ra‖ε,s−r|u|L∞ ,

and for all u ∈ L2,

(6.13)
∥∥(a − opψ

ε (a)
)
u
∥∥

ε,s
� |(ε∂x)sa|L∞ |u|L2 .

Proof. — For (6.12), see Proposition 5.2.2 in [35]; for (6.13) see Theorem 5.2.8 in [35].

6.1.3. Product laws in weighted Sobolev spaces. — The need for product laws
arises from the semilinear nature of the equations (1.1).

Given u, v ∈ Hs ∩ L∞, with s ≥ 0, there holds

(6.14) ‖uv‖ε,s ≤ C
(|u|L∞‖v‖ε,s + |v|L∞‖u‖ε,s

)
,

where C > 0 does not depend on u, v. Estimate (6.14), used in connection with the
Sobolev embedding Hs ↪→ L∞, for s > d/2, gives a product law in ‖ · ‖ε,s. A problem
with (6.14) is that the Sobolev embedding has a large norm ∼ ε−d/2 when Hs is
equipped with ‖ · ‖ε,s.

A way around this difficulty is given by the following estimate:

(6.15) ‖uv‖ε,s ≤ C
(|u|L∞‖v‖ε,s + |(ε∂x)su|L∞ |v|L2

)
,

where C > 0 does not depend on u, v. Estimate (6.15) is a direct consequence of
Proposition 6.5 and estimate (6.13) in Proposition 6.8.

6.2. An integral representation formula

We adapt to the present context an integral representation formula introduced
in [46]. Consider the initial value problem

(6.16) ∂tu +
1√
ε
opψ

ε (M)u = f, u(0) ∈ Hs,

where f ∈ L∞([0, T
| ln ε|], Hs(Rd)), for some T
 > 0. For the matrix-valued, time-
dependent family of symbols M = M(ε, t, x, ξ), we assume the following:

Assumption 6.9. — The family of symbols M(ε, t, x, ξ) ∈ S0 is constant in x outside
the ball {|x| ≤ x
}, for some x
 > 0 which does not depend on (ε, t, ξ). Besides, there
holds the uniform bounds

〈ξ〉|β|∣∣∂α
x ∂β

ξ M(ε, t, x, ξ)
∣∣ ≤ Cαβ < ∞, α, β ∈ Nd,

uniformly in ε ∈ (0, ε0), t ∈ [0, T
| ln ε|], and (x, ξ) ∈ R2d.
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Above and below, multi-indices α for x-derivatives are restricted to |α| ≤ s̄, where s̄

is the spatial regularity index introduced in Appendix 6.1.

We define the flow S0 of ε−1/2M as the solution to the following system of linear
ordinary differential equations, 0 ≤ τ ≤ t ≤ T0| ln ε| :

(6.17) ∂tS0(τ ; t) +
1√
ε
MS0(τ ; t) = 0, S0(τ ; τ) = Id.

For S0 we assume an exponential growth in time:

Assumption 6.10. — There holds for some γ+ > 0, for all α,

(6.18) |∂α
x S0(τ, t)| � | ln ε|∗ exp

(
(t − τ)γ+

)
,

uniformly in 0 ≤ τ ≤ t ≤ T
| ln ε|, where | ln ε|∗ = | ln ε|N∗ for some N∗ > 0 indepen-
dent of (ε, τ, t, x, ξ).

In (6.18), we do not assume that x-derivatives of S0 lead to losses in powers of ε,

in spite of the 1/
√

ε prefactor in front of M in (6.17). This assumption is tailored
for our application to M defined by (3.26), in which x-dependent terms have a

√
ε

prefactor.

We introduce correctors {Sq}1≤q≤q0 , defined as the solutions of the triangular sys-
tem of linear ordinary differential equations

(6.19)

⎧⎪⎪⎨⎪⎪⎩
∂tSq +

1√
ε
MSq +

∑
1≤|α|≤[(q+1)/2]

(−i)|α|

|α|! ∂α
ξ M∂α

x Sq+1−2|α| = 0,

Sq(τ ; τ) = 0.

Lemma 6.11. — Under Assumptions 6.9 and 6.10, there holds, for all q ∈ [0, q0],
all α, β, the bounds, for 0 ≤ τ ≤ t ≤ T
| ln ε| :

〈ξ〉|β||∂α
x ∂β

ξ Sq(τ ; t)| � ε−|β|/2| ln ε|∗ exp((t − τ)γ+).

Proof. — By (6.17) and (6.19), there holds for q ≥ 1

(6.20) Sq(τ ; t) =
∑

1≤|α|≤[(q+1)/2]

(−i)|α|

|α|!
∫ t

τ

S0(t′; t)∂α
ξ M(t′)∂α

x Sq+1−2|α|(τ ; t′) dt′.

From there, we see immediately that the bound |∂α
x Sq| � exp((t− τ)γ+), which holds

true for q = 0 by Assumption 6.10, propagates from q to q + 1. The case |β| > 0 is
proved similarly by induction. The loss of half a power of ε with each ξ-derivative
comes of course from the prefactor 1/

√
ε in front of M in (6.17).

Lemma 6.12. — Under Assumptions 6.9 and 6.10, there holds, for all q ∈ [0, q0],
all u ∈ L2, the bound

(6.21) ‖opψ
ε (Sq(τ ; t))u‖ε,s � | ln ε|∗e(t−τ)γ+‖u‖ε,s, 0 ≤ τ ≤ t ≤ T
| ln ε|.
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Proof. — We start with q = 0. Let ϕ
 ∈ C∞
c (Rd

x), with 0 ≤ ϕ
 ≤ 1, and such
that ϕ
 ≡ 1 on {|x| ≤ x
}, where x
 is introduced in Assumption 6.9. Then, the
symbols (1 − ϕ
)M, and consequently (1 − ϕ
)S0 are independent of x. We can thus
apply estimate (6.6) for Fourier multipliers to bound the action of (1 − ϕ
)S0 :

‖opε((1 − ϕ
)S0)u‖ε,s ≤ ‖u‖ε,s,

since |(1 − ϕ
)S0| ≤ 1. For ϕ
S0, we use Proposition 6.7:

‖opψ
ε (ϕ
S0)u‖ε,s �

∑
|α|≤d+1
|β|≤r−1

εβ sup
ξ∈Rd

|∂α+β
x (ϕ
S0)(·, ξ)|L1(Rd

x)‖u‖ε,s

+ εrM0
r,d∗(ϕ
S0)‖u‖ε,s−r.

For the L1 norms, we use compactness of the support of ϕ
 and Assumption 6.10:

|∂α
x (ϕ
S0)(·, ξ)|L1(Rd

x) � sup
|α′|≤|α|

|∂α′
x S0|L∞ � | ln ε|∗ exp

(
(t − τ)γ+

)
.

We bound the remainder with Lemma 6.11:

εrM0
r,d∗(ϕ
S0) � εr−d∗/2| ln ε|∗e(t−τ)γ+

.

If r is large enough, then r − d∗/2 = r/2 − d − 1/2 > 0, and we conclude that (6.21)
holds for q = 0.

From (6.20), we see that the correctors Sq, for q ≥ 1, vanish identically outside
the ball {|x| ≤ x
}. Thus it suffices to consider ϕ
Sq, and we use Proposition 6.7
again.

We let

S :=
∑

0≤q≤q0

εq/2Sq.

The following Lemma expresses the fact that opψ
ε (S) is an approximate solution op-

erator:

Lemma 6.13. — Under Assumptions 6.9 and 6.10, there holds

(6.22) opψ
ε (∂tS) = opψ

ε (M)opψ
ε (S) + ρS ,

where for 0 ≤ τ ≤ t ≤ T
| ln ε|, for all s ∈ R and u ∈ Hs :

(6.23) ‖ρS(τ ; t)u‖ε,s � εq0/4−(d+2)| ln ε|∗ exp
(
(t − τ)γ+

)‖u‖ε,s−1.

Proof. — By definition of S and (6.19),

(6.24) −∂topψ
ε (S) = I + II,
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with the notation

I :=
∑

0≤q≤q0

ε(q−1)/2opψ
ε (MSq),

II :=
∑

0≤q≤q0
1≤|α|≤[(q+1)/2]

εq/2 (−i)|α|

|α|! opψ
ε

(
∂α

ξ M∂α
x Sq+1−2|α|

)
,

where by convention a sum over the empty set is zero. By Proposition 6.6,

opψ
ε (MSq) = opψ

ε (M)opψ
ε (Sq) −

∑
1≤|α|≤[(q0−q+1)/2]

ε|α| (−i)|α|

|α|! opψ
ε

(
∂α

ξ M∂α
x Sq

)
− ε1+[(q0−q+1)/2]Rψ

1+[(q0−q+1)/2](M, Sq),

so that

I = ε−1/2opψ
ε (M)opψ

ε (S)−
∑

0≤q≤q0−1
1≤|α|≤[(q0−q+1)/2]

ε(q−1)/2+|α| (−i)|α|

|α|! opψ
ε

(
∂α

ξ M∂α
x Sq

)
−ρS ,

with
ρS := −

∑
0≤q≤q0

ε(1+q)/2+[(q0−q+1)/2]Rψ
1+[(q0−q+1)/2](M,Sq).

Changing variables in the double sum, we find

I = ε−1/2opψ
ε (M)opψ

ε (S) −
∑

1≤q′≤q0

1≤|α|≤[(q′+1)/2]

εq′/2 (−i)|α|

|α|! opψ
ε

(
∂α

ξ M∂α
x Sq′+1−2|α|

)
− ρS ,

hence

(6.25) I + II = ε−1/2opψ
ε (M)opψ

ε (S) − ρS .

Identities (6.24) and (6.25) prove (6.22). From Proposition 6.6 and Assumption 6.9,
we deduce, for q̃ := 1 + [(q0 − q + 1)/2] :

‖Rψ
q̃ (M,Sq)u‖ε,s � M0

q̃,2d+1+q̃(Sq)‖u‖ε,s−q̃,

and with Lemma 6.11 this implies

‖Rψ
q̃ (M,Sq)u‖ε,s � ε−(d+2)−(q0−q)/4 exp

(
(t − τ)γ+

)‖u‖ε,s−q̃,

whence (6.23) follows.

The following theorem gives an integral representation formula for a solution
to (6.16) in terms in opψ

ε (S) :

Theorem 6.14. — Under Assumptions 6.9 and 6.10, the initial value problem (6.16)
has a unique solution u ∈ C0([0, T
| ln ε|, Hs(Rd)), which satisfies the representation

(6.26) u = opψ
ε (S(0; t))u(0) +

∫ t

0

opψ
ε (S(t′; t))(Id + εζR1)

(
f + εζR2(·)u(0)

)
(t′) dt′,
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for some ζ > 0, where for all v ∈ L∞Hs, all w ∈ Hs,

(6.27) ‖(R1v)(t)‖ε,s � | ln ε|∗ sup
0≤t′≤T�| ln ε|

‖v(t′)‖ε,s, ‖R2(t)w‖ε,s � | ln ε|∗‖w‖ε,s,

uniformly in 0 ≤ t ≤ T
| ln ε|.

The parameter ζ is defined in (6.29) below. There we see that the larger T
 and γ+,

the larger q0 needs to be. In other words, given an observation time T
, the spatial
regularity that we need for M is a function of |M |L∞ . Indeed, spatial regularity is
connected with q0, since the proof is essentially a Taylor expansion at order q0, and
the growth rate γ+ is connected with the L∞ norm of M : think of M as being
independent of t; then S = exp(−tM/

√
ε), and γ+ indeed appears as the sup of M.

Proof. — Let g ∈ L∞([0, T
| ln ε|, Hs). By Lemma 6.13, the map

u := opψ
ε (S(0; t))u(0) +

∫ t

0

opψ
ε (S(t′; t))g(t′) dt′

solves (6.16) if and only if there holds for all 0 ≤ t ≤ T1| ln ε|,
(6.28) (Id + r)g(t) = f(t) − ρS(0; t)u(0),

where r is the linear integral operator

r : v ∈ L∞Hs →
(
t →

∫ t

0

ρS(τ ; t)v(τ) dτ
)
∈ L∞Hs,

and ρS is the remainder in Lemma 6.13. We now choose the index q0 that appears in
the definition of S such that

(6.29) ζ :=
q0

4
− (d + 2) − T1γ

+ > 0.

Then, by estimate (6.23), for all 0 ≤ t ≤ T
| ln ε|, the operator r maps L∞(0, T
| ln ε|, Hs)
to itself, with the bound

(6.30) sup
0≤t≤T (ε)

‖(rv)(t)‖ε,s � εζ sup
0≤t≤T (ε)

‖v‖ε,s

In particular, for ε small enough the operator Id+r is invertible, with inverse (Id+r)−1

bounded as an operator from L∞([0, T
| ln ε|], Hs
ε ) to itself, uniformly in ε. As a con-

sequence, we can solve (6.28) in L∞([0, T
| ln ε|], Hs
ε ), and obtain the representation

formula (6.26), with

εζR1 := (Id + r)−1 − Id, εζR2(t) := −ρS(0; t).

Bound (6.27) follows from (6.30) and (6.23). Since M ∈ S0, opψ
ε (M) is linear bounded

from Hs to Hs, hence uniqueness is a consequence of the Cauchy-Lipschitz theorem.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2015



108 CHAPTER 6. APPENDIX

6.3. Bounds for the symbolic flow

We give here a proof of Proposition 3.9 page 39, which we reproduce below:

Proposition 6.15. — For all T > 0, all 0 ≤ τ ≤ t ≤ T | ln ε|, α ∈ Nd, the solution S0

to

(6.31) ∂tS0 +
1√
ε
MS0 = 0, S0(τ, τ) = Id,

with M defined in (3.26), satisfies the bound

|∂α
x S0(τ, t)| � | ln ε|∗ exp(tγ+),

where the growth rate γ+ is defined in (3.30): γ+ = |a|L∞
∣∣ max

ξ∈Rh
12

�e
(
Γ(ξ)1/2

)∣∣.
In a first step (Section 6.3.1), we approximate M by its value M(ε, 0, x, ξ) at t = 0.

Then the solution to (6.31) is a matrix exponential. The general case follows by a
simple perturbation argument (Section 6.3.2).

6.3.1. The autonomous case. — The matrix M(ε, 0, x, ξ) is block-diagonal:

M(ε, 0, x, ξ) =

⎛⎜⎜⎜⎜⎜⎜⎝
iμ1 −√

ε b12 0 · · · 0
−√

ε b21 iμ2 0 · · · 0
0 0 iλ3 · · · 0
...

...
...

. . .
...

0 0 0 · · · iλJ

⎞⎟⎟⎟⎟⎟⎟⎠
denoting μ1 = λ1(· + k) − ω, μ2 = λ2, as in (3.15), and

b12(x, ξ) := ϕ1(x)a(x)χ0(ξ)b+
12(ξ), b21(x, ξ) = ϕ1(x)a(x)∗χ0(ξ)b−21(ξ).

Above, b+
12 and b−21 ∈ CN×N are the interaction coefficients associated with reso-

nance (1, 2), as in (3.28), a is the initial amplitude (1.2), and ϕ1 and χ0 are spatial
and frequency cut-offs, respectively, as defined on page 36.

We prove in this Section the bound:

(6.32)
∣∣ exp

(− ε−1/2tM(ε, 0, x, ξ)
)∣∣ � | ln ε|∗ exp(tγ+).

By reality of λj , and the fact that the truncated interaction coefficients vanish
identically outside suppϕ1 × suppχ0 ⊂ suppϕ1 ×Rh

12, it suffices to prove the bound

(6.33) | exp(−ε−1/2tM0)| � exp(tγ+), (x, ξ) ∈ suppϕ1 ×Rh
12, 0 ≤ t ≤ T | ln ε|,

where M0 is the top left block of M(ε, 0, x, ξ) :

M0 :=
(

iμ1 −√
εb12

−√
εb21 iμ2

)
∈ C2N×2N .
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The top left block of M0 being a multiple of the identity, we can compute the char-
acteristic polynomial of M0 by blocks:

det(xId − M0) = det
(
(x − iμ1)(x − iμ2)Id − εb21b12

)
, x ∈ C.

The characteristic polynomial of M0 has a zero at x if and only if (x−iμ1)(x−iμ2) is an
eigenvalue of εb21b12. The ranks of b12 and b21 are at most one (Assumption 2.6(iii)),
implying that the rank of b21b12 is at most one. Then the only possible nonzero
eigenvalue for b21b12 is its trace tr(b12b21), and the spectrum of M0 appears as

(6.34) iμ1, iμ2, μ± :=
i

2
(
μ1 + μ2

)± 1
2

(
4εtrb12b21 − (μ1 − μ2)2

)1/2

,

with respective algebraic multiplicities N − 1, N − 1, one and one.

Lemma 6.16 (Near the resonant set). — If |μ1(ξ) − μ2(ξ)| ≤ √
ε| ln ε|2, then there

holds the bound
| exp(−ε−1/2tM0)| � | ln ε|∗ exp(tγ+),

for (x, ξ) ∈ suppϕ1 ×Rh
12, and 0 ≤ t ≤ T | ln ε|.

Proof. — Substracting iμ1Id, we equivalently bound the exponential of

ε−1/2M̃0 =
(

0 −b12

−b21 iε−1/2(μ2 − μ1)

)
.

In the space-frequency domain under consideration, the entries of ε−1/2M̃0

are O(| ln ε|2). The eigenvalues of ε−1/2M̃0 are 0, iε−1/2(μ2 − μ1), ε−1/2(μ± − iμ1),
as given in (6.34). In particular, in the relation of unitary similarity to an upper
triangular matrix (Schur decomposition): ε−1/2M̃0 = Q∗UQ, the real parts of the
diagonal entries of the upper triangular matrix U are equal to 0 or �e ε−1/2μ±. Since
the norm of ε−1/2M̃0 controls the norm of U, and since entries of U are controlled by
the norm of U, the entries of U above the diagonal are O(| ln ε|2). Let the 2N × 2N

diagonal matrix

Qε = diag (1, | ln ε|4, | ln ε|8, . . . , | ln ε|4(2N−1)).

Then, the matrix
Ũ = QεUQ−1

ε

is upper triangular, with the same diagonal entries as U, and with entries above the
diagonal which are O(| ln ε|−2). There holds moreover∣∣ exp(−ε−1/2tM̃0)

∣∣ =
∣∣ exp(tU)

∣∣ � | ln ε|∗∣∣ exp(tŨ)
∣∣.

Above | · | denotes the sup norm of the entries of a matrix in C2N×2N . Let ‖ · ‖ denote
the canonical Hermitian norm in C2N , and also the associated norm in C2N×2N .

Let z(t) = exp(tŨ)z(0). Then z solves z′ = Ũz, and

∂t‖z‖2 = 〈∂tz, z〉 + 〈z, ∂tz〉 = 2〈�e Ũz, z〉, 2�e Ũ := Ũ + Ũ∗.
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so that
1
2
∂t‖z‖2 ≤ ‖�e Ũ‖‖z‖2,

implying, by Gronwall’s lemma, for some C > 0,∣∣ exp(tŨ)
∣∣ ≤ C exp

(
t
∥∥�e Ũ

∥∥),
where | · | denotes the sup norm in C2N×2N . Given x ∈ C2N with ‖x‖ = 1, there holds

‖�e Ũx‖2 =
∑

1≤i≤2N

(�e Ũx)2i =
∑

1≤i≤2N

(
(�e Ũ)i,ixi + O(| ln ε|−2)

)2

,

so that
‖�e Ũx‖2 ≤ max

i
(�e Ũ)i,i‖x‖2 + O(| ln ε|−2),

and this implies
‖�e Ũ‖ ≤ max

i
(�e Ũ)i,i + O(| ln ε|−2).

The diagonal entries of �e Ũ are the real parts of the diagonal entries of U, that is
the real parts of the eigenvalues of ε−1/2M̃0. Here μ1 and μ2 contribute zero. Thus it
suffices to bound from above �e ε−1/2μ±. Based on the explicit formula

�e (a + ib)1/2 =
1
2
(
(a2 + b2)1/2 + a

)1/2
, a, b ∈ R,

we observe that
�e ε−1/2μ± ≤ �e tr

(
b12b21

)1/2
.

Since tr b12b21 = (ϕ1(x)χ0(ξ))2|a(x)|2Γ(ξ), with Γ defined in (2.10), the result follows
from the bound �e (tr b12b21)1/2 ≤ γ+.

Lemma 6.17 (Away from the resonant set). — If |μ1(ξ) − μ2(ξ)| >
√

ε| ln ε|2, then
for (x, ξ) ∈ suppϕ1 ×Rh

12, and 0 ≤ t ≤ T | ln ε|, there holds

(6.35) | exp(−ε−1/2tM0)| � 1.

Proof. — We use a non-stationary phase argument that is analogous to the normal

form reduction of Section 3.1.2.2. Consider S̃0 :=
(

e−itμ1/
√

ε 0
0 e−itμ2/

√
ε

)
S0. A

column (y1, y2) ∈ RN × RN of S̃0 solves the system

y′
1 + e−it(μ1−μ2)/

√
εb12y2 = 0, y′

2 + e−it(μ2−μ1)/
√

εb21y1 = 0.

Integrating in time and then integrating by parts, we find

y1(t) = y1(0) −
√

ε

i(μ1 − μ2)

(
e−it(μ1−μ2)/

√
εb12y2(t) − b12y2(0)

)
−

√
ε

i(μ2 − μ1)

∫ t

0

b12b21y1(t′) dt′.

This implies the bound, for zj(t) := max[0,t] |yj |,
z1(t) ≤ |y1(0)| + C| ln ε|−2z2(t) + Ct| ln ε|−2z1(t).
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In a time interval [0, T | ln ε|], this gives z1(t) � |y1(0)|+| ln ε|−2z2(t). By symmetry, we
find the same bound for z2. We conclude that the symbolic flow is uniformly bounded
in ε, t, x, ξ in the frequency domain under consideration.

Conclusion: Lemmas 6.16 and 6.17 imply bound (6.33), which in turns implies
bound (6.32).

6.3.2. The general case. — Here we use a perturbative argument to show that
the bound (6.32) for exp(tM(ε, 0, x, ξ)/

√
ε) carries over to a bound for ∂α

x S0. This
will prove Proposition 6.15.

It suffices to bound |∂α
x S0| on the compact set (x, ξ) ∈ suppϕ1 ×Rh

12, since M is
diagonal with purely imaginary entries outside of it.

By assumption on g (Assumption 2.2), we may Taylor expand M at t = 0 : there
holds M = M(0) + εM1, with M(0) = M(ε, 0, x, ξ), and |M1| � | ln ε|∗, uniformly
in ε, t, x, ξ in the domain under consideration. The equation in ∂α

x S0 is

(6.36) ∂t∂
α
x S0 + ε−1/2M(0)∂α

x S0 = −ε1/2M1∂
α
x S0 − ε−1/2[∂α

x , M ]S0.

In the right-hand side of (6.36), the first term involves the unknown ∂α
x S0 but is

small. The second term is bounded in ε since [∂α
x , M ] = O(

√
ε), and involves only

lower-order derivatives ∂a′
x S0, with |α′| < |α|. From (6.36) and definition of S0 (6.31),

we deduce the implicit integral representations

(6.37) S0(τ ; t) = S(τ ; t) − ε1/2

∫ t

τ

S(t′; t)M1(t′)S0(τ ; t′),

where S(τ ; t) := exp
(− ε−1/2(t − τ)M(ε, 0, x, ξ)

)
, and for |α| > 0 :

(6.38)
∂α

x S0(τ ; t) = −ε1/2

∫ t

τ

S(t′; t)M1(t′)∂α
x S0(τ ; t′)

+ ε−1/2

∫ t

τ

S(t′; t)[∂α
x , M(t′)]S0(τ ; t′)) dt′.

We factor out the exponential growth by consideration of

S�
0(τ ; t) := exp

(
(t − τ)γ+

)
S0(τ ; t),

and define similarly S�(τ ; t) := exp
(
(t − τ)γ+

)
S(τ ; t), so that, by bound 6.32, there

holds |S�(τ ; t)| ≤ C| ln ε|∗. This gives for t ≤ T | ln ε| the bound

|S�
0(τ ; t)| ≤ C| ln ε|∗

(
1 + ε1/2

∫ t

τ

|S�
0(τ ; t′)| dt′

)
,

from which we immediately deduce |S�
0(τ ; t)| ≤ C(T1)| ln ε|∗. Finally, assuming induc-

tively the bound

|∂α
x S0(τ ; t)| ≤ Cα| ln ε|∗ exp

(
(t − τ)γ+

)
,
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for |α| < α0 and some Cα > 0, we deduce from (6.38) with 0 < |α| = α0 the bound

|∂α
x S�

0| ≤ ε1/2C| ln ε|∗
∫ t

τ

|∂α
x S�

0| dt′ + C| ln ε|∗,

implying |∂α
x S�

0| ≤ C| ln ε|∗, which concludes the proof.

6.4. A Gronwall Lemma

Consider the integral inequality in y : [0, T | ln ε|] → R+ :

(6.39) y(t) ≤ etγ0y0 + δ0

∫ t

0

y(t′) dt′ + εη0

∫ t

0

e(t−t′)γ0y(t′) dt′,

where γ0 > 0, δ0 > 0 and η0 > 0. This type of inequality is typical of situations
in which we perform mixed-type estimates: the second term in the right-hand side
comes from an L2 “energy” estimate (as in Section 3.1.5), while the third term comes
from a semi-group estimate (as in Section 3.1.3).

Lemma 6.18. — If inequality (6.39) holds for all t ∈ [0, T | ln ε|], then under the con-
dition

(6.40) η0 − Tδ0 > 0,

there holds, for ε small enough, the bound

(6.41) y(t) ≤ C(y0, δ0) exp
(
t max(γ0, δ0)

)
, C(y0, δ0) > 0.

The proof is elementary and based on three applications of the standard Gronwall’s
lemma.

Proof. — We let z := y − δ0

∫ t

0

y(t′) dt′, so that, by Gronwall’s lemma,

y(t) ≤ etδ0 z̄(t), z̄(t) := max
[0,t]

z,

and

z̄(t) ≤ y0e
tγ0 + εη0

∫ t

0

e(t−t′)γ0et′δ0 z̄(t′) dt′.

We now let w(t) := e−tγ0 z̄(t), so that

w(t) ≤ y0 + εη0

∫ t

0

et′δ0w(t′) dt′,

and, with Gronwall’s lemma

w(t) ≤ y0 exp
(εη0

δ0
etδ0

)
.

Under condition (6.40), for ε small enough and t ≤ T | ln ε|, this gives w(t) ≤ 2y0.

Hence

y ≤ 2y0e
tγ0 +

∫ t

0

δ0y(t′) dt′,
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from which we deduce (6.41) by another application of Gronwall’s lemma.

6.5. On regularity of the spectral decomposition

Coalescing eigenvalues of smooth matrices are typically not smooth; the canoni-

cal example being
(

0 1
x 0

)
. In some cases, however, there is an ordering of the

eigenvalues so that regularity is preserved, an example being
(

0 1
x2 0

)
. A sym-

metric example is given by
(

0 x

x 0

)
. The smoothness condition in Assumption 2.1

should be understood with this latter example in mind. Besides this smoothness con-
dition, Assumption 2.1 states that the eigenvalues λj and eigenprojectors Πj of the
family A0/i + A(ξ), where A(ξ) =

∑
j ξjAj , satisfy bounds (2.2) page 17, which we

reproduce here: for all β ∈ Nd, some Cβ > 0 :

(6.42) |∂β
ξ λj(ξ)| ≤ Cβ(1 + |ξ|2)(1−|β|)/2, |∂β

ξ Πj(ξ)| ≤ Cβ(1 + |ξ|2)−|β|/2.

Consider the family of matrices A∞(ω, x) = A(ω) − ixA0, with (ω, x) ∈ Sd−1 × R.

Lemma 6.19. — If for all ω ∈ Sd−1, the family A∞ has smooth eigenvalues and
eigenprojectors in a neighborhood of (ω, 0) in Sd−1 × R, then bounds (6.42) hold.

Proof. — By the assumed smoothness of λj and Πj , we only need to prove
bounds (6.42) for large |ξ|. There holds

A0/i + A(ξ) = |ξ|A∞(ω, x), with ω =
ξ

|ξ| , x =
1
|ξ| .

Thus, denoting λ∞
j and Π∞

j the eigenvalues and eigenprojectors of A∞, there holds
the correspondence

(6.43) λj(ξ) = |ξ|λ∞
j (ω, x), Πj(ξ) = Π∞

j (ω, x).

By assumption, the eigenvalues of A∞ have Taylor expansions at all orders in x

at (ω, 0), with coefficients that are smooth in ω :

(6.44) λ∞
j (ω, x) = λ∞

j0(ω) + xλ∞
j1(ω) + · · · + xmλ̃∞

jm(ω, x),

and smooth remainders λ̃∞
jm. Via (6.43), these translate into (6.42) for λj . Similarly,

the Taylor expansions of the Π∞
j around at (ω, 0) translate into large-frequency bounds

for ∂β
ξ Πj .

In one space dimension, Rellich’s theorem [39, 40] ensures that analytic family of
symmetric matrices have analytic eigenvalues and eigenvectors, so that the assump-
tion of Lemma 6.19 is always satisfied. In dimension greater than one, eigenvalues
are Lipschitz (a consequence of the characteristic polynomial being hyperbolic; see
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Brohnstein [4], or Kurdyka and Paunescu [28]), but eigenvectors may fail to be even
continuous, as shown by Example 6.1 in [28]:(

x2
1 x1x2

x1x2 x2
2

)
,

for which the eigenvectors are (x1, x2) and (x2,−x1).

We conclude this paragraph by noting that under a smoothness condition at in-
finity, we have an asymptotic expansion for the eigenvalues. This will be useful in
Appendix 6.7, where we discuss existence of resonances at infinity.

Lemma 6.20. — Under the assumption of Lemma 6.19, the eigenvalues λj have
asymptotic expansions

(6.45) λj(ξ) = cj(ω)|ξ| + O

(
1
|ξ|

)
.

Proof. — Indeed, since Aj are real symmetric and A0 skew-symmetric, the transpose
matrix of A∞(ω, x) is equal to A∞(ω,−x). But then the determinant of a matrix is
equal to the determinant of its transpose, so that A∞(ω, x) and A∞(ω,−x) have the
same eigenvalues. That is, there is an ordering of the eigenvalues of A∞(ω, ·) so that
the eigenvalues are even in x. In their Taylor expansions (6.44) at x = 0, only even
powers of x appear. Via the correspondence (6.43), this means in particular only odd
powers of |ξ|−1 in the asymptotic expansion of λj , implying (6.45).

6.6. On existence of WKB approximate solutions

We give here sufficient conditions for Assumption 2.2, stating that the family of
systems (1.1) admits WKB approximate solutions, to hold true.

We first remark on conditions (2.5), reproduced here:

(6.46)
(
A0 +

∑
1≤j≤d

Aj∂xj

)(
e±i(k·x−ωt)/ε�e±1

)
= 0, �e−1 = (�e1)∗.

In (6.46) we state that (i) the matrix A0/i + A(k) = A0/i +
∑

j kjAj has real eigen-
value ω, (ii) the matrix A0/i − A(k) has eigenvalue −ω, and (iii) these eigenvalues
are associated with respective eigenvectors �e1 and �e−1 that satisfy the component-by-
component conjugation relation �e−1 = (�e1)∗.

Points (ii) and (iii) are consequences of point (i), and the structure of the differ-
ential operator. Indeed, from the equality (A0/i + A(k))�e1 = ω�e1 ∈ CN , applying
component-by-component complex conjugation we find

(−A0/i + A(k))(�e1)∗ = ω(�e1)∗,

which by linearity of A(·), translates into points (ii) and (iii).
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A characteristic phase β = (ω, k) ∈ R1+d is given, satisfying (6.46), such that k �= 0.

For some j0 ∈ [1, J ], there holds ω = λj0(k). (The eigenvalues λj are introduced in
Assumption 2.1). We assume that

(6.47) det
(
pω + A0/i + A(pk)

)
= 0 ⇐⇒ p ∈ {−1, 0, 1},

meaning in particular that higher harmonics of the fundamental phase are not char-
acteristic. We now show that Assumption 2.2 holds under the weak transparency
assumption

(6.48) Π(pβ)
∑

p1+p2=p

B
(
Π(p1β)u, Π(p2β)v

) ≡ 0, p ∈ {−1, 0, 1},

for all u, v ∈ CN , where Π(ω′, k′) denotes the orthogonal projector onto the kernel of
the skew-hermitian matrix ω′ + A0 + A(ik′). If β, for p ∈ {−1, 0, 1}, is a simple point
on the characteristic variety, meaning that the branch ξ → λj0(ξ) in the spectrum of
the family

(
A0/i + A(ξ)

)
ξ∈Rd does not change multiplicity at k, then Π(β) = Πj0(k).

We do not want to exclude the case of coalescing eigenvalues, however, especially at
the phase pβ = (0, 0), since it is frequently met in applications (see for instance the
examples given in Section 2.3 of [47]).

Proposition 6.21. — Given (ω, k) satisfying (6.46), conditions (6.47) (1) and (6.48)
imply Assumption 2.2.

Proof. — The goal is to construct ua satisfying (2.3), in the form (2.4), such that the
polarization conditions (2.5)-(2.6) and the bounds (2.7) hold. From (2.4), we see in
particular that we are considering highly-oscillating data:

(6.49) ua(ε, 0, x) = e−ik·x/εg(0, x)∗�e−1 + eik·x/εg(0, x)�e1 +
√

εva(ε, 0, x), k �= 0.

We introduce notation borrowed from [25]:

L(β∂θ) := −ω∂θ + A0 + A(k∂θ) = −ω∂θ + A0 +
∑

1≤j≤d

kjAj∂θ,

and
L1(∂t, ∂x) := ∂t + A(∂x),

and look for an approximate solution ua in the form of a profile:

ua(ε, t, x) =
[
ua(ε, t, x, θ)

]
θ=(k·x−ωt)/ε

where ua(ε, t, x, θ) is 2π-periodic in the fast variable θ. Then, for ua to satisfy (2.3)
it suffices that its representation ua satisfies

(6.50)
1
ε
L(β∂θ)ua + L1(∂t, ∂x)ua =

1√
ε
B(ua,ua) + εKarε

a,

1. Condition (6.47) is introduced here only as a matter of notational simplification; without any

additional difficulty we could allow for a larger set of characteristic harmonics.
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for some remainder rε
a with a trace rε

a satisfying bound (2.7). We look for a solution
to (6.50) in the form of a WKB expansion:

(6.51) ua = u0 + ε1/2u1 + εu2 + · · · + εKau2Ka
,

where each uk is a profile and in particular can be expanded in Fourier series in θ.

We denote uk,p = uk,p(t, x) the p-th Fourier coefficient in θ of the k-th profile uk,

and assume that the coefficients u0,−1 and u0,1 of u0 satisfy the polarization condi-
tions (2.5)-(2.6).

From (6.50) we derive a cascade of WKB equations, which are sufficient conditions
for (6.51) to solve (6.50). The first, comprising terms of order O(1/ε), is

(6.52) L(β∂θ)u0 = 0.

Decomposing in Fourier series, we find that (6.52) is equivalent to

(6.53) L(ipβ)u0,p = 0, p ∈ Z.

Under condition (6.47), equation (6.53) is equivalent to

(6.54) u0,p = 0, p /∈ {−1, 0, 1}, Π(pβ)u0,p = u0,p, p ∈ {−1, 0, 1},
where we recall that notation Π was introduced just below (6.48). In agreement
with (6.49), we let u0,0 ≡ 0. Then, conditions Π(±β)u0,±1 = u0,±1 are implied by
conditions (2.5)-(2.6).

Thus (6.53) is satisfied, and we move on to the equation at order O(1/
√

ε) :

L(p∂θ)u1 = B(u0,u0),

or, at the level of the Fourier coefficients:

(6.55) L(pβ)u1,p =
∑

p1+p2=p

B
(
u0,p1 , u0,p2

)
.

For |p| > 2, the above right-hand side is identically zero, and since by (6.47) for
such p the matrix L(ipβ) is invertible, we solve (6.55) by u1,p = 0. For p ∈ {−1, 1},
the right-hand side of (6.55) is identically zero as well, since u0,0 ≡ 0, so that (6.55)
reduces to the polarization conditions

(6.56) u1,p = Π(pβ)u1,p, p ∈ {−1, 1}.
For p ∈ {−2, 0, 2}, projecting with Π(pβ) onto the kernel of matrix L(ipβ), we find

(6.57) Π(pβ)
∑

p1+p2=p

B
(
u0,p1 , u0,p2

)
= 0.

By the polarization (6.54) and the assumed transparency (6.48), identity (6.57) holds.
The matrix L(ipβ) being skew-hermitian, there holds CN = ker L(ipβ) ⊕ ranL(ipβ),
and we can define a partial inverse L(ipβ)(−1) by

L(ipβ)(−1)(x + y) = z, x ∈ ker L(ipβ), y ∈ ranL(ipβ), y = L(ipβ)z,
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so that
L(ipβ)(−1)L(ipβ) = Id − Π(pβ).

If p ∈ {−1, 0, 1}, then L(ipβ)(−1) = L(ipβ)−1, the actual matrix inverse. Multiply-
ing (6.55) to the left by L(ipβ)(−1), we then find

(6.58) (1 − Π(pβ))u1,p = L(ipβ)(−1)
∑

p1+p2=p

B
(
u0,p1 , u0,p2

)
, p ∈ {−2, 0, 2}.

At this stage, equation (6.55) is solved. The Π(pk)u1,p, for |p| ≤ 1, are still undeter-
mined.

The equations at order O(1) are

L(β∂θ)u2 + L1(∂t, ∂x)u0 = B(u0,u1) + B(u1,u0),

corresponding to equations

(6.59) L(ipβ)u2,p + L1(∂t, ∂x)u0,p =
∑

p1+p2=p

B(u0,p1 , u1,p2) + B(u1,p1 , u0,p2)

for the Fourier coefficients.
For |p| > 3, the above right-hand side is identically zero, and we solve (6.59)

by u2,p ≡ 0. For |p| = 2, equation (6.59) reduces to

u2,p =
∑

|p1+p2|=2

L(ipβ)−1
(
B(u0,p1 , u1,p2) + B(u1,p1 , u0,p2)

)
, |p| = 2.

In particular, the coefficients u2,2 and u2,−2 are determined as soon as Π(pβ)u1,1

and u1,−1 are determined. For p = 0, projecting (6.59) onto the kernel of L(ipβ), we
find that necessarily∑

p1+p2=0

Π(0)
(
B(u0,p1 , u1,p2) + B(u1,p1 , u0,p2)

)
= 0,

an identity which holds indeed by (6.48), (6.54) and (6.56). For p = 0, the other
component is

(1 − Π(0))u2,0 =
∑

p1+p2=0

L(0)(−1)
(
B(u0,p1 , u1,p2) + B(u1,p1 , u0,p2)

)
.

Finally, for |p| = 1, projecting (6.59), we find

Π(pβ)L1(∂t, ∂x)Π(pβ)u0,p =
∑

|p1+p2|=1

Π(pβ)
(
B(u0,p1 , u1,p2) + B(u1,p1 , u0,p2)

)
.

Only u1,±2 and u1,0 contribute to the above right-hand side. By transparency (6.48),
we see that actually only (1 − Π(±2β))u1,±2 and (1 − Π(0))u1,0 contribute to the
above right-hand side. With (6.58), we obtain

(6.60)
Π(β)L1(∂t, ∂x)Π(β)u0,1 = Π(pβ)B

(
u0,−1

)
L(2ik)−1B(u0,1, u0,1)

+ Π(pβ)B
(
u0,1

)
L(0)(−1)

(
B(u0,1) u0,−1

)
,
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and a similar equation in u0,−1. In (6.60), we used Notation 2.3: B(u) v = B(u, v) +
B(v, u).

The operator Π(pβ)L1(∂t, ∂x)Π(pβ) is a transport operator at group velocity, or a
family of transport operators, depending on whether pβ is a simple point on the char-
acteristic variety or not. If β is a simple point on the variety, meaning that there is no
change in multiplicity for the branch λj0 at β, then the operator Π(β)L1(∂t, ∂x)Π(β)
is the scalar transport operator

Πj0(k)L1(∂t, ∂x)Πj0(k) =
(
∂t +

(∇ξλj0)(k) · ∂x

)
Πj0(k).

If there is a change in multiplicity for λj0 at β, meaning that several eigenvalues
coalesce at β, then Π(β)L1(∂t, ∂x)Π(β) is a family of transport operators , with
velocities given by the directional derivatives of the branches that intersect at β (2).

In both cases, simple or coalescing eigenvalues, equation (6.60) is hyperbolic with
a cubic nonlinearity, and can be solved locally in time for smooth Sobolev data.

The other component of (6.59) for |p| = 1 is

(1 − Π(pβ))u2,p =
∑

|p1+p2|=1

L(ipk)(−1)
(
B(u0,p1 , u1,p2) + B(u1,p1 , u0,p2)

)
.

Summing up, we see that at this stage:
– the leading term u0 = u0,−1e

−iθ + u0,1e
iθ in (6.51) is completely determined,

with amplitudes u0,±1 solving semilinear hyperbolic equations (6.60);
– the first corrector u1 =

∑
|p|≤2 eipθu1,p is known, except for Π(pβ)u1,p, |p| ≤ 1,

for which we have no information so far;
– the second corrector u2 =

∑
|p|≤3 eipθu2,p is known, except for u2,±2, which

will be determined by Π(±β)u1,±1, and for Π(pβ)u2,p, |p| ≤ 1, for which we
have no information so far.

We can go on with the expansion up to any order 2Ka. The components Π(pβ)u1,p,

for |p| ≤ 1, are determined by the equation at order O(
√

ε) : they satisfy linear
transport equations

Π(pβ)L1(∂t, ∂x)Π(pβ)u1,p =
(
F1(u0)u1

)
p
,

where a typical term in the source F1 is

Π(pβ)B
(
Π(pβ)u1,p, L(0)(−1)B(u0,1, u0,−1)

)
.

2. In the case of separated eigenvalues, these facts are proved in [31, 15]; in the case of coalescing

eigenvalues, these facts are proved in [29, 47]. The article [47] contains unified proofs for both

simple and coalescing cases, and also for higher-order operators, such as Schrödinger, that arise in

three-scale approximations.
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Similarly, the components Π(pβ)u2,p are determined by the equations at order O(ε);
more generally, the components Π(pβ)u�,p are determined by the equations at or-
der O(ε�/2), they satisfy linear tranport equations, with source terms which are poly-
nomials in the Fourier coefficients of the lower-order profiles u�′ , with 0 ≤ �′ < �. In
particular, these equations can be solved over any interval of existence for (6.60).

By construction, the correctors va and the remainder rε
a are trigonometric polyno-

mials in θ, so that bounds (2.7) hold. This completes the proof of Proposition 6.21.

Condition (6.48), introduced by Joly, Métivier and Rauch [25], can be linked to
transparency in the sense of Definition 2.5:

Proposition 6.22. — Assuming
– condition (6.47) describing the set of harmonics of the fundamental phase;
and denoting j0, j1 the indices such that λj0(k) = −λj1(−k) = ω0;
– assuming that �e1 and �e−1 generate the kernels of iω + A0 + A(k) and −iω +
A0 + A(−ik) respectively;
– denoting J the set of indices j such that λj(0) = 0, and assuming that the
resonances (j0, j) and (j, j1) are transparent, for all j ∈ J ,

then weak transparency (6.48) holds.

Proof. — There holds Πj0(k) = Π(β), Πj1(−k) = Π(−β), and Π(0) =
∑

j∈J Πj(0),
so that the weak transparency condition (6.48) is implied by conditions

(6.61)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Πj(0)

(
B(�e1, �e−1) + B(�e−1, �e1)

)
= 0,

Πj0(k)
(
B(�e1, Πj(0) · ) + B(Πj(0) · , �e1)

)
= 0,

Πj1(−k)
(
B(�e−1, Πj(0) · ) + B(Πj(0) · , �e−1)

)
= 0.

With Notation 2.3, conditions (6.61) take the form (3)

(6.62)
Πj(0)B(�e−1)Πj0(k) = 0, Πj0(k)B(�e1)Πj(0) = 0, Πj1(−k)B(�e−1)Πj(0) = 0.

Since j ∈ J , the (trivial) resonance

occurs at ξ = 0. Similarly, the trivial resonance

(6.63) ω = λj(0) − λj1(−k) = 0 − λj1(−k)

occurs at ξ = −k. The first two conditions in (6.62) can then be seen as a (partial)
transparency condition for the resonances (j0, j), with j ∈ J . By partial we mean
here that under (6.62) the bounds of Definition 2.5 hold a priori only at ξ = 0. The

3. The lack of symmetry between �e1 and �e−1 in (6.62) is only apparent: it suffices indeed to

reformulate the first condition in (6.62) as Πj(0)B(�e1)Πj1 (−k) = 0, associated with resonance (6.63),

to restore symmetry.
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third condition in (6.62) is a (partial, i.e., only at ξ = −k) transparency condition for
resonances (j, j1), with j ∈ J . Since by assumption the resonances (j0, j) and (j, j1)
are transparent, condition (6.62) holds, implying (6.48).

Propositions 6.21 and 6.22 lead to sufficient conditions for Assumption 2.8 to imply
Assumption 2.2, as follows:

Corollary 6.23. — Under (6.46)-(6.47), if �e±1 generate the respective kernels of
the matrices ±iω + A0 + A(±ik), and if eigenvalues λj such that λj(0) = 0 are
not involved in non-transparent resonances, meaning that for such j, for all j′, there
holds (j, j′) /∈ R0 and (j′, j) /∈ R0, then Assumption 2.8 implies Assumption 2.2.

Proof. — This is an immediate consequence of Propositions 6.21 and 6.22.

Remark 6.24. — In different settings, weak transparency conditions such as (6.48)
may not guarantee existence of WKB solutions. One possible obstruction is a lack of
well-posedness of the limiting equations.

For instance, the regime considered by Joly, Métivier and Rauch in [25] is

(6.64) ∂tu +
1
ε
A0u +

∑
1≤j≤d

Aj∂xj
u =

1
ε
B(u, u).

This is a more singular regime than (1.1), on which we further comment in Re-
mark 6.26 below. In particular, in the context of (6.64) the profile equations
in Πj0(pk)u0,p are typically quasi-linear, when (6.60) was semi-linear. For triangular
source terms B, Joly, Métivier and Rauch give sufficient conditions, in the form of
transparency conditions, for these quasi-linear profiles equations to be well-posed.
This is Assumption 2.2 in [25], and it is strictly stronger than their weak transparency
assumption (Assumption 2.1 in [25]) guaranteeing existence of a WKB cascade, and
strictly weaker than the conditions that guarantee stability (Assumption 2.5 in [25]).

Another example is given in [49]. There, the second author considered quasi-linear
Euler-Maxwell systems in the scaling

(6.65) ∂tu +
1
ε
A0 +

1√
ε

∑
1≤j≤d

Aj∂xj u +
∑

1≤j≤d

Ãj(u)∂xj u =
1√
ε
B(u, u),

and proved stability of WKB solutions with leading amplitudes solving the Zakharov
system describing Langmuir turbulence. In particular, for (6.65) just like for (6.64),
and as opposed to (1.1), the well-posed character of the limiting equations is far from
trivial. For the Zakharov system, local-in-time well-posedness in smooth Sobolev
spaces was first proved by Schochet and Weinstein [42] and Ozawa and Tsutsumi [37].

Remark 6.25. — For some physical systems, the weak transparency condition (6.48)
is actually not satisfied. This was proved for Maxwell-Bloch by Joly, Métivier and
Rauch [25], and by the second author for Euler-Maxwell [48]. WKB solutions can
then sometimes be constructed for a restricted set of initial data.
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Consider for instance the situation in which after spelling out one component of
(6.48), we arrive at condition

(6.66) n0,0v0,1 = 0,

where n and v are components of the solution u (with n representing for instance
variation of density and v velocity, as in Euler-Maxwell). Here we are using notation
introduced in the proof of Proposition 6.21, so that n0,0 denotes the mean mode of the
leading term in the variation of density. Equation (6.66) can be solved by n0,0 = 0, if
compatible with the datum, for instance in the case of highly-oscillating initial data
in velocity, with O(ε) initial variations of density.

In such situations, the limiting system often involves both v0,1 and n1,0, meaning
a coupling between leading order terms and corrector terms: the term εn1,0, which
vanishes in the limit ε → 0, in particular cannot be measured, has a measurable effect
on the leading term v0,1. This is akin to the ghost effect that was studied in depth by
the Kyoto school [43, 45] for rarefied gas dynamics.

Remark 6.26. — We finally comment on the link between the specific regime in
Joly, Métivier and Rauch’s article, as described in Remark 6.24 above, absence of
transparency as described in Remark 6.25, and our supercritical regime (1.1).

From (1.1), imagine that the hyperbolic operator is block-diagonal, like for instance
system (5.36) from Section 5.2. This is the case for the Maxwell-Bloch equations.
Suppose then that in the coordinate system u = (u1, u2) in which the hyperbolic
operator is block-diagonal, the source B has the form

B(u, u) =
(

B1(u1, u2)
B2(u1, u1)

)
,

and assume that B1 does not satisfy the weak transparency condition (6.48). Then,
rescaling ũ = (ũ1, ũ2) := (u1, u2/

√
ε), we find (6.64), with (1/ε)B replaced by

1
ε

(
0

B2(ũ1, ũ1)

)
+

(
B1(ũ1, ũ2)

0

)
.

The regime is now more singular, but the source is more transparent, and has a
triangular structure, as in [25].

6.7. On structure of the resonant set

Lemma 6.27. — Under the assumption of Lemma 6.19, the set R comprising all res-
onant frequencies is bounded as soon as the asymptotic branches on the characteristic
variety are distinct: ci �= cj for i �= j, with notation borrowed from Lemma 6.20.
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Proof. — If the resonant set is unbounded, then some Rij has an accumulation point
at infinity. By Lemmas 6.19 and 6.20, this gives an equality

ci|ξ + k| = ω + cj |ξ| + O

(
1
|ξ|

)
,

along a sequence |ξ| → ∞, implying ci = cj .

6.7.1. Euler-Maxwell. — We verify that the assumptions of Lemma 6.27 are sat-
isfied by the Euler-Maxwell equations (EM) of Section 5.1.2. First we check that the
assumption of Lemma 6.19 is satisfied. Here A∞(ω) is block-diagonal:

A∞(ω) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 ω× 0 0 0 0
−ω× 0 0 0 0 0

0 0 0 θeω 0 0
0 0 θeω· 0 0 0
0 0 0 0 0 α2θiω

0 0 0 0 θiω· 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

In particular, the eigenvalues of A∞(ω) are
{±|ω|, ±θe|ω|, ±αθi|ω|

}
. Given ω on the

sphere, the eigenvalues are separated, since θi � θe � 1, and α < 1. By Rouché’s theo-
rem, smoothness is preserved under small perturbations. In particular, the eigenvalues
of A∞(ω)−ixA0 are smooth, with respect to ω and x, locally around (ω, 0) ∈ Sd−1×R.

This verifies the assumption of Lemma 6.19.
Next the asymptotic description of the eigenvalues of (EM) in (5.16), or a look at

Figure 1, shows that the separation assumption at infinity is satisfied.
Hence Lemma 6.27 applies: the resonant set for Euler-Maxwell is bounded.

6.7.2. Maxwell-Landau-Lifschitz. — We conclude this Appendix by giving an
example in which the assumptions of Lemma 6.27 do not appear to be satisfied. The
Maxwell-Landau-Lifschitz equations are

(6.67)

⎧⎪⎨⎪⎩
∂tE −∇× H = 0,

∂tH + ∇× E = M × H,

∂tM = −M × H.

For the linearized equations around the family of constant solutions

(E,H, M) = (0, αM0, M0) ∈ R9,

with α ∈ R, coordinatizing M0 = (1, 0, 0), the characteristic variety has equation

λ3
(
λ6 − 2(2 + |ξ|2)λ4 + (|ξ|2(6 + |ξ|2) − 2ξ2

1)λ2 − |ξ|2(2|ξ|2 − ξ2
1)

)
= 0.

The one-dimensional Maxwell-Landau-Lifshitz are transparent in a strong sense; this
was shown by the first author in [34].
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Figure 6. The characteristic variety for the Maxwell-Landau-Lifschitz equations.

In one space dimension, the variety is pictured on Figure 6. The asymptotic
branches are not distinct, meaning that we cannot apply Lemma 6.27 in order to
prove boundedness of the resonant set.

In three space dimensions, numerical calculations by the first author show existence
of resonances for large values of |ξ|, meaning that Assumption 2.8(i) is probably
not satisfied by (6.67). Moreover, these resonances are non-transparent, suggesting
instability.

6.8. Notation index

� : inequality up to a constant, p. 30

(·, ·) : scalar product in CN , p. 91

| · | : sup norm in CN , CN×N , p. 20

‖ · ‖ε,s : weighted Sobolev norm, p. 10

≺ : binary relation for cut-offs, p. 36

A : real diagonal symbol, (3.7) p. 30

A : real diagonal symbol, p. 37

B(·) : linearized source term, p. 18

Bp : avatar of B, (3.9) p. 31

Br : avatar of B, (3.11) p. 32

B̌ : avatar of B, (3.18) p. 35

b±ij : interaction coefficients, p. 39 and
60

γ : maximal growth coefficient, p. 24

γij : growth coefficient, p. 24

γ− : lower growth rate, p. 41
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γ+ : upper growth rate, p. 39

Γ : stability index, p. 19 and 24

Γ : traceofinteractioncoefficients, p. 19

g : leading WKB amplitude, p. 18

θ = (k · x − ωt)/ε, p. 30

| ln ε|∗ : arbitrary power of | ln ε|, p. 39

λj : eigenvalues, p. 17

μj : shifted eigenvalues (3.15), p. 33

μα : shifted eigenvalues, p. 59

ξ0 : frequency argmax, (3.20) p. 36

opψ
ε : para-differential operator, p. 101

opε : pseudo-differential operator, p. 99

Πj : eigenprojectors, p. 17

ϕ... : spatial cut-offs, p. 36 and 64

χ... : frequency cut-offs, p. 36 and 57

R : resonant frequencies, p. 23

R0 : non-transparent resonant frequen-
cies, p. 23

R0 : uniform remainder, p. 33

Rij : (i, j) resonant frequencies, p. 18

Rh
12 : neighborhood of (1, 2) resonant

frequencies, p. 32

S0(0; t) : symbolic flow, p. 40 and 104

σ+p : frequency-shifted symbol σ, p. 30

x0 : spatial argmax, (3.19) p. 36

6.9. Parameter list

Temporal parameters:
– T0, the final observation time, is defined in (2.12) page 20.
– T1 is an observation time for mixed FL1-Hs estimates, defined in (3.44) page
44.
– T2 is an observation time for purely Hs estimates, introduced in (3.55) page
48.
– T
 in Appendix 6.2 is arbitrary.
– T in Appendix 6.3 is arbitrary.

Localization parameters:
– h > 0 is a security distance from the resonance (Section 3.1.2.2 page 32).
– ρ > 0 is the radius of an observation ball in the unstable case (Theorem 2.7
page 20).
– δϕ0 > 0 controls the size of the support of the spatial truncation ϕ0. It is
introduced in the proof of Lemma 3.13 page 45. There holds ϕ0 → 1 as δϕ0 → 0.

The smaller δϕ0 , the smaller the errors associated with (spatially) non-localized
terms.
– x
 in Appendix 6.2 corresponds to the radius of the support of ϕ0 in the main
proof.

Amplitude parameters:
– Ka measures the consistency of the WKB approximation (defined in (2.3)
page 18).
– K measures the size of the initial perturbation in (1.2).
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– K0 is the amplification exponent in the main result, introduced in (2.12) page
20.
– K ′

0 and K ′′
0 , introduced respectively in (2.24) page 25 and (2.26) page 26, are

the amplification exponents in Theorems 2.11 and 2.12.
– η1 controls the size of the FL1 norm of the solution for times < T1. It can be
made arbitrarily small (in statement of Lemma 3.13 page 44).
– η2 controls the size of the L∞ norm of the solution for times < T2. It can be
made arbitrarily small (in proof of Proposition 3.17 page 48).
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