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CRITICAL FUNCTIONAL FRAMEWORK AND
MAXIMAL REGULARITY IN ACTION ON
SYSTEMS OF INCOMPRESSIBLE FLOWS

Raphaél Danchin, Piotr Bogustaw Mucha

Abstract. — This memoir is devoted to endpoint maximal regularity in Besov
spaces for the evolutionary Stokes system in bounded or exterior domains of R"™.
We strive for time independent a priori estimates with L; time integrability.

In the whole space case, endpoint maximal regularity estimates are well
known and have proved to be spectacularly powerful to investigate the well-
posedness issue of PDEs related to fluid mechanics. They have been extended
recently by the authors to the half-space setting [15]. The present work deals
with the bounded and exterior domain cases. Although in both situations the
Stokes system may be localized and reduced up to low order terms to the half-
space and whole space cases, the exterior domain case is more involved owing
to a bad control on the low frequencies of the solution (no Poincaré inequality
is available whatsoever). In order to glean some global-in-time integrability,
we adapt to the Besov space setting the approach introduced by P. Maremonti
and V.A. Solonnikov in [39]. The price to pay is that we end up with estimates
in intersections of Besov spaces, rather than in a single Besov space.

As a first application of our work, we solve locally for large data or glob-
ally for small data, the (slightly) inhomogeneous incompressible Navier-Stokes
equations in critical Besov spaces, in an exterior domain. After observing that
the L; time integrability allows to determine globally the streamlines of the
flow, the whole system is recast in the Lagrangian coordinates setting. This,
in particular, enables us to consider discontinuous densities, as in [17], [19].

The second application concerns a low Mach number system that has been
studied recently in the whole space setting by the first author and X. Liao [14].

© Mémoires de la Société Mathématique de France 143, SMF 2015



iv

Résumé (Régularité critique, régularité maximale et application a la mécanique
des fluides incompressibles)

Ce mémoire traite de la régularité maximale limite dans les espaces de Besov
pour le systéme de Stokes non stationnaire en domaine borné ou extérieur. Nous
avons en vue des estimations avec intégrabilité globale en temps.

Les inégalités de régularité maximale limite sont bien connues dans l'espace
entier et ont joué un role spectaculaire dans I’étude du probléme de Cauchy
associé a diverses EDPs de la mécanique des fluides. Ces inégalités ont été
adaptées récemment par les auteurs au cas du demi-espace [15]|. Nous considé-
rons ici des domaines bornés ou extérieurs. Bien que dans les deux situations
le systéme de Stokes puisse étre localisé et I’étude, ramenée a celle de I’espace
entier ou du demi-espace, le cas du domaine extérieur est plus compliqué car
on ne dispose pas de controle a priori sur les basses fréquences via une inéga-
lité de Poincaré par exemple. Afin d’exhiber une certaine forme d’intégrabilité
globale en temps, nous adaptons au cadre Besov le travail de P. Maremonti
et V.A. Solonnikov [39]. Nous obtenons ainsi le type d’inégalités voulu, mais
dans l'intersection d’espaces de Besov.

Comme premiére application de ces nouvelles inégalités, nous résolvons lo-
calement (données initiales grandes) ou globalement (données initiales petites)
les équations de Navier-Stokes incompressibles faiblement non homogénes en
domaine extérieur dans des espaces de Besov critiques. La propriété d’inté-
grabilité L' en temps & valeurs Lipschitz pour le champ de vitesses solution
assure ’équivalence entre les formulations lagrangiennes et eulériennes du sys-
téme. Passer en coordonnées lagrangiennes permet de considérer des données
initiales avec densité discontinue, comme observé récemment dans [17], [19].

Comme deuxiéme application, nous résolvons un systéme limite qui apparait
dans le régime a faible nombre de Mach et a été étudié récemment par le
premier auteur et X. Liao [14].
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CHAPTER 1

INTRODUCTION

Description of motion of Newtonian fluids is based on the physical and
thermodynamical laws governing the conservation of momentum, energy and
mass. We expect in general information concerning these quantities to be
enough to find out the velocity field at each point of the fluid region and,
at least, on some time interval [0, 7] if the initial time is ¢ = 0. This is the
Eulerian description of the fluid.

Another fundamental physical information is the knowledge of the stream-
lines or particle paths corresponding to the evolution of infinitesimal particles
or fluid parcels. It is given by the following Ordinary Differential Equation:

dX
1.1 —
(1.1) o
Here y is the initial position of a particle of the fluid and X (¢,y) denotes the

position of that particle at time ¢ under the action of the velocity field v.
Knowing X thus gives the evolution of an infinitesimal fluid parcel labelled

:U(t,X), X|t:0 =1.

by its initial position y as it moves through space and time. This is the
Lagrangian description of the fluid under consideration. Equation (1.1) gives
the relationship between the two descriptions of flows, that is the Eulerian and
Lagrangian ones. The Eulerian coordinates system (¢, x) uses the position x
of the material at time ¢, while the Lagrangian coordinates system (¢, y) uses
the initial position y of a point of the medium. The change of coordinates is
governed by the following identity which is the integrated counterpart of (1.1):

(1.2) r=X(t,y) with X(t,y)=y+ /OtU(T,X(T, y)) dr.

From the mathematical viewpoint, the basic question is whether those two
descriptions are indeed equivalent: what are the conditions ensuring that one
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may go from one system of coordinates to the other without any loss of infor-
mation on the flow ? From the basic theory of Ordinary Differential Equations,
we know that, roughly, the minimal assumption is that

(1.3) Vv e Ly (0, T; LOOJOC(Q)),

where € is the fluid domain. This in particular ensures (1.2) to have a unique
solution X that is continuous in time and Lipschitz in space (see [4], [23], [45]
for more general results concerning the flow and transport equations).

In the present work, we would like to find a functional framework — the
largest one if possible — ensuring the velocity field to satisfy (1.3) and the sys-
tem we are looking at, to be well-posed. We have in mind models describing
the evolution of incompressible flows with nonconstant densities and, more
specifically, mixtures of incompressible homogeneous fluids. Such models pos-
sess some invariance with respect to appropriate time and space dilations and
it has been observed in many situations that the optimal functional frame-
work — the so-called critical one — for studying the corresponding governing
equations should have the same invariance (see the introduction of Chapter 5
for more explanations).

Resuming to the study of mixtures of incompressible flows, the basic ques-
tion is whether the following initial configuration:

(1.4) po=1+o0xa,

where o denotes some constant and x 4, the characteristic function of some sub-
set A of 2, is stable through the time evolution. According to the Lagrangian
description introduced above, we expect the density to be transported by the
velocity field and thus to read

(1.5) p(t) =1+oxaw with A(t):= X(t, A).

Note that if (1.3) is fulfilled then the flow X is Lipschitz and thus A(t) remains
Lipschitz during the evolution, if it is Lipschitz initially.

To make it more concrete, consider the following inhomogeneous incom-
pressible Navier-Stokes system:

pr+u-Vp=0 in (0,7) x Q,
plug +u-Vu) —vAu+ VP =0 in (0,7) x £,

(1.6) divu =0 in (0,7) x €,
ulgn =0 at  (0,T) x 09,
ul—o = o, pli=0 = po on (.

MEMOIRES DE LA SMF 143



CHAPTER 1. INTRODUCTION 3

Here p = p(t,x) € Ry, u = u(t,x) € R" and P = P(t,z) € R stand for the
density, velocity field and pressure of the fluid, respectively. For simplicity,
the given positive viscosity coefficient v is assumed to be constant.

From the viewpoint of hydrodynamics, the first equation is the mass conser-
vation, the second one is the momentum conservation, and the third equation
is the incompressibility constraint. Given some initial data pg,ug, we here
want to determine (p, u, VP) in the case where the fluid domain € is a smooth
bounded or exterior domain of R".

As we plan to investigate the well-posedness issue of (1.6) for possibly dis-
continuous initial densities such as in (1.4), the classical strong solution theory
developed in e.g. [13, 34] is too restrictive because py has to be (at least)
uniformly continuous therein. In order to understand what should be the rel-
evant functional framework and tools for our analysis, a crucial point is to
investigate the linearization of the momentum equation, namely the following
evolutionary Stokes system with homogeneous Dirichlet boundary conditions:

ug —vAu+ VP = f in (0,7) x £,
(1.7) divu =g in (0,7) x
) ulpo =0 at  (0,T) x 09,
u|t:0 = U on .

We need a functional framework so that if we plug the obtained solutions in the
momentum equation of (1.6) then we get (1.7) with source terms f allowing
to recover the regularity we started from. This is exactly in the same spirit as
Schauder or L, estimates for the Laplace operator: they ensure that if f € C¢
(resp. f € L) then the solution to Au = f, with, say, homogeneous Dirichlet
boundary data satisfies V?u € C (resp. VZu € L,), see [29].

In the setting of (1.7) with g = 0 and uy = 0, we expect u;, V2u and VP to
have the same regularity as f. In the standard cases (€2 stands for the whole
space R", the half-space R”, or a bounded or exterior domain of R"™), that so-
called mazximal regularity property has been proved in a number of functional
spaces. For instance, if f € L,(0,T;L,(£2)) for some 1 < p,q < oo and g =0
then there exists a constant C' independent of T so that any solution to (1.7)
satisfies (see e.g. [28, 35, 40]):

(1.8)  |lue, vV?u, VP 1 07,0 < C(lluoll 23 o) + 1l 0L, )))-

D,q

Inequalities (1.8) are based on Calderon-Zygmund theory for singular integrals
(see [24], [52]) and related to the analyticity properties of the semi-group of
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4 CHAPTER 1. INTRODUCTION

the Stokes operator [3]. Therefore, unsurprisingly, they fail in the endpoint
cases where one of the exponents p or ¢ is 1 or co.

Compared to those results, the natural regularity required on the velocity
for (1.2) to be uniquely solvable, is rather exotic: we need an L; in time bound.
As we aim at working in the critical regularity framework, we cannot afford
any loss in the estimates resulting from incautious use of Holder inequality:
this precisely means that we need an extension of (1.8) to the case p = 1, with
a gain of two full spatial derivatives with respect to the data. In other words,
we look for a Banach space X with the property that any smooth enough
solution (u, VP) to (1.7) satisfies (if g = 0 for simplicity):

(1.9) e, vV2u, VPl 1y 0.mx) < C(lluollx + [ £l 0,r5x))  for all T
with a constant C' independent of T.

On the one hand, Inequality (1.9) fails whenever X is a reflexive Banach
space. On the other hand, it is known to be true in the whole space setting
if X is a homogeneous Besov space with third index 1, namely B;l(R") (see
e.g. [6]). The proof relies on a very simple argument based on Fourier analysis,
which is recalled at the end of the proof of Theorem 4.1.1. In our recent
work [15], we extended that inequality to the half-space R’} (assuming that
g = 0). There, we had to restrict ourselves to values of s close to 0 (namely
—1+1/p < s < 1/p), a limitation corresponding to the case where functions
of B;’,l(Rfﬁ) do not have a trace at the boundary and may thus be extended
by 0 over R”, with no loss of regularity. One of the difficulties that we had
to face is that, in contrast with the R™ situation, the half-space case is not
amenable to the heat equation by projection, and cannot be reduced either to
the R™ case by a suitable symmetric/antisymmetric extension. A great deal
of the analysis was related to the use of the Fourier transform with respect to
tangential variables.

In the present paper, we want to extend Inequality (1.9) with X = B;I(Q)
to smooth bounded or exterior domains (the second case being wilder from
the point of view of mathematical analysis). In passing, we also treat the case

g#0

which is of interest for some applications that we have in mind, and that is also
needed in some intermediate steps of our proof. The general strategy is the
same as in our recent paper dedicated to the heat equation [20] but, owing to
the divergence constraint, the proof is much more involved and requires first
a very careful analysis of the Poisson equation in domains and recent results

MEMOIRES DE LA SMF 143



CHAPTER 1. INTRODUCTION 5

of ours for the (generalized) divergence equation [16]. The basic idea consists
in localizing the equation by means of a resolution of unity. We then have
to deal with ‘interior terms’, the support of which do not intersect 052, and
‘boundary terms’ with support intersecting 0. After extension by zero, the
interior terms may be handled according to the maximal regularity estimates
for R™. As for boundary terms, we perform a change of variable in order to
reduce the study to that of (1.7) in the half-space R’.. Putting together all
the local estimates does not quite yield the desired inequality, namely ()

(110) e, vV, VP o,y < Cluoll gy oy + 110,85, o)

In fact we get it either up to a low order term involving u or with a time-
dependent constant C. In the bounded domain case, one may take advantage
of the exponential decay of the Stokes semi-group so as to remove the time
dependency. In exterior domains, according to the work by H. Iwashita [32],
only algebraic decay — the so-called L,-L, estimates — is available. It turns out
that adapting the work by P. Maremonti and V. Solonnikov in [39] allows to
bound the L1(0,T; B;l(K )) norm of u for any compact subset K surrounding
the boundary of €2, provided that 1 < q¢ < n/2 and s is close enough to 0.
Hence we miss the two-dimensional case.

As an example, let us now state the result we get if ¢ = 0 (the general
statement being given in Theorem 4.3.3):

THEOREM. — Let Q be a smooth exterior domain () of R" with n > 3. Let
1 <qg<p<oowith ¢ <n/2 and let s € (—1+ 1/p,1/p). Assume that
uy € B;l N Bgl(Q) with divug = 0 and ug - 7ilgq = 0 (here 7 is the outer
unit normal vector at d€2) and that f € Li(0, T’ 35,1 N B(q]’l(Q)). Then System
(1.7) with g = 0 has a unique solution (u, VP) with

uweC(Ry;BS N BY () and  dyu, Vu, VP € Li(Ry; BS | N BY ().
In addition, we have for all positive T":
2
HuHLOO(O,T;B;’lﬂBg’l(Q)) + | (ue, vV7u, VP)||L1(0,T;B;’1OB(?’1(Q))
= C(HUOHB;’IHBSJ(Q) + ”fHLl(O,T;B;’lﬁBg’l(Q)))’

where the above constant C' is independent of T and v.

1. Assuming just here that g = 0 for simplicity.
2. That is the complement of a smooth simply connected bounded subset.

SOCIETE MATHEMATIQUE DE FRANCE 2015



6 CHAPTER 1. INTRODUCTION

Such time independent estimates are of interest not only for the Stokes semi-
group theory but also in a number of applications related to fluid mechanics.
Having a time-independent constant in (1.9) is crucial for proving the global
existence of strong solutions for systems related to the incompressible Navier-
Stokes equations. In effect, the fact that two full derivatives may be gained
with respect to the source term allows to consider not only the Stokes operator
but also perturbations of it.

Generalizing the above theorem to the case g # 0 will enable us to estab-
lish new well-posedness results for the inhomogeneous Navier-Stokes equations
(1.6) in some critical functional framework related to the scaling of the equa-
tions (see Chapter 5 for more details). In the slightly inhomogeneous case,
that is if pg is close enough to some positive constant, we shall prove global
well-posedness for small initial velocity, and local well-posedness for large ve-
locity. We shall see that choosing s = —1+n/p in the above statement (which
corresponds to the critical regularity framework mentioned above) ensures the
velocity field to be Lj-in-time with values in the set of uniformly C' func-
tions. Hence, it admits a unique C' flow for all time, and the system satisfied
by w may thus be reformulated equivalently in Lagrangian variables as ex-
plained at the beginning of the introduction, exactly as in our recent work
in [17] dedicated to the whole space setting (). Looking at the system in
Lagrangian coordinates will enable us to handle discontinuous initial densities
and to justify (1.5) for the solutions to (1.6) whenever py satisfies (1.4) with 04
uniformly C!, and we will get for free that OA(t) remains C' during the time
evolution. In other words, the inhomogeneous incompressible Navier-Stokes
equations in a domain may be used for describing a free boundary problem for
two incompressible homogeneous fluids with different densities separated by
some interface. This is in sharp contrast with the standard approach where
the free boundary is seen as an additional unknown (see e.g. [49]). Last but
not least, our approach based on Lagrangian coordinates will enable us to re-
cast our problem in terms of a suitable contracting mapping, and we will thus
get uniqueness of the solution and Lipschitz dependence with respect to the
data, with no additional regularity assumption whatsoever.

Another interesting application is given by the initial state pp = 14+ Z in the
case where the nonnegative function Z is bounded and Supp Z is a connected

3. Note that the divergence free property is lost when performing the change of coor-
dinates explained in (1.2). This, in itself, is a good motivation for considering nonzero
divergence in (1.7).

MEMOIRES DE LA SMF 143



CHAPTER 1. INTRODUCTION 7

set (a model for the description of pollution in a homogeneous liquid). The
uniqueness of solutions implies that, during the time evolution, the polluted
area cannot be split into several components because the support of p(-,¢) — 1
remains connected. Besides, the bounds we have on the velocity field provide
us with some control on the growth of the diameter and on the speed of
propagation of the polluted area.

Let us mention that the local-in-time well-posedness for large jumps of the
density has been proved in [19], by another approach that is not compatible
with the critical functional setting. Another interesting development toward
this issue has been done recently in [38].

As a second application, we solve globally in critical spaces the limit low
Mach number system we get in the large entropy variations case for a heat con-
ducting and viscous perfect gas. This is a nonlinear coupling between a heat
equation for the temperature and a Stokes-like equation for the velocity that
has been investigated recently in [14] in the whole space (see also [2] and the
references therein). Being of parabolic type, there is no need to recast the sys-
tem in Lagrangian coordinates. So we concentrate on the study of the original
equations in the Eulerian coordinates in the case where the fluid domain is ex-
terior (the bounded case being easier). The main difficulty encountered is that
the incompressibility condition is violated by the structure of the model. Nev-
ertheless, the generalization of Theorem 1 to nonzero divergence constraints
obtained in Theorem 4.3.3 turns out to be appropriate to solve the system.
In passing, we have to establish new maximal regularity results (in the spirit
of Theorem 1), for the heat equation with Neumann boundary conditions, in-
volving higher order norms. This will be done by combining the methods of
the present Chapter 4 and of [20].

We end this introduction with a short description of the content of the mem-
oir. In Chapter 2, we introduce most definitions and tools that will be needed
in the paper. Besov spaces (and basic properties) are presented, first on R™,
and next, on domains. In passing, we recall some results of ours concerning
the divergence equation, and finally present changes of coordinates that will
be useful in the analysis of the Stokes equation, and of the inhomogeneous
Navier-Stokes equations. The next chapter is dedicated to the study of the
Poisson equation with Neumann or Dirichlet boundary conditions. We mainly
alm at proving estimates in homogeneous Besov spaces, in the low regularity
framework. Those estimates will be one of the keys to the proof of maximal
regularity estimates for the evolutionary Stokes system (Chapter 4). In the

SOCIETE MATHEMATIQUE DE FRANCE 2015



8 CHAPTER 1. INTRODUCTION

last two chapters, we give applications of those estimates : Chapter 5 is de-
voted to the the global well-posedness issue for (1.6) in a critical framework,
thus generalizing our recent result in [17] and Chapter 6 is concerned with the
proof of a similar result for a low Mach number limit system.

MEMOIRES DE LA SMF 143



CHAPTER 2

TOOLS AND SPACES

In this chapter, we present basic definitions and tools that will be needed
throughout the memoir. We first introduce the Littlewood-Paley decomposi-
tion (a dyadic decomposition with respect to the Fourier variable) and homo-
geneous Besov spaces over R”, then state several classical and fundamental
properties : density results, embedding, product estimates, and so on. In the
second part of this chapter, we extend the definition of Besov spaces and some
of their properties to general domains of R™. In the third section, we recall
some results for the divergence equation, after our recent study in [16]. The
last part of this chapter is devoted to presenting different types of change of co-
ordinates that will be used a number of times in this paper to transform a PDE
problem at the boundary of a domain into a problem in the whole space R" or
the half-space R’} . In passing, we introduce the Lagrangian coordinates needed
in Chapter 5, and derive related algebraic relations.

2.1. Besov spaces on R"

2.1.1. Definition and classical properties. — Throughout we fix a
smooth nonincreasing function y : Ry — [0, 1] supported in [0,1) and such
that xy =1 on [0,1/2), and set

o) == x(I¢1/2) = x(I¢])-

Note that ¢ is valued in [0, 1], supported in {1/2 < |¢| < 2} and that

(2.1) > ek =1 forall ¢+#0.

kEZ
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Then we introduce the homogeneous Littlewood-Paley spectral truncation op-
erators (Ag)rez over R™ by setting

Apu = p(27¥D)u == f_l(go(2_k-).7:u).
Above F stands for the Fourier transform on R"™. We also define the low
frequency cut-off
(2.2) S :=x(27%D).

For s € R and (p,r) € [1,00]?, we define the following homogeneous Besov
semi-norms on R” as follows:

L sk A
||u||Bg7T(Rn) = H2 HAkuHLp(R”) 0.(7)

and nonhomogeneous Besov norms:
 llaskl A :
lullBs, ny = ||2° HAkuHLp(R")HgT(N) + [[Soull 1, (&)

It is obvious that Besov semi-norms vanish on the set of polynomials. To
upgrade them to norms, we need a further control on low frequencies. To this
end, we shall adopt the following definition borrowed from [6]:

B, (R") = {u € SHR™) : llull gy (@) < oo} ,

where S; (R™) stands for the set of tempered distributions u over R™ such that
for all smooth compactly supported function 6 over R", we have

(2.3) lim 6(AD)u=0 in L (R"™).
A—r+00

That condition is obviously satisfied whenever #(D)u € L,(R"™) for some
p < oo and 0 € C(R™) with 0(0) # 0. Note also that any distribution
in S} (R™) tends weakly to 0 at infinity. In particular, S;(R™) contains no
nonzero polynomial and if u € §; (R™) then one may write

(2.4) u=Y Apu in SR
keZ
Conversely, if (2.4) is satisfied and |Ju| 5. (rny < 00 for some index s such that
P,
s<n/p (or s <n/pifr=1) then u is in By (R").
The following fundamental properties are proved in e.g. [6], [10], [11]:

PrOPOSITION 2.1.1. — Basic properties.

1. Completeness: the space B;T(R”) is complete whenever

(2.5) s<n/p if r=1, or s<n/p if r>1.
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2.1. BESOV SPACES ON R" 11

Density: the set So(R™) of Schwartz functions with Fourier transform
supported away from the origin is dense in B;T(R”) if and only if p and
r are finite.

Action of derivatives: for any k € {1,...,n}, the derivative operator Oy,
maps B;,T(R") in B;;l(R”). Besides, we have for some constant C > 1
independent of w:

C_IHUHB;,T(W) < HVUHB;;J(Rn) < CHUHBgm(Rn)-

Bs+n/p1

. Embedding: if p1 < p2 and r1 < ro then By /" (R") is continuously

embedded in B;Zfz/m (R™).
Comparison with Lebesgue spaces:
— for any 1 < p < 00, we have for some universal constant c,

cllull gy @y < lull @y < llull go | gy
— for any 1 < p < oo, we have
B) in(p2) R™) = Lp(R™) — By (50 (R™);

p,min p,max
—ifl<p<ooand0<s<n/p then
) ) n/1 1
B (R") — Ly (R")  with ;<5 - ]?> =1
Scaling properties: There exists a constant C' depending only on s such
that for all A > 0 we have

C—l)\s—n/pHuHB;’r < Hu()\)HBﬁ,r < C)\S—n/pHuHBfM.

Duality: for all (s,p,r) € R x [1,00]?, we have

’/Rn uv d:c‘ < Cllull gy, @mllvlis-: @)

and the space B %, (R™) coincides with the set of u € Sj(R™) such that

pr’
sup ‘ / uv dm‘ < 00
v n

where the supremum is taken over functions v in S(R™) N B,",(R") with

HUHB;"ST‘/(Rn) < 1. The left-hand side of (2.6) is equivalent to HUHBZS,,T(R”)'

Fatou property: under Condition (2.5), there exists a constant C such
that for any bounded sequence (uj)jen of B;,,(R") converging to some u
in 8'(R™), we have

Julgg, gy < Climin [l 5, ey
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12 CHAPTER 2. TOOLS AND SPACES

In some parts of the paper, we shall also use the more classical nonhomo-
geneous Besov spaces By . (R") that are defined by

B3, (") = {ue SR : fullsy, @ < 00}

Those spaces have the above properties with no restriction (2.5). Furthermore
both the set C2°(R™) of smooth functions with compact support, and the
Schwartz class S(R™) are dense in B,  (R") whenever p and r are finite.

2.1.2. Product laws. — We shall make an extensive use of the following
inequalities, sometimes named tame estimates because of their linear depen-
dence with respect to the highest norm.

PROPOSITION 2.1.2. — Let by, denote B;,T(R”) or B, (R™). Then the fol-
lowing estimates hold true™ :
— For any s > 0,
Juvllsg, < llullzollvllbg , + vl Lo l[ullsg, -
— For any s >0 andt > 0,
Juvllog , S llullzocllvlleg . + [[0llpze, lellpse -
— Foranyt >0 and s > —n/p/,

lwvllsy,, S lwllae vl + lullye 10lleg,, + 10z, el
P

Proof. — The proof is based on continuity results for the paraproduct and on
Bony’s decomposition that has been introduced in [9]:
wv =Ty + R(u,v) + Tyu.

Above, T and R stand for the paraproduct and remainder operators, respec-
tively, that may be defined in the homogeneous case by

T,v _ZSJ 1uAU and R(u,v) ZZAUAJHU
jJEZ JEZ Ji|<1

and in the nonhomogeneous case by

TU—ZSJ 1wAjv and  R(u,v) ZZAU,A]_HU

j=1 j2-1li<1

with Ay = Ap if k>0, A_; = Sp and A, = 0 if k¥ < —2. Recall that S has
been defined in (2.2).

1. From now on, we agree that A < B means that A < CB for some harmless positive
constant C.
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2.1. BESOV SPACES ON R" 13

So, in order to prove the above estimates, it suffices to use the classical
properties of continuity for R and T, namely in the cases we are interested in:

Tl S Il ol and [ Tuvlls, < Nullyoe [0lpee i ¢ >0,
1B (u, 0)llsg, < llullzol[vlley, and [|R(uw, v)]lpy, S HUIlb—t [0llysre if 5 >0,
IR (u, v)bg, S [lull Z/Zonv”bs if s> —n/p'.

As an example, let us establish the second inequality for T;v in the homoge-

neous case. The reader may refer to [6], [48], [51] for the proof of the other

inequalities. Owing to the support properties of the function ¢ entering in the
definition of A;, we may write for all j € Z and some large enough integer N:

Aj(Tyw) = Z Aj(Sk-1udg).

|k—j|<N
Hence
25| Aj(Ty) |, mny < C Z 207}6)527“HSkfIUHLOO(Rnﬂk(SH)HAW”LP(Rn),
lk—jl<N
and one may thus assert that
ITuvl g, . < Cl|27 " ISk-1ull oy 250N Akl o e

We may further write
2_kt||Sk—1U||Loo(R") < Z o(k'=k)t 9—k tHAk’UHLO@(R")‘
k! <k—2

Because ¢ > 0, taking the ¢,(Z) norm of both sides and using convolution
inequalities for series completes the proof. O

As a smooth compactly supported function belongs to any space B n/p T (R™)
with 1 < p < oo, and to any Besov space By ,(R"), we deduce from the
previous proposition and embedding the following localization properties (2):

COROLLARY 2.1.1. — Let 6 be in C°(R™). Then u — 6u is a continuous
mapping of by, . (R™)
— forany s € R and 1 < p,r < oo, if by, (R") = B, .(R");
— for any s € R and 1 < p,r < oo satisfying —n/p’ < s < n/p (—n/p <
s<n/pifr=1and —n/p' <s<n/pifr=o0)ifb; (R") =B, (R").

2. In the nonhomogeneous case with very negative s, we need to resort to other continuity
results for R than those that have been recalled above.
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14 CHAPTER 2. TOOLS AND SPACES

The above proposition will also enable us to compare B, ,.(R") and B;,,, (R™)
for compactly supported functions:

PROPOSITION 2.1.3. — Let 1 < p,r < 0o and s > —n/p’ (or s > —n/p" if
r = 00). Then for any compactly supported distribution u we have

ue By, (R") <= ue B;T(R”)
and there ezists a constant C = C(s,p,r,n, K) (with K = Suppu) such that
C_IHUHB;’T(RH) = ||“HB;VT(RH) < CHUHBEW(Rn)-

Proof. — Let us first treat the case s > 0. Then the embedding B, ,(R") —
B;r (R") is clear ). Conversely, assume that u belongs to B;’,T(R”). In order
to get u € B, .(R"), it suffices to establish that u € L,(K). This is in fact
obvious as one may write that

u = Sou + (Id — Sp)u.

The first term belongs to Loo(R™) (as u is in Sj (R™)) hence to L,(K). Next,
because its Fourier transform is supported away from the origin and s > 0,
the second term belongs to L,(R™). We claim that there exists some constant
C depending only on p, K and s, such that

ullz, k) < C||U||357T(Rn)'

Let us write that u = Sju + (Id — Sj)u for some j € Z to be chosen hereafter.
We have

lullz,y < ISjulle, ) + 110 — S5)ullz, @n

A

1. .
KT S5l gy + C2ull g5, g

Using Bernstein’s inequalities and, again, that Suppu C K, we thus get

1 . g
lullz,x)y < CIK[#27™||ullL, @n) + C2 ]SHUHB;?T(RTL)
CIK 2™ ullL, 0) + C27lull gy (gny-

IN

So choosing j so that 27" < 2C|K|2/™ < 1, we discover that

[ellL, ) < CUE ™ lull 5 gy

3. Without any support assumption, it is obvious that if s is positive then we have
[-lgs ®ny < II-lBs.,.®n), and that the opposite inequality holds true if s is negative.
T T
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2.1. BESOV SPACES ON R" 15

Let us now focus on the case s < 0. It is clear that any (not necessarily
compactly supported) distribution in B;T (R™) belongs to B, .(R"), too. Con-
versely, consider some distribution u € B;T(R”) with compact support and fix
a cut-off function n € C°(R™) with value 1 on Supp u. We decompose u into

(2.7) u = 1Sou + n(Id — Sp)u.

Note that Id — Sy maps B, (R") in B;r (R™), as there are no low frequencies.
As n e C°(R™), Corollary 2.1.1 implies that the last term in (2.7) belongs to
By (R") and that for some constant C' = C(s,p,n,n),

(2.8) In(1d = So)ull g, (gny < Cllulzg, -

Next, because Sou is a C>® bounded function, nsou is in L1 (R™). Hence, by

embedding, it is also in Bj, n/v (R™), and we may thus write

9S00l -0 gy < CllnSoulz, @y < Clull g, oy

Of course 1Spu also belongs to L,(R™) hence to all the intermediate Besov
spaces (with obvious estimates) between B, n/p (R™) and Ly(R™), and in par-
ticular to By .(R™) if —n/p’ < s < 0.

The limit case s = 0 follows by interpolation. O

In some applications we have in mind, we need not specify in which Besov
space the two terms of the product belong. Typically, given « in some Banach
space X, and some function ¢, we just need to know that ¢u belongs to the
same space X. This motivates the following definition of a multiplier space.

DEFINITION 2.1.1. — Let X be a Banach space. We designate by M(X)
(multiplier space for X ) the set of those tempered distributions ¢ so that ¢pu is
in X for allu € X.

The space M(X) is naturally endowed with a structure of Banach space if

equipped with the following norm:
[Pl mxy = sup  |loullx.
l[ullx=1

Even for very classical spaces (e.g. Sobolev spaces), describing the corre-
sponding multiplier space in terms of standard functional spaces is hopeless
(see e.g.[41]). From the first item of Proposition 2.1.2, one may assert that
M(b;, . (R™)) contains L (R™) Nby . (R™) if s > 0 and 1 < p,r < oo, but this
is far from being optimal.

SOCIETE MATHEMATIQUE DE FRANCE 2015



16 CHAPTER 2. TOOLS AND SPACES

A direct application of Lemma 2.2.1 below ensures that if A is a subset
of R™ with uniformly C! boundary then for all 1 < ¢ < oo,

(2.9) 14 € M(B; ,(R")) if s € (—1+1/p,1/p) with 1< p < occ.

The following lemma will be useful when transforming a problem on the bound-
ary to a problem on the half-space and also to justify the equivalence between
the Eulerian and Lagrangian formulation of the systems of PDEs that we shall
study in the last chapter.

LEMMA 2.1.1. — Let Z : R™ — R™ be a diffeomorphism and (s,p,r) € R X
[1,00]% with —n/p’ < s < n/p. The linear map u — w o Z is continuous
on By .(R") whenever:

— either 0 < s <1 and Jz-1, DZ are bounded,
—or—-1<s<0,Jz, DZ71 are bounded and J;-1 € M(B.°,(R")).

P!
Above, we agree that J5' :=|det DZ*!].

Proof. — Let us first consider the case s € (0, 1) and p, r finite (the limit cases
being left to the reader). Using the characterization of homogeneous Besov
semi-norms by means of finite differences (see e.g. [6, 52]), one may write up
to an irrelevant constant:

e - (], R

So performing the change of variable 2/ = Z(z) and 3/ = Z(y), we see that

. uy’) — u(z’)P v
[uoZ|| 35 . (R™) = /n(/Rn Z-1(y) — Z—1(x/)’n+5pJZ*1(y/)dy/)pjzfl(x) dx’,

whence

1l s+t
lwo Zll sy guny < 1211ty IDZI5 gy el 5 ey

Let us emphasize that the condition that s < n/p ensures in addition that u
belongs to some Lebesgue space Ly (R™) with p* < co. Hence uoZ € L= (R"),
too, and one may thus conclude that uo Z € By .(R").

The result for s € (—1,0) may be achieved by duality: we have

luo ZHB;T(R”) = sup . /n v(z)u(Z(2)) dz.

U] - —
1915
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2.1. BESOV SPACES ON R" 17

Now, setting x = Z(z) yields
/n v(2)u(Z(z))dz = /n u(:z:)v(Zil(m))JZq(x) dx

S ||U”B;J(Rn)HJZ71 vV O Z*IHB;/STI(RTL)
St 1Sty
S ||JZH£OO(R")HDZ IHLOO(]}gn)HJZ_I||M(B;/Sr,(]R"))HUHB;T(R”)

the last inequality being a consequence of the first part of the proof, of the
definition of multiplier spaces and of ||v]| 5= ®ny < 1.
p/,rl

In order to show that uwo Z € §; (R™), one may use the fact that
HSj(UOZ)HLOO(R”) = sup / uo Z Sjvda
llvllz, @ny=1JR"™

and follow the above computations. We still get

/ uoZ S'jv dx
vt —1 5 -
< HJZHLOO(Rn)HDZ ”LOO(Rn)”szlHM(B;,ST,(Rn))||UHB;’T(Rn)HSJ‘”HB;,ST,(Rn)-

By using Bernstein inequality and the fact that v is in L (R™), it is not difficult
to conclude that ||Sj(u o Z)| 1 rn) — 0 when j goes to —oo. This completes
the proof. O

REMARK 2.1.1. — The above lemma extends to s = 0 by interpolation. It
also may be generalized to higher order regularities if making stronger assump-
tions on Z. For instance, if assuming that 1 < s < 2 then the map u— uvo Z
is continuous on By .(R") whenever J;-1 and DZ are bounded, and

DZ € M(B; M (R™)).
Likewise, if —2 < s < —1 then u — w0 Z is continuous on B;’,r(R") whenever

J, and DZ~! are bounded, and
Jz-1 € M(B*,(R")) and DZ'e M(B,;7'(R").

Proof. — If 1 < s < 2 then we look for a bound of D(u o Z) in B;;I(R”).
Using the chain rule D(uo Z) = (Duo Z) - DZ, the definition of multiplier
spaces and the previous lemma, we may write

[D(u e Z)HB;;l(Rn) S HDZ‘|M(B;;1(Rn))HDU © ZHB;;l(Rn)

Sy s—1+2
S HDZHM(B;;l(Rn))HJZ*l HLOO(R") HDZHLOO(Rn) HDUHBIS,;l(Rn)-
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18 CHAPTER 2. TOOLS AND SPACES

As for the case —2 < s < —1, we argue by duality:
/ v(z)u(Z(z))dz = / u(z)v(Z 7 (x)) T 51 () da,

-1
< HUHB;’T(Rn)HU °Z ||B;,Sr,(Rn)||=]Z—1 ”M(Bp_/sw(R"))'

As 1 < —s < 2, applying the result for positive indices of regularity to vo Z 1
enables us to conclude. O

2.2. Besov spaces on domains

We aim at extending the definition of homogeneous Besov spaces to general
domains. We proceed by restriction as follows (4):

DEFINITION 2.2.1. — For s € R and 1 < p,q < oo, we define the homo-
geneous Besov space B, ,(€2) on Q to be the restriction (in the distributional
sense) of B]‘;’q(R”) to 2, that is

NS Bf,’q(Q) — ¢p=1|q for some 1€ B;q(R”),
We then set

19l s (@) = wé{qﬁ 19155 (rmy-

As in the R™ case, the Besov spaces defined above are Banach spaces with
the Fatou property whenever Condition (2.5) is satisfied. Moreover, interpo-
lation and embedding properties may be deduced from those that have been
stated in Proposition 2.1.1.

Owing to the definition by restriction, we expect the product estimates to
be the same as in the whole space setting. For example, for s > 0, it seems
reasonable to have

(2.10) ||UU||Bg’q(Q) S ||u”Loo(Q)||U||BIS)’q(Q) + ||U||LOO(Q)HU||B;)’(1(Q)-
However the situation is not so simple because if we consider some extensions
% and ¥ in R™ of u and v then uv is an extension of uv over R™ but it is not
clear that the restriction to 2 of X (R")NY (R™) coincides with X () NY (Q).

As regards (2.10), it may be fully justified for 0 < s < 1/p by using ex-
tensions by zero if  is uniformly C* (see Corollary 2.2.1 below). For larger
values of s and if the domain is sufficiently smooth then there exists an explicit
bounded extension operator E : By () — B, ,.(R") which is also bounded
from Loo(2) = Loo(R™), see [1],[52].

4. Nonhomogeneous Besov spaces on domains may be defined by the same token.
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2.2. BESOV SPACES ON DOMAINS 19

In most situations, the following result will be sufficient for our purposes:

PROPOSITION 2.2.1. — Let by .(§2) denote B;’yr(Q) or B, ,.(Q), and Q be a
domain of R™. Then for any p € [1,00], s such that —n/p’ < s < n/p (or
—n/p < s <n/pifr =1 or —n/p’ < s < n/p if r = 00), the following
inequality holds true:

lwvllyy ) < Cllullynaqy vl @) with a = min(p, p’).

Proof. — Let us assume for instance that p < 2 (so that p’ > p). Let us con-
sider some extensions u and v of u and v in b;ﬁp (R") and by, ,.(R™), respectively.
Then applying the last item of Proposition 2.1.2 to w and v with t =n/p — s,
and noticing that our assumption on p guarantees that

bz’lp(R") — bgéqo(R”) N Loo(R™) for q=p,p,
we get uv = (uv)|q and
[l vy < Ul gy W, )
As this inequality holds true with the same constant for any extensions of u
and v, we get the result. O

We shall often use the following compact embedding (see [48]).

PROPOSITION 2.2.2. — Let  be a smooth bounded domain of R™. Then for
any s € R, (p,q) € [1,+00]? and e > 0, the space Bj () is compactly embed-
ded in B, ().

In addition, any bounded sequence (un)nen of B, ,(Q2) converges weakly star
(up to an omitted extraction) to some u in By () and we have

ullBs (@) < Climinf up|/ps (@) and un —> u in any By ().

As already pointed out in the previous section, interpolation properties are
a very useful feature of Besov spaces. We refer to [7, 52] for the proof of the
following statement.

PROPOSITION 2.2.3. — Let by, , denote By () or B;q(ﬂ); seR, pe(1,00)
and q € [1,00]. The real interpolation of Besov spaces gives if s1 # sa:

(bzs)}m (€2), b;?qg(m)e,q = b;,q(Q)

with s := 0sg + (1 —60)s; and % = p% + 117;19'. Moreover, if s1 # s9, t1 # to and
if T2 bt () 402, (Q2) — b]l::ll,ll(Q) —i—b}?zh (Q) is a linear map, bounded from
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20 CHAPTER 2. TOOLS AND SPACES

bt 0 () to b, () and from b33, (Q) to b2 | (Q) then for any 6 € (0,1), the

P11 P2,42
map T is also bounded from by, ,(2) to b'}w(Q) with

1 9 1-6 1 6 1-6
=0 1—6 t=0ta+(1—6)t == —=— .
s =0s2+( )s1, 2+ ( )t1, p p2+ P k2+ o

An important question is whether one is allowed to extend functions in
domains by 0, without changing their regularity. In the flat case, the following
statement (see [15]) gives the answer.

LEMMA 2.2.1. — Fore > 0, denote ®-(u) : & — n.(xyp)u(x) with

0 for t<e,
ne(t) =< 1t—1 for e<t<2e,
1 for t>2e.

Then for all1 <p<oo,1<qg<oo0and -1+ 1/p < s < 1/p the operator ®.
maps B, (R") in By (R") uniformly with respect to e. Moreover, if q is finite
then for all u € B;q(R”), we have

;i_r)r(l) Pe(u) = Po(u) == 1rpu in By (R™).

As a corollary, we readily get that 1g» is in M(B;q(]R”)) whenever (s, p, q)
are as above. More generally, as already pointed out, Lemma 2.2.1 implies that
14 isin M(B;”q(R”)) if A is any uniformly C'! domain of R". Indeed, the C!
regularity allows to transform locally the boundary to that of the half-space
case (see Lemma A.7 in [17] for more details).

Now, if we consider some uniformly C! domain € and u € B;vq(Q) and
some arbitrary extension u € By ((R") of u, then we deduce that ulg is still
in By ,(R™) (with the expected control of the norm). In other words, we proved
the following result (®:

COROLLARY 2.2.1. — For any uniformly C* domain Q, (p,q) € [1,00]? and
s € (=1 +1/p,1/p), the extension by 0 operator is continuous from B, ()
to B3 ,(R™).

REMARK 2.2.1. — Combining the above corollary with Proposition 2.1.3, we
deduce that

s _ DS . . 1 .
By ,(Q) =B, ,(Q) if —1+1/p<s<1/p andQisaC" bounded domain.

5. The similar result for nonhomogeneous spaces is classical, see [52].
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The Besov spaces can be naturally defined on sub-manifolds using their
atlas. Indeed, as pointed out in the proof of Lemma 2.1.1 in the R™ case, for
positive exponents, the Besov semi-norms may be expressed in terms of finite
differences. This leads to the following definition of Besov spaces on manifolds:

DEFINITION 2.2.2. — Let S be a C' m-dimensional submanifold and
s €(0,1). Then the monhomogeneous Besov space B, ,(S) is the set of
Ly (S) functions so that

(2.11) lull g 5 = Il ) + el (s < o0

where ||.|| g (s) stands for the following homogeneous semi-norm:
p,q

‘U(I') — U(y)‘p l/p
2.12 U\l s = —_———— (1:17 d .
(212) | ||B§’p(s) (/s s |z —y|mtsp Y

The .above double integral may be used to define the homogeneous Besov
space B, ,(5) on S if in addition s < m/p (see the remark below). The spaces
B ,(S) with max(—1, —m/p’) < s < 0 may be defined by duality: we set

B5,(8) = (B, (9))"
The remaining spaces B;”q(s ) for
l<p<oo, 1<qg<oo and max(—1,—m/p’) < s < min(1,m/p)
may be defined by interpolation according to the following relation:

(2.13) (Bylan (8): By, (5))g., = Bp.g(S):

p,q1 p,q2

We just have to fix some max(—1,—m/p’) < s1 < so < min(1,m/p) and take
0 € (0,1) such that s = 0so + (1 — 0)s;. Note that the space B;q(S) with
0 < s < 1 may be equivalently defined by finite differences as in the proof of
Lemma 2.1.1.

REMARK 2.2.2. — For S = R"” and 0 < s < min(1, n/p), Definitions 2.2.1 and
2.2.2 give the same functional space. Indeed, knowing that B, ,(R") embeds
in Ly, (R") for some finite m, the decay to 0 at infinity is controlled (see
(2.3)), and =Ry )
By ,(R™). For an arbitrary domain € one may thus define the homogeneous

thus defines a Banach space which coincides with

Besov space B;p(Q) (being a Banach space) by means of the following norm:

1 1 S

(2.14) lull g, () = llull oy + lulli, @) with P
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More generally, if 0 < s < n/p and k = [s] then one may define B;p as the
subset of L,,(2) functions u (with m as above) with HV”‘UHBS% < 0.
p,p

General spaces B;q(Q) with 0 < s < n/p and 1 < ¢ < oo may be defined
by interpolation.

From Lemma 2.2.1 and localization property, i.e.
if neCX(Q)andue B; () (or B;’q(Q)) then nu € By () (or B;Q(Q)),

one can get the following important corollary (more details may be found in
[53], page 210).

COROLLARY 2.2.2. — Let Q be a uniformly C* domain of R™. For any (p,q) €
[1,00)% and s € (=1 +1/p,1/p), we have

B, ,(Q) ={f € B ,(R") : Supp f C Q}

and B;q(Q) ={f e B;,(R") : Supp f C 2}

where the nonhomogeneous and homogeneous norms are defined in (2.11) and
(2.12), respectively.

I-IBg,

-l 4

In the case ¢ = oo, density holds true for the weak * topology only.

Proof. — The nonhomogeneous case in standard (see e.g. [52]). The homo-
geneous case is a consequence of Corollary 2.2.1 and of the above remark. [

We shall use repeatedly the following trace theorem (see e.g. [52]).

PROPOSITION 2.2.4. — Let Q be a sufficiently smooth simply connected do-
main. Suppose that 1 < p < oo and s > 1/p. The trace map from Q to 90
extends to a continuous operator from By (§2) onto B;;Il/p(@Q).

We also need the following lemma proved in the appendix of [15], concerning
the harmonic extension from the hyperplane R’} to the half-space R} :

LEMMA 2.2.2. — Let s >0, 1 <p < oo and 1 < g < oco. Then there exists a
constant C' such that for all h € Bf,;ll/p(ﬁR” ), we have

(2.15) || e ln F )] < C|nl s

HBqu(R” o P (OR? )’

where Fyr stands for the Fourier transform with Tespect tox == (x1,...,Tn-1)
and & denotes the corresponding Fourier variable.

Consequently, we get the following extension lemma in the nonflat situation.
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LEMMA 2.2.3. — Let Q be a smooth domain with compact boundary. Then
for s € (0,%), p € (1,00) and q € [1,00] there is a continuous extension

s—1
operator from By 4" (02) to B, (£2).

_1
Proof. — Let 1) be in B;qp (0€2). Observe that the condition over s implies the

space B;;Il/ P(09Q) to be stable under multiplication by compactly supported
functions.

FIGURE 2.2.1. Covering of 02

By compactness of 0€2, one may find two coverings (s;)1<;<n and (S;)1<i<n
of 02 by open sets of R” with s; C .S;. Then, we fix N maps Z; : s; — R"™ with
Zi:5;NQ =R} and Z; : s; N0 — OR" (see the beginning of Section 2.4).

Let (;)1<i<n be a partition of unity associated to the covering s; N9€2, with
Suppn; C s;. Further introduce a family (7;)1<;<n of smooth functions with
Mils, = 1 and Supp; C S;. Denoting Z*(¢) := Z o !, we have according to
Lemma 2.1.1,

(2.16) Z; (i) € By g /P(ORY).

Then, thanks to Lemma 2.2.2, we may find some extension ¥; € B;q(R’}r) of
Z}(ni) such that

(2.17) ”\IJZ'HB;,I(RQ <z (UW)HB;QW(@M)

and 7;(Z; 1) (¥;) € B, (Q) and 7;(Z; ") (¥;)]oq = Mingb. Obviously ¥ :=
S (271 (W) is an extension such that

(2.18) 1015 ) < €l s/ oy 20k Pl = 9.
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This completes the proof of the lemma. O

LEMMA 2.2.4. — Let Q be a C* domain with compact boundary. Let 7i be the
outer unit normal vector at 02. Then for any 1 < p < 00, 1 < ¢ < oo and
s € (=141/p,1/p), the normal trace operator F +— (F-ii)|aq acting on smooth
divergence-free vector fields extends continuously from By ,(§2) to Bzgl/p(({)Q).

Proof. — In the smooth case, using the properties of duality of Besov spaces,
one may write

< C'sup {/8(2F ‘gds: ¢ € B;i;,q/p(é?ﬂ) and ||<Z>||B_lst1/p(am < 1}-
P ,q

Because div F = 0, we have

/aQF~ﬁ¢d<:/QF~V(E¢)d:c,

where F¢ is the extension of ¢ in B;i;l(Q) given by Lemma 2.2.3 — the
assumptions guarantee that —s 4+ 1 > 0. Now, V(E¢) € B, () with —s €
(=1+1/p/,1/p'). Hence, thanks to Corollary 2.2.1, both functions V(E¢)
and F can be extended by zero outside 2. We thus get (by using the duality
properties for Besov spaces on R™):

[P iteds < CIVESl 1 i |F 1 01 < Clly- ooy Il g0
o0 p'ha p’.q

This completes the proof of the lemma. O

2.3. The divergence equation

Our analysis requires an accurate description of low regularity Besov spaces
on domains, an issue that strongly depends on the problem we aim at con-
sidering. As an example, if we look at the Poisson equation Au = div k with
rough vector-field & (say just L,(€2)) then the class of k for which the meaning
of solution makes sense is larger if prescribing Neumann boundary conditions
rather than Dirichlet conditions.

The present work requires our looking at the divergence operator in low
regularity as a distribution acting on test functions up to the boundary. To
this end, we adopt the following definition that is borrowed from our recent
work [16]:
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DEFINITION 2.3.1. — Let Q be a domain of R"™ with a compact Lipschitz

boundary. If k is a distribution over € and ( a distribution over 0S) then
we designate by DIV [k; (] the linear functional defined on the set C°(Q) of
smooth functions with compact support in Q, by

DIV [k; (](p) :z—/k-chd:c—l— ¢ pdo.
Q o0
Forl1 <p<oo, —-1+1/p<s<1/p, 1 <q < oo, the notation Bf,;l(Q)
designates the set of all functionals DIV [k;¢] such that©)
s_1
(2.19) ke B,,Q) and (€ Bpy"(02)  with / (do =0.
o0

The space BZ;ZI(Q) s endowed with the following norm:

(2.20) IDZV [k; Ml gs-1 (o) = inf(”%”Bﬁﬁq(Q) + HZHB;% (asz)) ’

where the infimum is taken over all the couples (75, E) satisfying (2.19) and
such that DIV [k; (] = DIV [k; ].
Analogously, for the same range of exponents, we define the homogeneous
1

space BZ?(Q) fork e B;Q(Q) and ¢ € B;;ZE(@Q) endowed with the norm
(221) DIV Clllggs ) = nf (Il 55, 0 + ”C”B;,q%(am)’

where the infimum is taken over all the couples (E, E) satisfying (2.19) and
such that DIV [k; (] = DIV [k;(].

For k and ( as above, it is clear that if the vector-field v satisfies

(2.22) DIV [v;0] = DIV [k; (],

then it is a solution to the following system (7)

{divv:divk‘ in €,

(k—wv)-m=( on 0N

Rewriting the system in terms of the functional DZV [k; (] enables us to incor-
porate the boundary condition either in the interior part or in the boundary
part of the data (see [16, 18, 19] for more detailed explanations).

6. We make the convention that ffm ¢ do designates the distribution bracket (¢, 1). That 1
is a test function comes from the fact that 92 is compact.
7. That the boundary condition makes sense stems from Lemma 2.2.4.
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In the present paper, the following result will be used a number of times:

THEOREM 2.3.1. — Let Q be a bounded or exterior C? domain. There exists
a linear operator Bo which is bounded from B3 '(Q) to B (9 R™) whenever
l<p<oo,1<qg<o0and —14+1/p < s < 1/p, and such that for any
F = DIV [k; (] in B3 (Q), the vector-field v := Bq(F) fulfills (2.22).

Furthermore if k € B)'."*(Q) with m = 1,2 and ¢ = (k-7)|aq then v belongs
to By'.75(), vanishes at the boundary and satisfies

Finally, if k is time dependent with k; and divk in L1(0,T; B, (), and
((k-7)|aq)t € L1(0,T} B;El/p(aﬁ)) then we have

10| 2y 0,735, (2)) < C(HktHLl(o,T;Bg,q(n) + [[((% - fi)\an)tHLl(O,T;B;;Zl/p(aQ))>~

Proof. — We just sketch the proof in the case where €2 is bounded and star-
shaped with respect to some ball, the reader being referred to [16], [18], [19]
for more details. Then the following Bogovskii formula provides us with an
example of operator B, fulfilling (2.23):

T — o0
(2.24) Bo(F)(x) = / ) 2y / w(atr L) (e —ylbr)" dr dy,
Q [z —y™ Jo E]
where w stands for a smooth function with average 1 and support in a ball

with respect to which  is star-shaped.

In [16], in order to achieve distributions F' with lower regularity (e.g. F' =
DIV [k;(]), we performed a formal integration by parts in (2.24) so as to
decompose the outer integral into an interior integral and a boundary integral.
More precisely, we introduced the following operators ® Iq and Jo:

(2.25)

Iak)(@) = = [ 59, [ Z20 [Ta(otr E2 0 Yo = ol ] dy
Ja(Q)(z) = /BQ C(y)\;—_gj” /Ooow<x+r|i:z|>(\:c —y|+ )t drdoy.

Those two operators enabled us to extend Bogovskii formula to the rough case.
In effect, in the smooth case where F' = div k, it is obvious that

(2.26) v = Bqo(divk) = Ig(k) + Jo(¢) with ¢ := (k- 7)|sq.

8. These singular integrals have to be understood in the principal value meaning.
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Under the assumptions of the theorem, it has been established in [16] that

v:=Io(k) + Ja(Q)

is indeed a solution to (2.22), and that v belongs to B, ,(Q;R™). More pre-
cisely, it has been shown that Io : Bj (4 R") — B (;R") and Jg :

By P00 R) = BS (R,

Finally, in the case where k is time-dependent, differentiating the above
relation with respect to time yields

UV = IQ(k‘t) + JQ(Q)

Therefore, taking advantage of the continuity results for I and Jg, and inte-
grating with respect to time gives the end of the statement. O

2.4. Change of coordinates

Investigating the Laplace and Stokes equations in general domains will rely
on a localization of our problem. Obtaining local estimates at the interior
and at the boundary of the domain will be two key steps. The analysis at the
interior is amenable to equations in the whole space while boundary terms may
be seen as the solution to model equations in the half-space after a suitable
change of coordinates (so as to straighten the boundary). This section is
devoted to introducing changes of coordinates so as to transform problems at
the (nonflat) boundary of some C” open set € (r > 2) to a problem at the
boundary of R'}.

Let us first present the general setting. By definition, having 02 of class
C" means that for any point xg of 0f2 there exists some small enough A > 0
and a one-to-one C" mapping

Z : B(zg,\) — R", x+— 2z,

such that

(i) Z is a C" diffeomorphism from B(zg, \) to Z(B(zg, \));

(ii) Z(zo) =0 and D, Z(xg) =1d;

(ili) Z(Q2N B(xg,A)) C R

(iv) Z(0Q2 N B(xo, A)) = OR N Z(B(x0,A)).
If we denote D,Z = 1d + A and assume that 02 is uniformly C” then there
exist constants Cy depending only on 2 and on ¢ € {1,...,r — 1} such that

(2.27) ID* All . (B0 ) <
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a property which implies (by the mean value formula) that
(2.28) HAHLOO(B(zo,a)) <Cie if 0<e<A,
hence by interpolation between the spaces L,(B(0,¢)) and I/Vqr_l(B(O7 g)),

(2.29) ||.AHB < (Ce forall 1 <qg<oo suchthat n/g<r—1.

1, (Bo.2)

Let us introduce some examples of maps Z. We would like to consider a
neighborhood of a point 2y € 9. After a rigid motion we may assume that
xo = 0 and T,,,0Q2 = OR’} and that in addition (B(0,€) NQ) NRY # & for any
O<e< A

First example: the basic change of coordinates.
The above assumptions ensure that the interior unit normal vector of 0f)
at ©9 = 0is €, := (0,...,0,1). Then one may set

(2.30) Z(2,xn) = (2, 2 — @(2))),
where the graph of the function ¢ coincides with the boundary 0f2 in some

neighborhood of zy = 0, hence satisfies ¢(0) = 0 and D, ¢(0) = 0. As9Q € C”,
so do ¢ and Z. In addition, (2.27) and (2.28) are satisfied.

Second example: a normal preserving change of coordinates.

We would like the value of the normal derivative at the boundary to be
invariant under the change of coordinates. Hence we define Z so that for
small enough ¢ and 2/, we have (with ¢ as above)

(2.31) Z((, (")) + tit) = (2,),
where 7 stands for the interior unit normal vector at the boundary.

Differentiating the above equality with respect to t, we see that 032 coin-
cides with €,. Hence in particular, for any differentiable function g,

(2.32) 07q(x) = 0s,4(2)|.=z(z) for z in a neighborhood of .

Third example: a measure preserving change of coordinates.

This last example, borrowed from e.g. [44], [47] and [50], is more involved.
We start with some bounded simply connected open set 51 C R'}, star-shaped
with respect to some point y inside €2 and such that 957 is a neighborhood of
the point g = 0 in 99 (see the figure next page). We also fix another bounded
simply connected open set So C R’} such that

1. So NOR" is a neighborhood of 0 in R,
2. Sy is star-shaped with respect to v,
3. 1So| = |S1].
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FIGURE 2.4.1. Construction of S

We aim at constructing a measure preserving change of coordinates Z satisfy-
ing the requirements enumerated at the beginning of Section 2.4, and so that
Z(S1) = So.

To achieve it, we first construct intermediate sets S} between Sy and 57 in
terms of y and ¢ € (0,1) as follows:

Si={zcR":x=y+sw,weS" 5€0,5(y,w)}
where 5;(y,w) = (1 — t)50(y,w) + t51(y,w) and 5; are given by the relation
Y+ 5i(y,w)w € IS; for i =0, 1.

In general, S/ need not have the same measure as S;. Hence we define S; to
be the image of S} by some suitable dilation centered at point 0. Having con-
structed such a family S, we notice that V;, the normal speed of deformation
of 0S; at time t, satisfies the compatibility condition

Vido = 0.
0St
To show this relation it is enough to note that since the area of St is preserved,
d
= — dr = / Vi do.
dt Js, a5y

Hence one may solve the following system:

AP,=0 in S,
2.
( 33) % :V;g at 851/

0
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In order to define the map Z we solve the differential equation
dzy
— (1
)

Then for = = (2/,t), we set

Z(x) = :U+/O VP(z(s),s)ds.

The construction guarantees that Z(0) = 0 and Z is measure preserving since

divVP = 0 (Liouville’s theorem). In addition we are able to control the
1

1+4s—1 s—=
regularity of P; (see e.g. [26], Th. 15): if 95; € Bp;; ", then V; € Bp 4", so

the solvability of (2.33) gives VP € B; 4 hence eventually Z € B, .

= VP(z:(t),t) with 2z,(0)=2".

To complete this section, let us explicit the effect of the above changes of
coordinates on the differential operators that we shall consider throughout this

paper.
We consider a general C”-diffeomorphism Z : Q — Q. Let

H:Q—R"

denote some vector-field defined on . Then we define the vector field

H:Q —R"
by H := Z*(H) := H o Z~!. Similarly, for any function f : Q — R, we define
f:Q—=Rby f:=2Z*(f):= foZ ' We thus have

From the chain rule, we get (9)

div, H(x) = D, H(2) : D, Z(x) = V.Z(z): V. H(z)
and V.f(xr) =V,Z(x) - V.f(2).

Therefore, setting B(z) = B(x) = D, Z(x), we get
Af(@) = divy (Vo f)(@) = D.("B(2) - V.f(2)) : B(2).
We thus deduce, with the summation convention over repeated indices, that
Aof = 0.(Bi;Bi;o-, f) — (8:Bi ;) Br;o:, [,
= 0.,(B; jBr 0, f) — 0:,(0:.Bi j Brj f) + [0, (B ;0-,B; 5).

(2.34)

9. In all the paper, we agree that D, Z stands for the n X n matrix with entries 0 Z% and
that V,Z stands for the matrix with entries OziZj. Furthermore, for M and N two n X n
matrices, we set M : N = Tr M N.
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Setting B = Id + A, that formula also reads
(2.35)  A.f=A.f + div, ((BTB)VZ 7 — FBdiv. ft) + fdiv. (BdivTA)
with the convention that (div.A)7 =", 9;4;;.

In the case where Z is measure preserving, formula (2.34) for the divergence
operator may be alternately written

(2.36) div, H = div. (B H).

This is the consequence of the following series of computation which holds true
for any test function ¢ and uses the fact that det B = 1:

/qﬁdivad:r: = —/qub-Hdw
_ / D.é(2) - B(z) - H(z)dz
_ / () div, (B(2) - H(2)) dz
— /qb(:n)(divz (B H))(Z(x)) dx.

Hence we have
(2.37) A, f = div.(B'BV.f).
For general diffeomorphism Z, Equality (2.36) extends as follows:
div, H(z) = Jzdiv, (jzgﬁ),
with J7 being the Jacobian of the change of coordinates.
This allows to write A, f in another way :
Ay f = Jzdiv.(JzB"BV.f).
Having different equivalent formulae for the divergence and Laplacian operator

after change of variable turns out to be crucial in our study of the Stokes system
and of the inhomogeneous incompressible Navier-Stokes equation.
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CHAPTER 3

THE POISSON EQUATION

Here we prove auxiliary results for the Laplace operator supplemented with
Dirichlet or Neumann boundary conditions. First we consider the equation in
the whole space, then in different types of domains : the half-space, bounded
or exterior domains, with either Dirichlet or Neumann boundary conditions.
Even though some of those results belong to the mathematical folklore, our
approach based on a new definition of very weak solutions for the Neumann
problem (see in particular Section 3.3) sheds new light on this issue.

3.1. The whole space case

In this short section, we establish various existence results and estimates
for the following Poisson equation in the whole space:

(3.1) Ab=f in R", b—0 at oc.

Our first statement concerns the case where the r.h.s. has low enough regu-
larity in the scale of homogeneous Besov spaces.

LEMMA 3.1.1. — Let f be in Bqu(R") with 0 € R and let 1 < p,qg < o0
satisfy n 0o
(3.2) gr2< (07“ or2< i q:1).
p p
Then (3.1) admits a unique solution b € Bz‘fqrz(R”) and we have
18 g 2Rny < Cllfll g, ny-
Proof. — For f € Sp(R™) the solution to (3.1) in Fourier variables is given by

b(&) = — €72 f(€),
and we get the desired inequality.
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The general case follows by completion since Sp(R"™) is dense in B;q(R”) (if
both p and ¢ are finite) and our assumption on o ensures Bg;ﬂ(R") to be a
Banach space. If either p or ¢ is oo then density of So(R™) holds true for the
weak * topology, which suffices to complete the proof. O

If it is known that the solution to (3.1) is compactly supported then esti-
mates in Besov spaces with arbitrarily large regularity index are available:

COROLLARY 3.1.1. — Assume that1 < p,q < oo and that o > —min(1,n/p’).
If b is a compactly supported function with f := Ab in ng(R”) (or, equiv-
alently, in Bqu(R”)) then b is in B *(R™) and the following inequality is
true:

(3.3) 101l 5512y < Cl 1L, o)

Proof. — As (—A)~'V? is an homogeneous Fourier multiplier, we readily have

2711 . < .
1928135 gy S 171155, o

In order to complete the proof of the corollary, it thus suffices to bound b
in L,(R™). To this end, fix some ¢’ < ¢ so that ¢/ +1 < n/p and o' >
—min(1,n/p"). By embedding, we have f € Bg:q (R™). Furthermore, because f
is compactly supported, Proposition 2.1.3 ensures that f is also in B" «(R™),
and thus Vf € B}‘,”/q_l(R”). Now, Vb tends to 0 at infinity (it is compactly
supported), and satisfies

A(Vb) =V f in R™
Hence Lemma 3.1.1 (recall that ¢’ + 1 < n/p) ensures that Vb € Bg);“(R”)
and that

. < - .

||VbHBg’q+l(Rn) ~ ||vf||Bqu_1(Rn)

Again, the compact support property allows to replace the homogeneous norm
of b by the corresponding nonhomogeneous one and we thus have by embedding

IVl ey S IV Fll gty S £l Bg 7).

At that stage, one may take advantage of Poincaré inequality to bound
0]l £, (rny by the above r.h.s. This completes the proof of the corollary. O

We shall also need the following result.

LEMMA 3.1.2. — Letp € [1,00), q € [1,00] and o € R such that (o — 2,p,q)
satisfies (3.2). Then the operator

So(R") — So(R™),  fr— —(—=A)" 'V div f
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admits a unique continuous extension ® : B;q (R™) — Bg’q(R”). Furthermore,
there exists a distribution b such that Vb = ®(f) (and thus Ab = div f in R™).

Proof. — In Fourier variables, we have

3 (£-Ff(£)))_
€2

As 0 order Fourier multipliers are continuous on homogeneous Besov spaces

F(W)(©) = F(

(under Lemma’s assumptions), and as Sp(R™) is dense in the Banach space
By (R"), we get the desired extension. The existence of b just follows from
the fact that, by construction, curl ®(f) = 0. O

3.2. The homogeneous Neumann problem in bounded domains

Although we eventually aim at investigating the Laplace equation in exte-
rior (unbounded) domains, proving first results for the bounded domain case
is needed. In the present paragraph, we focus on the following so-called ho-
mogeneous Neumann problem:

Au=f in D,

(3.4) / udxr =0,
Ozu=0 on 0D, D

in a smooth bounded domain D of R"™ with n > 2.

As we shall mostly work with low regularity solutions, the above system has
to be understood as follows:

(3.5) Vo € C°(D), —/ Vu-chd:L‘:/ fedr and / udx = 0.
D D D
The rest of the paragraph is devoted to proving the following

PROPOSITION 3.2.1. — Let D be a bounded C*'/? domain® of R™ with
n>2 Letl<p<oo, -1+1/p<o<l/pandl<q<oo. Letfe By, (D)

such that / fdx = 0. Then (3.5) admits a unique solution u in Byt (D)
D

and the following estimate is valid:

(3.6) lull g2+ py < CllfllBg ,(D)-

Proof. — If the domain is C'° then this result is a particular case of e.g.
Theorem 13 in [26] devoted to general elliptic equations. Here we write out
the details for the Laplace operator supplemented with homogeneous Neumann

1. We do not claim our regularity assumption to be optimal.
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boundary conditions, both for the reader convenience and because it sheds
light on the key points of our approach which is not based on any explicit
representation of the solution.

We claim that any smooth function u with dzu|sp = 0 satisfies
(3.7) lull g2+ oy < CUIF I Bg () + Ul grto () with f = Aw.
Indeed, introduce a partition of unity {#°,n',...,n*} of D such that

— n° is compactly supported in the interior of D;

— the support of each nf with 1 < ¢ < k has diameter of order \ and
nonempty intersection with 9D;

— The following bounds hold true:

(3.8) 10an’ || Lo gny < CaX™l forall @ € N* and 1< ¢ <k.

FIGURE 3.2.1. Partition of unity (n‘)o<¢<x of D

Let U’ :=n'u and f* := n'f. Note that as the functions n’ are smooth and
compactly supported, Corollary 2.1.1 and our definition of Besov spaces by
restriction guarantee that the functions U’ (resp. f*) are in BZ(;';ILQ(D) (resp.
By (D)). Now, the equation for U ¢ reads

(3.9) AU = 2div (uVn*) — uAn® + f¢ in D.

For ¢ = 0, the above equation also holds in R™. Hence, because UY is compactly
supported, using Corollary 3.1.1 readily gives

”UOHBH?(Rn) S ||UV770HB;§1(R7L) + ||UA770HBg,q(Rn) + ||f0HBg’q(R")‘
Then taking advantage of Proposition 2.1.2, we easily get
||U0”Bg;2(1gn) S ‘|U||Bgfgl(p) + HfHBg,q(D)-

In order to treat the boundary terms U, ..., U*, introduce local coordinates
so as to transform (3.9) into a problem over the half-space. We choose a change
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of coordinates Z¢ that preserves the normal vector at the boundary in order to
have homogeneous Neumann boundary condition (see Subsection 2.4, second
example). Denoting g := Z;(g) = go Ze_l7 we get

510 AU = (A, — AU 4+ 2div, (uVenf) —ulbon + f0 in - RZ,
3.10 o

9., U, —0=0 on OR".
Hence, using (2.35), the above system rewrites

AU = F! in R,
(3.11) -
9.,U%,,—0=0 on OR",
with, denoting A¢ := DZ, o Z[l —1Id and B := A* + TA" + AP TAL,

Ft = _div, (B‘fvzﬁ —U(Id +AY) - div, Af)

— divz((Id —l—.Ae) - div, A")W —ulgnt + 2div, (uVent) + 7L
Let U and F* be the symmetric extensions of U’ and F*. We have
Azﬁg =F' in R”
and, as 1/p > 0 > —1+ 1/p, Remark 2.2.1 gives F' € B;q(R”) and
IRl 4
1F sy oy < 15y oy

We also have to keep in mind that, by construction, Utis compactly supported.
Hence, taking advantage of Corollary 3.1.1 and of Lemma 2.1.1, we end up
with

— ¢
(3.12) 1V g24e gny < CIE Nl g mny-
We claim that
) o _
B13) F Mgy mn)y S MUl p287 @y + 10 g2te @n)
_ L
+ 1 g, my) + Al g1t 500

Indeed, to bound the first term of F¥, it suffices to interpolate between
rr—1 171 . . . .y

W, (B(0,A)) and W, (B(0, \)). First, owing to (2.27) Leibniz’ rule, we have
for f € W3,(B(0,))) ?,

(3.14) [ divs (BV-f)llyiry mo.n) < CA Ihirzsony + CIV=Fllwyaon:

2. W,‘:’;O stands for WF3 with zero trace at the boundary
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but the compactness of the support allows us to take advantage of the Poincaré
inequality, so (3.14) reduces to

(3.15) | div (B \% f)”wl B(0,\)) S )‘HfHWZ% B(OA\)"
Similarly, we find that for f € Wp;O(B(O, A)), we have
(3.16) | div. (Bzvzf)HWle(B(o,)\)) SIBYflln, o) S MVaFflr,3os)-
Interpolating between (3.15) and (3.16) we eventually get
(3.17) | div (BZVZW)HB;(I(RQ) < C)\HWHB%U(R’;)'
Bounding the other terms in F* goes along the same lines. For instance:
| div ((diV-Ag)i)H WE(RT) < CHU sz(Rn)
[l divs ((div A) U)llyi1 gy < CIU L e

hence
| dive ((div A T9) 15y (g < CHT e,
and
| dive (vanﬁ)HW;(Ri) S AilHuHWg(B(O,/\))a
| divy (UVMZ)HW;I(M) Al L, (B0,0)s
whence

_ 1
H div, (uanﬁ)Hng(Ri) 5 A HUHBZ',,#(RZ}_)

Assuming that A is small enough, one may absorb the first term in the r.h.s. of
(3.13) by the Lh.s. of (3.12). Hence, using that, by virtue of the composition
lemma 2.1.1 and of remark 2.1.1, we may write

Iz o < S wlagieon S 10 oo < 301 g oy
l

we get the desired estimate (3.7).
Next, we claim that

(3.18) el e () < CllAul55,0)

for all u € Byt7(D) such that / u(z)dr =0 and Ozulgp = 0.
D
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The proof is based on compactness arguments : if (3.18) were not true, then
there would exist a sequence (u*)rey of Bg:g"(D) functions such that

(3.19) 1= HukHB},j;’(D) > kHAukHBgﬂ(D)'
According to (3.7) we have for all k:
(3.20) ”ukHBgﬁf(D) < C(H“k”B;j;(’(D) + HAUkHBg,q(D)) <C.

So the compactness properties of Besov spaces (see Proposition 2.2.2) imply
that there exists a subsequence {u*»} and u* € B217(D) such that

(3.21) ubn — u* in By17(D)
and
(3.22) ufr — in B217(D).

Relations (3.19) and (3.21) imply that
(3.23) HU*HB;jf(D) =1 and [[Au’||pg (p) =0
In other words, uv* fulfills:
Au*=0 in D,
(3.24) / u* dx = 0.
Ozu* =0 on 0D, D

If B217(D) < H'(D) (which is always the case if p > 2) then one can im-
mediately conclude that u* = 0, which stands in contradiction with (3.23).
Hence estimate (3.18) holds true, and approximating the data f by smooth
data allows to fully justify the proof of existence of a Bg,;“Q(D) solution to
(3.4) in that case (see the details below).

Now, if B247(D) is not embedded in H'(D) then and one may argue by
duality as follows: take any 1 in B;f’q,(D) with average 0 and solve according
to the case we have just completed the following Neumann problem:

Ap=1 in D,
dx = 0.
{ 070 =0 on 0D, /D¢ !

Then we get a solution ¢ is in B;,_ q”,(D). As both u* and ¢ satisfy homogeneous
Neumann boundary conditions, we get the following chain of equalities:

/ u pdr = —/ Vu* -Vodr = / Au* ¢pdr = 0.
D D D
Therefore v* = 0, thus contradicting (3.23).
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To end the proof of Proposition 3.2.1, we ought to prove the existence of
solutions. To this end, let us write f as the limit in By (D) of a sequence

of smooth functions f; € C>(D) with / fjdx = 0. Then we know (see [36])
D

1
that there exists a solution u; in C*v of

Au]‘ = fj in D,
(3.25) / ujdr =0,
Oru; =0 on 0D, D

1
whenever the domain is C*7. Of course u; is also in B;;LQ for 0 < 1/p as the
domain D is bounded. Therefore, resuming to (3.6), one may write

luj = urll gzt oy < Cfj = fallgg, ) for all (j,k) € N,

which ensures that (u;);jen is a Cauchy sequence in Bg:;”(D). One can thus
conclude that there exists u € B217(D) satisfying (3.5) and (3.6). O

REMARK 3.2.1. — One may extend Proposition 3.2.1 to more general o. For
higher regularity this requires extra compatibility conditions on f. We omit
this interesting issue (see e.g. [26]) since it is very technical and not needed
for the analysis of the Stokes system we want to perform here. The case of
more negative o will be treated below in Lemma 3.3.3.

REMARK 3.2.2. — In [46], an alternative approach, based on the analysis of
regularity of the weak solutions to (3.4), is proposed. It turns out to be more
efficient in the case of critical regularity of the boundary.

Let us state an important consequence of Proposition 3.2.1.

COROLLARY 3.2.1. — Let 1 <p < o0 and 1 < g < oco. Consider a compactly
supported function f in By (R"™) for some real number o. For f to belong
to Bg;l(R"), it suffices that
— either o > —1/p’ and
(3.26) fdx=0;
Rn
/

—oro>1—-n/p.
Furthermore, there exists a constant C' such that if Supp f C B(0,\) then

1Al g2t ny < CAFll g (mmy-
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Proof. — Performing a suitable dilation of the space variable and using the
scaling properties of homogeneous Besov semi-norms (see Proposition 2.1.1)
reduces the study to A = 1.

Now, if 0 > 1—n/p’ then the result is an easy corollary of Proposition 2.1.3,
because as f is compactly supported, one may write

||f”Bg7;1(Rn) S ||f||Bg,;1(Rn) S Hf”Bg,q(]R") S HfHBgﬁq(Rny

Next, let us consider the case —1/p’ < 0 < min(—1+n/p,0) and p = ¢ under
Assumption (3.26). Then Proposition 2.1.1 guarantees that

(3.27) ”fHBgygl(Rn) = sup fodx.

1 =1JR"
H¢”B;/ ;}(R”)

Arguing by density, it suffices to consider functions ¢ in C2°(R™). Furthermore,
as (3.26) is satisfied, Proposition 3.2.1 (here we need o > —1/p’) ensures that
there exists some function ¢ in Bg?(B(0,1)) so that

Ac=f in B(0,1)
0,1

)

(3.28) ’ / cdr =0,
Jpc=0 on 0B(0,1), B(0,1)

and, in addition,
||C||Bg$2(3(071)) < CHf”Bg,p(B(O,l))-

Next, we define

(3.29)

=~ Ve(z) for =€ B(0,1),
Velo) = { 0 for ze€R"\ B(0,1).

Remark that by construction, we have, owing to the homogeneous Neumann
boundary condition over ¢ and the support properties of f,

(3.30) — | Ve-Vodr= | fodx forall ¢ CO(RM).
Rn R™

Therefore,

(331) | [ fode] < 19els, IVl 0

To bound the right-hand side, it suffices to use the embedding result stated in
Proposition 2.1.1 and its dual version. We get

= = 1 1) _
IVellL,.@n) < ||Vc||Bg;1(Rn) for GLH(; - F) =1 as 0<o+1<7,

19012y S IV6l5 gy for 25 (3 = Gy ) =1 as 0< —o < -
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Now, (3.31) and the above inequalities imply that

| [ $oda] < ClIVellspio a1V 5 o

< Cllfll g, @ 10l n)-

So (3.27) yields the desired inequality for —1/p’ < ¢ < min(—1+ n/p,0) and
p = q. The remaining cases follow by interpolation. O

As a consequence, we get the following improvement of Corollary 3.1.1 in
the case where the source term of (3.1) has average 0:

LEMMA 3.2.1. — Let f € Bqu(]R”) for some p € (1,00), 0 € (—1+1/p,1/p)
and q € [1,00]. Assume in addition that f fulfills (3.26) and is supported
in B(0,\).

Then the Poisson equation (3.1) has a unique solution b in L., (R™) for some
finite® m. Furthermore Vb and V2b are in ng(R”) and satisfy

HV%HBg’q(Rn) + )‘_1HVbHB§,q(R") < CHfHBg}q(Rn)-

Proof. — Uniqueness stems from Liouville theorem, so let us concentrate on
the proof of existence. Being compactly supported, the function f is also in
By ,(R") and, more generally, in all spaces B;”;(R”) with1 <r <pando' <o.

If ¢ > 0 then applying Corollary 3.2.1 thus ensures that f € Bf ;_1(}1%") if

(3.33) l<r<p and —1+1/r<o <o.

Therefore, whenever r and ¢’ are taken so that ¢’ + 1 < n/r, Lemma 3.1.1
provides a solution b € B;’ Iq“(]R”)7 and combining with Sobolev embedding
guarantees that b € L,,(R™) for all n/(n — 1) < m < n/min(0,—1 — o +n/p).

If 0 < 0, then the condition —1 4+ 1/r < o is no longer satisfied for r — 1.
Hence (3.33) implies that r > 1/(c+1) and we thus eventually get b € L,,(R")
only for n/((n —1)(1+0)) <m <n/min(0, -1 — o + n/p).

In order to prove that in addition Vb and Vb are in Bg,q(R"), consider a
sequence f; — f with f; € So(R™) for all j € Z, and define b; :== —(—A) 71 f;.
We already know that b; — b in L, (R"). Furthermore, because all functions

3. In fact, b belongs to all spaces L, (R™) with

n 1 n
3.32 .
(3.32) n—1 14 min(0,0) sms max(0,—1 — o +n/p)
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f; are in Sp(R™), it is obvious that for all (j, k) € Z2,

IVb; = Vil e mny S I1F5 = Fill g nys
Hv2bj - Vzbk”Bg’q(Rn) 5 Hf] - kaBqu(R")'
Therefore (Vb;) ez and (Vij) jez are Cauchy sequences in the complete space
B;q(R”) and we can thus assert that Vb and V2b are in B}‘,’yq (R™) with
. - . 2 . < .
IVbll 55 ny S UFllggorny and 1V°bll 50 oy S 1535 ny-

The fact that || f|| B2 Ry AY be replaced with A|| 1| 5. (rny stems from Corol-
’ p.q
lary 3.2.1. O

3.3. The half-space case
Let us first concentrate on the homogeneous Dirichlet problem:
Au=h in RY,
(3.34)
Ulg,—0 =0 on ORZ.

The first equation has to be understood in the distributional sense in R” , and
the second equation means that we require the trace at R’} to our solution
to be defined and equal to 0. For smooth enough solutions, this is equivalent
to the fact that the antisymmetric extension @ of u on R™ satisfies the Poisson
equation (3.1) with r.h.s. A (the antisymmetric extension of h on R").

LEMMA 3.3.1. — Let h be in B;q(Ri) with p € (1,00), ¢ € [1,00] and o €
(=1+1/p,1/p).
1. If in addition (o,p,q) fulfills (3.2) then (3.34) has a unique solution u €
BS2(RY), and we have
lullpg2mny < Clibll gy @n)-

2. If in addition h is compactly supported then (3.34) has a unique solution
u € Ly, (RY) for some finite m, and we have

2
IVZull g @ny < CliPl g @eny-
3. If in addition

(3.35) U+1<% (07‘ a+1§% ifqzl)
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then (3.34) has a unique solution satisfying Vu € B;j;l(]RT}r), and we
have

(3.36) ||VU”Bgfgl(R1) = CHhHBg,q(Ri)'

4. IfVh € Bg,q(Rﬁ) andu = (G*ﬁ”aRi where G stands for the fundamental

solution of A in R™ and h is the antisymmetric extension of h, then we
have V3u € By (R) and

3.0, < ,
v uHBqu(RZﬁ) = CHVhHBg’q(Riy
5. If h = divk for some k € B}‘,’yq(RCﬁ) then (3.34) has a unique solution u
with Vu € Bqu(RC‘r) and we have
. < .
||VUHBg’q(R1) = CHM|B&(I(R1)-

Proof. — To prove the existence part of the first item, introduce the an-
tisymmetric extension h of h, and solve (3.1) with right-hand side h. As
o€ (—1+1/p,1/p), Remark 2.2.1 ensures that h is in Bg’q(R”) and

ll g ey < Clltll g )
As in addition (3.2) is fulfilled, Lemma 3.1.1 provides us with a solution u
in BgF2(R™) to (3.1), satisfying
(3.37) [l g2 eny < Cllll sz wny-

Uniqueness for the Poisson equation in R™ ensures % to be antisymmetric.
Hence its well defined trace at IR} vanishes, and u := gy satisfies our claim.

For proving the second item, we note that the antisymmetric extension h
to h satisfies (3.26) and is compactly supported. Hence there exists a unique
solution w € L, (R™) to (3.1) (see Lemma 3.2.1), and

221 . 7.
v u”Bgﬂ(Rn) < C”h”Bg’q(Ri)'

Setting u := 17|R1 yields the desired result as the components of V2@ coincide
either with the symmetric or with the antisymmetric extension of Vu on R".

To prove the third item, approximate h by a sequence (h;)nen of smooth
compactly supported functions. Because (3.35) is fulfilled, arguing as in the
previous item gives a sequence (u;);en of solutions with Vu; € B;; q(Ri),
to (3.34) with r.h.s. h;. Besides, we have
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As Condition (3.35) ensures Bg’ FLHRY) to be complete, we deduce that
(V) jen converges to some Vu in Bg;rl(Rﬁ) with w fulfilling (3.36) and the
first line of (3.34) in the distributional meaning. Combining the localization
properties of Besov spaces with the trace theorem (see Prop. 2.2.4), we dis-
cover that the trace of Vu at OR"} is well-defined for all smooth compactly
supported function ¢ on R, and that in addition

oV (s = w)len=oll o112 opny < CINV (W5 =W g1 ryy < Clibg =kl pg o)

As ujly,—0 = 0 implies Vuj|y,—0 = 0, we conclude that Vyul,,—0 = 0 and
thus u,,—o is independent of /. Subtracting a constant as the case may be,
one may thus ensure the second line of (3.34).

To prove the fourth item, we start with the remark that (still denoting with
tilde the antisymmetric extensions):

6;@ = (G*ﬁ) = G *Vh.
Hence arguing as for the second item yields V2V u € B; ,(R%) and
2
||v VxluHBg,q(Ri) § CHVx/hHBg,q(Ri)
Let us notice that only the term Binu of V3u has not been estimated yet. Now
we have Au = h in R}, and thus
92 u=0p,h—Apdyu in R

This completes the proof of the fourth item.

To prove the last item, we consider the antisymmetric/symmetric exten-
sion k of k over R™, that is defined for all z,, < 0 and 2’ € R*~! by

/V'C(.’IJ/, xn) = (]:”J? ]%n)(wlv .’L'n) = (_k/7 kn)(xla _xn).
Remark 2.2.1 ensures that k € By (R%}) and
1kl g ey < 1Kl 3o @n)-
Furthermore, divk coincides with the antisymmetric extension of divk and
Lemma 3.1.2 thus provides us with a function u such that Vu € By (R"),
AU = divk in R",
and
”VﬁHBqu(Rn) S dinHngl(Rn)-
Recall that uniqueness to the Poisson equation in R” holds up to an harmonic

polynomial. As we restrict our attention to functions with gradient in Bqu(R”)
(which implies decay at infinity in the distributional sense), we deduce that

SOCIETE MATHEMATIQUE DE FRANCE 2015



46 CHAPTER 3. THE POISSON EQUATION

the constructed solution % is antisymmetric up to some constant. Subtracting
that constant as the case may be, we conclude that the restriction u of u to R’}
satisfies (3.34) and the desired inequality.

For completeness, let us say a few words on the proof of uniqueness. It
suffices to establish that if u satisfies (3.34) with r.h.s. 0 and Vu € L,,(R"}),
(or more generally in B;q(R?}r)) then Vu = 0. Let (x:)e>0 be a family of
mollifiers compactly supported in R}. Then x. x Vu — Vu in L,,(R") for €
going to 0, and all functions y. x Vu are smooth on M and harmonic on R’}.
As they vanish on {z,, = 0}, the maximum principle ensures that x. xu = 0
in R?}. Hence Vu = 0 in R} and thus u = 0 as well, given the homogeneous
Dirichlet boundary condition. O

REMARK 3.3.1. — Let us comment the condition u — 0 at x — oo. Having
regularity controlled by Condition (3.35) indeed ensures that the gradient of
the solution vanishes at the infinity. It is sufficient to control the distributional
meaning of the solutions, and first of all the uniqueness of them. Of course,
restricting our attention to the stronger condition (3.2) we are guaranteed that
the solution truly goes to zero at infinity.

COROLLARY 3.3.1. — Let h € B;q(R?F) (with 1 < p < 00, 1 < g < oo and

—1+4+1/p <o <1/p) be such that Supph C B(0,\) NR".. Then the Dirichlet
problem (3.34) has a unique solution u belonging to L, (R%) for some finite m
and such that Vu € By (R%). Furthermore, we have

. < .
||V“HBg’q(R1) > C)‘HhHBg,q(Rﬁ)-

Proof. — Scaling arguments reduces the study to the case A = 1. Let h be the
antisymmetric extension of h on R™. Clearly, it is supported in B(0, 1), and
Proposition 2.1.3 guarantees that h € By ,(R") and that

||h||Bg,q(R") < CHhHBg,q(Rz)'

As the compatibility condition || B(0,1) hdz = 0 is satisfied (a consequence
of antisymmetric extension), we know from e.g. [42] that there exists some
function k € Byt (B(0,1)) such that divk = h in B(0,1), k[sp(,1) = 0 and

||k|’B;j10(B(o,1)) < C|’hHBg7q(B(O,1)) < CHhHBg,q(Ri)-

Note also that if denote by ko the extension of k£ by 0 on R™ then Vkg is
just the extension of VE by 0. Hence we have kg € B;:;" (R™) and thus

HkOHB;;U(Rn) S CHhHBg,q(Ri)
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As k is compactly supported, applying once again Proposition 2.1.3 leads to
the following series of inequalities:
1kl 55 @y < IFoll g ny < Clikollsg @) < Clikoll gt @ny < Cliblpg @n)-

Finally, applying the last part of Lemma 3.3.1, we get a solution u € L, (R"})
for some finite m, to the problem

Au=h=divk in R7,
Ulg,—0 =0 on ORY
with, in addition,
: < : .
HVUHBgﬂ(Ri) > CHkHBng(Ri)
This completes the proof of the lemma. O
We now turn to the study of the Neumann problem for the Poisson equation
in the half-space, namely
Au=nh in  R7Y,
Op, U|z,—0 =0 on JR",

The solution has to be understood in the weak sense (see (3.5)).

(3.38) u—0 as |z] = oc.

Let us first establish an existence result in the ‘smooth’ case.
LEMMA 3.3.2. — Let p € (1,00), ¢ € [1,00] and 0 € (=1 +1/p,1/p). Let h
be in By (RY) with
/]R” h(z)dz =0 and Supph C B(0,\) NR’.
Then (3.38) has ;um'que solution v € Ly, (R") for some finite m (and even
for all m satisfying (3.32)) with Vu and V?u in BS (R"). Furthermore,

IVullgg gny + A VUl gy @y < Cllbllzg @n)-
Proof. — As h is in B;q(R’_}_) with =1 +1/p < ¢ < 1/p, the symmetric
extension hgy,, of h belongs to By (R™) and satisfies
HhsymHBgﬂ(Rn) SCHhHBg’q(RT}r)? /Rnhsym(fc) dx =0 and Supp hsym C m
Therefore, according to Lemma 3.2.1, the problem
Augym = hsym In R",  ugym — 0 at oo
has a unique solution gy, in Ly, (R™) and we have

2 -1
”V usymHBqu(R") + A HvusymHBg,q(]Rn) < CHhsymHBqu(Rn)‘
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This ensures that Vi, is at least locally in BS ! (R™) and thus has a trace
at ORI . Owing to the symmetry of hy,, with respect to the hyperplane z;,, = 0,
the solution wy,, is symmetric, too. Hence the homogeneous Neumann bound-
ary condition on {z, = 0} is satisfied. So setting u := usym|R1 provides the
desired solution for (3.38). O

Let us now investigate the case where the source term h in (3.38) has so low
regularity that the meaning of 0,,u at the boundary cannot be understood in
the classical way. The relevant framework will be taken from Definition 2.3.1:
we want to solve (3.38) with source term h = DIV [k; (] in Bg};l(Rﬂ;), that is
to find some distribution u so that

DIV [Vu;0] = DIV [k; (],
or in other words

(3.39) — Vu-Veodr = —/ k-Vdx+ Cpds for all ¢ € C°(RTY).
R R OR™

Note that as OR'} is noncompact, the compatibility condition over ¢ in Defi-
nition 2.3.1 is somehow hidden in the definition of the space Bg;l/ P(OR™).

LEMMA 3.3.3. — Let h = DIV [k;(] € B H(RY) with —1+1/p < o < 1/p.
Assume either that (o, p, q) satisfies (3.35) or that both k and ¢ are compactly
supported (in which case ¢ must have average 0).

Then equation (3.39) admits a unique solution u € Ly, (R™) with™® m de-
fined by n/m = —1—0 +n/p, and Vu € B;(J(Rﬁﬁ). Moreover

(3.40) HquBg’q(R’jr) < C|DP1Yv WC]HB’;;l(Rg)-
In the compact support case, we have u € Ly, (R") for all m satisfying (3.32).

Proof. — Uniqueness may be proved thanks to a regularizing argument, ex-
actly as in Lemma 3.3.1.

In order to prove the existence of a solution satisfying the required proper-
ties, we shall first construct some function H going to 0 at infinity, so that

- VH -Vodr = Cpds forall e CX(RY).
R? OR™

4. We have to use the Lorentz space Ly, q(R7}) if ¢ > m, and Co(R%}) if o = —1+n/p and
q=1.

MEMOIRES DE LA SMF 143



3.3. THE HALF-SPACE CASE 49

In other words, we want to solve

{ AH =0 in R",

ik t oo.
9y Hlpoo=C on OR?, =0 at oo

(3.41)

If ( € So(OR") then using the Fourier transform with respect to tangential
variables 2’ yields

—|¢&'PFpH 402, FwH =0, FoH — 0 for z, — +oo,

the solution of which is given by the explicit formula

1 /
=7 e ¥ P,
From Lemma 2.2.2, we thus infer that
3.42 VH| o ey <C o1 .
(3.42) IV Ay < Ol

o1
Now, if (¢ — 1,p, q) fulfills (3.2) then Sp(OR’!) is dense in By, ” (OR" ), and
the space Bg{1(R") is complete. Hence we get H € BS ! (R') together with

1
Inequality (3.42) for general ¢ in Bqu " (ORY%).
The case where o > n/p — 1 and ( is compactly supported reduces to the

*

1
previous one as we have ¢ € B;* ;’T*(QRSLF) for some 0* < o and —1+ 1/p* <
o* < 1/p* with 0* < n/p*—1. So, as in Lemma 3.2.1, the previous construction
combined with embedding provides a solution H € L,,(R"}) for all m given
by (3.32), still satisfying (3.42).

Next, let us construct some distribution w satisfying

(3.43) /R

To this end, consider the symmetric/antisymmetric extension kqi, of k over R™,

Vw-chda::/ k-Veodr forall ¢ € CP(RY).

n n
+ R

namely the function kg;, defined by
kaiy =k on R} and (kly, ki) (2, 2™) = (K, k™) (2, —2") for 2™ < 0.
Because —1 + 1/p < o < 1/p, we have kg, € B;q(R”) and

||kdiV||Bqu(]Rn) < CdeiVHBg,q(Ri)'

Now, let us solve, according to Lemma 3.1.1 (if (¢ — 1,p, q) fulfills (3.2)), or
to Lemma 3.2.1 (if k is compactly supported) the following equation:

(344) Awsym = div kdiv in R™
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We get a distribution wgym belonging to some Lebesgue space L,,(R™) with
finite m (or to Cp(R™)) and satisfying

(3.45) ||szym||Bg,q(Rn) < CdeivHBg’q(Rn)'
The restriction w of wsyy, to R’ is also in L, (R’ ) and satisfies
. n < e -
||Vw||Bg’q(R+) > CHkHBp’q(R_F)
In addition, because the distribution div kg;y is symmetric with respect to

the hyperplane {x, = 0}, so does the function wsym. Therefore (3.44) im-
plies (3.43), and setting u := w + H completes the proof of the lemma. O

3.4. The Neumann problem in bounded or exterior domains
This section is devoted to solving the nonhomogeneous Neumann problem
AP=0 in

{ OzP=b on 0f)

in an exterior domain (that is in the complement of some simply connected
compact subset of R™) or in a bounded domain of R™ (that need not be simply
connected), for rough boundary data.

(3.46)

In the exterior domain case, we supplement the equation with
(3.47) P—0 as |z] — oo,

and, in the bounded domain case, with

(3.48) /Q Pdz = 0.

The main result of this section reads:

THEOREM 3.4.1. — Let §2 be a smooth exterior domain of R™ withn > 3, or a

o1
bounded domain of R™ with n > 2. Let b be in By, 4" (0S2) for some p € (1,00),
q € [1,00] and =1+ 1/p < o < 1/p, and satisfy the following compatibility
condition in the distributional meaning:

(3.49) / bdo = 0.
[9}9)

Then System (3.46) supplemented with (3.47) or (3.48) has a unique solution
P such that:

— Bounded domain case: P € ngl'l(Q) and

(3.50) 1Pl gite(ay < CHbHBZ;%(m)'
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— Euterior domain case: P € Ly () for all m satisfying (3.32), VP €
By (Q) and P € By (K) for any compact subset K of R™ such that
dist(09,Q\ K) > 0 (see Fig. 3.4). In addition, we have

3.51 P + || VP 50 <y . 1 ,

(3.51) IPlon + VPl 0 < OOy

3.52 Pl go < Cgklbl| ,_1 .

(3.52) 1Pl B, (1) < Okl ||B:’q;,(m)

Proof. — We focus on exterior domains, just indicating when needed what

has to be changed in the easier bounded domain case.

Let us first prove a priori estimates for smooth enough (up to the bound-
ary) harmonic functions in 2 satisfying either (3.47) or (3.48). We shall first
establish that for all m satisfying (3.32), we have

353 1Pl + IVl ) < CUPlanl ooy -+ 1Plsg 1)

p,q

and next that
3.54 Pl go < CllozP 1 .
(3.54) 1P| g, (1) < Cl05 ‘aQHB;q}?(aQ)
To show (3.53), we localize the system by means of a partition of unity
{n*Yo<e<r, of Q such that:
1. n° = 0 in a neighborhood of R®\ Q and n° =1 on Q\ K;
2. n* with 1 < ¢ < L is supported in some open set Qf of size A that

intersects 02, and such that {Qé H<e<r, is a covering of 0€;
3. IVntllo. < CALif1 <0< L;
L

4. Ené =1 on Q.
=0

If Q is bounded then (1) has to be replaced with:
(1) n° is supported in a compact subset K of Q that does not intersect 952.
Let P’ :=n'P and b’ := n’b with b := 05 P|sq. It is clear that P’ fulfills
AP! = 2div(PVn') — PAn*  in Q,
(3.55) ( )
9z Pl = bt on Of.

For ¢ = 0 one can recast the problem in the whole space since Suppn’ N9 =
@. To estimate P in terms of b and P, decompose VP into VP + VP,
where

VP = —2(-A)"'Vdiv(PVy”) and APY =-PAn’ in R™
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FIGURE 3.4.1. The subset K and the partition of unity (n*)o<x<z, of Q

Because Supp V7’ C K and Bqu(R”) is stable by multiplication by C°(R™)
functions, Corollary 2.1.1 and Proposition 2.1.3 ensure that

1PVl gy (o) S 1P| B (zmy for any extension P of P|lg on R”,

and thus
HPVUOHBg’q(Q) < CHPHBg,q(Ky

As PV is compactly supported away from J€, it may be seen as a function
of BZ;(R") for all 0/ < o and 1 < r < p. Proposition 2.1.3 thus yields for all
1<r<pand —n/r' <o <o:

HPVWOHBS,;(RH) < CHPHB;{(I(K)‘

Then applying Lemma 3.1.2 yields VP € B;’ ;(R”) and thus also, by embed-
ding, PY € L,,(R") for all n/(n — 1) < m < n/max(0,—1 — o +n/p).

To estimate PY, we aim at taking advantage of Lemma 3.2.1. This is possible
because the following compatibility condition

/ PAR’dz =0

is satisfied since P is harmonic and goes to zero at infinity.

Now, arguing as above we get PAn° € B;Q(R”) and
0
I1PAY" | 5 &ny < ClIPllBg ()

Hence Lemma 3.1.2 yields Pg € L,,(R") for all m satisfying (3.32) as well as
VP: e By ,(R"), and we have the following inequality

1Pl ) + IV Pl 5y sany < ClIPllsg )
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Putting together the inequalities for P and P02, one may thus conclude that
0 0
(3.56) 1Py + IV P55 gy < ClPlLag i)

Let us now consider boundary terms (viz. £ € {1,...,L}), keeping in mind
that P’ is compactly supported in K, and thus belongs to le)jf (Q).

We want to perform a change of variables in order to transform (3.46) into
a Neumann problem in the half-space. To keep track of the information at the
boundary, we use the normal preserving change of coordinates z = Z(x) (see
Chapter 2 and [43] for details), and get:

APt =2div, (PV,nY) — PAnf + (A, — A,)PY in R,
(3.57) - B
9., P, —o = b on JR".

Setting B := DZ, o Z[l and A’ := B’ — 1d, and taking into account that
div, = TB?: V, the above system recasts in

AP’ = div, k' +¢* in R,

(3.58) . _
aznpz‘znzo =b on 8R1
with . P
K = (Id — BTBY) V. P! + PIBEdiv AL + 2TB PV .,
g' = —PBdivTA — PA.

Note that by construction of P, we have (®

(3.59) —/ ¥ da' = / gt da’ — / kK dx.
oR™ R OR™

That compatibility condition will be important in the sequel.

n
+

We plan to bound HVFEH By (RD) according to Lemma 3.3.3 (compactly
p.q

. . .. L. -4
supported case). This requires our writing g¢ and the boundary condition b
in terms of the generalized divergence operator DZV . To achieve it, let us
consider the following problem

{divLézEamgé in  B(0,)\),

(3.60)
L'=0 on 0B(0,\),

where F,,¢ denotes the antisymmetric extension operator.

5. The minus sign is due to the downward orientation of the exterior normal on R’ .
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The fact that —1 +1/p < o < 1/p ensures that Euyg’ € ng(R”) and that

¢ l
1 Bansd | g ry < Cll |l 5y @)

In addition, by construction, we have
Supp Eantg’ C B(0,\) and / FEantg' dz = 0.
B(0,))

Therefore Theorem 2.3.1 ensures that (3.60) has a solution L’ such that
||L£||B;§U(B(o7>\)) 5 HEantgg”Bqu(B(O)\)) 5 HQZHBg’q(]Rﬁ)'
As, by construction,
L' € B)t7(B(0,))) and L'=0 on 9B(0,\),

the function
e[ Lt in B0,
10 elsewhere

belongs to By +!(R™) and satisfies
(3.61) 1L gt gy S ||9£|’Bqu(m)'
So, setting H := k! + ZZ, we have
divH! = divk’ + ¢ in R"
and solving (3.1) thus recasts in
DIV VP 0] = DIV [HY; —H! + V).
In order to apply Lemma 3.3.3, it suffices to establish that
H' e BS (R}) and (HL —bf) e BI/P(0RY).
Because H' is compactly supported, the first condition is equivalent to H¢ €
By (R1). Likewise, since 0 — 1/p > —1 — (n — 1)/p/ (W}Th is equivalent to
o > —n/p'), the second condition is equivalent to (H! — b¢) € Bg,;”p(am).
This latter property will come up as a consequence of the trace theorem (as re-
gards H!) and of the stability of nonhomogeneous spaces by right composition

(see Lemma 2.1.1) and localization, as regards bt.
As a final consequence, because (3.59) ensures that

(3.62) / (b — H')dz' =0,
OR™
we will get thanks to Lemma 3.3.3 that

(363)  IVP g5, ay) S IH g ey + 1 = K = ZE)leomol o 1/m o

MEMOIRES DE LA SMF 143



3.4. THE NEUMANN PROBLEM IN BOUNDED OR EXTERIOR DOMAINS 55

The important and nice fact is that our normal preserving change of coordi-
nates gives BTB!V, P! . gn|BR1 = bf, and thus the highest order term of k’
vanishes at the boundary. Therefore we have

V4 YT I\ D D 0
Hkn’ZnZOHBg’;UP(aRi) S HB (le'A )PKHBS,;UP(BRQ) + HTB PVanHBg,Zl/p(aRi)'

Of course, any space Bj (OR") with € > 0 embeds in B;;l/p((‘)Ri), so that
the trace theorem implies that

)
As nonhomogeneous Besov spaces are stable by multiplication by compactly
supported smooth functions, we thus deduce that

/ T 1Ay YA Tl D 0
Hkn’Z"ZOHBg;UF’(@Ri) 5 HB (leA )PKHB;EUP(R:U + H B vanan;tl/P(Ri

Y4 F _
Hkn|zn=0||Bg7;1/p(aR1) 5 ”PZHB;LUP(Ri) + A 1”P||B;?;1/P(K)'

Note that one may take some £ > 0 such that ¢ < e+ 1/p < o+ 1. So arguing
by interpolation, we conclude that for any small enough «, we have

(3:60) 110kt = )0l gy -1in gy < VP g gy + Cal Pl )

Next, we see that the trace theorem, (3.61) and the definition of g* imply
IEE) =l g 17m o) S i AV Pl g ) + I P Bl
So we get
IE&eumoll -y S A 1Pl ) + A~2I1Pllag )

Let us now estimate H¢. Most of the terms entering in its definition have  al-
ready been bounded above. The only definitely new term is (Id —B*7B¢)V, Pt.
Now, from product estimates, we get (see Proposition 2.1.2)

_ RpITRONT Pl . < _ Rt TRt ) ol .
||(Id B B )VZP ||Bqu(]R1) ~ HId B B HBA://’Z; (Ri)”vZ‘P ||Bg,q(R1)'
According to (2.29), we have

Id — BTBY| .., < O
1 = BB gy ) < O

Hence one may conclude that

AT < Dl . —2 =1 pey .
15085 ery S MV-Plsg e+ X 21P 5,000 + A Py
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Plugging all the previous estimates in (3.63) (take a = X in (3.64)), we get
Bl Bl -2
V=Pl ge @ny S MV=Pllgy @ny+ A" I1Plsg )

Sl L8 I n)‘i‘CAHPZHBg’q(Ri)‘

D,q F

Of course, the first term of the r.h.s may be absorbed by the Lh.s if taking A
small enough. Hence one may write (see Lemma 2.1.1)

1 0 Dl
IVPlge @) S %j IVPAl gy ) S IVPll g gy + ZZ VP g (genys
>1

and a similar inequality for the norm of P in L,, ().

So from (3.56) and the above inequalities, we get for all m satisfying (3.32)

> < o .
(3:65) Pl + IVPlsy @) < Ox(I1Plsg, 0 + ||b||3;;(am)

Note that C'y blows up as A — 0, but remains finite for all A > 0, since the
sum is finite.

Next we want to prove (3.54). We claim that

(3.66) 1Pl Bg () < ClOaPIl po-1/p (50

Let us first consider the (easier) bounded domain case, taking K =  with
no loss of generality. We argue by contradiction and assume that (3.66) fails.
Then there exists a sequence (Pj)reny of harmonic functions in € with aver-
age 0, and such that

(3.67) L= [|Pellg ) > kllOaPell o1 .
' Bpaqp(ag)

By (3.53), this implies that (Pj)ren is bounded in Byt (). Since this latter
space is compactly embedded in L,(€2), we deduce that there exists a function
P* € B}17(Q), and some subsequence (Py, )nen so that

(3.68) P, — P*in Ly(Q).
Note that we also have, owing to (3.67),
o1
aﬁpkn‘ag — 0 in Bp7q P (89)
So finally, P* € B} 17(Q) must fulfill the system

AP*=0 in €,
/ P*dx =0,
0zP*=0 on 09, Q
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the only solution of which is P* = 0, as already pointed out in (3.24) (note
that the computations therein just require P* to be in B;;U(Q)). Now, the
strong convergence given by (3.68) implies that || P*||1 o) = 1, a contradiction.
Hence (3.50) has been proved if  is a bounded domain.

Let us now assume that ) is an exterior domain. As before, we argue by
contradiction and suppose that there exists a sequence (Pg)gen of harmonic
functions going to 0 at infinity, with gradient in By (€2) and such that

1= |Pillgg,x) > k0Pl o1 .
1Pkl 55, 1) > KllO k”Bp,q;@Q)

By (3.53), we thus get

1. (Pg)ken bounded in L,, () for all m satistying (3.32),
2. (VPi)ken is bounded in BY, (),
3. (Py)ken is bounded in Bg {1 (K).

Since the embedding of BSi1(K) in BS (K) is compact and as the Besov
spaces have the Fatou property, we get some subsequence (P, )neny and a
function P*: 2 — R such that

Py, — P* in BJ,(K),

(3.69) :
Py, = P* in Ly(Q) and VP, — VP* in By ().

_1
By construction, AP, = 0 for all n € N and 0Py, |so — 0 in B;q”(aﬁ).
Therefore

AP*=0 in £,
(3.70)

0zP*=0 on 0.
We claim that

(3.71) VP* € Ly(Q) and P*—0 at oo.

If (3.71) holds true then the standard energy argument implies that P* = 0
which contradicts the strong convergence in By q(K ), and thus completes the
proof of (3.66).

Of course P* — 0 is ensured by P* € L,,(£2). So, as a first step toward
(3.71), let us establish that

* o+1
(3.72) VP* e B HH(9Q).
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To this end, using again the cut-off function 7" (see Fig. 3.4), we see that on
the one hand

A((1 = 1°)P*) = —2Vn® . VP* — P*Ar® in K,

(3.73)
07(1—=n")P*=0 on 0K

and that on the other hand,
(3.74) An°P*) =2vy - VP* + P*An® in R™

Note that P* € BJ/1(K) ensures that the r.hs. of (3.73) is in Bf (K).
Hence Proposition 3.2.1 guarantees that (1 —7°)P* € B ?(K). Likewise, the
r.hs. of (3.74) is in By ,(R™) and supported in K. Hence Lemma 3.2.1 gives us
V(n'P*),V2(n'P*) € B;q(Q). Of course, being compactly supported the r.h.s.
also belong to Bg;](K) with —1/p’ < ¢’ < o and thus we also have V(" P*)
and V2(n°P*) in Bg:q(Q) for some negative o', which eventually implies (3.72).
We can thus assume from now on with no loss of generality that 0 < o < 1/p,
which allows to conclude that (3.71) holds true if p > 2 or, more generally, if
p<2and o +1>n/p—n/2 (by embedding in B;;U+n/2_n/p(9)).

If o +1 < n/p—n/2 then we resume to the above argument starting

with the regularity B;ZUJFTL/ 2=n/p (Q) instead of BI‘; 4(€2), and we end up with

VP* € ByFTTPTP(Q). This yields (3.71) if 0 +2 > n/p — n/2. It is now
clear that it is always possible to achieve VP* € Ly(2) within a finite number
of steps.

Of course, the proof of uniqueness of a solution to (3.46) reduces to the
study of (3.70) and thus works exactly the same.

Let us finally say a few words about the proof of existence. Here only n > 3
is needed. If the boundary is smooth then we may use the Ly approach. Take

1
a sequence of smooth functions b, € C*°(9€2) such that by — b in BZ;;((‘)Q).
For each by, we are able to construct a smooth solution such that VP, € La(2)
(via the Lax-Milgram theorem). In particular, if n > 3 then, owing to Sobolev
embedding, P, € L 2n (Q) so that P, — 0 at infinity. Furthermore, Py, satisfies

(3.65). Then, passing to the limit we get the existence of our solution in the
desired class of regularity, and (3.51) and (3.52) are fulfilled. O

REMARK 3.4.1. — As regards the proof of existence in an exterior domain
of R?, the simple argument just below does not guarantee that P, — 0 at oo,
although we expect the compatibility condition (3.49) to ensure decay to 0 (see
e.g. [5]). As the restriction n > 3 will appear elsewhere when investigating the
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evolutionary Stokes system in exterior domains, we here prefer to omit a more
detailed study of the two-dimensional case.

3.5. Helmholtz projection

Function spaces with the divergence-free property naturally arise in the
mathematical theory of incompressible flows. Those spaces may be obtained
as the image of a suitable continuous projection operator on a space of vector
valued functions over the domain ). Such an operator P : X — X is often
called Helmholtz or Leray projector and has the property that for any f € X,

divPf =0 in €, and Pf-n=0 at 0.
Formally, P may be defined by Pf := f — VP where VP is a solution to

AP = div f in
(3.75) _
(VP—f)-n=0 on OS.

The proposition below gives a suitable functional framework for solving (3.75).

PROPOSITION 3.5.1. — Let Q be either an exterior domain of R™ (with
n>3), or a bounded domain, the whole space or the half-space with
n > 2. Assume that f is in ng(Q) for some p € (1,00), ¢ € [1,00]
and o € (=14 1/p,1/p). Then (3.75) has a solution VP in B;q(Q) with

(3.76) IVPlsg @) < Cllifllsg, (@

Proof. — In the whole space case, the solution is provided by Lemma 3.1.2.
If © is not R™ then we fix some € > 0 and consider an extension f of f on the
whole space R™ such that

Hﬂ\Bg,q(Rn) < fllzg, o) +&
Lemma 3.1.2 yields some VP in BZ,Q(R”) satisfying
AP=divf in R"
and
IV Pl 35 @ny < ClFll 5 (gny-

By construction, div(f —VP) =0 in R” and f — VP is in Bqu(]R”). Hence
(f — VP) - 1 has a trace at 9 (this is Lemma 2.2.4) and

I(f = VP) - T Clf - VJSHB;;@(Q) < C(IFlgg () +€)-

p.q )
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Therefore, setting P := P+ Phew, we see that Pey has to satisfy (3.46)
with boundary data b := (f — VP) - ii. Note that because div (f — VP) =0
in 2, the compatibility condition for b holds. Then defining P,e according to
Theorem 3.4.1, we find that VPew € ng(Q) and that

||VPneWHBg’q(Q) S C(HfHng(Q) + E)'
Finally, the half-space case may be easily deduced from Lemma 3.3.3. O

COROLLARY 3.5.1. — Under the above assumptions, there exists a continuous
Helmholtz projector P : B, (€5 R"™) — By (Q;R™).

Proof. — Let Pf := f — VP with P given by Proposition 3.5.1. Then we
have divPf =0 and Pf -7 = 0 at the boundary, and also

||VP||B;,Q(Q;R") < CHfHB;’q(Q;R")'
This completes the proof of the corollary. O
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CHAPTER 4

THE EVOLUTIONARY STOKES SYSTEM

This section is devoted to endpoint maximal regularity estimates for the
evolutionary Stokes system. First we concentrate on the whole and half-space
cases, then we consider the problem in exterior or bounded domains. In the
last section, we adapt Maremonti and Solonnikov’s trick in [39] so as to es-
tablish a low order bound for the velocity on a compact set. This will enable
us to discard the time dependency in the estimates if choosing the data in
appropriate intersections of Besov spaces.

4.1. The whole space case

Here we investigate the following evolutionary Stokes system:

ur —vAu+ VP = f in (0,7) xR™,
(4.1) divu =g in (0,7) xR™,
uli—o = ug on R™.

The main result of this part reads:

THEOREM 4.1.1. — Let p € (1,00) and -1+ 1/p < s < 1/p. Let f €
L1(0,T; B, 1 (R")), g € C([O,T];B;EI(R")) with Vg € L1(0,T; B, (R")) and
ug € B;’l(]R”). Assume in addition that for some A > 0, we have

(4.2) g = divB + A, with Supp A(t,-) C B(0,\) and / A(t,x)dx =0,

where A, B € L1(0,T; B;I(R”)). Finally, suppose that the compatibility con-
dition divug = gli=o on R™ is satisfied.
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Then System (4.1) has a unique solution (u, VP) with
uweC([0,T); By, (R™)) and Oy, V>u,VP € Li(0,T; B; 1 (R"))

and the following estimate is valid:

2
(4.3) HUHLOO(O,T;B;J(R")) + |lug, vV=u, VPHLl(O,T;B;J(Rn))
< C(|lf,vVy, B”L1(0,T;B;71(R”)) + )‘HAHLl(O,T;B;’l(R")) + |’UOHB;1(RTL))7
where C' is an absolute constant with no dependence on v, T and .

Proof. — Applying the divergence operator to the first equation of (4.1) and
remembering the constraint g; = div B + A, we see that the pressure is deter-
mined by

AP =divf+vAg— divB—- A in (0,7) x R".
We thus set VP := VP, + VP, with
(4.4) AP, = div(f +vVg— B) in (0,7) xR,
and

APy=—-A in (0,7) x R".

Determining VP; may be done according to Lemma 3.1.2 (treating ¢ as a
parameter). We get VP in L1(0,T; B, | (R")) satisfying
(4.5) ||VP1 HLl(O,T;B;‘l(R")) < CHfa vVg, BHLl(O,T;B;l(Rn)y
Constructing V Py stems from Lemma 3.2.1 which yields
(4.6) IVBoll 1, 0,785,y < CAIANLL 07,5 (ny)-
Hence (4.5) and (4.6) give
WD) WVPl Lo ey S 10V Bl ey TAIAl L 07585, o)

Now that VP has been constructed, we look at u as the solution to the fol-
lowing heat equation:

u—vAu=f—-VP in (0,7)xR",
u‘t:() = Up on R™.
The endpoint maximal property for the heat equation (see e.g. [6], Chap. 2)
ensures the existence of u in the desired functional space, together with
2
(4.8) HUHLOO(O,T;B;l(R")) + [lug, vV uHL1(0,T;BZ,1(R”))

S VP omss @y T 1ol g -
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Let us sketch the proof of (4.8) for the reader convenience. It just follows from
the fact that there exist two constants ¢ and C such that for all j € Z and
a € RT one has (see e.g. [6])

aA A —ca223 || A
e AAthLp(]R") < Ce 2 J||Ajh||Lp(R")-

Now, as u satisfies
Aju(t) = "™ Ajug + /Ot e”(t_T)AAj(f — VP)dr,
we readily get
1A5u(t) 1, ey < C (™2 || Azl
[ A - Py gay ).

whence

HAJ‘UHLOO(O,T;LP(R")) + V22jHAJUHLl(o,T;LP(Rn))
S 1Ajuollz,@ey + 1185 (f = VP Ly 0,71, ®))-

Multiplying the inequality by 27¢ and summing up over j yields (4.8). Re-
membering (4.7) implies the sought inequality (4.3).

To complete the proof of the theorem, one has to check whether the con-
straint divu = g is fulfilled on [0, 7") x R™. Applying the divergence operator to
the equation for u and using the definition of VP and the assumption on g|;—o,
we see that

O(divu — g) —vA(divu —g) =0, (divu— g)|4=0 = 0.

As uniqueness holds true in C([0,7");S’(R")), we have divu — g = 0 on
[0,7) x R™ and one may thus conclude that (u, VP) satisfies System (4.1). O

REMARK 4.1.1. — By the same token, one may prove that for general
. s+2—2
l<p<oo, —1+1/p<s<1/pand 1 <qg < o0, if ug GB;,q ?(R™), f and
. . s+1-2
Vg are in Ly(0,T; BS ,(R™)), g € C([0,T); By *(R™)) with in addition (4.2)

. .s42—2
for some A and B in Ly(0,T; By ,(R")) then u € Loo (0,75 B;; “(R™)) and
(Opu, V2u, VP) € Ly(0,T; B;q(R")) with an estimate similar to (4.3).
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4.2. The Stokes system in the half-space

The purpose of this part is to extend Theorem 4.1.1 to the half-space set-
ting R’}. We thus consider

u —vAu+VP=f in (0,7) xR,
divu = in (0,7)xR",

(4.9) 9 (0,T) +
Uz, =0 =0 on (0,7) x ORY,
Uli=0 = uo on R%.

This section is devoted to the proof of the following statement:

THEOREM 4.2.1. — Let p € (1,00) and s € (=1 + 1/p,1/p). Assume that
f € L1(0,T5 B, | (RY)) and that ug € By, (RY) with divug = 0 in R} and
U €nlorn = 0. Further assume that g = div R for some R € C(0, T} B;”l(Rﬁ)),
that Vg € L1(0,T; B;I(Rﬁ)) and that g(0) = 0. Finally, we suppose that

(4.10) gt = A+ DIV|B,}b

for some b € Ll(O,T;B;31/p(8R1)) and A,B € Ly(0,T; B;I(Rﬁ)) with
Supp A(t,-) € B(0,A\) "R for some A > 0.

Then System (4.9) has a unique solution (u, VP) with
ue Cp([0,T); B ((RY)),  u, V2u, VP € Ly(0,T; BS 1 (R))
and the following estimate is valid:
2
HUHLOO(O,T;B;J(Ri)) + [Jue, vV =, VPHLl(O,T;B;’I(Ri))

< C(HUO”BSJ(R?‘_) +|f,vVy, BHL1(07T;B;,1(R1))

+ MAll 05, ) * 100 Ly 07,50 )

where C' is an absolute constant with no dependence on v, T and .

REMARK 4.2.1. — The case where one prescribes the trace of u at the bound-
ary to be equal to some nonzero given h reduces to the homogeneous situation,
if assuming that h admits some extension h over (0,T) x R” so that hy — vAh
(resp. divh) satisfies the same assumptions as f (resp. g).

The proof of Theorem 4.2.1 is based essentially on the results of [15] con-
cerning the case ¢ = 0 and on our recent work in [16] so as to handle the
nonhomogeneous divergence constraint. Recall the statement for ¢ =0 :
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THEOREM 4.2.2. — If ¢ = 0 and ug, f fulfill the assumptions of Theo-
rem 4.2.1 then System (4.9) has a unique solution (u,VP) satisfying

u€ Cy([0,T); By1(RY)),  ug, VZu, VP € L1(0,T; By 1 (R})).

Besides, the following estimate is valid:

i 2 i
(4.11) HuHLOO(O,T;BZJ(R’jr)) + [Jue, vV7u, VPHLl(O,T;B;,l(Ri))
< C(HfHLl(O,T;B;’l(Ri)) + ||u0||35’1(R1))7

where C is an absolute constant with no dependence on v and T'.

Proof of Theorem 4.2.1. — As a first step, let us reduce our study to the case
ug = 0 and f = 0. To this end, solve System (4.9) with g = 0, according to
Theorem 4.2.2. We get a solution (uy, VP;) satisfying (4.11). Now, setting

(4.12) U= Upew + U1 and VP =VPew + VP,

we see that (Upew, V Phew) satisfies System (4.9) with f = 0 and up = 0 and
the same ¢ (since divu; = 0). Additionally one may extend the system on
the whole time line, setting tnew = V Ppew = 0 as well as frew = gnew = 0 for
t < 0. Using the fact that ug = 0, we eventually get (dropping the index new
for simplicity),

u —vAu+VP =0 in RxRY,
(4.13) divu =g in R xR7Y,

Uz, =0 =0 on R x OR".
Let us emphasize that, owing to g(0) = 0, (4.10) is now satisfied on R x R’}
(if extending A and B by 0 for negative ¢ of course). O

In what follows we thus concentrate on the proof of the following lemma:

LEMMA 4.2.1. — Let 1 < p < oo and —1+1/p < s < 1/p. Let g = divR
with R € C(R; By ,(RY)) satisfying in addition Vg € L1(R; B, (R})) and
gt = A+ DIVI[B,b| with A,B € Li(R; B3, (R)), b € Li(R; B;;l/p(aRi))
and, for some \ > 0,

Supp A(-,t) C B(0,A\) NRY  a.e. t €R.

Then System (4.13) has a unique solution (u, VP) with u € Cp(R; B;’J(Rﬁ)),
ug, V2u, VP € Ly (R; B;l(R")). Furthermore, there exists some constant C' so
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that

2
HUHLOO(R;B;J(R:‘_)) + [lug, vV7u, VPHLl(R;B;’l(R’_f_))

< C(HbHLl(R;B;;Up(aRi)) + HVVg? BHLl(R;B;,l(Ri)) + )\HAHLl(R;B;’l(Ri)))'
Proof. — Performing the rescaling

(414) (UneW7 PneW7 gnew)(tv «73) - (Vuold7 P01d7 Vgold)(Vilu LL’),

we see that (Upew, Prew) satisfies System (4.13) with v = 1. Hence one may
assume with no loss of generality that v = 1. As a preliminary step, we want to
discard the source term g. To this end, we define for all t € R the function w(t)
to be the solution of

{ Aw(t) = g(t) = divR(t) in R,

(4.15)
w(t)|z,=0 =0 on ORY.

Applying the last part of Lemma 3.3.1 provides us with a solution w satisfying
Vw € C(R; By (RY)) and for all ¢ € R,

. < .
(4.16) 1wl g gy S 1RO gy o

As by construction w is the restriction to the half-space of Gxg (where G is the
fundamental solution of A and g, the antisymmetric extension of g), applying
the fourth item of Lemma 3.3.1 yields the following additional estimate:

3
(4.17) 1Y wHL1(R;B§,1(R1)) S HVQHLl(R;B;,l(]Ri))'
Differentiating (4.15) with respect to the time variable and using the assump-

tion on ¢, we also discover that

Aw; =g =A+ divB in R?,
(4.18) { L N

W]z, =0 = 0 on OR".

Hence using the last part of Lemma 3.3.1 and Corollary 3.3.1 to handle the
parts of w; coming from B and A, respectively, we end up with

(419) IVl p, ey, ) < CUBIL iy, ey + MAllL eisg )
Then we look for a solution (u, VP) to (4.13) with ¥ = 1 in the following form:

U = Unpew + Vw, VP = VPnew - VU)t + Vg
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Dropping the index new, we thus get the following system (1):
u—Au+VP =0 in RxRY,

(4.20) divu =0 in RxRY,
Ulgp,=0 = =VW|z,—0 on R x IRY}.

Let (£o,¢’) denote the Fourier variables for the Fourier transform F; ,» with
respect to ¢ and 2’. We claim that the pressure P obeys the formula

(421) ﬁ(£0,£/,$n) = .Ft,m/P(&),f/,xn) = ﬁb(£0>£,)e_‘£/‘xn7
with
422) o) = —(T +r+1€1) Dl and i i+ €

Indeed, it is only a matter of looking at (4.20) as the following heat equation:
us — Au = —VP, Uz, =0 = —Vw|g, —o-

Then taking the Fourier transform with respect to time and tangential direc-
tions, and remembering that our functional framework requires u to tend to 0
at infinity, we obtain from the standard theory of linear ordinary differential
equations,

a(g(b §,7 xn) = a(an 5/7 0)6—7"33n

1 > —r|zn—sn]| —r(xn+sn) _Zf, D n,—|&s
% [e7EnTnl e En TN )] €] Py(&0, € )e " dsp.

So differentiating the n-th component with respect to x, and letting x, go

+

to 0 gives (see [15] for more details):

00, 60, 20) 0 = O wla ([ €007V s, ) B )
0

We know that the tangential parts of the boundary data is zero and that
divu = 0, thus 0, up|z,—0 = 0. Therefore, the above equality implies that
']
r+[¢|
This yields formula (4.22).

ﬁb(ﬁ()’gl) = _T@’U‘%n:O-

Now, in order to determine the pressure, we proceed as follows:

1. we construct an extension Gy of F;_}[|¢' \(Zn\w]xn:o] on R xR’} such that
VG € Li(R; By, (RL));

1. Note that only 0, w may be nonzero at the boundary.

SOCIETE MATHEMATIQUE DE FRANCE 2015



68 CHAPTER 4. THE EVOLUTIONARY STOKES SYSTEM

2. we construct an extension Go of F, ) [rm|xn:0] on R x R} such that
VG € Li(R; Bs | (R));

3. we construct an e>§tension V of ft;}, [i€0/1&'| Oy W] 2,=0) On R x R7 such
that VV € Ly (R; B3| (R™));

4. keeping in mind that P has to be harmonic, we write
P=Pw—G —Gy—V
where Pheyw 18 a solution to
APyew = A(G1+ G2+ V) in RY, Phewlz,—0 =0 on OR",
and establish that V P,y € L1(R; B;l(Rﬁ)) with a suitable estimate.

First step: construction of G1. — We just have to set G1 := |D’|d,, w where
the pseudo-differential operator |D’| is defined by

D'z = FH(E[2).
Indeed, we have V3w € L;(R; B;l(R?}r)), hence
V|D'|0,,w € Li(R; B (R)).

Second step: construction of Gy. — It suffices to set G2 := —3,, y with y the
solution to
—Ay=0 in RxR7,
(4.23) v Y N y— 0 at oo.
Ylen=0 = (Oz,w)lz,=0 on R xdR?,

—_—
Indeed, we observe that F; ,ry = e™"*"0,, w|z, =0, Whence
—17,.,—TTn?n
833ny = _‘7:t7x/ I:Te namnw’xnzo]v

and 0y, y is thus an extension of —F; },(r0y, w|s,—0) to R x R%.

In order to solve (4.23), we decompose y into y = z + 0., w with z the
solution to

{ 2 — Az = A0y, w) — (O, w); in  RxRY,

Z|zp,=0 =0 on R x JRY,

z—0 at oo.
Note that the right-hand side is in L;(R; B;”l(Rﬁ)) by construction of w and
satisfies, owing to (4.17) and (4.19),

(4.24)  [|A(Op,w) — (afcnw)tHLl(R;B;,l(Ri)) < CHV%B)\A”Ll(R;B;J(Ri))-

Thus, as a consequence of Prop. 6 in [15] or Th. 6.2. in [20], we get
that z, V22 € Lq(R; By 1(R})) and are bounded by the right-hand side of
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(4.24). Hence V2y too, and one can conclude that VGo € Li(R; Bf)’l(]Ri))
and satisfies

IVG2llp, @y @y < CNVG B AL, @iy -

Third step: construction of V. — In order to extend the term coming from

ft’;,(@m]xnzo) — |D'| 710y, wilp,—0  with w; fulfilling (4.18),

it is natural to set

-t

e
o (),
70 = —F (e 100 Fo (91015 0)) -

We observe that the vector field (Z’, Z™) is the gradient of some potential V'
which is the sought extension. As we plan to use Lemma 2.2.2, the problem
thus reduces to bounding ® 9., wy,,—o in L1 (R; B;;l/p(am)). To this end,
we first have to find some vector field H € L1(R; B, ;(R"})) and scalar function
h € Li(R; By /P (9R™)) such that

(4.25) A+ DIV [B;b| = DIV |H;h].

So consider the antisymmetric extension F, A of A on the whole space. By
construction, we are guaranteed that

/ EantA dr = O,

and thus Proposition 3.2.1 enables us to solve
{ Aa = E.A in B(0,)\),

(4.26) / adr =0
Oza =0 on 0B(0,\), B(0,\)

and provides us with the following bound in nonhomogeneous Besov space:

(4.27) ”aHB;j;Q(B(o,A)) = CHAHB;,l(Ri)'

The above inequality combined with the scaling argument of Corollary 3.2.1
yields for some constant C independent of \:

||Va||B;Y1(B(0,>\)) < C)‘HAHB;,1(R1)‘

2. Note that 0z, wi = 0¢(0, w) is well defined at the boundary as Vw is, by construction,
in Ly(R; BS ' (RY)), and s+ 1 > 1/p.
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Next, consider the extension Va of Va by 0, on R™. In light of Corollary 2.2.1,
Va is in L1 (R; By ; (R")) and satisfies

(4.28) IVallz, @ , (o) < CMAlL @55, @)
Additionally, by (3.5),

—/ Va-Vedr = / ExiApdr for all ¢ € C*(B(0,))).
B(0,\) B(0,))

Hence, we gather that
divVa = Eu¢ A in the space L (R; B;_ll(R”))
Now, setting H := B + %‘Ri , the above arguments enable us to conclude
that (4.25) is fulfilled with ®) h:=b — ., al,,—o and H satisfying
(429) N Hl L, @ps, @n)) < C()‘HAHLl(R;B;’l(Ri)) + ||B||L1(R;B;,1(R¢)))'
Let us emphasize that thanks to (4.26) the trace of 9;,a on JR’ N B(0,\)

is well defined in L;(R; B;jlfl/p(am N B(0,)))). Hence h makes sense in
Li(R; B;;l/p(am)). Besides, we have

(430) HhHLl(R;B;EI/p(aRi)) S C()\”AHLl(]R,B;’l(Ri)) + ”bHLl(R;B;;UP(aRﬁ)))'
We are now ready to bound 0y, w¢|z,—o in L1 (R; B;j/p(am)). We start with
the definition of w in (4.15) which gives for all t € R and ¢ € C2°(R7),

— Vw - -Vedr — (%cnwcpda—/ gpdx.
R” OR™ R”

Therefore, differentiating with respect to time, and using (4.10) and (4.25),

(4.31) — Vw-Vodr— Oy, Wy pdo = — H-Vop de’—i—/ hedo.
R OR™ R? OR™

This clearly implies that div(Vw; — H) =0 in R"} (take ¢ supported in R’})
and thus, according to Lemma 2.2.4, the distribution (Vw; — H) - €, has a
trace on OR’} which belongs to L;(R; B;;l/ P(OR™)) and satisfies

(4:32) WV 1) Eu)ler=olly, gy vmamyy < OV = Hll ey ey

Furthermore, (4.31) guarantees that

/W((th CH)-&)pdo = /R

3. The minus sign is due to the orientation of the exterior normal unit vector at OR .

(H—Vuw,) -Veodr = / (h + Oy, wi)p do,

i oR?;
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and thus
(4.33) Ov Wi|zn—0 = (Vwy — H) - &) |z,—0 — h-

Now, bounding the r.h.s. of (4.32) according to (4.19) and (4.29), and using
also (4.30), we conclude that

(4.34) HVVHLl(R;B;,l(Ri)) S HBHLl(R;BgJ(R’;))
+ )\||A||L1(R§B§,1(R1)) + ||b||L1(R;B;31/p(8R1))'
Last step: construction of the pressure and velocity. — Recall that the pres-
sure defined in (4.21) has to fulfill the system
AP =0 in R7,
P|xn:0 == Pb on 8]R1
Now, setting EFP, := —G1 — G2 — V, the previous steps ensure that VEP, €
Li(R; B, 1 (RY)) and EPy|y,—0 = P. In addition, (4.24) and (4.34) yield
HVEPb”LI(R;B;J(Rg)) SJ ||v.ng7 AAHLl(R;B;’l(Ri)) + Hb”h(R;BZ?”(@Ri))'
Hence decomposing P into P = Ppew + EP, and dropping the index new as
usual, we see that it suffices to consider the system
AP = —divVEF, in R,
Pls,—0 =0 on OR".
Because VEP, € L1 (R; B;J(]R’}r)), the last part of Lemma 3.3.1 readily gives
a unique solution P with VP € Ly (R; Bs | (R)).

Collecting all the steps and changes of unknown functions, we conclude that
HVPHLl(R;B;’l(Ri)) < CHVQ,B,AAHLl(R;B;’l(Ri))'
Once the pressure term has been estimated, one just has to define the velocity
u to be the solution to the following heat equation:
ug—Au=—-VP in RxRY,
Ulz,=0 =0 on ORT.
Solving this equation in our functional framework has been done in [15],

Prop. 6. We get a velocity u with the required property. Lemma 4.2.1 is
proved. Subsequently, the proof of Theorem 4.2.1 is complete, too. O

REMARK 4.2.2. — A direct approach, based on the explicit solution formula
as in [21] is possible if one assumes that 9 (H(R|z,=0)) € L1(R4; By ), where
H(R|z,—=0) stands for the harmonic extension of R|;, —o, as in (3.41).

SOCIETE MATHEMATIQUE DE FRANCE 2015



72 CHAPTER 4. THE EVOLUTIONARY STOKES SYSTEM

REMARK 4.2.3. — In the case where g is compactly supported, one may pro-
vide a shorter proof based on our work in [16]. Indeed, in this case, it is
possible to remove directly the divergence part of u by means of the (gen-
eralized) Bogovskii formula, resorting to the DZV functional introduced in
Chapter 2. Here, we treated the general case where g is not compactly sup-
ported because it shows how the approach of [15] has to be adapted so as
to handle nonzero divergence condition. Besides, it is needed to investigate
systems for incompressible fluids in Lagrangian coordinates (see Chapter 5).

REMARK 4.2.4. — We did not deliver here any sketch of the proof of Theo-
rem 4.2.2 from [15]. As in the proof of Theorem 4.2.1, constructing the pres-
sure term from formula (4.21) is the key idea. Finding out suitable extension
operators is the main difficulty.

4.3. The exterior domain case

This section is devoted to solving the evolutionary Stokes system
uy—vAu+VP=f in (0,7)xQ,

divu = in (0,7) x €,
(4.35) g (0.7)

u=0 on (0,7) x 09,

uli=0 = uo on £,

in an exterior or bounded domain §.

Extending the results of the previous section to this new situation is our
main objective here. We shall focus on the unbounded case which is more
tricky and just indicate at the end of this section what has to be changed for
bounded domains.

4.3.1. Proof of time-dependent estimates. — As a preliminary step, we
shall establish the following time-dependent estimates for (4.35):

THEOREM 4.3.1. — Let Q) be a smooth exterior domain of R™ with n > 3. Let
1<p<oo, =14+1/p<s<1/p. Letug € B5,(Q), f € L1(0,T;B5,(2))
and g € C([0,T); B;_II(Q)) with g(0) = divug. Assume in addition that Vg €
Li(0,T5 B, () and that g = div R for some vector field R with the following
properties OF

4. Note that the last two properties recast in g: = DIV [R:; 0]. That %((R -1)]on) is

defined in the sense of distributions is due to the fact that R|x is in L1 (0, T} B;jS(K)), hence
its trace on OK (and thus on 09) is well defined (see Proposition 2.2.4).
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1. Re Li(0,T; L (R2)) for some m € (1,00) and R|x € L1(0,T; B;IS(K))
where K stands for some bounded subset of Q0 surrounding 082 and such
that dist(0Q2, Q \ K) > 0 (see Figure 3.4);

2. / R-1nids =0y
89 .
3. Ryely (O,T; B;,I(Q))}
4. 0= L((R-7i)loq) € L1(0,T; B, " (09)).
Then System (4.35) has a unique solution (u,VP) such that
(4.36) ue C([0,T]; B, (), Oyu, V2u, VP € L1(0,T; B 1(9)),

and the following estimate is valid:
(4.37) ||UHLOO(O,T;B;1(Q)) +||ug, vV 20, VP||L1(O’T;B;71(Q))

CTv .

<Ce (HUOHB;J(Q)
+ Hf7 va, RtHLl(O’T;B;)l(Q)) + ||Q‘|L1(0,T;B;;1/p(6ﬂ))
+ VHRHLl(O,T;Lm(Q)) + VHR’KHLl(o,T;B;ﬁS(K)))a
where the constant C depends only on K, , s, m and p.
Additionally, there holds
(4.38) Hu||LOQ(07T;B;’1(Q)) + [Jug, vV 2, VP||L1(0’T;B;1(Q))
< C(HUOHB;’I(Q) + 1 Vv.guRtHLl(QT;B;’l(Q))
=+ VHRHLl(O,T;Lm(Q)) + ||Q‘|L1(O,T;B;’_11/p(aﬂ))
+ V”R’K||L1(0,T;B;j8(;<)) + V\|U\KHL1(0,T;B;1(K)))7

where C' depends only on K, ), s, m and p.

Proof. — Let us first say a few words about the existence issue. The first
step of the proof (see below) will guarantee that one may restrict to g = 0
and source term f with divf = 0 in  and f - 7i|gq = 0. Even in this case,
the task is more complex than for standard parabolic systems because we
have to keep the pressure term under control. To this end, one may use a
suitable approximation in Lo-type spaces or the results of Giga-Sohr [28] and
Maremonti-Solonikov [40], to obtain the solvability for smooth data together
with (4.37). This latter inequality enables us to pass to the limit so as to get
a solution satisfying (4.36), as it ensures that the sequence corresponding to
smooth data is a Cauchy sequence in the space defined in (4.36).
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The rest of the proof is devoted to establishing estimates (4.37) and (4.38).
We may suppose that we are given a smooth enough solution. As usual,
performing the change of variables (4.14) reduces the study to the case v = 1.
So we shall make this assumption in all that follows.

First step: removing g. — In order to remove the inhomogeneity from the
r.h.s. of (4.35),, we shall construct a solution to

(4.39) divv=g in £, v=0 on 09,

such that v = o' + v? with v! € L1(0,7T; L, () and v? with support in
(0,T) x K and in the space L1(0, T} B;jQ(Q)). We want v to satisfy in addition

v, V20 € L1(0,T; le(Q)) and also, owing to our assumption on g,
(440) DIV [’Ut, O] = DIV [Rt, Q].

In view of our results in [16], if g has a compact support then the most natural
approach is to construct v by means of the (generalized) Bogovskii formula
associated to the domain 2: we set

v =Ba(g) = In(R) + Jo((R - 7)|aq),

where the operators I and Jg have been defined in the proof of Theorem 2.3.1.
Then, owing to the properties of these two operators (see [16]), we may write
that

—/U~Vg0dx:—/R-Vg0+/ (R-ﬁ)cpda:/gogd:z for all ¢ € C°(Q).
Q Q oN Q

Differentiating with respect to time we thus get

—/vt~Vg0d:U:—/Rt-Vg0+/ opdo for all (pECé’O(ﬁ),
Q Q 15)9)

which is exactly what we wanted.

That approach works whenever g has a compact support for it suffices to
solve (4.39) in a bounded subdomain of Q. The result is given by Theo-
rem 2.3.1, and as nonhomogeneous and homogeneous Besov norms coincide
for compactly supported functions, we are done.

In the applications we have in mind however (see Chapters 5 and 6), g need
not have a compact support. The rest of the section is devoted to the study
of that more involved case.
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LEMMA 4.3.1. — There exists a vector field v = v + v? with v' supported in
(0,T) x K, fulfilling (4.39) and (4.40), supported in Q and such that

1 2 2
10" 2y (0.7 Lm () + IV ”Ll(O,T;Bf,ﬁQ(K)) + 1[IV UHL1(07T;B;,1(Q))

< C(H diVRHLl(o,T;B;’tl(Q)) + HR||L1(0,T;Lm(Q)) + ||R|KHL1(07T;BI{’§S(K)))7

Proof. — We aim at reducing the study to the compact support case. As

HthLl(O,T;B;J(Q)) < C(”Rt”Ll(O,T;BZ’I(Q)) + ||QHL1(07T;B;71%(89))

the time variable does not play any role here, we just omit it in the following
computations.

Let n° : R® — [0,1] be a smooth cut-off function such that n° = 0 on a
neighborhood of R”\ © and n° = 1 on a neighborhood of Q\ K (see Figure 3.4).
Let us consider the following problem:

(4.41) AG = div(n°R) in R™
We define VG by the formula

VG := —(-A)"'Vdiv(n°R),
so that we also have

VG = —(—A) "'V div (n°Ry).

Because (—A)~!'Vdiv is an homogeneous multiplier of degree 0, we gather
from [6] and standard results on singular integrals that

||V3G||B;’1(Rn) S IV div (UOR)HB;’I(Rn),
VG, S "R, @ and ||VGt||B;,1(Rn) S ||770Rt||B;Y1(R”)‘
Therefore, using the decomposition
div(n°R) =09 + RV on Q,

we get
HVSGHB;}J(RM S HQHB;jS(Q) + HR‘KHB;jS(K)7
I9G] Ly S 1Ry 19GH gy S I1Rel5s oy
Then we look for v in the following form
(4.43) v =n"VG + w;
with wi|go = 0 and
(4.44) divwy = div ((1 = 7°)R) + div ((1 — ") VG).
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Decomposing (n° — 1)V@ into )
(" —=1)VG = (n° — 1)SoVG + (n° — 1)(Id — Sp)VG,

and using product estimates in R™ (recall that n° — 1 is compactly supported),
and Bernstein inequality, we get

1(n° = DVGllgssz@ny S IVGIL, @n) + HVSGHB;I(W)-
Hence, combining with (4.42),
(145) [ ~ DVClrs3any < ol giseay + IR ooy + 1] ()

In order to reduce (4.44) to solving some divergence equation on the bounded
set K we have to prove that the average over K of the r.h.s. of (4.44) vanishes.
In fact, owing to the support properties of 1 — n° and to Condition (2) in
Theorem 4.3.1, we can write

/ div ((1 no)(RJrVG))dx:/ (7 (R+VG))do
K

:/ ﬁ~VGdo—:/ div (n°R) dz = 0.
90 R7\Q

Hence we may solve (4.44) via the Bogovskil formula in the set K according
to Theorem 2.3.1: setting

(4.46)  wi =Bk [div((1 —n")(R+ VGQ))]
= DIV [(1 = n")(R+VG), (1 —n°) e+ (7i- VG)|ax)],
we readily get, by virtue of continuity results for By,
HwIHB;ﬁZ(K) S =7°)(divR + AG)Hszl(K) +IVn” - (R+ VG)HB;fIS(K)
(4.47) S ||9||B;j1(1<) + HR\KHB;js(K)'
Therefore by (4.42), (4.43), (4.45) and (4.47), we conclude that
(@48) ol iz S Il oy + IRz + IRl s e
Let us now concentrate on the proof of estimates for v;. We have
vy = VG + (n° = 1)VGy + wi .

Differentiating (4.46) yields

wig = Ix[(L = 1°)(Re + VGy)] + Jr[(1 = n°) (0 + 97Gilox)].

5. The low frequency cut-off Sy has been defined in (2.2).
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That 907G} has a trace at the boundary dK is a consequence of Lemma 2.2.4
as, by construction, div(VGy) = 0 in R™ \ Q. Furthermore, there holds

llaﬁGt|8Q\\B;H1/p(aQ) S HVGtHB;l(Rn\Q) < |’Rt”B;71(Q) for a.e. t>0.
Thus, we obtain
(4.49) ”wl,tHB;l(Q) S ||Rt||B;71(Q) + ”QHB;EI/”(E)Q)'
Putting (4.42) and (4.49) together, one may conclude that
(4.50) Joul e S 1Rel 55 )+ el peosiny

Integrating (4.48) with respect to time completes the proof of the lemma. [

The construction of v given by Lemma 4.3.1 reduces the proof of Theorem
4.3.1 to the case g = 0. Indeed, if we set
(451) Upew = Uold — V and fnew = fold — Ut + A'U,
then u = unew has to satisfy

U — Au+ VP = fpeww in  (0,T) xQ,

divu =0 in (0,7) x €,
(4.52)

u=0 on (0,T) x 09,

ult=0 = uo on Q.

According to (4.48) and (4.50), the regularity of the new function f is
preserved and

(4.53) aneWHLl(O,T;B;J(Q)) S Hfoldavg7RtHL1(01T§B;1(Q))

+ HQH (0T ;71% 29) + HR||L1(0,T;Lm(Q)) + HR”Ll(O,T;B:)jS(K))'
REMARK 4.3.1. — As already pointed out, in the case of a bounded do-

main 2, one may directly apply Theorem 2.3.1 so as to remove g. Then making
the change of unknown (4.51), we eventually get (4.52) with ficw satisfying

s < .gs .

[ fnewll Ly 0,755, () S [lfotas Vg, Rell Ly o385 () + ”QHLl(O,T;B;;%((?Q))

REMARK 4.3.2. — Note that in this first step, the time variable is just treated
as a parameter. Hence reducing the study to the divergence free case may
be done in any Besov space By, (Q) with 1 < r < oo, 1 < p < oo and
—-1+1/p<s<1/p.
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Second step: an estimate for the pressure. — At this point, one may remove
the potential part of f and its normal component at the boundary. Indeed,
Proposition 3.5.1 enables us to solve the following problem:

AQ = div f in
(VQ —f)-i=0 on 0N
Then one may change f to f — V@, putting V@ in the pressure.

So we may assume from now on that
(4.54) divf=0 in Q and f-7n=0 on 0.

Since the Stokes system is not quite of parabolic type, an extra information
on the pressure is needed so as to adapt the purely parabolic techniques of e.g.
[33], [35]. One of the difficulties is that the basic energy estimate does not
supply any reasonable bound for the pressure. The estimates that we shall
obtain below will enable us to control lower order terms which will appear as
a consequence of the localization procedure, and to ‘close the estimates’ for
small enough times.

In order to get this extra information, we take the divergence of (4.35),.
Under assumption (4.54), we obtain:

AP =0 in
0P =Au-n on 01,

The boundary condition is just taken directly from the equation (4.35),. Note
that, as div f = 0 we have divAu = 0 with Au € L1(0,T; B, ;(£2)), hence the
boundary condition makes sense according to Lemma 2.2.4.

(4.55) P—0 at oc.

LEMMA 4.3.2. — Let -1+ 1/p < s < 1/p and u be a divergence free vector
field over Q with w -7 =0 at 02 and

Au € L1(0,T; By 1(2)) N Lo (0, T3 B, 775(92)).

Then there exists a unique distributional solution P to (4.55) such that

(4.56) 1PNy 0785720 (1)) + VP 01385720

< C||AUH1L:(GO7T;B;,1(K))”AuHaLl(O,T;B;?JrS(K))’
(4.57) 1PN womime 2oy T IVPIL, 0mBs520 @)

< CHAquLI(aO,T;B;l(K))”AUH(IZJOO(01T§BP_€+S(K))7

where the constant C' is independent of T and —1+ 1/p < s — 2a < 1/p with
1+rk=1/(1-a).
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Proof. — Of course we have
Au € L1(0,T; By 1 (K)) N Lo (0,T; B, 77°(K)),

and this implies, by interpolation, that Au € Lj4,(0,T} B;fa(K)) with k&
defined as in the statement. If s—2a > —1+1/p then, owing to the compactness
of K, we have Au € L144(0,T; B, 12(K)), and by the trace Lemma (see
Lemma 2.2.4) combined with the fact that div Au = 0in K, we are guaranteed
that Aw - 7i|gq is defined in L;(0, T} BS 20 l/p(aQ)) and that

[ Au - i < CHAUHLl(o7T;B;£2“

L1(0,T;B5 777 (09)) (K))*

Combining with the interpolation inequality, we thus get

[[Aw - 7| < CllAul; yllAull;

Li(0.T:B5 7> V/P (69) o T:B; Ly (0,138, 37 (K))

where C' is independent of T'. Now, applying Theorem 3.4.1 with b := Au -7
gives (4.56).

Let us now turn to the proof of (4.57). Starting from the fact that

Aw-7ill,  orpze-imony) < ClAUIL,, 085200

and using once again the equivalence between homogeneous and nonhomoge-
neous norms in our context, we get by means of an elementary interpolation
argument:

[[Aw -] < Ol Aull;

a
L1y (0,758 7% 1P (90)) Ly (OTBg (Q))HA“‘|LOO(0,T;B;§+S(Q))’
where C' is independent of 7.

Therefore, applying Theorem 3.4.1 with b := Au - i gives (4.57). O

REMARK 4.3.3. — For Q a bounded domain of R" (n > 2) and K = (), the
proof works the same. Under the above conditions, we get

HPHLI(O,T;B;’JT*Q“( < CHAUHL1 0,T; Bé 1(Q) HAu‘|(£1(0,T;B;§+S(Q))7
||PHL1+H(0,T;B;§1*2“( < CHA“HLl 0,73B3 () HAUH%OO(O,T;B;f"'S(Q))‘

Now we can tackle the proof of estimates in Theorem 4.3.1 under the as-
sumption g =0, div f =0 and f - 7i|spq = 0. Throughout we fix some covering
(29 0<e<r, of Q such that Suppn” C Q0 with Q°N0Q = & (here n is the func-
tion introduced in the first step of the proof just after (4.42)), and (Q°);</<r,
constitutes a covering of 9 with Q¢ € Q, QNN # @, QNQF star-shaped with
respect to some ball, and diam(Q¢) ~ X (see Figure 3.4). Then we consider a
subordinate partition of unity (n°);<¢<z, such that:
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1. Z =1 on Q

0<t<L

2. [|[VFn| gy < CpA ™" for k € Nand 1 < ¢ < L;

3. Suppn’ c Q.
We also introduce a smooth function 77° supported in K and with value 1 on
Supp V1, and smooth functions 7', ..., 7" with compact support in Q¢ and
such that 77 = 1 on Suppn’. Obviously those functions can be defined on the
whole space.

Note that, for £ € {1,..., L}, the bounds for the derivatives of 5’ together
with the fact that
and any ¢ € [1, 00|, we have

(4.58) V50

Supp Vne‘ ~ A" and interpolation implies that for k = 1,2
<\ k

pogn) S A
The same holds for the functions 7’.

Throughout, we set U’ := un® and P’ := Pn‘. We first prove an interior
estimate (that is an estimate for (U?, P°)) then boundary estimates, which will
eventually lead to the desired estimates (4.37) and (4.38).

Third step: the interior estimate. — The couple (UY, P?) satisfies:
U — AU+ VP = fO4+00f in (0,T) x R",
(4.59) divU? = ¢° in (0,7) x R™,
U%—o = uon® on R™,
with
0= —2vn® Vu+ulAn® + Pvn® and ¢°:=u-Vn°.
The localization procedure destroys the divergence-free assumption. Hence we

have to check whether the r.h.s. of (4.59), is of the form that we considered
in Theorem 4.1.1. Let us observe that

gl = -V’ = (u—f)- V' + -V’ = (Au—VP)- Vi’ + f- Vn°.
Hence, denoting Du := ‘Vu + Vu, one may write
g0 = div[Du- Vi — PVRY] = Du : V2° + PAR® + £ - VP,
To match the assumptions of Theorem 4.1.1, we thus set
B :=Du-Vy’ — PVy° and AY = —Du : V20 + PAR° + f - V.

Next we notice that by virtue of the Stokes formula,

Aoda::/ div(UtO—BO)d:c:/ (UY — B%) -iido = 0,
R™ Q o0
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hence Theorem 4.1.1 yields:
0 0 2770 0
HU HLoo(QT;BZ’l(Rn)) + HUt ,V U 7VP HL1(07T;BZ71(Rn))
04 40 0 10 ,
<C(n"f, ", Vg, B |’L1(O,T;B;1(R"))
0 0
+ A HLl(OvT;BE,l(R”)) +In uOHB;’l(Rn))'

Let us emphasize that as A°, B?, 0 and ¢° are compactly supported, we
may replace the homogeneous norms by nonhomogeneous ones. As a conse-
quence, because the function V7? is in C°(R") and 7° = 1 on Supp V7°,
Corollary 2.1.1 ensures that

0 0 o .
Vg HB;J(Rn) +]4 HB;J(Rn) + 1B HB;l(Rn)
S Niull pssr oy + 17 Pllsy ey + 117 f 135, en)-
Therefore,
0 0 2770 0

(4.60) MUl 0155, ey + U VUL VP L 01385 , Ry

~0 ~0 ~0

Sim f||L1(O,T;B;’1(R")) + 17 u”Ll(O,T;B;#(R")) + {17 P”Ll(O,T;B;J(R"))-

By interpolation, u belongs to Ls(0, T} B;IS(Q)) and

1 1
. 2 2
llla0.mse ) < CIIL, o upzen @ 1M 0725, 0y
Additionally, as the definition of Besov spaces by restriction ensures that
H7A7{)PHB;’1(R") < ClPllBs k)
combining Inequality (4.57) and Holder inequality gives
~0 1-
whenever —1+1/p < s —2a < 1/p.
In this way, we may conclude that
0 0 w2770 0
(4.61) U HLOO(O,T;B;J(R”)) + Uy, VUT, VP HLl(O,T;B;i,l(R”))
S Mol @) + 112y 0285, @)

1/2
+ (T2 + TNl 0.2 aopnzee 01353 , (1))
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If we want to prove (4.38) then we rather estimate the terms from (4.60) as
follows:

1/2
= C(HfHLl(OaT%BS oy +llully | 1(0,T3B24° (K H“HL1 0.73B5 1 (K))

PNy 08 ) T ”“OHBS,MQ))

and we use the following estimate for the pressure (a consequence of (4.56) and
of an interpolation inequality involving the two terms in the Lh.s. of (4.56)):

HPHLl(O,T;B;’l(K) CH“”L (0,T:B2%( K))HUHLl 0,T;B5 , (K))*

Hence, using Young’s inequality, we find the following interior inequality for
all e > O:

0 0 2770 0
(463) ||U HLOO(O,T;B;YI(Rn)) + ”Ut ;v U 7VP ||L1(0,T;B;’1(Rn)) 5 ||u0||B;)’1(Q)
+ HfHLl(QT;B;’l(Q)) + 5“”"L1(0,T;sz5(1()) + 6(5)HUHLl(O,T;B;’l(K))-

Fourth step: the boundary estimate. — We now consider ¢ € {1,...,L} so
that Suppn’ N o # @. The localization leads to the following problem:

U — AU+ VP = f in (0,7T) xQ,

divU*t = ¢* in (0,T) x 9,
(4.64)
Ut =0 on (0,7) x 09,
Ute‘t:o = ’U,077€ on Q,
with

=2Vt Vu+uldn’ + PV’ +0'f and ¢ :=u-Vr'.

As a first step for proving the boundary estimate, we want to reduce the
problem to the case divU’ = 0. For that, we shall resort once again to the
(generalized) Bogovskii formula.

Since ¢' = Vn' - u, it is compactly supported (in Q° for instance). In
addition, we notice that

(4.65) / gt dx = / neu-ﬁda—/ ndivudz =0 and ¢*=0 on 9.
Qf [2}9] Q
Therefore, setting

(4.66) vt = Boe(g"),
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where Bge stands for the Bogovskii operator defined in (2.24), we get a vector

field v € L1(0,T; szs(R")) such that Suppv’(t, -) C QF,

4 14 .y 0 .

Then, using the stability of Besov spaces by multiplication by smooth com-
pactly supported functions, we conclude that

(4.67) 11 5y < o0l 1y
where the constant Cy depends only on (s, p), on €, and on Q.
Next, differentiating (4.66) with respect to time yields
(4.68) vy = Bae(A") + Ige(BY) + Joe(By)
with Iqe and Jgoe defined in (2.25),
Al = —Du: D*n' + PAn* + f-Vi' and B :=Du-Vn' - PVy'.
Using again Corollary 2.1.1, we easily find that
(469) (A5 o) < CA(”ﬁgf“B;’l(Q) + 7 Pllss () + HﬁzuHB;fll(Q))
and that
(4.70) HBe‘|B;1(Q) <C, H#PHB;J(Q) + ||7~7£uHB;H1(Q))'

Besides, u € Ll(O,T;B;jQ(Q)) and P € Ll(O,T;B;’jI(K)). Hence the
product laws in Besov spaces (Corollary 2.1.1) ensure that B’ belongs to
L(0,T, B;jl(Q)). Therefore B!, := B’ -7 has a trace at the boundary and
Relation (4.68) is thus valid.

Now, differentiating (4.65) with respect to time implies that
/ (A + divBY) dz = 0.
Qf

As A? and BY are compactly supported in Qf, we deduce that the compatibility
condition for A* and B’ is satisfied on Qf. By virtue of (4.69), we thus have

(4-71) ||BQZ(Af)HLl(o,T;B;fll(Q)) < Cé(”(ﬁéf, ﬁZP)HLl(O,T;B;’l(Q))

~t
+ {7 UHLl(o,T;B;jl(Q)))

For bounding I (BY), it is only a matter of using the results of [16]
and (4.70). We get

(472) Bz, < C(IPlsg o + 17wl prin ey )-
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As usual, owing to the compact support of Bae(AY) and of I (BY), the
nonhomogeneous norms may be replaced with homogeneous ones in the left-
hand side of (4.71) and (4.72).

_1
For bounding B, in B,,”(9Q), we use that B’ € L;(0,T; Bsi'(Q)).
Hence applying Proposition 2.2.4 yields for any € in (0,s + 1 — 1/p],

L L
1Bnll Bz | (00¢) < CallB "B;tl/l’(gl)'
If in addition € + 1/p < n/p, then, owing to Proposition 2.2.1 and (4.58),

4 ~ ~t
||B ||B;?;1/p(QZ) < CA(”T/ PHB;ﬂil/p(Q) + ||"7 u”B;ﬁl/PJrl(Q))a
whence
¢ ~l
B2 -1in oy < CIBE g o0y < CA(IT Pl gesiin oy + 170l sy
Then using the results from [16], one may conclude that
~l
19e (B 15, ey < Ca (7P| petveggy I Ul geppn g))-

So finally, putting together the above inequalities and bearing in mind (4.67),
we get

y ¢
(4.73) vy, V20|, 0.5, ()
< C/\(HﬁZfHLl(O,T;BZ,l(Q))_'_H#PHLl(O,T;BZJEI/p +||77 UH 0TB€+1/p+1(Q))>

Next, making use of v’ we modify System (4.64) into

Uf — AU + VP = ft in (0,7) x Q,
divU* =0 in (0,T) x Q
Uf=0 on (0,T) x 09,
Ut)i=0 = uon® — Bqe div (uon®) on Q
with
Unew = Uba — and  flo = fha —vf + A0,

Note that (4.73) implies that
74
(474> ”fnewHL1 (O,T;B;J(Q))
< ||77Zf£ld||L1(0 T;B3 ()

~(
+ C}\(HUZPH 1(0,T BE+1/P Q) + H77 u”Ll(O,T;B;‘*il/P‘Fl(Q)))
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and it is also clear that
4
(4.75) 1V =0l 3 , ) = Callwoll s -

Let us now recast (4.35) on R’} according to the volume preserving change of
coordinates introduced in Chapter 2. Let

Vi=Z;U"=U" 7' and Q':=Z;P".
The system satisfied by (V*, Q%) reads
VE-AVE+V.Q =FY in (0,T)xR%,

div, V¢ = G* in (0,7) xR%,
Vi.,=0=0 on (0,T) x OR™,
Vo = Z;(th:()) on OJRY,

with
FC=Z0f 4+ (A — AV = (V, = V)QY and GY:= (div, — div, )V’
Let us stress that, according to Chapter 2, we have

G = —TA . v, V! = —div, (A'VY)  with AY2) := D Zs(z) —1d.
Hence G*|;—o = 0 and

GY = —div, (A V).
According to Theorem 4.2.1, we thus get
IV s 05,y + IV V2VE VL 0,15 )
SIZi 5 (Ba = AYVE (V2 = V)@ VG AV 1, 0 )
+HZ§(UZ|t:O)HB;’1(R1)'

The first and last terms in the right-hand side may be dealt with thanks to
Lemma 2.1.1: we have

* ol 4
1Z; ”Ll(O,T;Bg’l(Rﬁ)) S f HL1(07T;BIS)’1(Q))5
127 (U}1=0)

s ) S ||U£’t:0”]3;71(9)'
So the definitely new terms are (V, — V,)Q¢, AV, (A, — A,)V* and VG,.
First, we notice that, denoting B¢ = A* +1d = D, Z,, we have
(Vo= V)Q' ="B'V.Q"' ="B'V.Q" with B':=B"Z;i".
Hence Proposition 2.2.1 ensures that

_ Q. < oNTBE 2 .
1(Ve = V)@l gs mn) = CIPB" 2 HB? = .

p,1 ¥ me/,1(R+

3

¢
)||VzQ s, -
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Together with Lemma 2.1.1 and Inequality (2.29), this implies that
A A
1(V2 = V)@l any < CMVQ e
From similar arguments, we get
byl 4
ATV s |y = CMVE Nl s | ey
Bounding (A, — A,)V* is more involved. It relies on the formula
(4.76)  (Ap — AV = div, (A" - (Id +TAY - vV + div, (T4 - V.V
with A? = Z;n* AL, Using the fact that
div, (TAY - v, v = (VIAY - v V4 TA . v, div, VY,
we may write, by virtue of Proposition 2.2.1,
. T 1¢ 4 1 l
” lez( A V.V )HB;J(R’Q 5 HVZA ||B;L’/1P(RT-L_)||VZV HB;J(Ri)
pyi 204
+HA ”B;/IP(R:L_) ”VZV HB;l(Ri)

The first term in the right-hand side of (4.76) obeys a similar inequality.
Hence, using Inequality (2.29), one may conclude that

4 214 4
(4.77) 1Az = AV HB;J(JRQL) SAIVIV HBS,l(Ri) +[[V:V ”Bi,l(Ri)'

The last term, V.G, may be treated in the same way. Hence, putting together
the above inequalities, we finally get

VA Lo,y + IV VAVE VR 01 oy
S HUgft:O”B;;J(Q) + HfZHLl(O,T;B;J(Q))
+ /\HVtéa V2V€7 VQEHLI(O,T;B;J(Ri)) + HVVZHLl(O,T;B;,l(Ri))'
By interpolation, we have

¢ ) 2y 011/2 2y11/2
Vv HLl(U,T;B;,l(Rﬁ)) <[IvViv ”Ll(o,T;Bé ”V ||L1 0,183 | (R))

Now, using Young’s inequality to handle the term with VB!, taking \ so small
as the term

7274 14
AVE, VEVE V@ HLl(O,T;B;I(]Ri))
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to be absorbed by the Lh.s., and using (4.74) and (4.75), we end up with
¢ , 0 21l ¢ ,
114 ||Loo(07T§B;,1(Ri +|Vy, VIVE,VQ HLl(O,T;B;’l(R’;))
S ||u€||B; + ||77£fHL1 ()TBé ()

— 4 . ~
+ A (HV ||L1 OT;B;,l(Ri)) + ||77 P||L1(0,T;B;ﬁl/p(ﬂ))

+ ”77 UH OTBE+1/p+1( )))

In order to handle the last two terms, there are two ways of proceeding
depending on whether we want a time dependent constant or not. Throughout,
we fix some a € (0,1/2) given by Lemma 4.3.2 and choose ¢ so that s+1—2a =
e + 1/p. The first possibility is to write that, by interpolation and Holder’s
inequality,

!WUHLI(o,T;B;f”a(Q)) < TaHﬁguHL1(O,T;B;ff(Q))HLOO(O,T;B;J(Q))’
and that, according to (4.57), we have

~
P L, o epe 1 oyns ) S TNl yomBr2 o)L om s, (50)

This yields
¢ ¢ o214t ¢
(4.78) 14 ||LOO(O,T;B;71(R” + Vi, VIVE, V@R HLl(O,T;B;,l(RS‘r))
‘
S luoll s, o) + 17 “Fllz, 055, (%)
1
+AT T“||“||L1(o,T;B;?(K))an(o,T;B;,1<K>>
—1 ¢
+ATTV HLOO(O,T;B;J(R?F))'

The second possibility is to write that

<

||77£u||Ll(o,T;B;ﬁQ—Qa(Q)) > ||77 U”L (OTB”z ||77Z 19

L1(0,T;B5 1 ()
and to bound the pressure term according to (4.56). We eventually get
¢ , 0 21l ¢ ,
(4.79) |V HLOO(O,T;B;J(R" + Ve, VIVE Ve HL1(0,T;B,§,1(R1))
l { -1 4
S ||U0||Bs A 07583, () T ATV ||L1(0,T;B;’1(R1))
+ AT 1HUH1 0TB2+S HUHLl OTBS (K))

Fifth step: global a priori estimates. In view of Lemma 2.1.1, we may write
l
HU||LOO(0,T;B;1(Q)) < Z v HLoo(O,T;BZ,l(Q))

]
0 ¢
S U HLOO(O,T;B;’I(R")) +Z 114 HLOO(O,T;B;’I(RQ))’
>1
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and similar inequalities for the other terms of the Lh.s of (4.78). Of course,
Proposition 2.1.2 ensures that

¢ ~
H’UJOHB;J(Q) S HUOHB;I(Q) and |7 fHLl(O,T;B;,l(Q)) < HfHLl(O,T;B;,l(Q))'

So using also (4.61) and the fact that L ~ A™", and bearing in mind (4.53),
we get

lull 0,32,y + Nl (e, Vu, VP 0m8:, @)

S Ain(”UOHB;’l(R") + I (f; v97Rt)HL1(O7T;B;,1(Q))

+ ||Q!\Ll(07T;B;;%(aQ)) + HR||L1(o,T;Lm(Q)nLl(o,T;B;jS(K))>

n—1 a
HATT T+ Dl 0,138 (K)o (0,785, (5
Hence
2
HUHLOO(O,T;B;J) + |lug, Vo, VPHLl(O,T;B;l)

< C(HUOHB;J(R") +(f. Vg, Rt)HLl(O,T;B;,l(Q))

+||QHL s;(am)‘F‘RHLl(O,T;Lm(Q)mB;jS(K))>

1(07 3 p,1

for a very short time T" depending only on A.
Repeating the argument over the interval [T, 27T] and so on, we get (4.37)
with the constant Ce®T for some suitably large constant C.

Removing the time-dependency is just a matter of starting from (4.63)
and (4.79) instead of (4.61) and (4.78). After a few computations and use
of (4.53), we get for some constant C' depending on A,

2
lue, Vou, VP 1 0.5, ()

< C(HUOHB;J(Q) + £, Vg, Rt”L1(07T§BZ’1(Ri)) + ”Q||L1(0 T‘BSZ%(BQ))
’ ’ D,

HIRI L, 0722y 07828 ()

1/2 1/2
+ H H OTBQJrs H HLl OTBS K))
lull sz o S o oy T Il acoirig a0y )

Using Young’s inequality, it is easy to absorb the second line, up to an error
term which may be bounded by the last term. O
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REMARK 4.3.4. — Let us emphasize that the term ||U”L1(0,T;B; (k) may be
replaced by any lower norm taken over a compact set K. In particular s can
be put to zero.

REMARK 4.3.5. — In the case where the domain 2 is bounded, the proof is
very similar : we still have to introduce some resolution of unity (7°)o</<r,
where, now, 1° is supported in the interior of {2 hence has compact support.
Step one (removing g) is directly based on our work in [16]. The main differ-
ence is in step 2 because Proposition 3.5.1 holds true in bounded domains for
any n > 2. Hence, Theorem 4.3.1 is valid for n > 2, with K replaced by €.

4.3.2. A low order bound for the velocity on a compact set. — This
section is to establish time-independent bounds in L;(0, T} B;I(K)) for the
velocity satisfying System (4.35). Let us emphasize that this lower order term
does not appear when removing the divergence part of the velocity (first step
of the proof of Theorem 4.3.1). Therefore, we shall concentrate on the case of
a divergence free solution, namely System (4.52).

The main result of the section is the following one.

LEMMA 4.3.3. — Assume thatn > 3 and that 1 < p < n/2. There exists some
sp > 0 (depending only on p and n) such that for all s € (—sp,sp) sufficiently
smooth solutions to (4.52) fulfill

HUHLl(o,T;B;J(K)) < C(HfHLl(o,T;B;J(Q)) + HUUHB;J(Q))v

where C' is independent of T'.

Proof. — The proof consists in extending to the Besov setting the Lebesgue
type estimates proved in [39].

To start with, we take advantage of the linearity of the system and of the
uniqueness of solutions provided by (4.37) so as to decompose u into uj + us
with u; the solution of the system with zero initial data and source term f,
and ug the solution of the system with no source term and initial data ug.
In other words u = uy + uy with

ury —Auy + VP = f, ugt —Aus+ VP, =0 in (0,7) x Q,
divuy =0, divus =0 in (0,7) x Q,
ut|zcon = 0, Us|zepn =0 on (0,7) x 89,
u =0 = 0, Ugli—0 = ug on .
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920 CHAPTER 4. THE EVOLUTIONARY STOKES SYSTEM

Let us first focus on u;. Arguing by duality, one may write that
a0l g5, ) < Csup [t ) - 00)
p,1 K

where the supremum is taken over those v € Bz;s (K;R™) such that

,00
Y| 5-s K) = L. Recall that, by virtue of Corollary 2.2.1, such functions may
p’ 00
be extended by 0 over R™. So we may assume that the supremum is taken
over those functions 1 satisfying

(4.80) ¢ € B° (RR") withnorm 1 and Suppy C K.

,O0
In what follows, it will be important to restrict our attention to functions
which are divergence free and satisfy v - 7i|sn = 0. Note that according to
Corollary 3.5.1, the Helmholtz projector P is a selfmap over B];;SOO(Q) and
that, since u; is divergence free, we may write

/K wi(t,7) - ¥(z) do = / w(t,x) - Pos(x) da.

Q
Set g := P and consider the solution 7 to the problem:
m—An+VQ =0 in (0,7) x €,
divn =0 in (0,7) x €,
(4.81) 7 (0.7)
n=20 on (0,7) x 09,
Nlt=0 = 1o on Q.

Testing the equation for u; by n(t — -) we discover that

(4.82) /Q wi(t,z) - nolz) dz = /0 t /Q f(r,z) -t —7,2) dz dr.

As we plan to adapt the approach of [39] to Besov spaces, we first have to
extend to that setting the classical so-called L, — L; estimates of the Stokes
semigroup. Recall that in exterior domains we have in any dimension n > 2
(see e.g. [32, 40)):

n 1l
(483) [l < Cllmollsyot 347 for 1<b<a<oo,

nel 1y 1
484)  [[Vi()lla@) < Clinolly@t 27«72 for 1<b<a<n.

We claim that for all 1 < p < ¢ < oo, there exists some (small) positive sy,
depending only on n,p, g such that

_n(l_1
(485)  [n(0llgs ) < Clmllg, of 277 forall s € (0, 5p4)-
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Indeed, first we use the classical embedding theorem (see e.g. [48], p.31) (©):

for

(4.86)

and 1 < a <a<oo,1<b<b< oo towrite that, according to (4.83),

(4.87)

Lo(R™) < B72(R") and B(R") — Ly(R")

1 1 s 1 1

a a n b b

~5G-),

1920y < Clol gyt~

By the same token, (4.84) implies that

(4.88)
provided
(4.89)

n 1
t S1—s < C S ti a1
705221 oy < Clmllz o ,

1 1 51 1 1

a1 a n 61 b1

under the restriction 1 < by < a; <n, 1 <b; < by and a; > a;.

Now, let us recall the interpolation property:

with

(B3 (), B3 (Q)o,g = B, (Q)

1 1-
Osa + (1 —0)s; = s, f:Q—l— 0.
q b a

Let us fix some small enough positive s. Then we see that combining In-
equalities (4.87) and (4.88) with the above interpolation property yields (4.85)
with decay exponent o given by

a

-5 3G -Da-nrio-o,

provided one may find some 0 € (0,1), a, a, b, b, a1, a1, by, b1, so and s1 so
that (4.86) and (4.89) are satisfied together with,

0(—s0) + (1 —0)(1 —s1) =0so+ (1 —0)s1 = s,
1 6 1-90 1 0 1-6
-+ —.

9

¢ a a p b b

Thus we see that § must satisfy

s = %(1—0).

6. Which naturally extends to general domains, owing to our definition of spaces by

restriction.
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92 CHAPTER 4. THE EVOLUTIONARY STOKES SYSTEM

Finally, we get

R - [T Ry

and we are done.

Let us emphasize that if s is close to zero then 6 is close to 1. Hence a, b, @, b
may be chosen very close to p,q. Therefore Inequality (4.85) is valid for all
l<p<g<oc.

In order to extend (4.85) to negative indices s and 1 < ¢ < oo, we consider
the dual problem

G—AC+VQ =0 in (0,7)xQ,
div(=0 in (0,7) x €,

(4.90) (=0 on (0,7) x 09,
C|t:0 = CO on Qv

where (y € BbT sq,(Q), is divergence free and satisfies (o7 = 0 at the boundary.

Testing (4.90) by n(t — -) yields

(4.91) /Qn(t, z) - (ox)dr = /Qno(a;) ((t,z) dz.

Let us observe that

1) 15, 0 < Csup [ at.2) - o)
’ G JQ
where the supremum is taken over all {y € B;Sq,(Q) such that div({y = 0,
¢ - 1ilo = 0 and ||Co|| 4-s (@) = 1. Thus by virtue of (4.91), we get:
a/,q/

1)l @) < CSUP/ no(x) - C(t,x) de < [moll g 0y sup €O g2 ()
“ G JQ - Go bha

Because —s is positive we can apply (4.85) (if s is close enough to 0) and get

_nel L
(Bl () < Climolly oyt b’)SgPHCOHB;Sq,m)'

0
1 1

; —1_
Since o — 5 = 3

1

+» we conclude that

_ncl 1
(4.92) In(®)l1 55 ) < Climoll gy @yt 3G,
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In order to get the remaining case s = (0, one may argue by interpolation
between (4.85) and (4.92). One can thus conclude that for all 1 < b < a < oo,
q € [1,00] and s close enough to 0, we have

_nel_1
(4.93) In®llg; @) < Cllmolly @t 2F=.

Now we return to the initial problem of bounding u;. Starting from (4.82)
and using duality, one may write

t
’ u(t,z) - mo(z) dfc‘ S 1f ()l s (Q)Hn(t —7)llp-s Q) dr.
Q 0 il Phoo

Hence splitting the interval (0,¢) into (0, max(0,¢ — 1)) and (max(0,¢ — 1), 1)
and applying (4.93) yields for small enough &,

‘/Ul(t,x)w()(w)dm’
Q
t
< . . d
N/mehnufw>@m«mndBMmm)T

max(0,t—1) g
+A 5 g o lmliy )¢ =735 ar

Recall that ny = P with ¢ satisfying (4.80). Using the properties of conti-
nuity of P, we can thus write for 1 < a < p/,
||770||B;go(9) < CHW’B;&(Q)'

Now, as 1 is supported in K, one has
l+l_1
190l s,y < CIEP T [l 5o (-
, e

This may be proved by introducing a suitable smooth cut-off function with
value 1 over K, taking advantage of Proposition 2.1.2. A scaling argument
yields the dependency of the norm of the embedding with respect to |K|.
Hence we have for some constant C' depending on K,

Inolls; < Clllar

T—2:°

So, keeping in mind (4.82) and the fact that the supremum is taken over all
the functions v satisfying (4.80), we deduce that

Hul(t)”B;J(K)

t max(0,t—1) a1,
<O( [ s s+ [ = Ol o).

max(0,t—1
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Therefore,

T T _E(l_e)
499 [ kg ot < ([ 5E0 ) [ 10l o

For the time interval [0, 1], we merely have

1 1
(4.95) [ 1, ot < € [ 170N, @
Now, provided that one may find some € > 0 such that
n /1
e 1
2 (p 6) >

a condition which is equivalent to p < m/2, the constant in (4.94) may be
chosen independent of T, and we conclude that

T T
/0 lunll s | rey dt < C/O 1155 , e -
Bounding us is rather straightforward. We first write that
and

*—E *—6 —nl_g
lua s 10y < CHEP Nz ) 35 sy < CIETF (ol g eyt 2.
Pt 271 P,

Then decomposing the integral on [0, min(1,7")] into an integral on [0, 1] and
n [1,min(1,7)], we easily get

T R 1
/0 lua (55 0y dt < (1+/ 720 dt)HuoHB;’l(Q)SHUOHB;I(Q).

min(1,7)
Putting this together with (4.94) and (4.95) completes the proof. O

We end this section with a few remarks concerning the case where (2 is a
bounded domain of R™ with n > 2. Then it is standard (a consequence of
g. [27]) that the solution 7 to (4.81) satisfies for some ¢ > 0,

1)l < CelnollL, @)
and it is also true that, denoting by A the Stokes operator,

A |z, @) < Ce™[[Anoll L,
By interpolation, we thus have for any 1 <p < oo and =1+ 1/p < s < 1/p,

155, 0) = Ce_CtHUOHB;I(Q)-
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Therefore we may write

t
o o 00 0 p,1
thus giving
HU1HL1(07T;B;’1(Q)) < CHfHLl(O,T;B;,l(Q)).
Similarly, we have
Hu2||L1(0,T;B;71(Q)) < CHUOHB;’I(Q)

So we end up with the following statement:

LEMMA 4.3.4. — Let Q be a smooth bounded domain of R™ with n > 2. Then
foralll < p < oo and =1+ 1/p < s < 1/p, there exists a constant C such
that for all T > 0, sufficiently smooth solutions to (4.52) fulfill

H“HLl(o,T;B;l(Q)) < C(Hf”Ll(o,T;B;’l(Q)) + ||U0HB;,1(Q))-

4.3.3. The final result. — If 2 is a bounded domain then putting together
Remark 4.3.5 with K = 2, and Lemma 4.3.4 yields the following statement:

THEOREM 4.3.2. — Let Q) be a smooth bounded domain of R™ with n > 2. Let
l<p<ooand =1+ 1/p < s <1/p. Let ug € B, (), f € L1(0,T; B, 1(2)),
g €C([0,T); BsH(Q)) with
9(0) = divug, Vg€ Li(0,T; B;l(Q)) and g= divR
with R satisfying all the conditions of Theorem 4.3.1.
Then there ezists a unique solution (u,VP) to System (4.35) such that
2
HUHLOO(O,T;B;’I(Q)) +1[ (e, vu, vV, VP)HLl(o,T;B;’l(Q))
< C(luoll g5y + £V, R)

Ly, ()

);

+ R .ps+1 + Q s—l

| HLI(O’T’BN @) Tl HLl(o,T;Bp,lp (99))
where C' is independent of T and v.

Let us finally give the statement if {2 is an exterior domain of R™ with n > 3.

THEOREM 4.3.3. — Let1 < ¢ <p < oo withq <mn/2. Let —1+1/p<s<1/p
and s’ close enough to 0. Assume that

up € B3 N BIL(Q),  fe Li(0,T; By N B (),
ge C([0,T); Bi7' nB: () with g(0) = divug, Vg € Ly (0,T; By, NB5 ()
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96 CHAPTER 4. THE EVOLUTIONARY STOKES SYSTEM

and g = div R with R satisfying the conditions of Theorem 4.3.1 with respect
to (s,p) and (s', q).
Then there ezists a unique solution (u, VP) to System (4.35) such that
2
(4'96) Hu||Loo(07T;B;’1(‘]B;’/1(Q)) + H(Uta vV-u, VP)||L1(O,T;B;’IDB;"1(Q))
+ V”“‘K”Ll(o,T;Bg;(K))
< Olluollgs s ) + 105 vV 9 B L, 08, )

+ llel w1 w1 +V|[R|
L0158, ,7NB, , 1 (09))

where C' in (4.96) is independent of T and v.

./ .
L1 (0,15 L (Q)NB)1° (K)OB;,?(K)))’

Proof. — Granted with Theorem 4.3.1 and Inequality (4.38), it is enough to
show that

lulz ”Ll(o,T;B;,1<K>mBgf1<K>>
may be bounded by the right-hand side of (4.96). Of course, in the case
p < n/2, it readily stems from Lemma 4.3.3 (combined with interpolation if s
is not close enough to 0).
Now, if p > n/2 then we use the continuous embedding

./ . 1 1 2 s — 3/
B5+2(Q) ) B
a1 () = Bg. 1(2)  with i s
Then combining with interpolation and Lemma 4.3.3 allows to absorb the term

Hu||L1(07T;B;71(K)) whenever p < ¢*. This completes the proof of Theorem 4.3.3
for those values of s,s" if 1 < p < ¢*.

If p > ¢* then we know by interpolation that data fulfill the assumptions
of the theorem we want to prove for any ¢ < p; < ¢*. Therefore, we may use
the embedding of B;ﬁ(ﬂ) in Bj. | with 1/¢; = 1/q1 — 2/n to treat the case
where p < ¢f. It is now clear that any finite value of p may be reached after a
finite number of iterations. This completes the proof of Theorem 4.3.3. OJ
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CHAPTER 5

INHOMOGENEOUS NAVIER-STOKES
EQUATIONS IN EXTERIOR DOMAINS

This chapter presents a first important application of the results that we
established so far for the Stokes system. We analyze here the Navier-Stokes
equations modeling flows of incompressible and inhomogeneous fluids. In this
context, the density is constant along the stream lines. We shall see that the
Lq-integrability in time property for the velocity field that has been proved
in the previous chapter enables us to recast the whole system of equations
in the Lagrangian coordinates. This will allow us to construct unique strong
solutions for quite general initial data : as regards the initial density, piecewise
constant initial configurations may be considered for instance. Let us empha-
size that according to several recent works [19], [31], [38] it is even possible to
build strong unique solutions assuming that the initial density is only bounded
and bounded away from zero. However, the velocity has to be smooth enough
therein. Here, following our recent work in [17] devoted to the case where the
fluid domain is the whole space R"™, we assume the initial velocity to have crit-
tcal reqularity, which requires to slightly enhance the regularity assumptions
on the density. Nevertheless we shall see that initial densities as in (1.4) may
be considered.

This chapter unfolds as follows. In the first section, we present the inho-
mogeneous Navier-Stokes equations in Eulerian and Lagrangian coordinates.
The next section is devoted to the study of a suitable linearization of those
equations. This will eventually enable us to prove the local (resp. global)
existence of strong solutions for large (resp. small) data in the rest of the
chapter.
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5.1. Lagrangian stream lines setting

In the Eulerian coordinates, the inhomogeneous incompressible Navier-
Stokes equations read

pr+u-Vp=0, in (0,7) x Q,
plug+u-Vu) —pAu+VP =0 in (0,7) xQ,

(5.1) divu =0 in  (0,7) xQ,
ulog =0 on (0,7) x 09,
uli=0 = uo in Q.

Above, p = p(t,z) € Ry, u = u(t,z) € R" and P = P(t,z) € R stand for
the density, velocity field and pressure of the fluid, respectively. The viscosity
coefficient 1 is positive and constant. For simplicity, we assume that there is
no external force. We aim at constructing solutions (p,u, VP) so that Vu
is in L1(R4; Loo(€2)). This will imply that the velocity field u has a unique
measure preserving flow X, defined on R x . It will be thus possible to recast
System (5.1) in Lagrangian coordinates, and to prove uniqueness under rather
mild assumptions on the density (in particular small jumps are admitted).
Using so-called critical spaces, that is, in our context, functional spaces with
norm invariant for all £ > 0 by the following transform

(5.2) (p,u, VP)(t,x) — (p, lu, 3V P)(£*t, ()

has become a classical approach nowadays, in the case where 2 = R" (see [13]).
For more general domains, the above rescaling is no longer relevant as it
changes the domain. However it still gives us a hint on the minimal local regu-
larity that has to be assumed for the data, so as to prove the well-posedness of
the equations. In the Besov spaces scale for instance, this suggests our taking
ug in Bg /1p 71(9), which is in fact the only possibility ensuring the constructed
velocity u to be in L1 (Ry; Loo(2)). Supplementary ‘out of scaling’ conditions
are needed to control the decay of w, if {2 is an exterior domain.

Let us give more details on the ‘Lagrangian approach’. The change from the
Eulerian coordinates (¢,z) to the Lagrangian coordinates (¢,y) is defined by
setting z = X (t,y) with X the solution to the following (integrated) Ordinary
Differential Equation:

X(t,y) :y+/0 u(r, X (1,y)) dr.
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Because u = 0 at the boundary, this transform preserves the domain of the
fluid : we have X (t,Q) = Q. Then we set

pt,y) = p(t, X(t,y)), Pty =Pt X(ty) ulty) =ult X({y)).
Given the definition of X and according to the chain rule, it is obvious that
Oip(t,y) = (Oep+u-Vap)(t, X(t,y)) and du(t,y) = (Gputu-Vau)(t, X(t,y)).
Besides, denoting by Y (¢, -) the inverse diffeomorphism of X (¢, -), we may write
(5.3) V. P(t,2) = TB(t,y) - V, P(t,y)
with o := X (t,y) and B(t,y) := DY (t, ).

The fact that X is measure preserving implies that for any smooth enough
vector field H one has (see (2.36) and (2.37))

(5.4) div, H="B : V,u = div, (BH),
(5.5) A H' = div, V,H' = div, (BTBV,H").

So finally, we see that, at least formally, (p,u, V,P) satisfies (5.1) if and only

if p = po and (u, V, P) satisfies

(5.6) potiy — pdivy (BTBV,u) +TBV, P =0,
' div, (Ba) = 0

with
B(t,y) = DY (t,z) = (DyX(t, y))*1 and X(t,y)=vy —i—/o u(r,y)dr.

By adapting the arguments that have been used in [17] to the domain setting,
one may show that systems (5.1) and (5.6) are equivalent in the functional
framework that we shall use. Hence we shall focus on solving (5.6) rather
than (5.1), in the rest of this chapter.

5.2. The linearized equations

We are concerned with the following linearization of System (5.6):

pr+v-Vp=0 in  (0,7) x Q,
qug+v-Vu) — pAu+VP =0 in (0,7) x £,

(5.7) divu =0 in  (0,7) x €,
u=0 at  (0,7) x 09,
uli—0 = up at Q.
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In the above system the vector-field v and the positive function ¢ are given.
We assume in addition that dive = 0 and that the trace of v is zero at the
boundary.

Introducing Lagrangian coordinates with respect to the vector field v, that

is setting y := Y, (t,2) with Y,(¢,-) := (X,(¢,-)) ! and X, defined by

(5.8) Xo(ty) =y + /0 o(r, X, (7)) dr,
and

By(t,y) == DoYo(t,x) = (DyXo(t,y)) ™" plt.y) = p(t, Xu(t,y)),
P(t,y) := P(t, X,(t,y)) and u(t,y) := u(t, X,(t,y)),

we see that, under suitable regularity assumptions, (p,u, V,P) satisfies (5.7)
if and only if p(¢,y) = po(y) and (4, V, P) satisfies

poty — prdivy (EUTEUVZ/@) + TEnyp =0 in (0,7)xQ,

(5.9) divy (Byi) = 0 in (0,7) x Q,
u=0 at  (0,7) x 09,
Z_L|t:0 = U at Q.

Here we aim at proving existence results for (5.7) in the critical functional
framework in which (5.1) and (5.6) are going to be solved.

Before giving the main statement, let us introduce a few notation. First,
we denote by X7 the set of (u, VP) so that ulsq = 0,

we (0,7 By~ (@) and 8, V?u, VP € Li(0,T; By~ (Q)),

and set
(510) ||(U,VP)||X§ = ||u||Loo(0,T;B;/1p71(Q))
2
+ [|ug, uV u7VP||L1(O,T;BZ7/IP71(Q))'
PROPOSITION 5.2.1. — Let Q be a smooth exterior domain of R™ (n > 3)

or bounded domain (n > 2). Let T > 0 and p € (n — 1,2n). Assume that
v e C([0, T B;L,/lp_l(Q)) with dive =0, Vv € L1(0, T} Bgy/lp(Q)) and v|gq = 0.
There exists a constant ¢ = ¢(n,p,2) so that if

(5.11) <ec

1= poll pacspir=riy + IVOL 0,770 = ©

then for any divergence-free data ug € B;/lp_l(ﬂ) with (ug - 1)]aq = 0 Sys-
tem (5.9) has a unique solution (4, V P) on [0,T], belonging to X% and so
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that for some constant C = C(n,p,)) we have

e cT
(5.12) 18 9 P)llxs, < CeT ol o o
Proof. — We focus on the exterior domain case. Using (4.14) enables us to
restrict ourselves to the case p = 1. So we make this assumption throughout.
The proof is based on Theorem 4.3.1 and on the Banach fixed point theorem
after observing that System (5.9) recasts in

ay — Ayu+ VP = f,(a,VP) in (0,T)xQ,
(5.13) divy u = gy (u) in (0,7) x £,
=0 at (0,7 x 09,
=0 = ug at  Q,
with )

fo(i, VP) = (1= po)oyii + div ((B,TB, —1d)V,u) + (I1d — TB,)V, P,
go(@) := (Id —TB,) : Vyu = divR,(a) with R,(ua):= (Id — B,)u.

Hence to show existence for (5.13), it suffices to find a fixed point for the map

(5.14) ®: (w,VQ) — (i, VP)

with (@, VP) the solution to
i — A+ VP =f,(w,VQ) in (0,T)x Q,
diva = g,(w) in (0,7) xQ,

(5-15) i=0 at (0,T) x 09,
ﬂ’tzo = U at Q.

Let us decompose ®(w, VQ) into
®(w,VQ) = (ur, VPL) + ¥ (w,VQ),

where (ur, VPr) stands for the free solution to the Stokes system with initial
data up, namely

Owur, — pAurp, + VP, =0 in  (0,7) x Q,
divur, =0 in  (0,7)xQ,
5.16
(5.16) ur, =0 at  (0,7) x 09,
urli=o0 = uo at Q.

1. That g,(@) may be written in two different ways is a consequence of (5.4) because
div v = 0; this is of course fundamental.
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Theorem 4.3.1 guarantees that (ur, VP) € X7 for all T € Ry, and that (2)
CT
(5.17) Iuz, VP2 xp, < Ce“T ugll e (-

Hence in order to establish that the map & fulfills the conditions of Banach
fixed point theorem, it is only a matter of finding a condition under which
the linear map ¥ is a self-map on X%, with norm smaller than, say, 1/2.
Now, we notice that R,(w) vanishes at the boundary and one may thus apply
Theorem 4.3.1 to bound ¥ (w, V@) in X% Taking s = n/p —1 and m = 2n
leads to

_ = CcT _
(5.18) [ ¥(@,YQ)lxp < O (IRAD 1, 0 721, oprmnioircy

1o,V Q). Vo (@), (Ro(@)e) o 70501 )
where K is any bounded subset of 2 with d(Q2\ K,09Q) > 0.

In the following computations, we agree that (s,r) = (n/p — 1,p). First,
from the expression of f, and the definition of multiplier spaces, we readily
have

(5:19) (1 fo(@, V)L, 0,128, 2)
S = pollwsy o 12l 0.0, )
+11Bo" By =1dll;_ o rpacss, IV @ N1y 0155, )
FIVBSBollp o @IVl s moaa o
I = Bollp oz, @ IV QL 7382, 00
Next, we have
(5.20) IVgo (@), 0,783, <))
SIVBlporis: ) IV Ol 0mms, )
I = Bolly oz, IV @l 087, 0
(5.21) H(Rv(w))t‘|L1(O,T;Bﬁ71(9))
Sl o.risg, @) 1Bl o oy @)

1 = Bollp o rmas, @l nyors:, @)
2. Of course divup = 0 implies that VPr = 0.
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In order to go further in the computations, we have to use Lemma 5.5.1 below
which implies that all the above multiplier norms are controlled by the norm
in B; /P, Therefore,

R oy + H(Rv(u?))tHLl(OT.Bn/p-l(m)

We also have (use that BZ /lp (K ) is an algebra, Proposition 2.1.3, and interpo-

lation):
||Rv(w)||L1(0,T;Bg’/lp(K)) < ||Id - B HL (0, T‘Bn/p K )||1DHL1(O,T;B;’/1P(K))
S/ 1/2||V’U|| OTB"/P(Q) (vaHLl(O TBn/p(Q))
+HwH OTB”/P 1( )))

and, because Bn/p 1/2((2) embeds in Lo, (),

1R ()| Ly (0,1L0m () < T = Boll Lo 0,750 @) 10N 2 0,7 L2 (02))
S VOl oz @l 03B P12 (@)
< T34V, (||Vw||

+||wH

1(0,T3B) P (2 Li(0,T3B)/P ()
Loo(0,T3B47~ 1(9)))
So plugging all the previous estimates in (5.18), we conclude that

19, VQ)  xp

< C’eCT(Hl - pOHM(B;’/f’_l(Q)) + HVZ_)HLl(O,T;B;/IP(Q))) ||(7I)7 V@)HX%

Therefore, if we take n > 0 so that € < 2 and assume that

then we have
IS 1, =
(5.23) 1V (@, VQ)llxz < 5|[(w, VQ) xz,
whenever
(5.24) 8C|| Vo, L(O.T:B"/?) <1 and T <.

In fact, if (5.24) is satisfied for 7= T, then one can get rid of the condition
that T < n: it suffices to split the interval [0, T] into subintervals [T}, T; 1]
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(i=0,...,k—1) of size at most 1, and to use the norm (with obvious notation,
see (5.10))

(@, VO)liz» - ZII @, VQ)llxz, .

Now the above argument leading to (5.23) applies on every subinterval
[T;,T;+1] and we end up with

_ oA L
(@, VO)lize = (@, VQ)ligo.-
T T
Then applying the fixed point theorem in XpT endowed with the norm ||| g»
T

ensures the existence of a solution (i, VP) in X% for (5.9). Note that by
construction we have,

(@, VP)| g» < 2|(ur, VPL)

I s

which yields Inequality (5.12). O

REMARK 5.2.1. — It is possible to extend the above proposition to other
regularity exponents. However, owing to the properties of the multipliers
spaces involved in (5.19), (5.20) and (5.21) we have to assume regularity in
intersection of Besov spaces and the computations become quite cumbersome.

The above proposition will enable us to establish the local-in-time existence
for (5.1). At the same time, it is not suitable for proving a global statement
as it does not provide any bound on the gradient of the constructed velocity
field in L1 (Ry; Bn/ ?(Q2)). In order to overcome this, we shall establish a second
existence result for the linear system (5.7), based on Theorem 4.3.3 so as to
discard the time dependency in the estimates.

We shall work in the subspace X7 of couples (u, VP) of X7 (see the defi-
nition in (5.10)) satisfying the additional property that

uweC([0,T]; BY (Q) and O, V?u, VP € L1(0,T; BY (),
and we shall set
(5.25) 1, VPl xpe = 1ty VPl + [, VP .
We agree that XP¢ corresponds to the above definition with T' = +o0.

PROPOSITION 5.2.2. — Let 1 < ¢ < p < 2n with ¢ <n/2 andp >n — 1. Let
v be a divergence-free vector field in C(R4; Bn/p 1(Q)) with v|gq = 0. There
exists a constant ¢ so that if

(5.26) | Vol| <c

Li(Ry;:BYPAB] 1 (9))
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and
(527) ||1 - pOHM(B"/lp—lmBO () <c

then System (5.9) with divergence free initial velocity ug € Bn/p 1(Q)OBSJ(Q)
satisfying ug - 7lgq = 0 has a unique global solution (u, VP) m XP4 and we
have for some constant C = C(n,p,q),

1@ VP)llxna < Clluoll oo

Proof. — The proof is similar to that of the previous proposition except that
it is now based on Theorem 4.3.3 to have time independent estimates. We
readily get for any m € (1, 00)

(528) H\I/(’lf)7 VQ)HXZMI < C(”Rv(w)HL1(RJr;Lm(Q)ﬁB;J(K)OB;Ly/lp(K))

10, VQ). V(). (RN 1, 5 o0 2y )
where K is a bounded subset of Q with d(Q\ K,09) > 0 (see Fig. 3.4).

In order to go further in the computations, we use Lemma 5.5.1 that implies
that all the multiplier norms in (5.19), (5.20) and (5.21) with (s,r) = (n/p —
1,p) or (s,r) = (0,q) are controlled by the norm in B;/lp. We get

||fv(w7 VQ)> ng(w)v (Rv(w))tHLl (Ry;B '"/1P—1QBO ()

S = pollygsrir-iape op 1Pl Ly @ prie-tase @)
+ 1By ~1d, B,"By ~1d, B0 WIVEBI BPTINRY ()
+11d = Boll, e, B HVQHIA(R%BS,/I"_IOBSJ(Q))
VB, V(Bo' Bolly e, im0 no  con | VOl L g/

+ ”(E’U)tHLI(R+;B;/P ”wHLoo Ry B"/P 1030 (Q))

Using also Inequalities (5.49) to (5.54) below, we readily get

< C(Hl B po”M(Bg/lp‘lmBO H HLI Ry BP I NBY ()

+ Hvz—’”m(&ﬂ?/f@))H(w’ VQ)HXM

1920l 5, 0, @) IVl 1y vy )
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Let us observe that, owing to 1 < g < n/2, the Besov space B;I(Q) embeds
in the Lebesgue space Ly, () with m = 4%
n (5.28). We get

IR (@i < M = Bollpa(@ssnoc@n 1@l s 1m0
(5.30) < Vol g, BP@ iz, @ 2 @)

Let us now bound R, (w) in Lj(R4; Bn/p( K)). We have

[ (@) S Hd =By,

S eIy s o)
S IIvel

@l

Li(Ry; B (K))
LRy B P (k)N Ly (R BYP ()

Because 33,1(K ) embeds in L™(K), it is not difficult to prove (just use the
corresponding inequality in R™ and some suitable extension operator) that

(531) 19000y S 190 g g + 1053,
Therefore
(532) ||RU(/ID)||L1(R+7B;/1P(K))
5 HVE”LI R B”/P(Q) (Hw||L1(R+;BZ + ”VUJH R B"/P( )))

Let us finally bound R, (w) in Lq(R4; B 1(K)). We use the fact that, because
K is bounded and ¢ < m,

(5:33)  [[Ru(@)] 51, (0) 1B (@) |2, ) + IV (Bo (@) g0 | (1

1B (@) |2, () + IV (Bo (@) 5o | (5

The first term in the r.h.s. may be handled according to (5.30). We decompose
the second one into

S
S

V(Ry(w)) = (Id — B,)Vw — VB, w
and use (5.48). Combining with the results of Section 5.5, we end up with
IV (Bo (@), =80, ()
N ‘|V6|’L1(R+;B;/1P(K Vol 2, @y 580, (50))
2 _
IV 5,0, 0 9
Again, one may use (5.31), and the fact that

630 IVl o) S 10l + 10052, 00y S 19052 oy
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owing to the boundedness of K. So finally

(5:35) | Bo(@)|[L, (=81, (1))

S Vol ) T IVl

Ll R+ Bl ﬂBn/p(Q) (HwHLl R+7B1 R B"/P( )))
Plugging Inequalities (5.29) to (5.35) in (5.28), we end up with
1 (@, VQ)| xr.0

S C<H1 - p0|’M(B:7/1p_1ﬂBg’1(Q) + HVUH R+ Bn/mel (Q )H(u_]?VQ)HXp‘q

Therefore assuming that ¢ is small enough in (5.26) and (5.27), we conclude
that
oA | —
1 (@, VQ)lixra < SlI(@, VQ)llxra.

Applying the fixed point theorem in the Banach space XPY completes the
proof of Proposition 5.2.2. O

5.3. Local-in-time existence

This section is devoted to proving local-in-time existence for System (5.1)
with slightly nonhomogeneous density and arbitrarily large initial velocity
field. Here is the main statement:

THEOREM 5.3.1. — Let p € (n—1,2n) and uy € Bn/p 1(Q) with divug =0

and ug - 7ilpg = 0. Assume that pg € M(B, n/p 1(Q)) and that, for a small
enough constant c,

(5.36) 11 <ec

= 0l i1

There exists T > 0 such that System (5.6) has a unique solution (u,V P) in
the space X1 defined in (5.10), with

1@,V P)llxp. < Clluoll grgp-r-

Proof. — We consider the map
T:(0,VQ)+— (a,VP),

where (@, V P) is the solution to (5.9) with ¥ defining B,, constructed in Propo-
sition 5.2.1.
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We claim that 7 is a contraction in some suitable closed ball of X% with
sufficiently small T'. As we aim at considering large initial velocity ug with
critical regularity however, we take a ball centered at the solution (ur, VPr)
to the homogeneous Stokes system (5.16) (that satisfies (5.17)). Then we focus
on the discrepancy to (ur, VPr), namely

(W, VP) := (i —ug, V(P — PL))
and N

(v, VQ) :== (v —ur, V(Q — Pr)).
The couple (w, VP) satisfies the following modification of (5.9) (if u = 1 for
simplicity):

Ot — AU+ VP = f,(W,VP) + fo(ur,VPy) in  Qx(0,T),
(537> iilva = gv(ﬁ) + g’l}(uL> in Q X (07 T)7
oo =0 at  0Q x (0,7),
ﬂ|t:0 =0 at Q.

Thanks to Proposition 5.2.1 we are ensured that solutions to (5.37) exist at
least on a short time interval [0, T}, so far as

T
(5.38) /0 90y <

We claim that there exists R > 0 and 7" > 0 (depending only on wuy,) so that
the map

(5.39) T : (3,VQ) — (4, VP)
is a contraction on B X7 (0, R). Indeed, applying Theorem 4.3.1 yields
1@, VP)lxz
< O (117, V), Vo @), (Ro@)) | 0 7071 )
1 ulua VPL), V), (Rowr)e) |y, o1

+ ||R’U (ﬂ)HLl(O,T;LG(Q)ﬂB;/lp(K)) + ||RU(UL)||Ll(O,T;LQn(Q)ﬂBZﬁp(K))) :
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Thus, arguing as in the proof of Proposition 5.2.1, we get
(5.40) 11(5, VP)ls

< ceCT[<||1 = ool a1y T IV 0, T~B"“’(Q))>

< (16 Vg + 100z, V2ur, VPLI gt o)

+(1/? +T3/4)HV@IILI(O,T;B"{”(Q))

x (18 well o sy + 198 Vel Lo pipcan)

+ [lucll Vo]

Lo (0,787 () | Lz(o,T;BZ,ép”(Q)J '

This may be obtained by using (5.19), (5.20) and so on for f,(ur, VPr), gy(ur)
and R, (ur). The only difference lies in the use of (5.21) : we now write that

||(RU(UL))t‘|L1(O,T;B;,/1p71(ﬂ) ~ ||ULH OTB”/P ||v/UH OTB”/P 1(9))

| Gpurl, oVl

(0,138 P 1(0,T3B) P ()"

Bounding the first term in that way is important as we need to show that it
is small when T goes to 0, even if the initial velocity is large.

Now, if we assume that e“” < 2 and that ¢ in (5.36) and (5.38) is small
enough, Inequality (5.40) and interpolation imply that

(@, V)l

1 _ ~
S 7(“(”7VQ)||XIP.‘ + HatUL,VQUL,VPLHLl(O’T;B;L/lpfl(Q))

T (sl oty + IV 0L g )

+ Cllu]] \VUH

Loo (0,581 () ’
+ Cl[Vur||

Ly (0,T3B)1P ()

o]

Ly (0,158 57 (@) W Lo (0,158 47 ()

@ and T fulfilling in

It is now clear that if one takes R = 2cC'|luo| 5n/p-1
p,1
addition

|Opur,, V? ur, VP, +1Y 2(HULH

(0,738 (9) 0o (0,581 ()

Vsl + ol -1 |tz |

10T B”/P( Q) ) L1(0,T§Bgﬁ/1p(ﬂ))

S ”7||UOHB;7'/1P—1(Q)
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for a small enough 1 > 0, then the above inequality implies that, whenever
(5, VQ)llxp < R we have |[(@ VP) |z < R, too.

In order to prove that the map 7 is a contraction if T is sufficiently small,
let us consider two data (v, VQp) and (ve, VQ2) in EXg(uL,R), and set
(ui, VP) = T (v;, VQ;), i = 1,2. We also use the notation f; := fy,, gi := gu,
and R; := R,, for i = 1,2. Then we may look at

(0u, VOP) := (ug —u, V(P — P1))
as the solution to the following evolutionary Stokes system on [0,7] x € :

Bi0u — Adu+ VP = fo(ta, Vo)~ f1 (i1, VP1) + faur, VP)— fi(ur, VPL),

divdu = go(ug) — g1(u1) + g2(ur) — g1(ur)
= div (RQ(&Q) — Rl(?jl) + RQ(UL) — Rl(uL)).

Therefore, applying Theorem 4.3.1 implies under the small time condition of
the previous step

(5.41) Il(du, V(SP)HX:;;
< O(Ilfeliiz VB = Al VPO e
+ [[f2(ur, VP) — fi(ug, VPL)||L1(0,T;B;/1”‘1(Q))
+ lg2(u2) — gl(ﬂl)HLl(QT;B;ﬁp(m)
+llg2(ur) = g1 ()l o 7,570 @)
(R (@2) = Ra(@)ell 1, o e
+ [|(Ro(ur) — Ru(ug))
+ [ (uz) — R ()

t HLl(o,T;B;i/f”1 ()
H L1(0,T;L2y (Q)ﬂB:ﬁp(K))

+ I Re () = RaG@L)l 1, 0,11, e o)

Keeping in mind that both v; and vy satisfy (5.38), we may bound the right-
hand side as follows:
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e Term fo(ug, Vﬁg)—f1 (uy, Vﬁl). — We rewrite this term as (with B; := B,,
for i =1,2):

Fo(Ua, V) — f1(Tir, VP)

= (1 — po)dydu + div ((B2"By — B1'B1) Vi)
+ div ((Bi"By —1d)Véu) + 1(By — Bo)VP + (Id — By)VéP.

Hence, using Lemma 5.5.1 and (5.51), (5.52), (5.53),
HfQ(ﬂ% VPQ) - fl(ah vPl)HL (0, T.B”/P—l(Q))

S/ Hl - IOUHM B”/P—l(Q) HatéuH OTB"/p L))

+(IViel + VB Vool ,

L0738 () ) 10,7877 ()

+ IVeP|,

1(0,T3B1P ()

+ Vo]  (IVu]

L1(0.T:B7,7 () L1(0.T:B2/7 () 1(0.T: B0~ 1(Q)))

Above we used Inequalities (5.56) and (5.57).

e Term fo(ur,VPr) — fi(ur, VPr). — Because
fQ(UL, VPL) - fl(uL, VPL) = div ((BQTBQ — BlTBl)VuL)) +T(Bl - BQ)VPL,
we readily get

Hf?(uLav-PL) fl(uL)VPL)H OTB”/P 1(9))

< (IVusll, +VEL, ) IV

1(0,T5B]P () (0,58 Ly (0,T;BP ()

e Term || g2(tz) — g1(u1)]l, LOTBYP@) We write
g2(Ua) — g1(tty) = (Id = TBy) : Vou + 1(By — By) : Viia.
Now, because B / P (Q) is an algebra, we readily get, by virtue of (5.51),

HQQ(UQ) - ‘gl(ul)HLl(O,T;Bg/p < ||V5U|| OTBn/p Q) ||VU2||L1 OTBn/P(Q))

+{[ Vo] IVoul]

Li(0.T;:B P () Li(0.T;:B) P ()

e Term ||ga(ur) — Because

g1r)lly, o, BrP@Q)

g2(ur) — gi(ur) = T(By — By) : Vg,

we get

HQQ(UL) — g1 (UL)HL1(O,T;B;’/1P(Q)) S.z HV(SUHLI(QT;B;/IP(Q HVULH 1(0,T; B”/P(Q))
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o Term ||(R2(u2) — Ri(u1)):]] — We use the fact that

L (0T3P (@)
(Ra(ug) — Ry (u1))e = —(B1)0u+(Id — By)0ydu+ (By — Ba)iug+ (B1 — Bg) 0.
Hence using (5.51), (5.54), (5.56) and (5.59),

H(RQ(IZLé) - Rl(ﬁl)) HL (OTB’”/P 1(9))

< ”VU1|| OTBn/p(Q) (H(SUH OTB"/P 1 + ”at5u|| OTB”/P 1(9)))
(HWH o (0,T5B2P 7 )+ 10w, (0,75 B0/ P )))”VdU”Ll(o,T;Bg/f’(Q))'
o Term ||(Rz(ur) — Rl(uL)) HL OT:Brr @) We just have to write that

(Ro(ur) — Ri(ur))e = (B1 — Ba)ur, + (B1 — B2)Osur,.

If we proceed as for bounding the previous term then we get the term

Jucll, (01571 () in the r.h.s. that does not need to be small for 7' going
oo w0 p,1

to 0. Hence, we proceed slightly differently: we apply (5.59) with s =n/p—1
in order to bound the term (B; — Bs);. We eventually get

IRa(ur) = RaCua )l 000y

5 HuLHLZ OT.B"/I’ Q )HV6'UH OTBn/p 1(9))

+ 1G], ALK

OB (0,138 P ()"
e Term HRQ(&Q) -

ing expansion:

Ry <u1)HL1(O,T;LQn(Q)mB:ﬁ”(K))' — We start with the follow-

Rg(ﬂg) — Rl(ﬂl) = (Id — Bl)éu + (Bl — Bg)ﬁg

Then applying Hoélder inequality, embedding and interpolation inequality as
in the proof of Proposition 5.2.1,

| Ra(t2) — Ra(u1)ll 1, 0,7: 000 (€2))
SVl 07 Lo @) 10U Ly (0,720 ()
+ Vvl 2, 0.7 Lo ) 12| 21 (0,7 L0 (90))

ST (1901l g, g s | O VP

I8l s | e TP )
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For bounding the norm in L;(0, T} Bgy/lp (K)), we just use the corresponding
norm on the larger set €2 and write that

1o (ti2) = Ba (@l o i)

N val”Ll(O,T;B”/lp(Q H<5u||L1 (0,7;B1P (%))
+ HV&)”L (0.T;:BP(9) Huz”L (0.T:BMP(9))

+ HV(5UHL1(0,T;B§,/1P(Q))H(ﬁz, V)| xz)-

e Term |Ra(ur) — — We have

Rl (UL) HLl(O,T;L27L(Q)OB£/IP(Q))'
Ry, (ur) = Ry, (ur) = (B1 — Ba)ur
Hence arguing as in the previous item, we get

1R2(ur) = R ()| Ly 075L0n () S T V60| L (075000 | (s VL) I x5

and
HRQ(UL) - Rl(uL)HLl(O’T;Bg’/IP(Q)) T1/2||V(SUH 1(0,T; B”/P )H(u[n VPL)HXg

Putting all the above inequalities in (5.41), using the definition of the norm
of er,’w and the fact that 7" is small eventually yields

1(0u, VOP)||x»
5 (”1 pOHM(B”/P 1 () + HV/UIHL (07T;B;‘/1P(Q)))||(5U7V5P)HX¥

(T1/2”u0|| '"/P—l(ﬂ) + ||uL||L (0, T.B”/P(Q))

+Vuell, + l|0rurll,

1(0,T5B1P () L(0,T5BMPTH (@)

IV P it g + 2 VP ) |50, T5Q) -

Now, according to (5.36) and (5.38), the first term of the r.h.s. may be ab-
sorbed by the Lh.s. As the factor of ||(dv, VéQ)| xz becomes less than R as T
tends to 0, we conclude that the map 7T is indeed a contraction on B X (ur, R),
if T"and R have been chosen small enough. This completes the proof of exis-
tence.

Proving uniqueness or the continuity of the flow map stems from similar
arguments. The details are left to the reader. Theorem 5.3.1 is proved. O
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REMARK 5.3.1. — Let us emphasize that the smallness of || 1—p0||M(Bn/1p71(Q))
is completely independent of the largeness of the velocity data. n effect,
it is only needed because 1 — py appears as a factor of u;. As pointed out
in [17], this allows to consider discontinuous initial densities of the type
po = c1la, + c2lag with Ap any uniformly C! domain, provided |ca — ¢1] is
small enough.

REMARK 5.3.2. — Theorem 5.3.1 also holds for the original system (5.1) in
Eulerian coordinates. In the functional framework we used, the two formula-
tions turn out to be equivalent whenever the velocity satisfies (5.11) (see the
Appendix of [17] for more details).

5.4. Global in time existence

This section is devoted to proving the main result of this chapter for the
inhomogeneous incompressible Navier-Stokes equations (5.1), which is the fol-
lowing global in time existence statement.

THEOREM 5.4.1. — Assume that 1 < ¢ < p < 2n with ¢ < n/2 andp > n—1.
Let ug be in B;{pil N BS’I(Q) with divug = 0, ug -7 = 0 at the boundary.
There exists a small positive constant ¢ such that if

(5.42) Hpo—lHM( <c and ||lu| .21 . < cp,

Bh 0, @)
then System (5.1) has a unique global solution (p,u,V P) satisfying
Lnq .
peC([0, T M(B,, N By,(2))

and (u, VP) € XP1 (see the definition in (5.25)). Besides, there exists some
constant C so that

I VP)lxoa < Clluollzg o e
Proof. — The idea is to apply the global maximal regularity estimate for
solutions to the Stokes system in exterior domains (namely Theorem 4.3.3) so
as to get a global-in-time existence result for small data. As usual, we restrict
to u = 1. We have already established, under smallness conditions (5.26)
and (5.27) the existence of the solution map

(5.43) T:(,VQ) — (a,VP)

to System (5.9), from the subset of X9 with v satisfying (5.26), to XP1.
Hence, in order to complete the proof of the theorem, it is only a matter
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of exhibiting some positive R so small as (5.26) to be satisfied, so that T
maps the closed ball By».q(0,R) into itself, and is contractive. In light of
Proposition 5.2.2, we have

1@ VP)llxna < Clluoll oo

Hence one may take R = CHuoHBn/lpquol(Q) if ||u0HBn/1p71 is small
P, q, D,

enough (in order that [|(7, VQ)||xre < Clluoll gn/p—1
p,1

mBg’l(Q)

B () implies (5.26)).

Let us now go to the proof of contractivity. Using the same notations as in
the proof of Theorem 5.3.1, we have

{ 815(5’& — Aéu + V(SP = fg(UQ, VPQ) — fl(ul, VPl),
divdu = ga(uz) — g1(u1) = div (Ra(uz) — Ri(u1)).

nﬁ%q, we thus get

Applying Theorem 4.3.3 with m :=

(5.44)  [|(6u, VOP)| xra S || R2(uz2) — Rl(ul)||L1(R+;Lm(Q)mB;I(K)QBZ/IP(K))
+ 1 fa(--+) = fi(--+), g2(u2) — g1(ur), (Ra(u2) — Rl(ul))t)||L1(R+;B;/1”_1ﬂ]32l(ﬂ))'

Following the computations of the proof of Theorem 5.3.1, we readily get

[ fa(uz, VP,) — fi(u1, VP1), g2(u2) — g1(u1), (R2(u2) — Rl(ul))t)||L1(R+;B;,/1P*1(Q))

S H]' - PO” '"/P*l(Q H8t6U|| 1(Ry B"/P 1(9))
(||VU2H R B”/P + ||VP2H R Bn/p 1(Q))
+ ||U2HL (]R .B;,/lp 1 + HatUZH R B"/P 1(Q )||V5UHL1 R+ B"/P(Q))
+ ||VU1,VU2|| R B"/P (HV(SU’HL (R B"/P Q) + ||V5PH R B"/P 1(9)))

Next, let us go to the proof of estimates in L (Ry; ngl(Q)) for fa(uz, VP2) —
fi(u1, VPp). Again, we use the decomposition
fa(ua, VP2) = fi(u1, VFy)
= (1 — po)0ydu + div ((B2"By — B1'B1)Vuy)
+ div (B1"By — 1d)Véu)
+T(B) — By)VP, + (Id — TB;)V4P.
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We further write that
| div ((Bo"By — Bi'By)Vus) || B0 ,(@)
< |(B2"B2 — Bi"By) ® VZUzHBg ()
+ IV (B2"Bz = Bi'B1) @ Vuallgo (g

Hence, using Lemma 5.5.1 and flow estimates in Section 5.5, we get

(5.45) | div ((B2"B2 — Bi"B1)Vuz) | 1, g 50 ,(@)
SNVl g, @IVl oy
+ ||VU’2H 1(Ry B"/P(Q))

% (19%8011 a0, ) + 12000, ) IV00 i)
Similarly, using that
| div ((B1"By —1d)Véu) || 5,
< IV(B"B1) @ Véul o o)+ (B Br = 1d)V6ul| go (),

we get

(5.46) | div ((B1"By —1d)Vou| Li(B 550 (@)

< Hv21)1HL1(]R+ B0 Q))HV(SUHLl (R B"/l"( )

+ val "Ll(R+;B;17/1p(Q)) Hv 5“”[,1(]1{%3271((2))'
Bounding the last two terms 7(B; — Bs)V P and (Id — TB;)V§P also follows

from Lemma 5.5.1 and estimates for the flow. As it is totally similar to the
above terms, we do not provide more details. We eventually get

| f2(u2, VPy) — fl(uhvpl)||L1(R+;BSY1(Q))
N POHM(BQJ(Q))Hat(SUHLl(RJr;Bgl(Q))
+ (IVuzll, @, 1 @) + 1V P2l ysm0, @) IV, o snimay)
IVl e mrr@p IVOP Ly, @)

2 .
IVl e V70Ul g, o)
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Bounding g2(u2) — g1(u1) is the same. As for (Ra(u2) — R(uy)):, we write

(Ra(u2) — R(u1))e
= —(Bl)téu + (Id — Bl)é?tdu + (Bl — BQ)t'UQ + (Bl — Bg)atUQ.

Given that the product maps B /p(Q) X BSJ(Q) in Bg’l(Q), one may proceed
exactly as in the proof of Theorem 5.3.1. Indeed, all the terms pertaining to By
or By just have to be bounded in spaces L1 (R ; Bn/p(Q)) or Loo(Ry; Bn/p(Q)).
We end up with

HR2(U2) - Rl(U1)HL1(R+;Bg’1(Q))
S ||V711HL1(R+;B;/IP(Q)) (H5U||LOO(R+;B;1(Q)) + ||at5“HL1(R+;BgJ(Q)))
+(HU2||LOO(R+;331(Q)) + ”6tu2HL1 (R4;BY (Q)))\|V5UHL1(R+;B;1(Q))-
Let us now bound Ra(uz) — Ri(uq) in Ly (Ry; Bn/p( K)). Recall that
(547) RQ(UQ) — Ry (ul) = (Id — Bl)éu + (Bl — BQ)UQ.
Hence, using that Bg /1p (K) is an algebra, one may write that
1o (u2) = Ba(ui)ll, g, 5re (i)
S AVl

R Bn/p(K)||5u”L1(R+ "/P( ))

+ Jluall, Voo

1 (R;BF (K) ” Ly (Ry;Bl P (K))"

Then using (5.31) enables us to get
||R2(U2) Rl(u’l)H ]R B /P(K))

‘vleLl R, Bn/P () (HV(SUH (R4 B"/P( + H‘SUHLl R+-B§71(Q)))

~ ‘

(”vu2” LRy BH/P( +Hu2||L1(R+;BQ )||V5U|| 1Ry Bn/P( K))'

Let us finally bound R (uz) — Ryi(u1) in L1 (Ry; Lin(Q) N By (K)). We shall
use again that, according to (5.33),

[1Ra(ug) = Ri(ui)ll 1, Ry 5L @B, (1)
S [[1Ra2(u2) = Ra(wi)lly sz ) + 1V (R2(u2) = Ri(wi)ll, w50, (x)-

For the first term, using the decomposition (5.47) and the bounds for Id — B;
and By — By in Section 5.5, we find out that

[ Ra(u2) — Ri(u)ll, s Lm©) S VUL LR Lo ) 10U 2y (R4 2 ()

+IVOull Ly Ry Loo @) 142 ]| Ly (R Lo ()
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whence, using the embeddings Bg/lp(Q) > Loo(€2) and Bil(ﬂ) — L (),
[ R2(uz2) — Ri(u1)l| L, (R 5Lm (@)
SVl @, @ 19U, @82, @)
IVl a2l @y oy
Finally, differentiating (5.47) with respect to y yields

V(Rz(uz) — Ri(u1))
= —-VBdu+ V(Bl — BQ) ug + (Id — Bl)V(Su + (Bl — Bg) Vus.

We have (see Section 5.5)

IV(B1)oulln, ®y;80 , (0)) V201l 30 (56)) ”5“HL1(R+;B§/$(K))’

AN AN

V(B — B2) uQHLl(R+;Bg71(K)) ||V5/U||L1(R+;B;"/1P(K)) ||vu2||L1(]R+;B2’1(K))7

||(Id _Bl)V6u||L1(R+;B2,1(K)) S/ ||Vv1HLl(R%BZ’/lP(K))||V5UHL1(R+;BS71(K))’

A

I(Br = B2) Vuzllz, ®y;50, (1)) S HVUQHLl(RjL;BSJ(K))||V5UHL1(R+;B;/1P(K))'
Therefore, using (5.34),
IV (Ra(u2) = Ba(ui))lny my 80, (0))
S IVl g, @ 10Ul Ly @iz, @)
2 , :
+ ||V U1||L1(R+;Bg’1(ﬂ)) (HV(SUHLl(R_HBg’I(Q)) + ||V5UHL1(R+;BZ/1”(Q)))
2 .
+ (IV°00llp, g ) + VOVl i)
8 Hvu2HLl(R+;B§,1(Q)ﬂB;,/1P(Q))'
Plugging all the above estimates in (5.44), we conclude that

|(0u, VOP)| xp.a
S w2, VQ2)l|xr.al| (60, VOQ) || xp.0
+ (Il(w1, V@)l xpa + [(uz, VQ2)llxra + [[(v1, VP1)| x70
+ Hl - IOO"M(BS’IQBQGP(Q))) H(éu’ V(SP)HXP"?'
It is now clear that if R and pg have been chosen so that

2(H1 - pOHM(Bg’mB;ﬁP(Q)) + CR) <1,

then the above inequality entails that

(6w, VP xra < Kl|(6v, VOQ)|| xtpa
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for some k < 1 whenever (v, VQ1) and (vg, VQ2) are in Bxr.q(0, R). This
completes the proof of the global existence. The proof of uniqueness is similar
to that of contractivity. The details are left to the reader. O

5.5. Estimates of nonlinearities

In this section we establish a few estimates for nonlinear terms in Besov
spaces. First, let us give some insight on the structure of the multiplier spaces

M(B3 ).
LEMMA 5.5.1. — The following inequality holds true:

. . < .
ull jaczs , )y + el pago )y S HUHB;’/lp(Q)
whenever 1 < p < oo, —min(n/p,n/p') <s<n/p and1 < q < .

If in addition max(p, q) < n then we also have
HUHM(B;,I(Q)) S HUHB;/lp(Q)-

Proof. — For the first item, it suffices to establish that the product maps
B;l(Q) X Bg/lp(ﬂ) in B;l(Q), and Bgyl(Q) X B;/lp(Q) in Bg’l(Q). Our definition
of Besov norms by restriction allows us to consider only the case 2 = R".
Then the result is sort of classical. Note that the result for M(B;;(R")) has
already been proved in Proposition 2.2.1. As for M(Bg’l(R”)), one may use
continuity results for the paraproduct, and functional embedding. Indeed, we
have wv = T,v + R(u,v) + Tyu, and
— T maps Bg’/lp(R") X Bg}l(R") in Bgl(R”) (as Bg’/lp(R") embeds in
Loo(R™)),
~ R maps BI/P(R") x BY (R") in BY(R") as n/p+0 > nmax(0,1/q -
p), _ _ _
— T maps Bf;,l(]R’?) X Bg’/lp(R”) in B | (R™) (use first that B, (R") is em-
bedded in BI/Y UR") if ¢ < p).
In order to prove the last item, we use the fact that 7" and R map Lo (R™) X
B(}’l(]R”) in Bil(R”), together with the embedding of B;L’/lp(]R”) in Loo(R™),
and also that 7" maps B;l(R”) X BZ/IP(R") in B;yl(R"), if max(p,q) <n. O

Let us finally prove some useful ‘flow estimates’. The important fact that

we shall use repeatedly is that, as a consequence of the above lemma, the space
BP

o1 (€2) is a (quasi)-Banach algebra (and of course so does B; /1p (K)). Hence
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if fg Dv dr is small enough, a condition that will be ensured by the smallness
of the data, then one may just write

(5.48) / Dv d’T
I<:>0
Therefore, if ||Vo|| L, 0,7;0..()) < 1 then Id — By € Loo(0,T; Loo(R2)) and

= ||V17HL1(0 T;Loo ()
5.49 Id — B, ) < ek AR .
( ) [ HLOO(O,T,LOO(Q)) =7 ||VUHL1(0, ()

Likewise, since B / F(Q) is a quasi-Banach algebra, there exist two constants
¢ =c(n,p) and C = ¢(n, p) such that if

(550) HV@HI/l(O,T;B;/lp(Q)) < C,
then

Let us emphasize that we have
Dyo(t,x) = Dyo(t,y) Bu(t.y) = Dyolt,y) S / D,B(r,y) dT) .
k>0

Hence Condition (5.50) holds simultaneously for v or v (up to a harmless
change of ¢), a fact that we used freely and repeatedly throughout this chapter.

Note also that, as
Id - B,”B, = (d — B,)("B, —1d) + (Id — B,) + (Id - TB,),
we also have, under Condition (5.51),

(5.52) |1d — B,”B, I, <C||vaol,

0o (0,T5B1P (2)) 1(0.T:B2P ()
Similarly, by taking the gradient of (5.48) and using

V(B,"B,) = VB, B, + B,V("B,),
we find out that for (s,r) € {(n/p —1,p),(0,q)}, we have

(5:53) IVBully 8,0 T IVBo Bl 08,0

2_
SV UHLI(O,T;B;I(Q))'

Finally, by taking one time derivative of (5.48), we get
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In order to prove stability, we need some estimates on By — B; where B; := Evi
for i = 1,2. The starting point is that, owing to (5.48), we may write if both
vy and vy satisfy (5.50), the following identity (3):

By~ B = Z((—/(:szdr)k—(—/OtD“dT)k)

(5.55) = /Davdr ZZ /DUQdT A(—/[)tDvldT)k_l_j.

k>17

Therefore Lemma 5.5.1 guarantees that we have for all positive t,
(5.56) (B2 — Bl)(t)HBgﬁl(Q) S ||V5UHL1(0¢;B;1(Q))

whenever 1 < p < oo and —min(n/p,n/p’) < s <n/pif r =p, or with s =0
and r € (1, 00).

Note that because
By'By — By'By = (By — B1)'By + B’ (By — By),
we also have, for the same couples (s,7) as in (5.56),
(5.57) H(B2TB? - BlTBl)(t)HB;’l(Q) S ||V5U||L1(o,t;3g7l(9))-

Next, we want to estimate D(Bg — By). Differentiating (5.55), we get

k
D(By — By) = /D%SMTZk( /Dvng

k>1

+kz>2 k( /OtD%l dT)( /0 tDévdr) ki:: (— /O "D, d7>j(_ /O ‘Do, dr)k

J]=

1
—2—j

Hence, still assuming (5.50) for v; and vy, and using Lemma 5.5.1,

(5.58) [IV(B1 = B2)()l gs , ()
S HV25U||L1(0¢;B;1(Q)) + ||V2U1HL1(0¢;Bs )||V5U|| OtB"/”( Q)

3. Rigorously speaking (5.55) is not quite correct for the different matrices involved need
not to commute. From the point of view of a priori estimates, everything happens as if they
did, though.

SOCIETE MATHEMATIQUE DE FRANCE 2015



122 CHAPTER 5. INHOMOGENEOUS FLOWS IN EXTERIOR DOMAINS

Finally, taking one time derivative of (5.55) yields

t _

D(B; — B) = —Dév kzzlk(_/o D’l_)zd’l')k '
t k t j t k*?*j
+Zk;D61(/O DévdT)Z(—/O D@2d7> (—/0 Dz‘;ldr) -

k>2 =0

[\

<

Hence,
(5.59) 10(B1 = B2) () s o)

S ||V5/U(t)||Bﬁyl(Q) ||V/l72HL1(O,t;B;,/1p(Q)) + ||v®1 (t)||Bﬁ7l(Q) ||V5U||L1(O,t;B;7/1p(Q))'
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CHAPTER 6

THE LOW MACH NUMBER SYSTEM

The last part of the present memoir is dedicated to the analysis of a limit
system for the Navier-Stokes-Fourier equations that may be derived in the low
Mach number asymptotics and has been studied recently in [14] in the whole
space setting (see [12], [25] for older related results). This system is a non-
linear coupling between a Stokes-like system and a heat-like equation. As a
consequence of its derivation, the divergence of the velocity is determined by
the heat flux and is thus nonzero if the fluid is heat-conductive. In contrast
with the previous chapter, the full system is of parabolic type in the Eule-
rian coordinates framework. Hence it is not helpful to switch to Lagrangian
coordinates to solve the system by means of the Banach fixed point theorem.

We here aim at extending the results of [14] to the case where the fluid
domain is an exterior domain of R™ with n > 3. To simplify the presenta-
tion, we shall concentrate on the proof of global-in-time solutions with critical
regularity. In passing, we will establish a new regularity result for the heat
equation with Neumann boundary condition in exterior domains, which is of
independent interest.

6.1. The system
We aim at investigating the following type of systems:
B(9)(0y0 +u-VI) — div(k()VYI) =0 in Ry xQ,
p(N) (O +u-Vu) — divr+ VP =0 in Ry xQ,
divu = a(v) div (k(9)VY) in Ry xQ,

with 7 := pDu + A\(divu)ld, where Du stands for (twice) the deformation
tensor of the fluid, that is Du = Vu + TVu. We suppose that p (the density of
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the fluid) and also 8, A, i, k and a are given smooth functions of ¥ satisfying
k>0, p>0, >0, pu>0 and A+ 2u>0.

This type of system may be derived in the low Mach number asymptotics
in the large entropy variations regime (see e.g. [14, 37| and the references
therein). For simplicity, we here consider only perfect gases. Then we have
for some reference positive constant pressure Fj,
0
p(0) = RO’
with R > 0 and v > 1.

v—1
7P

309) = Cop(9) = 7 Rold) and a(9) =

We here focus on small perturbations of some constant positive reference
temperature, that we can normalize at 1. Setting 6 := 9 — 1, VQ = V(P +
Adivu), and keeping the same notation for the functions 3, p, k£ and p, ex-
pressed in terms of 0, we eventually get

B(0)(00 +u-VO) — div (k(0)VE) =0 in Ry xQ,
(6.1) p(0)(Ou +u - Vu) — div (u(0)Du) + VQ =0 in Ry xQ,
divu = a div (k(0)V0) in Ry xQ.
We supplement System (6.1) with the boundary constraints
(6.2) ulr, xo0 =0, 0zf|r, xo0 =0 at Ry x 09
and the initial data
(6.3) ul—o = up, Ol = o in Q,

interrelated through the compatibility condition divug = adiv (k(0y)VHp).

Scaling arguments similar to those of Chapter 5 suggest us to use a func-
tional framework in which the temperature has one more derivative than the
velocity. Besides, in order to have some control on the conductivity and vis-
cosity coefficients (that may depend on the temperature), we need 6 to be at
least continuous. Keeping our maximal regularity results in mind, this eventu-
ally leads to consider the initial velocity ug in the space B; /lp ~! and the initial
n/lp

(relative) temperature 6y in pr with n/p — 1 close to 0.

Looking at the structure of the linearization of System (6.1), we see that
we have to deal with the heat equation and the Stokes system with some
non-divergence free constraint. Therefore, the full system is of (generalized)
parabolic type and using the Eulerian coordinates will enable us to show the
well-posedness by means of the Banach fixed point theorem (in contrast with
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Chapter 5 where we had to switch to the Lagrangian coordinates). Note that
the coupling between the temperature and velocity equations is rather harm-
less: once € has been determined as a solution to a transport-diffusion type
equation, the velocity may be controlled almost as if solving the homogeneous
incompressible Navier-Stokes equation. The dependency of divu with respect
to 6 will turn out to be compatible with the statement of Theorem 4.3.3.

Before starting our investigation of System (6.1), we have to establish a new
maximal regularity result concerning the heat equation in exterior domains,
in the spirit of [20], but for Neumann boundary conditions. Besides, as we

plan to handle initial temperatures in B,; /1p with n/p close to 1, we will have
to prove regularity estimates as well.

6.2. The heat equation with Neumann boundary conditions

The starting point is the following result in the whole space (see e.g. [6]).

THEOREM 6.2.1. — Letp € [1,00] and s € R. Let f € L1(0, T} B;yl(R”)) and
ug € B;l(R”). The system

up — vAu = f in (0,7) x R™,
U = UQ on R™

has a unique solution u in
C([0,T); B3, (R™)  with Oy, V*u € L1(0,T; B (R™))
and the following inequality holds true:
2
HUHLOO(O,T§B;’1(R”)) + ||ut7 I/V UHLI(O’T;B;J(RTL))

< C(HfHLl(O,T;B;l(R")) + H“OHB;J(R"))'

6.2.1. The heat equation in the half-space. — The purpose of this
paragraph is to extend Theorem 6.2.1 to the half-space setting : we now
consider

u —vAu=f in (0,7) x R,
(6.4) Opptlz,—0 =0 on (0,7) x ORY,

U= = uo on R7.
As we are looking for solutions u such that

(6.5) we C([0,T); B (RY)),  up, V2u € Ly(0,T; B (RY)),
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we expect Vu to be in the nonhomogeneous space L2(0,T; By 1(R%)) (by in-
terpolation) and the trace of Vu at (0,7") x JR! to be thus defined (see Propo-
sition 2.2.4). Therefore, we just have to solve in the sense of distributions the
first and third equations of (6.4) in the class of functions u satisfying (6.5)
and having null trace at (0,7 x OR}.

The rest of this paragraph is devoted to proving the following statement.

THEOREM 6.2.2. — Let ug € B3, (R?) and f € L1(0,T; B3 (R%)) with p €
[1,00) and s € (=14 1/p,1/p). Then (6.4) has a unique solution u satisfy-
ing (6.5) and the following inequality is valid:

2
(6.6) HUHLOO((),T;B;J(Rﬁ)) + [lug, vV u”L1(07T;BZS’71(Ri))
< C(HfHLl(O,T;B;’l(Ri)) + ||U0HB;’1(R1))’

where C is an absolute constant with no dependence on v and T'.

If in addition Vugy € B;’I(RZ_) and Vf € L1(0,T; B;’I(R’j_)) then Vu satis-
fies (6.5) and we have

3
(6.7) HVUHLOO(O,T;B;J(RQL)) + [Vug, vV UHLI(QT;B;J(R@)

< C(vaHLl(O,T;B;’l(RZ;)) + ||VU0HB;’1(R1))-

Proof. — Let ug and f be the symmetric extensions over R" of uy and f.
Because —1 +1/p < s < 1/p, we have ug € By ;(R"), f € L1(0,T; B, ;(R"))
with (see Corollary 2.2.1)

lollgy ) = Mol ryy - and W1z, msmg o) = I o sy ey

Let @ be the solution given by Theorem 6.2.1. As this solution is unique in
the corresponding functional framework, the symmetry properties of the data
ensure that u is symmetric with respect to {x,, = 0}, and thus vanishes there if
it is smooth enough. Arguing by density, we gather that 9, u|,,—¢o = 0 under
the regularity assumptions of the theorem.

Now, we observe that the restriction u of % to the half-space satisfies the
first and last equations of (6.4), and that

— 1wz coincides with the symmetric extension of uy,
- Vi,ﬂ coincides with the symmetric extension of Vi,u,
— V0., u coincides with the antisymmetric extension of V0, u,

— 92 .. = (A~ Ay)u hence coincides with u; — f— Ay
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Hence we get

. 2 .
lull 0,73, ey + lwes vVl 0 i | )
= . = T2 .
S Mallp oo @y + e vVl Ly o s | )
which implies (6.6).

To prove higher regularity estimates, we first use the fact that V,/u coincides
with the symmetric extension of Vu on R™, and satisfies the heat equation on
(0,T) x R™, supplemented with initial data Vg on R™. Therefore applying
Theorem 6.2.1 and arguing as in the proof of (6.6) (with V. u instead of u),
we conclude that

Hvx’uHLoo(O,T;B;’l(Ri)) + (| Varu, Vv2vx/u||L1(o,T;B;,l(Rﬁ))
= C(HVz/fHLl(o,T;B;J(Rg)) + va/UOHB;J(Ri))'
As regards the vertical derivative, we have
(Oppu)t — VAOz,u =0y, f in  (0,T) xRY,
Oz, |z, =0 = 0 on (0,7) x OR”,

Oy, U|t=0 = Oy, U on RT.

The fact that Vu € L2(0,T; B;}l (R%)) (given by the first part of the statement
and interpolation) implies that u decays to 0 at infinity. Hence applying the
results for the heat equation with Dirichlet boundary conditions in [15] yields

2
10l 01585, Ry F 190, YV O ull, 0 iy ey
< C(||axnf||L1(0,T;B;71(R1)) + ||a§5nu0||B;71(R’i))'
This completes the proof of the theorem. O

6.2.2. The exterior domain case. — Here we extend Theorem 6.2.1 to
the case where () is a smooth exterior domain.

THEOREM 6.2.3. — Let Q) be a smooth exterior domain of R™ with n > 3. Let
l<g<p<oowithqgq<n/2 Let —1+1/p<s<1/pand —1+1/q<s <
1/q—2/n. Let

ug € B3y NBIL(Q) and  f € Li(0,T; B3, N B (Q)).
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Then there exists a unique solution u to

ug — vAu = f in (0,T) x £,
(6.8) Oru=0 at  (0,T) x 09,
U = U on

such that
we C(0,T]; B3, N B;jl(sz)), w, Vu € L1(0,T; B3, N B;‘jl(sz))

and the following inequality is satisfied:

2
(6.9) HUHLOQ(O,T;B;JmB;fl(Q))+HutvVV uHLl(O,T;B;’lmB;fl(Q))

< C(HUOHB;,lmB;fl(Q) + ”f”Ll(O,T;B;JﬁB;,'l(Q)))’
where the constant C' is independent of T and v.

If in addition Vug € B3, N B3 1(Q) and Vf € Ly (0,T; B | N B3, (), then
u also satisfies

Vu e C([0,T); Bsy N B3, (), Vuy, V3u e Li(0,T; By N Bi1(Q))

and

3
(6.10) ”VUHLOO(O,T;B;’IHBS:I(Q))+||vut’Vv uHLl(O,T;B;,lﬂB;,'l(Q))
< C(HUO,VUOHB;JQB%(Q) +[If, VfHLl(o,T;Bgylﬂngl(Q)))‘

Proving this theorem relies on the following statement, and on lower order
estimates (see Lemma 6.2.1 below) so as to remove the time dependency.

THEOREM 6.2.4. — Let Q) be a smooth exterior domain of R™ with n > 2. Let
l<p<oo, =1+1/p<s<1/p, fe€Li(0,T;B,,(Q)), and ugp € By ().
Then Equation (6.8) has a unique solution u such that

u € C([0,T]; .;’I(Q)), Oy, V?u € L1(0,T; B;l(Q))
and the following estimates are valid:
(6.11) HUHLOO(O,T;B;J(Q))+||ut’VVQU”Ll(O,T;B;’I(Q))
< C€CTV(HUO||B;71(Q) + HfHLl(O,T;B;J(Q)))v
(6.12) HUHLOO(O,T;B;J(Q))_FHut’szuHLl(O,T;Bf,,l(Q))
< CK(HUOHBIS)J(Q) + ||f||L1(o,T;BZ71(Q)) + VHU’K||L1(0,T;BZ71(K)))u

where K stands for any compact subset of Q such that dist(92,Q\ K) > 0.
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If in addition Vug € B;,l(Q) and Vf e L1(0,T; B;l(Q)) then we also have

(6.13) HVU’HLOO(O,T;B;I(Q))—’_”vut’vauHLﬂO,T;B;l(Q))
< CeCTV(HUOv VUOHB;I(Q) + [If, foLl(O,T;B;’l(Q)))’

(6.14) HVUHLOO(O,T;B;J(Q))+||Vut’ ’/vguHLl(O,T;B;,l(Q))
< CK(HU(MVUO”B;J(Q) AV Fllzy 0,85, ) + VHU’KHLl(O,T;B;J(K)))'

Proof. — We suppose that we are given a smooth enough solution and focus
on the proof of the estimates. We shall do it in three steps: first we prove
interior estimates, next boundary estimates and finally global estimates after
summation. By performing a suitable change of time variable and source term,
one may reduce our study to the case v = 1.

Throughout we fix some covering (B(x%, \))1</<1, of K by balls of radius A
and take some neighborhood Q° C Q of R™ \ K such that d(Q°,09Q) > 0. We
assume in addition that the first M balls do not intersect 02 while the last
L — M balls are centered at some point of 0f2.

Let n° : R™ — [0, 1] be a smooth function supported in Q° and with value 1
on a neighborhood of 2\ K. Then we consider a subordinate partition of unity
(n")1<¢<1, such that (see e.g. [35, 43]):

1. ZogegL =1 on

2. [|VFn| gy < CxA ™" for k € Nand 1 < £ < L;

3. Suppn’ C B(z*,\),

4. 9zn* =0 on O9.

We also introduce another smooth function 77° supported in K and with value 1
on Supp V7? and smooth functions 7', ..., 7% with support in B(zf, \) and
such that 7* = 1 on Supp n’.

Note that for £ € {1,..., L}, the bounds for the derivatives of 1’ together

with the fact that ‘ Supp Vnzl ~ A" implies that for any £ € N and ¢ € [1, 00|,

k, f) k~t) < \—k

First step: the interior estimate. — For £ € {0,..., M}, function U’ := un’

satisfies
{ Uf — AU = f* in (0,T) xR",

Ul = uon  on R"
with
(6.15) ff=n'f =2yt Vu — uAnt.
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Applying Theorem 6.2.1 yields the estimates:

¢ 0 2770
1% HLOO(O,T;B;J(R”)) +U;, VU HLl(O,T;BZ,1(R"))
<

V4 l
i UOHB;yl(Rn) +If HLl(O,T;B;J(R"))’
0 l 377l
VU 0,783, ey + VU VURN L 0,185, ey
14 . 4 .
5 HV(T] UO)HB;J(R") + ||vf ”Ll(O,T;B;J(Rn)).

Because the function Vg’ is in C°(R™) and 7' = 1 on Supp V7’, we get
according to the results of Chapter 2,

14 14 ~
(6.16) [If |’L1(07T;B;1(Q)) <ln fHL1(07T;B;,1(Q)) + 7w, VUHLl(o,T;B;’l(K))-

As may be proved by writing that V(nz) = 2V’ +1/Vz, for any 2 € B;l (R™)
with —n/p’ < s < n/p, we have

(6.17) HV(UEZ)HB;J(W) = C(HﬁleB;,l(R") + H#VZHB;J(W))-
Hence, we also have
l lp ~1
(6.18) [V f HL1(07T;B;1(Q)) <Cln"f,n VfHLl(O,T;B;,l(Q))
+ C)\H?’éuv ,;’*évu, ﬁev2u||L1(0,T;B;1(K))'

Plugging (6.16) and (6.18) in the inequalities for U¢ and VU*, we end up with

(6:19) U105, ey + U VU Iy 0,235 , o)
< C(HHEUOHB;,I(RH) + H77£f||L1(o,T;B;71(Rn))) + Gl (u, Vlllz, o83, ()
(6.20) HVUZHLOO(O,T;B;J(R")) + VUL, V2VUEHL1(O,T;B;’1(R"))
< C(Hﬁg(uov VUO)HBzJ(Rn) + 17 (f, vf)||L1(0,T;B;1(R")))
+ Ol (u, Vu, V)| 1 0.5 1)

Second step: the boundary estimate. — We now consider £ € {L +1,..., M}
so that B(af, A) is centered at a point of 9€2. The localization leads to

U — AU = f* in (0,T) x Q,
(6.21) 2:U =0 on (0,T) x 09,
U0 = uon® on Q,

with f¢ defined by (6.15), hence satisfying (6.16).
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Let us now make a change of variables so as to recast (6.21) in the half-
space. As 02 is smooth and compact, if A\ has been chosen small enough then
for fixed ¢ we may find a map Z; so that (see Chapter 2):

(i) Z; is a C* diffeomorphism from B(zf,\) to Z,(B(z%, \));
(ii) Zy(2*) =0 and D, Z(z%) = 1d;
(iif) Z,(2N B(z*\)) C R%;
(iv) Ze(022N B(2%, \)) = OR™ N Zy(B(z%, \));

(v) Z; is normal preserving.

Setting V,Z;(x) = Id + Ay(z) then one may assume in addition that there
exist constants C; depending only on {2 and on j € N such that

(6.22) 1D7 Adll 1o Bty < Ci

a property which implies (by the mean value formula) that

(6.23) [ Aellno (B2t Ny < C1A,

hence by interpolation between the spaces L,(B(z%, \)) and W(f(B (zf,\)),
(6.24) Ml 2 Bt <CX forall 1<q< .

( b
q,1
Let V¢ .= ZE‘UK =Ulo Z[l. The system satisfied by V¥ reads

VE—AVE=F* in (0,T) x R,
(6.25) 0,V .=0=0 on (0,7) x ORZ,
Viico = Z;(U')i=0) on ORT,
with
F' = Z P+ (A — A)VE
According to Theorem 6.2.2, we thus get

¢ ¢ o210
|V HLOO(O,T;B;J(]Ri)) + |V, ViV HLl(OvT?BZJ(Ri))
<

* 4 * ol
|Ze (U |t=0)||B;,1(R1) + HZKf ||L1(0,T;B;71(R1))
¢ .
+[[(Az — AV ||L1(0,T;BZ,1(R1))'

The first two terms in the right-hand side may be dealt with thanks to com-
position estimates:

IIZE(UZ\t:o)IIB;l(Ri) Sj HUZ‘t:OHB;,l(Qy

l . {4 .
1Z; f HLl(O,T;B;l(Rﬁr)) SIf HL1(07T;B;1(Q))'
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Compared to the first step, the only definitely new term is (A, —A,)V¥, which
has already been bounded in (4.77). We get

1(A: = A VAL, 033, mn)
SAVEVE Dy, @y T 1V=V s, @)y
Using also (6.16), we end up for small enough A with
IV ooy, ey + IV VIVl oy )
< C(HUZUOHB;,I(Q) + H77£f||L1(o,T;B;,1(Q)) * ||VZV€||L1(0’T;B;’1(R1)))
+ Ol (s Vo)l o s 0

Recall the following interpolation inequality for any smooth domain D (see [8],
Chap. 18):

. 2117 (11/2 1/2 .
626)  IWligy 00 SIVWIE (o IV )+ Wl o

Applying it to G = V, V¢ and D = R’ and using Young’s inequality allows to
reduce the above inequality to

y 0 o210
(6.27) [V HLOO(QT;B;,I(R:{)) + Ve, ViV HLl(O,T;B;,l(Ri))
‘ 4 ¢
< C(|In UOHB;I(Q) + [ fHLl(o,T;B;I(Q)) +V ”Ll(O,T;B’Z,l(Ri)))
+ Ol (u, V) 20,785 , )

To prove regularity estimates, we apply Inequality (6.7) to (6.25), and thus
get

¢ ¢ ¢
(6.28) V.V ”LOO(O,T;B;,l(Ri)) + (V. V), V2V HLl(o,T;B;,l(Ri))
SIVAZ WU oDl 5 oy + 1V ZE V05, oy
4
IV (Ae = AVl L, 0,85, e

Using V.(Z}g) = Z;Va.g- VZZg_l for g = U'|;—o and g = f*, composition and
product estimates together with (6.24) and (6.15) yields

IVA(ZE U =)y ny < ClinVawoll s (@)
IV=(ZE Py o nyy < Ol (s Ve, V3 0.5, 10)-

From (4.76), we also see that V, (A, —A,)V? is a linear combination of compo-
nents of V3V, ® AY, V2V, ® V.. A" and V.V, ® V2A*. Now, for A small enough,
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Inequalities (6.22), (6.23) and (6.24) guarantee that

IN

HVEVZ ® AZHLl(O,T;BgJ(Ri)) C/\”VEVZHM(Q,T;B;J(RQL )
HVEVE ® VzAZHLl(QT;B;I(Ri)) = CHVEVZ”Ll(()’T;B;Yl(Ri))a

2 ¢ . 4 .
[V:Ve®@ VA HLl(OrT?BZ,l(Ri)) < C|v.V HLl(o,T;B;l(Ri))'

A

Resuming to (6.28), taking A small enough and using the interpolation in-
equality (6.26) to eliminate the term pertaining to V2V*, we conclude that

4 4 4
(6.29) ||V.V ”Loo(O,T;B;,l(Ri)) + (V. Ve, V3V ||L1(0,T;B;,1(R1))
~0 ~l
< (0, Vo)l + 1T oDy 05 )
+ ||VZVZHLl(o,T;Bg,l(Rg))) + Oz |7 (u, Vyu, Viu)HLl(o,T;B;J(K))'

Third step: global a priori estimates : low reqularity. — To establish (6.9)
and (6.11), we start from the observation that, according to (6.19) and (6.27),

lull o075 )

¢
<> U 202, ()
‘

4 14
S Z HU “Loo(()’T;B;’l(Rn))—"_ Z HV HLN(O,T;B;J(R:{))

0<t<M M<L<L
Y 4
<) (Hn uollgs o) T Fll s 0,785, 9))
0<¢<L ’ Y

~ y4
+ 117 (U’V“>||L1(0,T;B;1(K>>) + X IVl orss, @)
’ M<t<L '

. . . o . 2 A
and similar inequalities for ||Oyu, V uHLl(O,T;B;’l(Q))‘

As the space B;,l(Q) has the localization property (because —n/p’ < s <
n/p), we may write

y4
7 UOHB;J(Q) S HUUHB;J(Q)’
Y4
7 fHLl(O,T;B;,l(Q)) S HfHLl(O,T;B;,l(Q))’
~(
17" (u, Vu)||L1(07T;B;’1(Q)) S l(w, VU)HLI(O,T;B;J(K))a

¢
1V HLl(O,T;B;J(Rﬁ)) < HUHLl(O,T;BgJ(K))‘
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Therefore

2
||u||Lw(07T;B;71(Q)) + |lue, V U’|L1(0,T;B;1(Q)) S ”UOHB;J(Q)
+”f”L1(0,T;B;,1(Q>> - ”“HLl(o,T;Bg,l(K)) + HV“”Ll(o,T;Bg,1<K>)'
Once again, using (6.26) enables us to eliminate the last term, and we thus
end up with Inequality (6.12). Now, because
HUHLl(O,T;B;J(Q)) < TH“”LOO(O,T;B;J(Q))v

the last term of (6.12) may be absorbed by the left-hand side if 7" is small
enough. Repeating the argument for [T, 27 and so on, leads to (6.11).

Fourth step: global a priori estimates : high regularity. — Owing to (6.20)
and (6.29), we have

4
IVaully o omis @y S Do IVaUrlloomss @)
0<e<M

¢
+ ) vV 207585, (R
M<U<L ’

< 3 (17 o,V aro)l oy I (. Vo )y 0055 )
0</<L

~ 4
+ 17" (u, Vau, v?zu)HLl(o,T;B; 1(1())) + Z V.V HLl(O,T;B; L(R7))?
’ M<U<L ’

. . . oy . 3
and similar inequalities for ||Vu;, V uHL1(O,T;B§,1(Q))'
By using the fact that V.V’ = ZZVxUé . VZZ[1 and arguing as in the
previous step, we get
3
IVullp o, @) + Ve Vol o s: )
< .
~ HUO,VUOHB;I(Q)
HIFVFllny 0,85, ) + 14l 0,85, )
2
IVl o185, 0y + IVl 0185, (50))-
The last term may be handled by interpolation, and eliminated, and we get
(6.14). If we use the fact that
s Vel o7 ) = Tl Vullp o7 )0

and add up to Inequality (6.12), then we get (6.13) on a small time inter-
val [0,T]. Then repeating the argument leads to (6.13) on R.
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Proving the existence is a rather standard issue (see e.g. [35]). We may
consider smooth approximations of data f and wug, which will generate WZ?
approximate solutions (see e.g. [35]). Estimates (6.11), (6.13) may thus be
derived not only for those approximate solutions but also for the differences of
them. We readily get that the sequence of approximate solutions is indeed a
Cauchy sequence in the required space (which is complete owing to the small
value of s) and it is then easy to pass to the limit in (6.8). O

In order to complete the proof of Theorem 6.2.3, we have to bound the last
term of (6.12) and (6.14), independently of T. This is the goal of the next
lemma. We here adapt Lemma 4.3.3 to the heat equation.

LEMMA 6.2.1. — Assume that n > 3 and that 1 < p < n/2. Then for any
s€ (=1+1/p,1/p—2/n) smooth solutions to (6.8) with v =1 fulfill

Hu||L1(0,T;BZ71(K)) < C(HUUHBZJ(Q) + HfHLl(O,T;B;,l(Q)))7
where C is independent of T

Proof. — We split the solution u to (6.8) in u = u; + ug with

uiy —Aup = f in (0,7) x Q, ugy — Aug =0 in (0,7) x Q,
aﬁul =0 on (0, T) X 6Q, 8ﬁu2 =0 on (O,T) X 8(2,
U li=p =0 on 2; ugli—0 = ug on .

Let us first focus on u;. From Corollary 2.2.1 and duality properties of
Besov spaces, we infer that

Jua(®)l 55,y =590 [ (e, 2)m(a) da
p,1 K
where the supremum is taken over all

,O0

(6.30) no € BI;S (R™)  with HUOHB*,S ®n =1 and Suppmno C K.
p,00

Consider the solution 1 to the problem:

n—An =20 in (0,7) x £,
(6.31) 0s;m =20 on (0,7) x 09,
Nlt=0 = 1Mo on (L

Testing the equation for u; by n(t — -) we discover that

t
(6.32) / s (£, ) () dar = / / Fra)(t — 7.2) da dr.
Q 0 Ja
The general theory for the heat operator in exterior domains implies that

_n(l_1
(6.33) 1) o) < Cllmoll L@t 27 for 1<b<a< oo
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This is a consequence of Gaussian estimates for the kernel pertaining to the
heat equation with Neumann boundary condition. More precisely, in [30],
Theorem 2 (see also [22]), it has been proved that for fairly general domains
there exists some function 6 € Li(R") N Loo(R™) so that for all ¢ > 0 and
x € ), we have

1 T =y
) = [ 50 (E ) miw) v
Using standard convolution estimates obviously yields (6.33).

Next, we observe that smooth solutions to (6.31) satisfy JzAnlsq =
Oint|laq = 0. Hence Inequality (6.33) applies to An and we eventually get

_n(l_ 1
(6.34) IV*n(®)llz.@) < ClANWE | L.) < C'll A0l Lyt 2o,

Interpolating between (6.33) and (6.34) thus yields for 0 < s < 1/b and 1 <
r < oo,

_n(l_ 1 .
(6.35) [0l () < Clinollzg ot 2670 if 1<a<b< oo

In order to extend (6.35) to negative indices s, we consider the dual problem:

G-AC=0 in (0,7)x,
(6.36) 07¢ =0 on (0,7) x 09, Co € By ().
C’t:o = <0 on Qv

Testing (6.36) by n(t — -) yields
/ n(t,z)Co(x) dx = / no(x)((t, z) dx.
Q Q

Thus we get:
1905, o = 550 | (@t ) do < sup (Il eI<ON1 )
o ¢ JQ o ’ al,r

where the supremum is taken over all (y € Bb_,ST,,(Q) such that HCOHB&ST/(Q) =1.
As —s is positive, applying (6.35) to bound HC(t)HBjS (o) Yields
_m(l_1y
7(6)]1 55 (@ < Cllmllg, @t 33 i s> -1+ 1/a

The remaining case s = 0 follows by interpolation. So finally for all 1 < b <
a<oo,q€[l,o0] and =14 1/a < s < 1/b, we have

_ncl 1
(6.37) In®)ll 55 (@) < Clinollg; @yt 2.
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Resuming to the problem of bounding u; and starting from (6.32), one may
write

t
| [utom@ | < [ 15a; llne =g o

Hence applying (6.37) yields for any ¢ € (max(0, s), 1),

t
| [ it aymo()da] 155y lImoll ey A7
Q ) p,1 p’,oo

max(0,t—1
max(0,t—1) _2(1_3)
+A 15 g opllmlls- oyt =) 26 ar

As np is supported in K, one has for some constant C' depending on K:

||770||B—; () < CHUOHB;,SOO(Q)-

I—-¢

So, keeping in mind (6.32) and the fact that the supremum is taken over all
the functions 7y satisfying (6.30), we deduce that

nmwmwmsc(/

max(0,t—1)

max(0,t—1) —n(l_g
+/0 t—7)20 Hf(T)HB;’l(Q)dT)'

t
1) s 7

Therefore,

T T _ﬂ(l_a) T
(6.38) /1 ||u1||B;1(K)dt§C<1+/1 20 dT)/O ||f||B;’1(Q)dt.

On [0, 1], we merely have

1 1
(6.39) /0 lull g eyt < C/O 1£1 s, () -

Now, provided max(0,s) < € < 1/p — 2/n (which requires p < n/2), the
constant in (6.38) may be made independent of 7" and we conclude that

T T
| allsg @t < € [l o
Let us finally bound us. We first write that
(6.40) lu2(®)ll 53, (1) = Clluollps | (0
and, if —1+¢ <s<1/p,

_n(l__
2l a0y < Cclla®lly ey < Coeluolly @t 257

SOCIETE MATHEMATIQUE DE FRANCE 2015



138 CHAPTER 6. THE LOW MACH NUMBER SYSTEM

Then decomposing the integral over [0,7] into an integral over [0, min(1,7")]
and [min(1,7),T], we easily get

T T —n(l_yg

min(1,7)

The integrant in the r.h.s. of (6.41) is finite for %(% — ) > 1. Hence,

T
(6.42) | Ty 0 < Clluolgg
Combining (6.42), (6.38) and (6.39) completes the proof of the lemma. O

We are now ready to prove Theorem 6.2.3. According to (6.12), in order to
get (6.9), it suffices to show that

Hu”Ll(O,T;B;lﬂBgfl(K)) S ||“0‘|B;’1mB;”1(K) + ”f”Ll(O,T;B;’lﬂstl(K))'

Of course, ||ul] L (k)) Mmay be directly bounded from Lemma 6.2.1, and

0,1;B:

) ) q71

it is also the case of HuHLl(O i85 (K) ifp<n/2and s <1/p—2/n.
k) k) P,

If p > n/2, then we use the fact that

.o . 1 1 2 s — Sl
B5+2(Q) B . B
2,1 ( ) C ;*71(9) with q—* = ; _ - - .
T'herefore, if ¢ < n/2 < p < ¢* then one may combine interpolation and

Lemma 6.2.1 so as to absorb ”“HL1(0 T:Bs (k7)) DY the left-hand side of (6.9),
k) k) P,

changing the constant C' if necessary.
If p > ¢* then one may repeat the argument again until the all possible
values of p in (n/2,00) are exhausted. This completes the proof of (6.9).

In order to establish the regularity estimate (6.10), we add up (6.12) and
(6.14) (pertaining to Besov spaces B, ;(f2) and Bg:l (K)) and use the interpo-
lation inequality (6.26) so as to eliminate the term HVUHM(O,T;B;JOB;Q(K))'
We eventually get

2 3
s Vel o.msms gy @ T e Ve, ViU V2l o r e e ()

5 ||U07VUO||B;,1QB(§:1(Q) + ||f’ foL1(07T;B§,1ﬂB§f1(Q)) + HUHL1(0,T;B§;‘JHB§1(K))’

The last term may be handled by means of Lemma 6.2.1, as in the proof
of (6.9). This completes the proof of Theorem 6.2.3.

REMARK 6.2.1. — Here we decided to concentrate on the exterior domain
case. Similar results hold true for the solutions to (6.8) supplemented with the
condition that [, udz = 0 in any smooth bounded domain © of R™ with n > 2
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(instead of n > 3 for exterior domains). The first part of the analysis, namely
the proof of Theorem 6.2.4, works the same, and Lemma 6.2.1 may be improved
given that L, — L, estimates may be replaced by exponential decay.

6.3. Solving a low Mach number system

We can now tackle the well-posedness issue of System (6.1) for data having
critical regularity, and €2 an exterior domain of R™ with n > 3. For simplicity,
we focus on the global-in-time existence for small perturbations of the trivial
constant state (6,u) = (0,0) and consider data (6p, uo) with bulk regularity in
the critical spaces B;/lp(Q) X B;L’/lpfl((l) with p = n (see [14] for more general
results in the case Q = R").

First we need to introduce a few notation. For s € R and 1 < p,q < 400,
we denote by X the set of functions 2 : Ry x 0 — R with 2 € Cy(Ry; BN
BSI(Q)) and Oz, D?z € L1(Ry; B;,l N BSI(Q)) endowed with the norm

._ 2
643)  llzllxy, = el @y 83, nBs 0 192 Vo2l Bs mBs )

We shall keep the same notation for vector fields with components in X .

Next, we denote by )?;,q the subspace of functions 6 € X;’;l satisfying
VO € X351 and set

pq

(6.44) 191 %5, == 101l xs 0 + VO xs -

It will also be convenient to use the notation E;l(Q) to designate the space of
those functions 6 € B;_ll(Q) so that V6 € B;EI(Q), endowed with the norm

(6.45) 1615; 0y = 100l =1y + V0] g1 -
Here is our main global well-posedness result for System (6.1).

THEOREM 6.3.1. — Assume that € is an exterior domain of R™ with n > 3.
Let 0y € Bj, N B, ,(Q) and ug € BY; N BY) () with 1 < q < n/2. If the
compatibility condition

(6.46) div ug = a div (ﬁ(ﬁo)veo)
is satisfied, and

(6.47) ||60”§;710371L71(Q) + HUOHBg’lmBg’l(Q) sc
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for sufficiently small ¢, then there exists a unique global-in-time solution

(0,u,VQ) to System (6.1) such that
(6.48) (0,u) € X}, x X0, and VQ e Li(Ry;BY, N BY(Q).

Besides, for some constant C' = C(n,q,$2),

(6:49) 19Ql s, 50 e (o + 10052 + llxg,

< C(60ll 31 s (o) T ol g o ()-

Some comments are in order, concerning the data. First, as in [14], we
should be able to consider large data 6y € E}ll(Q) and ug € B?l,l(Q) and get
the local existence of unique strong solutions, provided that there is no vacuum
initially (or equivalently that 1y is positive). Second, we did not assume that
6o is in 3271(9) because it is guaranteed by the following embedding:

(6.50) BY, N B, N B (Q) = BY ().

Finally, we expect a similar statement to be true for more general gases where
the function a smoothly depends on . However, this would require us to gener-
alize our maximal regularity estimates to the Stokes system with a divergence
constraint which reads div R + A.

Proof of Theorem 6.3.1. — Proving the existence and uniqueness of a solution
for (6.1) is based on the Banach fixed point theorem. As a preliminary step,
we shall derive a priori estimates. This will enable us to find out the solution
space and an appropriate smallness condition on the data ensuring a global-
in-time control on the solutions. Next, we shall introduce a suitable map T
the fixed points of which are global solutions to (6.1). Slight modifications of
the estimates obtained in the preliminary step will enable us to justify that
the hypotheses of the fixed point theorem are fulfilled. This will complete the
proof of the global-in-time existence. Proving uniqueness is almost the same
as proving that 7 is contractive on a suitably small ball, and is thus omitted.

Step 1. A priori estimates. — Let p := p(0), g := p(0), & := &(0) and
B:=p(0).Set p:=p—p, fi:=p—fi, & := k— &, and 3 := B — B. Let us recast
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System (6.1) as follows:

(30,0 — div (V) = div (R(0)V0O) — B(0)u - VO — B(0)d,0
poyu — div (aDu) + VQ = div (u(0)Du) — p(6)u - Vu — p(6)0su,
divu = adiv (k(0)V0),

(6.51) q uloa =0,

078]a0 = 0,
u|t=0 = Uuo,
Bli—o — 6o,

\

Before going further in the computations, let us point out that our results for
the Stokes system in Section 4.3 hold for divDu instead of Awu. Indeed, as a
first step, we removed the compressibility (the right-hand side of (6.51)3) to
obtain a divergence-free vector field. Then divDu = Awu for divu = 0. One
may alternately remark that for a general vector-field we have div (Du) =
Au + V divu, and incorporate the last term in the pressure. In any case, our
bounds for (6.51) will follow from Theorem 4.3.3 for the Stokes system and
Theorem 6.2.4 for the heat equation.

More precisely, on the one hand, applying Theorem 6.2.4 yields

(6:52) [10llgy, < llollzs s o)
+ [ div (R(0)VE) — B(O)u - VO — E(Q)ate”h(ﬂh;gé 1NB;, (@)

On the other hand, applying Theorem 4.3.3 to the momentum equation (recall
that k(0)VO -7 =0 at 0Q2), we get for all 1 < m < oo,
(6.53) HUHXQW + HVQ|’L1(R+;BS,1HB%1(Q))
S fluoll o o (@)
+ || div (& (Q)DU) p(0)Ou — p(O)u - Vulp, @, 5o ~po ()
OOl 0 sy + 15O T 10

Note that no bounds for the pressure are needed to close the estimates, as
it does not appear in the right-hand sides of (6.52) and (6.53). This quantity
can be controlled at the end of our analysis. Another observation is that
the left-hand side of (6.52) allows to estimate the highest order term in 6 in
the right-hand side of (6.53). To close the a priori estimates, we need to get
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suitable bounds for the right-hand side of (6.52) and (6.53). As the full proof
is quite repetitive, we just consider a few terms by way of example.

For instance, we have, keeping (6.50) in mind,
(6.54) Hdiv(%(H)VH)”E;J“E}LJ(Q)
< IROTA] g0 s oy + 1K OV © V0l 50 0 (o
+ IR OIVOP 50 g0 (@ + IFO)A0 +F (O)VOP 50 (0
First let us note that
(6.55) HHHM(BSJOBO Q) ~ HeHBl ()~ < e, VGHBO

The first inequality stems from Lemma 5.5.1 and the second one from the
corresponding inequality in R™ (use a standard extension operator after re-
ducing the proof to the bounded domain case). We eventually get, after using
composition estimates:

~ 3
3
S HevVHHLOO(]RJHB?LJ(Q))HV 9”1:1(]1@%32!1032,1(9))'
The second term in (6.54) may be handled similarly. Using (6.55), we get
2
K (0)Vo @V 9HL1 (R4;BY ,NBY ()
29 3
SN0, VOl im0, @IV VOl B0 s ()
By the same arguments, we see that the third term obeys
2 3 29 3
11V ‘|L1(R+;Bl < 16, VHH oo (Ry5BY | ))HV 0,V GHLI(R_‘_;BSJHB?LJ(Q))'
The (lower order) last term in (6.54) may be handled along the same lines.
Next, bounding 5(f)u - VO in Li(R4; E;l N B}Ll(Q)) follows from the fact
that 5(0) € LOO(RJ’»;M(B,’(/)L’I)) and u € L2(R+;M(Bg’1)). We also see that
18@)00N 51 g1 @)
S 180)00l g0 o (@)
+ H5’(9)V93t9”327103271(9) + B(H)VatQHBg’lmBgyl(Q)
S H9||33L,1(Q)(||3t9||331032’1(9)
HIVOll g0 Apo @190 p1 () + ||V5t9||33,1m3g,1(9))‘

MEMOIRES DE LA SMF 143



6.3. SOLVING A LOW MACH NUMBER SYSTEM 143

Finally, let us bound some terms in the right-hand side of (6.53). We observe
for instance that

1 div (K(O)VO| L, r .52 e () S Hv29HL1(R+;B;1r]B}L71(Q)) + \\911}%#
and that
(COSONP——
<K (0)0: VO 1, w50, ni0 @) + RO VOl 8,30 50 (@)
SOz pimesg 05 @IV @iy s @) T IVOL 0, nE9 ()

< Wollgy (1+10llg,y ).

Note also that taking m = gn/(n — 2¢) and using the embedding Bg’l(Q) —
L,,,(Q) enables us to write that

IRO) VOl sy 2m(@) < ClONIL (r, 2 0
Moreover,
v (@)D, @50 50, @)
S0l @IVl 0 00, )
FIVOIl L ei0,m80 , @) VUl Ly g s, 082, @)
S 101z lullxg,-

Putting together all the above estimates, we end up with

657) Nullxg, + 105y < C(lollgo nge @+ 100l15 s o)

n,q
2 4
+ (g, + 1905, )+ (lullxg, + 19015, )"):

Hence we deduce from an elementary bootstrap argument that (6.49) follows
from (6.47) if ¢ has been taken small enough.

Step 2. The proof of the existence for small data. — The proof of the existence
will be an elementary consequence of the Banach fixed point theorem. Let us
introduce the map

(6.58) T:E),— E),
with E?%q = Xg’q X )Z}L’q and

(6.59) T(a,0) = (u,0)
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such that (u,6) is the solution to the following linear system in (0,7") x §:

pou — div (aDu) +VQ 3 3
= div (a(0)Du) — 5(0)0yiu — p(0)u - Vi,
(6.60) divu = adiv (E(é)vé)7

u|aQ =0 and aﬁe‘ag = 0,

Uli=0 = uo, Olt=0 = bo.

The solvability of System (6.60) in the space E , follows from the fact that
the left-hand sides are just heat equation with Neumann boundary conditions,
and the Stokes system with Dirichlet boundary conditions. Hence one may
directly apply Theorems 4.3.3 and 6.2.3 and follow the computations of the
previous step. More precisely, (6.57) (with (6, @) in the right-hand side) implies
that 7 maps the closed ball B(0, R) of E} , into itself if choosing

(6.61) R =2C(lluoll go 0 (o) + 1oll 51 1 ()
and assuming that

2
4C (luoll go i (o) + 100l 31 1 )

4 3
+16C" (luoll go o (@) + 10l 1 i (@)” < 1.

To complete the proof of global existence, it suffices to show that 7 is a
contraction on B(0, R), viz. that for all (ay,60;) and (i, 6s) in B(0,R), we
have

(1 — a2, 61 — 02)| o

DO | =

(6.62) T (1, 61) = T (2, 02) | o, <

In order to guarantee (6.61) we consider the following system being a sub-
traction of (6.60) for the first and second solution. Setting 00 := 601 — 02,
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660 := 60, — By, and so on, we get
30,00 — div (FV80) = div (%(A,)Vy) — B(01)a, - VO,
—B(01)0401 — div (F(02) Vo) + B(Ba)tiz - Vi + B(02) 002,
pOdu — div (ADdu) + VoQ = —p(61)dyinn — p(61)in - Vg
+div ((61)Day) + p(62)0ctia + p(O2)ts - Vi — div (fu(62)Das),
divéu = adiv (k(01)V0; — k(02)Vbs),

(6.63)

Sulpn =0 and 9700|50 = 0,
\ (5u\t:0 == 0, 59‘,5:0 =0.

We claim that our results for the linear systems (for the left-hand sides
of (6.63)) combined with nonlinear estimates give, up to a change of C,

(6.64) 1(6u,36) 155, < ORI (5, 60) g .
Let us just show how to bound 0;(k(01)V0; — k(02) V). We write that
101 (5 (01) V01— 1(02)V02) | go 0 (@)
SN0s(0)V0) 50 o (0 + 10 (((5(01) = £(02) V) 5o o (o)
< I8, KT, (o) aell o s o)
+ ||K/(61)66:V 02, (k' (61) — K’ (62 ))é2tV92||BO NBY ()"

Performing a time integration and using again (6.55) several times, it is easy
to conclude that

100 (K (1) V01 = K(02)V0) | 1, 0 o o) < ORIy -

Taking ¢ small enough in (6.47), and keeping the definition of R as in (6.61), it
is clear that one may ensure that C R < 1/2. The contraction mapping theorem
thus ensures the existence of a fixed point for the map 7, which defines a
unique solution to the original problem (6.1). Theorem 6.3.1 is proved. O
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