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This memoir is devoted to endpoint maximal regularity in Besov spaces
for the evolutionary Stokes system in bounded or exterior domains of Rn.
We strive for time independent a priori estimates with L1 time integra-
bility.

In the whole space case, endpoint maximal regularity estimates are
well known and have proved to be spectacularly powerful to investigate
the well-posedness issue of PDEs related to fluid mechanics. They have
been extended recently by the authors to the half-space setting [15].
The present work deals with the bounded and exterior domain cases.
Although in both situations the Stokes system may be localized and
reduced up to low order terms to the half-space and whole space cases,
the exterior domain case is more involved owing to a bad control on
the low frequencies of the solution (no Poincaré inequality is available
whatsoever). In order to glean some global-in-time integrability, we adapt
to the Besov space setting the approach introduced by P. Maremonti
and V.A. Solonnikov in [39]. The price to pay is that we end up with
estimates in intersections of Besov spaces, rather than in a single Besov
space.

As a first application of our work, we solve locally for large data or glob-
ally for small data, the (slightly) inhomogeneous incompressible Navier-
Stokes equations in critical Besov spaces, in an exterior domain. After
observing that the L1 time integrability allows to determine globally the
streamlines of the flow, the whole system is recast in the Lagrangian coor-
dinates setting. This, in particular, enables us to consider discontinuous
densities, as in [17], [19].

The second application concerns a low Mach number system that has
been studied recently in the whole space setting by the first author and
X. Liao [14].

Mém
oires

S
M

F

Imprimerie Sepec - 01960 Péronnas - France
ISSN 0249-633-X

ISBN 978-2-85629- -

  

Mémoires
de la SOCIÉTÉ MATHÉMATIQUE DE FRANCE

SOCIÉTÉ MATHÉMATIQUE DE FRANCE

2 0 1

Publié avec le concours du Centre National de la Recherche Scientifique

2
0

1

Numéro 143
Nouvelle série

In this work, we give a thorough study of Hurwitz stacks and associated

CHAMPS DE HURWITZ

J. BERTIN & M. ROMAGNY

5

5

824 4

 Dépôt légal : décembre 2015 - N ° N04615151106

N
°1

4
3

- 1
4

1
N
C
H
IN

P
B

M
U
C
H
A

C
R
IT

IC
A
L

F
U
N
C
T
IO

N
A
L

F
R
A
M

E
W

O
R
K

R
E
G
U
L
A
R
IT

Y
IN

A
C
T
IO

N

O
N

S
Y
S
T
E
M

S
O
F

IN
C
O
M

P
R
E
S
S
IB

L
E

F
L
O
W

S

Yong LU

Benjamin TEXIER

A STABILITY CRITERION FOR

HIGH-FREQUENCY OSCILLATIONS
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CRITICAL FUNCTIONAL FRAMEWORK AND
MAXIMAL REGULARITY IN ACTION ON
SYSTEMS OF INCOMPRESSIBLE FLOWS

Raphaël Danchin, Piotr Bogusław Mucha

Abstract. — This memoir is devoted to endpoint maximal regularity in Besov
spaces for the evolutionary Stokes system in bounded or exterior domains of Rn.
We strive for time independent a priori estimates with L1 time integrability.

In the whole space case, endpoint maximal regularity estimates are well
known and have proved to be spectacularly powerful to investigate the well-
posedness issue of PDEs related to fluid mechanics. They have been extended
recently by the authors to the half-space setting [15]. The present work deals
with the bounded and exterior domain cases. Although in both situations the
Stokes system may be localized and reduced up to low order terms to the half-
space and whole space cases, the exterior domain case is more involved owing
to a bad control on the low frequencies of the solution (no Poincaré inequality
is available whatsoever). In order to glean some global-in-time integrability,
we adapt to the Besov space setting the approach introduced by P. Maremonti
and V.A. Solonnikov in [39]. The price to pay is that we end up with estimates
in intersections of Besov spaces, rather than in a single Besov space.

As a first application of our work, we solve locally for large data or glob-
ally for small data, the (slightly) inhomogeneous incompressible Navier-Stokes
equations in critical Besov spaces, in an exterior domain. After observing that
the L1 time integrability allows to determine globally the streamlines of the
flow, the whole system is recast in the Lagrangian coordinates setting. This,
in particular, enables us to consider discontinuous densities, as in [17], [19].

The second application concerns a low Mach number system that has been
studied recently in the whole space setting by the first author and X. Liao [14].
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iv

Résumé (Régularité critique, régularité maximale et application à la mécanique
des fluides incompressibles)

Ce mémoire traite de la régularité maximale limite dans les espaces de Besov
pour le système de Stokes non stationnaire en domaine borné ou extérieur. Nous
avons en vue des estimations avec intégrabilité globale en temps.

Les inégalités de régularité maximale limite sont bien connues dans l’espace
entier et ont joué un rôle spectaculaire dans l’étude du problème de Cauchy
associé à diverses EDPs de la mécanique des fluides. Ces inégalités ont été
adaptées récemment par les auteurs au cas du demi-espace [15]. Nous considé-
rons ici des domaines bornés ou extérieurs. Bien que dans les deux situations
le système de Stokes puisse être localisé et l’étude, ramenée à celle de l’espace
entier ou du demi-espace, le cas du domaine extérieur est plus compliqué car
on ne dispose pas de contrôle a priori sur les basses fréquences via une inéga-
lité de Poincaré par exemple. Afin d’exhiber une certaine forme d’intégrabilité
globale en temps, nous adaptons au cadre Besov le travail de P. Maremonti
et V.A. Solonnikov [39]. Nous obtenons ainsi le type d’inégalités voulu, mais
dans l’intersection d’espaces de Besov.

Comme première application de ces nouvelles inégalités, nous résolvons lo-
calement (données initiales grandes) ou globalement (données initiales petites)
les équations de Navier-Stokes incompressibles faiblement non homogènes en
domaine extérieur dans des espaces de Besov critiques. La propriété d’inté-
grabilité L1 en temps à valeurs Lipschitz pour le champ de vitesses solution
assure l’équivalence entre les formulations lagrangiennes et eulériennes du sys-
tème. Passer en coordonnées lagrangiennes permet de considérer des données
initiales avec densité discontinue, comme observé récemment dans [17], [19].

Comme deuxième application, nous résolvons un système limite qui apparaît
dans le régime à faible nombre de Mach et a été étudié récemment par le
premier auteur et X. Liao [14].
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CHAPTER 1

INTRODUCTION

Description of motion of Newtonian fluids is based on the physical and

thermodynamical laws governing the conservation of momentum, energy and

mass. We expect in general information concerning these quantities to be

enough to find out the velocity field at each point of the fluid region and,

at least, on some time interval [0, T ] if the initial time is t = 0. This is the

Eulerian description of the fluid.

Another fundamental physical information is the knowledge of the stream-

lines or particle paths corresponding to the evolution of infinitesimal particles

or fluid parcels. It is given by the following Ordinary Differential Equation:

(1.1)
dX

dt
= v(t,X), X|t=0 = y.

Here y is the initial position of a particle of the fluid and X(t, y) denotes the

position of that particle at time t under the action of the velocity field v.

Knowing X thus gives the evolution of an infinitesimal fluid parcel labelled

by its initial position y as it moves through space and time. This is the

Lagrangian description of the fluid under consideration. Equation (1.1) gives

the relationship between the two descriptions of flows, that is the Eulerian and

Lagrangian ones. The Eulerian coordinates system (t, x) uses the position x

of the material at time t, while the Lagrangian coordinates system (t, y) uses

the initial position y of a point of the medium. The change of coordinates is

governed by the following identity which is the integrated counterpart of (1.1):

(1.2) x = X(t, y) with X(t, y) = y +

∫ t

0
v(τ,X(τ, y)) dτ.

From the mathematical viewpoint, the basic question is whether those two

descriptions are indeed equivalent: what are the conditions ensuring that one

7
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2 CHAPTER 1. INTRODUCTION

may go from one system of coordinates to the other without any loss of infor-

mation on the flow ? From the basic theory of Ordinary Differential Equations,

we know that, roughly, the minimal assumption is that

(1.3) ∇v ∈ L1(0, T ;L∞,loc(Ω)),

where Ω is the fluid domain. This in particular ensures (1.2) to have a unique

solution X that is continuous in time and Lipschitz in space (see [4], [23], [45]

for more general results concerning the flow and transport equations).

In the present work, we would like to find a functional framework – the

largest one if possible – ensuring the velocity field to satisfy (1.3) and the sys-

tem we are looking at, to be well-posed. We have in mind models describing

the evolution of incompressible flows with nonconstant densities and, more

specifically, mixtures of incompressible homogeneous fluids. Such models pos-

sess some invariance with respect to appropriate time and space dilations and

it has been observed in many situations that the optimal functional frame-

work – the so-called critical one – for studying the corresponding governing

equations should have the same invariance (see the introduction of Chapter 5

for more explanations).

Resuming to the study of mixtures of incompressible flows, the basic ques-

tion is whether the following initial configuration:

(1.4) ρ0 = 1 + σχA,

where σ denotes some constant and χA, the characteristic function of some sub-

set A of Ω, is stable through the time evolution. According to the Lagrangian

description introduced above, we expect the density to be transported by the

velocity field and thus to read

(1.5) ρ(t) = 1 + σχA(t) with A(t) := X(t, A).

Note that if (1.3) is fulfilled then the flow X is Lipschitz and thus A(t) remains

Lipschitz during the evolution, if it is Lipschitz initially.

To make it more concrete, consider the following inhomogeneous incom-

pressible Navier-Stokes system:

(1.6)



ρt + u · ∇ρ = 0 in (0, T )× Ω,

ρ(ut + u · ∇u)− ν∆u+∇P = 0 in (0, T )× Ω,

divu = 0 in (0, T )× Ω,

u|∂Ω = 0 at (0, T )× ∂Ω,

u|t=0 = u0, ρ|t=0 = ρ0 on Ω.
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CHAPTER 1. INTRODUCTION 3

Here ρ = ρ(t, x) ∈ R+, u = u(t, x) ∈ Rn and P = P (t, x) ∈ R stand for the

density, velocity field and pressure of the fluid, respectively. For simplicity,

the given positive viscosity coefficient ν is assumed to be constant.

From the viewpoint of hydrodynamics, the first equation is the mass conser-

vation, the second one is the momentum conservation, and the third equation

is the incompressibility constraint. Given some initial data ρ0, u0, we here

want to determine (ρ, u,∇P ) in the case where the fluid domain Ω is a smooth

bounded or exterior domain of Rn.

As we plan to investigate the well-posedness issue of (1.6) for possibly dis-

continuous initial densities such as in (1.4), the classical strong solution theory

developed in e.g. [13, 34] is too restrictive because ρ0 has to be (at least)

uniformly continuous therein. In order to understand what should be the rel-

evant functional framework and tools for our analysis, a crucial point is to

investigate the linearization of the momentum equation, namely the following

evolutionary Stokes system with homogeneous Dirichlet boundary conditions:

(1.7)


ut − ν∆u+∇P = f in (0, T )× Ω,

divu = g in (0, T )× Ω,

u|∂Ω = 0 at (0, T )× ∂Ω,

u|t=0 = u0 on Ω.

We need a functional framework so that if we plug the obtained solutions in the

momentum equation of (1.6) then we get (1.7) with source terms f allowing

to recover the regularity we started from. This is exactly in the same spirit as

Schauder or Lp estimates for the Laplace operator: they ensure that if f ∈ Cα
(resp. f ∈ Lp) then the solution to ∆u = f , with, say, homogeneous Dirichlet

boundary data satisfies ∇2u ∈ Cα (resp. ∇2u ∈ Lp), see [29].

In the setting of (1.7) with g ≡ 0 and u0 ≡ 0, we expect ut, ∇2u and ∇P to

have the same regularity as f . In the standard cases (Ω stands for the whole

space Rn, the half-space Rn+, or a bounded or exterior domain of Rn), that so-

called maximal regularity property has been proved in a number of functional

spaces. For instance, if f ∈ Lq(0, T ;Lp(Ω)) for some 1 < p, q < ∞ and g ≡ 0

then there exists a constant C independent of T so that any solution to (1.7)

satisfies (see e.g. [28, 35, 40]):

(1.8) ‖ut, ν∇2u,∇P‖Lq(0,T ;Lp(Ω) ≤ C
(
‖u0‖

Ḃ
2− 2

q
p,q (Ω)

+ ‖f‖Lq(0,T ;Lp(Ω))

)
.

Inequalities (1.8) are based on Calderon-Zygmund theory for singular integrals

(see [24], [52]) and related to the analyticity properties of the semi-group of
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the Stokes operator [3]. Therefore, unsurprisingly, they fail in the endpoint

cases where one of the exponents p or q is 1 or ∞.
Compared to those results, the natural regularity required on the velocity

for (1.2) to be uniquely solvable, is rather exotic: we need an L1 in time bound.

As we aim at working in the critical regularity framework, we cannot afford

any loss in the estimates resulting from incautious use of Hölder inequality:

this precisely means that we need an extension of (1.8) to the case p = 1, with

a gain of two full spatial derivatives with respect to the data. In other words,

we look for a Banach space X with the property that any smooth enough

solution (u,∇P ) to (1.7) satisfies (if g ≡ 0 for simplicity):

(1.9) ‖ut, ν∇2u,∇P‖L1(0,T ;X) ≤ C
(
‖u0‖X + ‖f‖L1(0,T ;X)

)
for all T

with a constant C independent of T.

On the one hand, Inequality (1.9) fails whenever X is a reflexive Banach

space. On the other hand, it is known to be true in the whole space setting

if X is a homogeneous Besov space with third index 1, namely Ḃs
p,1(Rn) (see

e.g. [6]). The proof relies on a very simple argument based on Fourier analysis,

which is recalled at the end of the proof of Theorem 4.1.1. In our recent

work [15], we extended that inequality to the half-space Rn+ (assuming that

g ≡ 0). There, we had to restrict ourselves to values of s close to 0 (namely

−1 + 1/p < s < 1/p), a limitation corresponding to the case where functions

of Ḃs
p,1(Rn+) do not have a trace at the boundary and may thus be extended

by 0 over Rn, with no loss of regularity. One of the difficulties that we had

to face is that, in contrast with the Rn situation, the half-space case is not

amenable to the heat equation by projection, and cannot be reduced either to

the Rn case by a suitable symmetric/antisymmetric extension. A great deal

of the analysis was related to the use of the Fourier transform with respect to

tangential variables.

In the present paper, we want to extend Inequality (1.9) with X = Ḃs
p,1(Ω)

to smooth bounded or exterior domains (the second case being wilder from

the point of view of mathematical analysis). In passing, we also treat the case

g 6≡ 0

which is of interest for some applications that we have in mind, and that is also

needed in some intermediate steps of our proof. The general strategy is the

same as in our recent paper dedicated to the heat equation [20] but, owing to

the divergence constraint, the proof is much more involved and requires first

a very careful analysis of the Poisson equation in domains and recent results
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of ours for the (generalized) divergence equation [16]. The basic idea consists

in localizing the equation by means of a resolution of unity. We then have

to deal with ‘interior terms’, the support of which do not intersect ∂Ω, and

‘boundary terms’ with support intersecting ∂Ω. After extension by zero, the

interior terms may be handled according to the maximal regularity estimates

for Rn. As for boundary terms, we perform a change of variable in order to

reduce the study to that of (1.7) in the half-space Rn+. Putting together all

the local estimates does not quite yield the desired inequality, namely (1)

(1.10) ‖ut, ν∇2u,∇P‖L1(0,T ;Ḃsp,1(Ω)) ≤ C
(
‖u0‖Ḃsp,1(Ω) + ‖f‖L1(0,T ;Ḃsp,1(Ω))

)
.

In fact we get it either up to a low order term involving u or with a time-

dependent constant C. In the bounded domain case, one may take advantage

of the exponential decay of the Stokes semi-group so as to remove the time

dependency. In exterior domains, according to the work by H. Iwashita [32],

only algebraic decay – the so-called Lp-Lq estimates – is available. It turns out

that adapting the work by P. Maremonti and V. Solonnikov in [39] allows to

bound the L1(0, T ; Ḃs
q,1(K)) norm of u for any compact subset K surrounding

the boundary of Ω, provided that 1 < q < n/2 and s is close enough to 0.

Hence we miss the two-dimensional case.

As an example, let us now state the result we get if g ≡ 0 (the general

statement being given in Theorem 4.3.3):

Theorem. — Let Ω be a smooth exterior domain (2) of Rn with n ≥ 3. Let

1 < q ≤ p < ∞ with q < n/2, and let s ∈ (−1 + 1/p, 1/p). Assume that

u0 ∈ Ḃs
p,1 ∩ Ḃ0

q,1(Ω) with divu0 = 0 and u0 · ~n|∂Ω = 0 (here ~n is the outer

unit normal vector at ∂Ω) and that f ∈ L1(0, T ; Ḃs
p,1∩ Ḃ0

q,1(Ω)). Then System

(1.7) with g ≡ 0 has a unique solution (u,∇P ) with

u ∈ C(R+; Ḃs
p,1 ∩ Ḃ0

q,1(Ω)) and ∂tu,∇2u,∇P ∈ L1(R+; Ḃs
p,1 ∩ Ḃ0

q,1(Ω)).

In addition, we have for all positive T :

‖u‖L∞(0,T ;Ḃsp,1∩Ḃ0
q,1(Ω)) +‖(ut, ν∇2u,∇P )‖L1(0,T ;Ḃsp,1∩Ḃ0

q,1(Ω))

≤ C
(
‖u0‖Ḃsp,1∩Ḃ0

q,1(Ω) + ‖f‖L1(0,T ;Ḃsp,1∩Ḃ0
q,1(Ω))

)
,

where the above constant C is independent of T and ν.

1. Assuming just here that g ≡ 0 for simplicity.

2. That is the complement of a smooth simply connected bounded subset.
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6 CHAPTER 1. INTRODUCTION

Such time independent estimates are of interest not only for the Stokes semi-

group theory but also in a number of applications related to fluid mechanics.

Having a time-independent constant in (1.9) is crucial for proving the global

existence of strong solutions for systems related to the incompressible Navier-

Stokes equations. In effect, the fact that two full derivatives may be gained

with respect to the source term allows to consider not only the Stokes operator

but also perturbations of it.

Generalizing the above theorem to the case g 6≡ 0 will enable us to estab-

lish new well-posedness results for the inhomogeneous Navier-Stokes equations

(1.6) in some critical functional framework related to the scaling of the equa-

tions (see Chapter 5 for more details). In the slightly inhomogeneous case,

that is if ρ0 is close enough to some positive constant, we shall prove global

well-posedness for small initial velocity, and local well-posedness for large ve-

locity. We shall see that choosing s = −1+n/p in the above statement (which

corresponds to the critical regularity framework mentioned above) ensures the

velocity field to be L1-in-time with values in the set of uniformly C1 func-

tions. Hence, it admits a unique C1 flow for all time, and the system satisfied

by u may thus be reformulated equivalently in Lagrangian variables as ex-

plained at the beginning of the introduction, exactly as in our recent work

in [17] dedicated to the whole space setting (3). Looking at the system in

Lagrangian coordinates will enable us to handle discontinuous initial densities

and to justify (1.5) for the solutions to (1.6) whenever ρ0 satisfies (1.4) with ∂A

uniformly C1, and we will get for free that ∂A(t) remains C1 during the time

evolution. In other words, the inhomogeneous incompressible Navier-Stokes

equations in a domain may be used for describing a free boundary problem for

two incompressible homogeneous fluids with different densities separated by

some interface. This is in sharp contrast with the standard approach where

the free boundary is seen as an additional unknown (see e.g. [49]). Last but

not least, our approach based on Lagrangian coordinates will enable us to re-

cast our problem in terms of a suitable contracting mapping, and we will thus

get uniqueness of the solution and Lipschitz dependence with respect to the

data, with no additional regularity assumption whatsoever.

Another interesting application is given by the initial state ρ0 = 1+Z in the

case where the nonnegative function Z is bounded and SuppZ is a connected

3. Note that the divergence free property is lost when performing the change of coor-

dinates explained in (1.2). This, in itself, is a good motivation for considering nonzero

divergence in (1.7).
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CHAPTER 1. INTRODUCTION 7

set (a model for the description of pollution in a homogeneous liquid). The

uniqueness of solutions implies that, during the time evolution, the polluted

area cannot be split into several components because the support of ρ(·, t)− 1

remains connected. Besides, the bounds we have on the velocity field provide

us with some control on the growth of the diameter and on the speed of

propagation of the polluted area.

Let us mention that the local-in-time well-posedness for large jumps of the

density has been proved in [19], by another approach that is not compatible

with the critical functional setting. Another interesting development toward

this issue has been done recently in [38].

As a second application, we solve globally in critical spaces the limit low

Mach number system we get in the large entropy variations case for a heat con-

ducting and viscous perfect gas. This is a nonlinear coupling between a heat

equation for the temperature and a Stokes-like equation for the velocity that

has been investigated recently in [14] in the whole space (see also [2] and the

references therein). Being of parabolic type, there is no need to recast the sys-

tem in Lagrangian coordinates. So we concentrate on the study of the original

equations in the Eulerian coordinates in the case where the fluid domain is ex-

terior (the bounded case being easier). The main difficulty encountered is that

the incompressibility condition is violated by the structure of the model. Nev-

ertheless, the generalization of Theorem 1 to nonzero divergence constraints

obtained in Theorem 4.3.3 turns out to be appropriate to solve the system.

In passing, we have to establish new maximal regularity results (in the spirit

of Theorem 1), for the heat equation with Neumann boundary conditions, in-

volving higher order norms. This will be done by combining the methods of

the present Chapter 4 and of [20].

We end this introduction with a short description of the content of the mem-

oir. In Chapter 2, we introduce most definitions and tools that will be needed

in the paper. Besov spaces (and basic properties) are presented, first on Rn,
and next, on domains. In passing, we recall some results of ours concerning

the divergence equation, and finally present changes of coordinates that will

be useful in the analysis of the Stokes equation, and of the inhomogeneous

Navier-Stokes equations. The next chapter is dedicated to the study of the

Poisson equation with Neumann or Dirichlet boundary conditions. We mainly

aim at proving estimates in homogeneous Besov spaces, in the low regularity

framework. Those estimates will be one of the keys to the proof of maximal

regularity estimates for the evolutionary Stokes system (Chapter 4). In the
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8 CHAPTER 1. INTRODUCTION

last two chapters, we give applications of those estimates : Chapter 5 is de-

voted to the the global well-posedness issue for (1.6) in a critical framework,

thus generalizing our recent result in [17] and Chapter 6 is concerned with the

proof of a similar result for a low Mach number limit system.
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CHAPTER 2

TOOLS AND SPACES

In this chapter, we present basic definitions and tools that will be needed

throughout the memoir. We first introduce the Littlewood-Paley decomposi-

tion (a dyadic decomposition with respect to the Fourier variable) and homo-

geneous Besov spaces over Rn, then state several classical and fundamental

properties : density results, embedding, product estimates, and so on. In the

second part of this chapter, we extend the definition of Besov spaces and some

of their properties to general domains of Rn. In the third section, we recall

some results for the divergence equation, after our recent study in [16]. The

last part of this chapter is devoted to presenting different types of change of co-

ordinates that will be used a number of times in this paper to transform a PDE

problem at the boundary of a domain into a problem in the whole space Rn or

the half-space Rn+. In passing, we introduce the Lagrangian coordinates needed

in Chapter 5, and derive related algebraic relations.

2.1. Besov spaces on Rn

2.1.1. Definition and classical properties. — Throughout we fix a

smooth nonincreasing function χ : R+ → [0, 1] supported in [0, 1) and such

that χ ≡ 1 on [0, 1/2), and set

ϕ(ξ) := χ
(
|ξ|/2

)
− χ

(
|ξ|
)
.

Note that ϕ is valued in [0, 1], supported in {1/2 ≤ |ξ| ≤ 2} and that

(2.1)
∑
k∈Z

ϕ(2−kξ) = 1 for all ξ 6= 0.
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10 CHAPTER 2. TOOLS AND SPACES

Then we introduce the homogeneous Littlewood-Paley spectral truncation op-

erators (∆̇k)k∈Z over Rn by setting

∆̇ku := ϕ(2−kD)u := F−1
(
ϕ(2−k·)Fu

)
.

Above F stands for the Fourier transform on Rn. We also define the low

frequency cut-off

(2.2) Ṡk := χ(2−kD).

For s ∈ R and (p, r) ∈ [1,∞]2, we define the following homogeneous Besov

semi-norms on Rn as follows:

‖u‖Ḃsp,r(Rn) :=
∥∥2sk‖∆̇ku‖Lp(Rn)

∥∥
`r(Z)

and nonhomogeneous Besov norms:

‖u‖Bsp,r(Rn) :=
∥∥2sk‖∆̇ku‖Lp(Rn)

∥∥
`r(N)

+ ‖Ṡ0u‖Lp(Rn).

It is obvious that Besov semi-norms vanish on the set of polynomials. To

upgrade them to norms, we need a further control on low frequencies. To this

end, we shall adopt the following definition borrowed from [6]:

Ḃs
p,r(Rn) =

{
u ∈ S ′h(Rn) : ‖u‖Ḃsp,r(Rn) <∞

}
,

where S ′h(Rn) stands for the set of tempered distributions u over Rn such that

for all smooth compactly supported function θ over Rn, we have

(2.3) lim
λ→+∞

θ(λD)u = 0 in L∞(Rn).

That condition is obviously satisfied whenever θ(D)u ∈ Lp(Rn) for some

p < ∞ and θ ∈ C∞c (Rn) with θ(0) 6= 0. Note also that any distribution

in S ′h(Rn) tends weakly to 0 at infinity. In particular, S ′h(Rn) contains no

nonzero polynomial and if u ∈ S ′h(Rn) then one may write

(2.4) u =
∑
k∈Z

∆̇ku in S ′h(Rn).

Conversely, if (2.4) is satisfied and ‖u‖Ḃsp,r(Rn) <∞ for some index s such that

s < n/p (or s ≤ n/p if r = 1) then u is in Ḃs
p,r(Rn).

The following fundamental properties are proved in e.g. [6], [10], [11]:

Proposition 2.1.1. — Basic properties.

1. Completeness: the space Ḃs
p,r(Rn) is complete whenever

(2.5) s ≤ n/p if r = 1, or s < n/p if r > 1.
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2.1. BESOV SPACES ON Rn 11

2. Density: the set S0(Rn) of Schwartz functions with Fourier transform

supported away from the origin is dense in Ḃs
p,r(Rn) if and only if p and

r are finite.

3. Action of derivatives: for any k ∈ {1, . . . , n}, the derivative operator ∂k
maps Ḃs

p,r(Rn) in Ḃs−1
p,r (Rn). Besides, we have for some constant C ≥ 1

independent of u:

C−1‖u‖Ḃsp,r(Rn) ≤ ‖∇u‖Ḃs−1
p,r (Rn) ≤ C‖u‖Ḃsp,r(Rn).

4. Embedding: if p1 ≤ p2 and r1 ≤ r2 then Ḃ
s+n/p1
p1,r1 (Rn) is continuously

embedded in Ḃ
s+n/p2
p2,r2 (Rn).

5. Comparison with Lebesgue spaces:

– for any 1 ≤ p ≤ ∞, we have for some universal constant c,

c‖u‖Ḃ0
p,∞(Rn) ≤ ‖u‖Lp(Rn) ≤ ‖u‖Ḃ0

p,1(Rn);

– for any 1 < p <∞, we have

Ḃ0
p,min(p,2)(R

n) ↪−→ Lp(Rn) ↪−→ Ḃ0
p,max(p,2)(R

n);

– if 1 ≤ p <∞ and 0 < s < n/p then

Ḃs
p,p(Rn) ↪−→ Lp∗(Rn) with

n

s

(1

p
− 1

p∗

)
= 1.

6. Scaling properties: There exists a constant C depending only on s such

that for all λ > 0 we have

C−1λs−n/p‖u‖Ḃsp,r ≤ ‖u(λ·)‖Ḃsp,r ≤ Cλ
s−n/p‖u‖Ḃsp,r .

7. Duality: for all (s, p, r) ∈ R× [1,∞]2, we have∣∣∣ ∫
Rn
uv dx

∣∣∣ ≤ C‖u‖Ḃsp,r(Rn)‖v‖Ḃ−s
p′,r′ (R

n),

and the space Ḃ−sp′,r′(R
n) coincides with the set of u ∈ S ′h(Rn) such that

(2.6) sup
v

∣∣∣ ∫
Rn
uv dx

∣∣∣ <∞
where the supremum is taken over functions v in S(Rn)∩ Ḃ−sp′,r′(R

n) with

‖v‖Ḃ−s
p′,r′ (R

n) ≤ 1. The left-hand side of (2.6) is equivalent to ‖u‖Ḃsp,r(Rn).

8. Fatou property: under Condition (2.5), there exists a constant C such

that for any bounded sequence (uj)j∈N of Ḃs
p,r(Rn) converging to some u

in S ′(Rn), we have

‖u‖Ḃsp,r(Rn) ≤ C lim inf
j→+∞

‖uj‖Ḃsp,r(Rn).
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12 CHAPTER 2. TOOLS AND SPACES

In some parts of the paper, we shall also use the more classical nonhomo-

geneous Besov spaces Bs
p,r(Rn) that are defined by

Bs
p,r(Rn) =

{
u ∈ S ′(Rn) : ‖u‖Bsp,r(Rn) <∞

}
·

Those spaces have the above properties with no restriction (2.5). Furthermore

both the set C∞c (Rn) of smooth functions with compact support, and the

Schwartz class S(Rn) are dense in Bs
p,q(Rn) whenever p and r are finite.

2.1.2. Product laws. — We shall make an extensive use of the following

inequalities, sometimes named tame estimates because of their linear depen-

dence with respect to the highest norm.

Proposition 2.1.2. — Let bsp,r denote Ḃs
p,r(Rn) or Bs

p,r(Rn). Then the fol-

lowing estimates hold true (1):

– For any s > 0,

‖uv‖bsp,r . ‖u‖L∞‖v‖bsp,r + ‖v‖L∞‖u‖bsp,r .

– For any s > 0 and t > 0,

‖uv‖bsp,r . ‖u‖L∞‖v‖bsp,r + ‖v‖b−t∞,r‖u‖bs+tp,∞
.

– For any t > 0 and s > −n/p′,

‖uv‖bsp,r . ‖u‖L∞‖v‖bsp,r + ‖u‖
b
n/p′
p′,∞
‖v‖bsp,r + ‖v‖b−t∞,r‖u‖bs+tp,∞

.

Proof. — The proof is based on continuity results for the paraproduct and on

Bony’s decomposition that has been introduced in [9]:

uv = Tuv +R(u, v) + Tvu.

Above, T and R stand for the paraproduct and remainder operators, respec-

tively, that may be defined in the homogeneous case by

Tuv :=
∑
j∈Z

Ṡj−1u ∆̇jv and R(u, v) =
∑
j∈Z

∑
|i|≤1

∆̇ju ∆̇j+iv,

and in the nonhomogeneous case by

Tuv =
∑
j≥1

Ṡj−1u∆jv and R(u, v) =
∑
j≥−1

∑
|i|≤1

∆ju∆j+iv,

with ∆k = ∆̇k if k ≥ 0, ∆−1 = Ṡ0 and ∆k = 0 if k ≤ −2. Recall that Ṡk has

been defined in (2.2).

1. From now on, we agree that A . B means that A ≤ CB for some harmless positive

constant C.
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2.1. BESOV SPACES ON Rn 13

So, in order to prove the above estimates, it suffices to use the classical

properties of continuity for R and T, namely in the cases we are interested in:

‖Tuv‖bsp,r . ‖u‖L∞‖v‖bsp,r and ‖Tuv‖bsp,r . ‖u‖b−t∞,r‖v‖bs+tp,∞
if t > 0,

‖R(u, v)‖bsp,r . ‖u‖L∞‖v‖bsp,r and ‖R(u, v)‖bsp,r . ‖u‖b−t∞,r‖v‖bs+tp,∞
if s > 0,

‖R(u, v)‖bsp,r . ‖u‖bn/p′
p′,∞
‖v‖bsp,r if s > −n/p′.

As an example, let us establish the second inequality for Tuv in the homoge-

neous case. The reader may refer to [6], [48], [51] for the proof of the other

inequalities. Owing to the support properties of the function ϕ entering in the

definition of ∆̇j , we may write for all j ∈ Z and some large enough integer N :

∆̇j(Tuv) =
∑

|k−j|≤N

∆̇j(Ṡk−1u∆̇kv).

Hence

2js‖∆̇j(Tuv)‖Lp(Rn) ≤ C
∑

|k−j|≤N

2(j−k)s2−kt‖Ṡk−1u‖L∞(Rn)2
k(s+t)‖∆̇kv‖Lp(Rn),

and one may thus assert that

‖Tuv‖Ḃsp,r ≤ C
∥∥∥2−kt‖Ṡk−1u‖L∞(Rn) 2k(s+t)‖∆̇kv‖Lp(Rn)

∥∥∥
`r(Z)

.

We may further write

2−kt‖Ṡk−1u‖L∞(Rn) ≤
∑

k′≤k−2

2(k′−k)t 2−k
′t‖∆̇k′u‖L∞(Rn).

Because t > 0, taking the `r(Z) norm of both sides and using convolution

inequalities for series completes the proof.

As a smooth compactly supported function belongs to any space Ḃ
n/p
p,1 (Rn)

with 1 ≤ p ≤ ∞, and to any Besov space Bσ
p,1(Rn), we deduce from the

previous proposition and embedding the following localization properties (2):

Corollary 2.1.1. — Let θ be in C∞c (Rn). Then u 7→ θ u is a continuous

mapping of bsp,r(Rn)

– for any s ∈ R and 1 ≤ p, r ≤ ∞, if bsp,r(Rn) = Bs
p,r(Rn);

– for any s ∈ R and 1 ≤ p, r ≤ ∞ satisfying −n/p′ < s < n/p (−n/p <
s ≤ n/p if r = 1 and −n/p′ ≤ s < n/p if r =∞) if bsp,r(Rn) = Ḃs

p,r(Rn).

2. In the nonhomogeneous case with very negative s, we need to resort to other continuity

results for R than those that have been recalled above.
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14 CHAPTER 2. TOOLS AND SPACES

The above proposition will also enable us to compare Bs
p,r(Rn) and Ḃs

p,r(Rn)

for compactly supported functions:

Proposition 2.1.3. — Let 1 ≤ p, r ≤ ∞ and s > −n/p′ (or s ≥ −n/p′ if

r =∞). Then for any compactly supported distribution u we have

u ∈ Bs
p,r(Rn) ⇐⇒ u ∈ Ḃs

p,r(Rn)

and there exists a constant C = C(s, p, r, n,K) (with K = Suppu) such that

C−1‖u‖Ḃsp,r(Rn) ≤ ‖u‖Bsp,r(Rn) ≤ C‖u‖Ḃsp,r(Rn).

Proof. — Let us first treat the case s > 0. Then the embedding Bs
p,r(Rn) ↪→

Ḃs
p,r(Rn) is clear (3). Conversely, assume that u belongs to Ḃs

p,r(Rn). In order

to get u ∈ Bs
p,r(Rn), it suffices to establish that u ∈ Lp(K). This is in fact

obvious as one may write that

u = Ṡ0u+ (Id − Ṡ0)u.

The first term belongs to L∞(Rn) (as u is in S ′h(Rn)) hence to Lp(K). Next,

because its Fourier transform is supported away from the origin and s > 0,

the second term belongs to Lp(Rn). We claim that there exists some constant

C depending only on p, K and s, such that

‖u‖Lp(K) ≤ C‖u‖Ḃsp,r(Rn).

Let us write that u = Ṡju+ (Id − Ṡj)u for some j ∈ Z to be chosen hereafter.

We have

‖u‖Lp(K) ≤ ‖Ṡju‖Lp(K) + ‖(Id − Ṡj)u‖Lp(Rn)

≤ |K|
1
p ‖Ṡju‖L∞(Rn) + C2−js‖u‖Ḃsp,r(Rn).

Using Bernstein’s inequalities and, again, that Suppu ⊂ K, we thus get

‖u‖Lp(K) ≤ C|K|
1
p 2jn‖u‖L1(Rn) + C2−js‖u‖Ḃsp,r(Rn)

≤ C|K|2jn‖u‖Lp(K) + C2−js‖u‖Ḃsp,r(Rn).

So choosing j so that 2−n < 2C|K|2jn ≤ 1, we discover that

‖u‖Lp(K) ≤ C|K|
s
n ‖u‖Ḃsp,r(Rn).

3. Without any support assumption, it is obvious that if s is positive then we have

‖.‖Ḃs
p,r(Rn) . ‖.‖Bs

p,r(Rn), and that the opposite inequality holds true if s is negative.
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2.1. BESOV SPACES ON Rn 15

Let us now focus on the case s < 0. It is clear that any (not necessarily

compactly supported) distribution in Ḃs
p,r(Rn) belongs to Bs

p,r(Rn), too. Con-

versely, consider some distribution u ∈ Bs
p,r(Rn) with compact support and fix

a cut-off function η ∈ C∞c (Rn) with value 1 on Suppu. We decompose u into

(2.7) u = ηṠ0u+ η(Id− Ṡ0)u.

Note that Id− Ṡ0 maps Bs
p,r(Rn) in Ḃs

p,r(Rn), as there are no low frequencies.

As η ∈ C∞c (Rn), Corollary 2.1.1 implies that the last term in (2.7) belongs to

Ḃs
p,r(Rn) and that for some constant C = C(s, p, n, η),

(2.8) ‖η(Id− Ṡ0)u‖Ḃsp,r(Rn) ≤ C‖u‖Bsp,r(Rn).

Next, because Ṡ0u is a C∞ bounded function, ηṠ0u is in L1(Rn). Hence, by

embedding, it is also in Ḃ
−n/p′
p,∞ (Rn), and we may thus write

‖ηṠ0u‖Ḃ−n/p′p,∞ (Rn)
≤ C‖ηṠ0u‖L1(Rn) ≤ C‖u‖Bsp,r(Rn).

Of course ηṠ0u also belongs to Lp(Rn) hence to all the intermediate Besov

spaces (with obvious estimates) between Ḃ
−n/p′
p,∞ (Rn) and Lp(Rn), and in par-

ticular to Ḃs
p,r(Rn) if −n/p′ < s < 0.

The limit case s = 0 follows by interpolation.

In some applications we have in mind, we need not specify in which Besov

space the two terms of the product belong. Typically, given u in some Banach

space X, and some function φ, we just need to know that φu belongs to the

same space X. This motivates the following definition of a multiplier space.

Definition 2.1.1. — Let X be a Banach space. We designate by M(X)

(multiplier space for X) the set of those tempered distributions φ so that φu is

in X for all u ∈ X.

The space M(X) is naturally endowed with a structure of Banach space if

equipped with the following norm:

‖φ‖M(X) = sup
‖u‖X=1

‖φu‖X .

Even for very classical spaces (e.g. Sobolev spaces), describing the corre-

sponding multiplier space in terms of standard functional spaces is hopeless

(see e.g.[41]). From the first item of Proposition 2.1.2, one may assert that

M(bsp,r(Rn)) contains L∞(Rn) ∩ bsp,r(Rn) if s > 0 and 1 ≤ p, r ≤ ∞, but this

is far from being optimal.
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16 CHAPTER 2. TOOLS AND SPACES

A direct application of Lemma 2.2.1 below ensures that if A is a subset

of Rn with uniformly C1 boundary then for all 1 ≤ q ≤ ∞,

(2.9) 1A ∈M(Ḃs
p,q(Rn)) if s ∈

(
−1 + 1/p, 1/p

)
with 1 < p <∞.

The following lemma will be useful when transforming a problem on the bound-

ary to a problem on the half-space and also to justify the equivalence between

the Eulerian and Lagrangian formulation of the systems of PDEs that we shall

study in the last chapter.

Lemma 2.1.1. — Let Z : Rn → Rn be a diffeomorphism and (s, p, r) ∈ R ×
[1,∞]2 with −n/p′ < s < n/p. The linear map u 7→ u ◦ Z is continuous

on Ḃs
p,r(Rn) whenever:

– either 0 < s < 1 and JZ−1 , DZ are bounded,

– or −1 < s < 0, JZ , DZ
−1 are bounded and JZ−1 ∈M(Ḃ−sp′,r′(R

n)).

Above, we agree that J±1
Z := |detDZ±1|.

Proof. — Let us first consider the case s ∈ (0, 1) and p, r finite (the limit cases

being left to the reader). Using the characterization of homogeneous Besov

semi-norms by means of finite differences (see e.g. [6, 52]), one may write up

to an irrelevant constant:

‖u ◦ Z‖r
Ḃsp,r(Rn)

=

∫
Rn

(∫
Rn

|u(Z(y))− u(Z(x))|p

|y − x|n+sp
dy
) r
p
dx.

So performing the change of variable x′ = Z(x) and y′ = Z(y), we see that

‖u◦Z‖r
Ḃsp,r(Rn)

=

∫
Rn

(∫
Rn

|u(y′)− u(x′)|p

|Z−1(y′)− Z−1(x′)|n+sp
JZ−1(y′) dy′

) r
p
JZ−1(x) dx′,

whence

‖u ◦ Z‖Ḃsp,r(Rn) ≤ ‖JZ−1‖
1
p

+ 1
r

L∞(Rn)‖DZ‖
s+n

p

L∞(Rn)‖u‖Ḃsp,r(Rn).

Let us emphasize that the condition that s < n/p ensures in addition that u

belongs to some Lebesgue space Lp∗(Rn) with p∗ <∞. Hence u◦Z ∈ Lp∗(Rn),

too, and one may thus conclude that u ◦ Z ∈ Ḃs
p,r(Rn).

The result for s ∈ (−1, 0) may be achieved by duality: we have

‖u ◦ Z‖Ḃsp,r(Rn) = sup
‖v‖

Ḃ−s
p′,r′

(Rn)
≤1

∫
Rn
v(z)u

(
Z(z)

)
dz.
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2.1. BESOV SPACES ON Rn 17

Now, setting x = Z(z) yields∫
Rn
v(z)u(Z(z)) dz =

∫
Rn
u(x)v(Z−1(x))JZ−1(x) dx

≤ ‖u‖Ḃsp,r(Rn)‖JZ−1 v ◦ Z−1‖Ḃ−s
p′,r′ (R

n)

. ‖JZ‖
1
p′+

1
r′

L∞(Rn)‖DZ
−1‖
−s+ n

p′

L∞(Rn)‖JZ−1‖M(Ḃ−s
p′,r′ (R

n))‖u‖Ḃsp,r(Rn)

the last inequality being a consequence of the first part of the proof, of the

definition of multiplier spaces and of ‖v‖Ḃ−s
p′,r′ (R

n) ≤ 1.

In order to show that u ◦ Z ∈ S ′h(Rn), one may use the fact that

‖Ṡj(u ◦ Z)‖L∞(Rn) = sup
‖v‖L1(Rn)=1

∫
Rn
u ◦ Z Ṡjv dx

and follow the above computations. We still get∫
Rn
u ◦ Z Ṡjv dx

≤ ‖JZ‖
1
p′+

1
r′

L∞(Rn)‖DZ
−1‖
−s+ n

p′

L∞(Rn)‖JZ−1‖M(Ḃ−s
p′,r′ (R

n))‖u‖Ḃsp,r(Rn)‖Ṡjv‖Ḃ−s
p′,r′ (R

n).

By using Bernstein inequality and the fact that v is in L1(Rn), it is not difficult

to conclude that ‖Ṡj(u ◦ Z)‖L∞(Rn) → 0 when j goes to −∞. This completes

the proof.

Remark 2.1.1. — The above lemma extends to s = 0 by interpolation. It

also may be generalized to higher order regularities if making stronger assump-

tions on Z. For instance, if assuming that 1 < s < 2 then the map u 7→ u ◦ Z
is continuous on Ḃs

p,r(Rn) whenever JZ−1 and DZ are bounded, and

DZ ∈M(Ḃs−1
p,r (Rn)).

Likewise, if −2 < s < −1 then u→ u ◦ Z is continuous on Ḃs
p,r(Rn) whenever

JZ and DZ−1 are bounded, and

JZ−1 ∈M(Ḃ−sp′,r′(R
n)) and DZ−1 ∈M(Ḃ−s−1

p,r (Rn)).

Proof. — If 1 < s < 2 then we look for a bound of D(u ◦ Z) in Ḃs−1
p,r (Rn).

Using the chain rule D(u ◦ Z) = (Du ◦ Z) · DZ, the definition of multiplier

spaces and the previous lemma, we may write

‖D(u ◦ Z)‖Ḃs−1
p,r (Rn) . ‖DZ‖M(Ḃs−1

p,r (Rn))‖Du ◦ Z‖Bs−1
p,r (Rn)

. ‖DZ‖M(Ḃs−1
p,r (Rn))‖JZ−1‖

1
p

+ 1
r

L∞(Rn)‖DZ‖
s−1+n

p

L∞(Rn)‖Du‖Bs−1
p,r (Rn).
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18 CHAPTER 2. TOOLS AND SPACES

As for the case −2 < s < −1, we argue by duality:∫
Rn
v(z)u(Z(z)) dz =

∫
Rn
u(x)v(Z−1(x))JZ−1(x) dx,

≤ ‖u‖Ḃsp,r(Rn)‖v ◦ Z
−1‖Ḃ−s

p′,r′ (R
n)‖JZ−1‖M(Ḃ−s

p′,r′ (R
n)).

As 1 < −s < 2, applying the result for positive indices of regularity to v ◦Z−1

enables us to conclude.

2.2. Besov spaces on domains

We aim at extending the definition of homogeneous Besov spaces to general

domains. We proceed by restriction as follows (4):

Definition 2.2.1. — For s ∈ R and 1 ≤ p, q ≤ ∞, we define the homo-

geneous Besov space Ḃs
p,q(Ω) on Ω to be the restriction (in the distributional

sense) of Ḃs
p,q(Rn) to Ω, that is

φ ∈ Ḃs
p,q(Ω) ⇐⇒ φ = ψ|Ω for some ψ ∈ Ḃs

p,q(Rn).

We then set

‖φ‖Ḃsp,q(Ω) := inf
ψ|Ω=φ

‖ψ‖Ḃsp,q(Rn).

As in the Rn case, the Besov spaces defined above are Banach spaces with

the Fatou property whenever Condition (2.5) is satisfied. Moreover, interpo-

lation and embedding properties may be deduced from those that have been

stated in Proposition 2.1.1.

Owing to the definition by restriction, we expect the product estimates to

be the same as in the whole space setting. For example, for s > 0, it seems

reasonable to have

(2.10) ‖uv‖Ḃsp,q(Ω) . ‖u‖L∞(Ω)‖v‖Ḃsp,q(Ω) + ‖v‖L∞(Ω)‖u‖Ḃsp,q(Ω).

However the situation is not so simple because if we consider some extensions

ū and v̄ in Rn of u and v then ūv̄ is an extension of uv over Rn but it is not

clear that the restriction to Ω of X(Rn)∩Y (Rn) coincides with X(Ω)∩Y (Ω).

As regards (2.10), it may be fully justified for 0 < s < 1/p by using ex-

tensions by zero if Ω is uniformly C1 (see Corollary 2.2.1 below). For larger

values of s and if the domain is sufficiently smooth then there exists an explicit

bounded extension operator E : Bs
p,r(Ω) → Bs

p,r(Rn) which is also bounded

from L∞(Ω)→ L∞(Rn), see [1],[52].

4. Nonhomogeneous Besov spaces on domains may be defined by the same token.
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2.2. BESOV SPACES ON DOMAINS 19

In most situations, the following result will be sufficient for our purposes:

Proposition 2.2.1. — Let bsp,r(Ω) denote Ḃs
p,r(Ω) or Bs

p,r(Ω), and Ω be a

domain of Rn. Then for any p ∈ [1,∞], s such that −n/p′ < s < n/p (or

−n/p′ < s ≤ n/p if r = 1, or −n/p′ ≤ s < n/p if r = ∞), the following

inequality holds true:

‖uv‖bsp,r(Ω) ≤ C‖u‖bn/qq,1 (Ω)
‖v‖bsp,r(Ω) with q = min(p, p′).

Proof. — Let us assume for instance that p ≤ 2 (so that p′ ≥ p). Let us con-

sider some extensions ũ and ṽ of u and v in b
n/p
p,1 (Rn) and bsp,r(Rn), respectively.

Then applying the last item of Proposition 2.1.2 to ũ and ṽ with t = n/p− s,
and noticing that our assumption on p guarantees that

b
n/p
p,1 (Rn) ↪−→ bn/qq,∞(Rn) ∩ L∞(Rn) for q = p, p′,

we get uv = (ũṽ)|Ω and

‖ũ ṽ‖bsp,r(Rn) ≤ C‖ũ‖bn/pp,1 (Rn)
‖ṽ‖bsp,r(Rn).

As this inequality holds true with the same constant for any extensions of u

and v, we get the result.

We shall often use the following compact embedding (see [48]).

Proposition 2.2.2. — Let Ω be a smooth bounded domain of Rn. Then for

any s ∈ R, (p, q) ∈ [1,+∞]2 and ε > 0, the space Bs
p,q(Ω) is compactly embed-

ded in Bs−ε
p,q (Ω).

In addition, any bounded sequence (un)n∈N of Bs
p,q(Ω) converges weakly star

(up to an omitted extraction) to some u in Bs
p,q(Ω) and we have

‖u‖Bsp,q(Ω) ≤ C lim inf ‖un‖Bsp,q(Ω) and un −→ u in any Bs−ε
p,q (Ω).

As already pointed out in the previous section, interpolation properties are

a very useful feature of Besov spaces. We refer to [7, 52] for the proof of the

following statement.

Proposition 2.2.3. — Let bsp,q denote Bs
p,q(Ω) or Ḃs

p,q(Ω); s ∈ R, p ∈ (1,∞)

and q ∈ [1,∞]. The real interpolation of Besov spaces gives if s1 6= s2:(
bs1p,q1(Ω), bs2p,q2(Ω)

)
θ,q

= bsp,q(Ω)

with s := θs2 + (1− θ)s1 and 1
p := θ

p2
+ 1−θ

p1
·. Moreover, if s1 6= s2, t1 6= t2 and

if T : bs1p1,q1(Ω)+bs2p2,q2(Ω)→ bt1k1,l1
(Ω)+bt2k2,l2

(Ω) is a linear map, bounded from
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20 CHAPTER 2. TOOLS AND SPACES

bs1p1,q1(Ω) to bt1k1,l1
(Ω) and from bs2p2,q2(Ω) to bt2k2,l2

(Ω) then for any θ ∈ (0, 1), the

map T is also bounded from bsp,q(Ω) to btk,q(Ω) with

s = θs2 +(1−θ)s1, t = θt2 +(1−θ)t1,
1

p
=

θ

p2
+

1− θ
p1

,
1

k
=

θ

k2
+

1− θ
k1
·

An important question is whether one is allowed to extend functions in

domains by 0, without changing their regularity. In the flat case, the following

statement (see [15]) gives the answer.

Lemma 2.2.1. — For ε > 0, denote Φε(u) : x 7→ ηε(xn)u(x) with

ηε(t) :=


0 for t < ε,
1
ε t− 1 for ε ≤ t ≤ 2ε,

1 for t > 2ε.

Then for all 1 ≤ p <∞, 1 ≤ q ≤ ∞ and −1 + 1/p < s < 1/p the operator Φε

maps Ḃs
p,q(Rn) in Ḃs

p,q(Rn) uniformly with respect to ε. Moreover, if q is finite

then for all u ∈ Ḃs
p,q(Rn), we have

lim
ε→0

Φε(u) = Φ0(u) := 1Rn+u in Ḃs
p,q(Rn).

As a corollary, we readily get that 1Rn+ is inM(Ḃs
p,q(Rn)) whenever (s, p, q)

are as above. More generally, as already pointed out, Lemma 2.2.1 implies that

1A is in M(Ḃs
p,q(Rn)) if A is any uniformly C1 domain of Rn. Indeed, the C1

regularity allows to transform locally the boundary to that of the half-space

case (see Lemma A.7 in [17] for more details).

Now, if we consider some uniformly C1 domain Ω and u ∈ Ḃs
p,q(Ω) and

some arbitrary extension ũ ∈ Ḃs
p,q(Rn) of u, then we deduce that ũ1Ω is still

in Ḃs
p,q(Rn) (with the expected control of the norm). In other words, we proved

the following result (5):

Corollary 2.2.1. — For any uniformly C1 domain Ω, (p, q) ∈ [1,∞]2 and

s ∈ (−1 + 1/p, 1/p), the extension by 0 operator is continuous from Ḃs
p,q(Ω)

to Ḃs
p,q(Rn).

Remark 2.2.1. — Combining the above corollary with Proposition 2.1.3, we

deduce that

Bs
p,q(Ω) = Ḃs

p,q(Ω) if −1+ 1/p < s < 1/p and Ω is a C1 bounded domain.

5. The similar result for nonhomogeneous spaces is classical, see [52].
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The Besov spaces can be naturally defined on sub-manifolds using their

atlas. Indeed, as pointed out in the proof of Lemma 2.1.1 in the Rn case, for

positive exponents, the Besov semi-norms may be expressed in terms of finite

differences. This leads to the following definition of Besov spaces on manifolds:

Definition 2.2.2. — Let S be a C1 m-dimensional submanifold and

s ∈ (0, 1). Then the nonhomogeneous Besov space Bs
p,p(S) is the set of

Lp(S) functions so that

(2.11) ‖u‖Bsp,p(S) := ‖u‖Lp(S) + ‖u‖Ḃsp,p(S) <∞

where ‖.‖Ḃsp,q(S) stands for the following homogeneous semi-norm:

(2.12) ‖u‖Ḃsp,p(S) :=

(∫
S

∫
S

|u(x)− u(y)|p

|x− y|m+sp
dx dy

)1/p

.

The above double integral may be used to define the homogeneous Besov

space Ḃs
p,p(S) on S if in addition s < m/p (see the remark below). The spaces

Ḃs
p,p(S) with max(−1,−m/p′) < s < 0 may be defined by duality: we set

Ḃs
p,p(S) := (Ḃ−sp′,p′(S))∗.

The remaining spaces Ḃs
p,q(S) for

1 < p <∞, 1 ≤ q ≤ ∞ and max(−1,−m/p′) < s < min(1,m/p)

may be defined by interpolation according to the following relation:

(2.13)
(
Ḃs1
p,q1(S), Ḃs2

p,q2(S)
)
θ,q

= Ḃs
p,q(S).

We just have to fix some max(−1,−m/p′) < s1 < s2 < min(1,m/p) and take

θ ∈ (0, 1) such that s = θs2 + (1 − θ)s1. Note that the space Ḃs
p,q(S) with

0 < s < 1 may be equivalently defined by finite differences as in the proof of

Lemma 2.1.1.

Remark 2.2.2. — For S = Rn and 0 < s < min(1, n/p), Definitions 2.2.1 and

2.2.2 give the same functional space. Indeed, knowing that Ḃs
p,p(Rn) embeds

in Lm(Rn) for some finite m, the decay to 0 at infinity is controlled (see

(2.3)), and C∞c (Rn)
Ḃsp,p(Rn)

thus defines a Banach space which coincides with

Ḃs
p,p(Rn). For an arbitrary domain Ω one may thus define the homogeneous

Besov space Ḃs
p,p(Ω) (being a Banach space) by means of the following norm:

(2.14) ‖u‖Ḃsp,p(Ω) = ‖u‖Ḃsp,p(Ω) + ‖u‖Lm(Ω) with
1

p
− 1

m
=
s

n
·
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22 CHAPTER 2. TOOLS AND SPACES

More generally, if 0 < s < n/p and k = [s] then one may define Ḃs
p,p as the

subset of Lm(Ω) functions u (with m as above) with ‖∇ku‖Ḃs−kp,p
<∞.

General spaces Ḃs
p,q(Ω) with 0 < s < n/p and 1 ≤ q ≤ ∞ may be defined

by interpolation.

From Lemma 2.2.1 and localization property, i.e.

if η ∈ C∞c (Ω) and u ∈ Bs
p,q(Ω) (or Ḃs

p,q(Ω)) then ηu ∈ Bs
p,q(Ω) (or Ḃs

p,q(Ω)),

one can get the following important corollary (more details may be found in

[53], page 210).

Corollary 2.2.2. — Let Ω be a uniformly C1 domain of Rn. For any (p, q) ∈
[1,∞)2 and s ∈ (−1 + 1/p, 1/p), we have

Bs
p,q(Ω) = {f ∈ Bs

p,q(Rn) : Supp f ⊂ Ω
}‖.‖Bsp,q(Ω)

and Ḃs
p,q(Ω) = {f ∈ Ḃs

p,q(Rn) : Supp f ⊂ Ω
}‖.‖Ḃsp,q(Ω)

where the nonhomogeneous and homogeneous norms are defined in (2.11) and

(2.12), respectively.

In the case q =∞, density holds true for the weak ∗ topology only.

Proof. — The nonhomogeneous case in standard (see e.g. [52]). The homo-

geneous case is a consequence of Corollary 2.2.1 and of the above remark.

We shall use repeatedly the following trace theorem (see e.g. [52]).

Proposition 2.2.4. — Let Ω be a sufficiently smooth simply connected do-

main. Suppose that 1 < p < ∞ and s > 1/p. The trace map from Ω to ∂Ω

extends to a continuous operator from Bs
p,q(Ω) onto B

s−1/p
p,q (∂Ω).

We also need the following lemma proved in the appendix of [15], concerning

the harmonic extension from the hyperplane ∂Rn+ to the half-space Rn+:

Lemma 2.2.2. — Let s > 0, 1 < p < ∞ and 1 ≤ q ≤ ∞. Then there exists a

constant C such that for all h ∈ Ḃs−1/p
p,q (∂Rn+), we have

(2.15)
∥∥F−1

x′ [e−|ξ
′|xnFx′ [h]]

∥∥
Ḃsp,q(Rn+)

≤ C
∥∥h∥∥

Ḃ
s−1/p
p,q (∂Rn+)

,

where Fx′ stands for the Fourier transform with respect to x′ := (x1, . . . , xn−1)

and ξ′ denotes the corresponding Fourier variable.

Consequently, we get the following extension lemma in the nonflat situation.
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Lemma 2.2.3. — Let Ω be a smooth domain with compact boundary. Then

for s ∈ (0, np ), p ∈ (1,∞) and q ∈ [1,∞] there is a continuous extension

operator from B
s− 1

p
p,q (∂Ω) to Bs

p,q(Ω).

Proof. — Let ψ be in B
s− 1

p
p,q (∂Ω). Observe that the condition over s implies the

space B
s−1/p
p,q (∂Ω) to be stable under multiplication by compactly supported

functions.

Figure 2.2.1. Covering of ∂Ω

By compactness of ∂Ω, one may find two coverings (si)1≤i≤N and (Si)1≤i≤N
of ∂Ω by open sets of Rn with si ⊂ Si. Then, we fix N maps Zi : si → Rn with

Zi : si ∩ Ω→ Rn+ and Zi : si ∩ ∂Ω→ ∂Rn+ (see the beginning of Section 2.4).

Let (ηi)1≤i≤N be a partition of unity associated to the covering si∩∂Ω, with

Supp ηi ⊂ si. Further introduce a family (η̄i)1≤i≤N of smooth functions with

η̄i|si ≡ 1 and Supp η̄i ⊂ Si. Denoting Z∗(φ) := Z ◦ φ−1, we have according to

Lemma 2.1.1,

(2.16) Z∗i (ηiψ) ∈ Ḃs−1/p
p,q (∂Rn+).

Then, thanks to Lemma 2.2.2, we may find some extension Ψi ∈ Ḃs
p,q(Rn+) of

Z∗i (ηiψ) such that

(2.17) ‖Ψi‖Ḃsp,q(Rn+) ≤ c‖Z
∗
i (ηiψ)‖

Ḃ
s−1/p
p,q (∂Rn+)

and η̄i(Z
−1
i )∗(Ψi) ∈ Ḃs

p,q(Ω) and η̄i(Z
−1
i )∗(Ψi)|∂Ω = η̄iηiψ. Obviously Ψ :=∑

i η̄i(Z
−1
i )∗(Ψi) is an extension such that

(2.18) ‖Ψ‖Bsp,q(Ω) ≤ c‖ψ‖Bs−1/p
p,q (∂Ω)

and Ψ|∂Ω = ψ.
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This completes the proof of the lemma.

Lemma 2.2.4. — Let Ω be a C1 domain with compact boundary. Let ~n be the

outer unit normal vector at ∂Ω. Then for any 1 < p < ∞, 1 ≤ q ≤ ∞ and

s ∈ (−1+1/p, 1/p), the normal trace operator F 7→ (F ·~n)|∂Ω acting on smooth

divergence-free vector fields extends continuously from Bs
p,q(Ω) to B

s−1/p
p,q (∂Ω).

Proof. — In the smooth case, using the properties of duality of Besov spaces,

one may write

‖F · ~n|∂Ω‖Bs−1/p
p,q (∂Ω)

≤ C sup

{∫
∂Ω
F · ~nφ dς : φ ∈ B−s+1/p

p′,q′ (∂Ω) and ‖φ‖
B
−s+1/p

p′,q′ (∂Ω)
≤ 1

}
·

Because divF = 0, we have∫
∂Ω
F · ~nφ dς =

∫
Ω
F · ∇(Eφ) dx,

where Eφ is the extension of φ in B−s+1
p′,q′ (Ω) given by Lemma 2.2.3 – the

assumptions guarantee that −s + 1 > 0. Now, ∇(Eφ) ∈ B−sp′,q′(Ω) with −s ∈
(−1 + 1/p′, 1/p′). Hence, thanks to Corollary 2.2.1, both functions ∇(Eφ)

and F can be extended by zero outside Ω. We thus get (by using the duality

properties for Besov spaces on Rn):∫
∂Ω
F · ~nφ dς ≤ C‖∇Eφ‖B−s

p′,q′ (Ω)‖F‖Bsp,q(Ω) ≤ C‖φ‖B−s+1/p

p′,q′ (∂Ω)
‖F‖Bsp,q(Ω).

This completes the proof of the lemma.

2.3. The divergence equation

Our analysis requires an accurate description of low regularity Besov spaces

on domains, an issue that strongly depends on the problem we aim at con-

sidering. As an example, if we look at the Poisson equation ∆u = div k with

rough vector-field k (say just Lp(Ω)) then the class of k for which the meaning

of solution makes sense is larger if prescribing Neumann boundary conditions

rather than Dirichlet conditions.

The present work requires our looking at the divergence operator in low

regularity as a distribution acting on test functions up to the boundary. To

this end, we adopt the following definition that is borrowed from our recent

work [16]:
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Definition 2.3.1. — Let Ω be a domain of Rn with a compact Lipschitz

boundary. If k is a distribution over Ω and ζ a distribution over ∂Ω then

we designate by DIV [k; ζ] the linear functional defined on the set C∞c (Ω) of

smooth functions with compact support in Ω, by

DIV [k; ζ](ϕ) := −
∫

Ω
k · ∇ϕdx+

∫
∂Ω
ζ ϕ dσ.

For 1 < p < ∞, −1 + 1/p < s < 1/p, 1 ≤ q ≤ ∞, the notation Bs−1
p,q (Ω)

designates the set of all functionals DIV [k; ζ] such that (6)

(2.19) k ∈ Bs
p,q(Ω) and ζ ∈ B

s− 1
p

p,q (∂Ω) with

∫
∂Ω
ζ dσ = 0.

The space Bs−1
p,q (Ω) is endowed with the following norm:

(2.20) ‖DIV [k; ζ]‖Bs−1
p,q (Ω) = inf

(
‖k̃‖Bsp,q(Ω) + ‖ζ̃‖

B
s− 1

p
p,q (∂Ω)

)
,

where the infimum is taken over all the couples (k̃, ζ̃) satisfying (2.19) and

such that DIV [k̃; ζ̃] = DIV [k; ζ].

Analogously, for the same range of exponents, we define the homogeneous

space Ḃs−1
p,q (Ω) for k ∈ Ḃs

p,q(Ω) and ζ ∈ Ḃ
s− 1

p
p,q (∂Ω) endowed with the norm

(2.21) ‖DIV [k; ζ]‖Ḃs−1
p,q (Ω) = inf

(
‖k̃‖Ḃsp,q(Ω) + ‖ζ̃‖

Ḃ
s− 1

p
p,q (∂Ω)

)
,

where the infimum is taken over all the couples (k̃, ζ̃) satisfying (2.19) and

such that DIV [k̃; ζ̃] = DIV [k; ζ].

For k and ζ as above, it is clear that if the vector-field v satisfies

(2.22) DIV [v; 0] = DIV [k; ζ],

then it is a solution to the following system (7):{
div v = div k in Ω,

(k − v) · ~n = ζ on ∂Ω.

Rewriting the system in terms of the functional DIV [k; ζ] enables us to incor-

porate the boundary condition either in the interior part or in the boundary

part of the data (see [16, 18, 19] for more detailed explanations).

6. We make the convention that
∫
∂Ω
ζ dσ designates the distribution bracket 〈ζ, 1〉. That 1

is a test function comes from the fact that ∂Ω is compact.

7. That the boundary condition makes sense stems from Lemma 2.2.4.
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In the present paper, the following result will be used a number of times:

Theorem 2.3.1. — Let Ω be a bounded or exterior C2 domain. There exists

a linear operator BΩ which is bounded from Bs−1
p,q (Ω) to Bs

p,q(Ω;Rn) whenever

1 < p < ∞, 1 ≤ q ≤ ∞ and −1 + 1/p < s < 1/p, and such that for any

F = DIV [k; ζ] in Bs−1
p,q (Ω), the vector-field v := BΩ(F ) fulfills (2.22).

Furthermore if k ∈ Bm+s
p,q (Ω) with m = 1, 2 and ζ = (k ·~n)|∂Ω then v belongs

to Bm+s
p,q (Ω), vanishes at the boundary and satisfies

(2.23) ‖v‖Bm+s
p,q (Ω) ≤ C‖ div k‖Bm−1+s

p,q (Ω).

Finally, if k is time dependent with kt and div k in L1(0, T ;Bs
p,q(Ω)), and

((k · ~n)|∂Ω)t ∈ L1(0, T ;B
s−1/p
p,q (∂Ω)) then we have

‖vt‖L1(0,T ;Bsp,q(Ω)) ≤ C
(
‖kt‖L1(0,T ;Bsp,q(Ω) + ‖((k · ~n)|∂Ω)t‖L1(0,T ;B

s−1/p
p,q (∂Ω))

)
.

Proof. — We just sketch the proof in the case where Ω is bounded and star-

shaped with respect to some ball, the reader being referred to [16], [18], [19]

for more details. Then the following Bogovskĭı formula provides us with an

example of operator BΩ fulfilling (2.23):

(2.24) BΩ(F )(x) :=

∫
Ω
f(y)

x− y
|x− y|n

∫ ∞
0

ω
(
x+r

x− y
|x− y|

)
(|x−y|+r)n−1 dr dy,

where ω stands for a smooth function with average 1 and support in a ball

with respect to which Ω is star-shaped.

In [16], in order to achieve distributions F with lower regularity (e.g. F =

DIV [k; ζ]), we performed a formal integration by parts in (2.24) so as to

decompose the outer integral into an interior integral and a boundary integral.

More precisely, we introduced the following operators (8) IΩ and JΩ:

(2.25)

IΩ(k)(x) = −
∫

Ω
k(y)·∇y

[
x− y
|x− y|n

∫ ∞
0
ω
(
x+r

x− y
|x− y|

)
(|x− y|+r)n−1dr

]
dy

JΩ(ζ)(x) =

∫
∂Ω
ζ(y)

x− y
|x− y|n

∫ ∞
0

ω
(
x+ r

x− y
|x− y|

)
(|x− y|+ r)n−1 dr dσy.

Those two operators enabled us to extend Bogovskĭı formula to the rough case.

In effect, in the smooth case where F = div k, it is obvious that

(2.26) v = BΩ( div k) = IΩ(k) + JΩ(ζ) with ζ := (k · ~n)|∂Ω.

8. These singular integrals have to be understood in the principal value meaning.
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Under the assumptions of the theorem, it has been established in [16] that

v := IΩ(k) + JΩ(ζ)

is indeed a solution to (2.22), and that v belongs to Bs
p,q(Ω;Rn). More pre-

cisely, it has been shown that IΩ : Bs
p,q(Ω;Rn) → Bs

p,q(Ω;Rn) and JΩ :

B
s−1/p
p,q (∂Ω;R)→ Bs

p,q(Ω;Rn).

Finally, in the case where k is time-dependent, differentiating the above

relation with respect to time yields

vt = IΩ(kt) + JΩ(ζt).

Therefore, taking advantage of the continuity results for IΩ and JΩ, and inte-

grating with respect to time gives the end of the statement.

2.4. Change of coordinates

Investigating the Laplace and Stokes equations in general domains will rely

on a localization of our problem. Obtaining local estimates at the interior

and at the boundary of the domain will be two key steps. The analysis at the

interior is amenable to equations in the whole space while boundary terms may

be seen as the solution to model equations in the half-space after a suitable

change of coordinates (so as to straighten the boundary). This section is

devoted to introducing changes of coordinates so as to transform problems at

the (nonflat) boundary of some Cr open set Ω (r ≥ 2) to a problem at the

boundary of Rn+.
Let us first present the general setting. By definition, having ∂Ω of class

Cr means that for any point x0 of ∂Ω there exists some small enough λ > 0

and a one-to-one Cr mapping

Z : B(x0, λ) −→ Rn, x 7−→ z,

such that

(i) Z is a Cr diffeomorphism from B(x0, λ) to Z(B(x0, λ));

(ii) Z(x0) = 0 and DxZ(x0) = Id ;

(iii) Z(Ω ∩B(x0, λ)) ⊂ Rn+;

(iv) Z(∂Ω ∩B(x0, λ)) = ∂Rn+ ∩ Z(B(x0, λ)).

If we denote DxZ = Id + A and assume that ∂Ω is uniformly Cr then there

exist constants C` depending only on Ω and on ` ∈ {1, . . . , r − 1} such that

(2.27) ‖D`A‖L∞(B(x0,λ)) ≤ C`,
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a property which implies (by the mean value formula) that

(2.28) ‖A‖L∞(B(x0,ε)) ≤ C1ε if 0 < ε < λ,

hence by interpolation between the spaces Lq(B(0, ε)) and W r−1
q (B(0, ε)),

(2.29) ‖A‖
B
n
q
q,1(B(x0,ε))

≤ Cε for all 1 ≤ q <∞ such that n/q < r − 1.

Let us introduce some examples of maps Z. We would like to consider a

neighborhood of a point x0 ∈ ∂Ω. After a rigid motion we may assume that

x0 = 0 and Tx0∂Ω = ∂Rn+ and that in addition (B(0, ε)∩Ω)∩Rn+ 6= ∅ for any

0 < ε < λ.

First example: the basic change of coordinates.

The above assumptions ensure that the interior unit normal vector of ∂Ω

at x0 = 0 is ~en := (0, . . . , 0, 1). Then one may set

(2.30) Z(x′, xn) := (x′, xn − φ(x′)),

where the graph of the function φ coincides with the boundary ∂Ω in some

neighborhood of x0 = 0, hence satisfies φ(0) = 0 and Dx′φ(0) = 0. As ∂Ω ∈ Cr,
so do φ and Z. In addition, (2.27) and (2.28) are satisfied.

Second example: a normal preserving change of coordinates.

We would like the value of the normal derivative at the boundary to be

invariant under the change of coordinates. Hence we define Z so that for

small enough t and x′, we have (with φ as above)

(2.31) Z
(
(x′, φ(x′)) + t~n

)
= (x′, t),

where ~n stands for the interior unit normal vector at the boundary.

Differentiating the above equality with respect to t, we see that ∂~nZ coin-

cides with ~en. Hence in particular, for any differentiable function q,

(2.32) ∂~nq(x) = ∂znq(z)|z=Z(x) for x in a neighborhood of x0.

Third example: a measure preserving change of coordinates.

This last example, borrowed from e.g. [44], [47] and [50], is more involved.

We start with some bounded simply connected open set S1 ⊂ Rn+, star-shaped

with respect to some point y inside Ω and such that ∂S1 is a neighborhood of

the point x0 = 0 in ∂Ω (see the figure next page). We also fix another bounded

simply connected open set S0 ⊂ Rn+ such that

1. S0 ∩ ∂Rn+ is a neighborhood of 0 in ∂Rn+,
2. S0 is star-shaped with respect to y,

3. |S0| = |S1|.
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Figure 2.4.1. Construction of S0

We aim at constructing a measure preserving change of coordinates Z satisfy-

ing the requirements enumerated at the beginning of Section 2.4, and so that

Z(S1) = S0.

To achieve it, we first construct intermediate sets S∗t between S0 and S1 in

terms of y and t ∈ (0, 1) as follows:

S∗t := {x ∈ Rn : x = y + sω, ω ∈ Sn−1, s ∈ [0, s̄t(y, ω)]},

where s̄t(y, ω) = (1− t)s̄0(y, ω) + ts̄1(y, ω) and s̄i are given by the relation

y + s̄i(y, ω)ω ∈ ∂Si for i = 0, 1.

In general, S∗t need not have the same measure as S1. Hence we define St to

be the image of S∗t by some suitable dilation centered at point 0. Having con-

structed such a family St, we notice that Vt, the normal speed of deformation

of ∂St at time t, satisfies the compatibility condition∫
∂St

Vt dσ = 0.

To show this relation it is enough to note that since the area of St is preserved,

0 =
d

dt

∫
St

dx =

∫
∂St

Vt dσ.

Hence one may solve the following system:

(2.33)
∆Pt = 0 in St,
∂Pt
∂~n = Vt at ∂St.
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In order to define the map Z we solve the differential equation

dzx
dt

(t) = ∇P (zx(t), t) with zx(0) = x′.

Then for x = (x′, t), we set

Z(x) := x+

∫ t

0
∇P (zx(s), s) ds.

The construction guarantees that Z(0) = 0 and Z is measure preserving since

div∇P = 0 (Liouville’s theorem). In addition we are able to control the

regularity of Pt (see e.g. [26], Th. 15): if ∂St ∈ B
1+s− 1

p
p,q , then Vt ∈ B

s− 1
p

p,q , so

the solvability of (2.33) gives ∇P ∈ Bs
p,q, hence eventually Z ∈ Bs

p,q.

To complete this section, let us explicit the effect of the above changes of

coordinates on the differential operators that we shall consider throughout this

paper.

We consider a general Cr-diffeomorphism Z : Ω→ Ω̄. Let

H : Ω −→ Rn

denote some vector-field defined on Ω. Then we define the vector field

H : Ω̄ −→ Rn

by H := Z∗(H) := H ◦ Z−1. Similarly, for any function f : Ω→ R, we define

f̄ : Ω̄→ R by f̄ := Z∗(f) := f ◦ Z−1. We thus have

H(z) = H(x) and f̄(z) = f(x) with z = Z(x).

From the chain rule, we get (9)

(2.34)
divxH(x) = DzH(z) : DxZ(x) = ∇xZ(x) : ∇zH(z)

and ∇xf(x) = ∇xZ(x) · ∇z f̄(z).

Therefore, setting B̄(z) = B(x) = DxZ(x), we get

∆xf(x) = divx (∇xf)(x) = Dz

(
TB̄(z) · ∇z f̄(z)

)
: B̄(z).

We thus deduce, with the summation convention over repeated indices, that

∆xf = ∂zi(B̄i,jB̄k,j∂zk f̄)− (∂ziB̄i,j) B̄k,j∂zk f̄ ,

= ∂zi(B̄i,jB̄k,j∂zk f̄)− ∂zk(∂ziB̄i,j B̄k,j f̄) + f̄∂zk(B̄k,j∂ziB̄i,j).

9. In all the paper, we agree that DxZ stands for the n×n matrix with entries ∂xjZ
i and

that ∇xZ stands for the matrix with entries ∂xiZ
j . Furthermore, for M and N two n × n

matrices, we set M : N = TrMN.
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Setting B = Id +A, that formula also reads

(2.35) ∆xf = ∆z f̄ + divz

(
(B̄TB̄)∇z f̄ − f̄ B̄ divz Ā

)
+ f̄ divz

(
B̄ div TĀ

)
with the convention that ( div Ā)j :=

∑
i ∂iĀij .

In the case where Z is measure preserving, formula (2.34) for the divergence

operator may be alternately written

(2.36) divxH = divz
(
B̄ H

)
.

This is the consequence of the following series of computation which holds true

for any test function φ and uses the fact that detB ≡ 1:∫
φ divxH dx = −

∫
Dxφ ·H dx

= −
∫
Dzφ̄(z) · B̄(z) · H(z) dz

=

∫
φ̄(z) divz (B̄(z) · H(z)) dz

=

∫
φ(x)( divz (B̄ · H))(Z(x)) dx.

Hence we have

(2.37) ∆xf = divz
(
B̄TB̄∇z f̄

)
.

For general diffeomorphism Z, Equality (2.36) extends as follows:

divxH(x) = J̄Z divz
(
J̄ZB̄H

)
,

with J̄Z being the Jacobian of the change of coordinates.

This allows to write ∆xf̄ in another way :

∆xf = J̄Z divz
(
J̄ZB̄TB̄∇z f̄

)
.

Having different equivalent formulae for the divergence and Laplacian operator

after change of variable turns out to be crucial in our study of the Stokes system

and of the inhomogeneous incompressible Navier-Stokes equation.
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CHAPTER 3

THE POISSON EQUATION

Here we prove auxiliary results for the Laplace operator supplemented with

Dirichlet or Neumann boundary conditions. First we consider the equation in

the whole space, then in different types of domains : the half-space, bounded

or exterior domains, with either Dirichlet or Neumann boundary conditions.

Even though some of those results belong to the mathematical folklore, our

approach based on a new definition of very weak solutions for the Neumann

problem (see in particular Section 3.3) sheds new light on this issue.

3.1. The whole space case

In this short section, we establish various existence results and estimates

for the following Poisson equation in the whole space:

(3.1) ∆b = f in Rn, b→ 0 at ∞.

Our first statement concerns the case where the r.h.s. has low enough regu-

larity in the scale of homogeneous Besov spaces.

Lemma 3.1.1. — Let f be in Ḃσ
p,q(Rn) with σ ∈ R and let 1 ≤ p, q ≤ ∞

satisfy

(3.2) σ + 2 <
n

p

(
or σ + 2 ≤ n

p
if q = 1

)
·

Then (3.1) admits a unique solution b ∈ Ḃσ+2
p,q (Rn) and we have

‖b‖Ḃσ+2
p,q (Rn) ≤ C‖f‖Ḃσp,q(Rn).

Proof. — For f ∈ S0(Rn) the solution to (3.1) in Fourier variables is given by

b̂(ξ) = −|ξ|−2f̂(ξ),

and we get the desired inequality.
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The general case follows by completion since S0(Rn) is dense in Ḃσ
p,q(Rn) (if

both p and q are finite) and our assumption on σ ensures Ḃσ+2
p,q (Rn) to be a

Banach space. If either p or q is ∞ then density of S0(Rn) holds true for the

weak ∗ topology, which suffices to complete the proof.

If it is known that the solution to (3.1) is compactly supported then esti-

mates in Besov spaces with arbitrarily large regularity index are available:

Corollary 3.1.1. — Assume that 1 ≤ p, q ≤ ∞ and that σ > −min(1, n/p′).

If b is a compactly supported function with f := ∆b in Bσ
p,q(Rn) (or, equiv-

alently, in Ḃσ
p,q(Rn)) then b is in Bσ+2

p,q (Rn) and the following inequality is

true:

(3.3) ‖b‖Bσ+2
p,q (Rn) ≤ C‖f‖Bσp,q(Rn).

Proof. — As (−∆)−1∇2 is an homogeneous Fourier multiplier, we readily have

‖∇2b‖Ḃσp,q(Rn) . ‖f‖Ḃσp,q(Rn).

In order to complete the proof of the corollary, it thus suffices to bound b

in Lp(Rn). To this end, fix some σ′ < σ so that σ′ + 1 < n/p and σ′ >

−min(1, n/p′). By embedding, we have f ∈ Bσ′
p,q(Rn). Furthermore, because f

is compactly supported, Proposition 2.1.3 ensures that f is also in Ḃσ′
p,q(Rn),

and thus ∇f ∈ Ḃσ′−1
p,q (Rn). Now, ∇b tends to 0 at infinity (it is compactly

supported), and satisfies

∆(∇b) = ∇f in Rn.

Hence Lemma 3.1.1 (recall that σ′ + 1 < n/p) ensures that ∇b ∈ Ḃσ′+1
p,q (Rn)

and that

‖∇b‖
Ḃσ
′+1
p,q (Rn)

. ‖∇f‖
Ḃσ
′−1
p,q (Rn)

.

Again, the compact support property allows to replace the homogeneous norm

of b by the corresponding nonhomogeneous one and we thus have by embedding

‖∇b‖Lp(Rn) . ‖∇f‖Ḃσ′−1
p,q (Rn)

. ‖f‖Bσp,q(Rn).

At that stage, one may take advantage of Poincaré inequality to bound

‖b‖Lp(Rn) by the above r.h.s. This completes the proof of the corollary.

We shall also need the following result.

Lemma 3.1.2. — Let p ∈ [1,∞), q ∈ [1,∞] and σ ∈ R such that (σ − 2, p, q)

satisfies (3.2). Then the operator

S0(Rn) −→ S0(Rn), f 7−→ −(−∆)−1∇ div f
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admits a unique continuous extension Φ : Ḃσ
p,q(Rn)→ Ḃσ

p,q(Rn). Furthermore,

there exists a distribution b such that ∇b = Φ(f) (and thus ∆b = div f in Rn).

Proof. — In Fourier variables, we have

F(∇b)(ξ) = F−1
(ξ (ξ · Ff(ξ))

|ξ|2
)
·

As 0 order Fourier multipliers are continuous on homogeneous Besov spaces

(under Lemma’s assumptions), and as S0(Rn) is dense in the Banach space

Ḃσ
p,q(Rn), we get the desired extension. The existence of b just follows from

the fact that, by construction, curl Φ(f) ≡ 0.

3.2. The homogeneous Neumann problem in bounded domains

Although we eventually aim at investigating the Laplace equation in exte-

rior (unbounded) domains, proving first results for the bounded domain case

is needed. In the present paragraph, we focus on the following so-called ho-

mogeneous Neumann problem:

(3.4)

{
∆u = f in D,

∂~nu = 0 on ∂D,

∫
D
u dx = 0,

in a smooth bounded domain D of Rn with n ≥ 2.

As we shall mostly work with low regularity solutions, the above system has

to be understood as follows:

(3.5) ∀ϕ ∈ C∞c (D̄), −
∫
D
∇u · ∇ϕdx =

∫
D
fϕ dx and

∫
D
u dx = 0.

The rest of the paragraph is devoted to proving the following

Proposition 3.2.1. — Let D be a bounded C2,1/p domain (1) of Rn with

n ≥ 2. Let 1 < p <∞, −1 + 1/p < σ < 1/p and 1 ≤ q ≤ ∞. Let f ∈ Bσ
p,q(D)

such that

∫
D
f dx = 0. Then (3.5) admits a unique solution u in B2+σ

p,q (D)

and the following estimate is valid:

(3.6) ‖u‖B2+σ
p,q (D) ≤ C‖f‖Bσp,q(D).

Proof. — If the domain is C∞ then this result is a particular case of e.g.

Theorem 13 in [26] devoted to general elliptic equations. Here we write out

the details for the Laplace operator supplemented with homogeneous Neumann

1. We do not claim our regularity assumption to be optimal.
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boundary conditions, both for the reader convenience and because it sheds

light on the key points of our approach which is not based on any explicit

representation of the solution.

We claim that any smooth function u with ∂~nu|∂D ≡ 0 satisfies

(3.7) ‖u‖B2+σ
p,q (D) ≤ C(‖f‖Bσp,q(D) + ‖u‖B1+σ

p,q (D)) with f := ∆u.

Indeed, introduce a partition of unity {η0, η1, . . . , ηk} of D such that

– η0 is compactly supported in the interior of D;

– the support of each η` with 1 ≤ ` ≤ k has diameter of order λ and

nonempty intersection with ∂D;

– The following bounds hold true:

(3.8) ‖∂αη`‖L∞(Rn) ≤ Cαλ−|α| for all α ∈ Nn and 1 ≤ ` ≤ k.

Figure 3.2.1. Partition of unity (η`)0≤`≤k of D

Let U ` := η`u and f ` := η`f. Note that as the functions η` are smooth and

compactly supported, Corollary 2.1.1 and our definition of Besov spaces by

restriction guarantee that the functions U ` (resp. f `) are in Bσ+2
p,q (D) (resp.

Bσ
p,q(D)). Now, the equation for U ` reads

(3.9) ∆U ` = 2 div (u∇η`)− u∆η` + f ` in D.

For ` = 0, the above equation also holds in Rn. Hence, because U0 is compactly

supported, using Corollary 3.1.1 readily gives

‖U0‖Bσ+2
p,q (Rn) . ‖u∇η

0‖Bσ+1
p,q (Rn) + ‖u∆η0‖Bσp,q(Rn) + ‖f0‖Bσp,q(Rn).

Then taking advantage of Proposition 2.1.2, we easily get

‖U0‖Bσ+2
p,q (Rn) . ‖u‖Bσ+1

p,q (D) + ‖f‖Bσp,q(D).

In order to treat the boundary terms U1, . . . , Uk, introduce local coordinates

so as to transform (3.9) into a problem over the half-space. We choose a change
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of coordinates Z` that preserves the normal vector at the boundary in order to

have homogeneous Neumann boundary condition (see Subsection 2.4, second

example). Denoting g := Z∗` (g) = g ◦ Z−1
` , we get

(3.10)
∆zU ` = (∆z −∆x)U ` + 2 divx (u∇xη`)− u∆xη` + f ` in Rn+,

∂znU
`|zn=0 = 0 on ∂Rn+.

Hence, using (2.35), the above system rewrites

(3.11)
∆zU ` = F ` in Rn+,

∂znU
`|zn=0 = 0 on ∂Rn+,

with, denoting A` := DZ` ◦ Z−1
` − Id and B` := A` + TA` +A` TA`,

F ` = −divz

(
B`∇zU ` − U `(Id +A`) · divz A`

)
−divz

(
(Id +A`) · divz A`

)
U ` − u∆xη` + 2 divx (u∇xη`) + f `.

Let Ũ ` and F̃ ` be the symmetric extensions of U ` and F `. We have

∆zŨ
` = F̃ ` in Rn

and, as 1/p > σ > −1 + 1/p, Remark 2.2.1 gives F̃ ` ∈ Ḃσ
p,q(Rn) and

‖F̃ `‖Ḃσp,q(Rn) . ‖F
`‖Ḃσp,q(Rn).

We also have to keep in mind that, by construction, Ũ ` is compactly supported.

Hence, taking advantage of Corollary 3.1.1 and of Lemma 2.1.1, we end up

with

(3.12) ‖U `‖B2+σ
p,q (Rn+) ≤ C‖F

`‖Ḃσp,q(Rn+).

We claim that

(3.13) ‖F `‖Ḃσp,q(Rn+) . λ‖U `‖B2+σ
p,q (Rn+) + ‖U `‖B1+σ

p,q (Rn+)

+ ‖f `‖Bσp,q(Rn+) + λ−1‖u‖B1+σ
p,q (B(0,λ)).

Indeed, to bound the first term of F `, it suffices to interpolate between

Ẇ−1
p (B(0, λ)) and Ẇ 1

p (B(0, λ)). First, owing to (2.27) Leibniz’ rule, we have

for f ∈W 3
p;0(B(0, λ)) (2),

(3.14) ‖ divz (B`∇zf)‖Ẇ 1
p (B(0,λ)) ≤ Cλ‖f‖Ẇ 3

p (B(0,λ)) + C‖∇zf‖W 1
p (B(0,λ)),

2. W 3
p;0 stands for W 3

p with zero trace at the boundary
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but the compactness of the support allows us to take advantage of the Poincaré

inequality, so (3.14) reduces to

(3.15) ‖divz (B`∇zf)‖Ẇ 1
p (B(0,λ)) . λ‖f‖Ẇ 3

p (B(0,λ)).

Similarly, we find that for f ∈W 1
p;0(B(0, λ)), we have

(3.16) ‖ divz (B`∇zf)‖Ẇ−1
p (B(0,λ)) . ‖B

`∇zf‖Lp(B(0,λ)) . λ‖∇zf‖Lp(B(0,λ)).

Interpolating between (3.15) and (3.16) we eventually get

(3.17) ‖ divz (B`∇zU `)‖Ḃσp,q(Rn+) ≤ Cλ‖U `‖Ḃ2+σ
p,q (Rn+).

Bounding the other terms in F ` goes along the same lines. For instance:

‖ divz ((divA`)U `)‖Ẇ 1
p (Rn+) ≤ C‖U `‖Ẇ 2

p (Rn+),

‖ divz (( divA`)U `)‖Ẇ−1
p (Rn+) ≤ C‖U `‖Lp(Rn+),

hence

‖ divz (( divA`)U `)‖Ḃσp,q(Rn+)) ≤ C‖U `‖Ḃ1+σ
p,q (Rn+),

and

‖ divx (u∇xη`)‖Ẇ 1
p (Rn+) . λ−1‖u‖Ẇ 2

p (B(0,λ)),

‖ divx (u∇xηl)‖Ẇ−1
p (Rn+) . λ−1‖u‖Lp(B(0,λ)),

whence

‖ divx (u∇xη`)‖Ḃσp,q(Rn+) . λ−1‖u‖Ḃσ+1
p,q (Rn+).

Assuming that λ is small enough, one may absorb the first term in the r.h.s. of

(3.13) by the l.h.s. of (3.12). Hence, using that, by virtue of the composition

lemma 2.1.1 and of remark 2.1.1, we may write

‖u‖B2+σ
p,q (D) ≤

∑
`

‖η`u‖B2+σ
p,q (D) .

∑
`

‖U `‖B2+σ
p,q (Rn+) .

∑
`

‖F `‖Ḃσp,q(Rn+),

we get the desired estimate (3.7).

Next, we claim that

(3.18) ‖u‖B1+σ
p,q (D) ≤ C‖∆u‖Bσp,q(D)

for all u ∈ B2+σ
p,q (D) such that

∫
D
u(x) dx = 0 and ∂~nu|∂D = 0.
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The proof is based on compactness arguments : if (3.18) were not true, then

there would exist a sequence (uk)k∈N of B2+σ
p,q (D) functions such that

(3.19) 1 = ‖uk‖B1+σ
p,q (D) > k‖∆uk‖Bσp,q(D).

According to (3.7) we have for all k:

(3.20) ‖uk‖B2+σ
p,q (D) ≤ C(‖uk‖B1+σ

p,q (D) + ‖∆uk‖Bσp,q(D)) ≤ C.

So the compactness properties of Besov spaces (see Proposition 2.2.2) imply

that there exists a subsequence {ukn} and u∗ ∈ B2+σ
p,q (D) such that

(3.21) ukn → u∗ in B1+σ
p,q (D)

and

(3.22) ukn ⇀ u∗ in B2+σ
p,q (D).

Relations (3.19) and (3.21) imply that

(3.23) ‖u∗‖B1+σ
p,q (D) = 1 and ‖∆u∗‖Bσp,q(D) = 0.

In other words, u∗ fulfills:

(3.24)

{
∆u∗ = 0 in D,

∂~nu
∗ = 0 on ∂D,

∫
D
u∗ dx = 0.

If B2+σ
p,q (D) ↪→ H1(D) (which is always the case if p ≥ 2) then one can im-

mediately conclude that u∗ ≡ 0, which stands in contradiction with (3.23).

Hence estimate (3.18) holds true, and approximating the data f by smooth

data allows to fully justify the proof of existence of a Bσ+2
p,q (D) solution to

(3.4) in that case (see the details below).

Now, if B2+σ
p,q (D) is not embedded in H1(D) then and one may argue by

duality as follows: take any ψ in B−σp′,q′(D) with average 0 and solve according

to the case we have just completed the following Neumann problem:{
∆φ = ψ in D,

∂~nφ = 0 on ∂D,

∫
D
φdx = 0.

Then we get a solution φ is in B2−σ
p′,q′ (D). As both u∗ and φ satisfy homogeneous

Neumann boundary conditions, we get the following chain of equalities:∫
D
u∗ψ dx = −

∫
D
∇u∗ · ∇φdx =

∫
D

∆u∗ φdx = 0.

Therefore u∗ ≡ 0, thus contradicting (3.23).
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To end the proof of Proposition 3.2.1, we ought to prove the existence of

solutions. To this end, let us write f as the limit in Bσ
p,q(D) of a sequence

of smooth functions fj ∈ C∞(D) with

∫
D
fj dx = 0. Then we know (see [36])

that there exists a solution uj in C
2, 1
p of

(3.25)

{
∆uj = fj in D,

∂~nuj = 0 on ∂D,

∫
D
uj dx = 0,

whenever the domain is C
2, 1
p . Of course uj is also in Bσ+2

p,q for σ < 1/p as the

domain D is bounded. Therefore, resuming to (3.6), one may write

‖uj − uk‖B2+σ
p,q (D) ≤ C‖fj − fk‖Bσp,q(D) for all (j, k) ∈ N2,

which ensures that (uj)j∈N is a Cauchy sequence in B2+σ
p,q (D). One can thus

conclude that there exists u ∈ B2+σ
p,q (D) satisfying (3.5) and (3.6).

Remark 3.2.1. — One may extend Proposition 3.2.1 to more general σ. For

higher regularity this requires extra compatibility conditions on f. We omit

this interesting issue (see e.g. [26]) since it is very technical and not needed

for the analysis of the Stokes system we want to perform here. The case of

more negative σ will be treated below in Lemma 3.3.3.

Remark 3.2.2. — In [46], an alternative approach, based on the analysis of

regularity of the weak solutions to (3.4), is proposed. It turns out to be more

efficient in the case of critical regularity of the boundary.

Let us state an important consequence of Proposition 3.2.1.

Corollary 3.2.1. — Let 1 < p <∞ and 1 ≤ q ≤ ∞. Consider a compactly

supported function f in Ḃσ
p,q(Rn) for some real number σ. For f to belong

to Ḃσ−1
p,q (Rn), it suffices that

– either σ > −1/p′ and

(3.26)

∫
Rn
f dx = 0;

– or σ > 1− n/p′.
Furthermore, there exists a constant C such that if Supp f ⊂ B(0, λ) then

‖f‖Ḃσ−1
p,q (Rn) ≤ Cλ‖f‖Ḃσp,q(Rn).
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Proof. — Performing a suitable dilation of the space variable and using the

scaling properties of homogeneous Besov semi-norms (see Proposition 2.1.1)

reduces the study to λ = 1.

Now, if σ > 1−n/p′ then the result is an easy corollary of Proposition 2.1.3,

because as f is compactly supported, one may write

‖f‖Ḃσ−1
p,q (Rn) . ‖f‖Bσ−1

p,q (Rn) . ‖f‖Bσp,q(Rn) . ‖f‖Ḃσp,q(Rn).

Next, let us consider the case −1/p′ < σ < min(−1 + n/p, 0) and p = q under

Assumption (3.26). Then Proposition 2.1.1 guarantees that

(3.27) ‖f‖Ḃσ−1
p,p (Rn) = sup

‖φ‖
Ḃ1−σ
p′,p′

(Rn)
=1

∫
Rn
f φ dx.

Arguing by density, it suffices to consider functions φ in C∞c (Rn). Furthermore,

as (3.26) is satisfied, Proposition 3.2.1 (here we need σ > −1/p′) ensures that

there exists some function c in Bσ+2
p,p (B(0, 1)) so that

(3.28)

{
∆c = f in B(0, 1),

∂~nc = 0 on ∂B(0, 1),

∫
B(0,1)

c dx = 0,

and, in addition,

‖c‖Bσ+2
p,p (B(0,1)) ≤ C‖f‖Bσp,p(B(0,1)).

Next, we define

(3.29) ∇̃c(x) =

{
∇c(x) for x ∈ B(0, 1),

0 for x ∈ Rn \B(0, 1).

Remark that by construction, we have, owing to the homogeneous Neumann

boundary condition over c and the support properties of f,

(3.30) −
∫
Rn
∇̃c · ∇φdx =

∫
Rn
fφ dx for all φ ∈ C∞c (Rn).

Therefore,

(3.31)
∣∣∣ ∫

Rn
fφ dx

∣∣∣ ≤ ‖∇̃c‖Lp∗ (Rn)‖∇φ‖L(p∗)′ (Rn).

To bound the right-hand side, it suffices to use the embedding result stated in

Proposition 2.1.1 and its dual version. We get

‖∇̃c‖Lp∗ (Rn) . ‖∇̃c‖Ḃσ+1
p,p (Rn) for n

σ+1

(
1
p −

1
p∗

)
= 1 as 0 < σ+1 < n

p ,

‖∇φ‖L(p∗)′ (Rn) . ‖∇φ‖Ḃ−σ
p′,p′ (R

n) for n
−σ

(
1
p′ −

1
(p∗)′

)
= 1 as 0 < −σ < n

p′ ·
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Now, (3.31) and the above inequalities imply that∣∣∣ ∫
Rn
fφ dx

∣∣∣ ≤ C‖∇̃c‖Ḃ1+σ
p,p (Rn)‖∇φ‖Ḃ−σ

p′,p′ (R
n)

≤ C‖f‖Ḃσp,p(Rn)‖φ‖Ḃ1−σ
p′,p′ (R

n).

So (3.27) yields the desired inequality for −1/p′ < σ < min(−1 + n/p, 0) and

p = q. The remaining cases follow by interpolation.

As a consequence, we get the following improvement of Corollary 3.1.1 in

the case where the source term of (3.1) has average 0:

Lemma 3.2.1. — Let f ∈ Ḃσ
p,q(Rn) for some p ∈ (1,∞), σ ∈ (−1 + 1/p, 1/p)

and q ∈ [1,∞]. Assume in addition that f fulfills (3.26) and is supported

in B(0, λ).

Then the Poisson equation (3.1) has a unique solution b in Lm(Rn) for some

finite (3) m. Furthermore ∇b and ∇2b are in Ḃσ
p,q(Rn) and satisfy

‖∇2b‖Ḃσp,q(Rn) + λ−1‖∇b‖Ḃσp,q(Rn) ≤ C‖f‖Ḃσp,q(Rn).

Proof. — Uniqueness stems from Liouville theorem, so let us concentrate on

the proof of existence. Being compactly supported, the function f is also in

Bσ
p,q(Rn) and, more generally, in all spaces Bσ′

r,q(Rn) with 1 ≤ r ≤ p and σ′ ≤ σ.
If σ ≥ 0 then applying Corollary 3.2.1 thus ensures that f ∈ Ḃσ′−1

r,q (Rn) if

(3.33) 1 < r ≤ p and − 1 + 1/r < σ′ ≤ σ.

Therefore, whenever r and σ′ are taken so that σ′ + 1 < n/r, Lemma 3.1.1

provides a solution b ∈ Ḃσ′+1
r,q (Rn), and combining with Sobolev embedding

guarantees that b ∈ Lm(Rn) for all n/(n− 1) < m < n/min(0,−1− σ+ n/p).

If σ < 0, then the condition −1 + 1/r < σ is no longer satisfied for r → 1.

Hence (3.33) implies that r > 1/(σ+1) and we thus eventually get b ∈ Lm(Rn)

only for n/((n− 1)(1 + σ)) < m < n/min(0,−1− σ + n/p).

In order to prove that in addition ∇b and ∇2b are in Ḃσ
p,q(Rn), consider a

sequence fj → f with fj ∈ S0(Rn) for all j ∈ Z, and define bj := −(−∆)−1fj .

We already know that bj → b in Lm(Rn). Furthermore, because all functions

3. In fact, b belongs to all spaces Lm(Rn) with

(3.32)
n

n− 1

1

1 + min(0, σ)
< m <

n

max(0,−1− σ + n/p)
·
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fj are in S0(Rn), it is obvious that for all (j, k) ∈ Z2,

‖∇bj −∇bk‖Ḃσp,q(Rn) . ‖fj − fk‖Ḃσ−1
p,q (Rn),

‖∇2bj −∇2bk‖Ḃσp,q(Rn) . ‖fj − fk‖Ḃσp,q(Rn).

Therefore (∇bj)j∈Z and (∇2bj)j∈Z are Cauchy sequences in the complete space

Ḃσ
p,q(Rn) and we can thus assert that ∇b and ∇2b are in Ḃσ

p,q(Rn) with

‖∇b‖Ḃσp,q(Rn) . ‖f‖Ḃσ−1
p,q (Rn) and ‖∇2b‖Ḃσp,q(Rn) . ‖f‖Ḃσp,q(Rn).

The fact that ‖f‖Ḃσ−1
p,q (Rn) may be replaced with λ‖f‖Ḃσp,q(Rn) stems from Corol-

lary 3.2.1.

3.3. The half-space case

Let us first concentrate on the homogeneous Dirichlet problem:

(3.34)

{
∆u = h in Rn+,

u|xn=0 = 0 on ∂Rn+.

The first equation has to be understood in the distributional sense in Rn+, and

the second equation means that we require the trace at ∂Rn+ to our solution

to be defined and equal to 0. For smooth enough solutions, this is equivalent

to the fact that the antisymmetric extension ũ of u on Rn satisfies the Poisson

equation (3.1) with r.h.s. h̃ (the antisymmetric extension of h on Rn).

Lemma 3.3.1. — Let h be in Ḃσ
p,q(Rn+) with p ∈ (1,∞), q ∈ [1,∞] and σ ∈

(−1 + 1/p, 1/p).

1. If in addition (σ, p, q) fulfills (3.2) then (3.34) has a unique solution u ∈
Ḃσ+2
p,q (Rn+), and we have

‖u‖Ḃσ+2
p,q (Rn+) ≤ C‖h‖Ḃσp,q(Rn+).

2. If in addition h is compactly supported then (3.34) has a unique solution

u ∈ Lm(Rn+) for some finite m, and we have

‖∇2u‖Ḃσp,q(Rn+) ≤ C‖h‖Ḃσp,q(Rn+).

3. If in addition

(3.35) σ + 1 <
n

p

(
or σ + 1 ≤ n

p
if q = 1

)
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then (3.34) has a unique solution satisfying ∇u ∈ Ḃσ+1
p,q (Rn+), and we

have

(3.36) ‖∇u‖Ḃσ+1
p,q (Rn+) ≤ C‖h‖Ḃσp,q(Rn+).

4. If ∇h ∈ Ḃσ
p,q(Rn+) and u = (G?h̃)|∂Rn+ where G stands for the fundamental

solution of ∆ in Rn and h̃ is the antisymmetric extension of h, then we

have ∇3u ∈ Ḃσ
p,q(Rn+) and

‖∇3u‖Ḃσp,q(Rn+) ≤ C‖∇h‖Ḃσp,q(Rn+).

5. If h = div k for some k ∈ Ḃσ
p,q(Rn+) then (3.34) has a unique solution u

with ∇u ∈ Ḃσ
p,q(Rn+) and we have

‖∇u‖Ḃσp,q(Rn+) ≤ C‖k‖Ḃσp,q(Rn+).

Proof. — To prove the existence part of the first item, introduce the an-

tisymmetric extension h̃ of h, and solve (3.1) with right-hand side h̃. As

σ ∈ (−1 + 1/p, 1/p), Remark 2.2.1 ensures that h̃ is in Ḃσ
p,q(Rn) and

‖h̃‖Ḃσp,q(Rn) ≤ C‖h‖Ḃσp,q(Rn+).

As in addition (3.2) is fulfilled, Lemma 3.1.1 provides us with a solution ũ

in Ḃσ+2
p,q (Rn) to (3.1), satisfying

(3.37) ‖ũ‖Ḃσ+2
p,q (Rn) ≤ C‖h̃‖Ḃσp,q(Rn).

Uniqueness for the Poisson equation in Rn ensures ũ to be antisymmetric.

Hence its well defined trace at ∂Rn+ vanishes, and u := ũ|Rn+ satisfies our claim.

For proving the second item, we note that the antisymmetric extension h̃

to h satisfies (3.26) and is compactly supported. Hence there exists a unique

solution ũ ∈ Lm(Rn) to (3.1) (see Lemma 3.2.1), and

‖∇2ũ‖Ḃσp,q(Rn) ≤ C‖h̃‖Ḃσp,q(Rn+).

Setting u := ũ|Rn+ yields the desired result as the components of ∇2ũ coincide

either with the symmetric or with the antisymmetric extension of ∇u on Rn.
To prove the third item, approximate h by a sequence (hj)h∈N of smooth

compactly supported functions. Because (3.35) is fulfilled, arguing as in the

previous item gives a sequence (uj)j∈N of solutions with ∇uj ∈ Ḃσ
p,q(Rn+),

to (3.34) with r.h.s. hj . Besides, we have

‖∇(uj − uk)‖Ḃσ+1
p,q (Rn+) ≤ C‖hj − hk‖Ḃσp,q(Rn+).
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As Condition (3.35) ensures Ḃσ+1
p,q (Rn+) to be complete, we deduce that

(∇uj)j∈N converges to some ∇u in Ḃσ+1
p,q (Rn+) with u fulfilling (3.36) and the

first line of (3.34) in the distributional meaning. Combining the localization

properties of Besov spaces with the trace theorem (see Prop. 2.2.4), we dis-

cover that the trace of ϕ∇u at ∂Rn+ is well-defined for all smooth compactly

supported function ϕ on Rn+, and that in addition

‖ϕ∇(uj−u)|xn=0‖Bσ+1−1/p
p,q (∂Rn+)

≤ C‖∇(uj−u)‖Ḃσ+1
p,q (Rn+) ≤ C‖hj−h‖Ḃσp,q(Rn+).

As uj |xn=0 ≡ 0 implies ∇x′uj |xn=0 ≡ 0, we conclude that ∇x′u|xn=0 ≡ 0 and

thus u|xn=0 is independent of x′. Subtracting a constant as the case may be,

one may thus ensure the second line of (3.34).

To prove the fourth item, we start with the remark that (still denoting with

tilde the antisymmetric extensions):

∇̃x′u = (G ? ∇̃x′h) = G ?∇x′ h̃.

Hence arguing as for the second item yields ∇2∇x′u ∈ Ḃσ
p,q(Rn+) and

‖∇2∇x′u‖Ḃσp,q(Rn+) ≤ C‖∇x′h‖Ḃσp,q(Rn+).

Let us notice that only the term ∂3
xnu of ∇3u has not been estimated yet. Now

we have ∆u = h in Rn+, and thus

∂3
xnu = ∂xnh−∆x′∂xnu in Rn+.

This completes the proof of the fourth item.

To prove the last item, we consider the antisymmetric/symmetric exten-

sion ǩ of k over Rn, that is defined for all xn < 0 and x′ ∈ Rn−1 by

ǩ(x′, xn) = (ǩ′, ǩn)(x′, xn) := (−k′, kn)(x′,−xn).

Remark 2.2.1 ensures that ǩ ∈ Ḃσ
p,q(Rn+) and

‖ǩ‖Ḃσp,q(Rn) ≤ ‖k‖Ḃσp,q(Rn+).

Furthermore, div ǩ coincides with the antisymmetric extension of div k and

Lemma 3.1.2 thus provides us with a function ũ such that ∇ũ ∈ Ḃσ
p,q(Rn),

∆ũ = div ǩ in Rn,

and

‖∇ũ‖Ḃσp,q(Rn) . ‖ div ǩ‖Ḃσ−1
p,q (Rn).

Recall that uniqueness to the Poisson equation in Rn holds up to an harmonic

polynomial. As we restrict our attention to functions with gradient in Ḃσ
p,q(Rn)

(which implies decay at infinity in the distributional sense), we deduce that
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the constructed solution ũ is antisymmetric up to some constant. Subtracting

that constant as the case may be, we conclude that the restriction u of ũ to Rn+
satisfies (3.34) and the desired inequality.

For completeness, let us say a few words on the proof of uniqueness. It

suffices to establish that if u satisfies (3.34) with r.h.s. 0 and ∇u ∈ Lm(Rn+),

(or more generally in Ḃσ
p,q(Rn+)) then ∇u ≡ 0. Let (χε)ε>0 be a family of

mollifiers compactly supported in Rn+. Then χε ?∇u → ∇u in Lm(Rn+) for ε

going to 0, and all functions χε ?∇u are smooth on Rn+ and harmonic on Rn+.
As they vanish on {xn = 0}, the maximum principle ensures that χε ? u ≡ 0

in Rn+. Hence ∇u ≡ 0 in Rn+ and thus u ≡ 0 as well, given the homogeneous

Dirichlet boundary condition.

Remark 3.3.1. — Let us comment the condition u → 0 at x → ∞. Having

regularity controlled by Condition (3.35) indeed ensures that the gradient of

the solution vanishes at the infinity. It is sufficient to control the distributional

meaning of the solutions, and first of all the uniqueness of them. Of course,

restricting our attention to the stronger condition (3.2) we are guaranteed that

the solution truly goes to zero at infinity.

Corollary 3.3.1. — Let h ∈ Ḃσ
p,q(Rn+) (with 1 < p < ∞, 1 ≤ q ≤ ∞ and

−1 + 1/p < σ < 1/p) be such that Supph ⊂ B(0, λ) ∩ Rn+. Then the Dirichlet

problem (3.34) has a unique solution u belonging to Lm(Rn+) for some finite m

and such that ∇u ∈ Ḃσ
p,q(Rn+). Furthermore, we have

‖∇u‖Ḃσp,q(Rn+) ≤ Cλ‖h‖Ḃσp,q(Rn+).

Proof. — Scaling arguments reduces the study to the case λ = 1. Let h̃ be the

antisymmetric extension of h on Rn. Clearly, it is supported in B(0, 1), and

Proposition 2.1.3 guarantees that h̃ ∈ Bσ
p,q(Rn) and that

‖h̃‖Bσp,q(Rn) ≤ C‖h‖Ḃσp,q(Rn+).

As the compatibility condition
∫
B(0,1) h̃ dx = 0 is satisfied (a consequence

of antisymmetric extension), we know from e.g. [42] that there exists some

function k ∈ B1+σ
p,q (B(0, 1)) such that div k = h̃ in B(0, 1), k|∂B(0,1) = 0 and

‖k‖B1+σ
p,q (B(0,1)) ≤ C‖h̃‖Bσp,q(B(0,1)) ≤ C‖h‖Ḃσp,q(Rn+).

Note also that if denote by k0 the extension of k by 0 on Rn then ∇k0 is

just the extension of ∇k by 0. Hence we have k0 ∈ B1+σ
p,q (Rn) and thus

‖k0‖B1+σ
p,q (Rn) ≤ C‖h‖Ḃσp,q(Rn+).
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As k is compactly supported, applying once again Proposition 2.1.3 leads to

the following series of inequalities:

‖k‖Ḃσp,q(Rn+) ≤ ‖k0‖Ḃσp,q(Rn) ≤ C‖k0‖Bσp,q(Rn) ≤ C‖k0‖B1+σ
p,q (Rn) ≤ C‖h‖Ḃσp,q(Rn+).

Finally, applying the last part of Lemma 3.3.1, we get a solution u ∈ Lm(Rn+)

for some finite m, to the problem{
∆u = h = div k in Rn+,

u|xn=0 = 0 on ∂Rn+
with, in addition,

‖∇u‖Ḃσp,q(Rn+) ≤ C‖k‖Ḃσp,q(Rn+).

This completes the proof of the lemma.

We now turn to the study of the Neumann problem for the Poisson equation

in the half-space, namely

(3.38)

{
∆u = h in Rn+,

∂xnu|xn=0 = 0 on ∂Rn+,
u→ 0 as |x| → ∞.

The solution has to be understood in the weak sense (see (3.5)).

Let us first establish an existence result in the ‘smooth’ case.

Lemma 3.3.2. — Let p ∈ (1,∞), q ∈ [1,∞] and σ ∈ (−1 + 1/p, 1/p). Let h

be in Ḃσ
p,q(Rn+) with∫

Rn+
h(x) dx = 0 and Supph ⊂ B(0, λ) ∩ Rn+.

Then (3.38) has a unique solution u ∈ Lm(Rn+) for some finite m (and even

for all m satisfying (3.32)) with ∇u and ∇2u in Ḃσ
p,q(Rn+). Furthermore,

‖∇2u‖Ḃσp,q(Rn+) + λ−1‖∇u‖Ḃσp,q(Rn+) ≤ C‖h‖Ḃσp,q(Rn+).

Proof. — As h is in Ḃσ
p,q(Rn+) with −1 + 1/p < σ < 1/p, the symmetric

extension hsym of h belongs to Ḃσ
p,q(Rn) and satisfies

‖hsym‖Ḃσp,q(Rn)≤C‖h‖Ḃσp,q(Rn+),

∫
Rn
hsym(x) dx = 0 and Supphsym ⊂ B(0, λ).

Therefore, according to Lemma 3.2.1, the problem

∆usym = hsym in Rn, usym → 0 at ∞

has a unique solution usym in Lm(Rn) and we have

‖∇2usym‖Ḃσp,q(Rn) + λ−1‖∇usym‖Ḃσp,q(Rn) ≤ C‖hsym‖Ḃσp,q(Rn).
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This ensures that ∇usym is at least locally in Bσ+1
p,q (Rn) and thus has a trace

at ∂Rn+. Owing to the symmetry of hsym with respect to the hyperplane xn = 0,

the solution usym is symmetric, too. Hence the homogeneous Neumann bound-

ary condition on {xn = 0} is satisfied. So setting u := usym|Rn+ provides the

desired solution for (3.38).

Let us now investigate the case where the source term h in (3.38) has so low

regularity that the meaning of ∂xnu at the boundary cannot be understood in

the classical way. The relevant framework will be taken from Definition 2.3.1:

we want to solve (3.38) with source term h = DIV [k; ζ] in Ḃσ−1
p,q (Rn+), that is

to find some distribution u so that

DIV [∇u; 0] = DIV [k; ζ],

or in other words

(3.39) −
∫
Rn+
∇u·∇ϕdx = −

∫
Rn+
k·∇ϕdx+

∫
∂Rn+

ζϕ dς for all ϕ ∈ C∞c (Rn+).

Note that as ∂Rn+ is noncompact, the compatibility condition over ζ in Defi-

nition 2.3.1 is somehow hidden in the definition of the space Ḃ
σ−1/p
p,q (∂Rn+).

Lemma 3.3.3. — Let h = DIV [k; ζ] ∈ Ḃσ−1
p,q (Rn+) with −1 + 1/p < σ < 1/p.

Assume either that (σ, p, q) satisfies (3.35) or that both k and ζ are compactly

supported (in which case ζ must have average 0).

Then equation (3.39) admits a unique solution u ∈ Lm(Rn+) with (4) m de-

fined by n/m = −1− σ + n/p, and ∇u ∈ Ḃσ
p,q(Rn+). Moreover

(3.40) ‖∇u‖Ḃσp,q(Rn+) ≤ C‖DIV [k; ζ]‖Ḃσ−1
p,q (Rn+).

In the compact support case, we have u ∈ Lm(Rn+) for all m satisfying (3.32).

Proof. — Uniqueness may be proved thanks to a regularizing argument, ex-

actly as in Lemma 3.3.1.

In order to prove the existence of a solution satisfying the required proper-

ties, we shall first construct some function H going to 0 at infinity, so that

−
∫
Rn+
∇H · ∇ϕdx =

∫
∂Rn+

ζϕ dς for all ϕ ∈ C∞c (Rn+).

4. We have to use the Lorentz space Lm,q(Rn+) if q > m, and C0(Rn+) if σ = −1 +n/p and

q = 1.
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In other words, we want to solve

(3.41)

{
∆H = 0 in Rn+,
−∂xnH|xn=0 = ζ on ∂Rn+,

H → 0 at ∞.

If ζ ∈ S0(∂Rn+) then using the Fourier transform with respect to tangential

variables x′ yields

−|ξ′|2Fx′H + ∂2
xnxnFx′H = 0, Fx′H → 0 for xn → +∞,

the solution of which is given by the explicit formula

H = F−1
x′

[ 1

|ξ′|
e−|ξ

′|xnFx′ζ
]
.

From Lemma 2.2.2, we thus infer that

(3.42) ‖∇H‖Ḃσp,q(Rn+) ≤ C‖ζ‖
Ḃ
σ− 1

p
p,q (∂Rn+)

.

Now, if (σ− 1, p, q) fulfills (3.2) then S0(∂Rn+) is dense in Ḃ
σ− 1

p
p,q (∂Rn+), and

the space Ḃσ+1
p,q (Rn+) is complete. Hence we get H ∈ Ḃσ+1

p,q (Rn+) together with

Inequality (3.42) for general ζ in Ḃ
σ− 1

p
p,q (∂Rn+).

The case where σ ≥ n/p − 1 and ζ is compactly supported reduces to the

previous one as we have ζ ∈ Ḃ
σ∗− 1

p∗
p∗,q (∂Rn+) for some σ∗ ≤ σ and −1 + 1/p∗ <

σ∗ < 1/p∗ with σ∗ < n/p∗−1. So, as in Lemma 3.2.1, the previous construction

combined with embedding provides a solution H ∈ Lm(Rn+) for all m given

by (3.32), still satisfying (3.42).

Next, let us construct some distribution w satisfying

(3.43)

∫
Rn+
∇w · ∇ϕdx =

∫
Rn+
k · ∇ϕdx for all ϕ ∈ C∞c (Rn+).

To this end, consider the symmetric/antisymmetric extension kdiv of k over Rn,
namely the function kdiv defined by

kdiv = k on Rn+ and (k′div, k
n
div)(x′, xn) := (k′,−kn)(x′,−xn) for xn < 0.

Because −1 + 1/p < σ < 1/p, we have kdiv ∈ Ḃσ
p,q(Rn) and

‖kdiv‖Ḃσp,q(Rn) ≤ C‖kdiv‖Ḃσp,q(Rn+).

Now, let us solve, according to Lemma 3.1.1 (if (σ − 1, p, q) fulfills (3.2)), or

to Lemma 3.2.1 (if k is compactly supported) the following equation:

(3.44) ∆wsym = div kdiv in Rn.
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We get a distribution wsym belonging to some Lebesgue space Lm(Rn) with

finite m (or to C0(Rn)) and satisfying

(3.45) ‖∇wsym‖Ḃσp,q(Rn) ≤ C‖kdiv‖Ḃσp,q(Rn).

The restriction w of wsym to Rn+ is also in Lm(Rn+) and satisfies

‖∇w‖Ḃσp,q(Rn+) ≤ C‖k‖Ḃσp,q(Rn+).

In addition, because the distribution div kdiv is symmetric with respect to

the hyperplane {xn = 0}, so does the function wsym. Therefore (3.44) im-

plies (3.43), and setting u := w +H completes the proof of the lemma.

3.4. The Neumann problem in bounded or exterior domains

This section is devoted to solving the nonhomogeneous Neumann problem

(3.46)

{
∆P = 0 in Ω,

∂~nP = b on ∂Ω

in an exterior domain (that is in the complement of some simply connected

compact subset of Rn) or in a bounded domain of Rn (that need not be simply

connected), for rough boundary data.

In the exterior domain case, we supplement the equation with

(3.47) P → 0 as |x| → ∞,

and, in the bounded domain case, with

(3.48)

∫
Ω
P dx = 0.

The main result of this section reads:

Theorem 3.4.1. — Let Ω be a smooth exterior domain of Rn with n ≥ 3, or a

bounded domain of Rn with n ≥ 2. Let b be in B
σ− 1

p
p,q (∂Ω) for some p ∈ (1,∞),

q ∈ [1,∞] and −1 + 1/p < σ < 1/p, and satisfy the following compatibility

condition in the distributional meaning:

(3.49)

∫
∂Ω
b dσ = 0.

Then System (3.46) supplemented with (3.47) or (3.48) has a unique solution

P such that:

– Bounded domain case: P ∈ Bσ+1
p,q (Ω) and

(3.50) ‖P‖B1+σ
p,q (Ω) ≤ C‖b‖

B
σ− 1

p
p,q (∂Ω)

.
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– Exterior domain case: P ∈ Lm(Ω) for all m satisfying (3.32), ∇P ∈
Ḃσ
p,q(Ω) and P ∈ Bσ

p,q(K) for any compact subset K of Rn such that

dist(∂Ω,Ω \K) > 0 (see Fig. 3.4). In addition, we have

‖P‖Lm(Ω) + ‖∇P‖Ḃσp,q(Ω) ≤ C‖b‖
B
σ− 1

p
p,q (∂Ω)

,(3.51)

‖P‖Bσp,q(K) ≤ CK‖b‖
B
σ− 1

p
p,q (∂Ω)

.(3.52)

Proof. — We focus on exterior domains, just indicating when needed what

has to be changed in the easier bounded domain case.

Let us first prove a priori estimates for smooth enough (up to the bound-

ary) harmonic functions in Ω satisfying either (3.47) or (3.48). We shall first

establish that for all m satisfying (3.32), we have

(3.53) ‖P‖Lm(Ω) + ‖∇P‖Ḃσp,q(Ω) ≤ C(‖∂~nP |∂Ω‖
B
σ− 1

p
p,q (∂Ω)

+ ‖P‖Bσp,q(K))

and next that

(3.54) ‖P‖Bσp,q(K) ≤ C‖∂~nP |∂Ω‖
B
σ− 1

p
p,q (∂Ω)

.

To show (3.53), we localize the system by means of a partition of unity

{η`}0≤`≤L of Ω such that:

1. η0 ≡ 0 in a neighborhood of Rn \ Ω and η0 ≡ 1 on Ω \K;

2. η` with 1 ≤ ` ≤ L is supported in some open set Ω` of size λ that

intersects ∂Ω, and such that {Ω`}1≤`≤L is a covering of ∂Ω;

3. ‖∇η`‖L∞ ≤ Cλ−1 if 1 ≤ ` ≤ L;

4.
L∑
`=0

η` ≡ 1 on Ω.

If Ω is bounded then (1) has to be replaced with:

(1′) η0 is supported in a compact subset K of Ω that does not intersect ∂Ω.

Let P ` := η`P and b` := η`b with b := ∂~nP |∂Ω. It is clear that P ` fulfills

(3.55)

{
∆P ` = 2 div (P∇η`)− P∆η` in Ω,

∂~nP
` = b` on ∂Ω.

For ` = 0 one can recast the problem in the whole space since Supp η0∩∂Ω =

∅. To estimate P 0 in terms of b and P, decompose ∇P 0 into ∇P 0
1 + ∇P 0

2 ,

where

∇P 0
1 = −2(−∆)−1∇ div (P∇η0) and ∆P 0

2 = −P∆η0 in Rn.
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Figure 3.4.1. The subset K and the partition of unity (ηk)0≤k≤L of Ω

Because Supp∇η0 ⊂ K and Ḃσ
p,q(Rn) is stable by multiplication by C∞c (Rn)

functions, Corollary 2.1.1 and Proposition 2.1.3 ensure that

‖P∇η0‖Ḃσp,q(Ω) . ‖P̃‖Ḃσp,q(Rn) for any extension P̃ of P |K on Rn,

and thus

‖P∇η0‖Ḃσp,q(Ω) ≤ C‖P‖Bσp,q(K).

As P∇η0 is compactly supported away from ∂Ω, it may be seen as a function

of Bσ′
r,q(Rn) for all σ′ ≤ σ and 1 ≤ r ≤ p. Proposition 2.1.3 thus yields for all

1 ≤ r ≤ p and −n/r′ < σ′ ≤ σ:

‖P∇η0‖Ḃσ′r,q(Rn) ≤ C‖P‖Bσp,q(K).

Then applying Lemma 3.1.2 yields ∇P 0
1 ∈ Ḃσ′

r,q(Rn) and thus also, by embed-

ding, P 0
1 ∈ Lm(Rn) for all n/(n− 1) < m < n/max(0,−1− σ + n/p).

To estimate P 0
2 , we aim at taking advantage of Lemma 3.2.1. This is possible

because the following compatibility condition∫
Rn
P∆η0 dx = 0

is satisfied since P is harmonic and goes to zero at infinity.

Now, arguing as above we get P∆η0 ∈ Ḃσ
p,q(Rn) and

‖P∆η0‖Ḃσp,q(Rn) ≤ C‖P‖Bσp,q(K).

Hence Lemma 3.1.2 yields P 2
0 ∈ Lm(Rn) for all m satisfying (3.32) as well as

∇P 2
0 ∈ Ḃσ

p,q(Rn), and we have the following inequality

‖P 2
0 ‖Lm(Rn) + ‖∇P 2

0 ‖Ḃσp,q(Rn) ≤ C‖P‖Bσp,q(K).
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Putting together the inequalities for P 0
1 and P 2

0 , one may thus conclude that

(3.56) ‖P 0‖Lm(Rn) + ‖∇P 0‖Ḃσp,q(Rn) ≤ C‖P‖Bσp,q(K).

Let us now consider boundary terms (viz. ` ∈ {1, . . . , L}), keeping in mind

that P ` is compactly supported in K, and thus belongs to B1+σ
p,q (Ω).

We want to perform a change of variables in order to transform (3.46) into

a Neumann problem in the half-space. To keep track of the information at the

boundary, we use the normal preserving change of coordinates z = Z`(x) (see

Chapter 2 and [43] for details), and get:

(3.57)

 ∆zP ` = 2 divx (P∇xη`)− P∆xη` + (∆z −∆x)P ` in Rn+,

∂znP
`|zn=0 = b` on ∂Rn+.

Setting B` := DZ` ◦ Z−1
` and A` := B` − Id , and taking into account that

divx = TB` : ∇z the above system recasts in

(3.58)

 ∆zP ` = divz k
` + g` in Rn+,

∂znP
`|zn=0 = b` on ∂Rn+

with

k` := (Id − B`TB`)∇zP ` + P `B` divA` + 2TB`P∇xη`,

g` := −P `B` div TA` − P∆xη`.

Note that by construction of P `, we have (5)

(3.59) −
∫
∂Rn+

b
`
dx′ =

∫
Rn+
g` dx′ −

∫
∂Rn+

k`n dx
′.

That compatibility condition will be important in the sequel.

We plan to bound ‖∇P `‖Ḃσp,q(Rn+) according to Lemma 3.3.3 (compactly

supported case). This requires our writing g` and the boundary condition b
`

in terms of the generalized divergence operator DIV . To achieve it, let us

consider the following problem

(3.60)

{
divL` = Eantg

` in B(0, λ),

L` = 0 on ∂B(0, λ),

where Eant denotes the antisymmetric extension operator.

5. The minus sign is due to the downward orientation of the exterior normal on ∂Rn+.
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The fact that −1 + 1/p < σ < 1/p ensures that Eantg
` ∈ Ḃσ

p,q(Rn) and that

‖Eantg
`‖Ḃσp,q(Rn) ≤ C‖g

`‖Ḃσp,q(Rn+).

In addition, by construction, we have

SuppEantg
` ⊂ B(0, λ) and

∫
B(0,λ)

Eantg
` dx = 0.

Therefore Theorem 2.3.1 ensures that (3.60) has a solution L` such that

‖L`‖B1+σ
p,q (B(0,λ)) . ‖Eantg

`‖Bσp,q(B(0,λ)) . ‖g`‖Ḃσp,q(Rn+).

As, by construction,

L` ∈ B1+σ
p,q (B(0, λ)) and L` = 0 on ∂B(0, λ),

the function

L̃` :=

{
L` in B(0, λ),

0 elsewhere

belongs to Bσ+1
p,q (Rn) and satisfies

(3.61) ‖L̃`‖B1+σ
p,q (Rn) . ‖g

`‖Ḃσp,q(Rn+).

So, setting H` := k` + L̃`, we have

divH` = div k` + g` in Rn+
and solving (3.1) thus recasts in

DIV [∇P `; 0] = DIV [H`;−H`
n + b`].

In order to apply Lemma 3.3.3, it suffices to establish that

H` ∈ Ḃσ
p,q(Rn+) and (H`

n − b`) ∈ Ḃσ−1/p
p,q (∂Rn+).

Because H` is compactly supported, the first condition is equivalent to H` ∈
Bσ
p,q(Rn+). Likewise, since σ − 1/p > −1 − (n − 1)/p′ (which is equivalent to

σ > −n/p′), the second condition is equivalent to (H`
n − b`) ∈ B

σ−1/p
p,q (∂Rn+).

This latter property will come up as a consequence of the trace theorem (as re-

gards H`
n) and of the stability of nonhomogeneous spaces by right composition

(see Lemma 2.1.1) and localization, as regards b`.

As a final consequence, because (3.59) ensures that

(3.62)

∫
∂Rn+

(b` −H`
n) dx′ = 0,

we will get thanks to Lemma 3.3.3 that

(3.63) ‖∇P `‖Ḃσp,q(Rn+) . ‖H
`‖Bσp,q(Rn+) + ‖(b` − k`n − L̃`n)|zn=0‖Bσ−1/p

p,q (∂Rn+)
.
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The important and nice fact is that our normal preserving change of coordi-

nates gives B`TB`∇zP ` · ~en|∂Rn+ = b`, and thus the highest order term of k`n
vanishes at the boundary. Therefore we have

‖k`n|zn=0‖Bσ−1/p
p,q (∂Rn+)

. ‖B`( divA`)P `‖
B
σ−1/p
p,q (∂Rn+)

+ ‖TB`P∇xη`‖Bσ−1/p
p,q (∂Rn+)

.

Of course, any space Bε
p,q(∂Rn+) with ε > 0 embeds in B

σ−1/p
p,q (∂Rn+), so that

the trace theorem implies that

‖k`n|zn=0‖Bσ−1/p
p,q (∂Rn+)

. ‖B`( divA`)P `‖
B
ε+1/p
p,q (Rn+)

+ ‖TB`P∇xη`‖Bε+1/p
p,q (Rn+)

.

As nonhomogeneous Besov spaces are stable by multiplication by compactly

supported smooth functions, we thus deduce that

‖k`n|zn=0‖Bσ−1/p
p,q (∂Rn+)

. ‖P `‖
B
ε+1/p
p,q (Rn+)

+ λ−1‖P‖
B
ε+1/p
p,q (K)

.

Note that one may take some ε > 0 such that σ < ε+ 1/p < σ+ 1. So arguing

by interpolation, we conclude that for any small enough α, we have

(3.64) ‖(k`n − b`)|zn=0‖Bσ−1/p
p,q (∂Rn+)

≤ α‖∇P `‖Ḃσp,q(Rn+) + Cα‖P `‖Bσp,q(Rn+)

+ Cλ−1‖P‖
B
ε+1/p
p,q (K)

+ ‖b`‖
B
σ−1/p
p,q (∂Rn+)

.

Next, we see that the trace theorem, (3.61) and the definition of g` imply

‖(L̃`n)|zn=0‖Bσ−1/p
p,q (∂Rn+)

. ‖( div TA`)P `∇xη`‖Bσp,q(Rn+) + ‖P∆xη`‖Bσp,q(Rn+).

So we get

‖(L̃`n)|zn=0‖Bσ−1/p
p,q (∂Rn+)

. λ−1‖P `‖Bσp,q(Rn+) + λ−2‖P‖Bσp,q(K).

Let us now estimate H`. Most of the terms entering in its definition have al-

ready been bounded above. The only definitely new term is (Id−B`TB`)∇zP `.
Now, from product estimates, we get (see Proposition 2.1.2)

‖(Id − B`TB`)∇zP `‖Ḃσp,q(Rn+) . ‖Id − B
` TB`‖

Ḃ
n/p′
p′,1 (Rn+)

‖∇zP `‖Ḃσp,q(Rn+).

According to (2.29), we have

‖Id − B` TB`‖
Ḃ
n/p′
p′,1 (Rn+)

≤ Cλ.

Hence one may conclude that

‖H`‖Ḃσp,q(Rn+) . λ‖∇zP `‖Ḃσp,q(Rn+) + λ−2‖P‖Bσp,q(K) + λ−1‖P `‖Ḃσp,q(Rn+).
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Plugging all the previous estimates in (3.63) (take α = λ in (3.64)), we get

‖∇zP `‖Ḃσp,q(Rn+) . λ‖∇zP `‖Ḃσp,q(Rn+) + λ−2‖P‖Bσp,q(K)

+‖b`‖
B
σ− 1

p
p,q (∂Rn+)

+ Cλ‖P `‖Ḃσp,q(Rn+).

Of course, the first term of the r.h.s may be absorbed by the l.h.s if taking λ

small enough. Hence one may write (see Lemma 2.1.1)

‖∇P‖Ḃσp,q(Ω) .
∑
`

‖∇P `‖Ḃσp,q(Ω) . ‖∇P
0‖Ḃσp,q(Rn) +

∑
`≥1

‖∇P `‖Ḃσp,q(Rn+),

and a similar inequality for the norm of P in Lm(Ω).

So from (3.56) and the above inequalities, we get for all m satisfying (3.32)

(3.65) ‖P‖Lm(Ω) + ‖∇P‖Ḃσp,q(Ω) ≤ Cλ
(
‖P‖Bσp,q(K) + ‖b‖

B
σ− 1

p
p,q (∂Ω)

)
.

Note that Cλ blows up as λ → 0, but remains finite for all λ > 0, since the

sum is finite.

Next we want to prove (3.54). We claim that

(3.66) ‖P‖Bσp,q(K) ≤ C‖∂~nP‖Bσ−1/p
p,q (∂Ω)

.

Let us first consider the (easier) bounded domain case, taking K = Ω with

no loss of generality. We argue by contradiction and assume that (3.66) fails.

Then there exists a sequence (Pk)k∈N of harmonic functions in Ω with aver-

age 0, and such that

(3.67) 1 = ‖Pk‖Bσp,q(Ω) > k‖∂~nPk‖
B
σ− 1

p
p,q (∂Ω)

.

By (3.53), this implies that (Pk)k∈N is bounded in B1+σ
p,q (Ω). Since this latter

space is compactly embedded in Lp(Ω), we deduce that there exists a function

P ∗ ∈ B1+σ
p,q (Ω), and some subsequence (Pkn)n∈N so that

(3.68) Pkn → P ∗ in Lp(Ω).

Note that we also have, owing to (3.67),

∂~nPkn |∂Ω → 0 in B
σ− 1

p
p,q (∂Ω).

So finally, P ∗ ∈ B1+σ
p,q (Ω) must fulfill the system{

∆P ∗ = 0 in Ω,

∂~nP
∗ = 0 on ∂Ω,

∫
Ω
P ∗ dx = 0,
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the only solution of which is P ∗ ≡ 0, as already pointed out in (3.24) (note

that the computations therein just require P ∗ to be in B1+σ
p,q (Ω)). Now, the

strong convergence given by (3.68) implies that ‖P ∗‖Lp(Ω) = 1, a contradiction.

Hence (3.50) has been proved if Ω is a bounded domain.

Let us now assume that Ω is an exterior domain. As before, we argue by

contradiction and suppose that there exists a sequence (Pk)k∈N of harmonic

functions going to 0 at infinity, with gradient in Ḃσ
p,q(Ω) and such that

1 = ‖Pk‖Bσp,q(K) > k‖∂~nPk‖
B
σ− 1

p
p,q (∂Ω)

.

By (3.53), we thus get

1. (Pk)k∈N bounded in Lm(Ω) for all m satisfying (3.32),

2. (∇Pk)k∈N is bounded in Ḃσ
p,q(Ω),

3. (Pk)k∈N is bounded in Bσ+1
p,q (K).

Since the embedding of Bσ+1
p,q (K) in Bσ

p,q(K) is compact and as the Besov

spaces have the Fatou property, we get some subsequence (Pkn)n∈N and a

function P ∗ : Ω→ R such that

(3.69)
Pkn → P ∗ in Bσ

p,q(K),

Pkn ⇀ P ∗ in Lm(Ω) and ∇Pkn ⇀ ∇P ∗ in Ḃσ
p,q(Ω).

By construction, ∆Pkn = 0 for all n ∈ N and ∂~nPkn |∂Ω → 0 in B
σ− 1

p
p,q (∂Ω).

Therefore

(3.70)

{
∆P ∗ = 0 in Ω,

∂~nP
∗ = 0 on ∂Ω.

We claim that

(3.71) ∇P ∗ ∈ L2(Ω) and P ∗ → 0 at ∞.

If (3.71) holds true then the standard energy argument implies that P ∗ ≡ 0

which contradicts the strong convergence in Bσ
p,q(K), and thus completes the

proof of (3.66).

Of course P ∗ → 0 is ensured by P ∗ ∈ Lm(Ω). So, as a first step toward

(3.71), let us establish that

(3.72) ∇P ∗ ∈ Bσ+1
p,q (Ω).
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To this end, using again the cut-off function η0 (see Fig. 3.4), we see that on

the one hand

(3.73)
∆((1− η0)P ∗) = −2∇η0 · ∇P ∗ − P ∗∆η0 in K,

∂~n(1− η0)P ∗ = 0 on ∂K

and that on the other hand,

(3.74) ∆(η0P ∗) = 2∇η0 · ∇P ∗ + P ∗∆η0 in Rn.

Note that P ∗ ∈ Bσ+1
p,q (K) ensures that the r.h.s. of (3.73) is in Bσ

p,q(K).

Hence Proposition 3.2.1 guarantees that (1− η0)P ∗ ∈ Bσ+2
p,q (K). Likewise, the

r.h.s. of (3.74) is in Bσ
p,q(Rn) and supported in K. Hence Lemma 3.2.1 gives us

∇(η0P ∗),∇2(η0P ∗) ∈ Ḃσ
p,q(Ω). Of course, being compactly supported the r.h.s.

also belong to Bσ′
p,q(K) with −1/p′ < σ′ ≤ σ and thus we also have ∇(η0P ∗)

and ∇2(η0P ∗) in Ḃσ′
p,q(Ω) for some negative σ′, which eventually implies (3.72).

We can thus assume from now on with no loss of generality that 0 < σ < 1/p,

which allows to conclude that (3.71) holds true if p ≥ 2 or, more generally, if

p < 2 and σ + 1 > n/p− n/2 (by embedding in B
1+σ+n/2−n/p
2,q (Ω)).

If σ + 1 ≤ n/p − n/2 then we resume to the above argument starting

with the regularity Ḃ
1+σ+n/2−n/p
2,q (Ω) instead of Ḃσ

p,q(Ω), and we end up with

∇P ∗ ∈ B2+σ+n/2−n/p
2,q (Ω). This yields (3.71) if σ + 2 > n/p − n/2. It is now

clear that it is always possible to achieve ∇P ∗ ∈ L2(Ω) within a finite number

of steps.

Of course, the proof of uniqueness of a solution to (3.46) reduces to the

study of (3.70) and thus works exactly the same.

Let us finally say a few words about the proof of existence. Here only n ≥ 3

is needed. If the boundary is smooth then we may use the L2 approach. Take

a sequence of smooth functions bk ∈ C∞(∂Ω) such that bk → b in B
σ− 1

p

p,1 (∂Ω).

For each bk we are able to construct a smooth solution such that ∇Pk ∈ L2(Ω)

(via the Lax-Milgram theorem). In particular, if n ≥ 3 then, owing to Sobolev

embedding, Pk ∈ L 2n
n−2

(Ω) so that Pk → 0 at infinity. Furthermore, Pk satisfies

(3.65). Then, passing to the limit we get the existence of our solution in the

desired class of regularity, and (3.51) and (3.52) are fulfilled.

Remark 3.4.1. — As regards the proof of existence in an exterior domain

of R2, the simple argument just below does not guarantee that Pk → 0 at ∞,
although we expect the compatibility condition (3.49) to ensure decay to 0 (see

e.g. [5]). As the restriction n ≥ 3 will appear elsewhere when investigating the
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evolutionary Stokes system in exterior domains, we here prefer to omit a more

detailed study of the two-dimensional case.

3.5. Helmholtz projection

Function spaces with the divergence-free property naturally arise in the

mathematical theory of incompressible flows. Those spaces may be obtained

as the image of a suitable continuous projection operator on a space of vector

valued functions over the domain Ω. Such an operator P : X → X is often

called Helmholtz or Leray projector and has the property that for any f ∈ X,

divPf = 0 in Ω, and Pf · ~n = 0 at ∂Ω.

Formally, P may be defined by Pf := f −∇P where ∇P is a solution to

(3.75)

{
∆P = div f in Ω,

(∇P − f) · ~n = 0 on ∂Ω.

The proposition below gives a suitable functional framework for solving (3.75).

Proposition 3.5.1. — Let Ω be either an exterior domain of Rn (with

n ≥ 3), or a bounded domain, the whole space or the half-space with

n ≥ 2. Assume that f is in Ḃσ
p,q(Ω) for some p ∈ (1,∞), q ∈ [1,∞]

and σ ∈ (−1 + 1/p, 1/p). Then (3.75) has a solution ∇P in Ḃσ
p,q(Ω) with

(3.76) ‖∇P‖Ḃσp,q(Ω) ≤ C‖f‖Ḃσp,q(Ω).

Proof. — In the whole space case, the solution is provided by Lemma 3.1.2.

If Ω is not Rn then we fix some ε > 0 and consider an extension f̃ of f on the

whole space Rn such that

‖f̃‖Ḃσp,q(Rn) ≤ ‖f‖Ḃσp,q(Ω) + ε.

Lemma 3.1.2 yields some ∇P̃ in Ḃσ
p,q(Rn) satisfying

∆P̃ = div f̃ in Rn,

and

‖∇P̃‖Ḃσp,q(Rn) ≤ C‖f̃‖Ḃσp,q(Rn).

By construction, div (f̃ − ∇P̃ ) = 0 in Rn and f̃ − ∇P̃ is in Ḃσ
p,q(Rn). Hence

(f̃ −∇P̃ ) · ~n has a trace at ∂Ω (this is Lemma 2.2.4) and

‖(f̃ −∇P̃ ) · ~n‖
Ḃ
σ− 1

p
p,q (∂Ω)

≤ C‖f̃ −∇P̃‖Ḃσp,q(Ω) ≤ C(‖f‖Ḃσp,q(Ω) + ε).
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Therefore, setting P := P̃ + Pnew, we see that Pnew has to satisfy (3.46)

with boundary data b := (f − ∇P̃ ) · ~n. Note that because div (f − ∇P̃ ) = 0

in Ω, the compatibility condition for b holds. Then defining Pnew according to

Theorem 3.4.1, we find that ∇Pnew ∈ Ḃσ
p,q(Ω) and that

‖∇Pnew‖Ḃσp,q(Ω) ≤ C
(
‖f‖Ḃσp,q(Ω) + ε

)
.

Finally, the half-space case may be easily deduced from Lemma 3.3.3.

Corollary 3.5.1. — Under the above assumptions, there exists a continuous

Helmholtz projector P : Ḃs
p,q(Ω;Rn)→ Ḃs

p,q(Ω;Rn).

Proof. — Let Pf := f − ∇P with P given by Proposition 3.5.1. Then we

have divPf = 0 and Pf · ~n = 0 at the boundary, and also

‖∇P‖Ḃsp,q(Ω;Rn) ≤ C‖f‖Ḃsp,q(Ω;Rn).

This completes the proof of the corollary.
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CHAPTER 4

THE EVOLUTIONARY STOKES SYSTEM

This section is devoted to endpoint maximal regularity estimates for the

evolutionary Stokes system. First we concentrate on the whole and half-space

cases, then we consider the problem in exterior or bounded domains. In the

last section, we adapt Maremonti and Solonnikov’s trick in [39] so as to es-

tablish a low order bound for the velocity on a compact set. This will enable

us to discard the time dependency in the estimates if choosing the data in

appropriate intersections of Besov spaces.

4.1. The whole space case

Here we investigate the following evolutionary Stokes system:

(4.1)


ut − ν∆u+∇P = f in (0, T )× Rn,
divu = g in (0, T )× Rn,
u|t=0 = u0 on Rn.

The main result of this part reads:

Theorem 4.1.1. — Let p ∈ (1,∞) and −1 + 1/p < s < 1/p. Let f ∈
L1(0, T ; Ḃs

p,1(Rn)), g ∈ C([0, T ]; Ḃs−1
p,1 (Rn)) with ∇g ∈ L1(0, T ; Ḃs

p,1(Rn)) and

u0 ∈ Ḃs
p,1(Rn). Assume in addition that for some λ > 0, we have

(4.2) gt = divB +A, with SuppA(t, ·) ⊂ B(0, λ) and

∫
Rn
A(t, x) dx = 0,

where A,B ∈ L1(0, T ; Ḃs
p,1(Rn)). Finally, suppose that the compatibility con-

dition divu0 = g|t=0 on Rn is satisfied.
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Then System (4.1) has a unique solution (u,∇P ) with

u ∈ C([0, T ); Ḃs
p,1(Rn)) and ∂tu,∇2u,∇P ∈ L1(0, T ; Ḃs

p,1(Rn))

and the following estimate is valid:

(4.3) ‖u‖L∞(0,T ;Ḃsp,1(Rn)) + ‖ut, ν∇2u,∇P‖L1(0,T ;Ḃsp,1(Rn))

≤ C(‖f, ν∇g,B‖L1(0,T ;Ḃsp,1(Rn)) + λ‖A‖L1(0,T ;Ḃsp,1(Rn)) + ‖u0‖Ḃsp,1(Rn)),

where C is an absolute constant with no dependence on ν, T and λ.

Proof. — Applying the divergence operator to the first equation of (4.1) and

remembering the constraint gt = divB+A, we see that the pressure is deter-

mined by

∆P = div f + ν∆g − divB −A in (0, T )× Rn.

We thus set ∇P := ∇P0 +∇P1 with

(4.4) ∆P1 = div (f + ν∇g −B) in (0, T )× Rn,

and

∆P0 = −A in (0, T )× Rn.
Determining ∇P1 may be done according to Lemma 3.1.2 (treating t as a

parameter). We get ∇P1 in L1(0, T ; Ḃs
p,1(Rn)) satisfying

(4.5) ‖∇P1‖L1(0,T ;Ḃsp,1(Rn)) ≤ C‖f, ν∇g,B‖L1(0,T ;Ḃsp,1(Rn)).

Constructing ∇P0 stems from Lemma 3.2.1 which yields

(4.6) ‖∇P0‖L1(0,T ;Ḃsp,1(Rn)) ≤ Cλ‖A‖L1(0,T ;Ḃsp,1(Rn)).

Hence (4.5) and (4.6) give

(4.7) ‖∇P‖L1(0,T ;Ḃsp,1(Rn)) . ‖f, ν∇g,B‖L1(0,T ;Ḃsp,1(Rn))+λ‖A‖L1(0,T ;Ḃsp,1(Rn)).

Now that ∇P has been constructed, we look at u as the solution to the fol-

lowing heat equation:{
ut − ν∆u = f −∇P in (0, T )× Rn,
u|t=0 = u0 on Rn.

The endpoint maximal property for the heat equation (see e.g. [6], Chap. 2)

ensures the existence of u in the desired functional space, together with

(4.8) ‖u‖L∞(0,T ;Ḃsp,1(Rn)) + ‖ut, ν∇2u‖L1(0,T ;Ḃsp,1(Rn))

. ‖f,∇P‖L1(0,T ;Ḃsp,1(Rn)) + ‖u0‖Ḃsp,1(Rn).
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Let us sketch the proof of (4.8) for the reader convenience. It just follows from

the fact that there exist two constants c and C such that for all j ∈ Z and

α ∈ R+ one has (see e.g. [6])

‖eα∆∆̇jh‖Lp(Rn) ≤ Ce−cα22j‖∆̇jh‖Lp(Rn).

Now, as u satisfies

∆̇ju(t) = eνt∆∆̇ju0 +

∫ t

0
eν(t−τ)∆∆̇j(f −∇P ) dτ,

we readily get

‖∆̇ju(t)‖Lp(Rn) ≤ C
(
e−cνt2

2j‖∆̇ju0‖Lp(Rn)

+

∫ t

0
e−cν(t−τ)22j‖∆̇j(f −∇P )‖Lp(Rn) dτ

)
,

whence

‖∆̇ju‖L∞(0,T ;Lp(Rn)) + ν22j‖∆̇ju‖L1(0,T ;Lp(Rn))

. ‖∆̇ju0‖Lp(Rn) + ‖∆̇j(f −∇P )‖L1(0,T ;Lp(Rn)).

Multiplying the inequality by 2js and summing up over j yields (4.8). Re-

membering (4.7) implies the sought inequality (4.3).

To complete the proof of the theorem, one has to check whether the con-

straint divu = g is fulfilled on [0, T )×Rn. Applying the divergence operator to

the equation for u and using the definition of ∇P and the assumption on g|t=0,

we see that

∂t( divu− g)− ν∆( divu− g) = 0, ( divu− g)|t=0 = 0.

As uniqueness holds true in C([0, T );S ′(Rn)), we have divu − g ≡ 0 on

[0, T )×Rn and one may thus conclude that (u,∇P ) satisfies System (4.1).

Remark 4.1.1. — By the same token, one may prove that for general

1 < p <∞, −1 + 1/p < s < 1/p and 1 ≤ q ≤ ∞, if u0 ∈ Ḃ
s+2− 2

q
p,q (Rn), f and

∇g are in Lq(0, T ; Ḃs
p,q(Rn)), g ∈ C([0, T ); Ḃ

s+1− 2
q

p,q (Rn)) with in addition (4.2)

for some A and B in Lq(0, T ; Ḃs
p,q(Rn)) then u ∈ L∞(0, T ; Ḃ

s+2− 2
q

p,q (Rn)) and

(∂tu,∇2u,∇P ) ∈ Lq(0, T ; Ḃs
p,q(Rn)) with an estimate similar to (4.3).
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4.2. The Stokes system in the half-space

The purpose of this part is to extend Theorem 4.1.1 to the half-space set-

ting Rn+. We thus consider

(4.9)


ut − ν∆u+∇P = f in (0, T )× Rn+,
divu = g in (0, T )× Rn+,
u|xn=0 = 0 on (0, T )× ∂Rn+,
u|t=0 = u0 on Rn+.

This section is devoted to the proof of the following statement:

Theorem 4.2.1. — Let p ∈ (1,∞) and s ∈ (−1 + 1/p, 1/p). Assume that

f ∈ L1(0, T ; Ḃs
p,1(Rn+)) and that u0 ∈ Ḃs

p,1(Rn+) with divu0 = 0 in Rn+ and

u0 ·~en|∂Rn+ ≡ 0. Further assume that g = divR for some R ∈ C(0, T ; Ḃs
p,1(Rn+)),

that ∇g ∈ L1(0, T ; Ḃs
p,1(Rn+)) and that g(0) = 0. Finally, we suppose that

(4.10) gt = A+ DIV [B, b]

for some b ∈ L1(0, T ; Ḃ
s−1/p
p,1 (∂Rn+)) and A,B ∈ L1(0, T ; Ḃs

p,1(Rn+)) with

SuppA(t, ·) ⊂ B(0, λ) ∩ Rn+ for some λ > 0.

Then System (4.9) has a unique solution (u,∇P ) with

u ∈ Cb([0, T ); Ḃs
p,1(Rn+)), ut,∇2u,∇P ∈ L1(0, T ; Ḃs

p,1(Rn+))

and the following estimate is valid:

‖u‖L∞(0,T ;Ḃsp,1(Rn+)) + ‖ut, ν∇2u,∇P‖L1(0,T ;Ḃsp,1(Rn+))

≤ C
(
‖u0‖Ḃsp,1(Rn+) + ‖f, ν∇g,B‖L1(0,T ;Ḃsp,1(Rn+))

+ λ‖A‖L1(0,T ;Ḃsp,1(Rn+)) + ‖b‖
L1(0,T ;Ḃ

s−1/p
p,1 (∂Rn+))

)
,

where C is an absolute constant with no dependence on ν, T and λ.

Remark 4.2.1. — The case where one prescribes the trace of u at the bound-

ary to be equal to some nonzero given h reduces to the homogeneous situation,

if assuming that h admits some extension h̃ over (0, T )×Rn+ so that h̃t− ν∆h̃

(resp. div h̃) satisfies the same assumptions as f (resp. g).

The proof of Theorem 4.2.1 is based essentially on the results of [15] con-

cerning the case g ≡ 0 and on our recent work in [16] so as to handle the

nonhomogeneous divergence constraint. Recall the statement for g ≡ 0 :
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Theorem 4.2.2. — If g ≡ 0 and u0, f fulfill the assumptions of Theo-

rem 4.2.1 then System (4.9) has a unique solution (u,∇P ) satisfying

u ∈ Cb([0, T ); Ḃs
p,1(Rn+)), ut,∇2u,∇P ∈ L1(0, T ; Ḃs

p,1(Rn+)).

Besides, the following estimate is valid:

(4.11) ‖u‖L∞(0,T ;Ḃsp,1(Rn+)) + ‖ut, ν∇2u,∇P‖L1(0,T ;Ḃsp,1(Rn+))

≤ C(‖f‖L1(0,T ;Ḃsp,1(Rn+)) + ‖u0‖Ḃsp,1(Rn+)),

where C is an absolute constant with no dependence on ν and T .

Proof of Theorem 4.2.1. — As a first step, let us reduce our study to the case

u0 ≡ 0 and f ≡ 0. To this end, solve System (4.9) with g ≡ 0, according to

Theorem 4.2.2. We get a solution (u1,∇P1) satisfying (4.11). Now, setting

(4.12) u = unew + u1 and ∇P = ∇Pnew +∇P1,

we see that (unew,∇Pnew) satisfies System (4.9) with f ≡ 0 and u0 ≡ 0 and

the same g (since divu1 = 0). Additionally one may extend the system on

the whole time line, setting unew = ∇Pnew = 0 as well as fnew = gnew = 0 for

t < 0. Using the fact that u0 ≡ 0, we eventually get (dropping the index new

for simplicity),

(4.13)


ut − ν∆u+∇P = 0 in R× Rn+,
divu = g in R× Rn+,
u|xn=0 = 0 on R× ∂Rn+.

Let us emphasize that, owing to g(0) = 0, (4.10) is now satisfied on R × Rn+
(if extending A and B by 0 for negative t of course).

In what follows we thus concentrate on the proof of the following lemma:

Lemma 4.2.1. — Let 1 < p < ∞ and −1 + 1/p < s < 1/p. Let g = divR

with R ∈ C(R; Ḃs
p,1(Rn+)) satisfying in addition ∇g ∈ L1(R; Ḃs

p,1(Rn+)) and

gt = A + DIV [B, b] with A,B ∈ L1(R; Ḃs
p,1(Rn+)), b ∈ L1(R; Ḃ

s−1/p
p,1 (∂Rn+))

and, for some λ > 0,

SuppA(·, t) ⊂ B(0, λ) ∩ Rn+ a.e. t ∈ R.

Then System (4.13) has a unique solution (u,∇P ) with u ∈ Cb(R; Ḃs
p,1(Rn+)),

ut,∇2u,∇P ∈ L1(R; Ḃs
p,1(Rn)). Furthermore, there exists some constant C so
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that

‖u‖L∞(R;Ḃsp,1(Rn+)) + ‖ut, ν∇2u,∇P‖L1(R;Ḃsp,1(Rn+))

≤ C
(
‖b‖

L1(R;Ḃ
s−1/p
p,1 (∂Rn+))

+ ‖ν∇g,B‖L1(R;Ḃsp,1(Rn+)) + λ‖A‖L1(R;Ḃsp,1(Rn+))

)
.

Proof. — Performing the rescaling

(4.14) (unew, Pnew, gnew)(t, x) = (νuold, Pold, νgold)(ν−1t, x),

we see that (unew, Pnew) satisfies System (4.13) with ν = 1. Hence one may

assume with no loss of generality that ν = 1. As a preliminary step, we want to

discard the source term g. To this end, we define for all t ∈ R the function w(t)

to be the solution of

(4.15)

{
∆w(t) = g(t) = divR(t) in Rn+,
w(t)|xn=0 = 0 on ∂Rn+.

Applying the last part of Lemma 3.3.1 provides us with a solution w satisfying

∇w ∈ C(R; Ḃs
p,1(Rn+)) and for all t ∈ R,

(4.16) ‖∇w(t)‖Ḃsp,1(Rn+) . ‖R(t)‖Ḃsp,1(Rn+).

As by construction w is the restriction to the half-space of G?g̃ (where G is the

fundamental solution of ∆ and g̃, the antisymmetric extension of g), applying

the fourth item of Lemma 3.3.1 yields the following additional estimate:

(4.17) ‖∇3w‖L1(R;Ḃsp,1(Rn+)) . ‖∇g‖L1(R;Ḃsp,1(Rn+)).

Differentiating (4.15) with respect to the time variable and using the assump-

tion on gt, we also discover that

(4.18)

{
∆wt = gt = A+ divB in Rn+,
wt|xn=0 = 0 on ∂Rn+.

Hence using the last part of Lemma 3.3.1 and Corollary 3.3.1 to handle the

parts of wt coming from B and A, respectively, we end up with

(4.19) ‖∇wt‖L1(R;Ḃsp,1(Rn+)) ≤ C
(
‖B‖L1(R;Ḃsp,1(Rn+)) + λ‖A‖L1(R;Ḃsp,1(Rn+))

)
.

Then we look for a solution (u,∇P ) to (4.13) with ν = 1 in the following form:

u = unew +∇w, ∇P = ∇Pnew −∇wt +∇g.
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Dropping the index new, we thus get the following system (1):

(4.20)


ut −∆u+∇P = 0 in R× Rn+,
divu = 0 in R× Rn+,
u|xn=0 = −∇w|xn=0 on R× ∂Rn+.

Let (ξ0, ξ
′) denote the Fourier variables for the Fourier transform Ft,x′ with

respect to t and x′. We claim that the pressure P obeys the formula

(4.21) P̂ (ξ0, ξ
′, xn) := Ft,x′P (ξ0, ξ

′, xn) = P̂b(ξ0, ξ
′)e−|ξ

′|xn ,

with

(4.22) P̂b(ξ0, ξ
′) := −

( iξ0

|ξ′|
+ r + |ξ′|

)
∂̂xnw|xn=0 and r2 := iξ0 + |ξ′|2.

Indeed, it is only a matter of looking at (4.20) as the following heat equation:

ut −∆u = −∇P, u|xn=0 = −∇w|xn=0.

Then taking the Fourier transform with respect to time and tangential direc-

tions, and remembering that our functional framework requires u to tend to 0

at infinity, we obtain from the standard theory of linear ordinary differential

equations,

û(ξ0, ξ
′, xn) = û(ξ0, ξ

′, 0)e−rxn

+
1

2r

∫ ∞
0

[e−r|xn−sn| − e−r(xn+sn)]

(
−iξ′
|ξ′|

)
P̂b(ξ0, ξ

′)e−|ξ
′|sn dsn.

So differentiating the n-th component with respect to xn and letting xn go

to 0 gives (see [15] for more details):

∂xn ûn(ξ0, ξ
′, xn)|xn=0 = r∂̂xnw|xn=0 +

(∫ ∞
0
|ξ′|e−(r+|ξ′|)sn dsn

)
P̂b(ξ0, ξ

′).

We know that the tangential parts of the boundary data is zero and that

divu = 0, thus ∂xnun|xn=0 = 0. Therefore, the above equality implies that

|ξ′|
r + |ξ′|

P̂b(ξ0, ξ
′) = −r∂̂xnw|xn=0.

This yields formula (4.22).

Now, in order to determine the pressure, we proceed as follows:

1. we construct an extension G1 of F−1
t,x′ [|ξ

′|∂̂xnw|xn=0] on R×Rn+ such that

∇G1 ∈ L1(R; Ḃs
p,1(Rn+));

1. Note that only ∂xnw may be nonzero at the boundary.
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2. we construct an extension G2 of F−1
t,x′ [r∂̂xnw|xn=0] on R × Rn+ such that

∇G2 ∈ L1(R; Ḃs
p,1(Rn+));

3. we construct an extension V of F−1
t,x′ [iξ0/|ξ′|∂̂xnw|xn=0] on R × Rn+ such

that ∇V ∈ L1(R; Ḃs
p,1(Rn+));

4. keeping in mind that P has to be harmonic, we write

P = Pnew −G1 −G2 − V

where Pnew is a solution to

∆Pnew = ∆(G1 +G2 + V ) in Rn+, Pnew|xn=0 = 0 on ∂Rn+,

and establish that ∇Pnew ∈ L1(R; Ḃs
p,1(Rn+)) with a suitable estimate.

First step: construction of G1. — We just have to set G1 := |D′|∂xnw where

the pseudo-differential operator |D′| is defined by

|D′|z := F−1
x′ (|ξ′|ẑ).

Indeed, we have ∇3w ∈ L1(R; Ḃs
p,1(Rn+)), hence

∇|D′|∂xnw ∈ L1(R; Ḃs
p,1(Rn+)).

Second step: construction of G2. — It suffices to set G2 := −∂xny with y the

solution to

(4.23)

{
yt −∆y = 0 in R× Rn+,
y|xn=0 = (∂xnw)|xn=0 on R× ∂Rn+,

y → 0 at ∞.

Indeed, we observe that Ft,x′y = e−rxn ∂̂xnw|xn=0, whence

∂xny = −F−1
t,x′ [re

−rxn ∂̂xnw|xn=0],

and ∂xny is thus an extension of −F−1
t,x′(r∂̂xnw|xn=0) to R× Rn+.

In order to solve (4.23), we decompose y into y = z + ∂xnw with z the

solution to{
zt −∆z = ∆(∂xnw)− (∂xnw)t in R× Rn+,
z|xn=0 = 0 on R× ∂Rn+,

z → 0 at ∞.

Note that the right-hand side is in L1(R; Ḃs
p,1(Rn+)) by construction of w and

satisfies, owing to (4.17) and (4.19),

(4.24) ‖∆(∂xnw)− (∂xnw)t‖L1(R;Ḃsp,1(Rn+)) ≤ C‖∇g,B, λA‖L1(R;Ḃsp,1(Rn+)).

Thus, as a consequence of Prop. 6 in [15] or Th. 6.2. in [20], we get

that zt,∇2z ∈ L1(R; Ḃs
p,1(Rn+)) and are bounded by the right-hand side of
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(4.24). Hence ∇2y too, and one can conclude that ∇G2 ∈ L1(R; Ḃs
p,1(Rn+))

and satisfies

‖∇G2‖L1(R;Ḃsp,1(Rn+)) ≤ C‖∇g,B, λA‖L1(R;Ḃsp,1(Rn+)).

Third step: construction of V . — In order to extend the term coming from

F−1
t,x′

( iξ0

|ξ′|
∂̂xnw|xn=0

)
= |D′|−1∂xnwt|xn=0 with wt fulfilling (4.18),

it is natural to set

Z ′ := F−1
x′

(
e−|ξ

′|xn iξ
′

|ξ|′
Fx′(∂xnwt|xn=0)

)
,

Zn := −F−1
x′
(
e−|ξ

′|xnFx′(∂xnwt|xn=0)
)
.

We observe that the vector field (Z ′, Zn) is the gradient of some potential V

which is the sought extension. As we plan to use Lemma 2.2.2, the problem

thus reduces to bounding (2) ∂xnwt|xn=0 in L1(R; Ḃ
s−1/p
p,1 (∂Rn+)). To this end,

we first have to find some vector field H ∈ L1(R; Ḃs
p,1(Rn+)) and scalar function

h ∈ L1(R; Ḃ
s−1/p
p,q (∂Rn+)) such that

(4.25) A+ DIV [B; b] = DIV [H;h].

So consider the antisymmetric extension EantA of A on the whole space. By

construction, we are guaranteed that∫
Rn
EantAdx = 0,

and thus Proposition 3.2.1 enables us to solve

(4.26)

{
∆a = EantA in B(0, λ),

∂~na = 0 on ∂B(0, λ),

∫
B(0,λ)

a dx = 0

and provides us with the following bound in nonhomogeneous Besov space:

(4.27) ‖a‖Bs+2
p,1 (B(0,λ)) ≤ C‖A‖Ḃsp,1(Rn+).

The above inequality combined with the scaling argument of Corollary 3.2.1

yields for some constant C independent of λ:

‖∇a‖Ḃsp,1(B(0,λ)) ≤ Cλ‖A‖Ḃsp,1(Rn+).

2. Note that ∂xnwt = ∂t(∂xnw) is well defined at the boundary as ∇w is, by construction,

in L2(R; Ḃs+1
p,1 (Rn+)), and s+ 1 > 1/p.
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Next, consider the extension ∇̃a of ∇a by 0, on Rn. In light of Corollary 2.2.1,

∇̃a is in L1(R; Ḃs
p,1(Rn)) and satisfies

(4.28) ‖∇̃a‖L1(R;Ḃsp,1(B(0,λ))) ≤ Cλ‖A‖L1(R;Ḃsp,1(Rn+)).

Additionally, by (3.5),

−
∫
B(0,λ)

∇a · ∇ϕdx =

∫
B(0,λ)

EantAϕdx for all ϕ ∈ C∞(B(0, λ)).

Hence, we gather that

div ∇̃a = EantA in the space L1(R; Ḃs−1
p,1 (Rn)).

Now, setting H := B + ∇̃a|Rn+ , the above arguments enable us to conclude

that (4.25) is fulfilled with (3) h := b− ∂xna|xn=0 and H satisfying

(4.29) ‖H‖L1(R;Ḃsp,1(Rn+)) ≤ C
(
λ‖A‖L1(R;Ḃsp,1(Rn+)) + ‖B‖L1(R;Ḃsp,1(Rn+))

)
.

Let us emphasize that thanks to (4.26) the trace of ∂xna on ∂Rn+ ∩ B(0, λ)

is well defined in L1(R;B
s+1−1/p
p,1 (∂Rn+ ∩ B(0, λ))). Hence h makes sense in

L1(R; Ḃ
s−1/p
p,1 (∂Rn+)). Besides, we have

(4.30) ‖h‖
L1(R;Ḃ

s−1/p
p,1 (∂Rn+))

≤ C
(
λ‖A‖L1(R;Ḃsp,1(Rn+)) + ‖b‖

L1(R;Ḃ
s−1/p
p,1 (∂Rn+))

)
.

We are now ready to bound ∂xnwt|xn=0 in L1(R; Ḃ
s−1/p
p,1 (∂Rn+)). We start with

the definition of w in (4.15) which gives for all t ∈ R and ϕ ∈ C∞c (Rn+),

−
∫
Rn+
∇w · ∇ϕdx−

∫
∂Rn+

∂xnw ϕdσ =

∫
Rn+
g ϕ dx.

Therefore, differentiating with respect to time, and using (4.10) and (4.25),

(4.31) −
∫
Rn+
∇wt ·∇ϕdx−

∫
∂Rn+

∂xnwtϕdσ = −
∫
Rn+
H ·∇ϕdx+

∫
∂Rn+

hϕdσ.

This clearly implies that div (∇wt −H) = 0 in Rn+ (take ϕ supported in Rn+)

and thus, according to Lemma 2.2.4, the distribution (∇wt − H) · ~en has a

trace on ∂Rn+ which belongs to L1(R; Ḃ
s−1/p
p,1 (∂Rn+)) and satisfies

(4.32) ‖
(
(∇wt−H) ·~en

)
|xn=0‖L1(R;Ḃ

s−1/p
p,1 (∂Rn+))

≤ C‖∇wt−H‖L1(R;Ḃsp,1(Rn+)).

Furthermore, (4.31) guarantees that∫
∂Rn+

(
(∇wt −H) · ~en

)
ϕdσ =

∫
Rn+

(H −∇wt) · ∇ϕdx =

∫
∂Rn+

(h+ ∂xnwt)ϕdσ,

3. The minus sign is due to the orientation of the exterior normal unit vector at ∂Rn+.
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and thus

(4.33) ∂xnwt|xn=0 =
(
(∇wt −H) · ~en

)
|xn=0 − h.

Now, bounding the r.h.s. of (4.32) according to (4.19) and (4.29), and using

also (4.30), we conclude that

(4.34) ‖∇V ‖L1(R;Ḃsp,1(Rn+)) . ‖B‖L1(R;Ḃsp,1(Rn+))

+ λ‖A‖L1(R;Ḃsp,1(Rn+)) + ‖b‖
L1(R;Ḃ

s−1/p
p,1 (∂Rn+))

.

Last step: construction of the pressure and velocity. — Recall that the pres-

sure defined in (4.21) has to fulfill the system{
∆P = 0 in Rn+,

P |xn=0 = Pb on ∂Rn+.
Now, setting EPb := −G1 − G2 − V, the previous steps ensure that ∇EPb ∈
L1(R; Ḃs

p,1(Rn+)) and EPb|xn=0 = Pb. In addition, (4.24) and (4.34) yield

‖∇EPb‖L1(R;Ḃsp,1(Rn+)) . ‖∇g,B, λA‖L1(R;Ḃsp,1(Rn+)) + ‖b‖
L1(R;Ḃ

s−1/p
p,1 (∂Rn+))

.

Hence decomposing P into P = Pnew +EPb and dropping the index new as

usual, we see that it suffices to consider the system{
∆P = −div∇EPb in Rn+,

P |xn=0 = 0 on ∂Rn+.

Because ∇EPb ∈ L1(R; Ḃs
p,1(Rn+)), the last part of Lemma 3.3.1 readily gives

a unique solution P with ∇P ∈ L1(R; Ḃs
p,1(Rn+)).

Collecting all the steps and changes of unknown functions, we conclude that

‖∇P‖L1(R;Ḃsp,1(Rn+)) ≤ C‖∇g,B, λA‖L1(R;Ḃsp,1(Rn+)).

Once the pressure term has been estimated, one just has to define the velocity

u to be the solution to the following heat equation:{
ut −∆u = −∇P in R× Rn+,

u|xn=0 = 0 on ∂Rn+.
Solving this equation in our functional framework has been done in [15],

Prop. 6. We get a velocity u with the required property. Lemma 4.2.1 is

proved. Subsequently, the proof of Theorem 4.2.1 is complete, too.

Remark 4.2.2. — A direct approach, based on the explicit solution formula

as in [21] is possible if one assumes that ∂t(H(R|xn=0)) ∈ L1(R+; Ḃs
p,1), where

H(R|xn=0) stands for the harmonic extension of R|xn=0, as in (3.41).
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Remark 4.2.3. — In the case where g is compactly supported, one may pro-

vide a shorter proof based on our work in [16]. Indeed, in this case, it is

possible to remove directly the divergence part of u by means of the (gen-

eralized) Bogovskĭı formula, resorting to the DIV functional introduced in

Chapter 2. Here, we treated the general case where g is not compactly sup-

ported because it shows how the approach of [15] has to be adapted so as

to handle nonzero divergence condition. Besides, it is needed to investigate

systems for incompressible fluids in Lagrangian coordinates (see Chapter 5).

Remark 4.2.4. — We did not deliver here any sketch of the proof of Theo-

rem 4.2.2 from [15]. As in the proof of Theorem 4.2.1, constructing the pres-

sure term from formula (4.21) is the key idea. Finding out suitable extension

operators is the main difficulty.

4.3. The exterior domain case

This section is devoted to solving the evolutionary Stokes system

(4.35)


ut − ν∆u+∇P = f in (0, T )× Ω,

divu = g in (0, T )× Ω,

u = 0 on (0, T )× ∂Ω,

u|t=0 = u0 on Ω,

in an exterior or bounded domain Ω.

Extending the results of the previous section to this new situation is our

main objective here. We shall focus on the unbounded case which is more

tricky and just indicate at the end of this section what has to be changed for

bounded domains.

4.3.1. Proof of time-dependent estimates. — As a preliminary step, we

shall establish the following time-dependent estimates for (4.35):

Theorem 4.3.1. — Let Ω be a smooth exterior domain of Rn with n ≥ 3. Let

1 < p < ∞, −1 + 1/p < s < 1/p. Let u0 ∈ Ḃs
p,1(Ω), f ∈ L1(0, T ; Ḃs

p,1(Ω))

and g ∈ C([0, T ); Ḃs−1
p,1 (Ω)) with g(0) = divu0. Assume in addition that ∇g ∈

L1(0, T ; Ḃs
p,1(Ω)) and that g = divR for some vector field R with the following

properties (4):

4. Note that the last two properties recast in gt = DIV [Rt; %]. That d
dt

((R · ~n)|∂Ω) is

defined in the sense of distributions is due to the fact that R|K is in L1(0, T ;B1+s
p,1 (K)), hence

its trace on ∂K (and thus on ∂Ω) is well defined (see Proposition 2.2.4).
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1. R ∈ L1(0, T ;Lm(Ω)) for some m ∈ (1,∞) and R|K ∈ L1(0, T ;B1+s
p,1 (K))

where K stands for some bounded subset of Ω surrounding ∂Ω and such

that dist(∂Ω,Ω \K) > 0 (see Figure 3.4);

2.

∫
∂Ω
R · ~n dς = 0;

3. Rt ∈ L1(0, T ; Ḃs
p,1(Ω));

4. % := d
dt((R · ~n)|∂Ω) ∈ L1(0, T ;B

s−1/p
p,1 (∂Ω)).

Then System (4.35) has a unique solution (u,∇P ) such that

(4.36) u ∈ C([0, T ]; Ḃs
p,1(Ω)), ∂tu,∇2u,∇P ∈ L1(0, T ; Ḃs

p,1(Ω)),

and the following estimate is valid:

‖u‖L∞(0,T ;Ḃsp,1(Ω))+‖ut, ν∇2u,∇P‖L1(0,T ;Ḃsp,1(Ω))(4.37)

≤ CeCTν
(
‖u0‖Ḃsp,1(Ω)

+ ‖f, ν∇g,Rt‖L1(0,T ;Ḃsp,1(Ω)) + ‖%‖
L1(0,T ;B

s−1/p
p,1 (∂Ω))

+ ν‖R‖L1(0,T ;Lm(Ω)) + ν‖R|K‖L1(0,T ;B1+s
p,1 (K))

)
,

where the constant C depends only on K, Ω, s, m and p.

Additionally, there holds

‖u‖L∞(0,T ;Ḃsp,1(Ω)) + ‖ut, ν∇2u,∇P‖L1(0,T ;Ḃsp,1(Ω))(4.38)

≤ C
(
‖u0‖Ḃsp,1(Ω) + ‖f, ν∇g,Rt‖L1(0,T ;Ḃsp,1(Ω))

+ ν‖R‖L1(0,T ;Lm(Ω)) + ‖%‖
L1(0,T ;B

s−1/p
p,1 (∂Ω))

+ ν‖R|K‖L1(0,T ;B1+s
p,1 (K)) + ν‖u|K‖L1(0,T ;Bsp,1(K))

)
,

where C depends only on K, Ω, s, m and p.

Proof. — Let us first say a few words about the existence issue. The first

step of the proof (see below) will guarantee that one may restrict to g ≡ 0

and source term f with div f = 0 in Ω and f · ~n|∂Ω = 0. Even in this case,

the task is more complex than for standard parabolic systems because we

have to keep the pressure term under control. To this end, one may use a

suitable approximation in L2-type spaces or the results of Giga-Sohr [28] and

Maremonti-Solonikov [40], to obtain the solvability for smooth data together

with (4.37). This latter inequality enables us to pass to the limit so as to get

a solution satisfying (4.36), as it ensures that the sequence corresponding to

smooth data is a Cauchy sequence in the space defined in (4.36).
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The rest of the proof is devoted to establishing estimates (4.37) and (4.38).

We may suppose that we are given a smooth enough solution. As usual,

performing the change of variables (4.14) reduces the study to the case ν = 1.

So we shall make this assumption in all that follows.

First step: removing g. — In order to remove the inhomogeneity from the

r.h.s. of (4.35)2, we shall construct a solution to

(4.39) div v = g in Ω, v = 0 on ∂Ω,

such that v = v1 + v2 with v1 ∈ L1(0, T ;Lm(Ω)) and v2 with support in

(0, T )×K and in the space L1(0, T ;Bs+2
p,1 (Ω)). We want v to satisfy in addition

vt,∇2v ∈ L1(0, T ; Ḃs
p,1(Ω)) and also, owing to our assumption on gt,

(4.40) DIV [vt, 0] = DIV [Rt, %].

In view of our results in [16], if g has a compact support then the most natural

approach is to construct v by means of the (generalized) Bogovskĭı formula

associated to the domain Ω: we set

v = BΩ(g) = IΩ(R) + JΩ

(
(R · ~n)|∂Ω

)
,

where the operators IΩ and JΩ have been defined in the proof of Theorem 2.3.1.

Then, owing to the properties of these two operators (see [16]), we may write

that

−
∫

Ω
v ·∇ϕdx = −

∫
Ω
R·∇ϕ+

∫
∂Ω

(R·~n)ϕdσ =

∫
Ω
ϕg dx for all ϕ ∈ C∞c (Ω).

Differentiating with respect to time we thus get

−
∫

Ω
vt · ∇ϕdx = −

∫
Ω
Rt · ∇ϕ+

∫
∂Ω
%ϕ dσ for all ϕ ∈ C∞c (Ω),

which is exactly what we wanted.

That approach works whenever g has a compact support for it suffices to

solve (4.39) in a bounded subdomain of Ω. The result is given by Theo-

rem 2.3.1, and as nonhomogeneous and homogeneous Besov norms coincide

for compactly supported functions, we are done.

In the applications we have in mind however (see Chapters 5 and 6), g need

not have a compact support. The rest of the section is devoted to the study

of that more involved case.
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Lemma 4.3.1. — There exists a vector field v = v1 + v2 with v1 supported in

(0, T )×K, fulfilling (4.39) and (4.40), supported in Ω and such that

‖v1‖L1(0,T ;Lm(Ω)) + ‖v2‖L1(0,T ;Bs+2
p,1 (K)) + ‖∇2v‖L1(0,T ;Ḃsp,1(Ω))

≤ C
(
‖ divR‖L1(0,T ;Ḃs+1

p,1 (Ω)) + ‖R‖L1(0,T ;Lm(Ω)) + ‖R|K‖L1(0,T ;B1+s
p,1 (K))

)
,

‖vt‖L1(0,T ;Ḃsp,1(Ω)) ≤ C
(
‖Rt‖L1(0,T ;Ḃsp,1(Ω)) + ‖%‖

L1(0,T ;B
s− 1

p
p,1 (∂Ω))

)
.

Proof. — We aim at reducing the study to the compact support case. As

the time variable does not play any role here, we just omit it in the following

computations.

Let η0 : Rn → [0, 1] be a smooth cut-off function such that η0 ≡ 0 on a

neighborhood of Rn\Ω and η0 ≡ 1 on a neighborhood of Ω\K (see Figure 3.4).

Let us consider the following problem:

(4.41) ∆G = div (η0R) in Rn.

We define ∇G by the formula

∇G := −(−∆)−1∇ div (η0R),

so that we also have

∇Gt = −(−∆)−1∇ div (η0Rt).

Because (−∆)−1∇ div is an homogeneous multiplier of degree 0, we gather

from [6] and standard results on singular integrals that

‖∇3G‖Ḃsp,1(Rn) . ‖∇div (η0R)‖Ḃsp,1(Rn),

‖∇G‖Lm(Rn) . ‖η0R‖Lm(Rn) and ‖∇Gt‖Ḃsp,1(Rn) . ‖η0Rt‖Ḃsp,1(Rn).

Therefore, using the decomposition

div (η0R) = η0g +R∇η0 on Ω,

we get

(4.42)

 ‖∇
3G‖Ḃsp,1(Rn) . ‖g‖Ḃ1+s

p,1 (Ω) + ‖R|K‖B1+s
p,1 (K),

‖∇G‖Lm(Rn) . ‖R‖Lm(Ω), ‖∇Gt‖Ḃsp,1(Rn) . ‖Rt‖Ḃsp,1(Ω).

Then we look for v in the following form

(4.43) v = η0∇G+ w1

with w1|∂Ω = 0 and

(4.44) divw1 = div
(
(1− η0)R

)
+ div

(
(1− η0)∇G

)
.
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Decomposing (η0 − 1)∇G into (5)

(η0 − 1)∇G = (η0 − 1)Ṡ0∇G+ (η0 − 1)(Id − Ṡ0)∇G,

and using product estimates in Rn (recall that η0−1 is compactly supported),

and Bernstein inequality, we get

‖(η0 − 1)∇G‖Ḃs+2
p,1 (Rn) . ‖∇G‖Lm(Rn) + ‖∇3G‖Ḃsp,1(Rn).

Hence, combining with (4.42),

(4.45) ‖(η0 − 1)∇G‖Ḃs+2
p,1 (Rn) . ‖g‖Ḃ1+s

p,1 (Ω) + ‖R|K‖B1+s
p,1 (K) + ‖R‖Lm(Ω).

In order to reduce (4.44) to solving some divergence equation on the bounded

set K we have to prove that the average over K of the r.h.s. of (4.44) vanishes.

In fact, owing to the support properties of 1 − η0 and to Condition (2) in

Theorem 4.3.1, we can write∫
K

div
(
(1− η0)(R+∇G)

)
dx =

∫
∂Ω

(
~n · (R+∇G)

)
dσ

=

∫
∂Ω
~n · ∇Gdσ = −

∫
Rn\Ω

div (η0R) dx = 0.

Hence we may solve (4.44) via the Bogovskĭı formula in the set K according

to Theorem 2.3.1: setting

w1 = BK
[

div
(
(1− η0)(R+∇G)

)]
(4.46)

= DIVK
[
(1− η0)(R+∇G), (1− η0)(%+ (~n · ∇G)|∂K)

]
,

we readily get, by virtue of continuity results for BK ,

‖w1‖Bs+2
p,1 (K) . ‖(1− η

0)( divR+ ∆G)‖Bs+1
p,1 (K) + ‖∇η0 · (R+∇G)‖B1+s

p,1 (K)

. ‖g‖Bs+1
p,1 (K) + ‖R|K‖B1+s

p,1 (K).(4.47)

Therefore by (4.42), (4.43), (4.45) and (4.47), we conclude that

(4.48) ‖v‖Ḃs+2
p,1 (Ω) . ‖g‖Ḃs+1

p,1 (Ω) + ‖R‖Lm(Ω) + ‖R|K‖Bs+1
p,1 (K).

Let us now concentrate on the proof of estimates for vt. We have

vt = ∇Gt + (η0 − 1)∇Gt + w1,t.

Differentiating (4.46) yields

w1,t = IK [(1− η0)(Rt +∇Gt)] + JK [(1− η0)(%+ ∂~nGt|∂K)].

5. The low frequency cut-off Ṡ0 has been defined in (2.2).
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That ∂~nGt has a trace at the boundary ∂K is a consequence of Lemma 2.2.4

as, by construction, div (∇Gt) = 0 in Rn \ Ω. Furthermore, there holds

‖∂~nGt|∂Ω‖Ḃs−1/p
p,1 (∂Ω)

. ‖∇Gt‖Ḃsp,1(Rn\Ω) . ‖Rt‖Ḃsp,1(Ω) for a.e. t > 0.

Thus, we obtain

(4.49) ‖w1,t‖Ḃsp,1(Ω) . ‖Rt‖Ḃsp,1(Ω) + ‖%‖
B
s−1/p
p,1 (∂Ω)

.

Putting (4.42) and (4.49) together, one may conclude that

(4.50) ‖vt‖Ḃsp,1(Ω) . ‖Rt‖Ḃsp,1(Ω) + ‖%‖
B
s−1/p
p,1 (∂Ω)

.

Integrating (4.48) with respect to time completes the proof of the lemma.

The construction of v given by Lemma 4.3.1 reduces the proof of Theorem

4.3.1 to the case g ≡ 0. Indeed, if we set

(4.51) unew = uold − v and fnew = fold − vt + ∆v,

then u = unew has to satisfy

(4.52)


ut −∆u+∇P = fnew in (0, T )× Ω,

divu = 0 in (0, T )× Ω,

u = 0 on (0, T )× ∂Ω,

u|t=0 = u0 on Ω.

According to (4.48) and (4.50), the regularity of the new function f is

preserved and

(4.53) ‖fnew‖L1(0,T ;Ḃsp,1(Ω)) . ‖fold,∇g,Rt‖L1(0,T ;Ḃsp,1(Ω))

+ ‖%‖
L1(0,T ;B

s− 1
p

p,1 (∂Ω))
+ ‖R‖L1(0,T ;Lm(Ω)) + ‖R‖L1(0,T ;B1+s

p,1 (K)).

Remark 4.3.1. — As already pointed out, in the case of a bounded do-

main Ω, one may directly apply Theorem 2.3.1 so as to remove g. Then making

the change of unknown (4.51), we eventually get (4.52) with fnew satisfying

‖fnew‖L1(0,T ;Bsp,1(Ω)) . ‖fold,∇g,Rt‖L1(0,T ;Bsp,1(Ω)) + ‖%‖
L1(0,T ;B

s− 1
p

p,1 (∂Ω))
.

Remark 4.3.2. — Note that in this first step, the time variable is just treated

as a parameter. Hence reducing the study to the divergence free case may

be done in any Besov space Ḃs
p,r(Ω) with 1 ≤ r ≤ ∞, 1 < p < ∞ and

−1 + 1/p < s < 1/p.
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Second step: an estimate for the pressure. — At this point, one may remove

the potential part of f and its normal component at the boundary. Indeed,

Proposition 3.5.1 enables us to solve the following problem:{
∆Q = div f in Ω,

(∇Q− f) · ~n = 0 on ∂Ω.

Then one may change f to f −∇Q, putting ∇Q in the pressure.

So we may assume from now on that

(4.54) div f = 0 in Ω and f · ~n = 0 on ∂Ω.

Since the Stokes system is not quite of parabolic type, an extra information

on the pressure is needed so as to adapt the purely parabolic techniques of e.g.

[33], [35]. One of the difficulties is that the basic energy estimate does not

supply any reasonable bound for the pressure. The estimates that we shall

obtain below will enable us to control lower order terms which will appear as

a consequence of the localization procedure, and to ‘close the estimates’ for

small enough times.

In order to get this extra information, we take the divergence of (4.35)1.

Under assumption (4.54), we obtain:

(4.55)

{
∆P = 0 in Ω,

∂~nP = ∆u · ~n on ∂Ω,
P → 0 at ∞.

The boundary condition is just taken directly from the equation (4.35)1. Note

that, as div f = 0 we have div ∆u = 0 with ∆u ∈ L1(0, T ; Ḃs
p,1(Ω)), hence the

boundary condition makes sense according to Lemma 2.2.4.

Lemma 4.3.2. — Let −1 + 1/p < s < 1/p and u be a divergence free vector

field over Ω with u · ~n = 0 at ∂Ω and

∆u ∈ L1(0, T ; Ḃs
p,1(Ω)) ∩ L∞(0, T ; Ḃ−2+s

p,1 (Ω)).

Then there exists a unique distributional solution P to (4.55) such that

‖P‖L1(0,T ;Bs−2a
p,1 (K)) + ‖∇P‖L1(0,T ;Ḃs−2a

p,1 (Ω))(4.56)

≤ C‖∆u‖1−aL1(0,T ;Bsp,1(K))‖∆u‖
a
L1(0,T ;B−2+s

p,1 (K))
,

‖P‖L1+κ(0,T ;Bs−2a
p,1 (K)) + ‖∇P‖L1+κ(0,T ;Ḃs−2a

p,1 (Ω))(4.57)

≤ C‖∆u‖1−aL1(0,T ;Bsp,1(K))‖∆u‖
a
L∞(0,T ;B−2+s

p,1 (K))
,

where the constant C is independent of T and −1 + 1/p < s− 2a < 1/p with

1 + κ = 1/(1− a).
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Proof. — Of course we have

∆u ∈ L1(0, T ; Ḃs
p,1(K)) ∩ L∞(0, T ; Ḃ−2+s

p,1 (K)),

and this implies, by interpolation, that ∆u ∈ L1+κ(0, T ; Ḃs−2a
p,1 (K)) with κ

defined as in the statement. If s−2a > −1+1/p then, owing to the compactness

of K, we have ∆u ∈ L1+κ(0, T ;Bs−2a
p,1 (K)), and by the trace Lemma (see

Lemma 2.2.4) combined with the fact that div ∆u = 0 in K, we are guaranteed

that ∆u · ~n|∂Ω is defined in L1(0, T ;B
s−2a−1/p
p,1 (∂Ω)) and that

‖∆u · ~n‖
L1(0,T ;B

s−2a−1/p
p,1 (∂Ω))

≤ C‖∆u‖L1(0,T ;Bs−2a
p,1 (K)).

Combining with the interpolation inequality, we thus get

‖∆u · ~n‖
L1(0,T ;B

s−2a−1/p
p,1 (∂Ω))

≤ C‖∆u‖1−a
L1(0,T ;Ḃsp,1(K))

‖∆u‖a
L1(0,T ;Ḃ−2+s

p,1 (K))

where C is independent of T . Now, applying Theorem 3.4.1 with b := ∆u · ~n
gives (4.56).

Let us now turn to the proof of (4.57). Starting from the fact that

‖∆u · ~n‖
L1+κ(0,T ;B

s−2a−1/p
p,1 (∂Ω))

≤ C‖∆u‖L1+κ(0,T ;Bs−2a
p,1 (K)),

and using once again the equivalence between homogeneous and nonhomoge-

neous norms in our context, we get by means of an elementary interpolation

argument:

‖∆u · ~n‖
L1+κ(0,T ;B

s−2a−1/p
p,1 (∂Ω))

≤ C‖∆u‖1−a
L1(0,T ;Ḃsp,1(Ω))

‖∆u‖a
L∞(0,T ;Ḃ−2+s

p,1 (Ω))
,

where C is independent of T .

Therefore, applying Theorem 3.4.1 with b := ∆u · ~n gives (4.57).

Remark 4.3.3. — For Ω a bounded domain of Rn (n ≥ 2) and K = Ω̄, the

proof works the same. Under the above conditions, we get

‖P‖L1(0,T ;Bs+1−2a
p,1 (Ω)) ≤ C‖∆u‖

1−a
L1(0,T ;Bsp,1(Ω))‖∆u‖

a
L1(0,T ;B−2+s

p,1 (Ω))
,

‖P‖L1+κ(0,T ;Ḃs+1−2a
p,1 (Ω)) ≤ C‖∆u‖

1−a
L1(0,T ;Bsp,1(Ω))‖∆u‖

a
L∞(0,T ;B−2+s

p,1 (Ω))
.

Now we can tackle the proof of estimates in Theorem 4.3.1 under the as-

sumption g ≡ 0, div f ≡ 0 and f ·~n|∂Ω ≡ 0. Throughout we fix some covering

(Ω`)0≤`≤L of Ω such that Supp η0 ⊂ Ω0 with Ω0∩∂Ω = ∅ (here η0 is the func-

tion introduced in the first step of the proof just after (4.42)), and (Ω`)1≤`≤L
constitutes a covering of ∂Ω with Ω` ⊂ Ω, Ω`∩∂Ω 6= ∅, Ω∩Ω` star-shaped with

respect to some ball, and diam(Ω`) ≈ λ (see Figure 3.4). Then we consider a

subordinate partition of unity (η`)1≤`≤L such that:
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1.
∑

0≤`≤L
η` = 1 on Ω;

2. ‖∇kη`‖L∞(Rn) ≤ Ckλ−k for k ∈ N and 1 ≤ ` ≤ L;

3. Supp η` ⊂ Ω`.

We also introduce a smooth function η̃0 supported in K and with value 1 on

Supp∇η0, and smooth functions η̃1, . . . , η̃L with compact support in Ω` and

such that η̃` ≡ 1 on Supp η`. Obviously those functions can be defined on the

whole space.

Note that, for ` ∈ {1, . . . , L}, the bounds for the derivatives of η` together

with the fact that
∣∣Supp∇η`

∣∣ ≈ λn and interpolation implies that for k = 1, 2

and any q ∈ [1,∞], we have

(4.58) ‖∇kη`‖
Ḃ
n/q
q,1 (Rn)

. λ−k.

The same holds for the functions η̃`.

Throughout, we set U ` := uη` and P ` := Pη`. We first prove an interior

estimate (that is an estimate for (U0, P 0)) then boundary estimates, which will

eventually lead to the desired estimates (4.37) and (4.38).

Third step: the interior estimate. — The couple (U0, P 0) satisfies:

(4.59)


U0
t −∆U0 +∇P 0 = f0 + η0f in (0, T )× Rn,

divU0 = g0 in (0, T )× Rn,
U0|t=0 = u0η

0 on Rn,
with

f0 := −2∇η0 · ∇u+ u∆η0 + P∇η0 and g0 := u · ∇η0.

The localization procedure destroys the divergence-free assumption. Hence we

have to check whether the r.h.s. of (4.59)2 is of the form that we considered

in Theorem 4.1.1. Let us observe that

g0
t = ut · ∇η0 = (ut − f) · ∇η0 + f · ∇η0 = (∆u−∇P ) · ∇η0 + f · ∇η0.

Hence, denoting Du := t∇u+∇u, one may write

g0
t = div [Du · ∇η0 − P∇η0]− Du : ∇2η0 + P∆η0 + f · ∇η0.

To match the assumptions of Theorem 4.1.1, we thus set

B0 := Du · ∇η0 − P∇η0 and A0 := −Du : ∇2η0 + P∆η0 + f · ∇η0.

Next we notice that by virtue of the Stokes formula,∫
Rn
A0 dx =

∫
Ω

div (U0
t −B0) dx =

∫
∂Ω

(U0
t −B0) · ~n dσ = 0,
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hence Theorem 4.1.1 yields:

‖U0‖L∞(0,T ;Ḃsp,1(Rn)) + ‖U0
t ,∇2U0,∇P 0‖L1(0,T ;Ḃsp,1(Rn))

≤ C(‖η0f, f0,∇g0, B0‖L1(0,T ;Ḃsp,1(Rn))

+ ‖A0‖L1(0,T ;Ḃsp,1(Rn)) + ‖η0u0‖Ḃsp,1(Rn)).

Let us emphasize that as A0, B0, f0 and g0 are compactly supported, we

may replace the homogeneous norms by nonhomogeneous ones. As a conse-

quence, because the function ∇η0 is in C∞c (Rn) and η̃0 ≡ 1 on Supp∇η0,

Corollary 2.1.1 ensures that

‖∇g0‖Ḃsp,1(Rn) + ‖A0‖Ḃsp,1(Rn) + ‖B0‖Ḃsp,1(Rn)

. ‖η̃0u‖Bs+1
p,1 (Rn) + ‖η̃0P‖Bsp,1(Rn) + ‖η̃0f‖Bsp,1(Rn).

Therefore,

(4.60) ‖U0‖L∞(0,T ;Ḃsp,1(Rn)) + ‖U0
t ,∇2U0,∇P 0‖L1(0,T ;Ḃsp,1(Rn))

. ‖η̃0f‖L1(0,T ;Ḃsp,1(Rn)) + ‖η̃0u‖L1(0,T ;Bs+1
p,1 (Rn)) + ‖η̃0P‖L1(0,T ;Bsp,1(Rn)).

By interpolation, u belongs to L2(0, T ; Ḃ1+s
p,1 (Ω)) and

‖u‖L2(0,T ;Ḃ1+s
p,1 (Ω)) ≤ C‖u‖

1
2

L1(0,T ;Ḃ2+s
p,1 (Ω))

‖u‖
1
2

L∞(0,T ;Ḃsp,1(Ω))
.

Additionally, as the definition of Besov spaces by restriction ensures that

‖η̃0P‖Bsp,1(Rn) ≤ C‖P‖Bsp,1(K),

combining Inequality (4.57) and Hölder inequality gives

‖η̃0P‖L1(0,T ;Ḃsp,1(Rn)) ≤ CT
a‖u‖1−a

L1(0,T ;B2+s
p,1 (K))

‖u‖aL∞(0,T ;Bsp,1(K))

whenever −1 + 1/p < s− 2a < 1/p.

In this way, we may conclude that

‖U0‖L∞(0,T ;Ḃsp,1(Rn)) + ‖U0
t ,∇2U0,∇P 0‖L1(0,T ;Ḃsp,1(Rn))(4.61)

. ‖u0‖Ḃsp,1(Ω) + ‖f‖L1(0,T ;Ḃsp,1(Ω))

+ (T 1/2 + T a)‖u‖L1(0,T ;Ḃ2+s
p,1 (K))∩L∞(0,T ;Ḃsp,1(K)).
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If we want to prove (4.38) then we rather estimate the terms from (4.60) as

follows:

‖f0,∇g0, B0, A0‖L1(0,T ;Ḃsp,1(Ω))(4.62)

≤ C
(
‖f‖L1(0,T ;Ḃsp,1(Ω)) + ‖u‖1/2

L1(0,T ;B2+s
p,1 (K))

‖u‖1/2L1(0,T ;Bsp,1(K))

+ ‖P‖L1(0,T ;Ḃsp,1(K)) + ‖u0‖Ḃsp,1(Ω)

)
and we use the following estimate for the pressure (a consequence of (4.56) and

of an interpolation inequality involving the two terms in the l.h.s. of (4.56)):

‖P‖L1(0,T ;Ḃsp,1(K)) ≤ C‖u‖
1−a
L1(0,T ;B2+s

p,1 (K))
‖u‖aL1(0,T ;Bsp,1(K)).

Hence, using Young’s inequality, we find the following interior inequality for

all ε > 0:

(4.63) ‖U0‖L∞(0,T ;Ḃsp,1(Rn)) + ‖U0
t ,∇2U0,∇P 0‖L1(0,T ;Ḃsp,1(Rn)) . ‖u0‖Ḃsp,1(Ω)

+ ‖f‖L1(0,T ;Ḃsp,1(Ω)) + ε‖u‖L1(0,T ;B2+s
p,1 (K)) + c(ε)‖u‖L1(0,T ;Bsp,1(K)).

Fourth step: the boundary estimate. — We now consider ` ∈ {1, . . . , L} so

that Supp η` ∩ ∂Ω 6= ∅. The localization leads to the following problem:

(4.64)


U `t −∆U ` +∇P ` = f ` in (0, T )× Ω,

divU ` = g` in (0, T )× Ω,

U ` = 0 on (0, T )× ∂Ω,

U `t |t=0 = u0η
` on Ω,

with

f ` := −2∇η` · ∇u+ u∆η` + P∇η` + η`f and g` := u · ∇η`.

As a first step for proving the boundary estimate, we want to reduce the

problem to the case divU ` ≡ 0. For that, we shall resort once again to the

(generalized) Bogovskĭı formula.

Since g` = ∇η` · u, it is compactly supported (in Ω` for instance). In

addition, we notice that

(4.65)

∫
Ω`
g` dx =

∫
∂Ω
η`u · ~n dσ−

∫
Ω
η` divu dx = 0 and g` = 0 on ∂Ω`.

Therefore, setting

(4.66) v` := BΩ`(g
`),
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where BΩ` stands for the Bogovskĭı operator defined in (2.24), we get a vector

field v` ∈ L1(0, T ;B2+s
p,1 (Rn)) such that Supp v`(t, ·) ⊂ Ω`,

‖v`‖L1(0,T ;B2+s
p,1 (Rn)) . ‖g

`‖L1(0,T ;B1+s
p,1 (Ω)) and div v` = g` in Ω.

Then, using the stability of Besov spaces by multiplication by smooth com-

pactly supported functions, we conclude that

(4.67) ‖v`‖L1(0,T ;B2+s
p,1 (Rn)) ≤ Cλ‖η̃

`u‖L1(0,T ;B1+s
p,1 (Ω)),

where the constant C` depends only on (s, p), on Ω` and on Ω.

Next, differentiating (4.66) with respect to time yields

(4.68) v`t = BΩ`(A
`) + IΩ`(B

`) + JΩ`(B
`
n)

with IΩ` and JΩ` defined in (2.25),

A` := −Du : D2η` + P∆η` + f · ∇η` and B` := Du · ∇η` − P∇η`.

Using again Corollary 2.1.1, we easily find that

(4.69) ‖A`‖Bsp,1(Ω) ≤ Cλ
(
‖η̃`f‖Bsp,1(Ω) + ‖η̃`P‖Bsp,1(Ω) + ‖η̃`u‖Bs+1

p,1 (Ω)

)
and that

(4.70) ‖B`‖Bsp,1(Ω) ≤ Cλ
(
‖η̃`P‖Bsp,1(Ω) + ‖η̃`u‖Bs+1

p,1 (Ω)

)
.

Besides, u ∈ L1(0, T ; Ḃs+2
p,1 (Ω)) and P ∈ L1(0, T ; Ḃs+1

p,1 (K)). Hence the

product laws in Besov spaces (Corollary 2.1.1) ensure that B` belongs to

L1(0, T ;Bs+1
p,1 (Ω)). Therefore B`

n := B` · ~n has a trace at the boundary and

Relation (4.68) is thus valid.

Now, differentiating (4.65) with respect to time implies that∫
Ω`

(A` + divB`) dx = 0.

As A` and B` are compactly supported in Ω`, we deduce that the compatibility

condition for A` and B` is satisfied on Ω`. By virtue of (4.69), we thus have

(4.71) ‖BΩ`(A
`)‖L1(0,T ;Bs+1

p,1 (Ω)) ≤ C`
(
‖(η̃`f, η̃`P )‖L1(0,T ;Bsp,1(Ω))

+ ‖η̃`u‖L1(0,T ;Bs+1
p,1 (Ω))

)
.

For bounding IΩ`(B
`), it is only a matter of using the results of [16]

and (4.70). We get

(4.72) ‖IΩ`(B
`)‖Bsp,1(Ω) ≤ Cl

(
‖η̃`P‖Bsp,1(Ω) + ‖η̃`u‖Bs+1

p,1 (Ω)

)
.
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As usual, owing to the compact support of BΩ`(A
`) and of IΩ`(B

`), the

nonhomogeneous norms may be replaced with homogeneous ones in the left-

hand side of (4.71) and (4.72).

For bounding B`
n in B

s− 1
p

p,1 (∂Ω`), we use that B` ∈ L1(0, T ;Bs+1
p,1 (Ω`)).

Hence applying Proposition 2.2.4 yields for any ε in (0, s+ 1− 1/p],

‖B`
n‖Bεp,1(∂Ω`) ≤ Cλ‖B`‖

B
ε+1/p
p,1 (Ω`)

.

If in addition ε+ 1/p < n/p, then, owing to Proposition 2.2.1 and (4.58),

‖B`‖
B
ε+1/p
p,1 (Ω`)

≤ Cλ
(
‖η̃`P‖

B
ε+1/p
p,1 (Ω)

+ ‖η̃`u‖
B
ε+1/p+1
p,1 (Ω)

)
,

whence

‖B`
n‖Bs−1/p

p,1 (∂Ω`)
≤ C‖B`

n‖Bεp,1(∂Ω`) ≤ Cλ
(
‖η̃`P‖

B
ε+1/p
p,1 (Ω)

+ ‖η̃`u‖
B
ε+1/p+1
p,1 (Ω)

)
.

Then using the results from [16], one may conclude that

‖JΩ`(B
`
n)‖Bsp,1(Ω`) ≤ Cλ

(
‖η̃`P‖

B
ε+1/p
p,1 (Ω)

+ ‖η̃`u‖
B
ε+1/p+1
p,1 (Ω)

)
.

So finally, putting together the above inequalities and bearing in mind (4.67),

we get

(4.73) ‖v`t ,∇2v`‖L1(0,T ;Bsp,1(Ω))

≤ Cλ
(
‖η̃`f‖L1(0,T ;Bsp,1(Ω))+‖η̃`P‖L1(0,T ;B

ε+1/p
p,1 (Ω))

+‖η̃`u‖
L1(0,T ;B

ε+1/p+1
p,1 (Ω))

)
.

Next, making use of v` we modify System (4.64) into
U `t −∆U ` +∇P ` = f `new in (0, T )× Ω,

divU ` = 0 in (0, T )× Ω,

U ` = 0 on (0, T )× ∂Ω,

U `|t=0 = u0η
` − BΩ` div (u0η

`) on Ω,

with

U `new := U `old − v` and f `new := f `old − v`t + ∆v`.

Note that (4.73) implies that

‖f `new‖L1(0,T ;Ḃsp,1(Ω))(4.74)

≤ ‖η̃`f `old‖L1(0,T ;Ḃsp,1(Ω))

+ Cλ
(
‖η̃`P‖

L1(0,T ;B
ε+1/p
p,1 (Ω))

+ ‖η̃`u‖
L1(0,T ;B

ε+1/p+1
p,1 (Ω))

)

MÉMOIRES DE LA SMF 143

90

90



4.3. THE EXTERIOR DOMAIN CASE 85

and it is also clear that

(4.75) ‖U `|t=0‖Ḃsp,1(Ω) ≤ Cλ‖u0‖Ḃsp,1(Ω).

Let us now recast (4.35) on Rn+ according to the volume preserving change of

coordinates introduced in Chapter 2. Let

V ` := Z∗`U
` := U ` ◦ Z−1

` and Q` := Z∗`P
`.

The system satisfied by (V `, Q`) reads
V `
t −∆zV

` +∇zQ` = F ` in (0, T )× Rn+,
divz V

` = G` in (0, T )× Rn+,
V `|zn=0 = 0 on (0, T )× ∂Rn+,
V `|t=0 = Z∗` (U `|t=0) on ∂Rn+,

with

F ` := Z∗` f
` + (∆x −∆z)V

` − (∇x −∇z)Q` and G` := ( divz − divx )V `.

Let us stress that, according to Chapter 2, we have

G` = −TA` : ∇zV ` = −divz (A`V `) with A`(z) := DxZ`(x)− Id .

Hence G`|t=0 = 0 and

G`t = −divz (A`V `
t ).

According to Theorem 4.2.1, we thus get

‖V `‖L∞(0,T ;Ḃsp,1(Rn+)) + ‖V `
t ,∇2V `,∇Q`‖L1(0,T ;Ḃsp,1(Rn+))

. ‖Z∗` f `, (∆x −∆z)V
`, (∇z −∇x)Q`,∇G`,A`V `

t )‖L1(0,T ;Ḃsp,1(Rn+))

+‖Z∗` (U `|t=0)‖Ḃsp,1(Rn+).

The first and last terms in the right-hand side may be dealt with thanks to

Lemma 2.1.1: we have

‖Z∗` f `‖L1(0,T ;Ḃsp,1(Rn+)) . ‖f
`‖L1(0,T ;Ḃsp,1(Ω)),

‖Z∗` (U `|t=0)‖Ḃsp,1(Rn+) . ‖U
`|t=0‖Ḃsp,1(Ω).

So the definitely new terms are (∇x −∇z)Q`, A`V `
t , (∆x −∆z)V

` and ∇G`.
First, we notice that, denoting B` = A` + Id = DxZ`, we have

(∇x −∇z)Q` = TB`∇zQ` = TB̃`∇zQ` with B̃` := B` Z∗` η̃`.

Hence Proposition 2.2.1 ensures that

‖(∇x −∇z)Q`‖Ḃsp,1(Rn+) ≤ C‖
TB` Z∗` η̃`‖

Ḃ
n
p
p,1(Rn+)∩Ḃ

n
p′
p′,1(Rn+)

‖∇zQ`‖Ḃsp,1(Rn+).

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2015

91

91



86 CHAPTER 4. THE EVOLUTIONARY STOKES SYSTEM

Together with Lemma 2.1.1 and Inequality (2.29), this implies that

‖(∇x −∇z)Q`‖Ḃsp,1(Rn+) ≤ Cλ‖∇Q
`‖Ḃsp,1(Rn+).

From similar arguments, we get

‖A`V `
t ‖Ḃsp,1(Rn+) ≤ Cλ‖V

`
t ‖Ḃsp,1(Rn+).

Bounding (∆x −∆z)V
` is more involved. It relies on the formula

(4.76) (∆x −∆z)V
` = divz (Ã` · (Id + TÃ`) · ∇zV `) + divz (TÃ` · ∇zV `)

with Ã` = Z∗` η
`A`. Using the fact that

divz (TÃ` · ∇zV `) = (∇TÃ`) · ∇zV ` + TÃ` · ∇z div zV
`,

we may write, by virtue of Proposition 2.2.1,

‖div z(
TÃ` · ∇zV `)‖Ḃsp,1(Rn+) . ‖∇zÃ

`‖
Ḃ
n/p
p,1 (Rn+)

‖∇zV `‖Ḃsp,1(Rn+)

+‖Ã`‖
Ḃ
n/p
p,1 (Rn+)

‖∇2
zV

`‖Ḃsp,1(Rn+).

The first term in the right-hand side of (4.76) obeys a similar inequality.

Hence, using Inequality (2.29), one may conclude that

(4.77) ‖(∆x −∆z)V
`‖Ḃsp,1(Rn+) . λ‖∇2

zV
`‖Ḃsp,1(Rn+) + ‖∇zV `‖Ḃsp,1(Rn+).

The last term, ∇zG`, may be treated in the same way. Hence, putting together

the above inequalities, we finally get

‖V `‖L∞(0,T ;Ḃsp,1(Rn+)) + ‖V `
t ,∇2V `,∇Q`‖L1(0,T ;Ḃsp,1(Rn+))

. ‖U `|t=0‖Ḃsp,1(Ω) + ‖f `‖L1(0,T ;Ḃsp,1(Ω))

+ λ‖V `
t ,∇2V `,∇Q`‖L1(0,T ;Ḃsp,1(Rn+)) + ‖∇V `‖L1(0,T ;Ḃsp,1(Rn+)).

By interpolation, we have

‖∇V `‖L1(0,T ;Ḃsp,1(Rn+)) ≤ ‖∇
2V `‖1/2

L1(0,T ;Ḃsp,1(Rn+))
‖V `‖1/2

L1(0,T ;Ḃsp,1(Rn+))
.

Now, using Young’s inequality to handle the term with ∇B`, taking λ so small

as the term

λ‖V `
t ,∇2V `,∇Q`‖L1(0,T ;Ḃsp,1(Rn+))
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to be absorbed by the l.h.s., and using (4.74) and (4.75), we end up with

‖V `‖L∞(0,T ;Ḃsp,1(Rn+)) + ‖V `
t ,∇2V `,∇Q`‖L1(0,T ;Ḃsp,1(Rn+))

. ‖u`0‖Ḃsp,1(Ω) + ‖η̃`f‖L1(0,T ;Ḃsp,1(Ω))

+ λ−1
(
‖V `‖L1(0,T ;Ḃsp,1(Rn+)) + ‖η̃`P‖

L1(0,T ;B
ε+1/p
p,1 (Ω))

+ ‖η̃`u‖
L1(0,T ;B

ε+1/p+1
p,1 (Ω))

)
.

In order to handle the last two terms, there are two ways of proceeding

depending on whether we want a time dependent constant or not. Throughout,

we fix some a ∈ (0, 1/2) given by Lemma 4.3.2 and choose ε so that s+1−2a =

ε + 1/p. The first possibility is to write that, by interpolation and Hölder’s

inequality,

‖η̃`u‖L1(0,T ;Ḃs+2−2a
p,1 (Ω)) ≤ T a‖η̃`u‖L1(0,T ;Ḃs+2

p,1 (Ω))∩L∞(0,T ;Ḃsp,1(Ω)),

and that, according to (4.57), we have

‖η̃`P‖
L1(0,T ;Ḃ

ε+1/p
p,1 (Ω)∩Ḃsp,1(Ω))

. T a‖u‖L1(0,T ;Ḃs+2
p,1 (K))∩L∞(0,T ;Ḃsp,1(K)).

This yields

‖V `‖L∞(0,T ;Ḃsp,1(Rn+)) + ‖V `
t ,∇2V `,∇Q`‖L1(0,T ;Ḃsp,1(Rn+))(4.78)

. ‖u`0‖Ḃsp,1(Ω) + ‖η̃`f‖L1(0,T ;Ḃsp,1(Ω))

+ λ−1T a‖u‖L1(0,T ;Ḃs+2
p,1 (K))∩L∞(0,T ;Ḃsp,1(K))

+ λ−1T‖V `‖L∞(0,T ;Ḃsp,1(Rn+)).

The second possibility is to write that

‖η̃`u‖L1(0,T ;Ḃs+2−2a
p,1 (Ω)) ≤ ‖η̃`u‖1−a

L1(0,T ;Ḃs+2
p,1 (Ω))

‖η̃`u‖a
L1(0,T ;Ḃsp,1(Ω))

,

and to bound the pressure term according to (4.56). We eventually get

‖V `‖L∞(0,T ;Ḃsp,1(Rn+)) + ‖V `
t ,∇2V `,∇Q`‖L1(0,T ;Ḃsp,1(Rn+))(4.79)

. ‖u`0‖Ḃsp,1(Ω) + ‖η̃`f‖L1(0,T ;Ḃsp,1(Ω)) + λ−1‖V `‖L1(0,T ;Ḃsp,1(Rn+))

+ λ−1‖u‖1−a
L1(0,T ;Ḃ2+s

p,1 (K))
‖u‖a

L1(0,T ;Ḃsp,1(K))
.

Fifth step: global a priori estimates. In view of Lemma 2.1.1, we may write

‖u‖L∞(0,T ;Ḃsp,1(Ω)) ≤
∑
`

‖U `‖L∞(0,T ;Ḃsp,1(Ω))

. ‖U0‖L∞(0,T ;Ḃsp,1(Rn)) +
∑
`≥1

‖V `‖L∞(0,T ;Ḃsp,1(Rn+)),
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and similar inequalities for the other terms of the l.h.s of (4.78). Of course,

Proposition 2.1.2 ensures that

‖u`0‖Ḃsp,1(Ω) . ‖u0‖Ḃsp,1(Ω) and ‖η̃`f‖L1(0,T ;Ḃsp,1(Ω)) . ‖f‖L1(0,T ;Ḃsp,1(Ω)).

So using also (4.61) and the fact that L ≈ λ−n, and bearing in mind (4.53),

we get

‖u‖L∞(0,T ;Ḃsp,1(Ω)) + ‖(ut,∇2u,∇P )‖L1(0,T ;Ḃsp,1(Ω))

. λ−n
(
‖u0‖Bsp,1(Rn) + ‖(f,∇g,Rt)‖L1(0,T ;Ḃsp,1(Ω))

+ ‖%‖
L1(0,T ;B

s− 1
p

p,1 (∂Ω))
+ ‖R‖L1(0,T ;Lm(Ω)∩L1(0,T ;B1+s

p,1 (K))

)
+ λ−n−1(T a + T )‖u‖L1(0,T ;Ḃs+2

p,1 (K))∩L∞(0,T ;Ḃsp,1(K)).

Hence

‖u‖L∞(0,T ;Ḃsp,1) + ‖ut,∇2u,∇P‖L1(0,T ;Ḃsp,1)

≤ C
(
‖u0‖Bsp,1(Rn) + ‖(f,∇g,Rt)‖L1(0,T ;Ḃsp,1(Ω))

+ ‖%‖
L1(0,T ;B

s− 1
p

p,1 (∂Ω))
+ ‖R‖L1(0,T ;Lm(Ω)∩B1+s

p,1 (K))

)
for a very short time T depending only on λ.

Repeating the argument over the interval [T, 2T ] and so on, we get (4.37)

with the constant CeCT for some suitably large constant C.

Removing the time-dependency is just a matter of starting from (4.63)

and (4.79) instead of (4.61) and (4.78). After a few computations and use

of (4.53), we get for some constant C depending on λ,

‖ut,∇2u,∇P‖L1(0,T ;Ḃsp,1(Ω))

≤ C
(
‖u0‖Ḃsp,1(Ω) + ‖f,∇g,Rt‖L1(0,T ;Ḃsp,1(Rn+)) + ‖%‖

L1(0,T ;B
s− 1

p
p,1 (∂Ω))

+ ‖R‖L1(0,T ;Lm(Ω))∩L1(0,T ;B1+s
p,1 (K))

+ ‖u‖1/2
L1(0,T ;Ḃ2+s

p,1 (K))
‖u‖1/2

L1(0,T ;Ḃsp,1(K))

+ ‖u‖1−a
L1(0,T ;Ḃ2+s

p,1 (K))
‖u‖a

L1(0,T ;Ḃsp,1(K))
+ ‖u‖L1(0,T ;Bsp,1(K))

)
.

Using Young’s inequality, it is easy to absorb the second line, up to an error

term which may be bounded by the last term.
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Remark 4.3.4. — Let us emphasize that the term ‖u‖L1(0,T ;Bsp,1(K)) may be

replaced by any lower norm taken over a compact set K. In particular s can

be put to zero.

Remark 4.3.5. — In the case where the domain Ω is bounded, the proof is

very similar : we still have to introduce some resolution of unity (η`)0≤`≤L
where, now, η0 is supported in the interior of Ω hence has compact support.

Step one (removing g) is directly based on our work in [16]. The main differ-

ence is in step 2 because Proposition 3.5.1 holds true in bounded domains for

any n ≥ 2. Hence, Theorem 4.3.1 is valid for n ≥ 2, with K replaced by Ω.

4.3.2. A low order bound for the velocity on a compact set. — This

section is to establish time-independent bounds in L1(0, T ; Ḃs
p,1(K)) for the

velocity satisfying System (4.35). Let us emphasize that this lower order term

does not appear when removing the divergence part of the velocity (first step

of the proof of Theorem 4.3.1). Therefore, we shall concentrate on the case of

a divergence free solution, namely System (4.52).

The main result of the section is the following one.

Lemma 4.3.3. — Assume that n ≥ 3 and that 1 < p < n/2. There exists some

sp > 0 (depending only on p and n) such that for all s ∈ (−sp, sp) sufficiently

smooth solutions to (4.52) fulfill

‖u‖L1(0,T ;Ḃsp,1(K)) ≤ C(‖f‖L1(0,T ;Ḃsp,1(Ω)) + ‖u0‖Ḃsp,1(Ω)),

where C is independent of T .

Proof. — The proof consists in extending to the Besov setting the Lebesgue

type estimates proved in [39].

To start with, we take advantage of the linearity of the system and of the

uniqueness of solutions provided by (4.37) so as to decompose u into u1 + u2

with u1 the solution of the system with zero initial data and source term f ,

and u2 the solution of the system with no source term and initial data u0.

In other words u = u1 + u2 with

u1,t −∆u1 +∇P1 = f, u2,t −∆u2 +∇P2 = 0 in (0, T )× Ω,

divu1 = 0, divu2 = 0 in (0, T )× Ω,

u1|x∈∂Ω = 0, u2|x∈∂Ω = 0 on (0, T )× ∂Ω,

u1|t=0 = 0, u2|t=0 = u0 on Ω.
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Let us first focus on u1. Arguing by duality, one may write that

‖u1(t)‖Ḃsp,1(K) ≤ C sup

∫
K
u1(t, x) · ψ(x) dx,

where the supremum is taken over those ψ ∈ Ḃ−sp′,∞(K;Rn) such that

‖ψ‖Ḃ−s
p′,∞(K) = 1. Recall that, by virtue of Corollary 2.2.1, such functions may

be extended by 0 over Rn. So we may assume that the supremum is taken

over those functions ψ satisfying

(4.80) ψ ∈ Ḃ−sp′,∞(Rn;Rn) with norm 1 and Suppψ ⊂ K.

In what follows, it will be important to restrict our attention to functions ψ

which are divergence free and satisfy ψ · ~n|∂Ω = 0. Note that according to

Corollary 3.5.1, the Helmholtz projector P is a selfmap over Ḃ−sp′,∞(Ω) and

that, since u1 is divergence free, we may write∫
K
u1(t, x) · ψ(x) dx =

∫
Ω
u1(t, x) · Pψ(x) dx.

Set η0 := Pψ and consider the solution η to the problem:

(4.81)


ηt −∆η +∇Q = 0 in (0, T )× Ω,

div η = 0 in (0, T )× Ω,

η = 0 on (0, T )× ∂Ω,

η|t=0 = η0 on Ω.

Testing the equation for u1 by η(t− ·) we discover that

(4.82)

∫
Ω
u1(t, x) · η0(x) dx =

∫ t

0

∫
Ω
f(τ, x) · η(t− τ, x) dx dτ.

As we plan to adapt the approach of [39] to Besov spaces, we first have to

extend to that setting the classical so-called La − Lb estimates of the Stokes

semigroup. Recall that in exterior domains we have in any dimension n ≥ 2

(see e.g. [32, 40]):

(4.83) ‖η(t)‖La(Ω) ≤ C‖η0‖Lb(Ω)t
−n

2
( 1
b
− 1
a

) for 1 < b ≤ a <∞,

(4.84) ‖∇η(t)‖La(Ω) ≤ C‖η0‖Lb(Ω)t
−n

2
( 1
b
− 1
a

)− 1
2 for 1 < b ≤ a ≤ n.

We claim that for all 1 < p ≤ q < ∞, there exists some (small) positive sp,q
depending only on n, p, q such that

(4.85) ‖η(t)‖Ḃsq,q(Ω) ≤ C‖η0‖Ḃsp,p(Ω)t
−n

2
( 1
p
− 1
q

)
for all s ∈ (0, sp,q).
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Indeed, first we use the classical embedding theorem (see e.g. [48], p. 31) (6):

La(Rn) ↪→ Ḃ−s0ā,ā (Rn) and Ḃs0
b̄,b̄

(Rn) ↪→ Lb(Rn)

for

(4.86)
1

a
− 1

ā
=
s0

n
=

1

b̄
− 1

b

and 1 < a < ā <∞, 1 < b̄ < b <∞ to write that, according to (4.83),

(4.87) ‖η(t)‖
Ḃ
−s0
ā,ā (Ω)

≤ C‖η0‖Ḃs0
b̄,b̄

(Ω)t
−n

2
( 1
b
− 1
a

).

By the same token, (4.84) implies that

(4.88) ‖η(t)‖
Ḃ

1−s1
ā1,ā1

(Ω)
≤ C‖η0‖Ḃs1

b̄1,b̄1
(Ω)t

−n
2

( 1
b1
− 1
a1

)− 1
2 ,

provided

(4.89)
1

a1
− 1

ā1
=
s1

n
=

1

b̄1
− 1

b1

under the restriction 1 < b1 ≤ a1 ≤ n, 1 < b̄1 < b1 and ā1 > a1.

Now, let us recall the interpolation property:

(Ḃs1
a,a(Ω), Ḃs2

b,b(Ω))θ,q = Ḃs
q,q(Ω)

with

θs2 + (1− θ)s1 = s,
1

q
=
θ

b
+

1− θ
a
·

Let us fix some small enough positive s. Then we see that combining In-

equalities (4.87) and (4.88) with the above interpolation property yields (4.85)

with decay exponent σ given by

σ :=
n

2

(1

b
− 1

a

)
θ +

n

2

( 1

b1
− 1

a1

)
(1− θ) +

1

2
(1− θ),

provided one may find some θ ∈ (0, 1), a, ā, b, b̄, a1, ā1, b1, b̄1, s0 and s1 so

that (4.86) and (4.89) are satisfied together with,

θ(−s0) + (1− θ)(1− s1) = θs0 + (1− θ)s1 = s,

1

q
=
θ

ā
+

1− θ
ā1

,
1

p
=
θ

b̄
+

1− θ
b̄1
·

Thus we see that θ must satisfy

s =
1

2
(1− θ).

6. Which naturally extends to general domains, owing to our definition of spaces by

restriction.
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Finally, we get

σ =
n

2

(1

b̄
− 1

ā
− 2s0

n

)
θ +

n

2

( 1

b̄1
− 1

ā1
− 2s1

n

)
(1− θ) +

1

2
(1− θ)

=
n

2

(1

p
− 1

q

)
− s+

1

2
(1− θ) =

n

2

(1

p
− 1

q

)
,

and we are done.

Let us emphasize that if s is close to zero then θ is close to 1. Hence a, b, ā, b̄

may be chosen very close to p, q. Therefore Inequality (4.85) is valid for all

1 < p ≤ q <∞.

In order to extend (4.85) to negative indices s and 1 < q <∞, we consider

the dual problem

(4.90)


ζt −∆ζ +∇Q′ = 0 in (0, T )× Ω,

div ζ = 0 in (0, T )× Ω,

ζ = 0 on (0, T )× ∂Ω,

ζ|t=0 = ζ0 on Ω,

where ζ0 ∈ Ḃ−sb′,q′(Ω), is divergence free and satisfies ζ0 ·~n = 0 at the boundary.

Testing (4.90) by η(t− ·) yields

(4.91)

∫
Ω
η(t, x) · ζ0(x) dx =

∫
Ω
η0(x) · ζ(t, x) dx.

Let us observe that

‖η(t)‖Ḃsa,q(Ω) ≤ C sup
ζ0

∫
Ω
η(t, x) · ζ0(x) dx,

where the supremum is taken over all ζ0 ∈ Ḃ−sa′,q′(Ω) such that div ζ0 = 0,

ζ · ~n|∂Ω = 0 and ‖ζ0‖Ḃ−s
a′,q′ (Ω) = 1. Thus by virtue of (4.91), we get:

‖η(t)‖Ḃsa,q(Ω) ≤ C sup
ζ0

∫
Ω
η0(x) · ζ(t, x) dx ≤ ‖η0‖Ḃsb,q(Ω) sup

ζ0

‖ζ(t)‖Ḃ−s
b′,q′ (Ω).

Because −s is positive we can apply (4.85) (if s is close enough to 0) and get

‖η(t)‖Ḃsa,q(Ω) ≤ C‖η0‖Ḃsb,q(Ω)t
−n

2
( 1
a′−

1
b′ ) sup

ζ0

‖ζ0‖Ḃ−s
a′,q′ (Ω).

Since 1
a′ −

1
b′ = 1

b −
1
a , we conclude that

(4.92) ‖η(t)‖Ḃsa,q(Ω) ≤ C‖η0‖Ḃsb,q(Ω)t
−n

2
( 1
b
− 1
a

).
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In order to get the remaining case s = 0, one may argue by interpolation

between (4.85) and (4.92). One can thus conclude that for all 1 < b ≤ a <∞,
q ∈ [1,∞] and s close enough to 0, we have

(4.93) ‖η(t)‖Ḃsa,q(Ω) ≤ C‖η0‖Ḃsb,q(Ω)t
−n

2
( 1
b
− 1
a

).

Now we return to the initial problem of bounding u1. Starting from (4.82)

and using duality, one may write∣∣∣ ∫
Ω
u1(t, x) · η0(x) dx

∣∣∣ . ∫ t

0
‖f(τ)‖Ḃsp,1(Ω)‖η(t− τ)‖Ḃ−s

p′,∞(Ω) dτ.

Hence splitting the interval (0, t) into (0,max(0, t− 1)) and (max(0, t− 1), t)

and applying (4.93) yields for small enough ε,∣∣∣ ∫
Ω
u1(t, x) · η0(x) dx

∣∣∣
.
∫ t

max(0,t−1)
‖f(τ)‖Ḃsp,1(Ω)‖η0‖Ḃ−s

p′,∞(Ω) dτ

+

∫ max(0,t−1)

0
‖f(τ)‖Ḃsp,1(Ω)‖η0‖Ḃ−s1

1−ε ,∞
(Ω)(t− τ)

−n
2

( 1
p
−ε)

dτ.

Recall that η0 = Pψ with ψ satisfying (4.80). Using the properties of conti-

nuity of P, we can thus write for 1 < a ≤ p′,

‖η0‖Ḃ−sa,∞(Ω) ≤ C‖ψ‖Ḃ−sa,∞(Ω).

Now, as ψ is supported in K, one has

‖ψ‖Ḃ−sa,∞(Ω) ≤ C|K|
1
p

+ 1
a
−1‖ψ‖Ḃ−s

p′,∞(Ω).

This may be proved by introducing a suitable smooth cut-off function with

value 1 over K, taking advantage of Proposition 2.1.2. A scaling argument

yields the dependency of the norm of the embedding with respect to |K|.
Hence we have for some constant C depending on K,

‖η0‖Ḃ−s1
1−ε ,∞

≤ C‖ψ‖Ḃ−s
p′,∞(Ω).

So, keeping in mind (4.82) and the fact that the supremum is taken over all

the functions ψ satisfying (4.80), we deduce that

‖u1(t)‖Ḃsp,1(K)

≤ C
(∫ t

max(0,t−1)
‖f(τ)‖Ḃsp,1(Ω) ds+

∫ max(0,t−1)

0
(t− τ)

−n
2

( 1
p
−ε)‖f(τ)‖Ḃsp,1(Ω) ds

)
.
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Therefore,

(4.94)

∫ T

1
‖u1‖Ḃsp,1(K)dt ≤ C

(
1 +

∫ T

1
s
−n

2
( 1
p
−ε)

ds
)∫ T

0
‖f(t)‖Ḃsp,1(Ω) dt.

For the time interval [0, 1], we merely have

(4.95)

∫ 1

0
‖u1(t)‖Ḃsp,1(K) dt ≤ C

∫ 1

0
‖f(t)‖Ḃsp,1(Ω) dt.

Now, provided that one may find some ε > 0 such that

n

2

(1

p
− ε
)
> 1,

a condition which is equivalent to p < n/2, the constant in (4.94) may be

chosen independent of T, and we conclude that∫ T

0
‖u1‖Ḃsp,1(K) dt ≤ C

∫ T

0
‖f‖Ḃsp,1(Ω) dt.

Bounding u2 is rather straightforward. We first write that

‖u2(t)‖Ḃsp,1(K) ≤ C‖u0‖Ḃsp,1(Ω)

and

‖u2(t)‖Ḃsp,1(K) ≤ C|K|
1
p
−ε‖u2(t)‖Ḃs1

ε ,1
(K) ≤ C|K|

1
p
−ε‖u0‖Ḃsp,1(Ω)t

−n
2

( 1
p
−ε)
.

Then decomposing the integral on [0,min(1, T )] into an integral on [0, 1] and

on [1,min(1, T )], we easily get∫ T

0
‖u2(t)‖Ḃsp,1(K) dt .

(
1 +

∫ T

min(1,T )
t
−n

2
( 1
p
−ε)

dt
)
‖u0‖Ḃsp,1(Ω) . ‖u0‖Ḃsp,1(Ω).

Putting this together with (4.94) and (4.95) completes the proof.

We end this section with a few remarks concerning the case where Ω is a

bounded domain of Rn with n ≥ 2. Then it is standard (a consequence of

e.g. [27]) that the solution η to (4.81) satisfies for some c > 0,

‖η(t)‖Lp(Ω) ≤ Ce−ct‖η0‖Lp(Ω),

and it is also true that, denoting by A the Stokes operator,

‖Aη(t)‖Lp(Ω) ≤ Ce−ct‖Aη0‖Lp(Ω).

By interpolation, we thus have for any 1 < p <∞ and −1 + 1/p < s < 1/p,

‖η(t)‖Ḃsp,1(Ω) ≤ Ce
−ct‖η0‖Ḃsp,1(Ω).
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Therefore we may write∣∣∣ ∫
Ω
u1(t, x) · η0(x) dx

∣∣∣ ≤ C‖η0‖Ḃ−s
p′,∞(Ω)

∫ t

0
‖f(τ)‖Ḃsp,1(Ω)e

−c(t−τ) dτ,

thus giving

‖u1‖L1(0,T ;Ḃsp,1(Ω)) ≤ C‖f‖L1(0,T ;Ḃsp,1(Ω)).

Similarly, we have

‖u2‖L1(0,T ;Ḃsp,1(Ω)) ≤ C‖u0‖Ḃsp,1(Ω).

So we end up with the following statement:

Lemma 4.3.4. — Let Ω be a smooth bounded domain of Rn with n ≥ 2. Then

for all 1 < p < ∞ and −1 + 1/p < s < 1/p, there exists a constant C such

that for all T > 0, sufficiently smooth solutions to (4.52) fulfill

‖u‖L1(0,T ;Ḃsp,1(Ω)) ≤ C(‖f‖L1(0,T ;Ḃsp,1(Ω)) + ‖u0‖Ḃsp,1(Ω)).

4.3.3. The final result. — If Ω is a bounded domain then putting together

Remark 4.3.5 with K = Ω, and Lemma 4.3.4 yields the following statement:

Theorem 4.3.2. — Let Ω be a smooth bounded domain of Rn with n ≥ 2. Let

1 < p <∞ and −1 + 1/p < s < 1/p. Let u0 ∈ Ḃs
p,1(Ω), f ∈ L1(0, T ; Ḃs

p,1(Ω)),

g ∈ C([0, T ); Ḃs−1
p,1 (Ω)) with

g(0) = divu0, ∇g ∈ L1(0, T ; Ḃs
p,1(Ω)) and g = divR

with R satisfying all the conditions of Theorem 4.3.1.

Then there exists a unique solution (u,∇P ) to System (4.35) such that

‖u‖L∞(0,T ;Ḃsp,1(Ω)) +‖(ut, νu, ν∇2u,∇P )‖L1(0,T ;Ḃsp,1(Ω))

≤ C
(
‖u0‖Ḃsp,1(Ω) + ‖(f, ν∇g,Rt)‖L1(0,T ;Ḃsp,1(Ω))

+‖R‖L1(0,T ;Bs+1
p,1 (Ω)) + ‖%‖

L1(0,T ;B
s− 1

p
p,1 (∂Ω))

)
,

where C is independent of T and ν.

Let us finally give the statement if Ω is an exterior domain of Rn with n ≥ 3.

Theorem 4.3.3. — Let 1 < q ≤ p <∞ with q < n/2. Let −1+1/p < s < 1/p

and s′ close enough to 0. Assume that

u0 ∈ Ḃs
p,1 ∩ Ḃs′

q,1(Ω), f ∈ L1(0, T ; Ḃs
p,1 ∩ Ḃs′

q,1(Ω)),

g∈ C([0, T ); Ḃs−1
p,1 ∩Ḃ

s′−1
q,1 (Ω)) with g(0) ≡ divu0, ∇g ∈ L1(0, T ; Ḃs

p,1∩Ḃs′
q,1(Ω))
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and g = divR with R satisfying the conditions of Theorem 4.3.1 with respect

to (s, p) and (s′, q).

Then there exists a unique solution (u,∇P ) to System (4.35) such that

‖u‖
L∞(0,T ;Ḃsp,1∩Ḃs

′
q,1(Ω))

+ ‖(ut, ν∇2u,∇P )‖
L1(0,T ;Ḃsp,1∩Ḃs

′
q,1(Ω))

(4.96)

+ ν‖u|K‖L1(0,T ;Bs
′
q,1(K))

≤ C
(
‖u0‖Ḃsp,1∩Ḃs′q,1(Ω)

+ ‖(f, ν∇g,Rt)‖L1(0,T ;Ḃsp,1∩Ḃs
′
q,1(Ω))

+ ‖%‖
L1(0,T ;B

s− 1
p

p,1 ∩B
s′− 1

q
q,1 (∂Ω))

+ ν‖R‖
L1(0,T ;Lm(Ω)∩B1+s′

q,1 (K)∩B1+s
p,1 (K))

)
,

where C in (4.96) is independent of T and ν.

Proof. — Granted with Theorem 4.3.1 and Inequality (4.38), it is enough to

show that

‖u|K‖L1(0,T ;Bsp,1(K)∩Bs′q,1(K))

may be bounded by the right-hand side of (4.96). Of course, in the case

p < n/2, it readily stems from Lemma 4.3.3 (combined with interpolation if s

is not close enough to 0).

Now, if p ≥ n/2 then we use the continuous embedding

Ḃs′+2
q,1 (Ω) ↪→ Ḃs

q∗,1(Ω) with
1

q∗
=

1

q
− 2

n
+
s− s′

n
·

Then combining with interpolation and Lemma 4.3.3 allows to absorb the term

‖u‖L1(0,T ;Bsp,1(K)) whenever p < q∗. This completes the proof of Theorem 4.3.3

for those values of s, s′ if 1 < p < q∗.

If p ≥ q∗ then we know by interpolation that data fulfill the assumptions

of the theorem we want to prove for any q ≤ p1 < q∗. Therefore, we may use

the embedding of Bs+2
p1,1

(Ω) in Bs
q∗1 ,1

with 1/q∗1 = 1/q1 − 2/n to treat the case

where p < q∗1. It is now clear that any finite value of p may be reached after a

finite number of iterations. This completes the proof of Theorem 4.3.3.
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CHAPTER 5

INHOMOGENEOUS NAVIER-STOKES

EQUATIONS IN EXTERIOR DOMAINS

This chapter presents a first important application of the results that we

established so far for the Stokes system. We analyze here the Navier-Stokes

equations modeling flows of incompressible and inhomogeneous fluids. In this

context, the density is constant along the stream lines. We shall see that the

L1-integrability in time property for the velocity field that has been proved

in the previous chapter enables us to recast the whole system of equations

in the Lagrangian coordinates. This will allow us to construct unique strong

solutions for quite general initial data : as regards the initial density, piecewise

constant initial configurations may be considered for instance. Let us empha-

size that according to several recent works [19], [31], [38] it is even possible to

build strong unique solutions assuming that the initial density is only bounded

and bounded away from zero. However, the velocity has to be smooth enough

therein. Here, following our recent work in [17] devoted to the case where the

fluid domain is the whole space Rn, we assume the initial velocity to have crit-

ical regularity, which requires to slightly enhance the regularity assumptions

on the density. Nevertheless we shall see that initial densities as in (1.4) may

be considered.

This chapter unfolds as follows. In the first section, we present the inho-

mogeneous Navier-Stokes equations in Eulerian and Lagrangian coordinates.

The next section is devoted to the study of a suitable linearization of those

equations. This will eventually enable us to prove the local (resp. global)

existence of strong solutions for large (resp. small) data in the rest of the

chapter.
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5.1. Lagrangian stream lines setting

In the Eulerian coordinates, the inhomogeneous incompressible Navier-

Stokes equations read

(5.1)



ρt + u · ∇ρ = 0, in (0, T )× Ω,

ρ(ut + u · ∇u)− µ∆u+∇P = 0 in (0, T )× Ω,

divu = 0 in (0, T )× Ω,

u|∂Ω = 0 on (0, T )× ∂Ω,

u|t=0 = u0 in Ω.

Above, ρ = ρ(t, x) ∈ R+, u = u(t, x) ∈ Rn and P = P (t, x) ∈ R stand for

the density, velocity field and pressure of the fluid, respectively. The viscosity

coefficient µ is positive and constant. For simplicity, we assume that there is

no external force. We aim at constructing solutions (ρ, u,∇P ) so that ∇u
is in L1(R+;L∞(Ω)). This will imply that the velocity field u has a unique

measure preserving flow X, defined on R+×Ω. It will be thus possible to recast

System (5.1) in Lagrangian coordinates, and to prove uniqueness under rather

mild assumptions on the density (in particular small jumps are admitted).

Using so-called critical spaces, that is, in our context, functional spaces with

norm invariant for all ` > 0 by the following transform

(5.2) (ρ, u,∇P )(t, x) 7−→ (ρ, `u, `3∇P )(`2t, `x)

has become a classical approach nowadays, in the case where Ω = Rn (see [13]).

For more general domains, the above rescaling is no longer relevant as it

changes the domain. However it still gives us a hint on the minimal local regu-

larity that has to be assumed for the data, so as to prove the well-posedness of

the equations. In the Besov spaces scale for instance, this suggests our taking

u0 in Ḃ
n/p−1
p,1 (Ω), which is in fact the only possibility ensuring the constructed

velocity u to be in L1(R+;L∞(Ω)). Supplementary ‘out of scaling’ conditions

are needed to control the decay of u, if Ω is an exterior domain.

Let us give more details on the ‘Lagrangian approach’. The change from the

Eulerian coordinates (t, x) to the Lagrangian coordinates (t, y) is defined by

setting x = X(t, y) with X the solution to the following (integrated) Ordinary

Differential Equation:

X(t, y) = y +

∫ t

0
u(τ,X(τ, y)) dτ.
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Because u = 0 at the boundary, this transform preserves the domain of the

fluid : we have X(t,Ω) = Ω. Then we set

ρ̄(t, y) := ρ(t,X(t, y)), P (t, y) := P (t,X(t, y)), ū(t, y) := u(t,X(t, y)).

Given the definition of X and according to the chain rule, it is obvious that

∂tρ̄(t, y) = (∂tρ+u·∇xρ)(t,X(t, y)) and ∂tū(t, y) = (∂tu+u·∇xu)(t,X(t, y)).

Besides, denoting by Y (t, ·) the inverse diffeomorphism of X(t, ·), we may write

(5.3) ∇xP (t, x) = TB(t, y) · ∇yP (t, y)

with x := X(t, y) and B(t, y) := DxY (t, x).

The fact that X is measure preserving implies that for any smooth enough

vector field H one has (see (2.36) and (2.37))

divxH = TB : ∇yū = divy (BH),(5.4)

∆xH
i = divx∇xH i = divy (BTB∇yH i).(5.5)

So finally, we see that, at least formally, (ρ, u,∇xP ) satisfies (5.1) if and only

if ρ̄ ≡ ρ0 and (ū,∇yP ) satisfies

(5.6)

{
ρ0ūt − µ divy (BTB∇yu) + TB∇yP = 0,

divy (Bū) = 0

with

B(t, y) = DxY (t, x) = (DyX(t, y))−1 and X(t, y) = y +

∫ t

0
ū(τ, y) dτ.

By adapting the arguments that have been used in [17] to the domain setting,

one may show that systems (5.1) and (5.6) are equivalent in the functional

framework that we shall use. Hence we shall focus on solving (5.6) rather

than (5.1), in the rest of this chapter.

5.2. The linearized equations

We are concerned with the following linearization of System (5.6):

(5.7)



ρt + v · ∇ρ = 0 in (0, T )× Ω,

q(ut + v · ∇u)− µ∆u+∇P = 0 in (0, T )× Ω,

divu = 0 in (0, T )× Ω,

u = 0 at (0, T )× ∂Ω,

u|t=0 = u0 at Ω.
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In the above system the vector-field v and the positive function q are given.

We assume in addition that div v = 0 and that the trace of v is zero at the

boundary.

Introducing Lagrangian coordinates with respect to the vector field v, that

is setting y := Yv(t, x) with Yv(t, ·) := (Xv(t, ·))−1 and Xv defined by

(5.8) Xv(t, y) = y +

∫ t

0
v(τ,Xv(τ, y)) dτ,

and

Bv(t, y) := DxYv(t, x) = (DyXv(t, y))−1, ρ̄(t, y) := ρ(t,Xv(t, y)),

P (t, y) := P (t,Xv(t, y)) and ū(t, y) := u(t,Xv(t, y)),

we see that, under suitable regularity assumptions, (ρ, u,∇xP ) satisfies (5.7)

if and only if ρ̄(t, y) = ρ0(y) and (ū,∇yP ) satisfies

(5.9)


ρ0ūt − µ divy (Bv

TBv∇yū) + TBv∇yP = 0 in (0, T )× Ω,

divy (Bvū) = 0 in (0, T )× Ω,

ū = 0 at (0, T )× ∂Ω,

ū|t=0 = u0 at Ω.

Here we aim at proving existence results for (5.7) in the critical functional

framework in which (5.1) and (5.6) are going to be solved.

Before giving the main statement, let us introduce a few notation. First,

we denote by Xp
T the set of (u,∇P ) so that u|∂Ω = 0,

u ∈ C([0, T ]; Ḃ
n/p−1
p,1 (Ω)) and ∂tu,∇2u,∇P ∈ L1(0, T ; Ḃ

n/p−1
p,1 (Ω)),

and set

(5.10) ‖(u,∇P )‖Xp
T

:= ‖u‖
L∞(0,T ;Ḃ

n/p−1
p,1 (Ω))

+ ‖ut, µ∇2u,∇P‖
L1(0,T ;Ḃ

n/p−1
p,1 (Ω))

.

Proposition 5.2.1. — Let Ω be a smooth exterior domain of Rn (n ≥ 3)

or bounded domain (n ≥ 2). Let T > 0 and p ∈ (n − 1, 2n). Assume that

v ∈ C([0, T ]; Ḃ
n/p−1
p,1 (Ω)) with div v = 0, ∇v ∈ L1(0, T ; Ḃ

n/p
p,1 (Ω)) and v|∂Ω = 0.

There exists a constant c = c(n, p,Ω) so that if

(5.11) ‖1− ρ0‖M(Ḃ
n/p−1
p,1 (Ω))

+ ‖∇v̄‖
L1(0,T ;Ḃ

n/p
p,1 (Ω))

≤ c,

then for any divergence-free data u0 ∈ Ḃ
n/p−1
p,1 (Ω) with (u0 · ~n)|∂Ω = 0 Sys-

tem (5.9) has a unique solution (ū,∇P ) on [0, T ], belonging to Xp

T
and so

MÉMOIRES DE LA SMF 143

106

106



5.2. THE LINEARIZED EQUATIONS 101

that for some constant C = C(n, p,Ω) we have

(5.12) ‖(ū,∇P )‖Xp

T
≤ CeCT ‖u0‖Ḃn/p−1

p,1 (Ω)
.

Proof. — We focus on the exterior domain case. Using (4.14) enables us to

restrict ourselves to the case µ = 1. So we make this assumption throughout.

The proof is based on Theorem 4.3.1 and on the Banach fixed point theorem

after observing that System (5.9) recasts in

(5.13)


ūt −∆yū+∇yP = fv(ū,∇P ) in (0, T )× Ω,

divy ū = gv(ū) in (0, T )× Ω,

ū = 0 at (0, T )× ∂Ω,

ū|t=0 = u0 at Ω,

with (1)

fv(ū,∇P ) := (1− ρ0)∂tū+ div ((Bv
TBv − Id )∇yū) + (Id − TBv)∇yP ,

gv(ū) := (Id − TBv) : ∇yū = divRv(ū) with Rv(ū) := (Id − Bv)ū.

Hence to show existence for (5.13), it suffices to find a fixed point for the map

(5.14) Φ : (w̄,∇Q)→ (ū,∇P )

with (ū,∇P ) the solution to

(5.15)


ūt −∆ū+∇P = fv(w̄,∇Q) in (0, T )× Ω,

div ū = gv(w̄) in (0, T )× Ω,

ū = 0 at (0, T )× ∂Ω,

ū|t=0 = u0 at Ω.

Let us decompose Φ(w̄,∇Q) into

Φ(w̄,∇Q) = (uL,∇PL) + Ψ(w̄,∇Q),

where (uL,∇PL) stands for the free solution to the Stokes system with initial

data u0, namely

(5.16)


∂tuL − µ∆uL +∇PL = 0 in (0, T )× Ω,

divuL = 0 in (0, T )× Ω,

uL = 0 at (0, T )× ∂Ω,

uL|t=0 = u0 at Ω.

1. That gv(ū) may be written in two different ways is a consequence of (5.4) because

div v = 0; this is of course fundamental.
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Theorem 4.3.1 guarantees that (uL,∇PL) ∈ Xp
T for all T ∈ R+, and that (2)

(5.17) ‖(uL,∇PL)‖Xp
T
≤ CeCTµ‖u0‖Ḃsp,1(Ω).

Hence in order to establish that the map Φ fulfills the conditions of Banach

fixed point theorem, it is only a matter of finding a condition under which

the linear map Ψ is a self-map on Xp
T , with norm smaller than, say, 1/2.

Now, we notice that Rv(w̄) vanishes at the boundary and one may thus apply

Theorem 4.3.1 to bound Ψ(w̄,∇Q) in Xp
T . Taking s = n/p − 1 and m = 2n

leads to

(5.18) ‖Ψ(w̄,∇Q)‖Xp
T
≤ CeCT

(
‖Rv(w̄)‖

L1(0,T ;L2n(Ω)∩Bn/pp,1 (K))

+ ‖(fv(w̄,∇Q),∇gv(w̄), (Rv(w̄))t
)
‖
L1(0,T ;Ḃ

n/p−1
p,1 (Ω))

)
,

where K is any bounded subset of Ω with d(Ω \K, ∂Ω) > 0.

In the following computations, we agree that (s, r) = (n/p − 1, p). First,

from the expression of fv and the definition of multiplier spaces, we readily

have

‖fv(w̄,∇Q)‖L1(0,T ;Ḃsr,1(Ω))(5.19)

. ‖1− ρ0‖M(Ḃsr,1(Ω))‖w̄t‖L1(0,T ;Ḃsr,1(Ω))

+ ‖Bv
TBv − Id ‖L∞(0,T ;M(Ḃsr,1(Ω)))‖∇

2w̄‖L1(0,T ;Ḃsr,1(Ω))

+ ‖∇(Bv
TBv)‖L∞(0,T ;Ḃsr,1(Ω))‖∇w̄‖L1(0,T ;M(Ḃsr,1(Ω)))

+ ‖Id − Bv‖L∞(0,T ;M(Ḃsr,1(Ω)))‖∇Q‖L1(0,T ;Ḃsr,1(Ω)).

Next, we have

‖∇gv(w̄)‖L1(0,T ;Ḃsr,1(Ω))(5.20)

. ‖∇Bv‖L∞(0,T ;Ḃsr,1)‖∇w̄‖L1(0,T ;M(Ḃsr,1(Ω)))

+ ‖Id − Bv‖L∞(0,T ;M(Ḃsr,1(Ω)))‖∇
2w̄‖L1(0,T ;Ḃsr,1(Ω)),

‖(Rv(w̄))t‖L1(0,T ;Ḃsr,1(Ω))(5.21)

. ‖w̄‖L∞(0,T ;Ḃsr,1(Ω))‖(Bv)t‖L1(0,T ;M(Ḃsr,1(Ω)))

+ ‖Id − Bv‖L∞(0,T ;M(Ḃsr,1(Ω)))‖w̄t‖L1(0,T ;Ḃsr,1(Ω)).

2. Of course divu0 ≡ 0 implies that ∇PL ≡ 0.
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In order to go further in the computations, we have to use Lemma 5.5.1 below

which implies that all the above multiplier norms are controlled by the norm

in Ḃ
n/p
p,1 . Therefore,

‖fv(w̄,∇Q)‖
L1(0,T ;Ḃ

n/p−1
p,1 (Ω))

(5.22)

+ ‖∇gv(w̄)‖
L1(0,T ;Ḃ

n/p−1
p,1 (Ω))

+ ‖(Rv(w̄))t‖L1(0,T ;Ḃ
n/p−1
p,1 (Ω))

.
(
‖1− ρ0‖M(Ḃ

n/p−1
p,1 (Ω))

+ ‖∇v̄‖
L1(0,T ;Ḃ

n/p
p,1 )

)
‖(w̄,∇Q)‖Xp

T
.

We also have (use that B
n/p
p,1 (K) is an algebra, Proposition 2.1.3, and interpo-

lation):

‖Rv(w̄)‖
L1(0,T ;B

n/p
p,1 (K))

≤ ‖Id − Bv‖L∞(0,T ;B
n/p
p,1 (K))

‖w̄‖
L1(0,T ;B

n/p
p,1 (K))

. T 1/2‖∇v̄‖
L1(0,T ;Ḃ

n/p
p,1 (Ω))

(
‖∇w̄‖

L1(0,T ;Ḃ
n/p
p,1 (Ω))

+‖w̄‖
L∞(0,T ;Ḃ

n/p−1
p,1 (Ω))

)
,

and, because Ḃ
n/p−1/2
p,1 (Ω) embeds in L2n(Ω),

‖Rv(w̄)‖L1(0,T ;L2n(Ω)) ≤ ‖Id − Bv‖L∞(0,T ;L∞(Ω))‖w̄‖L1(0,T ;L2n(Ω))

. ‖∇v̄‖L1(0,T ;L∞(Ω))‖w̄‖L1(0,T ;Ḃ
n/p−1/2
p,1 (Ω))

. T 3/4‖∇v̄‖
L1(0,T ;Ḃ

n/p
p,1 (Ω))

(
‖∇w̄‖

L1(0,T ;Ḃ
n/p
p,1 (Ω))

+‖w̄‖
L∞(0,T ;Ḃ

n/p−1
p,1 (Ω))

)
.

So plugging all the previous estimates in (5.18), we conclude that

‖Ψ(w̄,∇Q)‖Xp
T

≤ CeCT
(
‖1− ρ0‖M(Ḃ

n/p−1
p,1 (Ω))

+ ‖∇v̄‖
L1(0,T ;Ḃ

n/p
p,1 (Ω))

)
‖(w̄,∇Q)‖Xp

T
.

Therefore, if we take η > 0 so that eCη ≤ 2 and assume that

8C‖1− ρ0‖M(Ḃ
n/p−1
p,1 (Ω))

≤ 1,

then we have

(5.23) ‖Ψ(w̄,∇Q)‖Xp
T
≤ 1

2
‖(w̄,∇Q)‖Xp

T
,

whenever

(5.24) 8C‖∇v̄‖
L1(0,T ;Ḃ

n/p
p,1 )
≤ 1 and T ≤ η.

In fact, if (5.24) is satisfied for T = T , then one can get rid of the condition

that T ≤ η: it suffices to split the interval [0, T ] into subintervals [Ti, Ti+1]
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(i = 0, . . . , k−1) of size at most η, and to use the norm (with obvious notation,

see (5.10))

‖(w̄,∇Q)‖
X̃p

T

:=
k−1∑
i=0

‖(w̄,∇Q)‖Xp
Ti,Ti+1

.

Now the above argument leading to (5.23) applies on every subinterval

[Ti, Ti+1] and we end up with

‖Ψ(w̄,∇Q)‖
X̃p

T

≤ 1

2
‖(w̄,∇Q)‖

X̃p

T

.

Then applying the fixed point theorem in Xp

T
endowed with the norm ‖.‖

X̃p

T

ensures the existence of a solution (ū,∇P ) in Xp

T
for (5.9). Note that by

construction we have,

‖(ū,∇P )‖
X̃p

T

≤ 2‖(uL,∇PL)‖
X̃p

T

,

which yields Inequality (5.12).

Remark 5.2.1. — It is possible to extend the above proposition to other

regularity exponents. However, owing to the properties of the multipliers

spaces involved in (5.19), (5.20) and (5.21) we have to assume regularity in

intersection of Besov spaces and the computations become quite cumbersome.

The above proposition will enable us to establish the local-in-time existence

for (5.1). At the same time, it is not suitable for proving a global statement

as it does not provide any bound on the gradient of the constructed velocity

field in L1(R+; Ḃ
n/p
p,1 (Ω)). In order to overcome this, we shall establish a second

existence result for the linear system (5.7), based on Theorem 4.3.3 so as to

discard the time dependency in the estimates.

We shall work in the subspace Xp,q
T of couples (u,∇P ) of Xp

T (see the defi-

nition in (5.10)) satisfying the additional property that

u ∈ C([0, T ]; Ḃ0
q,1(Ω)) and ∂tu,∇2u,∇P ∈ L1(0, T ; Ḃ0

q,1(Ω)),

and we shall set

(5.25) ‖(u,∇P )‖Xp,q
T

= ‖(u,∇P )‖Xp
T

+ ‖(u,∇P )‖Xq
T
.

We agree that Xp,q corresponds to the above definition with T = +∞.

Proposition 5.2.2. — Let 1 < q ≤ p < 2n with q < n/2 and p > n− 1. Let

v be a divergence-free vector field in C(R+; Ḃ
n/p−1
p,1 (Ω)) with v|∂Ω = 0. There

exists a constant c so that if

(5.26) ‖∇v‖
L1(R+;Ḃ

n/p
p,1 ∩Ḃ1

q,1(Ω))
≤ c
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and

(5.27) ‖1− ρ0‖M(Ḃ
n/p−1
p,1 ∩Ḃ0

q,1(Ω))
≤ c

then System (5.9) with divergence free initial velocity u0 ∈ Ḃn/p−1
p,1 (Ω)∩Ḃ0

q,1(Ω)

satisfying u0 · ~n|∂Ω = 0 has a unique global solution (ū,∇P ) in Xp,q, and we

have for some constant C = C(n, p, q),

‖(ū,∇P )‖Xp,q ≤ C‖u0‖Ḃn/p−1
p,1 ∩Ḃ0

q,1(Ω)
.

Proof. — The proof is similar to that of the previous proposition except that

it is now based on Theorem 4.3.3 to have time independent estimates. We

readily get for any m ∈ (1,∞)

(5.28) ‖Ψ(w̄,∇Q)‖Xp,q ≤ C
(
‖Rv(w̄)‖

L1(R+;Lm(Ω)∩B1
q,1(K)∩Bn/pp,1 (K))

+ ‖(fv(w̄,∇Q),∇gv(w̄), (Rv(w̄))t)‖L1(R+;Ḃ
n/p−1
p,1 ∩Ḃ0

q,1(Ω))

)
,

where K is a bounded subset of Ω with d(Ω \K, ∂Ω) > 0 (see Fig. 3.4).

In order to go further in the computations, we use Lemma 5.5.1 that implies

that all the multiplier norms in (5.19), (5.20) and (5.21) with (s, r) = (n/p−
1, p) or (s, r) = (0, q) are controlled by the norm in Ḃ

n/p
p,1 . We get

‖fv(w̄,∇Q),∇gv(w̄), (Rv(w̄))t‖L1(R+;Ḃ
n/p−1
p,1 ∩Ḃ0

q,1(Ω))

. ‖1− ρ0‖M(Ḃ
n/p−1
p,1 ∩Ḃ0

q,1(Ω))
‖w̄t‖L1(R+;Ḃ

n/p−1
p,1 ∩Ḃ0

q,1(Ω))

+ ‖Bv − Id , Bv
TBv − Id ‖

L∞(R+;Ḃ
n/p
p,1 (Ω))

‖∇2w̄‖
L1(R+;Ḃ

n/p−1
p,1 ∩Ḃ0

q,1(Ω))

+ ‖Id − Bv‖L∞(R+;Ḃ
n/p
p,1 (Ω))

‖∇Q‖
L1(R+;Ḃ

n/p−1
p,1 ∩Ḃ0

q,1(Ω))

+ ‖∇Bv,∇(Bv
TBv)‖L∞(R+;Ḃ

n/p−1
p,1 ∩Ḃ0

q,1(Ω))
‖∇w̄‖

L1(R+;Ḃ
n/p
p,1 (Ω))

+ ‖(Bv)t‖L1(R+;Ḃ
n/p
p,1 (Ω))

‖w̄‖
L∞(R+;Ḃ

n/p−1
p,1 ∩Ḃ0

q,1(Ω))
·

Using also Inequalities (5.49) to (5.54) below, we readily get

‖fv(w̄,∇Q),∇gv(w̄), (Rv(w̄))t‖L1(R+;Ḃ
n/p−1
p,1 ∩Ḃ0

q,1(Ω))
(5.29)

≤ C
(
‖1− ρ0‖M(Ḃ

n/p−1
p,1 ∩Ḃ0

q,1(Ω))
‖w̄t‖L1(R+;Ḃ

n/p−1
p,1 ∩Ḃ0

q,1(Ω))

+ ‖∇v̄‖
L1(R+;Ḃ

n/p
p,1 (Ω))

‖(w̄,∇Q)‖Xp,q

+ ‖∇2v‖L1(R+;Ḃ0
q,1(Ω))‖∇w̄‖L1(R+;Ḃ

n/p
p,1 (Ω))

)
·
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Let us observe that, owing to 1 < q < n/2, the Besov space Ḃ2
q,1(Ω) embeds

in the Lebesgue space Lm(Ω) with m = qn
n−2q · So we shall take this value of m

in (5.28). We get

‖Rv(w̄)‖L1(R+;Lm(Ω)) ≤ ‖Id −Bv‖L∞(R+;L∞(Ω))‖w̄‖L1(R+;Lm(Ω))

≤ ‖∇v̄‖
L1(R+;Ḃ

n/p
p,1 (Ω))

‖w̄‖L1(R+;Ḃ2
q,1(Ω)).(5.30)

Let us now bound Rv(w̄) in L1(R+;B
n/p
p,1 (K)). We have

‖Rv(w̄)‖
L1(R+;B

n/p
p,1 (K))

. ‖Id −Bv‖L1(R+;B
n/p
p,1 (K))

‖w̄‖
L1(R+;B

n/p
p,1 (K))

. ‖∇v̄‖
L1(R+;B

n/p
p,1 (K))

‖w̄‖
L1(R+;B

n/p
p,1 (K))

.

Because B2
q,1(K) embeds in Lm(K), it is not difficult to prove (just use the

corresponding inequality in Rn and some suitable extension operator) that

(5.31) ‖w̄‖
B
n/p
p,1 (K)

. ‖∇w̄‖
B
n/p
p,1 (K)

+ ‖w̄‖B2
q,1(K).

Therefore

(5.32) ‖Rv(w̄)‖
L1(R+;B

n/p
p,1 (K))

. ‖∇v̄‖
L1(R+;B

n/p
p,1 (Ω))

(
‖w̄‖L1(R+;Ḃ2

q,1(Ω)) + ‖∇w̄‖
L1(R+;Ḃ

n/p
p,1 (Ω))

)
.

Let us finally bound Rv(w̄) in L1(R+;B1
q,1(K)). We use the fact that, because

K is bounded and q ≤ m,

‖Rv(w̄)‖B1
q,1(K) . ‖Rv(w̄)‖Lq(K) + ‖∇(Rv(w̄))‖B0

q,1(K)(5.33)

. ‖Rv(w̄)‖Lm(Ω) + ‖∇(Rv(w̄))‖B0
q,1(K).

The first term in the r.h.s. may be handled according to (5.30). We decompose

the second one into

∇(Rv(w̄)) = (Id −Bv)∇w̄ −∇Bv w̄,

and use (5.48). Combining with the results of Section 5.5, we end up with

‖∇(Rv(w̄))‖L1(R+;B0
q,1(K))

. ‖∇v̄‖
L1(R+;B

n/p
p,1 (K))

‖∇w̄‖L1(R+;B0
q,1(K))

+ ‖∇2v̄‖L1(R+;B0
q,1(K))‖w̄‖L1(R+;B

n/p
p,1 (K))

.

Again, one may use (5.31), and the fact that

(5.34) ‖∇w̄‖B0
q,1(K) . ‖w̄‖Lm(K) + ‖w̄‖Ḃ2

q,1(K) . ‖w̄‖Ḃ2
q,1(Ω),
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owing to the boundedness of K. So finally

(5.35) ‖Rv(w̄)‖L1(R+;B1
q,1(K))

. ‖∇v̄‖
L1(R+;Ḃ1

q,1∩Ḃ
n/p
p,1 (Ω))

(
‖w̄‖L1(R+;Ḃ1

q,1(Ω)) + ‖∇w̄‖
L1(R+;Ḃ

n/p
p,1 (Ω))

)
.

Plugging Inequalities (5.29) to (5.35) in (5.28), we end up with

‖Ψ(w̄,∇Q)‖Xp,q

≤ C
(
‖1− ρ0‖M(Ḃ

n/p−1
p,1 ∩Ḃ0

q,1(Ω))
+ ‖∇v̄‖

L1(R+;Ḃ
n/p
p,1 ∩Ḃ1

q,1(Ω))

)
‖(w̄,∇Q)‖Xp,q .

Therefore assuming that c is small enough in (5.26) and (5.27), we conclude

that

‖Ψ(w̄,∇Q)‖Xp,q ≤ 1

2
‖(w̄,∇Q)‖Xp,q .

Applying the fixed point theorem in the Banach space Xp,q completes the

proof of Proposition 5.2.2.

5.3. Local-in-time existence

This section is devoted to proving local-in-time existence for System (5.1)

with slightly nonhomogeneous density and arbitrarily large initial velocity

field. Here is the main statement:

Theorem 5.3.1. — Let p ∈ (n− 1, 2n) and u0 ∈ Ḃn/p−1
p,1 (Ω) with divu0 = 0

and u0 · ~n|∂Ω = 0. Assume that ρ0 ∈ M(Ḃ
n/p−1
p,1 (Ω)) and that, for a small

enough constant c,

(5.36) ‖1− ρ0‖M(Ḃ
n/p−1
p,1 (Ω))

≤ c.

There exists T > 0 such that System (5.6) has a unique solution (ū,∇P ) in

the space Xp
T defined in (5.10), with

‖(ū,∇P )‖Xp
T
≤ C‖u0‖Ḃn/p−1

p,1

.

Proof. — We consider the map

T : (v̄,∇Q) 7−→ (ū,∇P ),

where (ū,∇P ) is the solution to (5.9) with v̄ defining Bv constructed in Propo-

sition 5.2.1.
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108 CHAPTER 5. INHOMOGENEOUS FLOWS IN EXTERIOR DOMAINS

We claim that T is a contraction in some suitable closed ball of Xp
T with

sufficiently small T . As we aim at considering large initial velocity u0 with

critical regularity however, we take a ball centered at the solution (uL,∇PL)

to the homogeneous Stokes system (5.16) (that satisfies (5.17)). Then we focus

on the discrepancy to (uL,∇PL), namely

(ũ,∇P̃ ) := (ū− uL,∇(P − PL))

and

(ṽ,∇Q̃) := (v̄ − uL,∇(Q − PL)).

The couple (ũ,∇P̃ ) satisfies the following modification of (5.9) (if µ = 1 for

simplicity):

(5.37)


∂tũ−∆ũ+∇P̃ = fv(ũ,∇P̃ ) + fv(uL,∇PL) in Ω× (0, T ),

div ũ = gv(ũ) + gv(uL) in Ω× (0, T ),

ũ|∂Ω = 0 at ∂Ω× (0, T ),

ũ|t=0 = 0 at Ω.

Thanks to Proposition 5.2.1 we are ensured that solutions to (5.37) exist at

least on a short time interval [0, T ], so far as

(5.38)

∫ T

0
‖∇v̄‖

Ḃ
n/p
p,1 (Ω)

dt ≤ c.

We claim that there exists R > 0 and T > 0 (depending only on uL) so that

the map

(5.39) T̃ : (ṽ,∇Q̃) 7−→ (ũ,∇P̃ )

is a contraction on BXp
T

(0, R). Indeed, applying Theorem 4.3.1 yields

‖(ũ,∇P̃ )‖Xp
T

≤ CeCT
(
‖(fv(ũ,∇P̃ ),∇gv(ũ), (Rv(ũ))t

)
‖
L1(0,T ;Ḃ

n/p−1
p,1 (Ω))

+ ‖(fv(uL,∇PL),∇gv(uL), (Rv(uL))t
)
‖
L1(0,T ;Ḃ

n/p−1
p,1 (Ω))

+ ‖Rv(ũ)‖
L1(0,T ;L2n(Ω)∩Bn/pp,1 (K))

+ ‖Rv(uL)‖
L1(0,T ;L2n(Ω)∩Bn/pp,1 (K))

)
·
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Thus, arguing as in the proof of Proposition 5.2.1, we get

‖(ũ,∇P̃ )‖Xp
T

(5.40)

≤ CeCT
[(
‖1− ρ0‖M(Ḃ

n/p−1
p,1 (Ω))

+ ‖∇v̄‖
L1(0,T ;Ḃ

n/p
p,1 (Ω))

)
×
(
‖(ṽ,∇Q̃)‖Xp

T
+ ‖∂tuL,∇2uL,∇PL‖L1(0,T ;Ḃ

n/p−1
p,1 (Ω))

)
+ (T 1/2 + T 3/4)‖∇v̄‖

L1(0,T ;Ḃ
n/p
p,1 (Ω))

×
(
‖ũ, uL‖L∞(0,T ;Ḃ

n/p−1
p,1 (Ω))

+ ‖∇ũ,∇uL‖L1(0,T ;Ḃ
n/p
p,1 (Ω))

)
+ ‖uL‖L2(0,T ;Ḃ

n/p
p,1 (Ω))

‖∇v‖
L2(0,T ;Ḃ

n/p−1
p,1 (Ω))

]
·

This may be obtained by using (5.19), (5.20) and so on for fv(uL,∇PL), gv(uL)

and Rv(uL). The only difference lies in the use of (5.21) : we now write that

‖(Rv(uL))t‖L1(0,T ;Ḃ
n/p−1
p,1 (Ω))

. ‖uL‖L2(0,T ;Ḃ
n/p
p,1 (Ω))

‖∇v‖
L2(0,T ;Ḃ

n/p−1
p,1 (Ω))

+‖∂tuL‖L1(0,T ;Ḃ
n/p−1
p,1 (Ω))

‖∇v̄‖
L1(0,T ;Ḃ

n/p
p,1 (Ω))

.

Bounding the first term in that way is important as we need to show that it

is small when T goes to 0, even if the initial velocity is large.

Now, if we assume that eCT ≤ 2 and that c in (5.36) and (5.38) is small

enough, Inequality (5.40) and interpolation imply that

‖(ũ,∇P̃ )‖Xp
T

≤ 1

4

(
‖(ṽ,∇Q̃)‖Xp

T
+ ‖∂tuL,∇2uL,∇PL‖L1(0,T ;Ḃ

n/p−1
p,1 (Ω))

+ T 1/2
(
‖uL‖L∞(0,T ;Ḃ

n/p−1
p,1 (Ω))

+ ‖∇uL‖L1(0,T ;Ḃ
n/p
p,1 (Ω))

))
+ C‖uL‖L∞(0,T ;Ḃ

n/p−1
p,1 (Ω))

‖∇v‖
L1(0,T ;Ḃ

n/p
p,1 (Ω))

+ C‖∇uL‖L1(0,T ;Ḃ
n/p
p,1 (Ω))

‖v‖
L∞(0,T ;Ḃ

n/p−1
p,1 (Ω))

·

It is now clear that if one takes R = 2cC‖u0‖Ḃn/p−1
p,1 (Ω)

and T fulfilling in

addition

‖∂tuL,∇2uL,∇PL‖L1(0,T ;Ḃ
n/p−1
p,1 (Ω))

+ T 1/2
(
‖uL‖L∞(0,T ;Ḃ

n/p−1
p,1 (Ω))

+ ‖∇uL‖L1(0,T ;Ḃ
n/p
p,1 (Ω))

)
+ ‖u0‖Ḃn/p−1

p,1 (Ω)
‖∇uL‖L1(0,T ;Ḃ

n/p
p,1 (Ω))

≤ η‖u0‖Ḃn/p−1
p,1 (Ω)
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110 CHAPTER 5. INHOMOGENEOUS FLOWS IN EXTERIOR DOMAINS

for a small enough η > 0, then the above inequality implies that, whenever

‖(ṽ,∇Q̃)‖Xp
T
≤ R we have ‖(ũ,∇P̃ )‖Xp

T
≤ R, too.

In order to prove that the map T is a contraction if T is sufficiently small,

let us consider two data (v1,∇Q1) and (v2,∇Q2) in BXp
T

(uL, R), and set

(ui,∇Pi) = T (vi,∇Qi), i = 1, 2. We also use the notation fi := fvi , gi := gvi
and Ri := Rvi for i = 1, 2. Then we may look at

(δu,∇δP ) := (u2 − u1,∇(P2 − P1))

as the solution to the following evolutionary Stokes system on [0, T ]× Ω :

∂tδu−∆δu+∇δP = f2(ũ2,∇P̃2)−f1(ũ1,∇P̃1) + f2(uL,∇PL)−f1(uL,∇PL),

div δu = g2(ũ2)− g1(ũ1) + g2(uL)− g1(uL)

= div
(
R2(ũ2)−R1(ũ1) +R2(uL)−R1(uL)

)
.

Therefore, applying Theorem 4.3.1 implies under the small time condition of

the previous step

‖(δu,∇δP )‖Xp
T

(5.41)

≤ C
(
‖f2(ũ2,∇P̃2)− f1(ũ1,∇P̃1)‖

L1(0,T ;Ḃ
n/p−1
p,1 (Ω))

+ ‖f2(uL,∇PL)− f1(uL,∇PL)‖
L1(0,T ;Ḃ

n/p−1
p,1 (Ω))

+ ‖g2(ũ2)− g1(ũ1)‖
L1(0,T ;Ḃ

n/p
p,1 (Ω))

+ ‖g2(uL)− g1(uL)‖
L1(0,T ;Ḃ

n/p
p,1 (Ω))

+ ‖(R2(ũ2)−R1(ũ1))t‖L1(0,T ;Ḃ
n/p−1
p,1 (Ω))

+ ‖(R2(ũL)−R1(ũL))t‖L1(0,T ;Ḃ
n/p−1
p,1 (Ω))

+ ‖R2(ũ2)−R1(ũ1)‖
L1(0,T ;L2n(Ω)∩Bn/pp,1 (K))

+ ‖R2(ũL)−R1(ũL)‖
L1(0,T ;L2n(Ω)∩Bn/pp,1 (K))

)
·

Keeping in mind that both v1 and v2 satisfy (5.38), we may bound the right-

hand side as follows:
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• Term f2(ũ2,∇P̃2)−f1(ũ1,∇P̃1). — We rewrite this term as (with Bi := Bvi

for i = 1, 2):

f2(ũ2,∇P̃2)− f1(ũ1,∇P̃1)

= (1− ρ0)∂tδu+ div
(
(B2

TB2 −B1
TB1)∇ũ2)

)
+ div

(
(B1

TB1 − Id )∇δu
)

+ T(B1 −B2)∇P̃2 + (Id − TB1)∇δP.

Hence, using Lemma 5.5.1 and (5.51), (5.52), (5.53),

‖f2(ũ2,∇P̃2)− f1(ũ1,∇P̃1)‖
L1(0,T ;Ḃ

n/p−1
p,1 (Ω))

. ‖1− ρ0‖M(Ḃ
n/p−1
p,1 (Ω))

‖∂tδu‖L1(0,T ;Ḃ
n/p−1
p,1 (Ω))

+
(
‖∇ũ2‖L1(0,T ;Ḃ

n/p
p,1 (Ω))

+ ‖∇P̃2‖L1(0,T ;Ḃ
n/p−1
p,1 (Ω))

)
‖∇δv‖

L1(0,T ;Ḃ
n/p
p,1 (Ω))

+ ‖∇v1‖L1(0,T ;Ḃ
n/p
p,1 (Ω))

(
‖∇δu‖

L1(0,T ;Ḃ
n/p
p,1 (Ω))

+ ‖∇δP‖
L1(0,T ;Ḃ

n/p−1
p,1 (Ω))

)
.

Above we used Inequalities (5.56) and (5.57).

• Term f2(uL,∇PL)− f1(uL,∇PL). — Because

f2(uL,∇PL)− f1(uL,∇PL) = div
(
(B2

TB2−B1
TB1)∇uL)

)
+ T(B1−B2)∇PL,

we readily get

‖f2(uL,∇PL)− f1(uL,∇PL)‖
L1(0,T ;Ḃ

n/p−1
p,1 (Ω))

.
(
‖∇uL‖L1(0,T ;Ḃ

n/p
p,1 (Ω))

+ ‖∇PL‖L1(0,T ;Ḃ
n/p−1
p,1 (Ω))

)
‖∇δv‖

L1(0,T ;Ḃ
n/p
p,1 (Ω))

.

• Term ‖g2(ũ2)− g1(ũ1)‖
L1(0,T ;Ḃ

n/p
p,1 (Ω))

. — We write

g2(ũ2)− g1(ũ1) = (Id − TB1) : ∇δu+ T(B1 −B2) : ∇ũ2.

Now, because Ḃ
n/p
p,1 (Ω) is an algebra, we readily get, by virtue of (5.51),

‖g2(ũ2)− g1(ũ1)‖
L1(0,T ;Ḃ

n/p
p,1 (Ω))

. ‖∇δv‖
L1(0,T ;Ḃ

n/p
p,1 (Ω))

‖∇ũ2‖L1(0,T ;Ḃ
n/p
p,1 (Ω))

+‖∇v1‖L1(0,T ;Ḃ
n/p
p,1 (Ω))

‖∇δu‖
L1(0,T ;Ḃ

n/p
p,1 (Ω))

.

• Term ‖g2(uL)− g1(uL)‖
L1(0,T ;Ḃ

n/p
p,1 (Ω))

. — Because

g2(uL)− g1(uL) = T(B1 −B2) : ∇uL,

we get

‖g2(uL)− g1(uL)‖
L1(0,T ;Ḃ

n/p
p,1 (Ω))

. ‖∇δv‖
L1(0,T ;Ḃ

n/p
p,1 (Ω))

‖∇uL‖L1(0,T ;Ḃ
n/p
p,1 (Ω))

.
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• Term ‖(R2(ũ2)−R1(ũ1))t‖L1(0,T ;Ḃ
n/p−1
p,1 (Ω))

. — We use the fact that

(R2(ũ2)−R1(ũ1))t = −(B1)tδu+(Id −B1)∂tδu+(B1−B2)tũ2+(B1−B2)∂tũ2.

Hence using (5.51), (5.54), (5.56) and (5.59),

‖(R2(ũ2)−R1(ũ1))t‖L1(0,T ;Ḃ
n/p−1
p,1 (Ω))

. ‖∇v1‖L1(0,T ;Ḃ
n/p
p,1 (Ω))

(
‖δu‖

L∞(0,T ;Ḃ
n/p−1
p,1 (Ω))

+ ‖∂tδu‖L1(0,T ;Ḃ
n/p−1
p,1 (Ω))

)
+
(
‖ũ2‖L∞(0,T ;Ḃ

n/p−1
p,1 (Ω))

+ ‖∂tũ2‖L1(0,T ;Ḃ
n/p−1
p,1 (Ω))

)
‖∇δv‖

L1(0,T ;Ḃ
n/p
p,1 (Ω))

.

• Term ‖(R2(ũL)−R1(ũL))t‖L1(0,T ;Ḃ
n/p−1
p,1 (Ω))

. — We just have to write that

(R2(uL)−R1(uL))t = (B1 −B2)tuL + (B1 −B2)∂tuL.

If we proceed as for bounding the previous term then we get the term

‖uL‖L∞(0,T ;Ḃ
n/p−1
p,1 (Ω))

in the r.h.s. that does not need to be small for T going

to 0. Hence, we proceed slightly differently: we apply (5.59) with s = n/p− 1

in order to bound the term (B1 −B2)t. We eventually get

‖(R2(uL)−R1(uL))t‖L1(0,T ;Ḃ
n/p−1
p,1 (Ω))

. ‖uL‖L2(0,T ;Ḃ
n/p
p,1 (Ω))

‖∇δv‖
L2(0,T ;Ḃ

n/p−1
p,1 (Ω))

+ ‖∂tuL‖L1(0,T ;Ḃ
n/p−1
p,1 (Ω))

‖∇δv‖
L1(0,T ;Ḃ

n/p
p,1 (Ω))

.

• Term ‖R2(ũ2)−R1(ũ1)‖
L1(0,T ;L2n(Ω)∩Ḃn/pp,1 (K))

. — We start with the follow-

ing expansion:

R2(ũ2)−R1(ũ1) = (Id −B1)δu+ (B1 −B2)ũ2.

Then applying Hölder inequality, embedding and interpolation inequality as

in the proof of Proposition 5.2.1,

‖R2(ũ2)−R1(ũ1)‖L1(0,T ;L2n(Ω))

. ‖∇v1‖L1(0,T ;L∞(Ω))‖δu‖L1(0,T ;L2n(Ω))

+ ‖∇δv‖L1(0,T ;L∞(Ω))‖ũ2‖L1(0,T ;L2n(Ω))

. T 3/4
(
‖∇v1‖L1(0,T ;Ḃ

n/p
p,1 (Ω))

‖(δu,∇δP )‖Xp
T

+ ‖∇δv‖
L1(0,T ;Ḃ

n/p
p,1 (Ω))

‖(ũ2,∇P̃2)‖Xp
T

)
·

MÉMOIRES DE LA SMF 143

118

118



5.3. LOCAL-IN-TIME EXISTENCE 113

For bounding the norm in L1(0, T ; Ḃ
n/p
p,1 (K)), we just use the corresponding

norm on the larger set Ω and write that

‖R2(ũ2)−R1(ũ1)‖
L1(0,T ;Ḃ

n/p
p,1 (Ω))

. ‖∇v1‖L1(0,T ;Ḃ
n/p
p,1 (Ω))

‖δu‖
L1(0,T ;Ḃ

n/p
p,1 (Ω))

+ ‖∇δv‖
L1(0,T ;Ḃ

n/p
p,1 (Ω))

‖ũ2‖L1(0,T ;Ḃ
n/p
p,1 (Ω))

. T 1/2
(
‖∇v1‖L1(0,T ;Ḃ

n/p
p,1 (Ω))

‖(δu,∇δP )‖Xp
T

+ ‖∇δv‖
L1(0,T ;Ḃ

n/p
p,1 (Ω))

‖(ũ2,∇P̃2)‖Xp
T

)
.

• Term ‖R2(uL)−R1(uL)‖
L1(0,T ;L2n(Ω)∩Ḃn/pp,1 (Ω))

. — We have

Rv2(uL)−Rv1(uL) = (B1 −B2)uL.

Hence arguing as in the previous item, we get

‖R2(uL)−R1(uL)‖L1(0,T ;L2n(Ω)) . T 3/4‖∇δv‖L1(0,T ;L∞(Ω))‖(uL,∇PL)‖Xp
T

and

‖R2(uL)−R1(uL)‖
L1(0,T ;Ḃ

n/p
p,1 (Ω))

. T 1/2‖∇δv‖
L1(0,T ;Ḃ

n/p
p,1 (Ω))

‖(uL,∇PL)‖Xp
T
.

Putting all the above inequalities in (5.41), using the definition of the norm

of Xp
T and the fact that T is small eventually yields

‖(δu,∇δP )‖Xp
T

.
(
‖1− ρ0‖M(Ḃ

n/p−1
p,1 (Ω))

+ ‖∇v1‖L1(0,T ;Ḃ
n/p
p,1 (Ω))

)
‖(δu,∇δP )‖Xp

T

+
(
T 1/2‖u0‖Ḃn/p−1

p,1 (Ω)
+ ‖uL‖L2(0,T ;Ḃ

n/p
p,1 (Ω))

+ ‖∇uL‖L1(0,T ;Ḃ
n/p
p,1 (Ω))

+ ‖∂tuL‖L1(0,T ;Ḃ
n/p−1
p,1 (Ω))

+ ‖∇PL‖L1(0,T ;Ḃ
n/p−1
p,1 (Ω))

+ ‖(ũ2,∇P̃2)‖Xp
T

)
‖(δv,∇δQ)‖Xp

T
·

Now, according to (5.36) and (5.38), the first term of the r.h.s. may be ab-

sorbed by the l.h.s. As the factor of ‖(δv,∇δQ)‖Xp
T

becomes less than R as T

tends to 0, we conclude that the map T is indeed a contraction on BXp
T

(uL, R),

if T and R have been chosen small enough. This completes the proof of exis-

tence.

Proving uniqueness or the continuity of the flow map stems from similar

arguments. The details are left to the reader. Theorem 5.3.1 is proved.
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Remark 5.3.1. — Let us emphasize that the smallness of ‖1−ρ0‖M(Ḃ
n/p−1
p,1 (Ω))

is completely independent of the largeness of the velocity data. In effect,

it is only needed because 1 − ρ0 appears as a factor of ut. As pointed out

in [17], this allows to consider discontinuous initial densities of the type

ρ0 = c11A0 + c21Ac0 with A0 any uniformly C1 domain, provided |c2 − c1| is

small enough.

Remark 5.3.2. — Theorem 5.3.1 also holds for the original system (5.1) in

Eulerian coordinates. In the functional framework we used, the two formula-

tions turn out to be equivalent whenever the velocity satisfies (5.11) (see the

Appendix of [17] for more details).

5.4. Global in time existence

This section is devoted to proving the main result of this chapter for the

inhomogeneous incompressible Navier-Stokes equations (5.1), which is the fol-

lowing global in time existence statement.

Theorem 5.4.1. — Assume that 1 < q ≤ p < 2n with q < n/2 and p > n−1.

Let u0 be in Ḃ
n/p−1
p,1 ∩ Ḃ0

q,1(Ω) with divu0 = 0, u0 · ~n = 0 at the boundary.

There exists a small positive constant c such that if

(5.42) ‖ρ0 − 1‖
M(Ḃ

n
p−1

p,1 ∩Ḃ0
q,1(Ω))

≤ c and ‖u0‖
Ḃ
n
p−1

p,1 ∩Ḃ0
q,1(Ω)

≤ cµ,

then System (5.1) has a unique global solution (ρ, u,∇P ) satisfying

ρ ∈ C([0, T ];M(Ḃ
n
p
−1

p,1 ∩ Ḃ0
q,1(Ω)))

and (u,∇P ) ∈ Xp,q (see the definition in (5.25)). Besides, there exists some

constant C so that

‖(u,∇P )‖Xp,q ≤ C‖u0‖Ḃ0
q,1∩Ḃ

n/p−1
p,1 (Ω)

.

Proof. — The idea is to apply the global maximal regularity estimate for

solutions to the Stokes system in exterior domains (namely Theorem 4.3.3) so

as to get a global-in-time existence result for small data. As usual, we restrict

to µ = 1. We have already established, under smallness conditions (5.26)

and (5.27) the existence of the solution map

(5.43) T : (v̄,∇Q) −→ (ū,∇P )

to System (5.9), from the subset of Xp,q with v̄ satisfying (5.26), to Xp,q.

Hence, in order to complete the proof of the theorem, it is only a matter
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5.4. GLOBAL IN TIME EXISTENCE 115

of exhibiting some positive R so small as (5.26) to be satisfied, so that T
maps the closed ball BXp,q(0, R) into itself, and is contractive. In light of

Proposition 5.2.2, we have

‖(ū,∇P )‖Xp,q ≤ C‖u0‖Ḃn/p−1
p,1 ∩Ḃ0

q,1(Ω)
.

Hence one may take R = C‖u0‖Ḃn/p−1
p,1 ∩Ḃ0

q,1(Ω)
if ‖u0‖Ḃn/p−1

p,1 ∩Ḃ0
q,1(Ω)

is small

enough (in order that ‖(v̄,∇Q)‖Xp,q ≤ C‖u0‖Ḃn/p−1
p,1 ∩Ḃ0

q,1(Ω)
implies (5.26)).

Let us now go to the proof of contractivity. Using the same notations as in

the proof of Theorem 5.3.1, we have{
∂tδu−∆δu+∇δP = f2(u2,∇P2)− f1(u1,∇P1),

div δu = g2(u2)− g1(u1) = div
(
R2(u2)−R1(u1)

)
.

Applying Theorem 4.3.3 with m := nq
n−2q , we thus get

‖(δu,∇δP )‖Xp,q . ‖R2(u2)−R1(u1)‖
L1(R+;Lm(Ω)∩B1

q,1(K)∩Bn/pp,1 (K))
(5.44)

+ ‖f2(· · · )− f1(· · · ), g2(u2)− g1(u1), (R2(u2)−R1(u1))t)‖L1(R+;Ḃ
n/p−1
p,1 ∩Ḃ0

q,1(Ω))
.

Following the computations of the proof of Theorem 5.3.1, we readily get

‖f2(u2,∇P2)− f1(u1,∇P1), g2(u2)− g1(u1), (R2(u2)−R1(u1))t)‖L1(R+;Ḃ
n/p−1
p,1 (Ω))

. ‖1− ρ0‖M(Ḃ
n/p−1
p,1 (Ω))

‖∂tδu‖L1(R+;Ḃ
n/p−1
p,1 (Ω))

+
(
‖∇u2‖L1(R+;Ḃ

n/p
p,1 (Ω))

+ ‖∇P2‖L1(R+;Ḃ
n/p−1
p,1 (Ω))

+ ‖u2‖L∞(R+;Ḃ
n/p−1
p,1 (Ω))

+ ‖∂tu2‖L1(R+;Ḃ
n/p−1
p,1 (Ω))

)
‖∇δv‖

L1(R+;Ḃ
n/p
p,1 (Ω))

+ ‖∇v1,∇v2‖L1(R+;Ḃ
n/p
p,1 (Ω))

(
‖∇δu‖

L1(R+;Ḃ
n/p
p,1 (Ω))

+ ‖∇δP‖
L1(R+;Ḃ

n/p−1
p,1 (Ω))

)
.

Next, let us go to the proof of estimates in L1(R+; Ḃ0
q,1(Ω)) for f2(u2,∇P2)−

f1(u1,∇P1). Again, we use the decomposition

f2(u2,∇P2)− f1(u1,∇P1)

= (1− ρ0)∂tδu+ div
(
(B2

TB2 −B1
TB1)∇u2

)
+ div

(
(B1

TB1 − Id )∇δu
)

+ T(B1 −B2)∇P2 + (Id − TB1)∇δP.
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116 CHAPTER 5. INHOMOGENEOUS FLOWS IN EXTERIOR DOMAINS

We further write that

‖div
(
(B2

TB2 −B1
TB1)∇u2

)
‖Ḃ0

q,1(Ω)

≤ ‖(B2
TB2 −B1

TB1)⊗∇2u2‖Ḃ0
q,1(Ω)

+ ‖∇(B2
TB2 −B1

TB1)⊗∇u2‖Ḃ0
q,1(Ω).

Hence, using Lemma 5.5.1 and flow estimates in Section 5.5, we get

‖ div
(
(B2

TB2 −B1
TB1)∇u2

)
‖L1(R+;Ḃ0

q,1(Ω))(5.45)

. ‖∇2u2‖L1(R+;Ḃ0
q,1(Ω))‖∇δv‖L1(R+;Ḃ

n/p
p,1 (Ω))

+ ‖∇u2‖L1(R+;Ḃ
n/p
p,1 (Ω))

×
(
‖∇2δv‖L1(R+;Ḃ0

q,1(Ω)) + ‖∇2v1‖L1(R+;Ḃ0
q,1(Ω))‖∇δv‖L1(R+;Ḃ

n/p
p,1 (Ω))

)
.

Similarly, using that

‖ div
(
(B1

TB1 − Id )∇δu
)
‖Ḃ0

q,1(Ω)

≤ ‖∇(B1
TB1)⊗∇δu‖Ḃ0

q,1(Ω) + ‖(B1
TB1 − Id )∇2δu‖Ḃ0

q,1(Ω),

we get

(5.46) ‖ div
(
(B1

TB1 − Id )∇δu‖L1(R+;Ḃ0
q,1(Ω))

. ‖∇2v1‖L1(R+;Ḃ0
q,1(Ω))‖∇δu‖L1(R+;Ḃ

n/p
p,1 (Ω))

+ ‖∇v1‖L1(R+;Ḃ
n/p
p,1 (Ω))

‖∇2δu‖L1(R+;Ḃ0
q,1(Ω)).

Bounding the last two terms T(B1 −B2)∇P2 and (Id − TB1)∇δP also follows

from Lemma 5.5.1 and estimates for the flow. As it is totally similar to the

above terms, we do not provide more details. We eventually get

‖f2(u2,∇P2)− f1(u1,∇P1)‖L1(R+;Ḃ0
q,1(Ω))

.‖1− ρ0‖M(Ḃ0
q,1(Ω))‖∂tδu‖L1(R+;Ḃ0

q,1(Ω))

+
(
‖∇u2‖L1(R+;Ḃ1

q,1(Ω)) + ‖∇P2‖L1(R+;Ḃ0
q,1(Ω))

)
‖∇δv‖

L1(R+;Ḃ
n/p
p,1 (Ω))

+ ‖∇v1‖L1(R+;Ḃ
n/p
p,1 (Ω))

‖∇δP‖L1(R+;Ḃ0
q,1(Ω))

+ ‖∇u2‖L1(R+;Ḃ
n/p
p,1 (Ω))

‖∇2δv‖L1(R+;Ḃ0
q,1(Ω)).
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5.4. GLOBAL IN TIME EXISTENCE 117

Bounding g2(u2)− g1(u1) is the same. As for (R2(u2)−R(u1))t, we write

(R2(u2)−R(u1))t

= −(B1)tδu+ (Id −B1)∂tδu+ (B1 −B2)tu2 + (B1 −B2)∂tu2.

Given that the product maps Ḃ
n/p
p,1 (Ω)× Ḃ0

q,1(Ω) in Ḃ0
q,1(Ω), one may proceed

exactly as in the proof of Theorem 5.3.1. Indeed, all the terms pertaining to B1

or B2 just have to be bounded in spaces L1(R+; Ḃ
n/p
p,1 (Ω)) or L∞(R+; Ḃ

n/p
p,1 (Ω)).

We end up with

‖R2(u2)−R1(u1)‖L1(R+;Ḃ0
q,1(Ω))

. ‖∇v1‖L1(R+;Ḃ
n/p
p,1 (Ω))

(
‖δu‖L∞(R+;Ḃ0

q,1(Ω)) + ‖∂tδu‖L1(R+;Ḃ0
q,1(Ω))

)
+
(
‖u2‖L∞(R+;Ḃ0

q,1(Ω)) + ‖∂tu2‖L1(R+;Ḃ0
q,1(Ω))

)
‖∇δv‖L1(R+;Ḃ1

q,1(Ω)).

Let us now bound R2(u2)−R1(u1) in L1(R+;B
n/p
p,1 (K)). Recall that

(5.47) R2(u2)−R1(u1) = (Id −B1)δu+ (B1 −B2)u2.

Hence, using that B
n/p
p,1 (K) is an algebra, one may write that

‖R2(u2)−R1(u1)‖
L1(R+;B

n/p
p,1 (K))

. ‖∇v1‖L1(R+;B
n/p
p,1 (K))

‖δu‖
L1(R+;B

n/p
p,1 (K))

+ ‖u2‖L1(R+;B
n/p
p,1 (K))

‖∇δv‖
L1(R+;B

n/p
p,1 (K))

.

Then using (5.31) enables us to get

‖R2(u2)−R1(u1)‖
L1(R+;B

n/p
p,1 (K))

. ‖∇v1‖L1(R+;Ḃ
n/p
p,1 (Ω))

(
‖∇δu‖

L1(R+;Ḃ
n/p
p,1 (Ω))

+ ‖δu‖L1(R+;Ḃ2
q,1(Ω))

)
+
(
‖∇u2‖L1(R+;Ḃ

n/p
p,1 (Ω))

+ ‖u2‖L1(R+;Ḃ2
q,1(Ω))

)
‖∇δv‖

L1(R+;B
n/p
p,1 (K))

.

Let us finally bound R2(u2) − R1(u1) in L1(R+;Lm(Ω) ∩ B1
q,1(K)). We shall

use again that, according to (5.33),

‖R2(u2)−R1(u1)‖L1(R+;Lm(Ω)∩B1
q,1(K))

. ‖R2(u2)−R1(u1)‖L1(R+;Lm(Ω)) + ‖∇(R2(u2)−R1(u1))‖L1(R+;B0
q,1(K)).

For the first term, using the decomposition (5.47) and the bounds for Id −B1

and B1 −B2 in Section 5.5, we find out that

‖R2(u2)−R1(u1)‖L1(R+;Lm(Ω)) . ‖∇v1‖L1(R+;L∞(Ω))‖δu‖L1(R+;Lm(Ω))

+ ‖∇δv‖L1(R+;L∞(Ω))‖u2‖L1(R+;Lm(Ω)),
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118 CHAPTER 5. INHOMOGENEOUS FLOWS IN EXTERIOR DOMAINS

whence, using the embeddings Ḃ
n/p
p,1 (Ω) ↪→ L∞(Ω) and Ḃ2

q,1(Ω) ↪→ Lm(Ω),

‖R2(u2)−R1(u1)‖L1(R+;Lm(Ω))

. ‖∇v1‖L1(R+;Ḃ
n/p
p,1 (Ω))

‖δu‖L1(R+;Ḃ2
q,1(Ω))

+ ‖∇δv‖
L1(R+;Ḃ

n/p
p,1 (Ω))

‖u2‖L1(R+;Ḃ2
q,1K)).

Finally, differentiating (5.47) with respect to y yields

∇(R2(u2)−R1(u1))

= −∇B1δu+∇(B1 −B2)u2 + (Id −B1)∇δu+ (B1 −B2)∇u2.

We have (see Section 5.5)

‖∇(B1)δu‖L1(R+;B0
q,1(K)) . ‖∇2v1‖L1(R+;B0

q,1(K))‖δu‖L1(R+;B
n/p
p,1 (K))

,

‖∇(B1 −B2)u2‖L1(R+;B0
q,1(K)) . ‖∇δv‖

L1(R+;B
n/p
p,1 (K))

‖∇u2‖L1(R+;B0
q,1(K)),

‖(Id −B1)∇δu‖L1(R+;B0
q,1(K)) . ‖∇v1‖L1(R+;B

n/p
p,1 (K))

‖∇δu‖L1(R+;B0
q,1(K)),

‖(B1 −B2)∇u2‖L1(R+;B0
q,1(K)) . ‖∇u2‖L1(R+;B0

q,1(K))‖∇δv‖L1(R+;B
n/p
p,1 (K))

.

Therefore, using (5.34),

‖∇(R2(u2)−R1(u1))‖L1(R+;B0
q,1(K))

. ‖∇v1‖L1(R+;Ḃ
n/p
p,1 (Ω))

‖δu‖L1(R+;Ḃ2
q,1(Ω))

+ ‖∇2v1‖L1(R+;Ḃ0
q,1(Ω))

(
‖∇δu‖L1(R+;Ḃ2

q,1(Ω)) + ‖∇δu‖
L1(R+;Ḃ

n/p
p,1 (Ω))

)
+
(
‖∇2δv‖L1(R+;Ḃ0

q,1(Ω)) + ‖∇δv‖
L1(R+;Ḃ

n/p
p,1 (Ω))

)
× ‖∇u2‖L1(R+;Ḃ1

q,1(Ω)∩Ḃn/pp,1 (Ω))
.

Plugging all the above estimates in (5.44), we conclude that

‖(δu,∇δP )‖Xp,q

. ‖(u2,∇Q2)‖Xp,q‖(δv,∇δQ)‖Xp,q

+
(
‖(u1,∇Q1)‖Xp,q + ‖(u2,∇Q2)‖Xp,q + ‖(v1,∇P1)‖Xp,q

+ ‖1− ρ0‖M(Ḃ0
q,1∩Ḃ

n/p
p,1 (Ω))

)
‖(δu,∇δP )‖Xp,q .

It is now clear that if R and ρ0 have been chosen so that

2
(
‖1− ρ0‖M(Ḃ0

q,1∩Ḃ
n/p
p,1 (Ω))

+ CR
)
< 1,

then the above inequality entails that

‖(δu,∇δP )‖Xp,q ≤ κ‖(δv,∇δQ)‖Xp,q
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5.5. ESTIMATES OF NONLINEARITIES 119

for some κ < 1 whenever (v1,∇Q1) and (v2,∇Q2) are in BXp,q(0, R). This

completes the proof of the global existence. The proof of uniqueness is similar

to that of contractivity. The details are left to the reader.

5.5. Estimates of nonlinearities

In this section we establish a few estimates for nonlinear terms in Besov

spaces. First, let us give some insight on the structure of the multiplier spaces

M(Ḃs
p,1).

Lemma 5.5.1. — The following inequality holds true:

‖u‖M(Ḃsp,1(Ω)) + ‖u‖M(Ḃ0
q,1(Ω)) . ‖u‖Ḃn/pp,1 (Ω)

whenever 1 < p <∞, −min(n/p, n/p′) < s ≤ n/p and 1 < q <∞.

If in addition max(p, q) ≤ n then we also have

‖u‖M(Ḃ1
q,1(Ω)) . ‖u‖Ḃn/pp,1 (Ω)

.

Proof. — For the first item, it suffices to establish that the product maps

Ḃs
p,1(Ω)×Ḃn/p

p,1 (Ω) in Ḃs
p,1(Ω), and Ḃ0

q,1(Ω)×Ḃn/p
p,1 (Ω) in Ḃ0

q,1(Ω). Our definition

of Besov norms by restriction allows us to consider only the case Ω = Rn.
Then the result is sort of classical. Note that the result for M(Ḃs

p,1(Rn)) has

already been proved in Proposition 2.2.1. As for M(Ḃ0
q,1(Rn)), one may use

continuity results for the paraproduct, and functional embedding. Indeed, we

have uv = Tuv +R(u, v) + Tvu, and

– T maps Ḃ
n/p
p,1 (Rn) × Ḃ0

q,1(Rn) in Ḃ0
q,1(Rn) (as Ḃ

n/p
p,1 (Rn) embeds in

L∞(Rn)),

– R maps Ḃ
n/p
p,1 (Rn) × Ḃ0

q,1(Rn) in Ḃ0
q,1(Rn) as n/p + 0 > nmax(0, 1/q −

1/p′),

– T maps Ḃ0
q,1(Rn)× Ḃn/p

p,1 (Rn) in Ḃ0
q,1(Rn) (use first that Ḃ0

q,1(Rn) is em-

bedded in Ḃ
n/p′−n/q
p′,1 (Rn) if q ≤ p′).

In order to prove the last item, we use the fact that T and R map L∞(Rn)×
Ḃ1
q,1(Rn) in Ḃ1

q,1(Rn), together with the embedding of Ḃ
n/p
p,1 (Rn) in L∞(Rn),

and also that T maps Ḃ1
q,1(Rn)× Ḃn/p

p,1 (Rn) in Ḃ1
q,1(Rn), if max(p, q) ≤ n.

Let us finally prove some useful ‘flow estimates’. The important fact that

we shall use repeatedly is that, as a consequence of the above lemma, the space

Ḃ
n/p
p,1 (Ω) is a (quasi)-Banach algebra (and of course so does B

n/p
p,1 (K)). Hence
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120 CHAPTER 5. INHOMOGENEOUS FLOWS IN EXTERIOR DOMAINS

if
∫ t

0 Dv̄ dτ is small enough, a condition that will be ensured by the smallness

of the data, then one may just write

(5.48) Bv =
∑
k≥0

(
−
∫ t

0
Dv̄ dτ

)k
.

Therefore, if ‖∇v̄‖L1(0,T ;L∞(Ω)) < 1 then Id − Bv ∈ L∞(0, T ;L∞(Ω)) and

(5.49) ‖Id − Bv‖L∞(0,T ;L∞(Ω)) ≤
‖∇v̄‖L1(0,T ;L∞(Ω))

1− ‖∇v̄‖L1(0,T ;L∞(Ω))
·

Likewise, since Ḃ
n/p
p,1 (Ω) is a quasi-Banach algebra, there exist two constants

c = c(n, p) and C = c(n, p) such that if

(5.50) ‖∇v̄‖
L1(0,T ;Ḃ

n/p
p,1 (Ω))

< c,

then

(5.51) ‖Id − Bv‖L∞(0,T ;Ḃ
n/p
p,1 (Ω))

≤ C‖∇v̄‖
L1(0,T ;Ḃ

n/p
p,1 (Ω))

.

Let us emphasize that we have

Dxv(t, x) = Dyv̄(t, y)Bv(t, y) = Dyv̄(t, y)
∑
k≥0

(
−
∫ t

0
DyB(τ, y) dτ

)k
.

Hence Condition (5.50) holds simultaneously for v̄ or v (up to a harmless

change of c), a fact that we used freely and repeatedly throughout this chapter.

Note also that, as

Id − Bv
TBv = (Id − Bv)(

TBv − Id ) + (Id − Bv) + (Id − TBv),

we also have, under Condition (5.51),

(5.52) ‖Id − Bv
TBv‖L∞(0,T ;Ḃ

n/p
p,1 (Ω))

≤ C‖∇v̄‖
L1(0,T ;Ḃ

n/p
p,1 (Ω))

.

Similarly, by taking the gradient of (5.48) and using

∇(Bv
TBv) = ∇Bv

TBv + Bv∇(TBv),

we find out that for (s, r) ∈ {(n/p− 1, p), (0, q)}, we have

(5.53) ‖∇Bv‖L∞(0,T ;Ḃsr,1(Ω)) + ‖∇(Bv
TBv)‖L∞(0,T ;Ḃsr,1(Ω))

. ‖∇2v̄‖L1(0,T ;Ḃsr,1(Ω)).

Finally, by taking one time derivative of (5.48), we get

(5.54) ‖(Bv)t‖L1(0,T ;Ḃ
n/p
p,1 (Ω))

≤ C‖∇v̄‖
L1(0,T ;Ḃ

n/p
p,1 (Ω))

.
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5.5. ESTIMATES OF NONLINEARITIES 121

In order to prove stability, we need some estimates on B2−B1 where Bi := Bvi

for i = 1, 2. The starting point is that, owing to (5.48), we may write if both

v1 and v2 satisfy (5.50), the following identity (3):

B2 −B1 =
∑
k≥1

((
−
∫ t

0
Dv̄2 dτ

)k
−
(
−
∫ t

0
Dv̄1 dτ

)k)

= −
(∫ t

0
Dδv dτ

)∑
k≥1

k−1∑
j=0

(
−
∫ t

0
Dv̄2 dτ

)j(
−
∫ t

0
Dv̄1 dτ

)k−1−j
.(5.55)

Therefore Lemma 5.5.1 guarantees that we have for all positive t,

(5.56) ‖(B2 −B1)(t)‖Ḃsr,1(Ω) . ‖∇δv‖L1(0,t;Ḃsr,1(Ω))

whenever 1 < p < ∞ and −min(n/p, n/p′) < s ≤ n/p if r = p, or with s = 0

and r ∈ (1,∞).

Note that because

B2
TB2 −B1

TB1 = (B2 −B1)TB2 +B1
T(B2 −B1),

we also have, for the same couples (s, r) as in (5.56),

(5.57) ‖(B2
TB2 −B1

TB1)(t)‖Ḃsr,1(Ω) . ‖∇δv‖L1(0,t;Ḃsr,1(Ω)).

Next, we want to estimate D(B2 −B1). Differentiating (5.55), we get

D(B2 −B1) = −
∫ t

0
D2δv dτ

∑
k≥1

k
(
−
∫ t

0
Dv̄2 dτ

)k−1

+
∑
k≥2

k
(∫ t

0
D2v1 dτ

)(∫ t

0
Dδv dτ

) k−2∑
j=0

(
−
∫ t

0
Dv̄2 dτ

)j(
−
∫ t

0
Dv̄1 dτ

)k−2−j
·

Hence, still assuming (5.50) for v1 and v2, and using Lemma 5.5.1,

(5.58) ‖∇(B1 −B2)(t)‖Ḃsr,1(Ω)

. ‖∇2δv‖L1(0,t;Ḃsr,1(Ω)) + ‖∇2v1‖L1(0,t;Ḃsr,1(Ω))‖∇δv‖L1(0,t;Ḃ
n/p
p,1 (Ω))

.

3. Rigorously speaking (5.55) is not quite correct for the different matrices involved need

not to commute. From the point of view of a priori estimates, everything happens as if they

did, though.
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Finally, taking one time derivative of (5.55) yields

D(B1 −B2) = −Dδv
∑
k≥1

k
(
−
∫ t

0
Dv̄2 dτ

)k−1

+
∑
k≥2

kDv̄1

(∫ t

0
Dδv dτ

) k−2∑
j=0

(
−
∫ t

0
Dv̄2 dτ

)j(
−
∫ t

0
Dv̄1 dτ

)k−2−j
·

Hence,

(5.59) ‖∂t(B1 −B2)(t)‖Ḃsr,1(Ω)

. ‖∇δv(t)‖Ḃsr,1(Ω)‖∇v̄2‖L1(0,t;Ḃ
n/p
p,1 (Ω))

+ ‖∇v̄1(t)‖Ḃsr,1(Ω)‖∇δv‖L1(0,t;Ḃ
n/p
p,1 (Ω))

.

MÉMOIRES DE LA SMF 143

128

128



CHAPTER 6

THE LOW MACH NUMBER SYSTEM

The last part of the present memoir is dedicated to the analysis of a limit

system for the Navier-Stokes-Fourier equations that may be derived in the low

Mach number asymptotics and has been studied recently in [14] in the whole

space setting (see [12], [25] for older related results). This system is a non-

linear coupling between a Stokes-like system and a heat-like equation. As a

consequence of its derivation, the divergence of the velocity is determined by

the heat flux and is thus nonzero if the fluid is heat-conductive. In contrast

with the previous chapter, the full system is of parabolic type in the Eule-

rian coordinates framework. Hence it is not helpful to switch to Lagrangian

coordinates to solve the system by means of the Banach fixed point theorem.

We here aim at extending the results of [14] to the case where the fluid

domain is an exterior domain of Rn with n ≥ 3. To simplify the presenta-

tion, we shall concentrate on the proof of global-in-time solutions with critical

regularity. In passing, we will establish a new regularity result for the heat

equation with Neumann boundary condition in exterior domains, which is of

independent interest.

6.1. The system

We aim at investigating the following type of systems:
β(ϑ)(∂tϑ+ u · ∇ϑ)− div (κ(ϑ)∇ϑ) = 0 in R+ × Ω,

ρ(ϑ)(∂tu+ u · ∇u)− div τ +∇P = 0 in R+ × Ω,

divu = a(ϑ) div (κ(ϑ)∇ϑ) in R+ × Ω,

with τ := µDu + λ( divu)Id , where Du stands for (twice) the deformation

tensor of the fluid, that is Du = ∇u+ T∇u. We suppose that ρ (the density of
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124 CHAPTER 6. THE LOW MACH NUMBER SYSTEM

the fluid) and also β, λ, µ, κ and a are given smooth functions of ϑ satisfying

κ > 0, ρ > 0, β > 0, µ > 0 and λ+ 2µ > 0.

This type of system may be derived in the low Mach number asymptotics

in the large entropy variations regime (see e.g. [14, 37] and the references

therein). For simplicity, we here consider only perfect gases. Then we have

for some reference positive constant pressure P0,

ρ(ϑ) =
P0

Rϑ
, β(ϑ) = Cpρ(ϑ) =

γ

γ − 1
Rρ(ϑ) and a(ϑ) =

γ − 1

γP0

with R > 0 and γ > 1.

We here focus on small perturbations of some constant positive reference

temperature, that we can normalize at 1. Setting θ := ϑ − 1, ∇Q := ∇(P +

λ divu), and keeping the same notation for the functions β, ρ, κ and µ, ex-

pressed in terms of θ, we eventually get

(6.1)


β(θ)(∂tθ + u · ∇θ)− div (κ(θ)∇θ) = 0 in R+ × Ω,

ρ(θ)(∂tu+ u · ∇u)− div (µ(θ)Du) +∇Q = 0 in R+ × Ω,

divu = a div (κ(θ)∇θ) in R+ × Ω.

We supplement System (6.1) with the boundary constraints

(6.2) u|R+×∂Ω = 0, ∂~nθ|R+×∂Ω = 0 at R+ × ∂Ω

and the initial data

(6.3) u|t=0 = u0, θ|t=0 = θ0 in Ω,

interrelated through the compatibility condition divu0 = adiv (κ(θ0)∇θ0).

Scaling arguments similar to those of Chapter 5 suggest us to use a func-

tional framework in which the temperature has one more derivative than the

velocity. Besides, in order to have some control on the conductivity and vis-

cosity coefficients (that may depend on the temperature), we need θ to be at

least continuous. Keeping our maximal regularity results in mind, this eventu-

ally leads to consider the initial velocity u0 in the space Ḃ
n/p−1
p,1 and the initial

(relative) temperature θ0 in Ḃ
n/p
p,1 with n/p− 1 close to 0.

Looking at the structure of the linearization of System (6.1), we see that

we have to deal with the heat equation and the Stokes system with some

non-divergence free constraint. Therefore, the full system is of (generalized)

parabolic type and using the Eulerian coordinates will enable us to show the

well-posedness by means of the Banach fixed point theorem (in contrast with
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Chapter 5 where we had to switch to the Lagrangian coordinates). Note that

the coupling between the temperature and velocity equations is rather harm-

less: once θ has been determined as a solution to a transport-diffusion type

equation, the velocity may be controlled almost as if solving the homogeneous

incompressible Navier-Stokes equation. The dependency of divu with respect

to θ will turn out to be compatible with the statement of Theorem 4.3.3.

Before starting our investigation of System (6.1), we have to establish a new

maximal regularity result concerning the heat equation in exterior domains,

in the spirit of [20], but for Neumann boundary conditions. Besides, as we

plan to handle initial temperatures in Ḃ
n/p
p,1 with n/p close to 1, we will have

to prove regularity estimates as well.

6.2. The heat equation with Neumann boundary conditions

The starting point is the following result in the whole space (see e.g. [6]).

Theorem 6.2.1. — Let p ∈ [1,∞] and s ∈ R. Let f ∈ L1(0, T ; Ḃs
p,1(Rn)) and

u0 ∈ Ḃs
p,1(Rn). The system{

ut − ν∆u = f in (0, T )× Rn,
u = u0 on Rn

has a unique solution u in

C([0, T ); Ḃs
p,1(Rn)) with ∂tu,∇2u ∈ L1(0, T ; Ḃs

p,1(Rn))

and the following inequality holds true:

‖u‖L∞(0,T ;Ḃsp,1(Rn)) + ‖ut, ν∇2u‖L1(0,T ;Ḃsp,1(Rn))

≤ C(‖f‖L1(0,T ;Ḃsp,1(Rn)) + ‖u0‖Ḃsp,1(Rn)).

6.2.1. The heat equation in the half-space. — The purpose of this

paragraph is to extend Theorem 6.2.1 to the half-space setting : we now

consider

(6.4)


ut − ν∆u = f in (0, T )× Rn+,

∂xnu|xn=0 = 0 on (0, T )× ∂Rn+,

u|t=0 = u0 on Rn+.

As we are looking for solutions u such that

(6.5) u ∈ C([0, T ); Ḃs
p,1(Rn+)), ut,∇2u ∈ L1(0, T ; Ḃs

p,1(Rn+)),
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126 CHAPTER 6. THE LOW MACH NUMBER SYSTEM

we expect ∇u to be in the nonhomogeneous space L2(0, T ;Bs
p,1(Rn+)) (by in-

terpolation) and the trace of ∇u at (0, T )×∂Rn+ to be thus defined (see Propo-

sition 2.2.4). Therefore, we just have to solve in the sense of distributions the

first and third equations of (6.4) in the class of functions u satisfying (6.5)

and having null trace at (0, T )× ∂Rn+.

The rest of this paragraph is devoted to proving the following statement.

Theorem 6.2.2. — Let u0 ∈ Ḃs
p,1(Rn+) and f ∈ L1(0, T ; Ḃs

p,1(Rn+)) with p ∈
[1,∞) and s ∈ (−1 + 1/p, 1/p). Then (6.4) has a unique solution u satisfy-

ing (6.5) and the following inequality is valid:

(6.6) ‖u‖L∞(0,T ;Ḃsp,1(Rn+)) + ‖ut, ν∇2u‖L1(0,T ;Ḃsp,1(Rn+))

≤ C(‖f‖L1(0,T ;Ḃsp,1(Rn+)) + ‖u0‖Ḃsp,1(Rn+)),

where C is an absolute constant with no dependence on ν and T .

If in addition ∇u0 ∈ Ḃs
p,1(Rn+) and ∇f ∈ L1(0, T ; Ḃs

p,1(Rn+)) then ∇u satis-

fies (6.5) and we have

(6.7) ‖∇u‖L∞(0,T ;Ḃsp,1(Rn+)) + ‖∇ut, ν∇3u‖L1(0,T ;Ḃsp,1(Rn+))

≤ C(‖∇f‖L1(0,T ;Ḃsp,1(Rn+)) + ‖∇u0‖Ḃsp,1(Rn+)).

Proof. — Let ũ0 and f̃ be the symmetric extensions over Rn of u0 and f.

Because −1 + 1/p < s < 1/p, we have ũ0 ∈ Ḃs
p,1(Rn), f̃ ∈ L1(0, T ; Ḃs

p,1(Rn))

with (see Corollary 2.2.1)

‖ũ0‖Ḃsp,1(Rn) ≈ ‖u0‖Ḃsp,1(Rn+) and ‖f̃‖L1(0,T ;Ḃsp,1(Rn)) ≈ ‖f‖L1(0,T ;Ḃsp,1(Rn+)).

Let ũ be the solution given by Theorem 6.2.1. As this solution is unique in

the corresponding functional framework, the symmetry properties of the data

ensure that ũ is symmetric with respect to {xn = 0}, and thus vanishes there if

it is smooth enough. Arguing by density, we gather that ∂xn ũ|xn=0 = 0 under

the regularity assumptions of the theorem.

Now, we observe that the restriction u of ũ to the half-space satisfies the

first and last equations of (6.4), and that

– ũt coincides with the symmetric extension of ut,

– ∇2
x′ ũ coincides with the symmetric extension of ∇2

x′u,

– ∇x′∂xn ũ coincides with the antisymmetric extension of ∇x′∂xnu,
– ∂2

xn,xn ũ = (∆−∆x′)ũ hence coincides with ũt − f̃ −∆x′ ũ.
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Hence we get

‖u‖L∞(0,T ;Ḃsp,1(Rn+)) + ‖ut, ν∇2u‖L1(0,T ;Ḃsp,1(Rn+))

≤ ‖ũ‖L∞(0,T ;Ḃsp,1(Rn)) + ‖ũt, ν∇2ũ‖L1(0,T ;Ḃsp,1(Rn)),

which implies (6.6).

To prove higher regularity estimates, we first use the fact that∇x′ ũ coincides

with the symmetric extension of ∇x′u on Rn, and satisfies the heat equation on

(0, T )× Rn, supplemented with initial data ∇x′ ũ0 on Rn. Therefore applying

Theorem 6.2.1 and arguing as in the proof of (6.6) (with ∇x′u instead of u),

we conclude that

‖∇x′u‖L∞(0,T ;Ḃsp,1(Rn+)) + ‖∇x′ut, ν∇2∇x′u‖L1(0,T ;Ḃsp,1(Rn+))

≤ C(‖∇x′f‖L1(0,T ;Ḃsp,1(Rn+)) + ‖∇x′u0‖Ḃsp,1(Rn+)).

As regards the vertical derivative, we have
(∂xnu)t − ν∆∂xnu = ∂xnf in (0, T )× Rn+,

∂xnu|xn=0 = 0 on (0, T )× ∂Rn+,

∂xnu|t=0 = ∂xnu0 on Rn+.

The fact that ∇u ∈ L2(0, T ; Ḃs
p,1(Rn+)) (given by the first part of the statement

and interpolation) implies that u decays to 0 at infinity. Hence applying the

results for the heat equation with Dirichlet boundary conditions in [15] yields

‖∂xnu‖L∞(0,T ;Ḃsp,1(Rn+)) + ‖∂xnut, ν∇2∂xnu‖L1(0,T ;Ḃsp,1(Rn+))

≤ C(‖∂xnf‖L1(0,T ;Ḃsp,1(Rn+)) + ‖∂xnu0‖Ḃsp,1(Rn+)).

This completes the proof of the theorem.

6.2.2. The exterior domain case. — Here we extend Theorem 6.2.1 to

the case where Ω is a smooth exterior domain.

Theorem 6.2.3. — Let Ω be a smooth exterior domain of Rn with n ≥ 3. Let

1 < q ≤ p < ∞ with q < n/2. Let −1 + 1/p < s < 1/p and −1 + 1/q < s′ <

1/q − 2/n. Let

u0 ∈ Ḃs
p,1 ∩ Ḃs′

q,1(Ω) and f ∈ L1(0, T ; Ḃs
p,1 ∩ Ḃs′

q,1(Ω)).
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Then there exists a unique solution u to

(6.8)


ut − ν∆u = f in (0, T )× Ω,

∂~nu = 0 at (0, T )× ∂Ω,

u = u0 on Ω

such that

u ∈ C([0, T ]; Ḃs
p,1 ∩ Ḃs′

q,1(Ω)), ut,∇2u ∈ L1(0, T ; Ḃs
p,1 ∩Bs′

q,1(Ω))

and the following inequality is satisfied:

(6.9) ‖u‖
L∞(0,T ;Ḃsp,1∩Ḃs

′
q,1(Ω))

+‖ut, ν∇2u‖
L1(0,T ;Ḃsp,1∩Ḃs

′
q,1(Ω))

≤ C
(
‖u0‖Ḃsp,1∩Ḃs′q,1(Ω)

+ ‖f‖
L1(0,T ;Ḃsp,1∩Ḃs

′
q,1(Ω))

)
,

where the constant C is independent of T and ν.

If in addition ∇u0 ∈ Ḃs
p,1 ∩ Ḃs′

q,1(Ω) and ∇f ∈ L1(0, T ; Ḃs
p,1 ∩ Ḃs′

q,1(Ω)), then

u also satisfies

∇u ∈ C([0, T ]; Ḃs
p,1 ∩ Ḃs′

q,1(Ω)), ∇ut,∇3u ∈ L1(0, T ; Ḃs
p,1 ∩Bs′

q,1(Ω))

and

(6.10) ‖∇u‖
L∞(0,T ;Ḃsp,1∩Ḃs

′
q,1(Ω))

+‖∇ut, ν∇3u‖
L1(0,T ;Ḃsp,1∩Ḃs

′
q,1(Ω))

≤ C
(
‖u0,∇u0‖Ḃsp,1∩Ḃs′q,1(Ω)

+ ‖f,∇f‖
L1(0,T ;Ḃsp,1∩Ḃs

′
q,1(Ω))

)
.

Proving this theorem relies on the following statement, and on lower order

estimates (see Lemma 6.2.1 below) so as to remove the time dependency.

Theorem 6.2.4. — Let Ω be a smooth exterior domain of Rn with n ≥ 2. Let

1 < p < ∞, −1 + 1/p < s < 1/p, f ∈ L1(0, T ; Ḃs
p,1(Ω)), and u0 ∈ Ḃs

p,1(Ω).

Then Equation (6.8) has a unique solution u such that

u ∈ C([0, T ]; Ḃs
p,1(Ω)), ∂tu,∇2u ∈ L1(0, T ; Ḃs

p,1(Ω))

and the following estimates are valid:

(6.11) ‖u‖L∞(0,T ;Ḃsp,1(Ω))+‖ut, ν∇2u‖L1(0,T ;Ḃsp,1(Ω))

≤ CeCTν
(
‖u0‖Ḃsp,1(Ω) + ‖f‖L1(0,T ;Ḃsp,1(Ω))

)
,

(6.12) ‖u‖L∞(0,T ;Ḃsp,1(Ω))+‖ut, ν∇2u‖L1(0,T ;Ḃsp,1(Ω))

≤ CK
(
‖u0‖Ḃsp,1(Ω) + ‖f‖L1(0,T ;Ḃsp,1(Ω)) + ν‖u|K‖L1(0,T ;Ḃsp,1(K))

)
,

where K stands for any compact subset of Ω such that dist(∂Ω,Ω \K) > 0.
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If in addition ∇u0 ∈ Ḃs
p,1(Ω) and ∇f ∈ L1(0, T ; Ḃs

p,1(Ω)) then we also have

(6.13) ‖∇u‖L∞(0,T ;Ḃsp,1(Ω))+‖∇ut, ν∇3u‖L1(0,T ;Ḃsp,1(Ω))

≤ CeCTν
(
‖u0,∇u0‖Ḃsp,1(Ω) + ‖f,∇f‖L1(0,T ;Ḃsp,1(Ω))

)
,

(6.14) ‖∇u‖L∞(0,T ;Ḃsp,1(Ω))+‖∇ut, ν∇3u‖L1(0,T ;Ḃsp,1(Ω))

≤ CK
(
‖u0,∇u0‖Ḃsp,1(Ω) + ‖f,∇f‖L1(0,T ;Ḃsp,1(Ω)) + ν‖u|K‖L1(0,T ;Ḃsp,1(K))

)
.

Proof. — We suppose that we are given a smooth enough solution and focus

on the proof of the estimates. We shall do it in three steps: first we prove

interior estimates, next boundary estimates and finally global estimates after

summation. By performing a suitable change of time variable and source term,

one may reduce our study to the case ν = 1.

Throughout we fix some covering (B(x`, λ))1≤`≤L of K by balls of radius λ

and take some neighborhood Ω0 ⊂ Ω of Rn \K such that d(Ω0, ∂Ω) > 0. We

assume in addition that the first M balls do not intersect ∂Ω while the last

L−M balls are centered at some point of ∂Ω.

Let η0 : Rn → [0, 1] be a smooth function supported in Ω0 and with value 1

on a neighborhood of Ω\K. Then we consider a subordinate partition of unity

(η`)1≤`≤L such that (see e.g. [35, 43]):

1.
∑

0≤`≤L η
` = 1 on Ω;

2. ‖∇kη`‖L∞(Rn) ≤ Ckλ−k for k ∈ N and 1 ≤ ` ≤ L;

3. Supp η` ⊂ B(x`, λ),

4. ∂~nη
` = 0 on ∂Ω.

We also introduce another smooth function η̃0 supported in K and with value 1

on Supp∇η0 and smooth functions η̃1, . . . , η̃L with support in B(x`, λ) and

such that η̃` ≡ 1 on Supp η`.

Note that for ` ∈ {1, . . . , L}, the bounds for the derivatives of η` together

with the fact that
∣∣Supp∇η`

∣∣ ≈ λn implies that for any k ∈ N and q ∈ [1,∞],

‖∇kη`‖
Ḃ
n/q
q,1 (Rn)

+ ‖∇kη̃`‖
Ḃ
n/q
q,1 (Rn)

. λ−k.

First step: the interior estimate. — For ` ∈ {0, . . . ,M}, function U ` := uη`

satisfies {
U `t −∆U ` = f ` in (0, T )× Rn,

U `|t=0 = u0η
` on Rn

with

(6.15) f ` := η`f − 2∇η` · ∇u− u∆η`.
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Applying Theorem 6.2.1 yields the estimates:

‖U `‖L∞(0,T ;Ḃsp,1(Rn)) + ‖U `t ,∇2U `‖L1(0,T ;Ḃsp,1(Rn))

. ‖η`u0‖Ḃsp,1(Rn) + ‖f `‖L1(0,T ;Ḃsp,1(Rn)),

‖∇U `‖L∞(0,T ;Ḃsp,1(Rn)) + ‖∇U `t ,∇3U `‖L1(0,T ;Ḃsp,1(Rn))

. ‖∇(η`u0)‖Ḃsp,1(Rn) + ‖∇f `‖L1(0,T ;Ḃsp,1(Rn)).

Because the function ∇η` is in C∞c (Rn) and η̃` ≡ 1 on Supp∇η`, we get

according to the results of Chapter 2,

(6.16) ‖f `‖L1(0,T ;Ḃsp,1(Ω))≤‖η
`f‖L1(0,T ;Ḃsp,1(Ω)) +Cλ‖η̃`u, η̃`∇u‖L1(0,T ;Ḃsp,1(K)).

As may be proved by writing that ∇(η`z) = z∇η`+η`∇z, for any z ∈ Ḃs
p,1(Rn)

with −n/p′ < s ≤ n/p, we have

(6.17) ‖∇(η`z)‖Ḃsp,1(Rn) ≤ C
(
‖η̃lz‖Ḃsp,1(Rn) + ‖η̃`∇z‖Ḃsp,1(Rn)

)
.

Hence, we also have

(6.18) ‖∇f `‖L1(0,T ;Ḃsp,1(Ω)) ≤ C‖η
`f, η̃l∇f‖L1(0,T ;Ḃsp,1(Ω))

+ Cλ‖η̃`u, η̃`∇u, η̃`∇2u‖L1(0,T ;Ḃsp,1(K)).

Plugging (6.16) and (6.18) in the inequalities for U ` and ∇U `, we end up with

(6.19) ‖U `‖L∞(0,T ;Ḃsp,1(Rn)) + ‖U `t ,∇2U `‖L1(0,T ;Ḃsp,1(Rn))

≤ C
(
‖η`u0‖Ḃsp,1(Rn) + ‖η`f‖L1(0,T ;Ḃsp,1(Rn))

)
+ Cλ‖η̃`(u,∇u)‖L1(0,T ;Ḃsp,1(K)),

(6.20) ‖∇U `‖L∞(0,T ;Ḃsp,1(Rn)) + ‖∇U `t ,∇2∇U `‖L1(0,T ;Ḃsp,1(Rn))

≤ C
(
‖η̃`(u0,∇u0)‖Ḃsp,1(Rn) + ‖η̃`(f,∇f)‖L1(0,T ;Ḃsp,1(Rn))

)
+ Cλ‖η̃`(u,∇u,∇2u)‖L1(0,T ;Ḃsp,1(K)).

Second step: the boundary estimate. — We now consider ` ∈ {L+ 1, . . . ,M}
so that B(x`, λ) is centered at a point of ∂Ω. The localization leads to

(6.21)


U `t −∆U ` = f ` in (0, T )× Ω,

∂~nU
` = 0 on (0, T )× ∂Ω,

U `|t=0 = u0η
` on Ω,

with f ` defined by (6.15), hence satisfying (6.16).
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Let us now make a change of variables so as to recast (6.21) in the half-

space. As ∂Ω is smooth and compact, if λ has been chosen small enough then

for fixed ` we may find a map Z` so that (see Chapter 2):

(i) Z` is a C∞ diffeomorphism from B(x`, λ) to Z`(B(x`, λ));

(ii) Z`(x
`) = 0 and DxZ(x`) = Id ;

(iii) Z`(Ω ∩B(x`, λ)) ⊂ Rn+;

(iv) Z`(∂Ω ∩B(x`, λ)) = ∂Rn+ ∩ Z`(B(x`, λ));

(v) Z` is normal preserving.

Setting ∇xZ`(x) = Id + A`(z) then one may assume in addition that there

exist constants Cj depending only on Ω and on j ∈ N such that

(6.22) ‖DjA`‖L∞(B(x`,λ)) ≤ Cj ,

a property which implies (by the mean value formula) that

(6.23) ‖A`‖L∞(B(x`,λ)) ≤ C1λ,

hence by interpolation between the spaces Lq(B(x`, λ)) and W k
q (B(x`, λ)),

(6.24) ‖A`‖
B
n
q
q,1(B(x`,λ))

≤ Cλ for all 1 ≤ q <∞.

Let V ` := Z∗`U
` := U ` ◦ Z−1

` . The system satisfied by V ` reads

(6.25)


V `
t −∆zV

` = F ` in (0, T )× Rn+,
∂znV

`|zn=0 = 0 on (0, T )× ∂Rn+,
V `|t=0 = Z∗` (U `|t=0) on ∂Rn+,

with

F ` := Z∗` f
` + (∆x −∆z)V

`.

According to Theorem 6.2.2, we thus get

‖V `‖L∞(0,T ;Ḃsp,1(Rn+)) + ‖V `
t ,∇2

zV
`‖L1(0,T ;Ḃsp,1(Rn+))

. ‖Z∗` (U `|t=0)‖Ḃsp,1(Rn+) + ‖Z∗` f `‖L1(0,T ;Ḃsp,1(Rn+))

+ ‖(∆x −∆z)V
`‖L1(0,T ;Ḃsp,1(Rn+)).

The first two terms in the right-hand side may be dealt with thanks to com-

position estimates:

‖Z∗` (U `|t=0)‖Ḃsp,1(Rn+) . ‖U
`|t=0‖Ḃsp,1(Ω),

‖Z∗` f `‖L1(0,T ;Ḃsp,1(Rn+)) . ‖f
`‖L1(0,T ;Ḃsp,1(Ω)).

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2015

137

137



132 CHAPTER 6. THE LOW MACH NUMBER SYSTEM

Compared to the first step, the only definitely new term is (∆x−∆z)V
`, which

has already been bounded in (4.77). We get

‖(∆x −∆z)V
`‖L1(0,T ;Ḃsp,1(Rn+))

. λ‖∇2
zV

`‖L1(0,T ;Ḃsp,1(Rn+)) + ‖∇zV `‖L1(0,T ;Ḃsp,1(Rn+)).

Using also (6.16), we end up for small enough λ with

‖V `‖L∞(0,T ;Ḃsp,1(Rn+)) + ‖V `
t ,∇2

zV
`‖L1(0,T ;Ḃsp,1(Rn+))

≤ C
(
‖η`u0‖Ḃsp,1(Ω) + ‖η`f‖L1(0,T ;Ḃsp,1(Ω)) + ‖∇zV `‖L1(0,T ;Ḃsp,1(Rn+))

)
+ Cλ‖η̃`(u,∇xu)‖L1(0,T ;Ḃsp,1(K)).

Recall the following interpolation inequality for any smooth domain D (see [8],

Chap. 18):

‖∇W‖Ḃsp,1(D) . ‖∇
2W‖1/2

Ḃsp,1(D)
‖W‖1/2

Ḃsp,1(D)
+ ‖W‖Ḃsp,1(D).(6.26)

Applying it to G = ∇zV ` and D = Rn+ and using Young’s inequality allows to

reduce the above inequality to

‖V `‖L∞(0,T ;Ḃsp,1(Rn+)) + ‖V `
t ,∇2

zV
`‖L1(0,T ;Ḃsp,1(Rn+))(6.27)

≤ C
(
‖η`u0‖Ḃsp,1(Ω) + ‖η`f‖L1(0,T ;Ḃsp,1(Ω)) + ‖V `‖L1(0,T ;Ḃsp,1(Rn+))

)
+ Cλ‖η̃`(u,∇xu)‖L1(0,T ;Ḃsp,1(K)).

To prove regularity estimates, we apply Inequality (6.7) to (6.25), and thus

get

(6.28) ‖∇zV `‖L∞(0,T ;Ḃsp,1(Rn+)) + ‖(∇zV `)t,∇3
zV

`‖L1(0,T ;Ḃsp,1(Rn+))

. ‖∇z(Z∗` (U `|t=0))‖Ḃsp,1(Rn+) + ‖∇z(Z∗` f `)‖L1(0,T ;Ḃsp,1(Rn+))

+ ‖∇z(∆x −∆z)V
`)‖L1(0,T ;Ḃsp,1(Rn+)).

Using ∇z(Z∗` g) = Z∗`∇xg · ∇zZ
−1
` for g = U `|t=0 and g = f `, composition and

product estimates together with (6.24) and (6.15) yields

‖∇z(Z∗` (U `|t=0))‖Ḃsp,1(Rn+) ≤ C‖η`∇xu0‖Ḃsp,1(Ω),

‖∇z(Z∗` f `)‖L1(0,T ;Ḃsp,1(Rn+)) ≤ Cλ‖η̃`(u,∇xu,∇2
xu)‖L1(0,T ;Ḃsp,1(K).

From (4.76), we also see that ∇z(∆x−∆z)V
` is a linear combination of compo-

nents of ∇3
zV`⊗A`, ∇2

zV`⊗∇zA` and ∇zV`⊗∇2
zA`. Now, for λ small enough,
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Inequalities (6.22), (6.23) and (6.24) guarantee that

‖∇3
zV` ⊗A`‖L1(0,T ;Ḃsp,1(Rn+)) ≤ Cλ‖∇3

zV
`‖L1(0,T ;Ḃsp,1(Rn+)),

‖∇2
zV` ⊗∇zA`‖L1(0,T ;Ḃsp,1(Rn+)) ≤ C‖∇2

zV
`‖L1(0,T ;Ḃsp,1(Rn+)),

‖∇zV` ⊗∇2
zA`‖L1(0,T ;Ḃsp,1(Rn+)) ≤ C‖∇zV `‖L1(0,T ;Ḃsp,1(Rn+)).

Resuming to (6.28), taking λ small enough and using the interpolation in-

equality (6.26) to eliminate the term pertaining to ∇2
zV

`, we conclude that

(6.29) ‖∇zV `‖L∞(0,T ;Ḃsp,1(Rn+)) + ‖(∇zV `)t,∇3
zV

`‖L1(0,T ;Ḃsp,1(Rn+))

≤ C
(
‖η̃`(u0,∇xu0)‖Ḃsp,1(Ω) + ‖η̃`(f,∇xf)‖L1(0,T ;Ḃsp,1(Ω))

+ ‖∇zV `‖L1(0,T ;Ḃsp,1(Rn+))

)
+ Cλ‖η̃`(u,∇xu,∇2

xu)‖L1(0,T ;Ḃsp,1(K)).

Third step: global a priori estimates : low regularity. — To establish (6.9)

and (6.11), we start from the observation that, according to (6.19) and (6.27),

‖u‖L∞(0,T ;Ḃsp,1(Ω))

≤
∑
`

‖U `‖L∞(0,T ;Ḃsp,1(Ω))

.
∑

0≤`≤M
‖U `‖L∞(0,T ;Ḃsp,1(Rn))+

∑
M<`≤L

‖V `‖L∞(0,T ;Ḃsp,1(Rn+))

.
∑

0≤`≤L

(
‖η`u0‖Ḃsp,1(Ω)+‖η`f‖L1(0,T ;Ḃsp,1(Ω))

+ ‖η̃`(u,∇u)‖L1(0,T ;Ḃsp,1(K))

)
+
∑

M<`≤L
‖V `‖L1(0,T ;Ḃsp,1(Rn+)),

and similar inequalities for ‖∂tu,∇2u‖L1(0,T ;Ḃsp,1(Ω)).

As the space Ḃs
p,1(Ω) has the localization property (because −n/p′ < s ≤

n/p), we may write

‖η`u0‖Ḃsp,1(Ω) . ‖u0‖Ḃsp,1(Ω),

‖η`f‖L1(0,T ;Ḃsp,1(Ω)) . ‖f‖L1(0,T ;Ḃsp,1(Ω)),

‖η̃`(u,∇u)‖L1(0,T ;Ḃsp,1(Ω)) . ‖(u,∇u)‖L1(0,T ;Ḃsp,1(K)),

‖V `‖L1(0,T ;Ḃsp,1(Rn+)) . ‖u‖L1(0,T ;Ḃsp,1(K)).
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Therefore

‖u‖L∞(0,T ;Ḃsp,1(Ω)) + ‖ut,∇2u‖L1(0,T ;Ḃsp,1(Ω)) . ‖u0‖Ḃsp,1(Ω)

+‖f‖L1(0,T ;Ḃsp,1(Ω)) + ‖u‖L1(0,T ;Ḃsp,1(K)) + ‖∇u‖L1(0,T ;Ḃsp,1(K)).

Once again, using (6.26) enables us to eliminate the last term, and we thus

end up with Inequality (6.12). Now, because

‖u‖L1(0,T ;Ḃsp,1(Ω)) ≤ T‖u‖L∞(0,T ;Ḃsp,1(Ω)),

the last term of (6.12) may be absorbed by the left-hand side if T is small

enough. Repeating the argument for [T, 2T ] and so on, leads to (6.11).

Fourth step: global a priori estimates : high regularity. — Owing to (6.20)

and (6.29), we have

‖∇xu‖L∞(0,T ;Ḃsp,1(Ω)) .
∑

0≤`≤M
‖∇xU `‖L∞(0,T ;Ḃsp,1(Rn))

+
∑

M<`≤L
‖∇zV `‖L∞(0,T ;Ḃsp,1(Rn+))

.
∑

0≤`≤L

(
‖η̃`(u0,∇xu0)‖Ḃsp,1(Ω)+‖η̃`(f,∇xf)‖L1(0,T ;Ḃsp,1(Ω))

+ ‖η̃`(u,∇xu,∇2
xu)‖L1(0,T ;Ḃsp,1(K))

)
+

∑
M<`≤L

‖∇zV `‖L1(0,T ;Ḃsp,1(Rn+)),

and similar inequalities for ‖∇ut,∇3u‖L1(0,T ;Ḃsp,1(Ω)).

By using the fact that ∇zV ` = Z∗`∇xU ` · ∇zZ
−1
` and arguing as in the

previous step, we get

‖∇u‖L∞(0,T ;Ḃsp,1(Ω)) + ‖∇ut,∇3u‖L1(0,T ;Ḃsp,1(Ω))

. ‖u0,∇u0‖Ḃsp,1(Ω)

+ ‖f,∇f‖L1(0,T ;Ḃsp,1(Ω)) + ‖u‖L1(0,T ;Ḃsp,1(K))

+ ‖∇u‖L1(0,T ;Ḃsp,1(K)) + ‖∇2u‖L1(0,T ;Ḃsp,1(K)).

The last term may be handled by interpolation, and eliminated, and we get

(6.14). If we use the fact that

‖u,∇u‖L1(0,T ;Ḃsp,1(Ω)) ≤ T‖u,∇u‖L∞(0,T ;Ḃsp,1(Ω)),

and add up to Inequality (6.12), then we get (6.13) on a small time inter-

val [0, T ]. Then repeating the argument leads to (6.13) on R+.
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Proving the existence is a rather standard issue (see e.g. [35]). We may

consider smooth approximations of data f and u0, which will generate W 2
p

approximate solutions (see e.g. [35]). Estimates (6.11), (6.13) may thus be

derived not only for those approximate solutions but also for the differences of

them. We readily get that the sequence of approximate solutions is indeed a

Cauchy sequence in the required space (which is complete owing to the small

value of s) and it is then easy to pass to the limit in (6.8).

In order to complete the proof of Theorem 6.2.3, we have to bound the last

term of (6.12) and (6.14), independently of T. This is the goal of the next

lemma. We here adapt Lemma 4.3.3 to the heat equation.

Lemma 6.2.1. — Assume that n ≥ 3 and that 1 < p < n/2. Then for any

s ∈ (−1 + 1/p, 1/p− 2/n) smooth solutions to (6.8) with ν = 1 fulfill

‖u‖L1(0,T ;Ḃsp,1(K)) ≤ C
(
‖u0‖Ḃsp,1(Ω) + ‖f‖L1(0,T ;Ḃsp,1(Ω))

)
,

where C is independent of T .

Proof. — We split the solution u to (6.8) in u = u1 + u2 with
u1,t −∆u1 = f in (0, T )× Ω,

∂~nu1 = 0 on (0, T )× ∂Ω,

u1|t=0 = 0 on Ω;


u2,t −∆u2 = 0 in (0, T )× Ω,

∂~nu2 = 0 on (0, T )× ∂Ω,

u2|t=0 = u0 on Ω.

Let us first focus on u1. From Corollary 2.2.1 and duality properties of

Besov spaces, we infer that

‖u1(t)‖Ḃsp,1(K) = sup

∫
K
u1(t, x)η0(x) dx,

where the supremum is taken over all

(6.30) η0 ∈ Ḃ−sp′,∞(Rn) with ‖η0‖Ḃ−s
p′,∞(Rn) = 1 and Supp η0 ⊂ K.

Consider the solution η to the problem:

(6.31)


ηt −∆η = 0 in (0, T )× Ω,

∂~nη = 0 on (0, T )× ∂Ω,

η|t=0 = η0 on Ω.

Testing the equation for u1 by η(t− ·) we discover that

(6.32)

∫
Ω
u1(t, x)η0(x) dx =

∫ t

0

∫
Ω
f(τ, x)η(t− τ, x) dx dτ.

The general theory for the heat operator in exterior domains implies that

(6.33) ‖η(t)‖La(Ω) ≤ C‖η0‖Lb(Ω)t
−n

2
( 1
b
− 1
a

) for 1 < b ≤ a <∞.
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This is a consequence of Gaussian estimates for the kernel pertaining to the

heat equation with Neumann boundary condition. More precisely, in [30],

Theorem 2 (see also [22]), it has been proved that for fairly general domains

there exists some function θ ∈ L1(Rn) ∩ L∞(Rn) so that for all t > 0 and

x ∈ Ω, we have

η(t, x) =

∫
Ω

1

tn/2
θ
(x− y√

t

)
η0(y) dy.

Using standard convolution estimates obviously yields (6.33).

Next, we observe that smooth solutions to (6.31) satisfy ∂~n∆η|∂Ω =

∂~nηt|∂Ω = 0. Hence Inequality (6.33) applies to ∆η and we eventually get

(6.34) ‖∇2η(t)‖La(Ω) ≤ C‖∆η(t)‖La(Ω) ≤ C ′‖∆η0‖Lb(Ω)t
−n

2
( 1
b
− 1
a

).

Interpolating between (6.33) and (6.34) thus yields for 0 < s < 1/b and 1 ≤
r ≤ ∞,

(6.35) ‖η(t)‖Ḃsb,r(Ω) ≤ C‖η0‖Ḃsa,r(Ω)t
−n

2
( 1
b
− 1
a

) if 1 < a ≤ b <∞.

In order to extend (6.35) to negative indices s, we consider the dual problem:

(6.36)


ζt −∆ζ = 0 in (0, T )× Ω,

∂~nζ = 0 on (0, T )× ∂Ω,

ζ|t=0 = ζ0 on Ω,

ζ0 ∈ B−sb′,r′(Ω).

Testing (6.36) by η(t− ·) yields∫
Ω
η(t, x)ζ0(x) dx =

∫
Ω
η0(x)ζ(t, x) dx.

Thus we get:

‖η(t)‖Ḃsb,r(Ω) = sup
ζ0

∫
Ω
η0(x)ζ(t, x) dx ≤ sup

ζ0

(
‖η0‖Ḃsa,r(Ω)‖ζ(t)‖Ḃ−s

a′,r′ (Ω)

)
,

where the supremum is taken over all ζ0 ∈ Ḃ−sb′,r′(Ω) such that ‖ζ0‖Ḃ−s
b′,r′ (Ω) = 1.

As −s is positive, applying (6.35) to bound ‖ζ(t)‖Ḃ−s
a′,r′ (Ω) yields

‖η(t)‖Ḃsa,r(Ω) ≤ C‖η0‖Ḃsb,r(Ω)t
−n

2
( 1
b
− 1
a

) if s > −1 + 1/a.

The remaining case s = 0 follows by interpolation. So finally for all 1 < b ≤
a <∞, q ∈ [1,∞] and −1 + 1/a < s < 1/b, we have

(6.37) ‖η(t)‖Ḃsa,r(Ω) ≤ C‖η0‖Ḃsb,r(Ω)t
−n

2
( 1
b
− 1
a

).
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Resuming to the problem of bounding u1 and starting from (6.32), one may

write ∣∣∣ ∫
Ω
u1(t, x)η0(x) dx

∣∣∣ . ∫ t

0
‖f(τ)‖Ḃsp,1(Ω)‖η(t− τ)‖Ḃ−s

p′,∞(Ω) dτ.

Hence applying (6.37) yields for any ε ∈ (max(0, s), 1),∣∣∣ ∫
Ω
u1(t, x)η0(x) dx

∣∣∣ . ∫ t

max(0,t−1)
‖f(τ)‖Ḃsp,1(Ω)‖η0‖Ḃ−s

p′,∞(Ω) dτ

+

∫ max(0,t−1)

0
‖f(τ)‖Ḃsp,1(Ω)‖η0‖Ḃ−s1

1−ε ,∞
(Ω)(t− τ)

−n
2

( 1
p
−ε)

dτ.

As η0 is supported in K, one has for some constant C depending on K:

‖η0‖Ḃ−s1
1−ε ,∞

(Ω) ≤ C‖η0‖Ḃ−s
p′,∞(Ω).

So, keeping in mind (6.32) and the fact that the supremum is taken over all

the functions η0 satisfying (6.30), we deduce that

‖u1(t)‖Ḃsp,1(K) ≤ C
(∫ t

max(0,t−1)
‖f(τ)‖Ḃsp,1(Ω) dτ

+

∫ max(0,t−1)

0
(t− τ)

−n
2

( 1
p
−ε)‖f(τ)‖Ḃsp,1(Ω) dτ

)
.

Therefore,

(6.38)

∫ T

1
‖u1‖Ḃsp,1(K) dt ≤ C

(
1 +

∫ T

1
τ
−n

2
( 1
p
−ε)

dτ
)∫ T

0
‖f‖Ḃsp,1(Ω) dt.

On [0, 1], we merely have

(6.39)

∫ 1

0
‖u1‖Ḃsp,1(K) dt ≤ C

∫ 1

0
‖f‖Ḃsp,1(Ω) dt.

Now, provided max(0, s) < ε < 1/p − 2/n (which requires p < n/2), the

constant in (6.38) may be made independent of T and we conclude that∫ T

0
‖u1‖Ḃsp,1(K) dt ≤ C

∫ T

0
‖f‖Ḃsp,1(Ω) dt.

Let us finally bound u2. We first write that

(6.40) ‖u2(t)‖Ḃsp,1(K) ≤ C‖u0‖Ḃsp,1(Ω)

and, if −1 + ε < s < 1/p,

‖u2(t)‖Ḃsp,1(K) ≤ CK‖u2(t)‖Ḃs1
ε ,1

(K) ≤ CK‖u0‖Ḃsp,1(Ω)t
−n

2
( 1
p
−ε)

.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2015

143

143



138 CHAPTER 6. THE LOW MACH NUMBER SYSTEM

Then decomposing the integral over [0, T ] into an integral over [0,min(1, T )]

and [min(1, T ), T ], we easily get

(6.41)

∫ T

0
‖u2(t)‖Ḃsp,1(K) dt ≤ C

(
1 +

∫ T

min(1,T )
t
−n

2
( 1
p
−ε)

dt
)
‖u0‖Ḃsp,1(Ω).

The integrant in the r.h.s. of (6.41) is finite for n
2

(
1
p − ε

)
> 1. Hence,

(6.42)

∫ T

0
‖u2(t)‖Ḃsp,1(K) dt ≤ C‖u0‖Ḃsp,1(Ω).

Combining (6.42), (6.38) and (6.39) completes the proof of the lemma.

We are now ready to prove Theorem 6.2.3. According to (6.12), in order to

get (6.9), it suffices to show that

‖u‖
L1(0,T ;Ḃsp,1∩Ḃs

′
q,1(K))

. ‖u0‖Ḃsp,1∩Ḃs′q,1(K)
+ ‖f‖

L1(0,T ;Ḃsp,1∩Ḃs
′
q,1(K))

.

Of course, ‖u‖
L1(0,T ;Ḃs

′
q,1(K))

may be directly bounded from Lemma 6.2.1, and

it is also the case of ‖u‖L1(0,T ;Ḃsp,1(K)) if p < n/2 and s < 1/p− 2/n.

If p ≥ n/2, then we use the fact that

Ḃs′+2
q,1 (Ω) ⊂ Ḃs

q∗,1(Ω) with
1

q∗
=

1

q
− 2

n
+
s− s′

n
·

Therefore, if q < n/2 ≤ p < q∗ then one may combine interpolation and

Lemma 6.2.1 so as to absorb ‖u‖L1(0,T ;Ḃsp,1(K)) by the left-hand side of (6.9),

changing the constant C if necessary.

If p ≥ q∗ then one may repeat the argument again until the all possible

values of p in (n/2,∞) are exhausted. This completes the proof of (6.9).

In order to establish the regularity estimate (6.10), we add up (6.12) and

(6.14) (pertaining to Besov spaces Ḃs
p,1(Ω) and Ḃs′

q,1(K)) and use the interpo-

lation inequality (6.26) so as to eliminate the term ‖∇u‖
L1(0,T ;Ḃsp,1∩Ḃs

′
q,1(K))

.

We eventually get

‖u,∇u‖
L∞(0,T ;Ḃsp,1∩Ḃs

′
q,1(Ω))

+ ‖ut,∇ut,∇2u,∇3u‖
L1(0,T ;Ḃsp,1∩Ḃs

′
q,1(Ω))

. ‖u0,∇u0‖Ḃsp,1∩Ḃs′q,1(Ω)
+ ‖f,∇f‖

L1(0,T ;Ḃsp,1∩Ḃs
′
q,1(Ω))

+ ‖u‖
L1(0,T ;Ḃsp,1∩Ḃs

′
q,1(K))

.

The last term may be handled by means of Lemma 6.2.1, as in the proof

of (6.9). This completes the proof of Theorem 6.2.3.

Remark 6.2.1. — Here we decided to concentrate on the exterior domain

case. Similar results hold true for the solutions to (6.8) supplemented with the

condition that
∫

Ω u dx = 0 in any smooth bounded domain Ω of Rn with n ≥ 2
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(instead of n ≥ 3 for exterior domains). The first part of the analysis, namely

the proof of Theorem 6.2.4, works the same, and Lemma 6.2.1 may be improved

given that Lp − Lq estimates may be replaced by exponential decay.

6.3. Solving a low Mach number system

We can now tackle the well-posedness issue of System (6.1) for data having

critical regularity, and Ω an exterior domain of Rn with n ≥ 3. For simplicity,

we focus on the global-in-time existence for small perturbations of the trivial

constant state (θ, u) = (0, 0) and consider data (θ0, u0) with bulk regularity in

the critical spaces Ḃ
n/p
p,1 (Ω)× Ḃn/p−1

p,1 (Ω) with p = n (see [14] for more general

results in the case Ω = Rn).

First we need to introduce a few notation. For s ∈ R and 1 ≤ p, q ≤ +∞,
we denote by Xs

p,q the set of functions z : R+×Ω→ R with z ∈ Cb(R+; Ḃs
p,1 ∩

Ḃs
q,1(Ω)) and ∂tz,D

2z ∈ L1(R+; Ḃs
p,1 ∩ Ḃs

q,1(Ω)) endowed with the norm

(6.43) ‖z‖Xs
p,q

:= ‖z‖L∞(R+;Ḃsp,1∩Ḃsq,1(Ω)) + ‖∂tz,∇2z‖L1(R+;Ḃsp,1∩Ḃsq,1(Ω)).

We shall keep the same notation for vector fields with components in Xs
p,q.

Next, we denote by X̃s
p,q the subspace of functions θ ∈ Xs−1

p,q satisfying

∇θ ∈ Xs−1
p,q , and set

(6.44) ‖θ‖
X̃s
p,q

:= ‖θ‖Xs−1
p,q

+ ‖∇θ‖Xs−1
p,q

.

It will also be convenient to use the notation B̃s
p,1(Ω) to designate the space of

those functions θ ∈ Ḃs−1
p,1 (Ω) so that ∇θ ∈ Ḃs−1

p,1 (Ω), endowed with the norm

(6.45) ‖θ‖
B̃sp,1(Ω)

:= ‖θ‖Ḃs−1
p,1 (Ω) + ‖∇θ‖Ḃs−1

p,1 (Ω).

Here is our main global well-posedness result for System (6.1).

Theorem 6.3.1. — Assume that Ω is an exterior domain of Rn with n ≥ 3.

Let θ0 ∈ B̃1
q,1 ∩ Ḃ1

n,1(Ω) and u0 ∈ Ḃ0
q,1 ∩ Ḃ0

n,1(Ω) with 1 < q < n/2. If the

compatibility condition

(6.46) divu0 = adiv (κ(θ0)∇θ0)

is satisfied, and

(6.47) ‖θ0‖B̃1
q,1∩Ḃ1

n,1(Ω)
+ ‖u0‖Ḃ0

q,1∩Ḃ0
n,1(Ω) ≤ c
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for sufficiently small c, then there exists a unique global-in-time solution

(θ, u,∇Q) to System (6.1) such that

(6.48) (θ, u) ∈ X̃1
n,q ×X0

n,q and ∇Q ∈ L1(R+; Ḃ0
q,1 ∩ Ḃ0

n,1(Ω)).

Besides, for some constant C = C(n, q,Ω),

(6.49) ‖∇Q‖L1(R+;Ḃ0
q,1∩Ḃ0

n,1(Ω)) + ‖θ‖
X̃1
n,q

+ ‖u‖X0
n,q

≤ C
(
‖θ0‖B̃1

q,1∩Ḃ1
n,1(Ω)

+ ‖u0‖Ḃ0
q,1∩Ḃ0

n,1(Ω)

)
.

Some comments are in order, concerning the data. First, as in [14], we

should be able to consider large data θ0 ∈ B̃1
n,1(Ω) and u0 ∈ Ḃ0

n,1(Ω) and get

the local existence of unique strong solutions, provided that there is no vacuum

initially (or equivalently that ϑ0 is positive). Second, we did not assume that

θ0 is in Ḃ0
n,1(Ω) because it is guaranteed by the following embedding:

(6.50) Ḃ0
q,1 ∩ Ḃ1

n,1 ∩ Ḃ1
q,1(Ω) ↪→ Ḃ0

n,1(Ω).

Finally, we expect a similar statement to be true for more general gases where

the function a smoothly depends on ϑ. However, this would require us to gener-

alize our maximal regularity estimates to the Stokes system with a divergence

constraint which reads divR+A.

Proof of Theorem 6.3.1. — Proving the existence and uniqueness of a solution

for (6.1) is based on the Banach fixed point theorem. As a preliminary step,

we shall derive a priori estimates. This will enable us to find out the solution

space and an appropriate smallness condition on the data ensuring a global-

in-time control on the solutions. Next, we shall introduce a suitable map T
the fixed points of which are global solutions to (6.1). Slight modifications of

the estimates obtained in the preliminary step will enable us to justify that

the hypotheses of the fixed point theorem are fulfilled. This will complete the

proof of the global-in-time existence. Proving uniqueness is almost the same

as proving that T is contractive on a suitably small ball, and is thus omitted.

Step 1. A priori estimates. — Let ρ̄ := ρ(0), µ̄ := µ(0), κ̄ := κ(0) and

β̄ := β(0). Set ρ̃ := ρ− ρ̄, µ̃ := µ− µ̄, κ̃ := κ− κ̄, and β̃ := β− β̄. Let us recast
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System (6.1) as follows:

(6.51)



β̄∂tθ − div (κ̄∇θ) = div (κ̃(θ)∇θ)− β(θ)u · ∇θ − β̃(θ)∂tθ,

ρ̄∂tu− div (µ̄Du) +∇Q = div (µ̃(θ)Du)− ρ(θ)u · ∇u− ρ̃(θ)∂tu,

divu = adiv (κ(θ)∇θ),
u|∂Ω = 0,

∂~nθ|∂Ω = 0,

u|t=0 = u0,

θ|t=0 = θ0.

Before going further in the computations, let us point out that our results for

the Stokes system in Section 4.3 hold for divDu instead of ∆u. Indeed, as a

first step, we removed the compressibility (the right-hand side of (6.51)3) to

obtain a divergence-free vector field. Then divDu = ∆u for divu = 0. One

may alternately remark that for a general vector-field we have div (Du) =

∆u+∇ divu, and incorporate the last term in the pressure. In any case, our

bounds for (6.51) will follow from Theorem 4.3.3 for the Stokes system and

Theorem 6.2.4 for the heat equation.

More precisely, on the one hand, applying Theorem 6.2.4 yields

(6.52) ‖θ‖
X̃1
n,q

. ‖θ0‖B̃1
q,1∩Ḃ1

n,1(Ω)

+ ‖ div (κ̃(θ)∇θ)− β(θ)u · ∇θ − β̃(θ)∂tθ‖L1(R+;B̃1
q,1∩Ḃ1

n,1(Ω))
.

On the other hand, applying Theorem 4.3.3 to the momentum equation (recall

that κ(θ)∇θ · ~n ≡ 0 at ∂Ω), we get for all 1 < m <∞,

‖u‖X0
n,q

+ ‖∇Q‖L1(R+;Ḃ0
q,1∩Ḃ0

n,1(Ω))(6.53)

. ‖u0‖Ḃ0
q,1∩Ḃ0

n,1(Ω)

+ ‖ div (µ̃(θ)Du)− ρ̃(θ)∂tu− ρ(θ)u · ∇u‖L1(R+;Ḃ0
q,1∩Ḃ0

n,1(Ω))

+ ‖ div (κ(θ)∇θ)‖L1(R+;Ḃ1
q,1∩Ḃ1

n,1(Ω))

+ ‖(κ(θ)∇θ)t‖L1(R+;Ḃ0
q,1∩Ḃ0

n,1(Ω)) + ‖κ(θ)∇θ‖L1(R+;Lm(Ω)).

Note that no bounds for the pressure are needed to close the estimates, as

it does not appear in the right-hand sides of (6.52) and (6.53). This quantity

can be controlled at the end of our analysis. Another observation is that

the left-hand side of (6.52) allows to estimate the highest order term in θ in

the right-hand side of (6.53). To close the a priori estimates, we need to get
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suitable bounds for the right-hand side of (6.52) and (6.53). As the full proof

is quite repetitive, we just consider a few terms by way of example.

For instance, we have, keeping (6.50) in mind,

‖ div (κ̃(θ)∇θ)‖
B̃1
q,1∩B̃1

n,1(Ω)
(6.54)

. ‖κ̃(θ)∇∆θ‖Ḃ0
q,1∩Ḃ0

n,1(Ω) + ‖κ̃′(θ)∇θ ⊗∇2θ‖Ḃ0
q,1∩Ḃ0

n,1(Ω)

+ ‖κ̃′′(θ)|∇θ|3‖Ḃ0
q,1∩Ḃ0

n,1(Ω) + ‖κ̃(θ)∆θ + κ̃′(θ)|∇θ|2‖Ḃ0
q,1(Ω).

First let us note that

(6.55) ‖θ‖M(Ḃ0
q,1∩Ḃ0

n,1(Ω)) . ‖θ‖Ḃ1
n,1(Ω) . ‖θ,∇θ‖Ḃ0

n,1(Ω).

The first inequality stems from Lemma 5.5.1 and the second one from the

corresponding inequality in Rn (use a standard extension operator after re-

ducing the proof to the bounded domain case). We eventually get, after using

composition estimates:

(6.56) ‖κ̃(θ)∇3θ‖L1(R+;Ḃ0
q,1∩Ḃ0

n,1(Ω))

. ‖θ,∇θ‖L∞(R+;Ḃ0
n,1(Ω))‖∇

3θ‖L1(R+;Ḃ0
q,1∩Ḃ0

n,1(Ω)).

The second term in (6.54) may be handled similarly. Using (6.55), we get

‖κ̃′(θ)∇θ ⊗∇2θ‖L1(R+;Ḃ0
q,1∩Ḃ0

n,1(Ω))

. ‖θ,∇θ‖L∞(R+;Ḃ0
n,1(Ω))‖∇

2θ,∇3θ‖L1(R+;Ḃ0
q,1∩Ḃ0

n,1(Ω)).

By the same arguments, we see that the third term obeys

‖|∇θ|2‖L1(R+;Ḃ1
n,1(Ω)) . ‖θ,∇θ‖

3
L∞(R+;Ḃ0

n,1(Ω))
‖∇2θ,∇3θ‖L1(R+;Ḃ0

q,1∩Ḃ0
n,1(Ω)).

The (lower order) last term in (6.54) may be handled along the same lines.

Next, bounding β(θ)u · ∇θ in L1(R+; B̃1
q,1 ∩ Ḃ1

n,1(Ω)) follows from the fact

that β(θ) ∈ L∞(R+;M(Ḃ0
n,1)) and u ∈ L2(R+;M(Ḃ0

n,1)). We also see that

‖β̃(θ)∂tθ‖B̃1
q,1∩Ḃ1

n,1(Ω)

. ‖β̃(θ)∂tθ‖Ḃ0
q,1∩Ḃ0

n,1(Ω)

+ ‖β̃′(θ)∇θ∂tθ‖Ḃ0
q,1∩Ḃ0

n,1(Ω) + β̃(θ)∇∂tθ‖Ḃ0
q,1∩Ḃ0

n,1(Ω)

. ‖θ‖Ḃ1
n,1(Ω)

(
‖∂tθ‖Ḃ0

q,1∩Ḃ0
n,1(Ω)

+ ‖∇θ‖Ḃ0
q,1∩Ḃ0

n,1(Ω)‖∂tθ‖Ḃ1
n,1(Ω) + ‖∇∂tθ‖Ḃ0

q,1∩Ḃ0
n,1(Ω)

)
.
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Finally, let us bound some terms in the right-hand side of (6.53). We observe

for instance that

‖ div (κ(θ)∇θ)‖L1(R+;Ḃ1
q,1∩Ḃ1

n,1(Ω)) . ‖∇
2θ‖L1(R+;Ḃ1

q,1∩Ḃ1
n,1(Ω)) + ‖θ‖2

X̃1
n,q

and that

‖(κ(θ)∇θ)t‖L1(R+;Ḃ0
q,1∩Ḃ0

n,1(Ω))

≤ ‖κ′(θ)θt∇θ‖L1(R+;Ḃ0
q,1∩Ḃ0

n,1(Ω)) + κ(θ)∇θt‖L1(R+;Ḃ0
q,1∩Ḃ0

n,1(Ω))

. ‖θt‖L1(R+;M(Ḃ0
q,1∩Ḃ0

n,1(Ω))‖∇θ‖L∞(R+;Ḃ0
q,1∩Ḃ0

n,1(Ω)) + ‖∇θt‖L1(R+;Ḃ0
q,1∩Ḃ0

n,1(Ω))

. ‖θ‖
X̃1
n,q

(1 + ‖θ‖
X̃1
n,q

).

Note also that taking m = qn/(n − 2q) and using the embedding Ḃ2
q,1(Ω) ↪→

Lm(Ω) enables us to write that

‖κ(θ)∇θ‖L1(R+;Lm(Ω)) ≤ C‖θ‖L1(R+;Ḃ2
q,1(Ω)).

Moreover,

‖div(µ̃(θ)D(u))‖L1(R+;Ḃ0
q,1∩Ḃ0

n,1(Ω))

. ‖θ‖L∞(R+;Ḃ1
n,1(Ω))‖∇

2u‖L1(R+;Ḃ0
q,1∩Ḃ0

n,1(Ω))

+ ‖∇θ‖L∞(R+;Ḃ0
q,1∩Ḃ0

n,1(Ω))‖∇u‖L1(R+;M(Ḃ0
q,1∩Ḃ0

n,1(Ω))

. ‖θ‖
X̃1
n,q
‖u‖X0

n,q
.

Putting together all the above estimates, we end up with

(6.57) ‖u‖X0
n,q

+ ‖θ‖
X̃1
n,q
≤ C

(
‖u0‖Ḃ0

q,1∩Ḃ0
n,1(Ω) + ‖θ0‖B̃1

q,1∩Ḃ1
n,1(Ω)

+
(
‖u‖X0

n,q
+ ‖θ‖

X̃1
n,q

)2
+
(
‖u‖X0

n,q
+ ‖θ‖

X̃1
n,q

)4)
.

Hence we deduce from an elementary bootstrap argument that (6.49) follows

from (6.47) if c has been taken small enough.

Step 2. The proof of the existence for small data. — The proof of the existence

will be an elementary consequence of the Banach fixed point theorem. Let us

introduce the map

(6.58) T : E0
n,q −→ E0

n,q

with E0
n,q := X0

n,q × X̃1
n,q and

(6.59) T (ǔ, θ̌) = (u, θ)
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such that (u, θ) is the solution to the following linear system in (0, T )× Ω:

(6.60)



β̄∂tθ − div (κ̄∇θ) = div (κ̃(θ̌)∇θ̌)− β(θ̄)ǔ · ∇θ̌ − β̃(θ̌)∂tθ̌,

ρ̄∂tu− div (µ̄Du) +∇Q
= div (µ̃(θ̌)Dǔ)− ρ̃(θ̌)∂tǔ− ρ(θ̌)ǔ · ∇ǔ,

divu = a div (κ(θ̌)∇θ̌),

u|∂Ω = 0 and ∂~nθ|∂Ω = 0,

u|t=0 = u0, θ|t=0 = θ0.

The solvability of System (6.60) in the space E0
n,q follows from the fact that

the left-hand sides are just heat equation with Neumann boundary conditions,

and the Stokes system with Dirichlet boundary conditions. Hence one may

directly apply Theorems 4.3.3 and 6.2.3 and follow the computations of the

previous step. More precisely, (6.57) (with (θ̌, ǔ) in the right-hand side) implies

that T maps the closed ball B(0, R) of E0
n,q into itself if choosing

(6.61) R = 2C
(
‖u0‖Ḃ0

q,1∩Ḃ0
n,1(Ω) + ‖θ0‖Ḃ1

q,1∩B̃1
n,1(Ω)

)
and assuming that

4C2
(
‖u0‖Ḃ0

q,1∩Ḃ0
n,1(Ω) + ‖θ0‖Ḃ1

q,1∩B̃1
n,1(Ω)

)
+16C4

(
‖u0‖Ḃ0

q,1∩Ḃ0
n,1(Ω) + ‖θ0‖Ḃ1

q,1∩B̃1
n,1(Ω)

)3 ≤ 1.

To complete the proof of global existence, it suffices to show that T is a

contraction on B(0, R), viz. that for all (ǔ1, θ̌1) and (ǔ2, θ̌2) in B(0, R), we

have

(6.62) ‖T (ǔ1, θ̌1)− T (ǔ2, θ̌2)‖E0
n,q
≤ 1

2
‖(ǔ1 − ǔ2, θ̌1 − θ̌2)‖E0

n,q
.

In order to guarantee (6.61) we consider the following system being a sub-

traction of (6.60) for the first and second solution. Setting δθ := θ1 − θ2,
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δ̌θ := θ̌1 − θ̌2, and so on, we get

(6.63)



β̄∂tδθ − div (κ̄∇δθ) = div (κ̃(θ̌1)∇θ̌1)− β(θ̌1)ǔ1 · ∇θ̌1

−β̃(θ̌1)∂tθ̌1 − div (κ̃(θ̌2)∇θ̌2) + β(θ̌2)ǔ2 · ∇θ̌2 + β̃(θ̌2)∂tθ̌2,

ρ̄∂tδu− div (µ̄Dδu) +∇δQ = −ρ̃(θ̌1)∂tǔ1 − ρ(θ̌1)ǔ1 · ∇ǔ1

+ div (µ̃(θ̌1)Dǔ1) + ρ̃(θ̌2)∂tǔ2 + ρ(θ̌2)ǔ2 · ∇ǔ2 − div (µ̃(θ̌2)Dǔ2),

div δu = adiv (κ(θ̌1)∇θ̌1 − κ(θ̌2)∇θ̌2),

δu|∂Ω = 0 and ∂~nδθ|∂Ω = 0,

δu|t=0 = 0, δθ|t=0 = 0.

We claim that our results for the linear systems (for the left-hand sides

of (6.63)) combined with nonlinear estimates give, up to a change of C,

(6.64) ‖(δu, δθ)‖E0
n,q
≤ CR‖(δ̌u, δ̌θ)‖E0

n,q
.

Let us just show how to bound ∂t
(
κ(θ̌1)∇θ̌1 − κ(θ̌2)∇θ̌2

)
. We write that

‖∂t
(
κ(θ̌1)∇θ̌1−κ(θ̌2)∇θ̌2

)
‖Ḃ0

q,1∩Ḃ0
n,1(Ω)

. ‖∂t(κ(θ̌1)∇δθ̌)‖Ḃ0
q,1∩Ḃ0

n,1(Ω) + ‖∂t(((κ(θ̌1)− κ(θ̌2))∇θ̌2)‖Ḃ0
q,1∩Ḃ0

n,1(Ω)

. ‖κ(θ̌1)∇δθ̌t, κ′(θ̌)θ̌t∇δθ̌, (κ(θ̌1)−κ(θ̌2))∇θ̌2,t‖Ḃ0
q,1∩Ḃ0

n,1(Ω)

+ ‖κ′(θ̌1)δθ̌t∇θ̌2, (κ
′(θ̌1)− κ′(θ̌2))θ̌2,t∇θ̌2‖Ḃ0

q,1∩Ḃ0
n,1(Ω).

Performing a time integration and using again (6.55) several times, it is easy

to conclude that

‖∂t
(
κ(θ̌1)∇θ̌1 − κ(θ̌2)∇θ̌2

)
‖L1(R+;Ḃ0

q,1∩Ḃ0
n,1(Ω)) ≤ CR‖δθ̌‖X̃1

n,q
.

Taking c small enough in (6.47), and keeping the definition of R as in (6.61), it

is clear that one may ensure that CR ≤ 1/2. The contraction mapping theorem

thus ensures the existence of a fixed point for the map T , which defines a

unique solution to the original problem (6.1). Theorem 6.3.1 is proved.
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