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FUNCTIONAL CALCULUS FOR FIRST ORDER
SYSTEMS OF DIRAC TYPE AND BOUNDARY VALUE

PROBLEMS

Pascal Auscher, Sebastian Stahlhut

Abstract. — This memoir contains two articles.
1) In A priori estimates for boundary value elliptic problems via first order sys-

tems, we prove a number of a priori estimates for weak solutions of elliptic equations
or systems with vertically independent coefficients in the upper-half space. These
estimates are designed towards applications to boundary value problems of Dirichlet
and Neumann type in various topologies. We work in classes of solutions which in-
clude the energy solutions. For those solutions, we use a description using the first
order systems satisfied by their conormal gradients and the theory of Hardy spaces
associated with such systems but the method also allows us to design solutions which
are not necessarily energy solutions. We obtain precise comparisons between square
functions, non-tangential maximal functions and norms of boundary trace. The main
thesis is that the range of exponents for such results is related to when those Hardy
spaces (which could be abstract spaces) are identified to concrete spaces of tempered
distributions. We consider some adapted non-tangential sharp functions and prove
comparisons with square functions. We obtain boundedness results for layer poten-
tials, boundary behavior, in particular strong limits, which is new, and jump relations.
One application is an extrapolation for solvability “à la Šnĕıberg”. Another one is sta-
bility of solvability in perturbing the coefficients in L∞ without further assumptions.
We stress that our results do not require De Giorgi-Nash assumptions, and we improve
the available ones when we do so.

2) In Lp-Lq theory for holomorphic functions of perturbed first order Dirac opera-
tors, the aim is to prove Lp-Lq off-diagonal estimates and Lp-Lq boundedness for op-
erators in the functional calculus of certain perturbed first order differential operators
of Dirac type for with p ≤ q in a certain range of exponents. We describe the Lp-Lq

off-diagonal estimates and the Lp-Lq boundedness in terms of the decay properties of
the related holomorphic functions and give a necessary condition for Lp-Lq bound-
edness. Applications to Hardy-Littlewood-Sobolev estimates for fractional operators
will be given.

c© Mémoires de la Société Mathématique de France 144, SMF 2016



iv

Résumé (Calcul fonctionnel des systèmes du premier ordre de type Dirac et problèmes
aux limites)

Ce mémoire comporte deux articles.
1) Dans Estimations a priori pour les problèmes aux limites elliptiques via des sys-

tèmes du premier ordre, on démontre un certain nombre d’estimations a priori pour
les solutions faibles d’équations ou systèmes elliptiques sur le demi-espace dont les
coefficients sont indépendents de la variable verticale. Ces estimations s’appliquent
aux problèmes de Dirichlet ou de von Neumann dans des topologies variées. Nous
considérons des classes de solutions comprenant les solutions d’énergie. Pour ces solu-
tions, on utilise une approche par réduction à un système du premier ordre vérifié
par le gradient conormal et une théorie des espaces de Hardy associés à ces systèmes.
La méthode permet aussi de construire d’autres types de solutions. On obtient des
comparaisons précises entre les normes de certaines fonctions d’aire, de certaines fonc-
tions non-tangentielles maximales et de la trace des solutions du système. La thèse du
mémoire est que l’ensemble des exposants pour lesquels on obtient ces comparaisons
est relié à celui pour lesquels les espaces de Hardy associés (qui pourraient n’être que
des espaces abstraits) sont identifiés à des espaces concrets dans les distributions tem-
pérées. On compare aussi les normes des fonctions maximales dièses non-tangentielles
à celle des fonctions d’aire. On obtient en particulier des résultats de continuité pour
les opérateurs de simple et double couche généralisés, leur comportement au bord
dans des topologies fortes, ce qui est nouveau, et les relations de saut. Une des appli-
cations est un résultat d’extrapolation locale « à la Šnĕıberg » pour la résolubilité de
nos équations elliptiques. Une autre est la stabilité de la résolubilité par perturbations
dans L∞ des coefficients. On observe que nos résultats n’utilisent pas la régularité lo-
cale des solutions (i.e., les conditions de DeGiorgi-Nash) et, lorsque nous la supposons,
nous améliorons les résultats existants.

2) Dans Théorie Lp-Lq pour le calcul holomorphe d’opérateurs de Dirac perturbés,
notre objectif est de démontrer des estimations de continuité hors diagonale Lp-Lq

pour des opérateurs dans le calcul fonctionnel de certains opérateurs différentiels de
type Dirac avec p ≤ q dans un certain intervalle d’exposants. Nous donnons des
conditions suffisantes et des conditions nécessaires pour obtenir de telles estimations.
Une application à des inégalités de type Hardy-Littlewood-Sobolev pour les puissances
fractionnaires est donnée.
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PART I

A PRIORI ESTIMATES FOR

BOUNDARY VALUE ELLIPTIC

PROBLEMS VIA FIRST

ORDER SYSTEMS

Pascal Auscher & Sebastian Stahlhut





1. INTRODUCTION

Our main goal in this work is to provide a priori estimates for boundary value

problems for t-independent systems in the upper half space. We will apply this to

perturbation theory for solvability. Of course, this topic has been much studied, but

our methods and results are original in this context. We obtain new estimates and

also design solutions in many different classes.

A remarkable feature is that we do not require any kind of existence or uniqueness

to build such solutions. In fact, the point of the reduction of second order PDEs to

first order systems is that for such systems the aim is to understand the initial value

problem, and solving the PDE means inverting a boundary operator to create the

initial data for the first order system. The initial value problem looks easier. However,

the system has now a big null space and this creates other types of difficulties as we

shall see.

If E(Ω) is a normed space of C-valued functions on a set Ω and F a normed space,

then E(Ω;F ) is the space of F -valued functions with ‖|f |F ‖E(Ω) < ∞. More often,

we forget about the underlying F if the context is clear.

We denote points in R1+n by boldface letters x,y, . . . and in coordinates in R×Rn

by (t, x), etc. We set R1+n
+ = (0,∞) × Rn. Consider the system of m equations

given by

(1)
n∑

i,j=0

m∑
β=1

∂i
(
Aα,β

i,j (x)∂ju
β(x)

)
= 0, α = 1, . . . ,m

in R1+n
+ , where ∂0 = ∂

∂t and ∂i =
∂

∂xi
if i = 1, . . . , n. For short, we write

Lu = − divA∇u = 0

to mean (1), where we always assume that the matrix

(2) A(x) = (Aα,β
i,j (x))α,β=1,...,m

i,j=0,...,n ∈ L∞(Rn;L(Cm(1+n))),

is bounded and measurable, independent of t, and satisfies the strict accretivity con-

dition on a subspace H of L2(Rn;Cm(1+n)), that is, for some λ > 0

(3)

∫
Rn

Re(A(x)f(x) · f(x)) dx ≥ λ
n∑

i=0

m∑
α=1

∫
Rn

|fα
i (x)|2dx, ∀f ∈ H.

The subspaceH is formed of those functions (fα
j )

α=1,...,m
j=0,...,n such that (fα

j )j=1,...,n is curl-

free in Rn for all α. The system (1) is always considered in the sense of distributions

with weak solutions, that is H1
loc(R

1+n
+ ;Cm) = W 1,2

loc (R
1+n
+ ;Cm) solutions.



4 1. INTRODUCTION

It was proved in [8] that weak solutions of Lu = 0 in the classes

E0 = {u ∈ D′; ‖Ñ∗(∇u)‖2 < ∞}
or

E−1 = {u ∈ D′; ‖S(t∇u)‖2 < ∞}
(where Ñ∗(f) and S(f) stand for a non-tangential maximal function and square func-

tion: definitions will be given later) have certain semigroup representation in their

conormal gradient

∇Au(t, x) :=

[
∂νA

u(t, x)

∇xu(t, x)

]
.

More precisely, one has

(4) ∇Au(t, . ) = S(t)(∇Au|t=0)

for a certain semigroup S(t) acting on the subspace H of L2 in the first case and in

the corresponding subspace in Ḣ−1, where Ḣs is the homogeneous Sobolev space of

order s, in the second case. Actually, the second representation was only explicitly

derived in subsequent works (see [20, 83]) provided one defines the conormal gradient

at the boundary in this subspace of Ḣ−1. In [83], the semigroup representation was

extended to weak solutions in the intermediate classes defined by

Es =
{
u ∈ D′; ‖S(t−s∇u)‖2 < ∞

}
for −1 < s < 0 and the semigroup representation holds in Ḣs. In particular, for

s = −1/2, the class of weak solutions in E−1/2 is exactly the class of energy solutions

used in [20, 23] (other classes were defined in [73] and used in [55]). And the

boundary value problems associated to L can always be solved in the energy class.

However, we shall not use this solvability property nor any other one until chapter 14.

Here, we intend to study the following problems:

Problem 1: For which p ∈ (0,∞) do we have

(5) ‖Ñ∗(∇u)‖p ∼ ‖∇Au|t=0‖Xp
∼ ‖S(t∂t∇u)‖p

for solutions of Lu = 0 such that u ∈ E =
⋃

−1≤s≤0 Es?

Problem 2: For which p ∈ (0,∞), do we have

(6) ‖S(t∇u)‖p ∼ ‖∇Au|t=0‖Ẇ−1,p

for solutions of Lu = 0 such that u ∈ E =
⋃

−1≤s≤0 Es?
Here, Ẇ−1,p is the usual homogeneous Sobolev space of order −1 on Lp: an esti-

mate for partial derivatives in Ẇ−1,p amounts to a usual Lp estimate. Moreover, do

we have an analog when p = ∞, in which case we look for a Carleson measure esti-

mate of |t∇u|2 to the left and BMO−1 to the right, and a weighted Carleson measure

estimate of |t∇u|2 to the left and Hölder spaces Λ̇α−1 to the right?
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1. INTRODUCTION 5

Let us comment on problem 1: here for the problem to make sense, we takeXp = Lp

if p > 1 and Xp = Hp, the Hardy space, for p ≤ 1 and soon discover the constraint

p > n
n+1 . The equivalence between non-tangential maximal estimates andXp norms is

known in the following case: the inequality � is a very general fact proved for all weak

solutions and 1 < p < ∞ in [72] and when n
n+1 < p ≤ 1 in [61], and their arguments

carry over to our situation. The inequality � was proved in [55] for 1 < p < 2+ε and

in [23] for 1− ε < p ≤ 1 (and also 1 < p < 2 by interpolation) assuming some interior

regularity of solutions (the De Giorgi-Nash condition) of Lu = 0. To our knowledge,

a priori comparability with the square function S(t∂t∇u) has not been studied so far,

but this is a key feature of our analysis, roughly because the square function norms

in (5) define spaces that interpolate while it is not clear for the spaces corresponding

to non-tangential maximal norms in (5). The range of p in problem 1 allows one to

formulate Neumann and regularity problems with Lp/Hp data, originally introduced

in [72], in a meaningful way. By this, we mean that the conormal derivative and the

tangential gradient at the boundary are in the natural spaces for those problems to

have a chance to be solved with such solutions. Outside this range of p, there will be

no solutions in our classes.

Let us turn to problem 2: that such comparability holds for a range of p containing

[2,∞] and beyond under the De Giorgi-Nash condition on L was already used in [23].

We provide here the proof. The inequalities obtained in [55] contain extra terms and

are less precise. The comparability in problem 2 allows one to formulate the Dirichlet

problem with Lp data and even BMO or Λ̇α data and also a Neumann problem with

Ẇ−1,p or BMO−1 or Λ̇α−1 data. Note that we are talking about square functions

without mentioning non-tangential maximal estimates on the solutions u which are

usually smaller in Lp sense. A beautiful result in [54] is the converse inequality for

solutions of real elliptic equations.

We shall study comparability with appropriate non-tangential sharp functions,

namely study when does

‖Ñ∗(u− u0)‖p � ‖S(t∇u)‖p

hold. The advantage of this inequality compared to the one with the non-tangential

maximal function (which will be studied as well) is that we may allow p = ∞, in

which case the right hand side should be replaced by the Carleson measure estimate

of |t∇u|2, and beyond using adapted versions for Hölder estimates.

The boundary spaces obtained in problem 1 for L and in problem 2 for L∗ are

usually in duality. This was used in [23] to give new lights, with sharper results, on

the duality principles for elliptic boundary value problems studied first in [72] and

then [45], [55], and to apply this to extrapolation.

Our main results are the following (here in dimension 1 + n ≥ 2).
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Theorem 1.1. — The range of p in problem 1 for solutions u ∈ E of

Lu = 0

is an interval IL contained in ( n
n+1 ,∞) and containing ( 2n

n+2 − ε, 2 + ε′) for some

ε, ε′ > 0. Moreover, if n = 1 then IL = ( 12 ,∞), if L has constant coefficients then

IL = ( n
n+1 ,∞) and if n ≥ 2 and L∗

‖ has the De Giorgi condition then IL = (1−ε, 2+ε′)

where ε is related to the regularity exponent in the De Giorgi condition.

Here, L‖ is the tangential part of operator in L, obtained by deleting in L any term

with a ∂t = ∂0 derivative in it. As L has t-independent coefficients, L‖ is seen as an

operator on Rn and the De Giorgi condition for L∗
‖ is about the regularity of weak

solutions of L∗
‖u = 0 in Rn. For example, this holds when L‖ is a scalar real operator,

but also when 1 + n = 2 (this is due to Morrey). In that case, the other coefficients

of L are arbitrary.

Theorem 1.2. — The range of exponents in problem 2 for solutions u ∈ E of

L∗u = 0

is “dual” to the one in theorem 1.1. That is, for p ∈ IL, we obtain (6) for p′ if p > 1,

the modification for BMO if p = 1 and the modification for Λ̇α with α = n( 1p − 1)

if p < 1.

Although we can not define the objects in the context of this introduction, the

main thesis of this work is as follows : The exponents p in the first theorem are the

exponents for which the Hardy space H
p
DB for the first order operator DB associated

to L (as discovered in [11]) is identified to H
p
D. The semigroup S(t) mentioned above

coincides with e−t|DB| seen as some kind of Poisson semigroup or Cauchy extension

depending on the point of view. Hence, a large part of this work is devoted to say

when H
p
DB and H

p
D are the same.

A word on the a priori class E is in order: in fact, we want to work with a class

for which the semigroup representation for the conormal gradient (4) is valid and this

is the only reason for restricting to this class of solutions at this time. To make a

parallel (and this case corresponds to the L = −Δ here), this is like proving such

estimates for an harmonic function assuming it is the Poisson integral of an L2 func-

tion: such estimates are in the fundamental work of Fefferman-Stein [48]. Removing

this a priori information uses specific arguments on harmonic functions (also found

in [48]). Removing that u ∈ E a priori will also require specific arguments. This will

be the purpose of a forthcoming work by the first author with M. Mourgoglou [24].

It will be proved semigroup representation: every solution of L with ‖Ñ∗(∇u)‖p < ∞
in the range of p for theorem 1.1 has the semigroup representation (4) in an appro-

priate functional setting; and every solution of L∗ with ‖S(t∇u)‖p or even weighted

Carleson control in the “dual” range of theorem 1.2 and a weak control at infinity has

the semigroup representation in an appropriate functional setting.
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We remark that the results obtained here impact on the boundary layer potentials.

A. Rosén [81] proposed an abstract definition of boundary layer potentials Dt and St

which turned out to coincide with the ones constructed in [3] for real equations of their

perturbations via the fundamental solutions. These abstract definitions use the first

order semi-group S(t) mentioned above, instantly proving the L2 boundedness of Dt

and ∇St, which was a question raised by S. Hofmann [62]. Thus in the interval of p

and its dual arising in the two theorems above, we obtain boundedness, jump relations,

non-tangential maximal estimates and square functions estimates. In particular, we

obtain strong limits as t → 0, which is new for p �= 2, the case p = 2 following

from a combination of [8] and [81]. It goes without saying that these results are

obtained without any kernel information nor fundamental solution: this is far beyond

Calderón-Zygmund theory and subsumes the results in [61].

In the context of theorem 1.2, we also prove

‖Ñ∗(u− u0)‖p′ � ‖S(t∇u)‖p′

in the same range and with modification for p = 1 and below. Our non-tangential

sharp functions above can be seen as a part of non-tangential sharp functions adapted

to the first order operators BD for which we have the equivalence

‖Ñ�(φ(tBD)h)‖p′ ∼ ‖S(t∇u)‖p′

for an appropriate h, where Ñ�(φ(tBD)h) = Ñ∗(φ(tBD)h − h). Modified sharp

functions, where averages are replaced by the action of more general operators, were

introduced by Martell [77] and then used by [47] in developing their BMO theory

associated with operators. Some versions were also used by [59] and [60] in the

context of second order operators under divergence form on Rn. All these versions

used φ such that φ(tBD) have enough decay in some pointwise or averaged sense.

Here we have to consider the Poisson type semigroup e−t|BD| to get back to solutions

of L. The difficulty lies in the fact that these operators have small decay and we

overcome this using the depth of Hardy space theory because these operators are

bounded there while they may not be bounded on Lp.

Let us turn to boundary value problems for solutions of Lu = 0 or L∗u = 0 and

formulate four such problems:

1) (D)L
∗

Y = (R)L
∗

Y −1 : L∗u = 0, u|t=0 ∈ Y , t∇u ∈ T .

2) (R)LX : Lu = 0, ∇xu|t=0 ∈ X, Ñ∗(∇u) ∈ N .

3) (N)L
∗

Y −1 : L∗u = 0, ∂νA∗u|t=0 ∈ Ẏ −1, t∇u ∈ T .

4) (N)LX : Lu = 0, ∂νA
u|t=0 ∈ X, Ñ∗(∇u) ∈ N .

Here X is a space Xp with p ∈ IL, Y is the dual space of such an X (we are

ignoring whether functions are scalar or vector-valued; context is imposing it) and

Ẏ −1 = divx(Y
n) with the quotient topology. Then N = Lp for p ∈ IL and T is a
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tent space T p′

2 if p ≥ 1 and a weighted Carleson measure space T∞
2,n( 1

p−1)
if p < 1.

In each case, we want to solve, possibly uniquely, with control from the data. For

example, for (D)L
∗

Y we want ‖t∇u‖T � ‖u|t=0‖Y , etc. The behavior at the boundary
is continuity (strong or weak-∗) at t = 0; non-tangential convergence can occur in

some cases but is not part of the convergence at the boundary.

As in [72, 23], we say that a boundary value problem is solvable for the energy class

if the energy solution corresponding to the data (assumed in the proper trace space

as well) satisfies the required control by the data. For energy solutions, we have semi-

group representation or, equivalently, boundary layer representation. By solvability,

we mean existence of a solution for any boundary datum, with control. Precise

definitions will be recalled in chapter 14 where we describe a method to construct

solutions and show the following extrapolation theorem.

Theorem 1.3. — Consider any of the four boundary value problems with a given

space of boundary data in the list above. If it is solvable for the energy class then it

is solvable in nearby spaces of boundary data.

For example, if X = Xp, one can take Xq for q in a neighborhood of p. For

Neumann and regularity problems, this seems to be new for p ≤ 1 in this generality.

See [69] for the case of the Laplacian on Lipschitz domains when p = 1. Also for

p = 1 and duality, we get extrapolation for BMO solvability of the Dirichlet problem.

We note that we only get solvability in the conclusion. In the case of real equations as

in [44] where such an extrapolation of proved, harmonic measure techniques naturally

lead to solvability for the energy class after perturbation.

We shall also prove a stability result for each boundary value problem with respect

to perturbations in L∞ with t-independent coefficients of the operator L. Such results

when p ≤ 1 are known assuming invertibility of the single layer potential with De

Giorgi-Nash conditions in [55], which is not the case here.

Before we end this introduction, let us mention that most of the work to prove

theorems 1.1 and 1.2 has not much to do with the elliptic system given by L and their

solutions (except under De Giorgi-Nash conditions). In fact, this is mainly a conse-

quence of inequalities for Hardy spaces associated to first order systems DB or BD

on the boundary and the operators D can be much more general than the one arising

from the boundary value problems. These type of operators were introduced in the

topic by McIntosh and led to one proof of the L2 boundeness of the Cauchy integral

from the solution of the Kato square root problem in one dimension although the orig-

inal article [39] does not present it this way (see also [71], [21]). An extended higher

dimensional setting was introduced in [29], and further studied in [64, 65, 63, 27],

where D is a differential first order operator with constant coefficients ha ving some

coercivity and B is the operator of pointwise multiplication by an accretive matrix

function. But the relation between elliptic systems (1) and boundary operators of the
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form DB was only established recently in [11], paving the way to the representations

in [8] mentioned above. The Hardy space theory we need is the one associated to

operators with Gaffney-Davies type estimates developed in [22, 59] and followers.

We just mention that our operators are non injective, hence it makes the theory a

little more delicate.

For the first part of the memoir, we shall review the needed material. Then we turn

to the proof of estimates which will imply theorems 1.1 and 1.2 when specializing to

solutions of Lu = 0. A large part of the end of the article is to study the case of oper-

ators with De Giorgi-Nash conditions. The application of our theory to perturbations

for solvability of the boundary value problems is given in the last section.

We shall not attempt to treat intermediate situations for the boundary value prob-

lems, that is assuming some fractional order of regularity for the data. This has been

recently done in [32] with data in Besov spaces for elliptic equations Lu = 0 assuming

De Giorgi type conditions for L and L∗.
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2. SETUP

2.1. Boundary function spaces

We work on the upper-half space R1+n
+ and its boundary identified to Rn. We

consider a variety of function spaces defined on the boundary Rn and valued in CN for

some integer N . Function or distribution spaces X(Rn;CN ) will often be written X if

this is not confusing. For example, Lq := Lq(Rn;CN ) is the standard Lebesgue space.

For 0 < q ≤ 1, Hq denotes the Hardy space in its real version. It will be sometimes

convenient to set Hq = Lq even when q > 1.

The dual of Hq for a duality extending the L2 sesquilinear pairing when q > 1 is

thusHq′ and is the space Λ̇n( 1
q−1) when q ≤ 1. Here, Λ̇0 denotes BMO for convenience;

for 0 < s < 1, Λ̇s is the Hölder space of those continuous functions with |f(x)−f(y)| ≤
C|x− y|s (equipped with a semi-norm); for s ≥ 1, we say f ∈ Λ̇s if the distributional

partial derivatives of f belong to Λ̇s−1.

For q > 1, W 1,q is the standard Sobolev space of order 1 on Lq and Ẇ 1,q denotes

its homogeneous version: the space of Schwartz distributions with ‖∇f‖q < ∞ or,

equivalently, the closure of W 1,q for ‖∇f‖q. It becomes a Banach space when mod-

ing out the constants. For n
n+1 < q ≤ 1, we also set Ḣ1,q, the space of Schwartz

distributions with ∇f ∈ Hq (componentwise). Again, we sometimes use the notation

Ḣ1,q = Ẇ 1,q also when q > 1 for convenience.

The dual of Ẇ 1,q is Ẇ−1,q′ := div(Lq′)n with quotient topology. The dual of Ḣ1,q,

q ≤ 1, is Λ̇s−1 := div(Λ̇s)n when s = n( 1q − 1) ∈ [0, 1), equipped with the quotient

topology.

We shall also use the homogeneous Sobolev spaces Ḣs for s ∈ R. We mention that

for s ≥ 0, they can be realized within L2
loc and equipped with a semi-norm. For s < 0,

the homogeneous Sobolev spaces embed in the Schwartz distributions.

2.2. Bisectorial operators

The space of continuous linear operators between normed vector spaces E,F is

denoted by L(E,F ) or L(E) if E = F . For an unbounded linear operator A, its

domain is denoted by D(A), its null space N(A) and its range R(A). The spectrum is

denoted by σ(A).

An unbounded linear operator A on a Banach space X is called bisectorial of angle

ω ∈ [0, π/2) if it is closed, its spectrum is contained in the closure of

Sω := Sω+ ∪ Sω−,
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where Sω+ := {z ∈ C; | arg z| < ω} and Sω− := −Sω+, and one has the resolvent

estimate

(7) ‖(I + λA)−1‖L(X ) ≤ Cμ, ∀λ /∈ Sμ, ∀μ > ω.

Assuming X is reflexive, this implies that the domain is dense and also the fact that

the null space and the closure of the range split. More precisely, we say that the

operator A kernel/range decomposes if X = N(A) ⊕ R(A) (⊕ means that the sum is

topological). Bisectoriality in a reflexive space is stable under taking adjoints.

For any bisectorial operator in a reflexive Banach space, one can define a calculus

of bounded operators by the Cauchy integral formula,

ψ(A) :=
1

2πi

∫
∂Sν

ψ(λ)(I − 1

λ
A)−1 dλ

λ
,

ψ ∈ Ψ(Sμ) := {φ ∈ H∞(Sμ) : φ(z) = O
(
inf(|z|, |z−1|)α

)
, α > 0},

(8)

with μ > ν > ω and where H∞(Sμ) is the space of bounded holomorphic functions

in Sμ. If one can show the estimate ‖ψ(A)‖ � Cμ‖ψ‖∞ for all ψ ∈ Ψ(Sμ) and all μ

with ω < μ < π
2 , then this allows to extend the calculus on R(A) to all ψ ∈ H∞(Sμ)

and all μ with ω < μ < π
2 in a consistent way for different values of μ. In that case, A

is said to have an H∞-calculus of angle ω on R(A), and b(A) is defined by a limiting

procedure for any b ∈ H∞(Sμ). For those b which are also defined at 0, one extends

the H∞-calculus to X by setting b(A) = b(0)I on N(A). For later use, we shall say

that a holomorphic function on Sμ is non-degenerate if it is non identically 0 on each

connected component of Sμ.

2.3. The first order operator D

We assume that D is a first order differential operator on Rn acting on Schwartz

distributions valued in CN , whose symbol satisfies the conditions (D0), (D1) and (D2)

in [63]. Later, we shall assume that D is self-adjoint on L2 but for what follows in this

section, this is not necessary by observing that the three conditions can be shown to

be stable under taking the adjoint symbol and operator. For completeness, we recall

the three conditions here although what we will be using are the consequences below.

First D has the form

(D0) D = −i
n∑

j=1

D̂j∂j , D̂j ∈ L(CN ).

It can also be viewed as the Fourier multiplier operator with symbol

D̂(ξ) =
n∑

j=1

D̂jξj .
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The symbol is required to satisfy the following properties:

(D1) κ|ξ| · |e| ≤ |D̂(ξ)e|, ∀ξ ∈ Rn, ∀e ∈ R(D̂(ξ)),

where R(D̂(ξ)) stands for the range of D̂(ξ), and

(D2) σ(D̂(ξ)) ⊆ Sω ,

where κ > 0 and ω ∈ [0, π/2) are some constants.

For 1 < q < ∞, this induces the unbounded operator Dq on each Lq with domain

Dq(D) := DLq (D) = {u ∈ Lq;Du ∈ Lq}
and Dq = D on Dq(D). We keep using the notation D instead of Dq for simplicity.

The following properties have been shown in [65], except for the last one shown in [27].

1) D is a bisectorial operator with H∞-calculus in Lq.

2) Lq = Nq(D)⊕ Rq(D), the closure being in the Lq topology.

3) Nq(D) and Rq(D), 1 < q < ∞, are complex interpolation families.

4) D has the coercivity condition

‖∇u‖q � ‖Du‖q for all u ∈ Dq(D) ∩ Rq(D) ⊂ W 1,q.

Here, we use the notation ∇u for ∇⊗ u.

5) Dq(D), 1 < q < ∞, is a complex interpolation family.

The results in [65] are obtained by applying the Mikhlin multiplier theorem to

the resolvent and also to the projection from Lq on Rq(D) along Nq(D) by checking

the symbol is C∞ away from 0 and has the appropriate estimates for all its partial

derivatives. This projection, which we denote by P, will play an important role (it

does not depend on q) and we have

P(Lq) = Rq(D).

This theorem can be shown to apply to the operators b(D) of the bounded holomorphic

functional calculus. Moreover, 4) is a consequence of the Lq boundedness of ∇D−1P,

which again follows from Mikhlin multiplier theorem. Even if this is not done this

way in [27], one can show the property 5) using the Mikhlin multiplier theorem as

in [65].

By standard singular integral theory, all operators to which the (C∞ case of

the) Mikhlin multiplier theorem applies extend boundedly to the Hardy spaces Hq,

0 < q ≤ 1. In particular, P is a bounded projection on Hq so P(Hq) is a closed com-

plemented subspace of Hq.

Set Xp = Lp when 1 < p < ∞, Xp = Hp when p ≤ 1 and also X∞ = BMO the

space of bounded mean oscillations functions.

We mention the following consequence: For 0 < q < ∞, each P(Xq) contains P(D0)

as a dense subspace where D0 is the space of C∞ functions with compact support and

all vanishing moments. Note that a Fourier transform argument shows P(D0) ⊂ S,
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where S is the Schwartz space. Similarly, the same statement holds if D0 is replaced by

the subspace S0 of S of those functions with compactly supported Fourier transform

away from the origin.

As said, all this applies to the adjoint of D (we shall assume D self-adjoint sub-

sequently). Hence, the resolvent of D is bounded on X∗
p , the dual space to Xp with

the estimate (7), and P is a bounded projection on X∗
p . In particular, P(X∗

p ) is com-

plemented in X∗
p . Also, using that the Xp, 0 < p ≤ ∞, spaces form a complex

interpolation scale, the same holds for the spaces P(Xp), 0 < p ≤ ∞.

2.4. The operators DB and BD

We let D as defined above and we assume from now on that D is self-adjoint on L2.

We consider an operator B of multiplication by a matrix B(x) ∈ L(CN ). We assume

that as a function, B ∈ L∞ and note ‖B‖∞ its norm. Thus as a multiplication

operator, B is bounded on all Lq spaces with norm equal to ‖B‖∞ when 1 < q < ∞.

We also assume that B is strictly accretive in R2(D), that is for some κ > 0,

(9) Re〈u,Bu〉 ≥ κ‖u‖22, ∀u ∈ R2(D).

In this case, let

(10) ω := sup
u∈R2(D),u �=0

| arg(〈u,Bu〉)| < π

2

denote the angle of accretivity of B on R2(D). Note that B may not be invertible

on L2. Still for X a subspace of L2, we set B−1X = {u ∈ L2 ; Bu ∈ X}. Note

that B∗ is also strictly accretive on R2(D) with the same lower bound and angle of

accretivity.

Proposition 2.1. — With the above assumptions, we have the following facts.

(i) The operator DB, with domain B−1D2(D), is bisectorial with angle ω, i.e.

σ(DB) ⊆ Sω and there are resolvent bounds ‖(λI − DB)−1‖ � 1/ dist(λ, Sμ)

when λ /∈ Sμ, ω < μ < π/2.

(ii) The operator DB has range R2(DB) = R2(D) and null space N2(DB) =

B−1N2(D) such that topologically (but not necessarily orthogonally) one has

L2 = R2(DB) ⊕ N2(DB).

(iii) The restriction of DB to R2(DB) is a closed, injective operator with dense

range in R2(D). Moreover, the same statements on spectrum and resolvents as

in (i) hold.

(iv) Statements similar to (i), (ii) and (iii) hold for BD with D2(BD) = D2(D),

defined as the adjoint of DB∗ or equivalently by

BD = B(DB)B−1
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on R2(BD) ∩ D2(D) with R2(BD) := BR2(D), and BD = 0 on the null space

N2(BD) := N2(D).

For a proof, see [2]. Note that the accretivity of B is only needed on R2(D).

The fact that D is self-adjoint is used in this statement. In fact, for a self-adjoint

operator D on a separable Hilbert space instead of L2 and a bounded operator B

which is accretive on R2(D), the statement above is valid.

We come back to the concrete D and B above. We isolate this result as it will play

a special role throughout.

Proposition 2.2. — Consider the orthogonal projection P from L2 onto R2(D).

Then P is an isomorphism between R2(BD) and R2(D).

Proof. — Using N2(BD) = N2(D), we have the splittings

L2 = R2(BD) ⊕ N2(D) = R2(D) ⊕ N2(D).

It is then a classical fact from operator theory that P : R2(BD) → R2(D) is invert-

ible with inverse being PBD : R2(D) → R2(BD), where PBD is the projection onto

R2(BD) along N(D) associated to the first splitting. Indeed, if h ∈ R2(D), then

h− PBDh ∈ N2(D), thus P(h− PBDh) = 0. It follows that

h = Ph = (P ◦ PBD)h.

Similarly, we obtain h = (PBD ◦ P)h for h ∈ R2(BD).

We also state the following decay estimates. See [10].

Lemma 2.3 (L2 off-diagonal decay). — Let T = BD or DB. For every integer N

there exists CN > 0 such that

(11) ‖1E (I + itT )−1u‖2 ≤ CN 〈dist(E,F )/|t|〉−N‖u‖2
for all t �= 0, whenever E,F ⊆ Rn are closed sets, u ∈ L2 is such that suppu ⊆ F .

We have set

〈x〉 := 1 + |x| and dist(E,F ) := inf{|x− y| ; x ∈ E, y ∈ F}.

Remark 2.4. — Any operator satisfying such estimates with N > n
2 has an exten-

sion from L∞ into L2
loc.
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3. HOLOMORPHIC FUNCTIONAL CALCULUS

3.1. L2 results

We begin with recalling the following result due to [29]. A direct proof is in [10].

Proposition 3.1. — If T = DB or T = BD, then one has the equivalence

(12)

∫ ∞

0

‖tT (I + t2T 2)−1u‖22
dt

t
∼ ‖u‖22, for all u ∈ R2(T ).

Note that if u ∈ N2(T ) then tT (I + t2T 2)−1u = 0. Thus by the kernel/range

decomposition, we have the inequality � for all u ∈ L2.

The next result summarizes the needed consequences of this quadratic estimate.

This statement, contrarily to the previous one, is abstract and applies to T = BD

or DB on L2.

Proposition 3.2. — Let T be an ω-bisectorial operator on a separable Hilbert

space H with 0 ≤ ω < π/2. Assume that the quadratic estimate

(13)

∫ ∞

0

‖tT (I + t2T 2)−1u‖2 dt

t
∼ ‖u‖2 holds for all u ∈ R(T ).

Then, the following statements hold.

	 T has an H∞-calculus on R(T ), which can be extended to H by setting b(T ) =

b(0)I on N(T ) whenever b is also defined at 0.

	 For any ω < μ < π/2 and any non-degenerate ψ ∈ Ψ(Sμ), the comparison

(14)

∫ ∞

0

‖ψ(tT )u‖2 dt

t
∼ ‖u‖2 holds for all u ∈ R(T ).

	 R(T ) splits topologically into two spectral subspaces

(15) R(T ) = H+
T ⊕H−

T

with H±
T = χ±(T )(R(T )) and χ±(T ) are projections with χ±(z) = 1 if

±Re z > 0 and χ±(z) = 0 if ±Re z < 0.

	 The operator sgn(T ) = χ+(T )− χ−(T ) is a bounded involution on R(T ).

	 The operator |T | = sgn(T )T =
√
T 2 with D(|T |) = D(T ) is an ω-sectorial

operator with H∞-calculus on H and −|T | is the infinitesimal generator of a

bounded analytic semigroup of operators (e−z|T |)z∈Sπ
2
−ω+

on H.



18 3. HOLOMORPHIC FUNCTIONAL CALCULUS

	 For h ∈ D(T ), h ∈ H±
T if and only if |T |h = ±Th. As a consequence e∓zT are

well-defined operators on H±
T respectively, and e−zTχ+(T ) and e+zTχ−(T ) are

well-defined operators on H for z ∈ Sπ
2 −ω+.

Finally, all these properties hold for the adjoint T ∗ of T .

This result is for later use.

Proposition 3.3. — If b ∈ H∞(Sμ) and b is defined at 0, then, for all h ∈ L2,

Pb(BD)Ph = Pb(BD)h.

If ψ ∈ Ψ(Sμ), then for all h ∈ L2, ψ(BD)Ph = ψ(BD)h.

Proof. — Remark that h− Ph ∈ N2(D) = N2(BD). Thus,

b(BD)(h− Ph) = b(0)(h− Ph).

Hence Pb(BD)(h− Ph) = 0. If b = ψ then ψ(BD) annihilates the null space of BD,

hence ψ(BD)(h− Ph) = 0 (This is consistent with the fact that one can set ψ(0) = 0

by continuity).

3.2. Lp results

There has been a series of works [64, 65, 1, 63, 27] concerning extension to Lp

of the L2 theory. We summarize here the results described in [27].

Let D and B be as before and 1 < q < ∞. Then we have a meaning of D

and B as operators on Lq, thus of BD and DB as unbounded operators with natural

domains Dq(D) and B−1Dq(D) respectively. Introduce the set of coercivity of B (it

also depends on D) as

I(BD) = {q ∈ (1,∞) ; ‖Bu‖q � ‖u‖q for all u ∈ Rq(D)}.
By density, we may replace Rq(D) by its closure. The following observation will be

frequently used.

Lemma 3.4. — If q ∈ I(BD) then

B|
Rq(D)

: Rq(D) −→ Rq(BD)

is an isomorphism and Rq(BD) = BRq(D). Moreover, Nq(BD) = Nq(D).

Proof. — See proposition 2.1, (2) and (3), in [27].

Remark 3.5. — It is shown in [63, 27] that the set of coercivity of B is open.

As it contains q = 2, let I2 be the connected component of I(BD) ∩ I(B∗D) that

contains 2. Remark that if B(x) is invertible in L∞ then B is invertible in L(Lq)

for all 1 < q < ∞ and I2 = (1,∞). Otherwise, we do not even know if the set of

coercivity of B is connected.
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For an interval I ⊂ (1,∞), its dual interval is I ′ = {p′; p ∈ I} where p′ is the

conjugate exponent to p. The following result is taken from [27] with a cosmetic

modification in the statement.

Theorem 3.6. — There exists an open interval

I(BD) = (p−(BD), p+(BD)),

maximal in I2, containing 2, with the following dichotomy: bisectoriality of BD with

angle ω, H∞-calculus with angle ω in Lp, and kernel/range decomposition hold for

BD in Lp if p ∈ I(BD) and all fail if p = p±(BD) and p ∈ I2. The same property

holds for DB with I(DB) = I(BD). The same property holds for B∗D = (DB)∗ and

DB∗ = (BD)∗ in the dual interval I(DB∗) = I(B∗D) = (I(BD))′. Thus we have the

relations,

(16) p±(BD) = p±(DB), p±(BD) = p∓(B
∗D)′.

If p±(BD) is an endpoint of I2, then we do not know what happens for p = p±(BD)

from this theory.

We remark that the calculi in Lp are consistent for all p ∈ I(BD). For example, if

Tp = BD with domain Dp(D) then (I+ iTp)
−1u = (I+ iTq)

−1u whenever u ∈ Lp∩Lq

and p, q ∈ I(BD). Thus, we do not distinguish them from now on.

Corollary 3.7. — If q ∈ I(BD) = I(DB), then Rq(DB) = Rq(D).

The inclusion Rq(DB) ⊂ Rq(D) is always true. The converse is not clear when

q /∈ I(BD), so we shall use this equality only for q in this range.

Proof. — The above theorem and corollary 2.3 in [27] give us the assumptions of

proposition 2.1, (4) in [27], of which Rq(DB) = Rq(D) is a consequence.

Proposition 3.8. — Consider the orthogonal projection P from L2 onto R2(D).

For p ∈ I(BD), P extends to an isomorphism between Rp(BD) and Rp(D) with

‖h‖p ∼ ‖Ph‖p for all h ∈ Rp(BD).

Proof. — Using Np(BD) = Np(D) from lemma 3.4, and the kernel/range decompo-

sition for D and for BD if p ∈ I(BD),

Lp = Rp(BD) ⊕ Np(D) = Rp(D) ⊕ Np(D).

The projection onto Rp(D) along Np(D) is the extension of P to Lp. The projection

from Lp onto Rp(BD) along Np(D) is the extension PBD defined on L2 in the proof

of proposition 2.2. Using the same notation for the extensions, it follows that P :

Rp(BD) → Rp(D) and PBD : Rp(D) → Rp(BD) are inverses of each other.
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Corollary 3.9. — For all p ∈ I(BD), the conclusions of proposition 3.2 hold for

T = BD and DB on Lp in place of H with the exception of (14) which reads

(17)
∥∥∥(∫ ∞

0

|ψ(tT )u|2 dt

t

)1/2∥∥∥
p
∼ ‖u‖p holds for all u ∈ Rp(T )

for any ω < μ < π/2 and any non-degenerate ψ ∈ Ψ(Sμ). Furthermore, one has �
in general for all u ∈ Lp.

The last part of the corollary follows from extension of an abstract theorem of Le

Merdy [75, corollary 2.3], saying that for an injective sectorial operator T on Lp,

the H∞-calculus on Lp is equivalent to the square function estimate (17). This uses

the notion of R-sectoriality which we have not defined here but follows from the

H∞-calculus. The extension to injective bisectorial operators is straightforward with

the notion of R-bisectoriality. If T is not injective but one has the kernel/range

decomposition, then its restriction to Rp(T ) is injective, and the proof of Le Merdy’s

theorem extends easily also in this case. In our situation, for p ∈ I(BD), T = BD

or DB may not be injective on Lp but its restriction to Rp(T ) is injective as one

has the kernel/range decomposition. One can apply Le Merdy’s extended theorem

to T on Rp(T ) and obtain H∞-calculus on Rp(T ) (which, for this particular T , is

equivalent to the R-bisectoriality on Lp, see [63, 27]), and then extend it to all of Lp

as described before.

Note also that by interpolation between lemma 2.3 and the boundedness on Lp of

the resolvent for p ∈ I(BD), one has

Lemma 3.10 (Lp off-diagonal decay). — Let T = BD or DB and p ∈ I(BD). For

every integer N there exists CN > 0 such that

(18) ‖1E (I + itT )−11Fu‖p ≤ CN 〈dist(E,F )/|t|〉−N‖u‖p
for all t �= 0, whenever E,F ⊆ Rn are closed sets, u ∈ Lp is such that suppu ⊆ F .

Actually, it is observed in [63] that the proof for p = 2 (lemma 2.3) goes through,

which gives another argument.

3.3. The one dimensional case

Proposition 3.11. — Assume D and B are as above and n = 1. Assume that D̂(ξ)

is invertible for all ξ �= 0. Then p−(DB) = 1 and p+(DB) = ∞. In particular, DB

and BD have bounded holomorphic functional calculi on Lp spaces for 1 < p < ∞.

Proof. — We fix 1 < p < ∞. By theorem 3.6, it suffices to show that the kernel/range

decomposition holds on Lp for BD.

First, as D̂(ξ) is invertible for all ξ �= 0, (D0) implies that for all u ∈ Lp(Rn;CN ),

Du = −iD̂1u
′
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with D̂1 being an invertible matrix on CN . Thus, we have that Np(D) = {0}
and Rp(D) = Lp, the closure being taken in Lp. As a consequence, if B is accre-

tive on R2(D) = L2, it is invertible in L∞ by Lebesgue differentiation theorem, and

one has I2 = (1,∞). By lemma 3.4, we have, since p ∈ I2, Np(BD) = Np(D) = {0}
and

Rp(BD) = BRp(D) = BRp(D) = Lp.

Thus the kernel/range decomposition holds trivially.

Remark 3.12. — If one does not assume D̂(ξ) invertible for all ξ �= 0, it is not clear

whether one has the kernel/range decomposition, even assuming B invertible on L∞.

Assume B invertible on L∞. By the results in [63] (see [27], lemma 5.2, for the explicit

statement), BD is (R-)bisectorial on Rp(BD) when p ∈ (1,∞) ∩ ( 23 ,∞) = (1,∞). It

is trivially bisectorial on Np(BD). The only thing missing might be the kernel/range

decomposition.

3.4. Constant coefficients

We come back to arbitrary dimensions. A simple example is when B is a constant

and strictly accretive matrix on R2(D) with D being still self-adjoint. Then it follows

from [63, proposition A.8] that the interval of coercivity is all (1,∞).

Now BD is another first order differential operator which satisfies (D0), (D1)

and (D2) of section 2.3 with ω being the angle of accretivity of B. Thus the con-

clusion is that BD is a bisectorial operator with H∞-calculus in Lq for all q ∈ (1,∞).

Therefore the theory above tells that p−(BD) = 1 and p+(BD) = ∞.

3.5. Lp-Lq estimates

We summarize here estimates that we will use later. Proofs can be found in Part II.

They concern only the exponents in the interval

I(BD) = I(DB) = (p−, p+).

First, we introduce subclasses of H∞(Sμ). For σ, τ ≥ 0, let

Ψτ
σ(Sμ) = {ψ ∈ H∞(Sμ) : ψ(z) = O

(
inf(|z|σ, |z|−τ )

)
},

with convention that |z|0 = 1. For σ, τ > 0, Ψτ
σ(Sμ) ⊂ Ψ(Sμ). For σ = 0, we have no

vanishing at 0, for τ = 0, no decay at ∞, and Ψ0
0(Sμ) = H∞(Sμ).

Proposition 3.13. — Let T = BD or DB. Let p, q ∈ I(T ) with p ≤ q. Let

ψ ∈ Ψτ
σ(Sμ) with σ > 0, τ > n

p − n
q and g ∈ H∞(Sμ). Then for all t > 0, closed sets

E,F ⊂ Rn and u ∈ Lp with support in F :

(19) ‖1Eg(T )ψ(tT )1Fu‖q � ‖g‖∞t
n
q −n

p 〈dist(E,F )/t〉−σc‖u‖p.
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If, furthermore, g(z) = ϕ(rz) with |ϕ(z)| ≤ inf(|z|M , 1) for some M > 0, then for all

t ≥ r > 0, closed sets E,F ⊂ Rn and u ∈ Lp with support in F

(20) ‖1Eϕ(rT )ψ(tT )1Fu‖q � t
n
q −n

p 〈dist(E,F )/r〉−Mc‖u‖p.
Here, c is any positive number smaller than 1− ( 1p −

1
q )(

1
p−

− 1
p+

)−1 and can be taken

equal to 1 when p = q. The implicit constants are independent of t, E, F, r and u.

Besides the precise values, it is important to notice that the exponent expressing

the decay grows linearly with the order of decay of ψ at 0 in the first estimate and

with the order of decay of ϕ at 0 in the second one. Notice that the first estimate

contains in particular global Lp-Lq estimates

(21) ‖ψ(tT )u‖q � t
n
q −n

p ‖u‖p
for all ψ as above. Such an estimate is not true for the resolvent if p < q unless T has

a trivial null space. See Part II for more.

Here is an extension of remark 2.4.

Corollary 3.14. — If τ > 0, σ > n
p , 2 < p < p+ and ψ ∈ Ψτ

σ(Sμ), then ψ(tT ) has

a bounded extension from L∞ to Lp
loc.

Proof. — We take h ∈ L∞ and B a ball of radius t. Write h =
∑

hj where h0 = h12B
and hj = h12j+1B\2jB . Then

‖ψ(tT )hj‖Lp(B) � 2−jσ‖hj‖p � 2−j(σ−n
p )‖h‖∞.

It remains to sum.
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The theory of Hardy spaces associated to operators allows us to introduce a scale

of abstract spaces. One goal will be to identify ranges of p for which they agree with

subspaces of Lp or Hp.

4.1. Tent spaces: notation and some review

For 0 < q < ∞, T q
2 is the tent space of [40]. This is the space of L2

loc(R
1+n
+ )

functions F such that

‖F‖T q
2
= ‖SF‖q < ∞

with for all x ∈ Rn,

(22) (SF )(x) :=
(∫∫

t>0,|x−y|<at

|F (t, y)|2 dtdy

tn+1

)1/2

,

where a > 0 is a fixed number. Two different values a give equivalent T q
2 norms.

For q = ∞, T∞
2 (R1+n

+ ) is defined via Carleson measures by ‖F‖T∞2 < ∞, where

‖F‖T∞2 is the smallest positive constant C in∫∫
Tx,r

|F (t, y)|2 dtdy

t
≤ C2|B(x, r)|

for all open balls B(x, r) in Rn and Tx,r = (0, r)×B(x, r). For 0 < α < ∞, T∞
2,α(R

1+n
+ )

is defined by ‖F‖T∞2,α < ∞ where ‖F‖T∞2,α is the smallest positive constant C in∫∫
Tx,r

|F (t, y)|2 dtdy

t
≤ C2|B(x, r)|1+ 2α

n

for all open balls B(x, r) in Rn. For convenience, we set T∞
2,0 = T∞

2 .

For 1 ≤ q < ∞ and p the conjugate exponent to q, T p
2 is the dual of T q

2 for the

duality

(F,G) :=

∫∫
R

1+n
+

F (t, y)G(t, y)
dtdy

t
.

For 0 < q ≤ 1 and α = n( 1q − 1), T∞
2,α is the dual of T q

2 for the same duality form.

Although not done explicitly there, it suffices to adapt the proof of [40, theorem 1].
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4.2. General theory

We summarize here the theory pionnered in [22, 59] for operators T satisfying L2

off-diagonal estimates of any polynomial order (11) and further developed in [67, 47,

60, 66, 57, 46, 4], etc. Here, there is an issue about homogeneity of the operator

and notice that both DB and BD are of order 1. We stick to this homogeneity. The

needed assumptions on T for what follows is bisectoriality on L2 with H∞-calculus

on R2(T ) and L2 off-diagonal estimates (11). Let ω ∈ [0, π/2) be the angle of the

H∞-calculus. In what follows, μ is an arbitrary real number with ω < μ < π/2.

For ψ ∈ H∞(Sμ), let

Qψ,T f = (ψ(tT )f)t>0, f ∈ L2

and

Sψ,TF =

∫ ∞

0

ψ(tT )F (t, .)
dt

t
, F ∈ T 2

2 .

The second definition is provided one can make sense of the integral. Precisely, for

ψ ∈ Ψ(Sμ) (the class is defined in (8)), the operators

Qψ,T : L2 −→ T 2
2 and Sψ,T : T 2

2 −→ L2

are bounded as follows from the square function estimates (14) for T and its ad-

joint T ∗. Indeed, Sψ,T is the adjoint to Qψ∗,T∗ where ψ∗(z) = ψ(z̄).

Recall that for σ, τ ≥ 0,

Ψτ
σ(Sμ) = {ψ ∈ H∞(Sμ) : ψ(z) = O

(
inf(|z|σ, |z|−τ )

)
}.

So

Ψ(Sμ) =
⋃

σ>0,τ>0

Ψτ
σ(Sμ).

For 0 < γ, let

Ψγ(Sμ) =
⋃

σ>0,τ>γ

Ψτ
σ(Sμ), Ψγ(Sμ) =

⋃
σ>γ,τ>0

Ψτ
σ(Sμ).

Set γ(p) = |np − n
2 | for 0 < p ≤ ∞. If p ≤ 1 and α = n( 1p − 1), then γ(p) = n

2 + α.

Consider the table

exponents = T = ΨT (Sμ) = ΨT (Sμ) =

0 < p ≤ 2 T p
2 Ψγ(p)(Sμ) Ψγ(p)(Sμ)

2 ≤ p ≤ ∞ T p
2 Ψγ(p)(Sμ) Ψγ(p)(Sμ)

0 ≤ α = n
(
1
p − 1

)
< ∞ T∞

2,α Ψγ(p)(Sμ) Ψγ(p)(Sμ)
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Note that Ψγ(2)(Sμ) = Ψγ(2)(Sμ) = Ψ(Sμ) so the next result is consistent with

the L2 theory.

Proposition 4.1. — For any space T in the table, ψ ∈ ΨT (Sμ), ϕ ∈ ΨT (Sμ) and

b ∈ H∞(Sμ), then Qψ,T b(T )Sϕ,T initially defined on T 2
2 , extends to a bounded operator

on T by density if T = T p
2 and by duality if T = T∞

2,α.

Proof. — One can extract these classes in the range 1 < p < ∞ from [66] and

in the other ranges from [60] (replacing n
4 adapted to second order operators to n

2

here). Actually, there is a possible interpolation method to reobtain directly the

results in [66] without recoursing to UMD technology, once one knows the results

for 0 < p ≤ 1. See [86].

We also recall the Calderón reproducing formula in this context (See [22, re-

mark 2.1]). As the proof is not given there, we sketch one possible argument.

Proposition 4.2. — For any σ1, τ1 ≥ 0 and non-degenerate ψ ∈ Ψτ1
σ1
(Sμ) and any

σ, τ > 0, there exists ϕ ∈ Ψτ
σ(Sμ) such that

(23)

∫ ∞

0

ϕ(tz)ψ(tz)
dt

t
= 1, ∀z ∈ Sμ.

As a consequence,

(24) Sϕ,TQψ,T f = f, ∀f ∈ R2(T ).

Proof. — Assume ψ ∈ Ψτ1
σ1
(Sμ) with σ1, τ1 ≥ 0 and ψ is non-degenerate. Let

θ(z) = e−[z]−[z]−1

with [z] = z if Re z > 0 and [z] = −z if Re z < 0. Clearly θ ∈ ∩σ>0,τ>0Ψ
τ
σ(Sμ) and

so does

ϕ(z) =

⎧⎨⎩c+ψ(z̄)θ(z) for z ∈ Sμ+,

c−ψ(z̄)θ(−z) for z ∈ Sμ−.

The constants c± are chosen such that
∫ ∞
0

ψ(±t)ϕ(±t) dt
t = 1 (note that the inte-

grals are positive numbers because ψ is non-degenerate, hence |ψ(±t)| > 0 almost

everywhere, so that there is such a choice for c±). Next, (23) follows by analytic

continuation.

Remark 4.3. — The function ψ can be taken without any decay at 0 and ∞: it is

enough that the product ψϕ has both decay.

Let T be any of the spaces in the table above and ψ ∈ Ψ(Sμ). Set

HT
Qψ,T

= {f ∈ R2(T );Qψ,T f ∈ T }
equipped with the (quasi-)norm ‖f‖HT

Qψ,T

= ‖Qψ,T f‖T and

HT
Sψ,T

= {Sψ,TF ;F ∈ T ∩ T 2
2 }
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equipped with the (quasi-)norm ‖f‖HT
Sψ,T

= inf{‖F‖T ; f = Sψ,TF, F ∈ T ∩ T 2
2 }.

We do not need to introduce completions at this point.

Corollary 4.4. — For any T in the above table, non-degenerate ψ ∈ ΨT (Sμ) and

ϕ ∈ ΨT (Sμ) , we have

HT
Qψ,T

= HT
Sϕ,T

with equivalent (quasi-)norms.

� We set HT
T this space and call it the pre-Hardy space associated to (T, T ). For

any b ∈ H∞(Sμ), this space is preserved by b(T ) and b(T ) is bounded on it.

� For T = T p
2 , we simply set Hp

T = H
Tp
2

T and

� for α > 0, we set Lα
T = H

T∞2,α
T .

Of course, the pre-Hardy space associated to (T, T ) is not complete as defined.

The issue of finding a completion within a classical space is not an easy one.

We shall say that ψ is allowable for HT
T if we have the equality HT

Qψ,T
= HT

T

with equivalent (quasi-)norms. The set of allowable ψ contains the non-degenerate

functions in ΨT (Sμ) but could be larger in some cases.

As the H∞-calculus extends to HT
T , the operators e−s|T | extend to bounded op-

erators on HT
T with uniform bound in s > 0 and have the semigroup property. A

question is the continuity on s ≥ 0, which as is well-known reduces to continuity at

s = 0. In the reflexive Banach space case, this can be solved by abstract methods

for bisectorial operators (see below). However, this excludes the quasi-Banach case

we are also interested in. The following result seems new in the theory (this is not

an abstract one as it uses the fact that we work with operators defined on L2 and

measure theory) and includes the reflexive range p > 1 as well.

Proposition 4.5. — For all 0 < p < ∞ and h ∈ H
p
T , we have the strong limit

lim
s→0

‖e−s|T |h− h‖Hp
T
= 0.

Proof. — We choose

ψ(z) = [z]Ne−[z],

with N > n+1
2 and N > |np − n

2 |. Set Γ(x) the cone of (t, y) with 0 ≤ |x− y| < t, and

for 0 < δ ≤ R < ∞, Γδ(x) its truncation for t ≤ δ, ΓR(x) its truncation for t ≥ R and

ΓR
δ (x) = ΓR(x) \ Γδ(x). Set

Σh = S(ψ(tT )h) and Σh(x) =
(∫∫

Γ(x)

|ψ(tT )h(y)|2 dtdy

tn+1

)1/2

so that ‖Σh‖Lp ∼ ‖h‖Hp
T
as ψ is allowable for Hp

T . Let ΣRh(x), Σδh(x) and ΣR
δ h(x)

be defined as Σh(x) with integral on ΓR(x), Γδ(x) and ΓR
δ (x) respectively. Remark

MÉMOIRES DE LA SMF 144



4.2. GENERAL THEORY 27

that by the choice of ψ, we have

(Σh)2(x) =

∫∫
Γ(x)

t2N−n−1| · |T |Ne−t|T |h(y)|2 dtdy.

It easy to see that Σ(e−s|T |h)(x) ≤ Sh(x) for all s > 0 by using 2N − n− 1 > 0 and

observing that the translated cone Γ(x) + (s, 0) is contained in Γ(x). Thus we have

Σ(e−s|T |h− h)(x) ≤ 2Σh(x),

so that by the Lebesgue convergence theorem, it suffices to show that Σ(e−s|T |h−h)(x)

converges to 0 almost everywhere. Using the same idea, we have

Σ(e−s|T |h− h)(x) ≤ Σδ(e
−s|T |h− h)(x) + ΣR

δ (e
−s|T |h− h)(x)

+ ΣR(e−s|T |h− h)(x)

≤ 2Σδ+sh(x) + ΣR
δ (e

−s|T |h− h)(x) + 2ΣR(h)(x).

Pick x ∈ Rn so that Σh(x) < ∞ and let ε > 0. Then pick R large and δ small so that

ΣRh(x) < ε and Σ2δh(x) < ε. Hence, for s < δ, we have

Σ(e−s|T |h− h)(x) ≤ 4ε+ΣR
δ (e

−s|T |h− h)(x).

Now, a rough estimate using the L2 boundedness of ψ(tT ) yields

ΣR
δ (e

−s|T |h− h)2(x) ≤
∫ R

δ

dt

tn+1
‖e−s|T |h− h‖22

and, as h ∈ R2(T ) and the semigroup is continuous on L2, the proof is complete.

For later use, we also have behavior at ∞.

Proposition 4.6. — For all 0 < p < ∞ and h ∈ H
p
T , we have the strong limit

lim
s→∞

‖e−s|T |h‖Hp
T
= 0.

Proof. — With the same square function Σ as above, we have Σ(e−s|T |h) ≤ Σh ∈ Lp

and Σ(e−s|T |h) → 0 almost everywhere when s → ∞. We conclude from the Lebesgue

dominated convergence.

Let us turn to some duality statements.

Proposition 4.7. — Let T = T p
2 , 0 < p < ∞ and T ∗ be its dual space. Let ψ

be allowable for HT
T and HT ∗

T∗ , (for example, ψ ∈ Ψγ(p)(Sμ) ∩ Ψγ(p)(Sμ)). For any

G ∈ T ∗, then

J(G) : f �−→ (Qψ,T f,G) ∈ (HT
T )

∗.

Conversely, to any � ∈ (HT
T )

∗, there corresponds a G ∈ T ∗, such that �(f) = J(G)(f)

for any f ∈ HT
T .
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Proof. — The proof is quite standard. That J(G) ∈ (HT
T )

∗ follows using that ψ is al-

lowable for HT
T , hence ‖Qψ,T f‖T ∼ ‖f‖HTT and the duality of tent spaces. Conversely,

let ϕ associated to ψ as in proposition 4.2. Let � ∈ (HT
T )

∗, then � ◦ Sϕ,T is defined on

T ∩ T 2
2 and |� ◦ Sϕ,T (F )| � ‖F‖T . By density in T and duality, there exists G ∈ T ∗

such that |� ◦ Sϕ,T (F )| = (F,G) for all F ∈ T ∩ T 2
2 . Inserting F = Qψ,T f , we obtain

the (Qψ,T f,G) = � ◦ Sϕ,T (Qψ,T f) = �(f).

It will be easier to work within H2
T = R2(T ). This is why we systematically use

pre-Hardy spaces.

Proposition 4.8. — Let T = T p
2 , 0 < p < ∞ and T ∗ be its dual space. Denote by

〈. , .〉 the L2 sesquilinear inner product. Then for any f ∈ HT
T , g ∈ HT ∗

T∗

|〈f, g〉| � ‖f‖HTT · ‖g‖HT ∗
T∗

.

More generally, for any f ∈ R2(T ), g ∈ R2(T ∗) and any ψ, ϕ ∈ Ψ(Sμ) for which the

Calderón reproducing formula (23) holds, one has

|〈f, g〉| ≤ ‖Qψ,T f‖T · ‖Qϕ∗,T∗g‖T ∗ .
Next, for any g ∈ HT ∗

T∗ ,

‖g‖HT ∗
T∗

∼ sup{|〈f, g〉|; f ∈ T , ‖f‖HTT = 1}.

When 1 < p < ∞, we can revert the roles of T and T ∗, that is, 〈. , .〉 is a duality for

the pair of spaces (Hp
T ,H

p′

T∗).

We mention as a corollary the usual principle that upper bounds in square functions

for allowable ψ imply lower bounds for all ϕ with the dual operator.

Proposition 4.9. — Let T = T p
2 , 1 < p < ∞ so that T ∗ = T p′

2 . Assume that 〈. , .〉
is a duality for the pair of normed spaces (X,Y ) with X ⊂ R2(T ) and Y ⊂ R2(T ∗)

and that for any allowable ψ ∈ Ψ(Sμ) for HT
T , we have

‖Qψ,T f‖T � ‖f‖X
for all f ∈ R2(T ). Then for any non-degenerate ϕ ∈ Ψ(Sμ), we have

‖g‖Y ≤ ‖Qϕ∗,T∗g‖T ∗

for all g ∈ R2(T ∗).

Proof. — This a consequence of the previous result with the fact that given a non-

degenerate ϕ, one can find ψ in any class Ψτ
σ(Sμ), thus one allowable ψ for HT

T , for

which the Calderón reproducing formula (23) holds.

For 0 < p ≤ 1, we can take advantage of the notion of molecules. We follow [60].

For a cube (or a ball) Q ⊂ Rn denote the dyadic annuli by Si (Q), which is defined

for i = 1, 2, 3, ... by

Si (Q) := 2iQ\2i−1Q
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and S0 (Q) := Q. Here λQ is the cube with same center as Q and sidelength λ� (Q).

Let 0 < p ≤ 1, ε > 0 and M ∈ N. We say that a function m ∈ L2 is a (Hp
T , ε,M)-

molecule if there exists a cube Q ⊂ Rn and a function b ∈ D2(T
M ) such that TMb = m

and

‖ (� (Q)T )
−k

m‖L2(Si(Q)) ≤
(
2i� (Q)

)n
2 −n

p 2−iε(25)

for i = 0, 1, 2, . . . and k = 0, 1, 2, . . . ,M. Remark that m ∈ R2(T ) and also that

m ∈ Lp with ‖m‖p � 1 independently of Q.

Definition 4.10. — Let 0 < p ≤ 1, ε > 0 and M ∈ N. For f ∈ R2(T ), f =
∑

j λjmj

is a molecular (Hp
T , ε,M)-representation of f if each mj is an (Hp

T , ε,M)-molecule,

(λj) ∈ �p and the series converges in L2. We define

H
p
T,mol,M :=

{
f ∈ R2(T ); f has a molecular (Hp

T , ε,M)-representation
}

with the quasi-norm (it is a norm only when p = 1)

‖f‖Hp
T,mol,M

:= inf {‖(λj)‖�p} ,

taken over all molecular (Hp
T , ε,M)-representations f =

∑∞
j=0 λjmj , where

‖(λj)‖�p :=
(∑∞

j=0 |λj |p
) 1

p .

Remark 4.11. — Note the continuous inclusion H
p
T,mol,M1

⊂ H
p
T,mol,M2

if M2 ≥ M1.

In particular, Hp
T,mol,M ⊂ H

p
T,mol,1.

Proposition 4.12. — Let 0 < p ≤ 1, M ∈ N with M > n
p − n

2 . Then

H
p
T,mol,M = H

p
T

with equivalence of quasi-norms.

Proof. — Adapt [59, 60].

Remark 4.13. — It would also make sense to consider the atomic versions but at

this level of generality, we do not know whether Hp
T has an atomic decomposition.

The following corollary is a useful consequence.

Corollary 4.14. — For 0 < p < 2, then H
p
T ⊂ Lp with ‖f‖p � ‖f‖Hp

T
.

Proof. — For 0 < p ≤ 1, this is a consequence of the fact that any (Hp
T , ε,M)-

molecule satisfies ‖m‖p � 1 and of the previous proposition. For 1 ≤ p ≤ 2, we

proceed by interpolation as follows. Fix one ϕ ∈ Ψn
2
(Sμ) and consider the map Sϕ,T .

By proposition 4.1, it is bounded from T 2
2 to L2 and from T 1

2 ∩ T 2
2 to H1

T with

‖Sϕ,TF‖H1
T

� ‖F‖T 1
2
so that it maps T 2

1 ∩ T 2
2 to L1 with ‖Sϕ,TF‖1 � ‖F‖T 2

1
. By

interpolation, the bounded extension on T 1
2 is bounded from T p

2 into Lp. It is a

standard duality argument to show that this extension agrees with Sϕ,T on T p
2 ∩T 2

2 .
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We finish with non-tangential maximal estimates. Recall the Kenig-Pipher func-

tional

(26) Ñ∗(g)(x) := sup
t>0

(∫∫
W (t,x)

|g|2
)1/2

, x ∈ Rn,

with W (t, x) := (c−1
0 t, c0t)×B(x, c1t), for some fixed constants c0 > 1, c1 > 0.

Lemma 4.15. — For all 0 < p ≤ 1, one has the estimate

(27) ‖Ñ∗(e
−t|T |h)‖p � ‖h‖Hp

T
, ∀h ∈ R2(T ).

Furthermore, it also holds for 1 < p < 2 if it holds at p = 2.

Proof. — For 0 < p ≤ 1, this comes from ‖Ñ∗(e
−t|T |m)‖p � 1 for any (Hp

T , ε,M)-

molecule with M ∈ N for M large enough depending on n, p. (Adapt the proofs

in [59], [67] or [46]. See also [86] for an explicit argument. It is likely that one can

prove that the lower bound M > n
p − n

2 works but we don’t need such a precision.)

This implies the inequality for any f ∈ H
p
T,mol,M = H

p
T .

We use interpolation for 1 < p < 2 as follows. Fix ϕ ∈ Ψn
2
(Sμ) and ψ ∈ Ψ

n
2 (Sμ)

such that Sϕ,TQψ,T = I on R2(T ). From the assumption, the sublinear operator

V : F �−→ Ñ∗(e
−t|T |Sϕ,TF )

is bounded from T 2
2 into L2 with ‖V F‖2 � ‖F‖T 2

2
and we just proved it is bounded

from T 2
2 ∩ T 1

2 into L1 with ‖V F‖1 � ‖F‖T 1
1
. Using real interpolation (see [40],

corrected in [33]), and density (of T 1
2 ∩T 2

2 into T p
2 ∩T 2

2 for the T p
2 topology) this implies

that V maps T 2
2 ∩ T p

2 into Lp with ‖V F‖p � ‖F‖Tp
2
. Applying this to F = Qψ,Th

when h ∈ R2(T ), this implies (27).

4.3. Spaces associated to D

We specialize the general theory to the situation where T = D. Because D is

self-adjoint, we can also consider the (Hp
D,M)-atoms, which are those (Hp

D, ε,M)-

molecules associated to a cube Q and supported in Q. The atomic space

H
p
D,ato,M

is defined similarly to the molecular one and one has Hp
D,ato,M = H

p
D when 0 < p ≤ 1

and M > n
p − n

2 . The proof is explicitly done in [19] for p = 1 and applies in extenso

to p < 1. See also [57] for the case of second order operators and p ≤ 1.

We also remark that

H
p
D,ato,1 = H

p
D,mol,1

with equivalence of norms (this argument is due to A. McIntosh).
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The inclusion ⊂ is obvious. In the opposite direction, if m is an (Hp
D, ε, 1)-molecule,

then one can write m = Db with estimate (25) and M = 1. Then we write b =
∑

χib

with (χi) a smooth partition of unity associated to the annular set Si(Q): they satisfy

0 ≤ χi ≤ 1, ‖∇χi‖∞ � (2i�(Q))−1

and χi supported on Si(2Q). Then, it is easy to show that ai = 2iεD(χib) is up to

a dimensional constant an (Hp
D, 1)-atom and that the series m =

∑
2−iεai converges

in L2.

Theorem 4.16. — Let n
n+1 < p ≤ 1. Then

(28) H
p
D = H

p
D,mol,1 = H

p
D,ato,1 = Hp ∩ R2(D) = Hp ∩ P(L2) = P(Hp ∩ L2)

with

‖f‖Hp
D
∼ ‖f‖Hp

D,mol,1
∼ ‖f‖Hp

D,ato,1
∼ ‖f‖Hp , ∀f ∈ R2(D).

Let 1 < p < ∞. Then

(29) H
p
D = Rp(D) ∩ R2(D) = Lp ∩ R2(D) = Lp ∩ P(L2) = P(Lp ∩ L2)

with

‖f‖Hp
D
∼ ‖f‖Lp , ∀f ∈ R2(D).

Let p = ∞. Then

(30) BMOD = BMO ∩ R2(D) = BMO ∩ P(L2) = P(BMO ∩ L2)

with

‖f‖BMOD
∼ ‖f‖BMO, ∀f ∈ R2(D).

Let 0 ≤ α < 1. Then

(31) Lα
D = Λ̇α ∩ R2(D) = Λ̇α ∩ P(L2) = P(Λ̇α ∩ L2)

with

‖f‖Lα
D
∼ ‖f‖Λ̇α , ∀f ∈ R2(D).

Proof. — Let us assume first p ≤ 1. As R2(D) = P(L2) the fourth equality is a

trivial. The inclusion ⊃ of the fifth equality comes from the fact that P is bounded

on Hp, and for the converse, if h ∈ Hp∩P(L2) then h = Ph ∈ P(Hp∩L2). By general

theory and the discussion above,

H
p
D = H

p
D,mol,n ⊂ H

p
D,mol,1 = H

p
D,ato,1.

Now a (Hp
D, 1)-atom a = Db belongs to R2(D) and also to Hp as p > n

n+1 and∫
a =

∫
Db = 0. As convergence of atomic decompositions is in L2, so also in

tempered distributions, it follows that

H
p
D,ato,1 ⊂ R2(D) ∩Hp.

It remains to show P(Hp∩L2) ⊂ H
p
D. Let L = D2P−Δ(I−P) where Δ is the ordinary

negative self-adjoint Laplacian on L2. Clearly L is self-adjoint on L2, positive, it has
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a homogeneous of order 2 symbol, C∞ away from 0, with L̂(ξ) ∼ |ξ|2 (in the sense

of self-adjoint matrices). One can estimate the kernel of the convolution operator

t2Le−t2L and find pointwise decay in t−n(1 + |x|
t )−n−2. Similarly for all its partial

derivatives with −n− 3 replacing −n− 2. By standard theory for the Hardy space as

in [40], for h ∈ P(Hp ∩ L2),

F (t, .) = t2Le−t2Lh ∈ T p
2 ∩ T 2

2 ,

thus for any ϕ such that Hp
D = H

Tp
2

Sϕ,D
we have Sϕ,DF ∈ H

p
D. Now LP = D2P = D2.

Thus, as h = Ph,

F (t, .) = t2D2e−t2D2

h = ψ(tD)h

with ψ(z) = z2e−z2

. If one chooses ϕ ∈ Ψγ(p)(Sμ) such that (23) holds then

Sϕ,DF = Sϕ,DQψ,Dh = h

so that h ∈ H
p
D.

If 1 < p < ∞, the third equality is trivial, the fourth and the inclusion

P(Lp ∩ L2) ⊂ H
p
D are obtained as above. By using truncation in t for T p

2 functions in a

Calderón reproducing formula Sϕ,DQψ,D = I, we see easily that Hp
D ⊂ Rp(D)∩R2(D)

and obviously Rp(D) ∩ R2(D) ⊂ Lp ∩ R2(D).

The proof for BMO type spaces is obtained by duality from p = 1, noticing that the

duality form is the same for H1
D,BMOD and H1,BMO, and that P = P∗ is bounded

on H1 and BMO.

The proof for Λ̇α type space is also obtained by duality from the case p < 1. We

omit further details.

4.4. General facts about comparison of Hp
DB and H

p
D

Of course, by definition H2
DB = H2

D, thus we look at other values of p.

Proposition 4.17. — For n
n+1 < p < 2, we have H

p
DB ⊂ H

p
D with continuous

inclusion. More precisely, the inequality

‖h‖Hp � ‖Qψ,DBh‖Tp
2
, ∀h ∈ R2(D),

holds when ψ ∈ Ψγ(p)(Sμ), where Hp = Lp when p > 1.

Proof. — Indeed, if p ≤ 1 it is clear that an (Hp
DB , ε,M)-molecule a = (DB)Mb

writes a = D(B(DB)M−1b), hence is an (Hp
D, ε, 1)-molecule. We conclude using

theorem 4.16. For 1 < p < 2, we use the interpolation argument of lemma 4.15.

Proposition 4.18. — For 2 < p < ∞, we have H
p
D ⊂ H

p
DB with continuous inclu-

sion. More precisely, the inequality

‖Qψ,DBh‖Tp
2
� ‖h‖p, ∀h ∈ R2(D),

holds when ψ ∈ Ψγ(p)(Sμ).
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Proof. — It suffices to prove this for ψ ∈ Ψn
2
(Sμ). The method of lemma 5.16 below

proves in particular for such ψ that

‖Qψ,DBh‖Tp
2
� ‖h‖p, ∀h ∈ Lp ∩ L2.

If h ∈ H
p
D, then h = Ph and ‖Ph‖p ∼ ‖h‖Hp

D
by theorem 4.16 and as Qψ,DBh =

Qψ,DBPh, we obtain

‖Qψ,DBPh‖Tp
2
� ‖Ph‖p ∼ ‖h‖Hp

D
.

We are interested in the equality H
p
DB = H

p
D.

Theorem 4.19. — Let n
n+1 < p < ∞. Assume that H

p
DB = H

p
D with equivalent

norms. Then for any b ∈ H∞(Sμ), b(DB) is bounded on H
p
D. Thus,

‖b(DB)h‖Hp � ‖b‖∞ · ‖h‖Hp

for any h ∈ H
p
D where Hp = Lp if p > 1. Furthermore, (e−t|DB|)t>0 is a strongly

continuous semigroup on H
p
D.

Proof. — From corollary 4.4, we know that b(DB) is bounded on H
p
DB for any

0 < p < ∞. The strong continuity of the semigroup on H
p
DB is also shown in propo-

sition 4.5. The same properties hold for any equivalent topology.

We turn to dual statements. The result which will guide our discussion is the

following one. Recall that P is the orthogonal projection from L2 onto R2(D).

Theorem 4.20. — Let n
n+1 < q < ∞. Assume that H

q
DB∗ = H

q
D with equivalent

norms. Then if q > 1 and p = q′,

P : Hp
BD −→ H

p
D

is an isomorphism and if q ≤ 1 and α = n( 1q − 1),

P : Lα
BD −→ Lα

D

is an isomorphism. In the range q > 1 and p = q′, the converse holds: if

P : Hp
BD → H

p
D is an isomorphism then H

q
DB∗ = H

q
D with equivalent norms.

Proof. — This is in fact a simple functional analytic statement. Let us prove the

direct part. We have n
n+1 < q < ∞ and H

q
DB∗ = H

q
D, with equivalence of norms. We

want to show the isomorphism property of P. We know that

P : R2(BD) = H2
BD −→ R2(D) = H2

D

is isomorphic, thus bijective. It suffices to prove the norm comparison. Assume first

1 < q. Set p = q′. Let g ∈ R2(BD). Then using proposition 4.8 for T = DB∗ and

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2016



34 4. HARDY SPACES

also for D, one has

‖g‖Hp
BD

∼ sup{|〈g, f〉| ; ‖f‖Hq
DB∗

≤ 1}(32)

∼ sup{|〈g, f〉| ; ‖f‖Hq
D
≤ 1}

= sup{|〈Pg, f〉| ; ‖f‖Hq
D
≤ 1} ∼ ‖Pg‖Hp

D
.

Next, if we assume q ≤ 1, then we work with α = n( 1q − 1) and Lα
BD, and exactly the

same argument applies.

For the converse in the case q > 1, it suffices to reverse the role of the spaces. Let

f ∈ R2(D). Then,

‖f‖Hq
DB∗

∼ sup{|〈g, f〉| ; ‖g‖Hp
BD

≤ 1}
= sup{|〈Pg, f〉| ; ‖g‖Hp

BD
≤ 1}

∼ sup{|〈h, f〉| ; ‖h‖Hp
D
≤ 1} ∼ ‖f‖Hq

D
.

Corollary 4.21. — Let n
n+1 < q < ∞. Assume that Hq

DB∗ = H
q
D with equivalent

norms. Let b ∈ H∞(Sμ). If q > 1 and p = q′, then

‖Pb(BD)‖p � ‖Ph‖p, ∀h ∈ H2
BD.

If q ≤ 1, then for α = n( 1q − 1),

‖Pb(BD)h‖Λ̇α � ‖Ph‖Λ̇α , ∀h ∈ H2
BD.

Proof. — This is just using the similarity induced by P from the previous theorem

and the H∞-calculus on H
p
BD or Lα

BD from corollary 4.4.

Another version is also useful.

Corollary 4.22. — Let n
n+1 < q < ∞. Assume that

H
q
DB∗ = H

q
D

with equivalent norms. Then if q > 1 and p = q′, for any b ∈ H∞(Sμ) which is

defined at 0, Pb(BD) is bounded on H
p
D with

‖Pb(BD)h‖p � ‖h‖p
for all h ∈ H

p
D. Also (Pe−t|BD|)t>0 is a strongly continuous semigroup on H

p
D.

If q ≤ 1, then for α = n( 1q − 1), Pb(BD) is bounded on Lα
D with

‖Pb(BD)h‖Lα
D
� ‖h‖Lα

D

for all h ∈ Lα
D. Furthermore, (Pe−t|BD|)t>0 is a weakly-∗ continuous semigroup

on Lα
D.

Proof. — Let us begin with the case q > 1. Let h ∈ H
p
D. From the previous theorem,

there exists a unique h′ ∈ H
p
BD such that h = Ph′. By proposition 3.3, since b is

defined at 0,

Pb(BD)h = Pb(BD)Ph′ = Pb(BD)h′.
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Thus, by the previous corollary,

‖Pb(BD)h‖p = ‖Pb(BD)h′‖p � ‖Ph′‖p.
The proof when q ≤ 1 is similar and we skip it.

Remark 4.23. — The assumption H
q
DB∗ = H

q
D with equivalent norms can be weak-

ened in theorem 4.20 by the following one. This will be useful when q ≤ 2. It suffices

to assume that H
q
DB∗ ⊂ H

q
D, that ‖h‖Hq

D
∼ ‖h‖Hq

DB∗
for all h ∈ H

q
DB∗ and that the

inclusion is dense for the H
q
D topology. Indeed, when q > 1, (32) rewrites

‖g‖Hp
BD

∼ sup{|〈g, f〉| ; f ∈ H
q
DB∗ , ‖f‖Hq

DB∗
≤ 1}

∼ sup{|〈g, f〉| ; f ∈ H
q
DB∗ , ‖f‖Hq

D
≤ 1}

∼ sup{|〈g, f〉| ; f ∈ H
q
D, ‖f‖Hq

D
≤ 1}

= sup{|〈Pg, f〉| ; f ∈ H
q
D, ‖f‖Hq

D
≤ 1} ∼ ‖Pg‖Hp

D
.

The second line comes from the equivalence of norms, and the third from the density.

The same reasoning holds when q ≤ 1. The same weaker assumption can be taken in

corollary 4.21 as well.

4.5. The spectral subspaces

The pre-Hardy spaces split in two spectral subspaces. This will become useful when

relating this to boundary value problems as these spectral subspaces will identify to

trace spaces for elliptic systems.

Because T = DB or BD is bisectorial with H∞-calculus on L2, we have two

spectral subspaces of H2
T = R2(T ), called H2,±

T as defined in proposition 3.2 by

H2,±
T = χ±(T )(H2

T ).

This can be extended to the pre-Hardy spaces HT
T by setting

H
T ,±
T := χ±(T )(HT

T ) = HT
T ∩H2,±

T .

This leads to the spaces Hp,±
T for 0 < p ≤ ∞ and L

α,±
T for α ≥ 0.

We have the following properties.

1) HT
T = H

T ,+
T ⊕H

T ,−
T where the sum is topological for the topology of HT

T .

2) (e∓tTχ±(T ))t>0 are semigroups on H
T ,±
T , which coincide with (e−t|T |)t>0. Thus,

they are strongly continuous if T = T p
2 and weakly-∗ continuous if T = T∞

2,α.
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The range of q for which H
q
DB = H

q
D will be our goal, together with the determi-

nation the classes of allowable ψ, as we will need something more precise than what

the general theory predicts. This is the most important chapter of this article and we

give full details.

Recall that

I(BD) = I(DB) = (p−(BD), p+(BD)).

We sometimes set

p− = p−(BD) = p−(DB) and p+ = p+(BD) = p+(DB)

to simplify notation. The situation for the operator DB is simple to state and meets

our needs for applications to elliptic PDEs. We use the notation q∗ = nq
n+q for the

lower Sobolev exponent of q and q∗ = nq
n−q for the Sobolev exponent of q when q < n.

At this level of generality, we have the following range for comparison of Hardy spaces.

Later (chapter 13) we obtain a much bigger range under some De Giorgi assumptions

when DB arises from a second order equation or system.

Theorem 5.1. — For (p−(DB))∗ < p < p+(DB), we have H
p
DB = H

p
D with equiva-

lent norms. More precisely, the comparison

‖Qψ,DBh‖Tp
2
∼ ‖h‖Hp , ∀h ∈ R2(DB) = R2(D),

holds when ψ ∈ Ψγ(p)(Sμ) if (p−)∗ < p < 2 and ψ ∈ Ψ(Sμ) if 2 ≤ p < p+. In

particular, we have the square function estimates

‖S(tDBe−t|DB|h)‖p ∼ ‖S(t∂te−t|DB|h)‖p ∼ ‖h‖Hp , ∀h ∈ R2(D).

Remark 5.2. — In the case of constant B as in section 3.4, or under the assumption

of proposition 3.11 if n = 1, we have p−(DB) = 1 and p+(DB) = ∞, hence the

interval is the largest possible one ( n
n+1 ,∞).

The situation for BD is a little more complicated, since we want ψ(z) = O(z) for

applications and also since the functions of BD do not give all the information we

need for the elliptic PDEs. We state this in three different results.

Theorem 5.3. — For p−(DB) < p < (p+(DB))∗, we have P : Hp
BD → H

p
D is an

isomorphism. More precisely, the comparison

‖Qψ,BDh‖Tp
2
∼ ‖Ph‖Hp

D
, ∀h ∈ R2(BD),
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holds when ψ ∈ Ψγ(p)(Sμ) if p− < p < 2, ψ ∈ Ψ(Sμ) if 2 < p < p+, and ψ ∈
Ψ n

p+
−n

p
(Sμ) if p+ ≤ p < (p+)

∗. Moreover, if p+ > n, then for 0 < α < 1 − n
p+

, we

have that P : Lα
BD → Lα

D is an isomorphism with

‖Qψ,BDh‖T∞2,α ∼ ‖Ph‖Λ̇α , ∀h ∈ R2(BD),

when ψ ∈ Ψα+ n
p+

(Sμ).

Corollary 5.4. — For p ∈ I(BD),

H
p
BD = R2(BD) ∩ Rp(BD) = R2(BD) ∩ Lp.

Proof. — Remark that for p ∈ I(BD), we have ‖Ph‖p ∼ ‖h‖p for all h ∈ R2(BD)

by proposition 3.8. So H
p
BD is the set of h ∈ R2(BD) for which ‖h‖p < ∞, which is

R2(BD) ∩ Rp(BD) = R2(BD) ∩ Lp.

Remark 5.5. — If, furthermore, B is invertible in L∞, then H
p
BD = R2(BD) ∩ Lp

also for max(1, (p−)∗) ≤ p < p−. See [86]. In particular, Hp
BD is also a subspace

of Lp but this is not so useful in practice.

Remark 5.6. — In each theorem, the classes of ψ for the upper bounds are what

is expected from the general theory when p < 2 and a little better when p > 2. In

particular, the classes for the upper bounds of ‖Qϕ,Th‖T obtained for p > 2 will

require a specific statement (corollary 5.18 and proposition 5.19). Note that all these

classes allow the behavior ψ(z) = O(z) at 0. This will be important for applications

to elliptic equations. However, it could be that we want to use square functions with

some ψ(z) = O(z) at 0 for p beyond the exponent (p+(BD))∗. Indeed, the value

of p+(BD) is usually close to 2 while one needs to consider p = ∞. This is the object

of the next result where the failure of good vanishing order at 0 is compensated by

being approximable to higher order at 0 on each component of Sμ.

We introduce specific classes inH∞(Sμ). We letRk(Sμ), k = 1, 2, be the subclasses

of H∞(Sμ) of those φ of the form

(33) φ(z) =
M∑

m=1

cm(1 + imz)−k

for some integer M ≥ 1 and cm ∈ C. Next, for σ > 0, we define Rk
σ(Sμ) as the subset

of those ψ ∈ H∞(Sμ) for which there exist φ± ∈ Rk(Sμ) with

(34) |ψ(z)− φ±(z)| = O(|z|σ), ∀z ∈ Sμ±.

We mean here that we may use different approximations of ψ in each sector Sμ+

and Sμ−. The main example is for us ψ(z) = [z]e−[z]. For z ∈ Sμ+, ψ(z) = ze−z, so

this is the restriction of an analytic function on C and for any given σ > 1, it is easy

(by solving a finite dimensional linear Vandermonde system) to find φ+ ∈ R1(Sμ)
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such that |ψ(z)− φ+(z)| = O(|z|σ) for z ∈ Sμ+. The same thing can be done in Sμ−
but φ− must be different.

Theorem 5.7. — Assume that for some q with n
n+1 < q < p+(DB∗) we have

H
q
DB∗ = H

q
D

with equivalent norms. Let ψ ∈ R1
σ(Sμ) ∩ Ψτ

1(Sμ) with σ > γ(q) and τ > 0 if q < 2,

and ψ ∈ Ψτ (Sμ) with τ > γ(q) if q > 2.

If q > 1 and p = q′, we have

‖Qψ,BDh‖Tp
2
∼ ‖Ph‖Lp , ∀h ∈ R2(BD),

and if q ≤ 1 and α = n( 1q − 1),

‖Qψ,BDh‖T∞2,α ∼ ‖Ph‖Λ̇α , ∀h ∈ R2(BD).

In particular, if q > 1, we have the square function estimates

‖S(tBDe−t|BD|h)‖p ∼ ‖S(t∂te−t|BD|h)‖p ∼ ‖Ph‖Lp , ∀h ∈ R2(BD),

and, if q ≤ 1, the weighted Carleson measure estimates

‖tBDe−t|BD|h‖T∞2,α ∼ ‖t∂te−t|BD|h‖T∞2,α ∼ ‖Ph‖Λ̇α , ∀h ∈ R2(BD).

When (p−(DB∗))∗ < q < p+(DB∗), theorem 5.1 already takes care of the conclu-

sions without the condition R1
σ(Sμ). We state it this way for later use. In fact, for

the boundary value problems later, we also need tent space estimates for tDe−t|BD|h.

When B−1 exists in L∞, in particular, this covers the case of second order equations,

these results are enough for our needs. But for systems with B−1 ∈ L∞ not granted,

one still has to work a little bit. This result covers both situations.

Theorem 5.8. — Assume that for some q with n
n+1 < q < p+(DB∗) we have

H
q
DB∗ = H

q
D

with equivalent norms. Let φ ∈ R2
σ(Sμ) ∩ Ψτ

0(Sμ) with σ > γ(q), τ > 1 if q < 2 and

φ ∈ Ψτ
0(Sμ) with τ > 1 + γ(q) if q > 2.

If q > 1 and p = q′, we have

‖tDφ(tBD)h‖Tp
2
∼ ‖Ph‖Lp , ∀h ∈ R2(BD),

and, if q ≤ 1, and α = n( 1q − 1),

‖tDφ(tBD)h‖T∞2,α ∼ ‖Ph‖Λ̇α , ∀h ∈ R2(BD).

In particular, if q > 1, we have the square function estimate

‖S(tDe−t|BD|h)‖p ∼ ‖Ph‖Lp , ∀h ∈ R2(BD),

and, if q ≤ 1, the weighted Carleson measure estimate

‖tDe−t|BD|h‖T∞2,α ∼ ‖Ph‖Λ̇α , ∀h ∈ R2(BD).
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Compare the conclusions of the last two theorems: in one case we have

t|BD|e−t|BD| and tBDe−t|BD|; in the other we have tDe−t|BD|. So we have

cancelled B. Other conditions on φ suffice for this theorem to hold. We shall stop

here the search on such conditions.

5.1. Proof of theorem 5.1

5.1.1. Upper bounds. — We begin with upper bounds separating the cases p > 2

and p < 2. The case p = 2 is, of course, contained in proposition 3.2.

Proposition 5.9. — For T = DB or BD, 2 < p < p+(DB) and ψ ∈ Ψ(Sμ), it holds

‖Qψ,Th‖Tp
2
� ‖h‖p, ∀h ∈ R2(T ).

Proof. — It is well known (see [87]) that for p > 2

‖Qψ,Th‖Tp
2
�

∥∥∥(∫ ∞

0

|ψ(tT )h|2 dt

t

)1/2∥∥∥
p
.

Then we use (17).

Remark 5.10. — Observe that the inequality ‖Qψ,Th‖Tp
2

� ‖h‖p holds for h ∈
Lp ∩ L2 for p in the above range. Indeed, h = hN + hR where hN is in the null part

of T and hR in the closure of the range of T . We have Qψ,ThN = 0 and the inequality

applies to hR. As hR = PTh and the projection is bounded on Lp by the kernel/range

decomposition, ‖hR‖p � ‖h‖p.

Now the main estimate is the following:

Theorem 5.11. — For (p−(DB))∗ < p < 2 and ψ ∈ Ψγ(p)(Sμ), it holds

(35) ‖Qψ,DBh‖Tp
2
� ‖h‖p, ∀h ∈ R2(D).

The proof is quite long and will be divided in two cases:

(p−(DB))∗ > 1 and (p−(DB))∗ ≤ 1.

In the first case, we go via weak type estimates and extend an argument of [63] to

square functions. In the second case, we use atomic theory.

We remark that, thanks to the equivalence of norms, it is enough to show the

inequality for ψ ∈ Ψτ
σ(Sμ) for σ, τ as large as one needs. We shall do this and we will

not try to track their precise values.

To treat the first case and, in fact, exponents 1 < p < 2, we show the following

extrapolation lemma. It is convenient to use the notation

Sψ,DBh = S(Qψ,DBh),

where S is the square function defined in (22) with a = 1 so that

‖Sψ,DBh‖p ∼ ‖Qψ,DBh‖Tp
2
.
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Recall also that the homogeneous Sobolev space Ẇ 1,q is the closure of the inhomoge-

neous Sobolev space W 1,q for the semi-norm ‖u‖Ẇ 1,q = ‖∇u‖q < ∞.

The following is implicit in [63].

Lemma 5.12. — Let 1 < q < ∞. Then h ∈ R2(D) ∩ Rq(D) if and only if

h = Du

for some u ∈ Ẇ 1,2 ∩ Ẇ 1,q with ‖h‖q ∼ ‖∇u‖q and ‖h‖2 ∼ ‖∇u‖2.

Proof. — Let h ∈ R2(D) ∩ Rq(D). Let

hk =
(
I +

i

k
D

)−1

h− (I + ikD)−1h = Duk, k ≥ 1,

where uk = i(k − 1
k )(I + ikD)−1(I + i

kD)−1h. We have uk ∈ D2(D) ∩ Dq(D),

uk ∈ R2(D) ∩ Rq(D) as resolvents preserve the closure of the range. Also hk ∈
R2(D) ∩ Rq(D) and hk converges to h is both L2 and Lq topologies (see section 2.3).

Using the coercivity property of D, we have

‖∇(uk − u�)‖q � ‖D(uk − u�)‖q = ‖hk − h�‖q

and similarly in L2. Taking limits of the Cauchy sequences, we obtain u ∈ Ẇ 1,2∩Ẇ 1,q

with the required property. Conversely, let u ∈ Ẇ 1,2∩Ẇ 1,q such that ‖Du‖q ∼ ‖∇u‖q
and ‖Du‖2 ∼ ‖∇u‖2. Then, one can find uk ∈ W 1,2 ∩W 1,q such that ∇uk converges

to ∇u in both L2 and Lq topologies. Thus, Duk ∈ R2(D) ∩ Rq(D) converges to Du

in both L2 and Lq topologies, so that Du ∈ R2(D) ∩ Rq(D).

Armed with this lemma, the inequality (35) is equivalent to

‖Sψ,DBDu‖q � ‖u‖Ẇ 1,q , ∀u ∈ Ẇ 1,2 ∩ Ẇ 1,q.

Lemma 5.13. — Let p−(DB) < q < 2. Fix ψ ∈ Ψτ
σ(Sμ) with σ, τ � 1 as needed. If

‖Sψ,DBDu‖q � ‖u‖Ẇ 1,q , ∀u ∈ Ẇ 1,2 ∩ Ẇ 1,q.

then for max(1, q∗) < p < q, one has

‖Sψ,DBDu‖p � ‖u‖Ẇ 1,p , ∀u ∈ Ẇ 1,2 ∩ Ẇ 1,p.

Let us conclude (35) from this. By lemma 5.12, if u ∈ Ẇ 1,2, then

h = Du ∈ R2(D),

so that the inequality holds for q = 2 by H∞-calculus. Then one can iter-

ate lemma 5.13 at most a finite number of times to obtain the inequality when

max(1, (p−(DB))∗) < p < 2. Applying lemma 5.12 yields the inequality (35) for all

such p.
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Proof of lemma 5.13. — It is enough to show the weak type estimate

(36) ‖Sψ,DBDu‖p,∞ � ‖u‖Ẇ 1,p

for u ∈ Ẇ 1,2 ∩ Ẇ 1,p. Indeed, one can use N. Badr’s theorem [30], which says that

the homogeneous Sobolev spaces have the real interpolation property, and interpolate

with the inequality at p = q for the sublinear operator u �→ Sψ,DBDu.

To prove (36), we use the Calderón-Zygmund decomposition of Sobolev functions

in [7], extended straight forwardly to CN -valued functions.

Fix λ > 0 and u ∈ Ẇ 1,2∩ Ẇ 1,p. Choose a collection of cubes (Qj), (vector-valued)

functions g and bj such that u = g +
∑

j bj and the following properties hold:

‖∇g‖L∞ ≤ Cλ,(37)

bj ∈ W 1,p
0

(
Qj ,C

N
)
and

∫
Qj

|∇bj |p ≤ Cλp|Qj |,(38)

∑
j

|Qj | ≤ Cλ−p

∫
Rn

|∇u|p,(39)

∑
j

1Qj
≤ C ′,(40)

where C and C ′ depend only on dimension and p. Remark that (38), Sobolev-Poincaré

inequality with a real r such that p ≤ r ≤ p∗, and in particular r = q, gives us

(41) ‖bj‖r � |Qj |
1
r−

1
p+

1
n ‖∇bj‖p � λ|Qj |

1
r+

1
n .

Also, we note that the bounded overlap (40) implies that

‖
∑
j

∇bj‖p + ‖∇g‖p � ‖∇u‖p,

hence for all r ≥ p,

(42) λ−r‖∇g‖rr � λ−p‖u‖p
Ẇ 1,p

.

In particular, this holds for r = 2 so that we also have the qualitative bound

‖
∑

j ∇bj‖2 + ‖∇g‖2 < ∞ and the decomposition is also in Ẇ 1,2 (It follows from the

construction that bj ∈ W 1,2 for each j).

Introduce for some integer M > 1, chosen large enough in the course of the argu-

ment,

ϕ (z) :=

M∑
m=0

(
M

m

)
(−1)

m
(1 + imz)

−1 ∈ H∞(Sμ)

as in [63, section 4]. This function satisfies |ϕ (z) | � inf(|z|M , 1). We decompose

u = g + g̃ + b,
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where g̃ :=
∑

j(I − ϕ(�jBD))bj and b =
∑

j ϕ(�jBD)bj with �j := �(Qj). As usual,

the set {Sψ,DBDu > 3λ} is contained in the union of

A1 = {Sψ,DBDg > λ}, A2 = {Sψ,DBDg̃ > λ}, A3 = {Sψ,DBDb > λ}.

For A1 we use the hypothesis and (42), and

|A1| � λ−q‖∇g‖qq � λ−p‖u‖p
Ẇ 1,p

.

For A2, we use also the hypothesis but in the form (35) to get

|A2| � λ−q‖Dg̃‖qq � λ−p‖u‖p
Ẇ 1,p

.

For the last inequality, notice that ‖Dg̃‖q � ‖BDg̃‖q as q ∈ I(BD) and

BDg̃ =
M∑

m=1

cm
∑
j

(I + im�jBD)−1BDbj ,

so that the inequality is shown in [63, section 4.1].

The main new part compared to [63] is the treatment of the set A3, for which we

follow, in part, [15]. As usual, since | ∪ 4Qj | is under control from (39), it is enough

to control the measure of Ã3 = {Sψ,DBDb > λ} ∩ F where F = Rn \
⋃
4Qj . We use

then the L2 Markov inequality

|Ã3| ≤ λ−2

∫
F

|Sψ,DBDb|2 = λ−2

∫∫
|ψ(tDB)Db(y)|2 |B(y, t) ∩ F |

tn
dydt

t
.

We decompose ψ(tDB)Db(y) = floc(t, y) + fglob(t, y) with

floc(t, y) =
∑
j

12Qj (y)ψ(tDB)Dϕ(�jBD)bj(y)

and

fglob(t, y) =
∑
j

1(2Qj)c(y)ψ(tDB)Dϕ(�jBD)bj(y).

Let us call Iloc and Iglob the integrals obtained. We begin with the estimate of Iloc.

If y ∈ 2Qj and t ≤ 2�j then B(y, t) ⊂ 4Qj , hence B(y, t) ∩ F = ∅. Thus, in Iloc we

may replace floc by

f̃loc(t, y) =
∑
j

12Qj (y)1(2�j ,∞)(t)ψ(tDB)Dϕ(�jBD)bj(y).

At this point we dualize against H with
∫∫

|H(t, y)|2 dydt
t = 1, so that using Fubini’s

theorem and Cauchy-Schwarz inequality

I
1/2
loc �

∫∫
f̃loc(t, y)H(t, y)

dydt

t
≤

∑
j

Ij |Qj |1/2 inf
x∈Qj

M2H̃(x),

where

I2j :=

∫ ∞

2�j

∫
Rn

|ψ(tDB)Dϕ(�jBD)bj(y)|2
dydt

t
,
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H̃(y)2 :=

∫ ∞

0

|H(t, y)|2 dt

t
, M2H̃ := (M |H̃|2)1/2

and M is the Hardy-Littlewood maximal operator. We have

ψ(tDB)Dϕ(�jBD)bj = Dψ(tBD)ϕ(�jBD)bj

(remark that bj ∈ L2, so we can use functional calculus and the commutation holds)

and using the accretivity of B and (19)

‖Dψ(tBD)ϕ(�jBD)bj‖2 � ‖BDψ(tBD)ϕ(�jBD)bj‖2 � t−1t
n
2 −n

q ‖bj‖q.
It follows easily using (38) that

Ij � λ|Qj |1/2.
It is classical from Kolmogorov’s inequality and the weak type (1,1) of M that

(43)
∑
j

|Qj | inf
x∈Qj

M2H̃(x) � ‖H̃‖1/22 | ∪Qj |1/2 = | ∪Qj |1/2.

Altogether, we conclude using (39) that

λ−2Iloc � | ∪Qj | � λ−p‖u‖p
Ẇ 1,p

.

We next turn to Iglob. Using the same dualization argument, we have for some H as

above,

I
1/2
glob �

∑
j,r≥1

Ij,r2
rn/2|Qj |1/2 inf

x∈Qj

M2H̃(x),

where

I2j,r :=

∫ ∞

0

∫
Sr(2Qj)

|ψ(tDB)Dϕ(�jBD)bj(y)|2
dydt

t
,

and we use the notation Sr(Q) introduced for molecules. Since the integrals are

localized we cannot use the same argument as before by using the accretivity of B on

the range. Nevertheless, we prove a local version in the following lemma, which will

be used many times later on.

Lemma 5.14 (Local coercivity inequality). — For any u ∈ L2
loc with Du ∈ L2

loc, any

ball B(x, r) in Rn and c > 1,

(44)

∫
B(x,r)

|Du|2 �
∫
B(x,cr)

|BDu|2 + r−2

∫
B(x,cr)

|u|2,

with the implicit constant depending only on the ellipticity constants of B, dimension,

N and c.

We postpone the proof of the lemma. As

ψ(tDB)Dϕ(�jBD)bj = Dψ(tBD)ϕ(�jBD)bj ,

we can apply it to uj = ψ(tBD)ϕ(�jBD)bj , which leads to bound I2j,r by two integrals

with slightly larger regions S̃r(2Qj) of the same type as Sr(2Qj) and with integrands

|BDuj |2 and |(2−r�j)
−1uj |2 respectively. We then truncate both integrals at �j .
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For t ≤ �j , using the Lq − L2 off-diagonal estimate (19) (which requires τ large

enough), ∫
˜Sr(2Qj)

|BDuj(y)|2 dy � t−2t
2n
2 − 2n

q 〈2r�j/t〉−2σc‖bj‖2q

which, using (41), leads to∫ �j

0

∫
˜Sr(2Qj)

|BDuj(y)|2
dydt

t
� �

−2+ 2n
2 − 2n

q

j 2−2rσc‖bj‖2q � 2−2rσcλ2|Qj |.

The argument for (2−r�j)
−1uj replacing BDuj is the same if q < 2 and leads to a

similar estimate with 1+ σc in place of σc. If q = 2, we may use an Ls −L2 estimate

for some s < 2 instead and (41) for ‖bj‖s.
When t ≥ �j , we deduce from (20) (provided τ is large enough)∫

˜Sr(2Qj)

|BDuj(y)|2 dy � t−2t
2n
2 − 2n

q 〈2r�j/�j〉−2Mc‖bj‖2q

and then ∫ ∞

�j

∫
˜Sr(2Qj)

|BDuj(y)|2
dydt

t
� 2−2rMcλ2|Qj |.

The argument for (2−r�j)
−1uj replacing BDuj is the same if q < 2 and leads to a

similar estimate with 1+Mc in place of Mc. If q = 2, we may use an Ls−L2 estimate

for some s < 2 instead and (41) for ‖bj‖s.
In total, we obtain an estimate

Ij,r �
∑
j,r≥1

2−rKλ|Qj |1/2,

where K can be arbitrary large (upon choosing σ,M large) so that using (43)

I
1/2
glob �

∑
j,r≥1

λ2r(
n
2 −K)|Qj | inf

x∈Qj

M2H̃(x) � λ| ∪Qj |1/2

and the desired conclusion follows.

Proof of lemma 5.14. — For this inequality, we let χ be a scalar-valued cut-off func-

tion with χ = 1 on B(x, r), supported in B(x, cr) and with ‖∇χ‖∞ � r−1. As

χu ∈ D(D) and using that the commutator between χ and D is the pointwise multi-

plication by a matrix with bound controlled by |∇χ|,∫
B(x,r)

|Du|2 ≤
∫
Rn

|χDu|2 �
∫
Rn

|D(χu)|2 +

∫
Rn

|∇χ|2|u|2 .

Since B is accretive on R2(D), we have
∫
Rn |D(χu)|2 �

∫
Rn |BD(χu)|2. Now, we use

again the commutation between χ and D together with ‖B‖∞. This proves (44).

To continue the proof of theorem 5.11, we have to consider the case p ≤ 1, which

occurs only when (p−)∗ < 1. In this case, it is enough to consider a (Hp
D, 1)-atom
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a = Db with a, b supported in a cube Q and show that ‖Sψ,DBa‖p � 1 uniformly for

some ψ ∈ Ψτ
σ(Sμ) with σ, τ as large as one needs.

As usual the local term is handled by the L2 bound

‖Sψ,DBa‖Lp(4Q) ≤ |4Q| 1p− 1
2 ‖Sψ,DBa‖L2(4Q) � |4Q| 1p− 1

2 ‖a‖2 � 1.

Next, for the non-local term, we remark that if x /∈ 4Q and t ∈ (0,∞), then

〈dist(B(x, 2t), Q)/t〉 ≥ C〈dist(x,Q)/t〉.

Using ψ(tDB)a = ψ(tDB)Db = Dψ(tBD)b, the local coercivity inequality (44) and

Lq-L2 off-diagonal estimates (19) (provided τ is large enough), we have

‖ψ(tDB)a‖L2(B(x,t)) � ‖BDψ(tBD)b‖L2(B(x,2t)) + t−1‖ψ(tBD)b‖L2(B(x,2t))

� t−1t
n
2 −n

q 〈dist(x,Q)/t〉−K‖b‖q,

where K can taken as large as one wants upon taking σ large, and one chooses q with

p− < q < p∗ and q ≤ 2, which is possible as (p−)∗ < p ≤ 1. Thus, for x /∈ 4Q

Sψ,DBa(x) � (d(x,Q))−1−n
q ‖b‖q.

As q < p∗, it follows that 1 + n
q > n

p , so one can integrate the pth power and get

‖Sψ,DBa‖Lp((4Q)c) � �(Q)−1−n
q +n

p ‖b‖q � 1,

where the last inequality is merely Hölder’s inequality and ‖b‖2 � �(Q)1+
n
2 −n

p .

We have obtained all the upper bounds in theorem 5.1. We complete the proof by

proving the lower bounds.

5.1.2. Lower bounds. — Those have already been obtained in proposition 4.17 for
n

n+1 < p < 2 and we remark that (p−)∗ > n
n+1 . It remains to see them for 2 < p < p+.

We have seen in proposition 4.8 that for all h ∈ R2(D) and g ∈ R2(B∗D) and any

ψ, ϕ ∈ Ψ(Sμ) for which the Calderón reproducing formula (23) holds, one has

|〈h, g〉| ≤ ‖Qψ,DBh‖Tp
2
· ‖Qϕ∗,B∗Dg‖

Tp′
2

.

Now, we have ϕ∗(tB∗D)g = B∗ϕ∗(tDB∗)(B∗)−1g. Using that B∗ is bounded, p′ ∈
I(DB∗) = I(BD)′ since p ∈ I(BD) and B∗ is an isomorphism from Rp′(D) onto

Rp′(B∗D),

(45) ‖Qϕ∗,B∗Dg‖
Tp′
2

� ‖Qϕ∗,DB∗(B
∗)−1g‖

Tp′
2

� ‖(B∗)−1g‖p′ ∼ ‖g‖p′ ,

provided ϕ is allowable for H
p′

DB∗ which is the case if we choose, as we may, ϕ ∈
Ψγ(p′)(Sμ). Thus

|〈h, g〉| ≤ ‖Qψ,DBh‖Tp
2
· ‖g‖p′ .

Now, from [27], proposition 2.1, (5), Rp(D) and Rp′(B∗D) are dual spaces for the L2

pairing: this and a density argument yield ‖h‖p � ‖Qψ,DBh‖Tp
2
. This completes the

proof of theorem 5.1.
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5.2. Proof of theorem 5.3

Before we move to the proof, let us explain the ranges of p and α. In theorem 5.1,

the range for q for Hq
DB∗ = H

q
D is (p−(DB∗))∗ < q < p+(DB∗). But

p+(DB∗)′ = p−(BD) and p−(DB∗)′ = p+(BD),

so this is the range (p+(BD)′)∗ < q < p−(BD)′. If p+(BD) ≤ n, we have

(p+(BD)′)∗ = (p+(DB∗)∗)′ (with n∗ = ∞ by convention). If p+(BD) > n, then we

obtain the range [0, α(BD)) with α(BD) = n( 1
(p′+(BD))∗

− 1) = 1 − n
p+(BD) . In all,

we obtain the ranges for p and α specified in the statement.

5.2.1. Lower bounds. — The lower bounds of the tent space norms ‖Qϕ,BDh‖T
by norms on Ph is a modification of the arguments in proposition 4.9. For exam-

ple, for p = q′ and q > 1, take ψ,ϕ ∈ Ψ(Sμ) for which the Calderón reproducing

formula (23) holds. then

‖Pg‖p = sup{|〈Pg, f〉| ; ‖f‖Hq
D
� 1}

∼ sup{|〈g, f〉| ; ‖f‖Hq
D
� 1}

≤ sup{‖Qψ,BDf‖Tp
2
‖Qϕ∗,DB∗g‖T q

2
; ‖f‖Hq

D
� 1}

� sup{‖Qψ,BDg‖Tp
2
‖f‖q ; ‖f‖Hq

D
� 1}

� ‖Qψ,BDg‖Tp
2
.

The fourth line holds provided we also choose ϕ allowable for H
q
DB∗ while ψ can be

arbitrary.

The same argument holds when q ≤ 1, working in the Hölder spaces Lα
BD and Lα

D

and corresponding tent space T∞
2,α.

5.2.2. Upper bounds. — For p− < p < 2, we have just seen the desired upper

bound in (45) up to changing p′ to p and B∗ to B. Proposition 5.9 takes care of the

case 2 < p < p+.

Next, we consider the case p+ ≤ p < (p+)
∗. We adapt an argument of [15] which

works for both BD or DB. Let ψ ∈ Ψτ
σ(Sμ) with σ > 0 and τ > 0. Recall that

[z] = sgn(z)z. Consider for α ∈ C with Reα > 0,

ψα(z) =
[z]α−σ

(1 + [z])α−σ
ψ(z).

Remark that
[z]α

(1 + [z])α
= (1 + [z]−1)−α

and since z ∈ Sμ implies [z], [z]−1, 1 + [z]−1 ∈ Sμ+, we have that

sup
z∈Sμ

∣∣∣∣ [z]α

(1 + [z])α

∣∣∣∣ ≤ eμ| Imα|.
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It follows that ψα ∈ Ψτ
Reα(Sμ) with

|ψα(z)| ≤ Ceμ| Imα| inf(|z|Reα, |z|−τ ).

Clearly, the map α �→ ψα is analytic from Reα > 0 to Ψ(Sμ) with ψ = ψσ.

For T = DB of BD, set

Qαf = Qψα,T f = (ψα(tT )f)t>0, f ∈ L2.

Thus Qα is an analytic family of bounded operators from L2 to T 2
2 with

‖Qαf‖Tp
2
� eμ| Imα|‖f‖2.

In the statements below, implicit or explicit constants C are allowed to depend on

the real part of α but not on its imaginary part.

Lemma 5.15. — For Reα > 0, Qα maps Lp ∩ L2 to T p
2 when 2 ≤ p < p+ with

‖Qαf‖Tp
2
� eμ| Imα|‖f‖p.

Proof. — This is a reformulation of proposition 5.9 together with the remark that

follows it. We note that the control of the norm with eμ| Imα| comes from examination

of the proof of Le Merdy’s theorem [75] to get (17).

Lemma 5.16. — For Reα > n
p+(T ) , Qα maps Lp ∩ L2 to T p

2 when 2 ≤ p ≤ ∞ with

‖Qαf‖Tp
2
� eμ| Imα|‖f‖p.

Proof. — For fixed α it is enough to consider the case p = ∞ as one can then complex

interpolate from [40] between T 2
2 and T∞

2 . We claim that for any 2 < q < p+, and

any ball Br of Rn, with radius r, setting Ω = (0, r)×Br,

(46)
( 1

|Br|

∫∫
Ω

|ψα(tT )f(x)|2
dtdx

t

)1/2

≤ Ceμ| Imα|
∞∑
j=1

2−j (Reα−n
q )

(∫
2jBr

|f |q
)1/q

.

Admitting this claim, the right hand side is dominated by the L∞ norm of f by using

Reα > n
p+

and choosing q < p+ appropriately. Then the supremum over all Br of

the left hand side is precisely the T∞
2 norm of Qαf .

To prove the claim, we write

f = floc + fglob,

where floc = f 14Br . Then, using the L2 − T 2
2 boundedness of Qα,

1

|Br|

∫∫
Ω

|ψα(tT )floc(x)|2
dtdx

t
≤ 1

|Br|

∫
Rn

(∫ ∞

0

|ψα(tT )floc(x)|2
dt

t

)
dx

� 1

|Br|

∫
Rn

|floc|2 �
∫
4Br

|f |2.
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It is then enough to show(∫
Br

|ψα(tT )fglob|2
)1/2

≤ Ceμ| Imα| t
Reα

rReα

∞∑
j=2

2−j (Reα−n
q )

(∫
2j+1Br

|f |q
)1/q

.

Indeed, plugging this estimate in the integral on the Carleson region Ω, we obtain the

claim.

To this end, we set fj = f 1Sj(Br), so that fglob =
∑

j≥3 fj and by Minkowski’s

and Hölder’s inequalities(∫
Br

|ψα(tT )fglob|2
)1/2

≤
∑
j≥3

(∫
Br

|ψα(tT )fj |q
)1/q

.

Fix j ≥ 3 and use (19) with p = q to obtain(∫
Br

|ψα(tT )fj |q
)1/q

≤ Ceμ| Imα| t
Reα

rReα
2−j (Reα−n

q )
(∫

2j+1Br

|f |q
)1/q

.

The claim is proved.

Lemma 5.17. — For 0 < Reα ≤ n
p+

, Qα maps Lp∩L2 to T p
2 when 2 ≤ p < np+

n−p+ Reα

with

‖Qαf‖Tp
2
� eμ| Imα|‖f‖p.

Proof. — This is verbatim the interpolation argument in [15].

Corollary 5.18. — For p+ ≤ p and ψ ∈ Ψ n
p+

−n
p
(Sμ), then Qψ,T maps Lp ∩ L2

to T p
2 with

‖Qψ,T f‖Tp
2
� ‖f‖p.

In particular, if ψ ∈ Ψ1(Sμ), then Qψ,T maps Lp ∩L2 to T p
2 when 2 ≤ p < (p+(T ))

∗.

Proof. — This is an easy consequence of the previous construction when σ is any

number larger than n
p+

− n
p to start with. We leave details to the reader.

This corollary proves the part of theorem 5.3 that concerns upper bounds for

T = BD and 2 < p < (p+)
∗.

To finish the proof of theorem 5.3, it suffices to prove the following stronger result.

Proposition 5.19. — If p+ = p+(BD) > n, then for 0 ≤ α < 1− n
p+

,

‖Qψ,BDh‖T∞2,α � ‖h‖Λ̇s , ∀h ∈ Λ̇α ∩ L2,

when ψ ∈
⋃

σ>α+ n
p+

,τ>0 Ψ
τ
σ(Sμ) and in particular for ψ ∈ Ψ1(Sμ).

Proof. — We observe that (46) applies to ψ replacing Reα by σ and in the right hand

side h by h − c where c is any constant. Indeed, constants are annihilated by BD,

or more concretely ψ(tBD)c = 0. The action of ψ(tBD) on L∞ is guaranteed by

corollary 3.14 applied with q close to p+ and σ > n
p+

. Thus the left hand side of (46)
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remains the same. Now, we choose c to be the mean value of f on Br. When h ∈ Λ̇α,

a telescoping argument yields(∫
2j+1Br

|h− c|q
)1/q

� ‖h‖Λ̇α2
jαrα.

Thus the series in j converges as long as σ − n
q + α > 0, which is possible since

σ > α + n
p+

and choosing q < p+ close to p+, and we obtain the desired conclusion

when α > 0.

The same argument works for h ∈ BMO = Λ̇0, and 2jα is replaced by ln(j+1).

5.3. Proof of theorem 5.7

5.3.1. Lower bounds. — The argument is the same as for theorem 5.3 in sec-

tion 5.2.1.

5.3.2. Upper bounds. — We begin with the case 2 < q < p+(DB∗), that is

p−(BD) < p < 2. Then ψ ∈ Ψτ (Sμ) is allowable for H
p
BD when τ > γ(p), which is

the case as γ(q) = γ(p).

We turn to q < 2. We proceed with the following lemma.

Lemma 5.20. — Let φ ∈ Rk(Sμ), k = 1, 2, with φ(0) = 0. Then for all 2 < p < ∞

‖Qφ,BDh‖Tp
2
� ‖Ph‖Lp , ∀h ∈ L2,

and for all 0 ≤ α < 1,

‖Qφ,BDh‖T∞2,α � ‖Ph‖Λ̇α , ∀h ∈ L2.

Proof. — The proof is basically the same as for lemma 5.16. Let h ∈ L2. Fix a

ball Br, with radius r and set Ω = (0, r) × Br. Using that we have L2 off-diagonal

decay of any order N ≥ 1 for the resolvent and its iterates, and φ(0) = 0 so that we

have a square function estimate with φ(tBD), we obtain as in (46)

(47)
( 1

|Br|

∫∫
Ω

|φ(tBD)h(x)|2 dtdx

t

)1/2

�
∞∑
j=1

2−j (N−n
2 )

(∫
2jBr

|h|2
)1/2

.

Taking N > n
2 , this shows that ‖Qφ,BDh‖T∞2 � ‖h‖∞ for all h ∈ L∞ ∩ L2. Inter-

polating with the L2 → T 2
2 estimate, we obtain the T p

2 estimate for all h ∈ L2 ∩ Lp.

Since φ(0) = 0,

φ(tBD)h = φ(tBD)Ph

and replacing h by Ph, the T p
2 estimate ‖Qφ,BDh‖Tp

2
� ‖Ph‖Lp holds for 2 < p < ∞

and h ∈ L2.

Now, letting f = Ph−
∫
Br

Ph, we have

φ(tBD)h = φ(tBD)f.
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Here we used that φ(tBD) maps L∞ to L2
loc and annihilates constants. Applying (47)

with f replacing h, and using that(∫
2jBr

|f |2
)1/2

� 2jαrα‖Ph‖Λ̇α

if α > 0 and � ln(1 + j)‖Ph‖Λ̇0 (with convention Λ̇0 = BMO if α = 0) we obtain( 1

|Br|

∫∫
Ω

|φ(tBD)h(x)|2 dtdx

t

)1/2

�
∞∑
j=1

2−j (N−1−n
2 )rα‖Ph‖Λ̇α

and we are done provided we choose N > 1 + n
2 .

We turn to prove the upper bounds in theorem 5.7. As we assume H
q
DB∗ = H

q
D,

corollary 4.21 implies that for h ∈ R2(BD),

‖Pχ±(BD)h‖p � ‖Ph‖p
for p = q′ if q > 1 or ‖Pχ±(BD)h‖Λ̇α � ‖Ph‖Λ̇α for α = n( 1q − 1) if q ≤ 1.

Next, let ψ ∈ R1
σ(Sμ) ∩ Ψτ

1(Sμ) with σ > γ(q) and construct φ± ∈ R1(Sμ) such

that

|ψ(z)− φ±(z)| = O(|z|σ), ∀z ∈ Sμ±.

Remark that necessarily, φ±(0) = 0. The key point is the following observation:

the functions ψ± = (ψ − φ±)χ
± ∈ Ψ

inf(1,τ)
σ (Sμ) and, for h ∈ R2(BD), using h =

χ+(BD)h+ χ−(BD)h, we have the decomposition

ψ(tBD)h = ψ+(tBD)h+ ψ−(tBD)h+ φ+(BD)(χ+(BD)h) + φ−(BD)(χ−(BD)h).

Now, the condition σ > γ(q) implies that ψ± are allowable for HT
BD where T = T p

2 if

p = q′ and for T = T∞
2,α if α = n( 1q − 1). In the case q = p′ we deduce from this and

lemma 5.20

‖Qψ,BDh‖Tp
2
� ‖Ph‖p + ‖Ph‖p + ‖Pχ+(BD)h‖p + ‖Pχ−(BD)h‖p � ‖Ph‖p.

The argument when q ≤ 1 and α = n( 1q − 1) is similar. This completes the proof of

the upper bounds in theorem 5.7.

5.4. Proof of theorem 5.8

5.4.1. Lower bounds. — The lower bounds of the tent space norms ‖tDϕ(tBD)h‖T
by norms on Ph is again a modification of the arguments in proposition 4.9. Take ψ,ϕ

for which the Calderón reproducing formula (23) holds. Here we take ϕ ∈ H∞(Sμ)

and ψ(z) = zψ̃(z) where ψ̃ is allowable for Hq
DB∗ . We observe that for g ∈ R2(BD)

and f ∈ R2(D),

〈g, f〉 =
∫ ∞

0

〈ϕ(tBD)g, tDB∗ψ̃∗(tDB∗)f〉 dt
t

=

∫ ∞

0

〈tDϕ(tBD)g,B∗ψ̃∗(tDB∗)f〉 dt
t

using the self-adjointness of D.
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Now we may proceed as in the proof of theorem 5.7. For p = q′ and q > 1,

‖Pg‖p ∼ sup{|〈Pg, f〉| ; ‖f‖Hq
D
� 1}

= sup{|〈g, f〉| ; ‖f‖Hq
D
� 1}

≤ sup{‖tDϕ(tBD)g‖Tp
2
‖B∗‖∞‖Q

˜ψ∗,DB∗f‖T q
2
; ‖f‖Hq

D
� 1}

� sup{‖tDϕ(tBD)g‖Tp
2
‖f‖q ; ‖f‖Hq

D
� 1}

� ‖tDϕ(tBD)g‖Tp
2
.

The fourth line holds since we chose ψ̃ allowable for Hq
DB∗ .

The same argument holds when q ≤ 1, working in the Hölder space Lα
BD and

corresponding tent space T∞
2,α.

5.4.2. Upper bounds. — We begin with the case

2 < q < p+(DB∗),

that is p−(BD) < p < 2 and φ ∈ Ψτ
0(Sμ). Now, for h ∈ R2(BD),

tDφ(tBD)h = tDφ(tBD)BB−1h = tDBφ(tDB)(B−1h).

As B−1h ∈ R2(D), zφ ∈ Ψτ−1
1 (Sμ) with τ − 1 > γ(p), we can use theorem 5.1 and

then the invertibility of B : Rp(D) → Rp(BD) to obtain

‖tDφ(tBD)h‖Tp
2
= ‖tDBφ(tDB)(B−1h)‖Tp

2
� ‖B−1h‖p � ‖h‖p.

We turn to q < 2.

Lemma 5.21. — Let φ ∈ R2(Sμ). Then for all 2 < p < ∞
‖tDφ(tBD)h‖Tp

2
� ‖Ph‖Lp , ∀h ∈ L2,

and for all 0 ≤ α < 1,

‖tDφ(tBD)h‖T∞2,α � ‖Ph‖Λ̇α , ∀h ∈ L2.

Proof. — It suffices to do it for φ(tBD) = (I + itBD)−2. The proof is roughly

the same as for lemma 5.20 (playing with the projection and constants) as soon as

we establish the following: Let h ∈ L2. Fix a ball Br ⊂ Rn, with radius r, set

Ω = (0, r)×Br, then

(48)
( 1

|Br|

∫∫
Ω

|tDφ(tBD)h(x)|2 dtdx

t

)1/2

�
∞∑
j=1

2−j (N−n
2 )

(∫
2jBr

|h|2
)1/2

.

Indeed, one can always write

tDφ(tBD)h = tDφ(tBD)(Ph) = tDφ(tBD)(Ph− c)

for any constant c, noting that tDφ(tBD)(c) = tD(φ(0)c) = 0 and apply this inequal-

ity as needed. Again the proof of (48) follows by decomposing h = h0 + h1 + . . .

The terms hj for j ≥ 1 are localized in annuli away from the ball Br. One can use

lemma 5.14 to control integrals
∫
Br

|tDφ(tBD)hj |2 by the sum of
∫
˜Br

|tBDφ(tBD)hj |2
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and
∫
˜Br

|φ(tBD)hj |2 with slightly larger balls B̃r. Now, one uses the L2 off-diagonal

decay of combinations and iterates of resolvents. It remains to look at the term with

h0 = h12B . One has∫
Br

|tDφ(tBD)h0|2 ≤
∫
Rn

|tDφ(tBD)h0|2 �
∫
Rn

|tBDφ(tBD)h0|2

using the accretivity of B on R2(D). We conclude by plugging this in the dt integral

and using the square function bounds for tBDφ(tBD).

Armed with this lemma, we begin as in the proof of the upper bounds for theo-

rem 5.7 by observing that our assumption implies for h ∈ R2(BD),

‖Pχ±(BD)h‖p � ‖Ph‖p
for p = q′ if q > 1 or ‖Pχ±(BD)h‖Λ̇α � ‖Ph‖Λ̇α for α = n( 1q − 1) if q ≤ 1.

Now let φ ∈ R2
σ(Sμ) ∩Ψτ

0(Sμ) with τ > 1. Pick φ± ∈ R2(Sμ) such that

|φ(z)− φ±(z)| = O(|z|σ), ∀z ∈ Sμ±.

The key point is the following observation: the functions ψ±(z) := zψ̃±(z) with

ψ̃±(z) := (φ− φ±)(z)χ
±(z)

satisfy ψ̃± ∈ Ψτ
σ(Sμ) and ψ± ∈ Ψτ−1

σ+1(Sμ). Hence, for h ∈ R2(BD), using

h = χ+(BD)h+ χ−(BD)h = h+ + h−,

we have the decomposition

tDφ(tBD)h = tDψ̃+(tBD)h+ tDψ̃−(tBD)h+ tDφ+(BD)h+ + tDφ−(BD)h−.

In the case q = p′ we deduce from lemma 5.21

‖tDφ+(BD)h+‖Tp
2
� ‖Ph+‖p � ‖Ph‖p

and similarly for the term with h−. Now using the local coercivity assumption (44),

up to opening the cones in the definition of the square function, we have

‖tDψ̃±(tBD)h‖Tp
2
� ‖Qψ±,BDh‖Tp

2
+ ‖Q

˜ψ±,BDh‖Tp
2
.

But ψ± and ψ̃± are allowable for Hp
BD as we assumed σ > γ(q) = γ(p), thus

‖tDψ̃±(tBD)h‖Tp
2
� ‖Ph‖p.

The argument when q ≤ 1 and α = n( 1q − 1) is similar. This completes the proof of

the upper bounds in theorem 5.8.
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As said, completions of the pre-Hardy spaces may lead to abstract spaces. The

results above will give us favorable situations in appropriate ranges. This is in spirit

with the results in [60] obtained for second order operators in divergence form.

Strictly speaking, we could proceed this article without including such completions

except in chapter 14. This can be skipped in a first reading.

Here T = DB or BD on L2 but the theory could be more generally defined.

For 0 < p < ∞, define Hp
T to be the completion of Hp

T with respect to ‖Qψ,Th‖Tp
2

for any allowable ψ. For p < 1, this is a quasi-Banach space.

For p = ∞, we have two options. One is h∞
T = λ̇0

T be the completion H∞
T with

respect to ‖Qψ,Th‖T∞2 for any allowable ψ. We do not see any crucial use of it but we

mention it for completeness. The other one is H∞
T = Λ̇0

T be the dual space of H1
T∗ .

For α > 0, let λ̇α
T be the completion of Lα

T with respect to any of the allowable norms

‖Qψ,Th‖T∞2,α . Alternately, let Λ̇α
T be the dual space of Hp

T∗ with α = n( 1p − 1).

The following properties hold:

1) For 1 < p < ∞, Hp
T and Hp′

T∗ are dual spaces for a duality extending the L2

sesquilinear inner product. In particular, Hp
T is reflexive.

2) λ̇α
T is a closed subspace of Λ̇α

T when α ≥ 0.

3) On each Hp
T , 1 < p < ∞, there is a unique bisectorial operator U = UHp

T

with H∞-calculus such that for all b ∈ H∞(Sμ), b(U)h = b(T )h for all h ∈ H
p
T . In

particular there is a continuous, bounded and analytic semigroup (e−t|U |)t>0 which

extends the semigroup (e−t|T |)t>0 on R2(T ). Moreover, U is injective. Finally,

(UHp
T
)∗ = U

Hp′
T∗

.

4) If p ≤ 1, the H∞-calculus originally defined on R2(T ) extends to Hp
T . In particu-

lar, we have bounded extension of the operators e−t|T |, t ≥ 0. They form a semigroup

and we have shown the strong continuity at 0 on a dense subspace in proposition 4.5.

Thus strong continuity at 0 remains on the completion. Similarly, we can define the

spectral spaces Hp,±
T as the completion of Hp,±

T (within Hp
T ) or, equivalently, as the

image of the extension to Hp
T of χ±(T ). Similarly, by taking adjoints (in the du-

ality extending the L2 sesquilinear inner product), we can extend the H∞-calculus

originally defined on R2(T ) to Λ̇α
T when α ≥ 0 and then the semigroup is weakly-∗

continuous. Moreover, Λ̇α,±
T is the dual space to Hp,±

T∗ .
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5) The spaces Hp
T can be defined in such a way they form a complex interpolation

family for 0 < p ≤ ∞.

See [22] for 1) and 5). Assertions 2) and 4) are easy. We give a proof of 3) together

with the construction.

Proof of 3). — Fix 1 < p < ∞. Define Hp,±
T as the completion of Hp,±

T (within Hp
T ).

Clearly, the splitting of the pre-Hardy spectral subspaces passes to completion.

Also (e∓tTχ±(T ))t>0 extends to an analytic semigroup on Hp,±
T in the open sector

S(π/2−ω)+. As Hp,±
T is a Banach space, this semigroup has a generator −U± which

is ω-sectorial and densely defined (see [80]). On Hp
T = Hp,+

T ⊕Hp,−
T , define

Uh = U+h
+ − U−h

−, D(U) = {h ∈ Hp
T ; h± ∈ D(U±)}.

Then, U is clearly ω-bisectorial and densely defined on Hp
T . As e∓zU± coincides with

e∓zTχ±(T ) on H
p,±
T when z ∈ S(π/2−ω)+, and χ±(T ) is the identity on H

p,±
T , the

resolvents (I + isU)−1 and (I + isT )−1 coincide on both H
p,±
T , thus on their direct

sum H
p
T , when s ∈ Sν where 0 ≤ ν < π/2 − ω. As a consequence, ψ(T ) and ψ(U)

coincide on H
p
T for any ψ ∈ Ψ(Sμ) by the Cauchy formula. As ψ(T ) has a bounded

extension toHp
T with norm controlled by ‖ψ‖∞, this implies that U has aH∞-calculus

on Hp
T and that b(T ) and b(U) coincide on H

p
T for any b ∈ H∞(Sμ).

The uniqueness of −U follows from that of −U± as generators of semigroups.

The operator |U | may now be defined as

|U | = sgn(U)U,

or alternately as |U |h = U+h
++U−h

− with D(|U |) = {h ∈ Hp
T ; h± ∈ D(U±} = D(U).

The semigroup generated by −|U | thus coincides with the one generated by −|T |
on H

p
T .

The injectivity is a little trickier. We have seen in proposition 4.6 that for any

h ∈ H
p
T , lims→∞ ‖e−s|T |h‖Hp

T
= 0. By density, we have lims→∞ ‖e−s|U |h‖Hp

T
= 0 for

any h ∈ Hp
T . If h ∈ N(U), then h ∈ N(|U |) and thus e−s|U |h = h for all s > 0. Taking

the limit at ∞ yields h = 0.

Finally, calling U = UHp
T
and using the duality between Hp

T and Hp′

T∗ , it it is easy

to conclude that (UHp
T
)∗ = U

Hp′
T∗

.

Remark 6.1. — Except for the last duality formula, the proof works for H1
T , which

is a Banach space, as reflexivity is not used.

Let us come back to our concrete situation.

Proposition 6.2. — Let n
n+1 < p < ∞. If Hp

DB = H
p
D with equivalence of norms,

then they have same completions Hp
DB = Hp

D with equivalence of norms. In particular,

Hp
DB is a complemented subspace of Hp where Hp = Lp if p > 1. Moreover, the

extended semigroup of (e−t|DB|)t>0 is strongly continuous in Hp
D.
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Proof. — That H
p
DB = H

p
D with equivalence of norms implies they have same com-

pletion is an exercise in functional analysis. We have seen in theorem 4.16 that

H
p
D = P(Hp ∩L2). As Hp ∩L2 is dense in Hp and P has a bounded extension to Hp,

we have Hp
D = P(Hp), hence Hp

DB = Hp
D is a complemented subspace of Hp. We have

seen that the semi-group is strongly continuous on Hp
DB . This passes to Hp

D.

The following result is in spirit of [60] and [19].

Proposition 6.3. — Let n
n+1 < p < ∞. If Hp

DB = Hp
D with equivalence of norms,

then Hp
DB ∩ L2 = H

p
DB and H

p
DB = H

p
D with equivalence of norms.

Proof. — If p = 2, there is nothing to prove. In the other case, it suffices to show the

first set equality as the second one, with the equivalence of norms, follows from it. If

p > 2, then

H
p
DB ⊂ Hp

DB ∩ L2 = Hp
D ∩ L2 = H

p
D ⊂ H

p
DB

using theorem 4.16 and proposition 4.18.

Assume now that p < 2. It is enough to show Hp
DB ∩ L2 ⊂ H

p
DB as the other

inclusion is by construction. Let h ∈ Hp
DB ∩ L2. Take an allowable ψ for H

p
DB . We

have to show that Qψ,DBh ∈ T p
2 . By definition, there exists hk ∈ H

p
DB such that

hk converges to h in Hp
DB . Thus, (Qψ,DBhk) is a Cauchy sequence in T p

2 and has a

limit H. Also, by the assumption, (hk) converges to h for the Hp topology. It remains

to show that H = Qψ,DBh, for example in the sense of distributions in R1+n
+ . Let

F ∈ C∞
0 (R1+n

+ ), then we can write

(H −Qψ,DBh, F ) = (H −Qψ,DBhk, F ) + 〈hk − h, Sψ∗,B∗DF 〉,

the computation being justified by the H2
DB theory. The first term of the right hand

side converges to 0, since F ∈ (T p
2 )

∗ as easily checked. For the second term, we

remark that it equals 〈hk − h,PSψ∗,B∗DF 〉 and we claim that PSψ∗,B∗DF ∈ (Hp)∗.

Thus convergence to 0 follows and finishes the argument.

To prove the claim, let [a, b]× R contain the support of F . Then

PSψ∗,B∗DF =

∫ b

a

Pψ∗(tB∗D)F (t, .)
dt

t
=

∫ b

a

Pψ∗(tB∗D)PF (t, .)
dt

t
.

Remark that for each t, F (t, .) ∈ (Hp)∗ ∩ L2 with uniform bound for t ∈ [a, b]. Thus

PF (t, .) ∈ P((Hp)∗ ∩ L2) = H
p′

D or Lα
D depending on the value of p. We now verify

the assumption of remark 4.23 : From p < 2, we know H
p
DB ⊂ H

p
D (proposition 4.17).

Next, from Hp
DB = Hp

D with equivalence of norms, we see that ‖h‖Hp
D

∼ ‖h‖Hp
DB

for all h ∈ H
p
DB . Finally, the density of Hp

DB in Hp
DB guarantees that the above set

inclusion is dense for the Hp
D topology. Thus, the conclusion of corollary 4.21 applies:

Pψ∗(tB∗D) bounded on H
p′

D or Lα
D uniformly in t. This implies PSψ∗,B∗DF ∈ (Hp)∗

as desired.
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Proposition 6.4. — The set of exponents q ∈ ( n
n+1 ,∞) for which H

q
DB = H

q
D with

equivalence of norms is equal to the set of those q for which Hq
DB = Hq

D with equiva-

lence of norms. Moreover, it is an interval which contains ((p−(DB))∗, p+(DB)).

Proof. — The first statement follows from the previous two propositions. We know

from H∞-calculus in L2 that the identity map I : H2
D = R2(D) → H2

DB is an

isomorphism. Let q be such thatHq
DB = Hq

D with equivalence of norms. It means that

I is an isomorphism from Hq
D onto Hq

DB . As Hp
D and Hp

DB are complex interpolation

families for 0 < p < ∞, this shows that the set of q for which Hq
DB = Hq

D is an

interval which contains 2. That it contains ((p−(DB))∗, p+(DB)) has been proved in

theorem 5.1 for the pre-Hardy spaces, hence for their completions.

Proposition 6.5. — The interval of exponents q ∈ ( n
n+1 ,∞) for which H

q
DB = H

q
D

with equivalence of norms is open.

Proof. — We begin with openness about an exponent q < 2. Take ψ ∈ Ψ
n
2 +1(Sμ)

and ϕ ∈ Ψn
2 +1(Sμ) for which the Calderón formula (24) holds. We have the bounded

maps Qψ,DB : Hp
DB → T p

2 ∩ T 2
2 and Sϕ,DB : T p

2 ∩ T 2
2 → H

p
D for all p ∈ ( n

n+1 , 2] by

proposition 4.1 and proposition 4.17. The composition is the identity map. Consider

bounded extensions Hp
DB → T p

2 and T p
2 → Hp

D that are consistent for this range of p.

The composition is assumed to be the identity at p = q. By the result in [84, 69], it

remains invertible for p in a neighborhood of q. It readily follows that Hp
DB and Hp

D

are isomorphic for those p. Since we already have the inclusion H
p
DB ⊂ H

p
D, it is easy

to conclude the isomorphism is the identity.

In the case p > 2, we know from proposition 4.18 that H
p
D ⊂ H

p
DB . So we revert

the roles of DB and D and consider Qψ,D and Sϕ,D for appropriate ψ,ϕ. We skip

details.
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We would like to prove that for any p such that H
p
DB = H

p
D with equivalence of

norms, then the same holds for small L∞ perturbations of B. We do not know this

in the abstract. However, we can do this in the range found in theorem 5.1.

Proposition 7.1. — Fix p ∈ ((p−(DB))∗, p+(DB)). Then for any B′ with

‖B −B′‖∞ small enough (depending on p),

H
p
DB′ = H

p
D

with equivalence of norms. Furthermore, for any b ∈ H∞(Sμ) with ωB < μ < π/2,

we have

(49) ‖b(DB)− b(DB′)‖L(Hp
D) � ‖b‖∞‖B −B′‖∞.

Proof. — We shall use analyticity: let Bz = B − zM for M(x) normalized with L∞

norm 1 and z ∈ C so that B0 = B. We shall show the conclusion for B′ = Bz with z

in a small enough disk. First there is r > 0 such that for |z| < r, Bz is accretive on

R2(D) with constant half the one for B and bounded with L∞ bound twice that of B.

Using a Neumann series expansion, for λ /∈ Sμ, where μ > ωB (the accretivity angle

of B)

(λ−DBz)
−1 =

∞∑
k=0

zk
(
(λ−DB)−1DM

)k
(λ−DB)−1

=
∞∑
k=0

zk
(
(λ−DB)−1DBB−1M

)k
(λ−DB)−1.

Thus if |z| < ε2, the series converges in L(L2) and this shows that DBz is ωB bisec-

torial on L2 for all |z| < ε2. As Bz has the same form as B, it follows that DBz has

H∞-calculus on bisectors Sμ with uniform bounds with respect to |z| < ε2. Further-

more z �→ b(DBz) is an analytic L(L2)-valued function for any b ∈ H∞(Sμ). This is

shown in [29, section 6] together with (49) in L(L2).

Now, the same Neumann series shows that DBz is also bisectorial on Lp if

p−(DB) < p < p+(DB) and |z| < εp small enough. Thus such operators also have

H∞-calculus on Lp by the theory recalled in section 3.2. Furthermore, analyticity

of z �→ b(DBz) in L(Hp
D) on |z| < εp for any b ∈ H∞(Sμ) can be proved as follows.

First, for any λ /∈ Sμ, the Neumann series, show that z �→ (λ − DBz)
−1 is analytic

in L(Lp) on |z| < εp. Next, for ψ ∈ Ψ(Sμ), using the Cauchy formula, one has

analyticity of z �→ ψ(DBz) in L(Lp) on |z| < εp. Finally, b can be approximated for
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the topology of the uniform convergence on compact subsets of Sμ by a sequence (ψk)

with ψk ∈ Ψ(Sμ) for each k. This implies strong convergence of ψk(DBz) to b(DBz)

in L(Hp
D) and examination shows it is uniform on compact subsets of |z| < εp.

Analyticity follows and also (49) in L(Hp
D).

We next turn to values (p−(DB))∗ < p ≤ p−(DB). For those, the method

of proof of theorem 5.1 (in particular lemma 5.13) shows that for a suitable εp
(which can be taken equal to εq for some q ∈ (p−(DB), p∗)) and a suitable allow-

able ψ, ‖Qψ,DBzh‖Tp
2

� ‖h‖Hp
D

when h ∈ R2(D) uniformly on compact subsets

of |z| < εp. Hence, Hp
DBz

= H
p
D with equivalence of norms, uniformly on compact

subsets of |z| < εp. This implies that b(DBz) are uniformly bounded operators on H
p
D

when |z| < εp.

If 1 < p, this gives analyticity as follows: for h ∈ H
p
D, g ∈ H

p′

D, the map z �→
〈b(DBz)h, g〉 is uniformly bounded, and analytic because of the L2 case. Then (49)

follows from Cauchy estimates.

If p ≤ 1, it is likely that the abstract results developed in Kalton [68] apply. We

follow a different route taking advantage of the atomic-molecular theory.

Let us admit the following lemma for the moment.

Lemma 7.2. — Let (p−(DB))∗ < p ≤ 1 and b ∈ H∞(Sμ). For some ε > 0 depending

only on p and n, then for all (Hp
D, 1)-atoms a, with associated cube Q and all j ≥ 0,

‖b(DB)a‖L2(Sj(Q)) � ‖b‖∞
(
2j� (Q)

)n
2 −n

p 2−jε

and moreover
∫
b(DB)a = 0. In all, b(DB)a is a classical Hp molecule.

Now the strategy is to prove analyticity is as follows. The same estimate applies

to b(DBz) for |z| < εp/2, uniformly in z. We fix the (Hp
D, 1)-atom a. It follows from

the molecular estimate that mz = b(DBz)a belongs to the Hilbert space H of L2(wQ)

functions m with
∫
Rn m = 0, where

wQ(x) = |Q| 2p−1
(
1 +

d(x, 4Q

�(Q)

)2s
,

n

p
− n

2
< s <

n

p
− n

2
+ ε

and Q is the cube associated to a in the definition. Note that H ⊂ L1. The bounded

compactly supported functions with mean value 0 form a dense subspace of H. For f

such a function, fwQ ∈ L2 as well as b(DBz)a since a ∈ L2. Thus, by the analyticity

on L2, z �→ 〈mz, fwQ〉 is analytic. Next, by Cauchy estimates using the uniform

bounds in the space H, we have for |z| small enough,

|〈mz, fwQ〉 − 〈m0, fwQ〉| � ‖b‖∞ · |z| · ‖f‖H ,

hence

‖b(DBz)a− b(DB)a‖H � ‖b‖∞ · |z|.
Since s > n

p − n
2 , this implies the Hp estimate

‖b(DBz)a− b(DB)a‖Hp � ‖b‖∞ · |z|.
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Note that b(DBz)a− b(DB)a ∈ H2
D, hence this is also an estimate in the space H

p
D.

Since we know already boundedness of b(DBz)−b(DB) on H
p
D (but it can be obtained

by extension), we conclude for (49) by density of linear combinations of (Hp
D, 1)-

atoms.

Proof lemma 7.2. — This is basically the same strategy as for proving the square

function estimate. Assume ‖b‖∞ = 1 to simplify matters. Fix a (Hp
D, 1)-atom a.

Choose ψ ∈ Ψτ
σ(Sμ) with σ, τ large and so that

∫ ∞
0

ψ(tz) dt
t = 1 for z ∈ Sμ. Thus,

m = b(DB)a =

∫ ∞

0

(bψt)(DB)a
dt

t

with ψt(z) = ψ(tz). Now write a = Du as in the definition of (Hp
D, 1)-atoms. We

show estimates on m. Let Q be the cube associated to a. On 4Q, by H∞-calculus(∫
4Q

|m|2
)1/2

�
(∫

|a|2
)1/2

≤ |Q| 12− 1
p .

On Sj(Q), j ≥ 2, we write (bψt)(DB)a = D(bψt)(BD)u and(∫
Sj(Q)

|m|2
)1/2

�
∫ ∞

0

(∫
Sj(Q)

|D(bψt)(BD)u|2
)1/2 dt

t
.

We use once more lemma 5.14 and the fact that σ, τ > 0 are large enough in the

Lq-L2 estimates of section 3.5 applied to (bψt)(BD) to obtain(∫
Sj(Q)

|D(bψt)(BD)u|2
)1/2

� t−1t
n
2 −n

q 〈2j�(Q)/t〉−K‖u‖q

with K large and q chosen so that p− < q < p∗ and q ≤ 2. Plugging this estimate

into the t-integral we have(∫
Sj(Q)

|m|2
)1/2

� (2j�(Q))−1(2j�(Q))
n
2 −n

q ‖u‖q � (2j�(Q))
n
2 −n

p 2−jε

with ε = 1 + n
q − n

p > 0. It remains to prove c =
∫
m = 0. Indeed, m − c1Q ∈ Hp

as it is a classical molecule for Hp using the estimates on m. Now, we know that

m ∈ H
p
D ⊂ Hp, thus c1Q ∈ Hp and it is classical (for example, using the characteri-

zation by maximal function) that 1Q /∈ Hp since its mean value is not 0 and c must

be 0.

Remark 7.3. — It is unclear to us whether m is itself an (Hp
D, ε, 1)-molecule in the

sense of our definition. One can indeed write m = Dv with v =
∫ ∞
0

(bψt)(BD)u dt
t

and obtain by the same method

‖v‖L2(Sj(Q)) � ‖b‖∞
(
2j� (Q)

)n
2 −n

p 2−jε2j .

There is an extra factor 2j . However, this is sufficient to prove a uniform Lp∗ bound

on v if one needs it.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2016





8. REGULARIZATION VIA SEMIGROUPS

This section will be used in chapter 14 below.

It is well known that classical semigroups have regularization properties: for ex-

ample, the usual Poisson semigroup on Rn maps L1 into L∞, as easily seen using the

Poisson kernel. Here, there is no kernel information. Nevertheless, such regularization

holds abstractly in the Hardy spaces.

Theorem 8.1. — Let T = BD or DB. Let 0 < p ≤ q ≤ ∞ and 0 ≤ α ≤ β < ∞.

Fix t > 0. Then the operator e−t|T | has extensions with the following mapping prop-

erties and bounds

Hp
T −→ Hq

T with bound Ct−(n
p −n

q ),

Λ̇α
T −→ Λ̇β

T with bound Ctα−β ,

Hp
T −→ Λ̇α

T with bound Ct−
n
p −α.

Moreover, the mapping properties hold with the same bounds when the spaces are

replaced by the corresponding pre-Hardy spaces HT
T with the possible exception of the

first line when p < q ≤ 1.

Remark 8.2. — The proof will show this result is not limited to BD or DB. It

holds for any operator T on Rn having a Hardy space theory (for example, bisectorial

with H∞-calculus plus L2 off-diagonal bounds). The bounds are valid for an operator

having the scaling of a first order operator. For an operator of order m, then raise

the bounds to power 1
m .

Proof. — Step 1 : p ≤ 1 and q = 2 in the first line.

We pick an (Hp
T , ε,M)-molecule a with M > n

p − n
2 . Let � be the side length of the

associated cube. Observe that a ∈ R2(T ) ⊂ H2
T , thus e

−t|T |a ∈ H2
T and

‖e−t|T |a‖2 ∼ ‖e−t|T |a‖H2
T
.

Since ‖a‖2 � �−(n
p −n

2 ) and e−t|T | is uniformly bounded on L2 we have

‖e−t|T |a‖2 � �−(n
p −n

2 ).

Now we have a = TMb with b ∈ D2(T
M ) and ‖b‖2 � �M �−(n

p −n
2 ). As (tT )Me−t|T | is

uniformly bounded on L2, we have ‖e−t|T |a‖2 � t−M �M−(n
p −n

2 ). Thus

‖e−t|T |a‖2 � inf(�−(n
p −n

2 ), t−M �M−(n
p −n

2 )) ≤ t−(n
p −n

2 ).
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Next, let f ∈ H
p
T . Pick a molecular (Hp

T , ε,M)-representation f =
∑

λjaj which con-

verges in L2 and also with
∑

|λj |p ≤ 2p‖f‖p
H

p
T
. From L2 continuity of the semigroup

we have e−t|T |f =
∑

λje
−t|T |aj , hence

‖e−t|T |f‖2 �
∑

|λj |t−(n
p −n

2 ) ≤ ‖(λj)‖�p t−(n
p −n

2 ) ≤ 2‖f‖Hp
T
t−(n

p −n
2 ).

as p ≤ 1. Finally, taking completion we have proved step 1.

Step 2: p = 2 and q = ∞ in the first line.

This an easy consequence of proposition 4.8. Let g ∈ H2
T = H2

T . Let f ∈ H1
T∗ .

Using the first step with T ∗ (which is of the same type as T ),

|〈f, e−t|T |g〉| = |〈e−t|T∗|f, g〉| ≤ ‖g‖H2
T
‖e−t|T∗|f‖H2

T∗
� ‖g‖H2

T
‖f‖H1

T∗
t−(n−n

2 ).

Thus, e−t|T |g ∈ (H1
T∗)

∗ = H∞
T by definition of H∞

T and density of H1
T∗ in H1

T∗ , and

‖e−t|T |g‖H∞T � ‖g‖H2
T
t−(n−n

2 ).

Step 3: All cases in the first line. Using the semigroup property and combining

the first two steps, we have the first line for (p,∞) for any 0 < p < ∞ and we also

know the first line for all pairs (p, p) for 0 < p ≤ ∞ from the discussion in section 6.

We conclude this line by complex interpolation.

Step 4: The second line. This is the dual of the first line Hp
T∗ → Hq

T∗ , where

α = n( 1q − 1) and β = n( 1p − 1).

Step 5: The third line. Combine Hp
T → H∞

T = Λ̇0
T with Λ̇0

T → Λ̇α
T using the

semigroup property.

Step 6: The first line with the pre-Hardy spaces. Before we begin recall that this is

not immediate from the results above as we do not know whether Hp
T = Hp

T ∩H2
T in

general. We come back to the definition. Let f ∈ H
p
T . As e−t|T |f ∈ H2

T , we want to

show that Qψ,T (e
−t|T |f) ∈ T q

2 with the desired bound for some allowable ψ for H
q
T .

We can only do this when q > 1. We choose ψ matching the conditions of the third

and fourth columns for the exponent q in the table before proposition 4.1. By duality

in tent spaces and density, it is enough to bound (Qψ,T (e
−t|T |f), G) by ‖G‖

T q′
2

for

any G ∈ T q′

2 ∩ T 2
2 . By the choice of G, we have

(Qψ,T (e
−t|T |f), G) = 〈f, e−t|T∗|(Sψ∗,T∗G)〉.

Now, the choice for ψ implies Sψ∗,T∗G ∈ H
q′

T∗ and using the just proved first or third

lines and duality, e−t|T∗|(Sψ∗,T∗G) ∈ Hp′

T∗ = (Hp
T )

∗. We obtain

|〈f, e−t|T∗|(Sψ∗,T∗G)〉| � t−(n
p −n

q )‖f‖Hp
T
· ‖G‖

T q′
2

.

Step 7: The third line with the pre-Hardy spaces, that is Hp
T → Lα

T . Let f ∈ H
p
T .

As e−t|T |f ∈ H2
T , we have to show that Qψ,T (e

−t|T |f) ∈ T∞
2,α with the desired bound

for some allowable ψ for Lα
T . We let α = n( 1q − 1) for some q < 1 and choose ψ

matching the conditions of the third and fourth columns for the exponent α in the
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table before proposition 4.1. By duality in tent spaces and density, it is enough to

bound (Qψ,T (e
−t|T |f), G) by ‖G‖T q

2
for any G ∈ T q

2 ∩T 2
2 . By the choice of G, we have

(Qψ,T (e
−t|T |f), G) = 〈f, e−t|T∗|(Sψ∗,T∗G)〉.

Now, the choice of ψ implies Sψ∗,T∗G ∈ H
q
T∗ , and using the just proved first or third

line and duality, e−t|T∗|(Sψ∗,T∗G) ∈ (Hp
T )

∗. We obtain

|〈f, e−t|T∗|(Sψ∗,T∗G)〉| � t−
n
p −α‖f‖Hp

T
· ‖G‖T q

2
.

Step 8: The second line with the pre-Hardy spaces, that is Lα
T → L

β
T . The argument

is similar to the previous ones and we leave details to the reader.

Corollary 8.3. — Let p ≤ q with p ≤ 2. If both p, q belong to the interval of expo-

nents in ( n
n+1 ,∞) for which H

q
DB = H

q
D, then the semigroup e−t|DB| has a bounded

extension from Hp
DB = Hp

D to H
q
DB = H

q
D with bound Ct−(n

p −n
q ).

Proof. — From the previous theorem, the semigroup e−t|DB| extends to a bounded

operator from Hp
DB to Hq

DB with the desired bound as p ≤ q and it also maps Hp
DB

to H2
DB ⊂ L2 as p ≤ 2. By proposition 6.3, we have that Hq

DB ∩ L2 = H
q
DB for q in

the prescribed interval and the result follows.
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In this chapter, we establish the following results for Ñ∗ defined in (26).

Theorem 9.1. — Let (a, p+(DB)) be an interval with a > n
n+1 on which H

p
DB = H

p
D

with equivalence of norms. Then for p ∈ (a, (p+)
∗), we have

‖Ñ∗(e
−t|DB|h)‖p ∼ ‖h‖p

for all h ∈ R2(D) if p > 1. If p ≤ 1, we have

‖Ñ∗(e
−t|DB|h)‖p ∼ ‖h‖Hp

for all h ∈ R2(D) and B pointwise accretive, or for all h ∈ H
2,±
DB. This applies for

a = (p−(DB))∗.

Remark 9.2. — We think that the hypothesis of pointwise accretivity is not nec-

essary but we are unable to remove it at this time: this is the only result of this

memoir where this hypothesis is used. Nevertheless, the validity of the equivalence

for h ∈ H
2,±
DB suffices for applications to BVPs.

Theorem 9.3. — Let (a, p+(DB∗)) be an interval with a ≥ 1 on which H
q
DB∗ = H

q
D

with equivalence of norms. Then for 1 < p < a′, we have

‖Ñ∗(e
−t|BD|Ph)‖p ∼ ‖Ph‖p

for all h ∈ R2(BD) if p ≥ 2 and

‖Ñ∗(e
−t|BD|h)‖p ∼ ‖h‖p ∼ ‖Ph‖p

for all h ∈ R2(BD) if p−(BD) < p < 2. This applies with a = max((p−(DB∗))∗, 1).

Remark 9.4. — The inequality ‖Ñ∗(e
−t|T |h)‖p � ‖h‖Hp

T
holds for 0 < p ≤ 2 when

h ∈ R2(T ) for T = BD or DB thanks to lemma 4.15 and the equivalence at p = 2

(which we prove next).

Remark 9.5. — We shall also prove

‖Ñ∗(e
−t|BD|h)‖p � ‖h‖p

for 2 < p < (p+(BD))∗ and h ∈ L2, hence in particular h ∈ R2(BD). But if

p ≥ p+(BD) the right hand side is not equivalent to the H
p
BD norm, while ‖Ph‖p is.

This is why we have to insert P in theorem 9.3.
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Remark 9.6. — Note that the result in theorem 9.3 for p < 2 sounds different. Let

the r variant of Ñ∗ be defined as

Ñr
∗ (g)(x) := sup

t>0

(∫∫
W (t,x)

|g|r
)1/r

, x ∈ Rn,

so that Ñ2
∗ = Ñ∗. In fact, one can only prove

‖Ñr
∗ (e

−t|BD|Ph)‖p ∼ ‖Ph‖p
for all h ∈ R2(BD) with r < p if p < 2. And this is sharp since, as

e−t|BD|Ph− e−t|BD|h = Ph− h

for all t > 0, Ñr
∗ (e

−t|BD|Ph− e−t|BD|h) ∼ Mr(Ph−h) and Mr is not bounded on Lp

if p ≤ r.

Remark 9.7. — We thank M.Mourgoglou for pointing out to us that the results

in this chapter hold with the non-tangential maximal function on Whitney regions

replaced by the non-tangential maximal function on slices

sup
t>0

(∫
B(x,c1t)

|e−t|T |h|2
)1/2

, x ∈ Rn.

For the lower bounds, this is trivial as there is a pointwise domination of Ñ∗ by the

latter. For the upper bounds, the arguments need some adjustements. The main one

is to go from the integral on slices
∫
B(x,c1t)

|ψ(tT )h|2 to a solid integral on a Whitney

region in order to use square function estimates. This can be done using the method

of proof of proposition 2.1 in [3], up to using 2 different ψ, which is not a problem.

We skip details.

Remark 9.8. — All the results of this section concerning T = DB are valid

with e−s|T | replaced ϕ(sT ) where ϕ ∈ H∞(Sμ) with

|ϕ(z)| � |z|−α and |ϕ(z)− ϕ(0)| � |z|α

for some α > 0. It suffices to write ϕ(z) = ϕ(0)e−[z] +ψ(z). Concerning T = BD, all

results hold in the range p−(BD) < p < (p+(BD))∗ for such ϕ. For p ≥ (p+(BD))∗,

we also impose ϕ ∈ R2
σ for σ large enough.

9.1. L2 estimates and Fatou type results

Theorem 9.9. — Let T = DB or BD. Then one has the estimate

(50) ‖Ñ∗(e
−t|T |h)‖2 ∼ ‖h‖2, ∀h ∈ R2(T ).

Furthermore, for any h ∈ L2 (not just R2(T )), we have that the Whitney averages

of e−t|T |h converge to h in L2 sense, that is for almost every x0 ∈ Rn,

(51) lim
t→0

∫∫
W (t,x0)

|e−s|T |h− h(x0)|2 = 0.
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In particular, this implies the almost everywhere convergence of Whitney averages

(52) lim
t→0

∫∫
W (t,x0)

e−s|T |h = h(x0).

Proof. — Let us begin with the non-tangential maximal estimate. The bound from

below is easy:

‖h‖22 = lim
t→0

1

t

∫ 2t

t

‖e−s|T |h‖22 ds � ‖Ñ∗(e
−s|T |h)‖22.

Next, the bound from above for T = DB is due to [82, theorem 5.1] (When D

has a special form it appeared first in disguise in [9].) We provide a different proof in

the spirit of the decompositions above. It is easy to check that e−[z] ∈ R2
2(Sμ): there

exist φ± ∈ R2(Sμ) such that

ψ±(z) := (e−[z] − φ±(z))χ
±(z) ∈ Ψ2

2(Sμ).

Thus, Ñ∗(ψ±(tDB)h) � S(ψ±(tBD)h) and the L2 bound follows from the square

function bounds for DB. It remains to check the L2 bounds for Ñ∗(φ±(tBD)h±)

where h± = χ±(DB)h. It suffices to do it for h ∈ R2(D) by density. Thus h± ∈ R2(D)

and there exist v± ∈ D2(D) ∩ R2(D) such that h± = Dv±, and we can write

φ±(tDB)h± = Dφ±(tBD)(v± − c±),

where c± is any constant. Fix a Whitney region

W (t, x) = (c−1
0 t, c0t)×B(x, c1t),

choose c± as the average of v± on the ball B(x, c1t). Using the local coercivity

estimate (44), we have, with a slightly enlarged Whitney region W̃ (t, x) in the right

hand side,∫∫
W (t,x)

|φ±(tDB)h±|2 �
∫∫

˜W (t,x)

|BDφ±(tBD)(v± − c±)|2

+ t−2

∫∫
˜W (t,x)

|φ±(tDB)(v± − c±)|2.

As φ± ∈ R2(Sμ), zφ
± and φ± have L2 off-diagonal decay with decay as large as one

wants, using the usual analysis in annuli and Poincaré inequality for 2n
n+2 ≤ p < 2

and p ≥ 1, we obtain(∫∫
W (t,x)

|φ±(tDB)h±|2
)1/2

� Mp(∇v±)(x).

Thus, the L2 norm of Ñ∗(φ±(tDB)h±) is controlled by ‖∇v±‖2 and we use the

coercivity of D on D2(D) ∩ R2(D) to get a bound ‖Dv±‖2 = ‖h±‖2 � ‖h‖2. The

proof for DB is complete.
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The proof for T = BD follows from the result for DB: If g ∈ R2(BD), then

B−1g = h ∈ R2(DB) with ‖h‖2 ∼ ‖g‖2 and e−t|BD|g = Be−t|DB|h. Thus

‖Ñ∗(e
−t|BD|g)‖2 = ‖Ñ∗(Be−t|DB|h)‖2 ≤ ‖B‖∞‖Ñ∗(e

−t|DB|h)‖2 ∼ ‖h‖2 ∼ ‖g‖2.

It remains to show the almost everywhere convergence result. We begin with BD.

Let h ∈ L2. Pick x0 a Lebesgue point for the condition

(53) lim
t→0

∫
B(x0,t)

|h− h(x0)|2 = 0.

Write as above,

e−s|BD|h = ψ(sBD)h+ (I + isBD)−1h

with ψ(z) = e−[z] − (1 + iz)−1. The quadratic estimate (14) implies that

lim
t→0

∫∫
W (t,x0)

|ψ(sBD)h|2 = 0

for almost every x0 ∈ Rn. Now the key point is that Dc = 0 if c is a constant, thus

(I + isBD)−1[h(x0)] = h(x0). It follows that

(I + isBD)−1h− h(x0) = (I + isBD)−1(h− h(x0))

so that for arbitrarily large N ,

(54)

∫∫
W (t,x0)

|(I + isBD)−1(h− h(x0))|2 �
∑
j≥1

2−jN t−n

∫
B(x0,2jt)

|h− h(x0)|2.

Breaking the sum at j0 with 2−j0 ∼
√
t and choosing N ≥ n+ 1, we obtain a bound

sup
τ≤

√
t

∫
B(x0,τ)

|h− h(x0)|2 +
√
tM(|h− h(x0)|2)(x0),

where M is the Hardy-Littlewood maximal function. Using the weak type (1,1) ofM ,

almost every x0 ∈ Rn satisfy M(|h|2)(x0) < ∞. Hence, the latter expression goes

to 0 as t → 0 at those x0 meeting all the requirements.

We turn to the proof for T = DB. Let g ∈ L2. If g ∈ N2(DB), this is a consequence

of the Lebesgue differentiation theorem on Rn as e−s|DB|g = g is independent of s.

We assume next that g ∈ R2(DB). As

lim
t→0

∫∫
W (t,x0)

|g − g(x0)|2 = lim
t→0

∫
B(x0,c1t)

|g − g(x0)|2 = 0

for almost every x0 ∈ Rn, it is enough to show the almost everywhere limit

lim
t→0

∫∫
W (t,x0)

|e−s|DB|g − g|2 = 0.

We also choose x0 so that

lim
t→0

∫
B(x0,c1t)

|Bg − (Bg)(x0)|2 = 0.
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Write again e−s|DB|g−g = ψ(sDB)g+(I+isDB)−1g−g. The quadratic estimate (14)

implies that

lim
t→0

∫∫
W (t,x0)

|ψ(sDB)g|2 = 0

for almost every x0 ∈ Rn. Now

(I + isDB)−1g − g = −isDhs

with hs = B(I + isDB)−1g = (I + isBD)−1(Bg) and Bg ∈ L2. Let

h̃s := (I + isBD)−1(Bg)− (Bg)(x0).

Applying lemma 5.14 to u = h̃s using Dhs = Dh̃s and integrating with respect to s

implies ∫∫
W (t,x0)

|isDhs|2 �
∫∫

˜W (t,x0)

|isBDhs|2 +
∫∫

˜W (t,x0)

|h̃s|2

�
∫∫

˜W (t,x0)

|(I + isBD)−1(Bg)−Bg|2

+

∫∫
˜W (t,x0)

∣∣∣Bg − (Bg)(x0)|2,

where W̃ (t, x0) is a slightly expanded version of W (t, x0) and, in the last inequality,

we have written h̃s = (I+ isBD)−1(Bg)−Bg+Bg− (Bg)(x0). The last two integrals

have been shown to converge to 0 for almost every x0 ∈ Rn in the argument for BD.

This concludes the proof.

9.2. Lower bounds for p �= 2

A first argument follows from the almost everywhere bounds.

Proposition 9.10. — Let T = DB or BD and 1 < p < ∞. Then one has the

estimate

(55) ‖h‖p � ‖Ñ∗(e
−t|T |h)‖p, ∀h ∈ L2.

Proof. — It follows from the almost everywhere limit (52) that

(56) |h| ≤ Ñ∗(e
−t|T |h)

almost everywhere. It suffices to integrate.

Our second result, inspired by an argument found in [61] in the case of second order

divergence form operators, yields the following improvement under a supplementary

hypothesis.

Proposition 9.11. — Assume B is pointwise accretive. Let T = DB and n
n+1 <

p < ∞. Then one has the estimate

(57) ‖h‖Hp � ‖Ñ∗(e
−t|DB|h)‖p, ∀h ∈ R2(D).
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There is no corresponding statement for BD for p ≤ 1. It has to do with the

cancellations. Note that we assume a priori knowledge for h to make sense of the

action of the semigroup. As we shall see, if we only have B accretive on the range

on D, our argument provides us with the weaker bound

‖h‖Hp � ‖Ñ∗(e
−t|DB|h)‖p + ‖Ñ∗(e

−t|DB|(sgn(DB)h))‖p.

We begin with the following Caccioppoli inequality.

Lemma 9.12. — Assume B is pointwise accretive and F, ∂tF,DBF ∈ L2
loc(R

1+n
+ ;CN ).

Assume F is a solution of

(58)

∫∫
〈∂tF, ∂tG〉+ 〈BDBF,DG〉 = 0,

for all compactly supported G ∈ L2
loc(R

1+n
+ ;CN ) with ∂tG,DG ∈ L2

loc(R
1+n
+ ;CN ), the

inner product being the one of CN . Then

(59)

∫∫
W (t,x0)

|∂tF |2 +
∫∫

W (t,x0)

|DBF |2 ≤ C

t2

∫∫
˜W (t,x0)

|F |2,

where W (t, x0) is a Whitney box and W̃ (t, x0) a slightly enlarged Whitney box. The

constant C depends on the ratio of enlargements, dimension and accretivity bounds

for B. In particular this holds for F (t, x) = e−t|DB|h(x) with h ∈ R2(D).

Proof. — Let us begin with the end of the statement. If h ∈ R2(D), then by semi-

group theory, for fixed t, F and ∂tF are in L2, as well as

DBF = −sgn(DB)∂tF

using the H∞-calculus. Now we remark that F satisfies the equation ∂2
t F = DBDBF

because |DB|2 = DBDB. Thus using the self-adjointness of D and the skew-

adjointness of ∂t, we obtain (58).

Let us prove (59) assuming (58). Let χ(s, y) be a real-valued smooth function with

support in W̃ (t, x0), value 1 on W (t, x0) and |∇χ| � 1
t . It is enough to prove

(60)
κ

2

∫∫
|χDBF |2 + κ

2

∫∫
|χ∂tF |2 � t−2

∫∫
˜W (t,x0)

|F |2,

where κ is the accretivity constant for B. Let Dχ = [D,χ]. As in the proof of (44),

Dχ is multiplication by a matrix supported on W̃ (t, x0) and bounded by Ct−1. First,

κ

∫∫
|χDBF |2 ≤ κ

∫∫
|D(χBF )|2 + Ct−2

∫∫
˜W (t,x0)

|F |2.

Then, the accretivity of B on the range of D yields

κ

∫∫
|D(χBF )|2 ≤ Re

∫∫
〈BD(χBF ), D(χBF )〉
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and the right hand side can be computed using∫∫
〈BD(χBF ), D(χBF )〉 =

∫∫
〈BDχBF,D(χBF )〉+

∫∫
〈χBDBF,D(χBF )〉

=

∫∫
〈BDχBF,DχBF 〉 −

∫∫
〈BDχBF ), χDBF 〉

−
∫∫

〈BDBF,Dχ(χBF )〉+
∫∫

〈BDBF,D(χ2BF )〉.

In the last four integrals, the first is on the right order and the second and third are

controlled by absorption inequalities isolating χDBF and we arrive at

(61)
κ

2

∫∫
|χDBF |2 � Re

∫∫
〈BDBF,D(χ2BF )〉+ Ct−2

∫∫
˜W (t,x0)

|F |2.

Similarly, using the pointwise accretivity of B,

κ

∫∫
|χ∂tF |2 ≤ Re

∫∫
〈χ∂tF,Bχ∂tF 〉

= Re

∫∫
〈∂tF, ∂t(χ2BF )〉+ 2Re

∫∫
〈χ∂tF, ∂tχBF 〉.

Again, by absorption inequalities, we obtain

(62)
κ

2

∫∫
|χ∂tF |2 ≤ Re

∫∫
〈∂tF, ∂t(χ2F )〉+ Ct−2

∫∫
˜W (t,x0)

|F |2.

Combining the two estimates (61) and (62), and using (58), prove (60), hence the

lemma.

Remark 9.13. — If we only assume the accretivity of B on R2(D) then it is not

clear how to dominate
∫∫

|χ∂tF |2 by an expression involving F . If F = e−t|DB|h

then observing that ∂tF = −DB(sgn(DB)F ) and one can repeat the proof of (61)

which we have done on purpose using only the accretivity of B on the range. But this

brings an average of t−2|sgn(DB)F |2 in the right hand side, which means replacing h

by sgn(DB)h.

Proof of proposition 9.11. — We use auxiliary functions. Let a, b be the constants

such that the function ρ = a1[1,2) + b1[2,3) satisfies
∫
ρ(s) ds = 1 and

∫
ρ(s)s ds = 0.

Define the bounded holomorphic function

m(z) =

∫ 3

1

ρ(s)e−s[z] ds

in the half-planes Re z > 0 and Re z < 0 and at z = 0 with m(0) = 1. So one has

m(tDB) is well defined by the H∞-calculus. Let

ρ̃(t) = −
∫ t

1

ρ(s)s ds =

∫ ∞

t

ρ(s)s ds.
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Thus ρ̃ has support in [1, 3] as well. Integrating by parts, we have

m′(z) = −sgn(z)

∫ 3

1

ρ(s)se−s[z] ds

= sgn(z)

∫ 3

1

ρ̃(s)[z]e−s[z] ds =

∫ 3

1

ρ̃(s)ze−s[z] ds.

Now, set Ft = e−t|DB|h, Gt = m(tDB)h and G̃t = m′(tDB)h. We have

Gt =

∫ 3

1

ρ(s)Fst ds, G̃t =

∫ 3

1

ρ̃(s)

s
(stDBFst) ds,

and it follows from the support in [1,3] of ρ and ρ̃ that

Ñ∗(G) + Ñ∗(G̃) � Ñ∗(F ) + Ñ∗(tDBF ).

Thus, using lemma 9.12 and adjusting the parameters in Whitney boxes, it suffices

to prove

‖h‖Hp � ‖Ñ∗(G)‖p + ‖Ñ∗(G̃)‖p.
Using the formula for Gt, and Ft → h in H when t → 0 and h ∈ R2(D), we have

Gt → h in L2 (convergence in the Schwartz distributions suffices for this argument)

as t → 0. To evaluate the Hp norm, we use the maximal characterisation of Fefferman

and Stein: Let ϕ(y) = r−nφ(x−y
r ) = φr(x− y) for some fixed function φ assumed to

be C∞, real-valued, compactly supported in B(0, c1) with
∫
φ = 1. It is enough to

prove

(63)
∣∣∣ ∫

Rn

hϕ
∣∣∣ � Ñ∗(G)(x) +M n

n+1
(Ñ∗(G̃))(x),

since this shows that supr>0 |h ∗ φr| is controlled by an Lp function as desired. The

argument works for n
n+1 < p ≤ 1 by the Fefferman-Stein’s theorem, but also for

1 < p < ∞ by Lebesgue’s theorem.

To prove (63), let χ(t) be an L∞-normalized, scalar, bump function on [0,∞): it

is C1, supported in [0, c0r) with value 1 on [0, c−1
0 r] and ‖χ‖∞ + r‖χ′‖∞ � 1. The

function Φ(s, y) = ϕ(y)χ(s) is an extension of ϕ to R1+n
+ . Thus∫

Rn

hϕ = −
∫∫

R
1+n
+

∂s(GΦ) = −
∫∫

R
1+n
+

G∂sΦ−
∫∫

R
1+n
+

∂sGΦ = I + II.

Note that the integrand of I is supported in the Whitney box W (r, x), so this integral

is dominated by Ñ∗G(x). For II, observe that

∂sG = DBm′(sDB)h = DBG̃s.

Integrating D by parts, and using the boundedness of B, we obtain∣∣∣ ∫∫
R

1+n
+

∂sGΦ
∣∣∣ � ∫∫

T

|G̃|‖∇yΦ‖∞ � r−n−1

∫∫
T

|G̃|,
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where T := (0, c0r)×B(x, c1r). Then, using the inequality∫∫
R

1+n
+

|u| � ‖Ñ∗u‖ n
n+1

found in [61] for u = |G̃|1T and support considerations, we obtain

r−n−1

∫∫
T

|G̃| �
(
r−n

∫
(1+c0)B(x,c1r)

(Ñ∗(G̃))
n

n+1

)n+1
n

and (63) is proved.

Remark 9.14. — An examination of the argument above shows that one can take

the q-variant Ñq
∗ with any q ∈ [1, 2].

Proposition 9.15. — Let T = DB and n
n+1 < p < ∞. Then one has the estimate

(64) ‖h‖Hp � ‖Ñ∗(e
−t|DB|h)‖p, ∀h ∈ H

2,±
DB .

Here the difference is that we restrict h in one of the spectral spaces.

Proof. — If h ∈ H
2,+
DB , then F = e−t|DB|h = e−tDBχ+(DB)h and ∂tF = −DBF .

Thus we can run the previous argument with F replacing G and get the inequality (63)

with F replacing both G and G̃.

When h ∈ H
2,−
DB , then F = e−t|DB|h = etDBχ−(DB)h and ∂tF = DBF , so that

we conclude as above.

9.3. Some upper bounds for p �= 2

Proposition 9.16. — Let T = DB or BD and 2 < p < (p+(T ))
∗. Then one has

the estimate

(65) ‖Ñ∗(e
−t|T |h)‖p � ‖h‖p, ∀h ∈ L2.

Proof. — Write e−t|T |h = ψ(tT )h+ (I + itT )−1h where

ψ(z) = e−[z] − (1 + iz)−1 ∈ Ψ1
1(Sμ).

By geometric considerations,

‖Ñ∗(ψ(tT )h)‖p � ‖ψ(tT )h‖Tp
2

and we may apply corollary 5.18 to obtain

‖ψ(tT )h‖Tp
2
� ‖h‖p

in the given range of p. Next, the L2 off-diagonal estimates (2.3) for the resolvent

(I + itT )−1 yields the pointwise estimate

Ñ∗((I + itT )−1h) � M2(|h|)

which gives an Lp estimate for all 2 < p ≤ ∞.
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Note that the argument for BD provides a proof of the assertion in remark 9.5.

We continue with some upper bounds when p < 2.

Proposition 9.17. — 1) For p−(BD) < p < 2 and for all h ∈ R2(BD), we have

‖Ñ∗(e
−t|BD|h)‖p � ‖h‖p.

2) For (p−(DB))∗ < p < 2 and for all h ∈ R2(D), we have

‖Ñ∗(e
−t|DB|h)‖p � ‖h‖Hp ,

where Hp = Lp if p > 1.

Proof. — The first item follows from lemma 4.15 and theorem 5.3: for h ∈ R2(BD)

and p−(BD) < p < 2

‖Ñ∗(e
−t|BD|h)‖p � ‖h‖Hp

BD
∼ ‖Ph‖p ∼ ‖h‖p.

The equivalence ‖h‖p ∼ ‖Ph‖p for all h ∈ R2(BD) in this range of p was obtained in

proposition 3.8.

The second item follows from lemma 4.15 and theorem 5.1: for h ∈ R2(D),

‖Ñ∗(e
−t|DB|h)‖p � ‖h‖Hp

DB
∼ ‖h‖Hp .

9.4. End of proof of theorem 9.4

For the lower bounds, combine propositions 9.10 and 9.11 when B is pointwise

accretive and proposition 9.15 in general. We note that we do not use the assumption

on equality of Hardy spaces in the statement.

We turn to upper bounds. So far we have completed the theorem when p > p−(DB)

on applying propositions 9.16 and 9.17, 2). But by theorem 5.1, the argument of

proposition 9.17, 2), applies when p < 2 is such that Hp
DB = H

p
D with equivalence of

norms. This concludes the proof.

9.5. End of proof of theorem 9.5

Combining propositions 9.10, 9.16 and 9.17 gives all the lower bounds for any p > 1

and also the upper bounds in the range p−(BD) < p < (p+(DB))∗ by specializing

to Ph for h ∈ R2(BD).

It remains to provide an argument for upper bounds when p ≥ (p+(DB))∗ and

p = q′ where q > 1 is assumed such that H
q
DB∗ = H

q
D with equivalence of norms.

We do this now.

As in the proof of theorem 9.9, observe that our assumption implies for h

in R2(BD),

‖Pχ±(BD)h‖p � ‖Ph‖p.
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Now φ(z) = e−[z] ∈ R2
σ(Sμ) ∩ Ψτ

0(Sμ) for any σ > 0 and τ > 0. Pick φ± ∈ R2(Sμ)

such that

|φ(z)− φ±(z)| = O(|z|σ), ∀z ∈ Sμ±.

Then ψ±(z) := (φ−φ±)(z)χ
±(z) satisfy ψ± ∈ Ψ2

σ(Sμ). Hence, for h ∈ R2(BD), using

h = χ+(BD)h+ χ−(BD)h = h+ + h−,

we have the decomposition

φ(tBD)Ph = ψ+(tBD)Ph+ ψ−(tBD)Ph+ φ+(tBD)Ph+ + φ−(tBD)Ph−.

From geometric considerations, we deduce from lemma 5.16 if σ is large enough

‖Ñ∗(ψ+(tBD)Ph)‖p � ‖ψ+(tBD)Ph‖Tp
2
� ‖Ph‖p

and similarly for the term with ψ−. Next, the L2 off-diagonal estimates of lemma 2.3

for the combinations of iterates of resolvents (I+ itT )−2 yields the pointwise estimate

Ñ∗(φ+(tBD)Ph+) � M2(|Ph+|)
Thus, as p > 2 and using the assumption on p,

‖Ñ∗(φ+(tBD)Ph+)‖p � ‖Ph+‖p � ‖Ph‖p.
We argue similarly for φ−(tBD)Ph−. This finishes the proof.
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As we saw, the non-tangential maximal inequality that involves the pre-Hardy

space H
p
BD is with e−t|BD|P, that is taking the semigroup after having projected

on R2(D). The problem with P is one cannot use kernel estimates in such a context

as it is a singular integral operator.

Also when for some reason (for example p+ > n), we want to reach BMO or Λ̇α

spaces, the non-tangential maximal function is inappropriate.

We observe that for all h ∈ L2 and all t > 0 we have the following relation

(66) e−t|BD|Ph− Ph = e−t|BD|h− h.

Indeed, g = Ph− h ∈ N2(D) = N2(BD), so that e−t|BD|g = g for all t > 0.

We are therefore led to consider

Ñ�(e
−t|BD|h) := Ñ∗(e

−t|BD|h− h),

which we name non-tangential sharp function (of e−t|BD|h) associated to BD. Thanks

to (66), we have

|Ñ�(e
−t|BD|h)− Ñ∗(e

−t|BD|Ph)| ≤ M2(|Ph|).

Thus, if 2 < p, Ñ�(e
−t|BD|h) and Ñ∗(e

−t|BD|Ph) have same Lp behavior. In particular,

‖Ñ�(e
−t|BD|h)‖p � ‖Ph‖p

holds in the range of p > 2 where the same upper bound holds for Ñ∗(e
−t|BD|Ph).

If this range is all (2,∞) we may wonder what happens at p = ∞.

It is also convenient to introduce the α ≥ 0 variant of Ñ�:

Ñ�,α(e
−t|BD|h)(x) = sup

t>0
t−α

(∫∫
W (t,x)

|e−s|BD|h− h|2
)1/2

.

Note that for α = 0, this is Ñ�.

Theorem 10.1. — Assume that for some q with n
n+1 < q < 2, we have H

q
DB∗ = H

q
D

with equivalent norms. If q > 1 and p = q′, we have

‖Ñ�(e
−t|BD|h)‖p ∼ ‖Ph‖p, ∀h ∈ R2(BD),

and if q ≤ 1 and α = n( 1q − 1),

‖Ñ�,α(e
−t|BD|h)‖∞ ∼ ‖Ph‖Λ̇α , ∀h ∈ R2(BD).

This result rests on two lemmata.
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Lemma 10.2. — For 2 < p ≤ ∞, we have

‖h‖Hp
BD

� ‖Ñ�(e
−t|BD|h)‖p, ∀h ∈ R2(BD),

and for 0 ≤ α < 1,

‖h‖Lα
BD

� ‖Ñ�,α(e
−t|BD|h)‖∞, ∀h ∈ R2(BD).

Lemma 10.3. — For 2 < p ≤ ∞, we have

‖Ñ�(e
−t|BD|h)‖p � ‖Ph+‖p + ‖Ph−‖p + ‖h‖Hp

BD
, ∀h ∈ R2(BD),

and for 0 ≤ α < 1,

‖Ñ�,α(e
−t|BD|h)‖∞ � ‖Ph+‖Λ̇α + ‖Ph−‖Λ̇α + ‖h‖Lα

BD
, ∀h ∈ R2(BD),

where h± = χ±(BD)h.

Let us admit the lemmas and prove the theorem.

As seen many times, if q > 1 and p = q′, the hypothesis implies that

‖Ph+‖p + ‖Ph−‖p ∼ ‖Ph‖p ∼ ‖h‖Hp
BD

.

If q ≤ 1 and α = n( 1q − 1) then

‖Ph+‖Λ̇α + ‖Ph−‖Λ̇α ∼ ‖Ph‖Λ̇α ∼ ‖h‖Lα
BD

.

The conclusion follows right away.

Proof of lemma 10.2. — To prove this result, we introduce the Carleson function

CαF (x) := sup
( 1

r2α|B(y, r)|

∫∫
Ty,r

|F (t, z)|2 dtdz

t

)1/2

,

the supremum being taken over all open ballsB(y, r)�x in Rn and Ty,r = (0, r)×B(y, r).

For 0 ≤ α < 1 and a suitable allowable ψ for both H
p
BD and Lα

BD, we shall show the

pointwise bound

(67) Cα(ψ(tBD)h) � M2

(
Ñ�,α(e

−t|BD|h)
)
, ∀h ∈ R2(BD).

Admitting this inequality, we have

‖h‖Hp
BD

� ‖ψ(tBD)h‖Tp
2
� ‖C0(ψ(tBD)h)‖p � ‖Ñ�(e

−t|BD|h)‖p.

The first inequality is the lower bound valid for any ψ ∈ Ψ(Sμ), the second inequality

is from [40, theorem 3(a)] and the last one uses (67), the maximal theorem and p > 2.

Similarly

‖h‖Lα
BD

� ‖ψ(tBD)h‖T∞2,α = ‖Cα(ψ(tBD)h)‖∞ � ‖Ñ�,α(e
−t|BD|h)‖∞.

We turn to the proof of (67). We adapt an argument in [47], theorem 2.14, to our

situation. We choose

ψ̃(z) = zNe−[z] and ψ(z) = ψ̃(z)(e−[z] − 1)

MÉMOIRES DE LA SMF 144



10. NON-TANGENTIAL SHARP FUNCTIONS FOR BD 81

so that ψ̃ ∈ Ψτ
N (Sμ) and ψ ∈ Ψτ

N+1(Sμ) for all τ > 0. The integer N will be chosen

large. It will be convenient to set Pt = e−t|BD|, so that

ψ̃(tBD) = (tBD)NPt and ψ(tBD) = (tBD)NPt(Pt − I).

We fix h ∈ R2(BD) and x ∈ Rn. Consider Ty,r = (0, r) × B(y, r) such that

x ∈ B(y, r). Recall that

W (t, z) := (c−1
0 t, c0t)×B(z, c1t),

for some fixed constants c0 > 1, c1 > 0. We set It = (c−1
0 t, c0t).

Set g = h−
∫
Ir
Pτh dτ and consider

I(y, r) =

∫∫
Ty,r

|ψ(sBD)g(z)|2 dsdz

s
.

Pick a > 0 such that the balls Bk = B(x+ akr, c1
2 r), k ∈ Zn, cover Rn with bounded

overlap. We set gk = g1Bk
. If Bk ∩ 2B(y, r) �= ∅, which occurs for boundedly (with

respect to x, y, r) many k then we use the square function estimate and definition

of gk to obtain∫∫
Ty,r

|ψ(sBD)gk(z)|2
dsdz

s
� ‖gk‖22 ≤ |Bk|

∫∫
Ir×Bk

|h− Pτh|2.

If Bk ∩ 2B(y, r) = ∅, which occurs when |k| ≥ K for some integer K �= 0, then we

can use the L2 off-diagonal decay (19) for each s to obtain∫∫
Ty,r

|ψ(sBD)gk(z)|2
dsdz

s
� |k|−2(N+1)‖gk‖22 ≤ |k|−2(N+1)|Bk|

∫∫
Ir×Bk

|h− Pτh|2.

For N + 1 > n, we obtain (using Minkowski inequality for the integral followed by

Cauchy-Schwarz inequality for the sum)

I(y, r) �
∑
k∈Zn

(1 + |k|)−N−1|Bk|
∫∫

Ir×Bk

|h− Pτh|2.

Now observe that |Bk| = 2−n|B(z, c1r)| and if z ∈ Bk, then Bk ⊂ B(z, c1r). Hence

|Bk|
∫∫

Ir×Bk

|h− Pτh|2 ≤ 2n|Bk| inf
z∈Bk

∫∫
W (r,z)

|h− Pτh|2

≤ 2nr2α|Bk| inf
z∈Bk

Ñ�,α(e
−t|BD|h)2(z)

≤ 2nr2α
∫
Bk

Ñ�,α(e
−t|BD|h)2(z) dz

and this implies

I(y, r) � r2α
∑
k∈Zn

(1 + |k|)−N−1

∫
Bk

Ñ�,α(e
−t|BD|h)2(z) dz

� M2

(
Ñ�,α(e

−t|BD|h)
)2
(x)rn+2α,
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where the last inequality uses the bounded overlap of the balls Bk and requires

N + 1 > n. Next, we bound

J(y, r) =

∫∫
Ty,r

∣∣∣ψ(sBD)
(∫

Ir

Pτh dτ
)
(z)

∣∣∣2 dsdz

s
.

We compute

ψ(sBD)Pτ = (sBD)NPs+ τ
2
(Ps+ τ

2
− P τ

2
)

= (sBD)NPs+ τ
2
(Ps+ τ

2
− I) + (sBD)NPs+ τ

2
(I − P τ

2
).

Let us call J1(y, r) and J2(y, r) the integrals corresponding to the first term and second

term respectively. We first handle J2. Use s ≤ s+ τ
2 , change variable s �→ s+ τ

2 , and

observe that as τ ∈ Ir and 0 < s < r, we have s+ τ
2 ∈ [

c−1
0

2 r, r + c0
2 r] = Jr. Thus,

J2(y, r) �
∫
Ir

∫
B(y,r)

∫
Jr

|ψ̃(sBD)(h− P τ
2
h)(z)|2 ds

s
dzdτ

=

∫
I r
2

∫
B(y,r)

∫
Jr

|ψ̃(sBD)(h− Pτh)(z)|2
ds

s
dzdτ.

We use the L2 off-diagonal estimates for ψ̃(sBD) with N > n, which are uniform

in s ∈ Jr, and obtain the desired bound on J2(y, r) with the same analysis (change r

to r
2 in the definition of the balls Bk) as above.

For J1, we operate the same change of variable to get

J1(y, r) �
∫
Ir

∫
B(y,r)

∫
Jr

|ψ̃(sBD)(Psh− h)(z)|2 ds

s
dzdτ

=

∫
B(y,r)

∫
Jr

|ψ̃(sBD)(Psh− h)(z)|2 ds

s
dz.

Now, we observe that Jr can be covered by a bounded (with respect to r) number of

interval Ic2i0 r
2
We proceed a similar analysis as before for each integral∫

B(y,r)

∫
I
c2i0

r
2

with the appropriate Bk type balls, use the L2 off-diagonal estimates for ψ̃(sBD)

with N > n. This leads to the same bound for J1(y, r) as for I(y, r). We leave details

to the reader.

Proof of lemma 10.3. — We begin with the Lp estimates and proceed exactly as in

the proof of theorem 9.3. We have φ(z) = e−[z] ∈ R2
σ(Sμ) ∩ Ψτ

0(Sμ) for any σ > 0

and τ > 0. Pick φ± ∈ R2(Sμ) such that

|φ(z)− φ±(z)| = O(|z|σ), ∀z ∈ Sμ±.

Then ψ±(z) := (φ−φ±)(z)χ
±(z) satisfy ψ± ∈ Ψ2

σ(Sμ). Hence, for h ∈ R2(BD), using

h = χ+(BD)h+ χ−(BD)h = h+ + h−,
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we have the decomposition

φ(tBD)Ph− Ph = ψ+(tBD)Ph+ ψ−(tBD)Ph

+ φ+(tBD)Ph+ − Ph+ + φ−(tBD)Ph− − Ph−.

From geometric considerations, we deduce from lemma 5.16 if σ is large enough

‖Ñ∗(ψ+(tBD)Ph)‖p � ‖ψ+(tBD)Ph‖Tp
2
� ‖h‖Hp

BD

and similarly for the term with ψ−. Next, the L2 off-diagonal estimates of lemma 2.3

for the combinations of iterates of resolvent (I + itT )−2 yield the pointwise estimate

Ñ∗(φ+(tBD)Ph+ − Ph+) � M2(|Ph+|).
Thus, as p > 2,

‖Ñ∗(φ+(tBD)Ph+ − Ph+)‖p � ‖Ph+‖p.
We argue similarly for φ−(tBD)Ph−. This proves the first estimate since

φ(tBD)Ph− Ph = φ(tBD)h− h.

For the Hölder estimates, we use the same decomposition and observe that

Ñ�,α(g) � Cαg pointwise. Hence, for σ large enough,

‖Ñ�,α(ψ+(tBD)Ph)‖∞ � ‖ψ+(tBD)Ph‖T∞2,α � ‖h‖Lα
BD

and similarly for the term with ψ−. Next, we fix a Whitney box W (t, x) and let c±

be the average of Ph± on the ball B(x, c1t). Then we write

φ+(sBD)Ph+ − Ph+ = φ+(sBD)(Ph+ − c+)− (Ph+ − c+).

The L2 off-diagonal estimates of lemma 2.3 for the combinations of iterates of resolvent

(I + itT )−2 yield the pointwise estimate

Ñ�,α(φ+(sBD)Ph+)2(x) � sup
t>0

t−α

∫
B(x,c1t)

|Ph+ − c+|2

which leads to the estimate

‖Ñ�,α(φ+(sBD)Ph+)‖∞ � ‖Ph+‖Λ̇α .

The argument for φ−(tBD)Ph− is similar.
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So far, we have privileged the L2 theory: we considered estimates with a priori

knowledge for h in the closure of the L2 range. But this is only for convenience. As

mentioned in the introduction, we can consider a Sobolev theory as well and relax

this a priori information on h. This is required for use of energy spaces. For any

bisectorial operator with a H∞-calculus on the closure of its range, there is a Sobolev

space theory associated to this operator as developed by means of quadratic estimates

in this context in [21], extending many earlier works for self-adjoint operators, positive

operators... (see the references there). But here, we want a theory that leads to

concrete spaces.

For the operator DB, the relevant Sobolev theory is for regularity indices s ∈
[−1, 0]. For s = 0, this is already done. We shall do it for s < 0 in this section. This

has been considered in some special cases for D in relation with the boundary value

problems [83, 20]. For BD, things are more complicated. There are two options for

regularity indices 0 ≤ s ≤ 1: the Sobolev spaces associated to BD or the Sobolev

spaces associated to the operators PBD after projecting by P. The first theory leads

to abstract spaces and the second to concrete spaces. They are both useful.

11.1. Definitions and properties

For convenience, we denote by H0
D = R2(D) and H = L2(Rn;CN ). Let S = D|H0

D

with domain D2(D)∩H0
D. Then S is an injective, self-adjoint operator. Recall that P

is the orthogonal projection fromH onto H0
D. Let B be the operator onH0

D defined by

Bh = PBh = PBPh

for h ∈ H0
D. Recall that as B is a strictly accretive operator on H0

D, the restriction

of P on BH0
D is an isomorphism onto H0

D and B is a strictly accretive operator on H0
D.

Define

T : H0
D −→ H0

D, T = BS = PBD|H0
D

with D2(T ) = D2(S),

T : H0
D −→ H0

D, T = SB = DPB|H0
D
= DB|H0

D
with D2(T ) = B−1D2(S).

Using proposition 2.1 and the comment that follows it, T and T are ω-bisectorial

operators on H0
D. Moreover, they are injective. Observe also that

V : R2(BD) → R2(BD), V = BD|
R2(BD)

with D2(V ) = R2(BD) ∩ D2(D)

is also an injective ω-bisectorial operator with H∞-calculus on R2(BD).
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We remark that if ψ ∈ Ψ(Sμ), we have the intertwining relation

(68) ψ(T )Ph = Pψ(BD)h = Pψ(V )h, h ∈ R2(BD),

and

(69) ψ(T )h = ψ(DB)h, h ∈ H0
D.

These relations are easily verified for the resolvent and then one uses (8). It follows

that the operator norms of ψ(T ) and ψ(T ) are bounded by Cμ‖ψ‖∞, which guarantees

that T and T have H∞-calculus on H0
D and the two formulæ above extend to all b ∈

H∞(Sμ).

We define the Sobolev spaces next. We use the curly style H to distinguish them

from pre-Hardy and Hardy spaces where we use the mathbb style H or roman style H.

For s ∈ R, define the inhomogeneous Sobolev space associated with S, Hs
S , as the

subspace of H0
D for which

‖h‖S,s =
{∫ ∞

0

t−2s‖ψt(S)h‖22
dt

t

}1/2

< ∞

for a suitable ψ ∈ Ψ(Sμ), for example ψ(z) = zke−[z] and k an integer with k >

max(s, 0). We define the homogeneous Sobolev space associated with S, Ḣs
S , as the

completion of Hs
S for ‖h‖S,s.

Remark that from the spectral theorem

Ḣ0
S = H0

S = H0
D.

Next, it can be checked that ‖h‖S,s = cψ,s‖|S|sh‖2 where |S| = (S2)1/2. As S =

D|H0
D
, Hs

S is the closed subspace of the usual inhomogeneous Sobolev space Hs,

equal to the image of Hs under the projection P, and similarly Ḣs
S is the image of

the usual homogeneous Sobolev space Ḣs under (the extension of) P (which extends

boundedly to Ḣs as it is a smooth singular integral convolution operator). It is not

hard to check that Ḣs
S ∩ Ḣ0

S = Hs
S .

Note that the H∞- and self-adjoint calculi of S on Ḣ0
S extend to Ḣs

S and that S

extends to an isomorphism between Ḣs
S and Ḣs−1

S . Classically, the intersection of Ḣs
S

is dense in each of them. Here is a precise statement whose proof is left to the reader.

Alternately, one can do this using the usual Sobolev spaces Ḣs and project under P.

Lemma 11.1. — Let

θ(z) = ce−[z]−[z]−1 ∈
⋂

σ>0,τ>0

Ψτ
σ(Sμ)

with c−1 =
∫ ∞
0

θ(t) dt
t . For any s ∈ R and h ∈ Ḣs

S, hk =
∫ k

1/k
θ(tS)h dt

t ∈
⋂

s′∈R Hs′

S

and converges to h in Ḣs
S as k → ∞.

Having defined S and the associated Sobolev spaces, we use the more concrete

notation Ḣs
D = Ḣs

S and similarly for the inhomogeneous spaces.
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We also use the notation DB for T , BD for V , PBD for T .

We come back to the formal notation when needed for clarity in the proofs.

We define similarly the inhomogeneous Sobolev spaces Hs
DB , Hs

BD and Hs
PBD re-

placing S by T , V and T respectively.

Proposition 11.2. — Let s ∈ R.

1) The quadratic norms are equivalent under changes of suitable non-degenerate ψ.

2) The bounded holomorphic functional calculus extends : for any b ∈ H∞(Sμ),

b(X) is bounded on Hs
X if X = DB,BD or PBD.

3) P : Hs
BD → Hs

PBD is an isomorphism.

4) Hs
DB and H−s

B∗D are in duality for the L2 inner product.

5) Hs
DB and H−s

PB∗D are in duality for the L2 inner product.

Proof. — 1) is standard and we skip it. 2) is a straightforward consequence of the

definitions of the spaces and of the norms. For 3), using the intertwining property (68),

and the isomorphism P : H0
BD = R2(BD) → R2(D) = H0

PBD, we obtain

‖ψ(PBD)Ph‖2 = ‖Pψ(BD)h‖2 ∼ ‖ψ(BD)h‖2
for all h ∈ H0

BD and ψ ∈ Ψ(Sμ). We conclude easily for the isomorphism using the

defining norms of the Sobolev spaces. The proof of 4) is a simple consequence of the

Calderón reproducing formula so that for suitable ψ,ϕ we have

〈f, g〉 = (Qψ,DBf,Qϕ,B∗Dg)

for all f ∈ H0
DB and g ∈ H0

B∗D. We skip details. For 5), we use the intertwining

property: for all f ∈ H0
DB and h ∈ H0

PB∗D, writing h = Pg with g ∈ H0
B∗D

〈f, h〉 = 〈f, g〉 = (Qψ,DBf,Qϕ,B∗Dg) = (Qψ,DBf,PQϕ,B∗Dg) = (Qψ,DBf,Qϕ,PB∗Dh)

and the conclusion follows easily.

Now define their completions Ḣs
DB , Ḣs

BD and Ḣs
PBD respectively. So far, these

completions are abstract spaces.

Proposition 11.3. — 1) For s ∈ R, for all bounded holomorphic functions b ∈
H∞(Sμ), b(PBD) extends to a bounded operator on Ḣs

PBD. In particular, this holds

for sgn(PBD) which is a bounded self-inverse operator on Ḣs
PBD. Also, PBD and

|PBD| = sgn(PBD)PBD extend to isomorphisms between Ḣs
PBD and Ḣs−1

PBD. The

operator |PBD| extends to a sectorial operator on Ḣs
PBD and fractional powers |PBD|α

are isomorphisms from Ḣs
PBD onto Ḣs−α

PBD.

2) Ḣs
PBD topologically splits as the sum of the two spectral closed subspaces

Ḣs,+
PBD = N(sgn(PBD)− I) = R(χ+(PBD)),

Ḣs,−
PBD = N(sgn(PBD) + I) = R(χ−(PBD)).
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3) The same two items hold with PBD replaced by DB or BD.

4) For 0 ≤ s ≤ 1, Ḣs
PBD = Ḣs

D and for −1 ≤ s ≤ 0, Ḣs
DB = Ḣs

D with equivalence

of norms.

5) Furthermore, for −1 ≤ s < 0, we have for

‖h‖D,s ≈
{∫ ∞

0

t−2s‖e−t|DB|h‖22
dt

t

}1/2

.

6) For all s ∈ R, P extends to an isomorphism from Ḣs
BD onto Ḣs

PBD.

7) For all s ∈ R, Ḣs
DB and Ḣ−s

B∗D are dual spaces for a duality extending the L2

inner product.

8) For all s ∈ R, Ḣs
DB and Ḣ−s

PB∗D are dual spaces for a duality extending the L2

inner product.

Proof. — For 1)–5), this is the theory of [21], except for the cases s = −1 and s = 1

of 4), proved in [20, proposition 4.4] using the holomorphic functional calculus on L2

for DB and BD.

Items 6)–8) are easy consequences of the previous proposition and density.

Corollary 11.4. — Let −1 ≤ s ≤ 0. Then D : Ḣs+1
PBD = Ḣs+1

D → Ḣs
D = Ḣs

DB is an

isomorphism. In particular, for t > 0 and h ∈ Ḣs+1
PBD, we have

De−t|PBD|h = e−t|DB|Dh.

Similarly D extends to an isomorphism Ḣs+1
BD → Ḣs

DB. In particular, for t > 0 and

h ∈ Ḣs
BD, we have

De−t|BD|h = e−t|DB|Dh.

Proof. — Let us consider the first assertion. Take a suitable ψ ∈ Ψ(Sμ) and

h ∈ D2(S). Then Dh = Sh and

ψ(T )Sh = ψ(DB)Dh = Dψ(BD)h = Sψ(T )h.

Then change ψ(z) to ψ(tz) and use the isomorphism property of S, the property 4) in

the proposition above and also the density of D2(S) = H1
D in Ḣs+1

D . For the second

part, the extension is defined as D ◦ P, where P is the extension given in item 6) of

the previous proposition and D is the isomorphism just described.

Proposition 11.5. — Let 0 < s ≤ 1.

1) For any h ∈ Ḣs
BD, e−t|BD|h− h can be defined in L2 with

‖e−t|BD|h− h‖2 ≤ Cts.

2) For any h ∈ Ḣs
PBD, e−t|PBD|h− h can be defined in L2 with

‖e−t|PBD|h− h‖2 ≤ Cts.
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3) For any h ∈ Ḣs
BD, with the above definition

P(e−t|BD|h− h) = e−t|PBD|Ph− Ph.

Proof. — For 1), observe that

φ(z) =
e−t[z] − 1

[z]s
∈ H∞(Sμ)

with bound Cts and that ‖|BD|sh‖2 ∼ ‖h‖BD,s when h ∈ Ḣs
BD. The relation

e−t|BD|h− h = φ(BD)|BD|sh

valid for h ∈ Hs
BD thus extends to h ∈ Ḣs

BD. The proof for the second item is

the same. The third item is the intertwining property of the H∞-calculi, extended

to Ḣs
BD and Ḣs

PBD.

11.2. A priori estimates

The following lemma tells us that we can use different norms, more suitable to

extensions.

Lemma 11.6. — We have

‖Dh‖Ẇ−1,p ∼ ‖h‖p, ∀p ∈ (1,∞) ∀h ∈ R2(D),

‖Dh‖Λ̇α−1 ∼ ‖h‖Λ̇α , ∀α ∈ [0, 1) ∀h ∈ R2(D).

Proof. — First, assume h ∈ Lp. Then Dh ∈ Ẇ−1,p and if g ∈ Ẇ 1,p′ ,

|〈Dh, g〉| = |〈h,Dg〉| ≤ ‖h‖p‖Dg‖p′ � ‖h‖p‖g‖Ẇ 1,p′ .

We conclude ‖Dh‖Ẇ−1,p � ‖h‖p. For the converse, recall that S0 is the space of

Schwartz functions with compactly supported Fourier transforms away from the ori-

gin. By density, we have ‖h‖p = sup{|〈h, g〉|; g ∈ S0, ‖g‖p′ = 1} and for g ∈ S0, we

have Pg ∈ S0 as well, so

|〈h, g〉| = |〈h,Pg〉| = |〈Dh,D−1Pg〉| � ‖Dh‖Ẇ−1,p‖D−1Pg‖Ẇ 1,p′ .

Here, we observe that D−1Pg ∈ S0 is a Schwartz distribution (using a Fourier trans-

form argument) and as ∇D−1P is bounded on Lp′ , we obtain

‖D−1Pg‖Ẇ 1,p′ � ‖g‖p′ = 1.

Consider now the second statement. Clearly, h ∈ Λ̇α implies Dh ∈ Λ̇α−1. For the

converse, note that if g ∈ PS0, then D−1g ∈ Ḣ1,q. Indeed, D−1g ∈ S ′, ∇D−1g =

∇D−1Pg ∈ Hq. Thus,

|〈h, g〉| = |〈Dh,D−1g〉| ≤ ‖Dh‖Λ̇α−1‖D−1g‖Ḣ1,q � ‖Dh‖Λ̇α−1‖g‖Hq .

By density of P(S0) in Hq
D, this implies that h ∈ Λ̇α with the desired estimate.
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We continue with the extension of the functional calculus ofDB to negative Sobolev

spaces of the type Ẇ−1,p or negative Hölder spaces Λ̇α−1 under the appropriate

assumption.

Proposition 11.7. — Let q ∈ ( n
n+1 , p+(DB∗)) be such that Hq

DB∗ = H
q
D with equiv-

alence of norms. Let T = T q′

2 , Y = Lq′ , Ẏ −1 = Ẇ−1,q′ if q > 1 and T = T∞
2,α, Y =

Λ̇α, Ẏ −1 = Λ̇α−1 with α = n( 1q − 1) if q ≤ 1. Let b ∈ H∞(Sμ). Then

‖b(DB)h‖Ẏ −1 � ‖b‖∞‖h‖Ẏ −1 , ∀h ∈
⋃

−1≤s≤0

Ḣs
D, ,

‖Db(BD)h̃‖Ẏ −1 � ‖b‖∞‖Dh̃‖Ẏ −1 , ∀h̃ ∈
⋃

−1≤s≤0

Ḣs+1
BD .

Proof. — Let us begin with h ∈ Ḣ−1
D . By corollary 11.4, there exists a unique g ∈

Ḣ0
BD with h = Dg = DPg. By similarity, b(DB)h = Db(BD)g = DPb(BD)g. Thus,

using lemma 11.6 twice, since Pg,Pb(BD)g ∈ Ḣ0
D = R2(D),

‖b(DB)h‖Ẏ −1 ∼ ‖Pb(BD)g‖Y � ‖b‖∞‖Pg‖Y ∼ ‖b‖∞‖h‖Ẏ −1 .

Next, we assume h ∈ Ḣs
D with −1 < s ≤ 0. Consider the approximations hk of

lemma 11.1. They belong in particular to Ḣ−1
D . Thus ‖b(DB)hk‖Ẏ −1 � ‖hk‖Ẏ −1

uniformly in k. Now, using Fourier transform and the Mikhlin theorem, h �→ hk is

bounded on Ẏ −1, uniformly in k. Hence (b(DB)hk) is a bounded sequence in Ẏ −1,

thus has a weak-∗ converging subsequence in Ẏ −1, and in particular in the Schwartz

distributions. But, by proposition 11.3, b(DB) is bounded on Ḣs
D, hence b(DB)hk →

b(DB)h in Ḣs
D so also in the Schwartz distributions. Thus, the limit of the above

subsequence is b(DB)h which, therefore, belongs to Ẏ −1 with the desired estimate.

Let us turn to the second point. If h̃ ∈ Ḣs+1
BD , then h = Dh̃ ∈ Ḣs

D and Db(BD)h̃ =

b(DB)h by the isomorphism property in corollary 11.4. Thus,

‖Db(BD)h̃‖Ẏ −1 = ‖b(DB)h‖Ẏ −1 � ‖b‖∞‖h‖Ẏ −1 = ‖b‖∞‖Dh̃‖Ẏ −1 .

The following result is an extension of earlier results with a priori Sobolev initial

elements instead of just L2 so far. This result will be especially useful for s = − 1
2

later.

Theorem 11.8. — 1) Let I be the subinterval in ( n
n+1 , p+(DB)) on which we have

H
q
DB = H

q
D

with equivalent norms. Then the following holds:

For DB we have, for all h ∈
⋃

−1≤s≤0 Ḣs
D,

‖S(tDBe−t|DB|h)‖q ∼ ‖S(t∂te−t|DB|h)‖q ∼ ‖h‖Hq

and

‖Ñ∗(e
−t|DB|h)‖q ∼ ‖h‖Hq
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when q > 1, or q ≤ 1 and B pointwise accretive, or q ≤ 1 and h ∈
⋃

−1≤s≤0 Ḣ
s,±
DB.

2) If I∗ designates the same interval but for DB∗ and q ∈ I∗, let T = T q′

2 , Y =

Lq′ , Ẏ −1 = Ẇ−1,q′ if q > 1 and T = T∞
2,α, Y = Λ̇α, Ẏ −1 = Λ̇α−1 with α =

n( 1q − 1) if q ≤ 1. Then, we obtain the following equivalences:

2a) Tent space estimate for BD in disguise:

‖te−t|DB|h‖T ∼ ‖h‖Ẏ −1 , ∀h ∈
⋃

−1≤s≤0

Ḣs
D.

2b) Tent space estimate for BD: for all h̃ ∈
⋃

−1≤s≤0 Ḣ
s+1
BD ,

‖tDe−t|BD|h̃‖T ∼ ‖tBDe−t|BD|h̃‖T ∼ ‖t∂te−t|BD|h̃‖T ∼ ‖Dh̃‖Ẏ −1 .

2c) Sharp function for BD: Finally, if 1 < q ≤ 2 we have

‖Ñ�(e
−t|BD|h̃)‖p ∼ ‖Dh̃‖Ẏ −1 , ∀h̃ ∈

⋃
−1≤s≤0

Ḣs+1
BD ,

and in the case q ≤ 1, we have

‖Ñ�,α(e
−t|BD|h̃)‖∞ ∼ ‖Dh̃‖Ẏ −1 , ∀h̃ ∈

⋃
−1≤s≤0

Ḣs+1
BD .

Proof. — So far, and thanks to lemma 11.6, all statements have been proved when

h ∈ Ḣ0
D for those involving DB and when h̃ ∈ Ḣ0

BD for those involving BD. Our

goal is thus to extend this to more general h or h̃. The argument consists in tedious

verifications with adequate approximation procedures.

Proof of 1). — We begin with the quadratic estimates. We fix q in the prescribed

interval. Let ψ ∈ Ψ(Sμ) for which we have

‖Qψ,DBh‖T q
2
� ‖h‖Hq

for all h ∈ Ḣ0
DB = Ḣ0

D. We want to extend it to h ∈ Ḣs
D for some s ∈ [−1, 0). Let h

be such. Assume also ‖h‖Hq < ∞ otherwise there is nothing to prove. Consider the

functions hk ∈ Ḣ0
D as in lemma 11.1: they converge in Ḣs

D to h. Classical Hardy

space theory also shows convergence in Hq. Now, the estimates apply to hk. Thus

(Qψ,DBhk) is a Cauchy sequence in T q
2 , hence converges to some F in T q

2 . This

enforces the convergence in L2
loc(R

1+n
+ ). As Ḣs

D = Ḣs
DB , it is easy to see that the

sequence (Qψ,DBhk) converges also in L2
t,loc(L

2
x) to Qψ,DBh. Thus Qψ,DBh = F ∈ T q

2

and this concludes the extension.

Conversely, assume that

‖h‖Hq � ‖Qψ,DBh‖T q
2

for all h ∈ Ḣ0
DB = Ḣ0

D and some ψ ∈ Ψ(Sμ). Again, we have to extend it to h ∈ Ḣs
D

for some s ∈ [−1, 0). We assume ‖Qψ,DBh‖T q
2
< ∞, otherwise there is nothing to

prove. Take ϕ ∈ Ψ(Sμ) for which we have the Calderón reproducing formula (23)
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and also that Sϕ,DB maps T q
2 ∩ T 2

2 into H
q
DB . Let χk be the indicator function

of [1/k, k]×B(0, k). Then

hk := Sϕ,DB(χkQψ,DBh) ∈ H
q
DB = H

q
D.

By taking the limit as k → ∞, hk converges to some h̃ ∈ Hq
DB = Hq

D. Next, by

testing against a Schwartz function g,

〈hk, g〉 =
(
χkQψ,DBh,Qϕ∗,B∗Dg

)
=

∫ ∞

0

〈χkψ(tDB)h,Pϕ∗(tB∗D)g〉dt
t
.

If ϕ(z) = zϕ̃(z) for some ϕ̃ ∈ Ψ(Sμ), then ϕ∗(tB∗D)g = tϕ̃∗(tB∗D)(B∗Dg). It easily

follows using −1 ≤ s ≤ 0 and treating differently the integral for t < 1 or t > 1, that∫ ∞

0

t2s‖Pϕ∗(tB∗D)g‖22
dt

t
< ∞,

(for s = −1 use the square functions estimates) while∫ ∞

0

t−2s‖ψ(tDB)h‖22
dt

t
� ‖h‖2DB,s ∼ ‖h‖2D,s.

Thus dominated convergence theorem applies to yield that

〈hk, g〉 →
∫ ∞

0

〈ψ(tDB)h,Pϕ∗(tB∗D)g〉 dt
t

= 〈h, g〉.

This shows that h = h̃ in the sense of Schwartz distributions, so that h ∈ Hq
D with

the desired estimate.

Let us look at the extension for non-tangential maximal estimates. The extension

to all h ∈ Ḣs
D for some s ∈ [−1, 0) of

‖Ñ∗(e
−t|DB|h)‖q � ‖h‖Hq

can be handled as for square functions. Conversely, an inspection of the proofs of

propositions 9.11 and 9.15 shows the converse in the different cases of the statement.

Proof of 2a) and 2b). — We fix −1 ≤ s ≤ 0. The extension for the upper bound

‖te−t|DB|h‖T � ‖h‖Ẏ −1 , when h ∈ Ḣs
D, can be done as for 1) when s < 0. Consider

the functions hk ∈ Ḣ0
D as in lemma 11.1: they converge in Ḣs

D to h. It is easy to check

that (hk) is uniformly bounded in Ẏ −1 with ‖hk‖Ẏ −1 � ‖h‖Ẏ −1 . Thus it remains to

go to the limit for ‖te−t|DB|hk‖T . Convergence in Ḣs
D implies that (te−t|DB|hk) con-

verges to te−t|DB|h in L2
loc(R

1+n
+ ) and, at the same time, as it is a bounded sequence

in T , which is a dual space, it has a weakly-∗ convergent subsequence. Testing against

bounded function with compact support in R1+n
+ , we conclude that the limit must

also be te−t|DB|h and the desired estimate follows.

Now, for 2b), let h̃ ∈ Ḣs+1
BD . Then we know from corollary 11.4 that

h = Dh̃ ∈ Ḣs
DB = Ḣs

D and De−t|BD|h̃ = e−t|DB|Dh̃ = e−t|DB|h.

Using what we just did

‖tDe−t|BD|h̃‖T � ‖Dh̃‖Ẏ −1 .
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Using the boundedness of B we also have the upper bound

‖tBDe−t|BD|h̃‖T � ‖tDe−t|BD|h̃‖T � ‖Dh̃‖Ẏ −1 .

Finally, t∂te
−t|BD|h̃ = tBDe−t|BD|sgn(BD)h̃, so that

‖t∂te−t|BD|h̃‖T � ‖Dsgn(BD)h̃‖Ẏ −1 � ‖Dh̃‖Ẏ −1 ,

where the last inequality follows from proposition 11.7.

For the converse inequalities in 2a) and 2b), a moment’s reflection tells us that it

is enough to show, when h̃ ∈ Ḣs+1
BD , that ‖Dh̃‖Ẏ −1 � ‖tBDe−t|BD|h̃‖T . As the other

inequalities follow from this one, set

ψ(z) = ze−[z].

Consider ϕ allowable for H
q
DB∗ such that the Calderón formula (23) holds. Let g ∈

H
q
D ∩ Ḣ−s−1

D = H
q
DB∗ ∩ Ḣ−s−1

DB∗ . Hence, for the inner product in tent spaces

|(Qψ,BDh̃,Qϕ∗,DB∗g)| � ‖Qψ,BDh̃‖T ‖g‖Hq
DB∗

.

Using the approximations with the functions χk above, let

h̃k = Sϕ,BD(χkQψ,BDh̃) ∈ HT
BD.

Then, using lemma 11.6 and h̃k ∈ Ḣ0
BD,

‖Dh̃k‖Ẏ −1 ∼ ‖h̃k‖Y � ‖χktBDe−t|BD|h̃‖T � ‖tBDe−t|BD|h̃‖T .

It remains to show that Dh̃k converges to Dh̃ in the sense of distributions as this will

imply ‖Dh̃‖Ẏ −1 ≤ lim inf ‖Dh̃k‖Ẏ −1 . Let g be a Schwartz function. Then

〈Dh̃k, g〉 = 〈h̃k, Dg〉 =
(
χkQψ,BDh̃,Qϕ∗,DB∗(Dg)

)
.

Then, as −1 ≤ s ≤ 0 and Dg ∈ Ḣ−s−1
D = Ḣ−s−1

DB∗ ,∫ ∞

0

t2(s+1)‖ϕ∗(tDB∗)(Dg)‖22
dt

t
< ∞,

while ∫ ∞

0

t−2(s+1)‖ψ(tBD)h̃‖22
dt

t
� ‖h̃‖2BD,s+1 ∼ ‖h‖2D,s.

Thus dominated convergence theorem applies to yield that

〈h̃k, Dg〉 −→
(
Qψ,BDh̃,Qϕ∗,DB∗(Dg)

)
.

If ϕψ has enough decay at 0 and ∞ then

(Qψ,BDh̃,Qϕ∗,DB∗(Dg)) = 〈Sϕ,BDQψ,BDh̃, Dg〉 = 〈h̃, Dg〉 = 〈Dh̃, g〉.
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Proof of 2c). — As in 2b),

‖Dh̃‖Ẏ −1 ∼ ‖ψ(tBD)h̃‖T
for any allowable ψ for HT

BD and h̃ ∈ Ḣs+1
BD . As observed in proposition 11.5,

e−t|BD|h̃ − h̃ ∈ L2 when h̃ ∈ Ḣs+1
BD , so that the proof of lemma 10.2 goes through

without change. This proves the lower bounds for Ñ�(e
−t|BD|h̃) and Ñ�,α(e

−t|BD|h̃).

As for the upper bounds, let

h̃ε = e−ε|BD|h̃− e−(1/ε)|BD|h̃, ε > 0.

It follows from proposition 11.5 that h̃ε ∈ R2(BD), thus we obtain from theorem 9.3

the uniform upper bounds,

‖Ñ�(e
−t|BD|h̃ε)‖q′ � ‖Ph̃ε‖Y

in the case Y = Lq′ and

‖Ñ�,α(e
−t|BD|h̃ε)‖∞ � ‖Ph̃ε‖Y

in the case Y = Λ̇α. Remark that Dh̃ε = e−ε|DB|Dh̃ − e−(1/ε)|DB|Dh̃, so that by

lemma 11.6 and proposition 11.7,

‖Ph̃ε‖Y ∼ ‖Dh̃ε‖Ẏ −1 � ‖Dh̃‖Ẏ −1 .

As

e−t|BD|h̃ε − h̃ε = e−ε|BD|(e−t|BD|h̃− h̃)− e−(1/ε)|BD|(e−t|BD|h̃− h̃),

e−t|BD|h̃ε − h̃ε converges in L2
loc(R

1+n
+ ) to e−t|BD|h̃ − h̃. A linearisation of the non-

tangential sharp function, together with Fatou’s lemma in the case where Y = Lp,

p < ∞, yields the conclusion. We skip easy details.
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In this chapter, we are given L = − divA∇ as in the introduction (t-independent,

bounded and accretive on H0 = H0
D, coefficients). We first discuss representations of

solutions in the class E . Then, we prove here theorem 1.1 and theorem 1.2 with some

further estimates.

12.1. A priori results for conormal gradients of solutions in E

We recall that E =
⋃

−1≤s≤0 Es where

Es =

⎧⎨⎩{u; ‖Ñ∗(∇u)‖2 < ∞}, if s = 0,

{u; ‖S(t−s∇u)‖2 < ∞}, otherwise.

Recall from [8, 83] that conormal gradients

F (t, x) = ∇Au(t, x) =

[
∂νA

u(t, x)

∇xu(t, x)

]
∈ L2

loc(R
1+n
+ )

(we omit the target space of F in the notation) of weak solutions u ∈ Es of Lu = 0

on R1+n
+ satisfy the equation (in distributional sense at first, and eventually in strong

semigroup sense)

(70) ∂tF +DBF = 0,

and have a trace on Rn and semigroup representation ∇Au|t=0 ∈ Ḣs,+
DB ⊂ Ḣs

D,

∇Au(t, .) = e−t|DB|∇Au|t=0 = e−t|DB|χ+(DB)∇Au|t=0 = e−tDB∇Au|t=0,(71)

where

D :=

[
0 divx

−∇x 0

]
, D(D) =

[
D(∇)

D(div)

]
⊂ L2(Rn,CN ), N = m(1 + n),

and

(72) B = Â :=

[
1 0

c d

] [
a b

0 1

]−1

=

[
a−1 −a−1b

ca−1 d− ca−1b

]
whenever we write

A =

[
a b

c d

]
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and L in the form

L = −
[
∂t ∇x

] [a b

c d

] [
∂t
∇x

]
.

Here, D and B satisfy the necessary requirements and the semigroup e−t|DB| is ap-

propriately interpreted as in section 11.

Conversely, for any h ∈ Ḣs,+
DB , the L2

loc(R
1+n
+ ) function

F (t, x) = e−t|DB|h(x) = e−tDBχ+(DB)h(x)

is the conormal gradient of a weak solution u ∈ Es of

Lu = 0

on R1+n
+ and h = ∇Au|t=0. Note that u is unique modulo constants. Note also that

u is a continuous function of t ≥ 0 valued in L2
loc(R

n). See [8] for s = −1 and [23,

remark 8.9] for all s ∈ [−1, 0].

It is convenient to use the notation v =
[
v⊥
v‖

]
for vectors in Cm(1+n), where v⊥ ∈ Cm

is called the scalar part and v‖ ∈ Cmn = (Cm)n the tangential part of v. With this

notation, for any s ∈ R,

(73) Ḣs
D =

[
Ḣs
⊥

Ḣs
‖

]
.

Given the definition of D, we have

P =

[
I 0

0 RR∗

]
,

where R is the array of Riesz transforms on Rn acting componentwise on Cm-valued

functions and R∗ is its adjoint. It follows that

Ḣs
⊥ = Ḣs(Rn;Cm) and Ḣs

‖ = RḢs
⊥,

which is also denoted by Ḣs
∇(Rn;Cmn) in [23].

Let u ∈ Es be a solution to Lu = 0 in R1+n
+ . Using that D : Ḣs+1,+

PBD → Ḣs,+
DB is an

isomorphism, there exists a unique U(0, .) ∈ Ḣs+1,+
PBD ⊂ Ḣs+1

D such that

DU(0, .) := −∇Au|t=0 ∈ Ḣs,+
DB .

Then, define

U(t, .) = e−t|PBD|U(0, .) = e−tPBDχ+(PBD)U(0, .), t ≥ 0,

accordingly to proposition 11.5 with U(t, . ) − U(0, .) ∈ L2. Using that P extends to

an isomorphism Ḣs+1,+
BD → Ḣs+1,+

PBD , there exists a unique v(0, .) ∈ Ḣs+1,+
BD such that

(74) U(0, .) = Pv(0, .)

and this v satisfies

Dv(0, .) = DU(0, .) = −∇Au|t=0,
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where Dv(0, .) is taken in the appropriate sense. One defines, in Ḣs+1,+
BD ,

v(t, .) = e−t|BD|v(0, .) = e−tBDχ+(BD)v(0, .), t ≥ 0,

accordingly to proposition 11.5, so that v(t, . )− v(0, .) ∈ L2, and one has

U(t, .) = Pv(t, .)

in Ḣs+1
D and in L2

loc(R
1+n
+ ) ∩ C([0,∞); Ḣs

D)

(75) Dv(t, .) = DU(t, .) = −∇Au(t, .).

In fact, U and v share the same first component as P is the identity on scalar parts

and their tangential parts satisfy for all t ≥ 0,

(U(t, .))‖ = (Pv)‖(t, .) = ((RR∗v‖)(t, .)), in Ḣs+1
‖

or, equivalently,

(R∗U‖)(t, .) = (R∗v‖)(t, .), in Ḣs+1
⊥ .

Here, RR∗v‖ is meant as the appropriate extension of the tangential part of P acting

on v, so R∗v‖ is to be interpreted in this way. It tells us that any estimate on U‖ is

thus an estimate on R∗v‖.

We finish this discussion with the pointwise relation between u, U⊥ and v⊥. Recall

that u ∈ Es and is continuous as a function of t valued in L2
loc(R

n;Cm). Also U⊥ =

v⊥ ∈ Ḣ1/2
⊥ at t = 0. They can be regarded as L2

loc functions and they agree up to a

constant. We decide to set the constant to be 0. Moreover,

U(t, . )− U(0, .) = P(v(t, .)− v(0, .))

belongs to L2 and is continuous as a function of t. As P is the identity on scalar parts,

we have the equality U⊥ = v⊥ in C([0,∞);L2
loc(R

n)). Following the proof in [8] where

the case s = −1 is treated (we changed signs compared to [8]), there exists a constant

c ∈ Cm such that for all t ≥ 0

u(t, .) = (U(t, .))⊥ + c = (v(t, .))⊥ + c in L2
loc(R

n),

(it is no longer modulo constants) so that we have the following representations for u

in C([0,∞);L2
loc(R

n)) with h = v(0, .) ∈ Ḣs+1,+
BD ,

u(t, .)− c = (e−t|PBD|Ph)⊥ = (e−t|BD|h)⊥ = (Pe−t|BD|h)⊥.

Thus U and v are potential vectors for the solution u. Both are useful.

If, furthermore, s = −1, i.e. h = v(0, .) ∈ R2(BD), then

e−t|PBD|Ph = Pe−t|BD|Ph,

so we also have u(t, .)− c = (Pe−t|BD|Ph)⊥ = (e−t|BD|Ph)⊥.
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Let us mention a consequence of this discussion.

Lemma 12.1. — Assume u ∈ Es,−1 ≤ s ≤ 0, is a weak solution of Lu = 0. Assume

q is such that Hq
DB∗ = H

q
D with equivalence of norms. Let p = q′ if q > 1. Then

‖∇Au|t=0‖Ẇ−1,p < ∞

if, and only if, there exists h ∈ Ḣs+1,+
BD ∩Hp,+

BD with Dh = ∇Au|t=0, and we have

‖∇Au|t=0‖Ẇ−1,p ∼ ‖Ph‖p.

Let α = n( 1q − 1) if q ≤ 1. Then

‖∇Au|t=0‖Λ̇α−1 < ∞

if, and only if, there exists h ∈ Ḣs+1,+
BD ∩ Λ̇α,+

BD with Dh = ∇Au|t=0, and we have

‖∇Au|t=0‖Λ̇α−1 ∼ ‖Ph‖Λ̇α .

Proof. — Let us consider the case q > 1. Remark that Ḣs+1
BD is the dual of Ḣ−s−1

DB∗ =

Ḣ−s−1
D and Hp

BD is the dual of Hq
DB∗ = Hq

D with identical dualities when restricted

to dense subspaces. The intersection Ḣ−s−1
D ∩Hq

D is well-defined within the Schwartz

distributions, dense in each factor, and the intersection of duals Ḣs+1
BD ∩Hp

BD makes

sense (as a subspace of the sum). If h ∈ Ḣs+1,+
BD ∩Hp,+

BD with ∇Au|t=0 = Dh = DPh,

then

‖∇Au|t=0‖Ẇ−1,p = ‖DPh‖Ẇ−1,p � ‖Ph‖p

by an argument similar to that of lemma 11.6. Conversely, let g ∈ Ḣ−s−1
D ∩Hq

D. Then

D−1g ∈ Ḣ−s
D ∩ Ẇ 1,q. Indeed, if g ∈ Ḣ−s−1

D ∩Hq
D, then

∇D−1g = ∇D−1Pg ∈ Ḣ−s−1
D ∩Hq

D.

Thus, the map g �→ 〈∇Au|t=0, D
−1g〉 is defined on Ḣ−s−1

DB∗ ∩ Hq
DB∗ and defines h ∈

Ḣs+1
BD ∩Hp

BD with Dh = ∇Au|t=0 and one has Ph ∈ Ḣs+1
D ∩Hp

D so that

‖Ph‖p � ‖∇Au|t=0‖Ẇ−1,p .

Applying the projector χ+(DB) leaves ∇Au|t=0 unchanged, thus it follows that h =

χ+(BD)h (in both spaces).

In the case q ≤ 1, we argue as above and replace Ẇ 1,q by Ḣ1,q.

Remark 12.2. — This proof reveals that one can make the Sobolev and Hardy space

theories consistent in the appropriate ranges of exponents.
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12.2. A priori comparisons of various norms

We may now translate theorem 11.8 in the context of solutions of Lu = 0 in R1+n
+ .

We remark that if L is associated to B, then the operator L∗, with coefficients A∗,

is associated to B̃ = Â∗ = NB∗N , with N =
[
I 0

0 −I
]
. As DN + ND = 0 and N

preserves R2(D), we see

DB̃ = −N(DB∗)N = N−1(−DB∗)N,

as N = N−1 For the functional calculi of DB̃ and DB∗, we obtain

b(DB̃) = Nb(−DB∗)N

for all b ∈ H∞(Sμ). Therefore, we see that h ∈ H
q,±
D ˜B

if and only if Nh ∈ H
q,∓
DB∗ . Also,

H
q
DB∗ = H

q
D if and only if Hq

D ˜B
= H

q
D. More directly, proposition 4.8 applies to the

pair of spaces (HT
D ˜B

,HT ∗
BD) for the pairing 〈Nf, g〉 on R2(D) × R2(BD). Similarly,

h ∈ Ḣs,±
D ˜B

if and only if Nh ∈ Ḣs,∓
DB∗ and Ḣs

D ˜B
, Ḣ−s

BD are dual spaces for this pairing

(or, rather, its extension). Hence all statements proved before adapt to this new

pairing.

Theorem 12.3. — We set

p±(L) = p±(DB) = p±(BD)

and IL be the subinterval of ( n
n+1 , p+(L)) for which H

q
DB = H

q
D with equivalence of

norms.

� For any q ∈ IL, we have that all weak solutions of

Lu = 0

with u ∈ E, satisfy

(76) ‖Ñ∗(∇u)‖q ∼ ‖∇Au|t=0‖Hq ∼ ‖S(t∂t∇u)‖q,

where Hq = Lq if q > 1.

� For any q ∈ IL, we have that all weak solutions of

L∗u = 0

with u ∈ E, satisfy with p = q′ if q > 1 and α = n( 1q − 1) if q ≤ 1,

(77) ‖S(t∇u)‖p ∼ ‖∇A∗u|t=0‖Ẇ−1,p ,

(78) ‖t∇u‖T∞2,α ∼ ‖∇A∗u|t=0‖Λ̇−1,α ∼ ‖Ñ�,α(v)‖∞.

For those p with p > 2, we also have

(79) ‖∇A∗u|t=0‖Ẇ−1,p ∼ ‖Ñ�(v)‖p.
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Finally, we note the a priori “N < S” inequality. For p as above, up to an additive

normalizing constant c, we have

(80) ‖Ñ∗(u− c)‖p � ‖S(t∇u)‖p.

Proof. — The only thing to prove is (80). Assume ‖S(t∇u)‖p < ∞, otherwise there

is nothing to prove. Since u ∈ E , we know that

u(t, .)− c = (e−t| ˜BD|h)⊥ = v⊥

for some h ∈ Ḣs+1,+
˜BD

, which by lemma 12.1 can also be chosen in Hp,+
˜BD

for p in the

specified range, and some c ∈ Cm, and we have

‖S(t∇u)‖p ∼ ‖∇A∗u|t=0‖Ẇ−1,p ∼ ‖Ph‖p.

Approximate h by hk ∈ H
p,+
˜BD

(one first approximates h in H
p
˜BD

and then, apply

χ+(B̃D)), then this gives a solution uk by

uk(t, .)− c = (e−t| ˜BD|hk)⊥ = (Pe−t| ˜BD|hk)⊥

and theorem 9.3 implies

‖Ñ∗(uk(t, .)− c)‖p � ‖Phk‖p.

By the isomophism property of P, Phk converges to Ph in Lp and also uk converges

to u in L2
loc(R

1+n
+ ). It is then easy to conclude using lemma 12.1.

Remark 12.4. — The comparison (77) and the first comparison in (78) were used

in [23]. Note that for α = 0, this is a Carleson measure/BMO comparison.

Remark 12.5. — Let us mention that under the De Giorgi condition on L∗
‖ in sec-

tion 13, we have a range (1− ε′, 2 + ε) for (76), a range (2− ε,∞) for p in (77), (79)

and (80), and a range [0, ε) for (78). Again, this is a priori for weak solutions u ∈ E .

12.3. Boundary layer potentials

Following [81], the boundary layer operators are identified as follows: for t �= 0,

∇ASt and Dt are defined as L2 bounded operators by, for f ∈ L2(Rn;Cm),

(81) ∇AStf :=

⎧⎨⎩+e−tDBχ+(DB)
[
f
0

]
if t > 0,

−e+tDBχ−(DB)
[
f
0

]
if t < 0,

and

(82) Dtf :=

⎧⎨⎩−
(
e−tBDχ+(BD)

[
f
0

])
⊥

if t > 0,

+
(
e+tBDχ−(BD)

[
f
0

])
⊥

if t < 0.
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We recall that for any h ∈ L2, (Ph)⊥ = (h)⊥, hence

(83) Dtf :=

⎧⎨⎩−
(
Pe−tBDχ+(BD)

[
f
0

])
⊥

if t > 0,

+
(
Pe+tBDχ−(BD)

[
f
0

])
⊥

if t < 0.

Now that we have the Sobolev space Ḣs
D, (81) makes sense for

f ∈ Ḣs(Rn;Cm) = Ḣs
⊥, −1 ≤ s ≤ 0

and we can even define St consistently from Ḣs(Rn;Cm) to Ḣs+1(Rn;Cm) by

(84) Stf :=

⎧⎨⎩−
(
D−1e−tDBχ+(DB)

[
f
0

])
⊥

if t > 0,

+
(
D−1e+tDBχ−(DB)

[
f
0

])
⊥

if t < 0.

We remark that D−1 can be indifferently thought as a Ḣs
D → Ḣs+1

D or Ḣs
DB → Ḣs+1

BD

map. As we take scalar components the conclusion is the same.

Similarly the right hand side of (83) makes sense for f ∈ Ḣs(Rn;Cm) for 0 ≤ s ≤ 1

by the results of section 11. Indeed,
[
f
0

]
∈ Ḣs

D = PḢs
BD and P is the identity on the

scalar part. Hence
[
f
0

]
∈ Ḣs

BD. We define Dtf by (83) for such f .

Note that we may let t → 0 from above or below using the strong continuity of the

semigroups (In Sobolev spaces, this follows from the sectoriality of their generators as

observed in proposition 11.3) to obtain the jump relations. Those were proved in [3]

under De Giorgi-Nash assumptions on L and L∗. Let us see that. From (81) we have

for all f ∈ Ḣs(Rn;Cm), −1 ≤ s ≤ 0,

(85) ∇AS0+f −∇AS0−f = (χ+(DB) + χ−(DB))
[f
0

]
=

[f
0

]
which encodes the jump relation of the conormal derivative of St across the boundary

and the continuity of the tangential gradient of St across the boundary. We used

that χ+(DB) + χ−(DB) = I on Ḣs
D �

[
f
0

]
. For the double layer, we have for

f ∈ Ḣs(Rn;Cm), 0 ≤ s ≤ 1,

(86) D0+f −D0−f = −
(
P(χ+(BD) + χ−(BD))

[f
0

])
⊥
= −

([f
0

])
⊥
= −f.

We used that χ+(BD) + χ−(BD) = I on Ḣs
BD �

[
f
0

]
, by the results of chapter 11.

Finally, we have the usual duality relations of single layer potentials and double

layer potentials. Denote for a moment St = SA
t . Then, in the L2(Rn;Cm) sesquilinear

duality, for f ∈ Ḣs(Rn;Cm) and g ∈ Ḣ−s−1(Rn;Cm), −1 ≤ s ≤ 0,

(87) 〈g,SA
t f〉 = 〈SA∗

−t g, f〉.
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We provide the proof for convenience using the duality 〈Nh̃, h〉 for vectors and the

relation between A∗ and B̃. We may assume t > 0. We have

〈g,SA
t f〉 = +

〈[g
0

]
,−D−1e−tDBχ+(DB)

[f
0

]〉
= −

〈
N

[g
0

]
, D−1e−tDBχ+(DB)

[f
0

]〉
= +

〈
ND−1

[g
0

]
, e−tDBχ+(DB)

[f
0

]〉
= +

〈
Net

˜BDχ−(B̃D)D−1
[g
0

]
,
[f
0

]〉
= +

〈
ND−1etD

˜Bχ−(DB̃)
[g
0

]
,
[f
0

]〉
= 〈SA∗

−t g, f〉.

Similarly, one has that, writing DA
t = Dt for a moment, for f ∈ Ḣs(Rn;Cm) and

g ∈ Ḣ−s(Rn;Cm), 0 ≤ s ≤ 1,

(88) 〈g,DA
t f〉 = 〈∂νA∗SA∗

−t g, f〉.

The proof is similar to the above one. Assume again t > 0. We have

〈g,DA
t f〉 =

〈
N

[g
0

]
,−e−tBDχ+(BD)

[f
0

]〉
= −

〈
NetD

˜Bχ−(DB̃)
[g
0

]
,
[f
0

]〉
= +

〈
N∇A∗SA∗

−t

[g
0

]
,
[f
0

]〉
= 〈∂νA∗SA∗

−t g, f〉.

The proof with t < 0 is left to the reader.

The extension of the semigroups to Hardy spaces Hp
DB and Hp

BD and identification

with usual spaces made in section 6 yield the following result.

Theorem 12.6. — Let IL be the interval in ( n
n+1 , p+(L)) on which H

q
DB = H

q
D with

equivalence of norms and IL∗ be the interval in ( n
n+1 , p+(L

∗)) on which H
q

D ˜B
= H

q
D

with equivalence of norms.

1) For ∈ IL, we have the estimate

sup
t>0

‖∇AStf‖Hq � ‖f‖Hq , ∀f ∈
⋃

−1≤s≤0

Ḣs(Rn;Cm),

where Hq = Lq if q > 1, and ∇AStf converges strongly in Hq as t → 0+. In

particular, St, ∂νA
St and ∂tSt extend to uniformly bounded operators

St : H
q −→ Ḣ1,q, ∂νA

St : H
q −→ Hq

and

∂tSt : L
q −→ Lq, if, moreover, q > 1,

with strong limit as t → 0+.
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2) For q ∈ IL, we have the estimate

sup
t>0

‖∇ADtf‖Hq � ‖∇f‖Hq = ‖f‖Ḣ1,q , ∀f ∈
⋃

0≤s≤1

Ḣs(Rn;Cm),

where Hq = Lq if q > 1, and ∇ADtf converges strongly in Hq as t → 0+. In

particular, Dt extends to uniformly bounded operators

Dt : Ḣ
1,q −→ Ḣ1,q,

with strong limit as t → 0+.

3) For q ∈ IL∗ , we have the estimate

sup
t>0

‖Stf‖Lp � ‖f‖Ẇ−1,p , ∀f ∈
⋃

−1≤s≤0

Ḣs(Rn;Cm),

where p = q′ if q > 1, and Stf converges strongly in Ẇ−1,p as t → 0+, and

sup
t>0

‖Stf‖Λ̇α � ‖f‖Λ̇α−1 , ∀f ∈
⋃

−1≤s≤0

Ḣs(Rn;Cm),

if q ≤ 1 and α = n( 1q − 1) and Stf converges for the weak-∗ topology of Λ̇α

if t → 0+. In particular, for those specified p and α, St extends by density to

uniformly bounded operators

St : Ẇ
−1,p −→ Lp

with strong limit as t → 0+ and by duality to bounded operators

St : Λ̇
α−1 −→ Λ̇α,

with weak-∗ limit as t → 0+.

4) For q ∈ IL∗ , we have the estimate

sup
t>0

‖Dtf‖Lp � ‖f‖Lp , ∀f ∈
⋃

0≤s≤1

Ḣs(Rn;Cm),

where p = q′ if q > 1, and Dtf converges strongly in Lp as t → 0+, and

sup
t>0

‖Dtf‖Λ̇α � ‖f‖Λ̇α , ∀f ∈
⋃

0≤s≤1

Ḣs(Rn;Cm),

if q ≤ 1 and α = n( 1q − 1) and Dtf converges for the weak-∗ topology of Λ̇α

if t → 0+. In particular, for those specified p and α, Dt extends by density to

uniformly bounded operators

Dt : L
p −→ Lp

with strong limit as t → 0+ and by duality to bounded operators

Dt : Λ̇
α −→ Λ̇α

with weak-∗ limit as t → 0+.
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5) For any integer k ≥ 0, the same estimates than for St hold for (t∂t)
kSt in

the specified ranges of the above items. The same estimates than for Dt hold

for (t∂t)
kDt in the specified ranges of the above items.

6) The above items holds changing t to −t.

7) The jump relations (85) and (86) hold in all the topologies above where St

and Dt are bounded respectively.

According to corollary 13.3, this improves the known results obtained in [61] for

operators with De Giorgi-Nash conditions as far as convergence at the boundary is

concerned (strong convergence is obtained: it was known only for p = 2 combining [8]

and [81]) and also with a weaker hypothesis (only an assumption on L∗
‖ or L‖). Also

these boundedness results are new without De Giorgi-Nash conditions. Let us now

isolate the results concerning square functions and non-tangential maximal estimates

for boundary layers.

Theorem 12.7. — Let IL be the interval in ( n
n+1 , p+(L)) on which H

q
DB = H

q
D with

equivalence of norms and IL∗ be the interval in ( n
n+1 , p+(L

∗)) on which H
q

D ˜B
= H

q
D

with equivalence of norms.

1) For q ∈ IL, we have the estimate

‖Ñ∗(∇S±tf)‖q ∼ ‖t∂t∇S±tf‖T q
2
� ‖f‖Hq ,

‖Ñ∗(∇D±tf)‖q ∼ ‖t∂t∇D±tf‖T q
2
� ‖∇xf‖Hq ∼ ‖f‖Ḣ1,q ,

where Hq = Lq if q > 1.

2) For q ∈ IL∗ , q > 1 and p = q′ then

‖Ñ∗(S±tf)‖p � ‖t∇S±tf‖Tp
2
� ‖f‖Ẇ−1,p ,

‖Ñ∗(D±tf)‖p � ‖t∇D±tf‖Tp
2
� ‖f‖Lp ,

3) For q ∈ IL∗ , q ≤ 1 and α = n( 1q − 1), then

‖Ñ�,α(S±tf)‖∞ � ‖t∇S±tf‖T∞2,α � ‖f‖Λ̇α−1 ,

‖Ñ�,α(D±tf)‖∞ � ‖t∇D±tf‖T∞2,α � ‖f‖Λ̇α ,

For statements concerning S±t we a priori assume

f ∈
⋃

−1≤s≤0

Ḣs(Rn;Cm),

and for statements concerning D±t,

f ∈
⋃

0≤s≤1

Ḣs(Rn;Cm).

Here, ∇ is the full gradient (∂t,∇x). Alternately, it can be replaced by the conormal

gradient (∂νA
,∇x). The non-tangential sharp functions are meant as the correspond-

ing non-tangential maximal functions for S±tf − S±0f or D±tf −D±0f . Also in 2),
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if p > 2, the corresponding quantities ‖Ñ�(.)‖p are equivalent to the T p
2 terms in the

middle.

As proved in [23], there is a generalized boundary layer representation for the

conormal gradients of solutions in E . This can be integrated to give the “usual”

boundary layer representation for the solution itself. It improves the results found

in [23] and [55]. Theorem 8.1 in [32] proved under De Giorgi-Nash assumptions on L

and L∗ is of the same spirit.

Corollary 12.8. — Let IL∗ be the interval in ( n
n+1 , p+(L

∗)) on which H
q

D ˜B
= H

q
D

with equivalence of norms. Let u ∈ Es, −1 ≤ s ≤ 0, be a solution of

Lu = − divA∇u = 0

in R1+n
+ . Let p ∈ (1,∞) with q = p′ ∈ IL∗ such that u|t=0 ∈ Lp(Rn;Cm) and

∂νA
u|t=0 ∈ Ẇ−1,p(Rn;Cm). Then the abstract boundary layer representation

u(t, x) = St(∂νA
u|t=0)(x)−Dt(u|t=0)(x)

holds for all t ≥ 0 in L1
loc(R

n;Cm). In particular, supt≥0 ‖u(t, .)‖Lp(Rn;Cm) < ∞.

Proof. — Let s ∈ [−1, 0] for which u ∈ Es. By corollary 8.4 in [23], we have

∇Au(t, .) = ∇ASt(∂νA
u|t=0)−∇ADt(u|t=0).

The equality holds in Es ∩ C([0,∞); Ḣs,+
DB). Thus, we have

(89) u(t, x) = St(∂νA
u|t=0)(x)−Dt(u|t=0)(x) + c, t > 0,

in L2
loc(R

1+n
+ ;Cm), but also in L1

loc(R
n;Cm) for each t > 0 as the right hand side

belongs to Lp(Rn;Cm) + Cm by the boundedness properties of the boundary layers

established in theorem 12.6 and the left hand side is in L2
loc(R

n;Cm) as u ∈ Es. We

also point out that c is independent of t because both sides are weak solutions with

the same conormal gradient at the boundary. One can pass to the limit in t → 0, after

testing against a C∞
0 (Rn;Cm) function. For the right hand side, we use the strong

limits in the theorem above and for the left hand side, this is because t �→ u(t, .) is

continuous at 0 in L2
loc(R

n;Cm) as u ∈ Es (this observation is remark 8.9 in [23]).

One obtains u|t=0(x) = S0(∂νA
u|t=0)(x) − D0+(u|t=0)(x) + c. As all the functions

belong to Lp(Rn;Cm), we conclude that c = 0.

Remark 12.9. — Note that (89) holds under the sole assumption that u ∈ Es. So

for Hölder or BMO spaces, the equality holds in those spaces.

12.4. The block case

Consider

A =

[
a 0

0 d

]
,
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that is, A is block diagonal. In this case, B is also block diagonal with

B =

[
a−1 0

0 d

]
.

12.4.1. The case a = 1. — We assume a = 1. The Hardy space theory for

1 < p < ∞ was explicitly developed in [66]. The limitation to p > 1 is due to the fact

that these authors work with UMD-valued functions. Remark that

DB =

[
0 div d

−∇ 0

]
, (DB)2 =

[
− div d∇ 0

0 −∇ div d

]
.

In particular, (DB)2 is sectorial with angle ω (instead of 2ω if B is an arbitrary matrix

with angle of accretivity ω). Also (DB)2 has an H∞-calculus on L2(Rn;CN ). Set

L = − div d∇ and M = −∇ div d,

both defined as ω-sectorial operators on L2(Rn;Cm) and L2(Rn;Cnm) with H∞-

calculus. Note that M = 0 on N(div d) and that the Hodge decomposition

L2(Rn;Cnm) = R2(∇) ⊕ N(div d)

is consistent with the splitting

L2(Rn;Cn(1+m) = R2(DB) ⊕ N(DB) =

[
L2(Rn;Cm)

R2(∇)

]
⊕

[
0

N(div d)

]
.

It was shown in [27] that the interval (p−(DB), p+(DB)) is the largest interval

of p such that one has the corresponding Hodge decomposition for Lp, which is also

(q+(L
∗)′, q+(L)) where q+(L) was introduced in [7].

Since DB admits L2 off-diagonal estimates to any order, so does (DB)2 and,

as (DB)2 is diagonal, so do L and M . So both L and M enjoy a Hardy space

theory. Only the decay of the allowable ψ changes because of the second order nature

of L and M . Explicit conditions on ψ can be found [66] (see also [60]). Using even

(with respect to z �→ −z) allowable ψ for all these Hardy spaces Hp below, we obtain

that

f =

[
f⊥
f‖

]
∈ H

p
DB ⇐⇒ f⊥ ∈ H

p
L and f‖ ∈ H

p
M ,with ‖f‖Hp

DB
∼ ‖f⊥‖Hp

L
+ ‖f‖‖Hp

M
.

Using the H
p
DB theory for 0 < p < ∞, we have that sgn(DB) is bounded on H

p
DB .

We note that this is equivalent to

‖L1/2u‖Hp
L
∼ ‖∇u‖Hp

M
, ∀u ∈ Ẇ 1,2(Rn;Cm).

Indeed, pick f ∈ H2
DB = H2

D so that f⊥ ∈ L2(Rn;Cm) and f‖ = ∇g⊥ for g⊥ ∈
Ẇ 1,2(Rn;Cm). Also, one can write f⊥ = L1/2h⊥ with h⊥ ∈ Ẇ 1,2(Rn;Cm) by the
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solution of the Kato problem for operators and systems [13], [16]. Then as |DB| is
the diagonal operator with entries L1/2, M1/2, we have

sgn(DB)f =

[
L−1/2 div d∇g⊥
−M−1/2∇f⊥

]
=

[
−L1/2g⊥

−∇L−1/2f⊥

]
=

[
−L1/2g⊥
−∇h⊥

]
.

For the last line, we used the equality (I + t2M)−1∇f = ∇(I + t2L)−1f for all

f ∈ W 1,2, extended to f ∈ L2 (by extending the resolvents), and

M−1/2∇f =
2

π

∫ ∞

0

(I + t2M)−1tM1/2M−1/2∇f
dt

t

=
2

π

∫ ∞

0

∇L−1/2tL1/2(I + t2L)−1f
dt

t
= ∇L−1/2f,

where, classically, the integrals converge strongly in L2 by the H∞-calculus for L

and M and since both operators are bounded on L2 (for the one on the left, one can

see that by duality). Thus we may apply the equality to f⊥ ∈ L2. Thus

‖sgn(DB)f‖Hp
DB

∼ ‖L1/2g⊥‖Hp
L
+ ‖∇h⊥‖Hp

M

while

‖f‖Hp
DB

∼ ‖L1/2h⊥‖Hp
L
+ ‖∇g⊥‖Hp

M
.

As h⊥ and g⊥ are arbitrary and unrelated in Ẇ 1,2(Rn;Cm), this shows the announced

equivalence. (1)

Proposition 12.10. — Let p ∈ ( n
n+1 ,∞). If Hp

DB = H
p
D with equivalence of norms

then H
p
L = Hp ∩ L2 and H

p
M = Hp ∩ ∇Ẇ 1,2 and ‖L1/2u‖Hp ∼ ‖∇u‖Hp for all

u ∈ Ẇ 1,2(Rn;Cm), where Hp is the classical Hardy space if p ≤ 1 and Lp is p > 1.

Proof. — Recall that Hp
D = Hp ∩P(L2) and P(L2) = L2(Rn;Cm)⊕∇Ẇ 1,2(Rn;Cm).

Thus, Hp
DB = H

p
D if and only if Hp

L = Hp ∩ L2 and H
p
M = Hp ∩ ∇Ẇ 1,2 so that they

are both subspaces of Hp. The conclusion for the Riesz transform ∇L−1/2 follows

right away.

The interval of Lp boundedness of the Riesz transform ∇L−1/2 is character-

ized in [7] as the interval (q−(L), q+(L)), which is the largest open interval on

which
√
t∇e−tL is bounded on Lp, uniformly in t > 0. And it is also known that

q−(L) = p−(L) where (p−(L), p+(L)) is the largest open interval on which e−tL is

bounded on Lp, uniformly in t > 0. It was shown in [60] (in the case of equations:

m = 1) that for 1 < p < ∞, Hp
L = Lp if and only if p ∈ (p−(L), p+(L)). When

0 < p ≤ 1, [60] proves that ‖f‖Hp � ‖f‖Hp
L

and, when (p−(L))∗ < p ≤ 1, that

‖L1/2u‖Hp
L
∼ ‖∇u‖Hp when u ∈ Ẇ 1,2(Rn). But Hp

L is not identified when p ≤ 1.

The possibility of identifying Hp
L for p ≤ 1 seems new. It turns out that the number

1. The direction from boundedness of sgn(DB) to the statement for L1/2 has been known for

long: it is for example in [21]. It is explicitly in [66] in this context. The converse was pointed out

to us by A. McIntosh.
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p−(L) may not be the relevant critical exponent for this. We isolate a number of

interesting facts in this corollary.

Corollary 12.11. — Let I be the interval in ( n
n+1 ,∞) on which H

p
DB = H

p
D with

equivalence of norms. Then, I ∩ (1,∞) ⊂ (q−(L), q+(L)). As q+(L) = p+(DB), we

also conclude that sup I = p+(DB). Also, if p ∈ I ∩ (1,∞), then e−tL is bounded on

Lp uniformly in t > 0. Finally, if inf I < p ≤ 1, Hp
L = Hp.

A large part of [60] is concerned with developing the Hp
L theory, for the full range

0 < p < ∞ together with variants involving regularity indices. See also [67] for

0 < p ≤ 1. See also non-tangential maximal estimates in [78] towards solving the

associated second order PDE ∂2
t u + div d∇u = 0, which can be seen as a special

case of (1). Some larger ranges of exponents are obtained there, probably due to the

“diagonal” structure of the PDE (no cross terms in t and x).

12.4.2. The case a �= 1. — The full block diagonal case with a �= 1 can be treated

similarly. In this situation,

L = − div d∇a−1 and M = −∇a−1 div d,

which are 2ω-sectorial operators on L2(Rn;CN ) with H∞-calculus on L2(Rn;CN )

as diagonal components of (DB)2. The same discussion applies concerning the links

between H
p
DB , H

p
L and H

p
M and that ‖L1/2u‖Hp

L
∼ ‖∇(a−1u)‖Hp

M
. Thus if Hp

DB = H
p
D,

then H
p
L = Hp ∩L2 and Hp

L = Hp (again, this is by convention Lp if p > 1). Remark

also that if Hp
DB = H

p
D and p > 1, then the resolvent of L and semigroup generated by

L1/2 are bounded on Lp (There may be no semigroup generated by −L if 2ω ≥ π/2).

If H
p
DB = H

p
D, by similarity, we obtain a characterization of the Hardy space

associated to −a−1 div d∇ as a−1Hp.

In boundary dimension n = 1, M and L are of the same type because div and ∇
both become d

dx . Although not formulated in the language of the current article, it

was shown in [28] that Hp
L = Hp for all p ∈ ( 12 ,∞) (in the case of equations, that

is when m = 1). The same thus holds for M replacing L and therefore Hp
DB = Hp

for those p. The proof there extends to arbitrary systems with m > 1. Nevertheless,

this follows directly on applying proposition 3.11 for any m as the symbol of D is

invertible on R \ {0}.
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We are given B = Â, A =

[
a b

c d

]
and D =

[
0 div

−∇ 0

]
as before, which corre-

sponds to the second order system

L = − divA∇.

Let L‖ = − div d∇ where d is the lower right coefficient in A. This operator acts on

the boundary Rn of R1+n
+ . Classical elliptic theory implies there exists λ(L‖) ∈ (0, n]

such that the following holds:

For any λ ∈ [0, λ(L‖)), there exists a constant C ≥ 0 such that for any ball

B(x0, R), for any v ∈ W 1,2(B(x0, R)) weak solution in B(x0, R) of L‖v = 0 and for

all 0 < ρ ≤ R

(90)

∫
B(x0,ρ)

|∇v|2 ≤ C
( ρ

R

)λ
∫
B(x0,R)

|∇v|2.

The constant C depends on L∞ bounds and accretivity of d on R2(∇), λ and λ(L‖).

Definition 13.1 (From [5]). — L‖ satisfies the De Giorgi condition if λ(L‖) > n−2.

It is equivalent to the fact that weak solutions of L‖ are locally bounded and Hölder

continuous with exponent less than

α(L‖) =
λ(L‖)− n+ 2

2
.

See [56] for explicit proofs.

This condition holds for any L‖ as above if n ≤ 2, for real d and their L∞ perturba-

tions when m = 1, n ≥ 3. It also holds if d is constant for any n,m (with λ+(L
∗
‖) = n)

and if d is an L∞ perturbation of a constant (with any λ(L‖) < n).

Theorem 13.2. — Assume that L∗
‖ satisfies the De Giorgi condition. For

p‖ < p ≤ 1, with p‖ = n
n+α(L∗‖)

, any (Hp
D, 1)-atom α and integer M ≥ M(n),

we have

‖tDB(I + itDB)−Mα‖Tp
2
� 1

with implicit constant depending only on n,m,M , the L∞ and accretivity bounds of B,

and the constants in the De Giorgi condition for L∗
‖.

It is quite striking that no regularity is imposed on the weak solutions of L‖, nor

any condition on the other coefficients a, b, c of L.
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Corollary 13.3. — Assume that L∗
‖ satisfies the De Giorgi condition. Then we

have H
p
DB = H

p
D with equivalence of norms for p‖ < p < p+(DB).

We remark that this identification is obtained without knowing kernel bounds.

Proof. — The case 2 < p < p+(DB) is from the general theory and there is nothing

new. We consider p < 2.

Remark that ψ(z) = z(1 + iz)−M ∈ ΨM−1
1 (Sμ) is allowable for H

p
DB for any

p ∈ ( n
n+1 , 2) if M − 1 > n

2 + 1. The theorem above tells that for p‖ < p ≤ 1 and

(Hp
D, 1)-atoms α, α ∈ H

p
DB and ‖α‖Hp

DB
� 1. A density argument provides that

H
p
D ⊂ H

p
DB with continuous inclusion. By complex interpolation (arguing as in the

proof of corollary 4.14) this holds for 1 < p < 2. Now the converse inclusion and

continuity bound were known from corollary 4.17 for n
n+1 < p < 2.

Thus, by duality, all the a priori estimates for weak solutions of Lu = 0 with u ∈ E
apply to this situation assuming L‖ satisfies the De Giorgi condition with exponent

λ(L‖) > n − 2. For example, we have, normalizing u by an additive constant in the

first inequality,

‖Ñ∗(u)‖p � ‖S(t∇u)‖p, ∀p ∈ (2− ε,∞),

‖Ñ�(u)‖p � ‖S(t∇u)‖p, ∀p ∈ (2,∞),

‖Ñ�,α(u)‖∞ � ‖t∇u‖T∞2,α , ∀α ∈ [0, α(L)), α(L) =
λ(L‖)− n+ 2

2
.

The first inequality was known if L is a real and scalar operator [54]. However

there is a subtle difference. In that work, the a priori assumption u ∈ E is not

required and p can be any positive number: the proof in this specific situation uses

the p = 2 case in [8] and good lambda arguments requiring the converse inequality

‖S(t∇u)‖p � ‖Ñ∗(u)‖p
(which [54] proves using changes of variables, so it is not clear at all whether this can

extend to complex situations) and finiteness of ‖Ñ∗(u)‖p (which can even be replaced

by the usual non-tangential function by interior regularity estimates). So, in fact, [54]

proves that on the class of weak solutions with ‖Ñ∗(u)‖p < ∞, one has

‖S(t∇u)‖p ∼ ‖Ñ∗(u)‖p
for any 0 < p < ∞. Here, we show that when u ∈ E , then

‖Ñ∗(u)‖p � ‖S(t∇u)‖p
when 2 − ε < p < ∞ (Note that the a priori information u ∈ E will be removed

in [24]: the combination of all this shows that the two classes of weak solutions (one

with square function control and the other with non-tangential maximal control) are

identical (up to additive normalisation) in this range of p and this class of operators

(real and scalar)).
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The latter two inequalities seem new even when L is a real and scalar operator.

13.1. Preliminary computations

We begin with some computation. As before, we write

f ∈ L2(Rn;C(1+n)m) as f =
[f⊥
f‖

]
with f⊥ ∈ L2(Rn;Cm) and f‖ ∈ L2(Rn;Cnm). We also write L2 from now on without

precision.

For t ∈ R set Rt = (I + itDB)−1 and

Lt =
[
1 it divx

] [a(x) b(x)

c(x) d(x)

] [
1

it∇x

]
.

Lemma 13.4. — Let f ∈ L2 and t ∈ R. Then the equation Rtf = F is equivalent to

the system

F⊥ = aut + bF‖,(91)

F‖ = it∇xut + f‖,(92)

with

ut = L−1
t

[
1 it divx

] [f⊥ − bf‖
−df‖

]
.

Proof. — Let g,G defined by f = Ag and F = AG with

A(x) =

[
a(x) b(x)

0 1

]
.

Then, by [9, lemma 2.53] (see [8, lemma 9.3] for a direct proof in this context),

Rtf = F is equivalent to

G⊥ = ut,(93)

G‖ = it∇xut + g‖.(94)

It suffices to note that F⊥ = aG⊥ + bG‖ and F‖ = G‖.

Lemma 13.5. — Assume f ∈ L2 has the form f =
[

f⊥
it∇h

]
with f⊥ ∈ L2 and h ∈

W 1,2. Then the equation Rtf = F is equivalent to F =
[

F⊥
it∇H

]
with F⊥ ∈ L2 and

H ∈ W 1,2 given by [
F⊥
H

]
= Rt

[
f⊥
h

]
with Rt being the 2× 2 matrix of operators

Rt =

[
aL−1

t Tt

L−1
t Ut

]
,
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where

Ut = L−1
t (a+ it div c),

and

Tt = −a+ (a+ itb∇)L−1
t (a+ it div c).

Here, a, b, c, d mean multiplication by the corresponding functions a(x), b(x), c(x), d(x).

Proof. — Write

ut = L−1
t (f⊥ − itb∇h− it div d∇h)

and using the definition of Lth we obtain

ut = −h+ L−1
t (f⊥ + ah+ it div ch).

Thus (92) is equivalent to

F‖ = it∇L−1
t (f⊥ + ah+ it div ch) = it∇(L−1

t f⊥ + Uth)

because −it∇h+ f‖ = 0, and (91) is equivalent to

F⊥ = aL−1
t f⊥ + Tth.

13.2. Proof of theorem 13.2

We start the proof of the theorem. Let α = Dβ be an (Hp
D, 1)-atom. This means

that α, β are both supported in a ball Q, with

‖α‖2 ≤ |Q| 12− 1
p and ‖β‖2 ≤ r(Q)|Q| 12− 1

p ,

with r(Q) the radius of Q. Note that α⊥ is the divergence of β‖. In particular, α⊥ is

a classical L2-atom (valued in Cm) for the Hardy space Hp and each component has

mean value 0. Also α‖ is a gradient field.

Call Ck(TQ) the following regions in R1+n
+ . For k ≥ 0,

Rk(TQ) = (0, 2kr(Q)]×2kQ, C0(TQ) = R1(TQ) and Ck(TQ) = Rk+1(TQ)\Rk(TQ)

for k > 0. It is enough to show that

(95)

∫∫
Ck(TQ)

|tDBRM
t α|2 dtdx

t
� |2kQ|1− 2

p 2−kε

for some ε > 0 and M large enough.

For simplicity we assume that Q is the unit ball centered at 0. All estimates are

affine invariant because all assumptions in the theorem are stable under affine changes

of variables so this is no loss of generality.

First for k = 0, (95) holds as a consequence of the square function estimate (14)

for DB and the size of ‖α‖2.
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For k > 0, we note that itDBRM
t α = RM−1

t α − RM
t α and it is enough to treat

each term separately. Hence we have to show that

(96)

∫∫
Ck

|RM
t α|2 dtdx

t
� 2k(n−

2n
p −ε)

for large enough M , where we set Ck = Ck(TQ).

The part of the integral in (95) where t ≤ 1 can be treated using the L2 off-diagonal

decay of RM
t (11)

(97)

∫
2k+1Q\2kQ

|RM
t α|2 dx � (2k/t)−N‖α‖22

for all N . Thus integrating this estimate in t ∈ (0, 1] yields a bound 2−kN .

For the remaining part, when t > 1, we claim assuming M large enough and all N ,

we have that for 1 ≤ t < 2k, we have

(98)

∫
2k+1Q\2kQ

|RM
t α|2 dx � (2k/t)−N tn−

2n
p −ε

and for 2k ≤ t ≤ 2k+1,

(99)

∫
2k+1Q

|RM
t α|2 dx � tn−

2n
p −ε.

Then, integrating in the corresponding t intervals the above estimates concludes the

proof of (97).

To end the proof of the theorem, it remains to prove the claim. This is where we

use fully that α is an (Hp
D, 1)-atom and the above calculations. Write

α = f, f (k) = Rk
t f.

Since f =
[

f⊥
it∇h

]
with h = −(it)−1β⊥, we have f

(k) =
[ f

(k)
⊥

it∇h(k)

]
and

[ f(k)
⊥

h(k)

]
= Rk

t

[
f⊥
h

]
.

Fix t > 0. Since

Lth
(k+1) = f

(k)
⊥ + ah(k) + it div ch(k),

the usual Caccioppoli argument for the (non homogeneous) operator Lt yields∫
Bt

|it∇h(k+1)|2dx ≤ C

∫
cBt

(|h(k+1)|2 + |f (k)
⊥ |2 + |h(k)|2)dx

for any c > 1 and some C > 0 independent of the ball Bt of radius within t/2 and 2t,

k and depending only on the L∞ and accretivity bounds of A. From

|f (k+1)|2 = |f (k+1)
⊥ |2 + |it∇h(k+1)|2

and using a bounded covering by balls of radius ∼ t, we see that it is enough to

prove (98) and (99) by replacing RM
t α by RM

t

[
f⊥
h

]
(up to fattening slightly Ck to a

similar type of region, which we ignore in the sequel as this is only a cosmetic change

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2016



114 13. SYSTEMS WITH DE GIORGI TYPE CONDITIONS

in the estimates). Hence, it suffices to prove assuming M large enough that, for all N

and 1 ≤ t < 2k, we have

(100)

∫
2k+1Q\2kQ

|RM
t

[f⊥
h

]
|2dx � (2k/t)−N tn−

2n
p −ε

and for 2k ≤ t ≤ 2k+1,

(101)

∫
2k+1Q

|RM
t

[f⊥
h

]
|2dx � tn−

2n
p −ε.

To do this, we proceed to an analysis of the iterates of the adjoint of Rt, starting

from L2 using the scales of Morrey spaces and Campanato spaces (here for functions

defined on Rn and valued in Cm) following [5]. For 0 ≤ λ ≤ n, define the Morrey

space L2,λ(Rn;Cm) = L2,λ
0 ⊂ L2

loc by the condition

‖f‖L2,λ
0

≡ sup
x∈Rn, 0<R≤1

(
R−λ

∫
B(x,R)

|f |2
)1/2

< ∞,

where B(x, r) denotes the Euclidean ball of center x and radius r > 0. For 0 ≤ λ ≤
n+ 2, one defines the Campanato space L2,λ

1 (Rn;Cm) = L2,λ
1 ⊂ L2

loc by

‖f‖L2,λ
1

≡ sup
x∈Rn, 0<R≤1

(
R−λ

∫
B(x,R)

|f − (f)x,R|2
)1/2

< ∞.

The notation (u)x,R stands for the mean value of u over the ball B(x,R). The space

L2 ∩ L2,λ
i is equipped with the norm ‖f‖2 + ‖f‖L2,γ

i
. We also denote by L2,λ

i the

corresponding homogeneous spaces when dropping the constraint that R ≤ 1.

Here are a few facts for the appropriate ranges of λ.

(a) L2,λ1

i ⊂ L2,λ2

i if λ1 > λ2.

(b) L2 ∩ L2,λ
1 ≡ L2 ∩ L2,λ

0 if λ < n.

(c) L2 ∩ L2,λ
i ≡ L2 ∩ L2,λ

i .

(d) L2,λ
0 is preserved by multiplication by bounded functions.

In particular the higher the λ, the better the regularity in these scales. We have

the following lemma.

Lemma 13.6. — For M large enough (depending only on dimension) and 0 ≤ λ <

λ(L∗
‖) (≤ n), we have that R∗M

t maps L2 × L2 into L2,λ+2
1 × L2,λ

0 for all t �= 0.

Furthermore,

� the operator norm of
[
1 0
0 0

]
R∗M

t from L2 × L2 into L2,λ+2
1 is bounded by

C|t|−λ/2−1 and

� the operator norm of
[
0 0
0 1

]
R∗M

t from L2 × L2 into L2,λ
0 is bounded by C|t|−λ/2.

Assuming this lemma, we argue as follows to prove (100) and (101). First, the

De Giorgi condition and p‖ < p means that we can take λ = n − 2 + 2α for some

α > n( 1p − 1) in the previous lemma and the sought ε will be 2α − 2n( 1p − 1). Next,
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we prove (101) by dualizing against g ∈ L2 × L2, supported in 2k+1Q, with norm 1.

Then 〈
RM

t

[
f⊥
h

]
, g

〉
=

〈
f⊥,

[
1 0

0 0

]
R∗M

t g
〉
+

〈
h,

[
0 0

0 1

]
R∗M

t g
〉
.

For the first term, since f⊥ has mean value 0 on Q, we can subtract the mean value

on Q of

[
1 0

0 0

]
R∗M

t g then use Cauchy-Schwarz inequality and the L2,λ+2
1 estimate

which leads to a bound

‖f⊥‖2Ct−λ/2−1‖g‖2 ≤ Ct−λ/2−1.

For the second term, we merely use Cauchy-Schwarz inequality and the L2,λ
0 estimate

which leads to a bound

‖h‖2Ct−λ/2‖g‖2 ≤ Ct−λ/2−1

using that ‖h‖2 ≤ t−1. This proves (101).

To prove (100) we need to incorporate some decay in the bounds of the above

lemma. This is done using the standard exponential perturbation argument. Let ϕ

be a real-valued, Lipschitz function. We also assume ϕ bounded but do not use its

bound. Let

Rt,ϕ = exp(−ϕ/t)Rt exp(ϕ/t).

A simple computation shows that this operator has the same form and properties

as Rt with d unchanged and a, b, c modified by an additive O(‖∇ϕ‖∞) term. Also

since the higher order coefficient of exp(−ϕ/t)Lt exp(ϕ/t) is the same as the one of Lt,

we also have the De Giorgi condition on the adjoint of the higher order term. Thus,

we have the same bounds for RM
t,ϕ uniformly for ‖∇ϕ‖∞ ≤ δ for some δ > 0 depending

solely on L∞ and accretivity bounds, and on the De Giorgi condition of L∗
‖ . Having

fixed Q (the unit ball) and k ≥ 1, we choose

ϕ(x) = δ inf(d(x,Q), N)

for a fixed N ≥ 2k+1. Hence, ‖∇ϕ‖∞ ≤ δ and inf ϕ = δ(2k − 1) on 2k+1Q \ 2kQ.

Using the support condition of f⊥, h and the definition of ϕ, we obtain that

RM
t

[
f⊥
h

]
= RM

t

[
exp(ϕ/t)f⊥
exp(ϕ/t)h

]
= exp(ϕ/t)RM

t,ϕ

[
f⊥
h

]
.

Using the bounds forRM
t,ϕ, we obtain powers of t as above, multiplied by the supremum

on 2k+1Q\2kQ of exp(−ϕ/t), that is exp(−δ(2k−1)/t). This proves (100). The proof

of the theorem is complete modulo that of the last lemma.

For later use, we record the following estimate that comes from a modification of

the above arguments.
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Corollary 13.7. — Assume λ(L∗
‖) > n − 2 and let p‖ < p ≤ 1. If α is a (Hp

D, 1)-

atom associated to the ball Q, then for any other ball Q′, we have for large enough M

(depending only on dimension and λ(L∗
‖))

(102)

∫
Q′

|RM
t α|2 dx � e−δ

dist(Q′,Q)
t tn−

2n
p −ε

for all t > 0 and some δ > 0 and ε > 0.

13.3. Proof of lemma 13.6

First by scaling it suffices to assume t = 1. Since the Morrey and Campanato spaces

of the statement are the homogeneous ones, the powers of t follow automatically by a

rescaling argument (which yields operators with the same hypotheses). We thus drop

the index t in the notation. From fact (c), it suffices to work in the inhomogeneous

spaces. It follows from [5, theorem 3.10] (this is done for real equations but the proof

applies mutatis mutandi to complex systems with G̊arding inequality) that for λ ≥ 0

we have the boundedness properties

L∗−1 : L2 ∩ L2,λ
1 −→ L2 ∩ L2,λ′

1 , 0 ≤ λ′ ≤ λ+ 4, λ′ < λ(L∗
‖),

∇L∗−1 : L2 ∩ L2,λ
1 −→ L2 ∩ L2,λ′

1 , 0 ≤ λ′ ≤ λ+ 2, λ′ < λ(L∗
‖),

L∗−1 div : L2 ∩ L2,λ
1 −→ L2 ∩ L2,λ′

1 , 0 ≤ λ′ ≤ λ+ 2, λ′ < λ(L∗
‖),

∇L∗−1 div : L2 ∩ L2,λ
1 −→ L2 ∩ L2,λ′

1 , 0 ≤ λ′ ≤ λ, λ′ < λ(L∗
‖).

Note that U∗ is a combination of the first two lines, so there is a gain of 2 at most.

However for T ∗, we must use the fourth line so there is no gain. Since

R∗ =

[
L∗−1a∗ L∗−1

T ∗ U∗

]
,

starting from g(0) ∈ L2 × L2 and letting g(k+1) = R∗g(k) for k ≥ 0, we argue as

follows using facts (b) and (d). As g(0) ∈ (L2 ∩ L2,0
1 ) × (L2 ∩ L2,0

1 ), we see that

g(1) ∈ (L2 ∩ L2,2
1 )× (L2 ∩ L2,0

1 ). Next, we see g(2) ∈ (L2 ∩ L2,4
1 )× (L2 ∩ L2,2

1 ) unless

λ(L∗
‖) ≤ 2 in which case we stop and have obtained g(2) ∈ (L2 ∩L2,λ+2

1 )× (L2 ∩L2,λ
1 )

for all λ < λ(L∗
‖) (because of (a)). In the case λ(L∗

‖) > 2, we see that g(3) ∈
(L2 ∩ L2,6

1 ) × (L2 ∩ L2,4
1 ) unless λ(L∗

‖) ≤ 4 in which case we stop and have obtained

g(3) ∈ (L2 ∩ L2,λ+2
1 ) × (L2 ∩ L2,λ

1 ) for all λ < λ(L∗
‖). Since λ(L∗

‖) ≤ n, we must stop

in a finite number of steps.

13.4. Openness

We want to prove the analog statement to proposition 7.1, in the range found in

corollary 13.3, namely
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Proposition 13.8. — Fix p ∈ (p‖, p+(DB)). Then for any B′ with ‖B − B′‖∞
small enough (depending on p), Hp

DB′ = H
p
D with equivalence of norms. Furthermore,

for any b ∈ H∞(Sμ) with ωB < μ < π/2, we have

(103) ‖b(DB)− b(DB′)‖L(Hp
D) � ‖b‖∞‖B −B′‖∞.

The proof is the same as for proposition 7.1. Indeed, from [5], we know that the

De Giorgi condition is an open condition of the coefficients of L∗
‖ . Thus corollary 13.3

applies to any perturbation of the correspondingDB. ThenH∞(Sμ)-functions ofDB′

are bounded on Hp
D uniformly for ‖B−B′‖∞ small enough. Thus, the estimate (103)

holds directly for 1 < p by the theory of analytic functions valued in Banach spaces.

For p ≤ 1, it suffices to prove the atom to molecule estimate as in lemma 7.2. This is

the only point requiring a specific argument.

For some ε > 0 depending only on p and n, then for all (Hp
D, 1)-atoms α, with

associated cube Q and all j ≥ 0,

‖b(DB)α‖L2(Sj(Q)) � ‖b‖∞
(
2j� (Q)

)n
2 −n

p 2−jε

and moreover
∫
b(DB)α = 0.

To show this we argue as follows. For each integer M , there are constants cM±
such that

ψ(z) = cM±(iz)
M (1 + iz)−2M (iz)(1 + iz)−M

if z ∈ Sμ± satisfies
∫ ∞
0

ψ(tz) dt
t = 1 for all z ∈ Sμ. Thus we can resolve b(DB)

as
∫ ∞
0

(bψt)(DB) dt
t . As before, it is no loss of generality to assume that the ball

associated to α is the unit ball. For M large enough, for all t > 0 and arbitrary

integer N and j ≥ 2,

‖(itDB)(I + itDB)−Mα‖2L2(Sj(Q)) � 〈2j/t〉−N tn−
2n
p −ε.

This is also valid for Sj(Q) replaced by 4Q. This is the estimate (102). Next, the L2

off-diagonal estimates (19) apply to b(DB)(itDB)M (1 + itDB)−2M to give

‖1E b(DB)(itDB)M (I + itDB)−2M1Fu‖2 � ‖b‖∞〈dist(E,F )/t〉−M‖u‖2
for all t > 0, Borel sets E,F ⊂ Rn and u ∈ L2 with support in F . It is an easy

computation to obtain

‖(bψt)(DB)α‖L2(Sj(Q)) � 〈2j/t〉−M t
n
2 −n

p − ε′
2

for large enough M and 0 < ε′ < ε. With this in hand, one can estimate the t-

integral upon taking M large enough and get the desired bound for
∫
Sj(Q)

|b(DB)α|2

when j ≥ 2. The integral of
∫
4Q

|b(DB)α|2 is controlled as usual using the H∞-

calculus. We skip further details.
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14. APPLICATION TO PERTURBATION OF

SOLVABILITY FOR THE BOUNDARY VALUE

PROBLEMS

Here, we continue some developments started in [23]. Some words are necessary.

At the time [23] was written, theorems 1.1 and 1.2 of this memoir were known from

the present authors. Part of theorem 1.1 was reproved in [23] under some De Giorgi

conditions allowing a more direct argument bypassing Hardy space estimates (parts of

this proof was due to other authors as mentioned in the introduction) and theorem 1.2

was quoted in [23] as well as the development on boundary layers from [61]. While

writing the present article, we have improved the development on boundary layers as

presented in section 12.3.

In [23] the goal was to prove extrapolation of solvability results for boundary value

problems using a method “à la Calderón-Zygmund”. For example, it was shown that

the solvability of the regularity (resp. Neumann) problem in Lp, 1 < p ≤ 2, (1) with

energy solutions can be pushed down to obtain solvability in Lq with 1 < q < p and

also Hq with q0 < q ≤ 1 where q0 is derived from the De Giorgi-Nash conditions

used there, which involved interior and boundary regularity for the system (1) and

its adjoint. Also extrapolation for the Dirichlet problems and Neumann problems

in negative Sobolev spaces (going up the scale of exponents this time) was deduced

thanks to Regularity/Dirichlet and Neumann/Neumann duality principles (see [23]

for explanations).

It is not clear at this time what could be the similar results as in [23] in our

general framework. First, we do not use here interior regularity. Secondly, those

results require some kind of boundary regularity.

Instead, we can prove an extrapolation result “à la Šnĕıberg”, namely theorem 1.3,

which does not require any boundary regularity. Also we establish a stability result

in the coefficients.

14.1. Proof of theorem 1.3

We begin with the regularity problem.

For n
n+1 < q < ∞ and X = Hq, one can formulate two notions of solvability as

follows. First, (R)LX is solvable for the energy class if there exists CX < ∞ such that

for any f ∈ Hq
‖ ∩Ḣ−1/2

‖ the energy solution u of divA∇u = 0 on R1+n
+ with regularity

1. The limitation p ≤ 2 is inherent to the method used there but can be lifted to p < p+(DB)

once we have the needed boundedness .
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data ∇xu|t=0 = f satisfies

‖Ñ∗(∇Au)‖q ≤ CX‖f‖Hq
‖
.

We say that (R)LX is solvable if there exists a constant CX < ∞ such that for any

f ∈ Hq
‖ there exists a weak solution u of

divA∇u = 0

in R1+n
+ with regularity data ∇xu|t=0 = f (in the prescribed sense below) and

‖Ñ∗(∇Au)‖q ≤ CX‖f‖Hq
‖
.

This means that solvability is existence of a solution with prescribed boundary trace

and interior estimate.

Although one can formulate these problems for all q, they take meaningful sense

in the restricted range IL. We recall that IL is the interval in ( n
n+1 , p+(L)) on which

H
q
DB = H

q
D with equivalence of norms. For q in this range, the map

N‖ : H
q
DB −→ Hq

‖ , h �−→ h‖

is well-defined and bounded.

To prove theorem 1.3, the first lemma tells us that we can build solutions from our

semigroup approach. This is a feature of this method.

Lemma 14.1. — Assume q ∈ IL. Let S+
q (t) be the extension of the semigroup

e−t|DB|, t ≥ 0, to Hq,+
DB . Let h ∈ Hq,+

DB . Then, the function

(t, x) �−→ S+
q (t)h(x)

is the conormal gradient of a weak solution u (uniquely determined up to a constant) of

divA∇u = 0

on R1+n
+ with

‖Ñ∗(∇Au)‖q ≤ Cq‖h‖Hq .

Moreover, this solution is such that (∇Au)(t, .) converges to h in strong Hq topology

as t → 0.

Proof. — For q in this range, we know that Hq,+
DB is a closed subspace of Hq

DB = Hq
D

with Hq topology. When h belongs to the dense class Hq,+
DB , we know that

F = e−t|DB|h

satisfies the non-tangential maximal estimates. Passing to completion for h ∈ Hq,+
DB ,

we have

‖Ñ∗(S
+
q (t)h)‖q ≤ Cq‖h‖Hq ,

and in particular, S+
q (t)h(x) ∈ L2

loc. Also for h ∈ H
q,+
DB , we knew that F was an L2

loc

and a solution to

∂tF +DBF = 0
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in the weak sense, so it is preserved by taking limit in L2
loc. Thus there exists a weak

solution u (uniquely determined up to a constant) of

divA∇u = 0

on R1+n
+ such that ∇Au(t, x) = S+

q (t)h(x) in L2
loc sense. Finally, we have seen the

strong convergence of S+
q (t) on Hq,+

DB (this is easy from the one of the extended

semigroup Sq(t) on Hq
DB). So the strong limit as t → 0 is granted.

Lemma 14.2. — Let q ∈ IL and X = Hq. If (R)LX is solvable for the energy class

then N‖ : H
q,+
DB → Hq

‖ is an isomorphism. If N‖ is surjective onto Hq
‖ then (R)LX is

solvable with strong limit as t → 0 for ∇‖u(t, .) in Hq topology.

Admitting this lemma, we can finish the proof of theorem 1.3 by applying the result

of Šnĕıberg [84] in the Banach case and Kalton-Mitrea [69] in the quasi-Banach case.

Indeed, the spaces Hq,+
DB are complex interpolation spaces: we know this for Hq

DB and

the spectral spaces Hq,+
DB are the images of Hq

DB under the bounded extension of the

projection χ+(DB). Thus N‖ : H
p,+
DB → Hp

‖ is invertible for p in a neighborhood of q.

This implies that (R)LHp is solvable for p in this neighborhood, applying the second

part of the previous lemma.

Proof of lemma 14.2. — Let us prove the second statement first. By the open map-

ping theorem (see [69] for the quasi-Banach version of it), there exists a constant

C > 0 such that for all f ∈ Hq
‖ , one can find h ∈ Hq,+

DB , with

N‖h = f and ‖h‖Hq � C‖f‖Hq .

Applying lemma 14.1 with h yields a solution.

We now prove the first part. On the energy class, we know there is a Dirichlet to

Neumann map ΓDN : Ḣ−1/2
‖ → Ḣ−1/2

⊥ that is bounded and invertible by existence and

uniqueness of energy solutions with prescribed Dirichlet or Neumann data. See [20]

for a proof in this context. Also, we have

N‖ ◦ (ΓDN , I) = IḢ−1/2

‖
and (ΓDN , I) ◦N‖ = IḢ−1/2,+

DB

.

Here we use the same name for the map N‖ : Ḣ−1/2,+
DB → Ḣ−1/2

‖ . We know (R)LX is

solvable for the energy class if and only if there exists C > 0 such that

‖ΓDNf‖Hq � ‖f‖Hq

for all f ∈ Hq
‖ ∩Ḣ−1/2

‖ by [23], lemma 10.4. As Hq
‖ ∩Ḣ−1/2

‖ is dense in Hq
‖ , this means

that ΓDN extends to a bounded operator from Hq
‖ into Hq

⊥. As Hq,+
DB ∩ Ḣ−1/2,+

DB is

also dense in Hq,+
DB (see the argument below for convenience), this means that the

operator (ΓDN , I) extends to a bounded operator from Hq
‖ into Hq,+

DB . Extending the

above operator identities shows that this extension is the inverse of N‖ : H
q,+
DB → Hq

‖ .
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To conclude, we show that Hq,+
DB ∩ Ḣ−1/2,+

DB is dense in Hq,+
DB in the Hq

DB topology

as this topology is equivalent to the Hq topology. As

Hq,+
DB ∩ Ḣ−1/2,+

DB = χ+(DB)(Hq
DB ∩ Ḣ−1/2

DB ),

it suffices to show that Hq
DB ∩ Ḣ−1/2

DB is dense in H
q
DB (which is dense in Hq

DB). Let

h ∈ H
q
DB . Pick a Calderón reproducing formula

h =

∫ ∞

0

ψ(tDB)h
dt

t

which converges in H
q
DB by construction of these spaces for an appropriate ψ. Observe

that for fixed t > 0, ψ(tDB)h ∈ Ḣ0
DB and if ψ(z) = zψ̃(z), we have ψ(tDB)h ∈ Ḣ−1

DB .

Thus, ψ(tDB)h ∈ Ḣ−1/2
DB . This concludes the argument for the density.

Let us turn to the Neumann problem. We say that (N)LX is solvable for the energy

class if there exists CX < ∞ such that for any f ∈ Hq ∩ Ḣ−1/2 the energy solution u

of divA∇u = 0 on R1+n
+ with regularity data ∂νA

u|t=0 = f satisfies

‖Ñ∗(∇Au)‖q ≤ CX‖f‖Hq .

We say that (N)LX is solvable if there exists a constant CX < ∞ such that for any

f ∈ Hq there exists a weak solution u of divA∇u = 0 in R1+n
+ with regularity data

∂νA
u|t=0 = f (in the prescribed sense below) and

‖Ñ∗(∇Au)‖q ≤ CX‖f‖Hq .

This means that solvability is existence of a solution with prescribed boundary trace

and interior estimate.

The proof of theorem 1.3 for the Neumann problem on X = Hq is the same with

same range for q, changing N‖ to N⊥ where N⊥h = h⊥, and using the following lemma,

the proof of which is entirely analogous to the previous one with the Neumann to

Dirichlet map ΓND : Ḣ−1/2
⊥ → Ḣ−1/2

‖ replacing the Dirichlet to Neumann map ΓDN

(one being the inverse of the other).

Lemma 14.3. — If (N)LX is solvable for the energy class then N⊥ : Hq,+
DB → Hq

⊥ = Hq

is an isomorphism. If this map is surjective then (N)LX is solvable with strong limit

at t = 0 for ∂νA
u(t, .) in Hq topology.

Let us turn to the Dirichlet problem (formulated with square functions as in the

introduction). We argue in the dual range of the interval in ( n
n+1 , p+(L)) on which

H
q
DB = H

q
D with equivalence of norms. By the results in section 11.2, it is convenient

to introduce new spaces. For 1 < p < ∞, we let Ẇ−1,p
D be the image of Ẇ−1,p under

(the bounded extension of) P. Thanks to lemma 11.6, it can be identified to the image

of Rp(D) = Hp
D under D, which becomes an isomorphism. We now assume p = q′

with q as above. Thanks to proposition 11.7, H∞ functions of DB̃ act boundedly

on Ẇ−1,p
D . Also, by theorem 4.20 and corollary 4.21, we can see that D extends to
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an isomorphism from Hp
˜BD

onto Ẇ−1,p
D and the relation Db(B̃D) = b(DB̃)D valid on

an appropriate dense subspace of Hp
˜BD

for b ∈ H∞(Sμ) extends by density to Hp
˜BD

.

Thus we can define

Ẇ−1,p,±
D ˜B

= DHp,±
˜BD

= Dχ+(B̃D)Hp
˜BD

and a strongly continuous semigroup on Ẇ−1,p,±
D ˜B

, which extends (e−t|D ˜B|)t≥0. All

this is consistent as long as p = q′ because we work in the ambient space of Schwartz

distributions.

If q ≤ 1 and σ = n(nq − 1), we can define Λ̇α−1
D and Λ̇α−1,±

D ˜B
as images of Λα

˜BD

and Λ̇α,±
˜BD

under the extension of D, which is an isomorphism (this uses again theo-

rem 4.20 and corollary 4.21). Again, by similarity, the boundedness and regularity of

semigroups carry to this setting. So the semigroup extending e−t|D ˜B| by this construc-

tion is weakly-∗ continuous. The natural predual in the duality defined in section 12.2

is Ḣ1,q
BD which is defined via completion of the space H2

BD for the norm

‖t−1ψ(tBD)h‖T q
2

for appropriate ψ. This is routinely done as for the Hardy spaces we have developed

with much details and we skip those here. But, as q ∈ IL, this space identifies to Ḣ1,q
D

under the projection P. So the weak-∗ continuity is against any distribution in Ḣ1,q
D

or even in Ḣ1,q (because the D null distributions in Ḣ1,q are annihilated by Λ̇α−1
D

elements).

We mention, that in the range of p and α specified above (p = q′ or α = n( 1q − 1),

the scalar parts of Hp
˜BD

elements are in fact Lp functions. Similarly the scalar parts

of Λ̇α
BD elements are Λ̇α functions.

For Y = Lp or Λ̇α with 1 < p < ∞ or 0 ≥ α < 1, and T = T p
2 or T∞

2,α, one can

formulate two notions of solvability for the Dirichlet problem as follows. First, (D)L
∗

Y

is solvable for the energy class if there exists CY < ∞ such that for any f ∈ Y ∩ Ḣ1/2
⊥

the energy solution u of divA∗∇u = 0 on R1+n
+ with Dirichet data u|t=0 = f satisfies

‖t∇A∗u‖T ≤ CY ‖f‖Y ∼ CY ‖∇f‖Ẏ −1 .

We say that (D)L
∗

Y is solvable if for any f ∈ Y there exists a solution u of

divA∗∇u = 0 in R1+n
+ with regularity data u|t=0 = f (in the prescribed sense below)

and

‖t∇A∗u‖T ≤ CY ‖f‖Y ∼ CY ‖∇f‖Ẏ −1 .

This means that solvability is existence of a solution with prescribed boundary trace

and interior estimate.

Although one can formulate these problems for all p or α, they take meaning-

ful sense in the restricted dual range of IL. We recall that IL is the interval in

( n
n+1 , p+(L)) on which H

q
DB = H

q
D with equivalence of norms. For q in this range,

the map

N‖ : Ẏ
−1,+

D ˜B
−→ Ẏ −1

‖ , h �−→ h‖
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is well-defined and bounded. It is convenient to set Ẏ −1
‖ , the space of distributions of

the form ∇f in Ẏ −1.

To prove theorem 1.3 for the Dirichlet problem, the first lemma tells us that we

can build solutions from our semigroup approach.

Lemma 14.4. — Assume q ∈ IL. Let S̃+
Y −1(t) be the extension of the semigroup

e−t|D ˜B|, t ≥ 0, to Ẏ −1,+

D ˜B
described above. Let h ∈ Ẏ −1,+

D ˜B
. Then, the function

(t, x) �−→ S̃+
Y −1(t)h(x)

is the conormal gradient of a weak solution u (uniquely determined up to a constant) of

divA∗∇u = 0

on R1+n
+ with

‖t∇A∗u‖T ≤ CY ‖h‖Ẏ −1 .

Moreover this solution, is such that (∇A∗u)(t, .) converges to h at t → 0 in the strong

topology of Ẏ −1 if q > 1 and in the weak-∗ topology of Ẏ −1 if q ≤ 1. Moreover, in the

case q > 1 and p = q′,

t �−→ u(t, .) ∈ C0([0,∞);Lp(Rn;Cm)) + Cm.

If one normalizes the constant to be 0 (by either imposing u|t=0 ∈ Lp(Rn;Cm) or by

imposing that the solution converges to 0 at ∞ is some weak sense), then this solution

satisfies the layer potential representation as in corollary 12.8 taking the bounded

extensions of the layer potentials for L∗, SA∗

t from Ẇ−1,p(Rn;Cm) to Lp(Rn;Cm)

and DA∗

t on Lp(Rn;Cm) proved in theorem 12.6, 3)and 4). Finally, one has the non-

tangential maximal estimate ‖Ñ∗u‖p � ‖t∇u‖Tp
2

(again the constant is imposed to

be 0).

Proof. — The first part of the proof is again is consequence of the construction and

the estimates, once we see that (t, x) �→ S̃+
Y −1(t)h(x) is an L2

loc function on R1+n
+ .

We see this and skip other details. By construction it is a tempered distribution

on R1+n
+ . If q > 1, then the semigroup extends by density from H

2,+

D ˜B
∩ Ẇ−1,p,+

D ˜B
and

on such a dense space we have seen that (t, x) �→ tS̃+
Y −1(t)h(x) belongs to T p

2 . The

density argument yields convergence in T p
2 , thus in L2

loc. For q ≤ 1 and α = n( 1q − 1),

(t, x) �→ tS̃+
Y −1(t)h(x) is build as a weak-∗ limit in T∞

2,α, hence it also has the L2
loc

property.

Let us turn to the second part of the proof. By assumption, h‖ = ∇f for some

f ∈ Lp(Rn;Cm). Also h⊥ ∈ Ẇ−1,p(Rn;Cm). Then we have

∇A∗u(t, .) = ∇A∗SA∗

t h⊥ −∇A∗DA∗

t f,

where SA∗

t and DA∗

t are understood as the appropriate extensions. To see this,

we proceed exactly as in the proof of corollary 8.4 in [23], starting from the fact
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that ∇A∗u(t, .) is defined by the semigroup representation using the abstract defini-

tions of the layer potentials and density arguments. Once this is established, the rest

of the proof is similar to that of corollary 12.8 for the convergence issues. We skip

details. The non-tangential maximal estimate follows from a similar approximation

argument as for the proof of (80).

Then the result concerning the solvability of Dirichlet problems is the following

one.

Lemma 14.5. — Let q ∈ IL and Y be as above. If (D)L
∗

Y is solvable for the energy

class then

N‖ : Ẏ
−1,+

D ˜B
−→ Ẏ −1

‖

is an isomorphism. If N‖ is surjective onto Ẏ −1
‖ then (D)L

∗

Y is solvable with limit as

t → 0 for u(t, .) in Lp topology if q > 1 and p = q′ or with limit as t → 0 for u(t, .) in

Λ̇α weak-∗ topology if q ≤ 1 and α = n( 1q − 1).

Proof. — The first part of the proof proceeds as the one of lemma 14.2 with the

Dirichlet to Neumann map ΓDN : Ḣ−1/2
‖ → Ḣ−1/2

⊥ . We have that (D)L
∗

Y is solvable for

the energy class if and only if there exists C > 0 such that ‖ΓDNg‖Ẏ −1 � ‖g‖Ẏ −1
‖

for

all g ∈ Ẏ −1
‖ ∩ Ḣ−1/2

‖ . This is a reformulation of [23], corollary 11.3. Then similar

density arguments show that the extension of the map (ΓDN , I) is the desired inverse

of N‖. The second part is an application of the open mapping theorem again.

The proof of theorem 1.3 is now done as the one for the regularity problem.

We finish with the Neumann problem on negative Sobolev/Hölder spaces. Again

Ẏ −1 = Ẇ−1,p or Λ̇α−1. First, (N)L
∗

Y −1 is solvable for the energy class if there exists

CY < ∞ such that for any f ∈ Ẏ −1 ∩ Ḣ−1/2 the energy solution u of

divA∗∇u = 0

on R1+n
+ with Neumann data ∂νA∗u|t=0 = f satisfies

‖t∇A∗u‖T ≤ CY ‖f‖Ẏ −1 .

We say that (N)L
∗

Y −1 is solvable if for any f ∈ Ẏ −1 there exists a weak solution u

of divA∗∇u = 0 in R1+n
+ with Neumann data ∂νA∗u|t=0 = f (in the prescribed sense

below) and

‖t∇A∗u‖T ≤ CY ‖f‖Ẏ −1 .

This means that solvability is existence of a solution with prescribed boundary trace

and interior estimate.
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The proof of theorem 1.3 for the Neumann problem on a negative Sobolev/Hölder

space is the same as for the Dirichlet problem with same range for q: we know how

to construct solutions by lemma 14.4. Next, changing N‖ to

N⊥ : Ẏ −1,+

D ˜B
−→ Ẏ −1

⊥ = Ẏ −1, N⊥h = h⊥,

we use the following lemma, the proof of which is entirely analogous to the previous

one with the Neumann to Dirichlet ΓND : Ḣ−1/2
⊥ → Ḣ−1/2

‖ map replacing the Dirichlet

to Neumann map ΓDN (one being the inverse of the other).

Lemma 14.6. — Let q ∈ IL and Y be as above. If (N)L
∗

Y −1 is solvable for the energy

class then

N⊥ : Ẏ −1,+

D ˜B
−→ Ẏ −1

is an isomorphism. If N⊥ is surjective onto Ẏ −1 then (N)L
∗

Y −1 is solvable with limit

as t → 0 for ∂νA∗u(t, .) in strong topology of Ẇ−1,p if q > 1 and p = q′ or with limit

as t → 0 for ∂νA∗u(t, .) in weak-∗ topology on Λ̇α−1 if q ≤ 1 and α = n( 1q − 1).

Remark 14.7. — Concerning the Dirichlet problem under De Giorgi type condition

on L‖, this theorem covers the case of BMO data. In this case, this shows that if

the Dirichlet problem for L is solvable for the energy class with BMO data, then it

is solvable (may be not for the energy class) with Lp data for unspecified large p’s.

This result for real, non-necessarily t-independent equations, is in [44] and we extend

it here to more general systems when the coefficients are t-independent. In case of

real equations, solvability for the energy class is reached due to the harmonic measure

techniques used.

14.2. Stability in the coefficients

We now establish stability under perturbation of the coefficients in the t-

independent coefficients class. We do this for the regularity problem. For each of the

other 3 boundary value problems, there will be similar statement and proof which

we shall not include and leave to the reader. This can be compared to prior results

established in the literature for systems in the upper half-space with t-independent

coefficients (see [42, 37, 72, 69, 31, 55], etc) or bi-lipschitz diffeomorphic images

of this situation. The only point is that we do not know how to obtain solvability in

the energy class in the conclusion but only prove solvability.

Theorem 14.8. — Let IL be the interval (p−(DB))∗, p+(DB)) of theorem 5.1 or

(p‖, p+(DB)) of corollary 13.3 on which H
q
DB = H

q
D with equivalence of norms and

set X = Hq. If (R)LX is solvable for the energy class then (R)L
′

X is solvable where

L′ = − divA′∇ has t-independent coefficients with ‖A−A′‖∞ small enough depending

on X.
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Proof. — The assumption allows us to apply proposition 7.1 or proposition 13.8. In

both situations, if q ∈ IL we have,

‖χ+(DB′)− χ+(DB)‖L(Hq
D) ≤ C‖A−A′‖∞

for small enough ‖A − A′‖∞, where B = Â, B′ = Â′. As χ+(DB′) is a projector,

it implies that it is an isomorphism from Hq,+
DB onto Hq,+

DB′ with uniform bounds for

small enough ‖A − A′‖∞. Next, N‖χ
+(DB′) : Hq,+

DB → Hq
‖ is a perturbation of

N‖ = N‖χ
+(DB) : Hq,+

DB → Hq
‖ in operator norm. As solvability of (R)LX for the

energy class implies N‖ : Hq,+
DB → Hq

‖ is invertible by lemma 14.2, it follows that

N‖χ
+(DB′) : Hq,+

DB → Hq
‖ is invertible for small enough ‖A − A′‖∞. Combining

these two informations, we obtain that N‖ : Hq,+
DB′ → Hq

‖ is invertible uniformly for

‖A−A′‖∞ small enough. This implies solvability of (R)L
′

X by lemma 14.2.

Remark 14.9. — Although it seems natural to expect it, we are not able to remove

the assumption on IL at this time.
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INTRODUCTION

In this article, we are interested in Lp-Lq estimates for operators defined by the

functional calculus of certain first order differential operators of Dirac type. Let us

start with an example.

In one dimension, the operator (
Id−it

d

dx

)−1

,

where −i d
dx is defined as a self-adjoint operator in L2(R) and t ∈ R∗, is known to have

a kernel 1
2|t|e

− |x−y|
|t| , hence it is bounded from Lp(R) to Lq(R) for any 1 ≤ p ≤ q ≤ ∞.

In higher dimensions the operators

(Id+itD)−1,

where D =
(

0 div

−∇ 0

)
, are examples of bounded operators on Lp(Rn,CN ) but not

from Lp(Rn,CN ) to Lq(Rn,CN ) p, q ∈ (1,∞) with p < q. However, the operator

tD(Id+itD)−2

satisfies for all Borel sets E,F ⊂ Rn, all u ∈ Lp(Rn,CN ) and for certain values

K ∈ [0,∞) and q > p,

‖tD(Id+itD)−2χEu‖Lq(F ) � |t|nq −n
p

(
1 +

d(E,F )

|t|

)−K

‖u‖Lp(E),

where d(E,F ) := inf{|x− y|;x ∈ E, y ∈ F} is the distance between the sets E and F

and χE denotes the characteristic function of E.

Here, we want to explore this phenomenon for perturbed first order Dirac operators

DB and BD (see below for definitions). The off-diagonal estimates are important,

when one seeks to prove, for example,(∫
Rn

(∫ ∞

0

∫
B(x,t)

∣∣ tDB(Id+itDB)−2u(y)
∣∣2 dydt

tn+1

)p/2

dx
) 1

p � ‖u‖Lp
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for certain values of p, where B(x, t) ⊂ Rn denotes the ball of radius t and center x.

This was shown in Part I of the present memoir.

The notion of L2-L2 off-diagonal estimates arises from [43] and [51]. Such off-

diagonal estimates were proved and used for second order elliptic operators for the

solution of the Kato square root problem in [13] and used to compensate the lack

of pointwise kernel estimates. In [58] such L2-L2 off-diagonal estimates were used to

prove certain Lp bounds Riesz transform associated to second order elliptic opera-

tors. It was in [36] that the Lp-Lq version of those were used to prove Lp estimates in

absence of pointwise bounds. In [36], [6], [60], [59], [57] and [7], Lp-Lq off-diagonal

estimates for semigroup and resolvent of elliptic second order differential operators

were used to prove square root estimates, boundedness for square functions, certain

maximal functions, Riesz transforms, etc. Similar work was done in the context of

self-adjoint operators in [57], [19] and [38]. Another line of developments was a gener-

alized Calderón-Zygmund theory for operators which do not satisfy kernel estimates,

where one used off-diagonal estimates as replacement (cf. [36], [7], [17], [18], [34],

[49], [35], etc.). As consequence of the solution of the Kato square root problem,

interest arises also in square function estimates for first order Dirac operators. In

[29] and [10] vertical square function estimates were proved using L2-L2 off-diagonal

estimates for the resolvent. In [22] such off-diagonal estimates for the resolvent were

used to develop a Hardy space theory associated to Hodge-Dirac operators on man-

ifolds. In [63] and [65] Lp-Lp off-diagonal estimates for the resolvent of first order

Dirac operators were applied to prove an extrapolation theorem for R-bisectoriality

and to prove equivalence of R-bisectoriality and holomorphic functional calculus on

intervals of Lebesgue exponents. Ajiev [1] even introduced an Lp-Lq theory for first

order Dirac operators under certain restrictions, which we remove here.

Our plan is as follows.

In chapter 15, we introduce the basic notions.

In chapter 16, we discuss our main results.

In a first section, we give sufficient conditions for Lp-Lq off-diagonal estimates and

Lp-Lq boundedness for operators in the functional calculus of these perturbed first

order Dirac operators in terms of decay properties at 0 and ∞ for the associated

holomorphic functions. In particular, we give a relation between the decay properties

for the associated holomorphic functions and the number K above. These results

will be given in propositions 16.3 and 16.9 below. Corollary 16.11 gives a version for

bounded holomorphic functions, which have no decay at 0. These results are partially

contained in the work of [1] when the range of the perturbed first order Dirac operator

is stable under multiplication by smooth cut-off functions/cut-off functions.

In a second section, we discuss when this is the case. We give a condition in

proposition 16.19 that shows that for the operators D and DB, Ajiev’s results may
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not be always applicable, in particular not for D =
(

0 div

−∇ 0

)
as above, whereas

ours are.

In a third section, we give a necessary condition for Lp-Lq boundedness when

p < q, which highlights the connection of Lp-Lq boundedness to kernel/range decom-

positions. In particular, this condition shows that the operators

(Id+itD)−1, (Id+itDB)−1 and (Id+itBD)−1

are not Lp-Lq bounded for the particular D =
(

0 div

−∇ 0

)
and p < q. Also, this

condition shows that the semi-groups

e−t|D|, e−t|DB| and e−t|BD|,

where |.| =
√
(.)2, are not Lp-Lq bounded for this particular D.

The fourth section concerns analytic extensions of our results to complex times t.

Finally, we give an application of Lp-Lq boundedness to estimates for fractional op-

erators related to D, DB and BD in the fifth section.
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15.1. Definitions and notation

Let 1 < q < ∞, n,N ∈ N∗. By an unbounded operator on Lq := Lq(Rn,CN )

we mean a linear map T : Dq(T ) → Lq with domain Dq(T ) ⊂ Lq. We denote the

null space by Nq(T ) and the range by Rq(T ). We say that T admits a kernel/range

decomposition in Lq whenever

Lq = Nq(T )⊕Rq(T ),(104)

where the sum is topological and Rq(T ) is the closure of Rq(T ) in Lq. A class of

operators which admit a kernel/range decomposition are bisectorial operators. We say

that a linear operator T is bisectorial of type ω ∈ [0, π
2 ) if T is closed, the spectrum

of T is contained in a bisector

Sω := {λ ∈ C\{0} : | arg λ| ≤ ω or | arg(−λ)| ≤ ω} ∪ {0}

and for each ν ∈ (ω, π
2 ) there exists a constant Cν > 0 such that

‖(Id+λT )−1‖Lq→Lq ≤ Cν(105)

for all λ ∈ C\Sν . The bound (105) allows one to define a functional calculus. To

σ > 0, τ > 0 and ν ∈ (0, π
2 ) we define Ψτ

σ

(
Ṡν

)
to be the set of all holomorphic

functions ψ : Ṡν → C such that

|ψ(λ)| � |λ|σ
1 + |λ|σ+τ

(106)

for all λ ∈ Ṡν := {λ ∈ C\{0} : | arg λ| < ω or | arg(−λ)| < ω}. Moreover, we define

Ψ
(
Ṡν

)
:=

⋃
σ,τ>0

Ψτ
σ

(
Ṡν

)
and set ψ(0) = 0 when ψ ∈ Ψ

(
Ṡν

)
. Having these definitions in hand we can define

a functional calculus as follows. Let T be a bisectorial operator of type ω ∈ [0, π
2 )

on Lq, then for each ν ∈ (ω, π
2 ) the Dunford integral

ψ(T ) :=
1

2πi

∫
∂Sθ

ψ(λ)(Id−λ−1T )−1 dλ

λ
(107)

defined an improper Riemann integral converges normally in L(Lq) for all θ ∈ (ω, ν),

where ∂Sθ := {±te±iθ : t ∈ (0,∞)} is oriented counterclockwise on the four branches

surrounding Sω. We say that a bisectorial operator T of type ω has a bounded
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holomorphic functional calculus, if for each ν ∈ (ω, π
2 ) there exists a constant Cν > 0

such that for all ψ ∈ Ψ
(
Ṡν

)
and all u ∈ Lq holds

‖ψ(T )u‖Lq ≤ Cν‖ψ‖H∞(Ṡν)
‖u‖Lq .

Whenever this is the case the bounded holomorphic functional calculus may be ex-

tended to the class H∞(Ṡν) by a limiting procedure and to the class H∞(
Ṡν , {0}

)
using the kernel/range decomposition of T . Indeed in this case, for f ∈ H∞(

Ṡν , {0}
)

we define

f(T )u := f(0)uN + f |Ṡν
(T )uR(108)

where uN , uR denote the projections of u onto null space and closure of the range of T

according to (104). Here, H∞(Ṡν) is the set of all bounded holomorphic functions

f : Ṡν → C with norm

‖f‖H∞(Ṡν)
:= sup

z∈Ṡν

|f(z)|

and H∞(
Ṡν , {0}

)
is the set of all bounded functions f : Ṡν ∪ {0} → C with norm

‖f‖
H∞

(
Ṡν ,{0}

) := sup
z∈Ṡν∪{0}

|f(z)|

such that the restriction f |Ṡν
is holomorphic. For more details on kernel/range de-

compositions, bisectorial operators and functional calculus we refer the reader to [41],

[76], [53], [79] and the references therein.

We fix p, q with 1 < p ≤ q < ∞ in the sequel. In the following we are interested in

the following three boundedness properties for families of operators.

Definition 15.1 (Boundedness for families of operators). — Let A ⊂ C\{0} be a

subset of the complex plane and Up ⊂ Lp, Uq ⊂ Lq be closed subspaces. We say that

a family of operators {Tλ}λ∈A is Up-Uq bounded if for all λ ∈ A and all u ∈ Up holds

Tλu ∈ Uq and there exists a constant Cp,q > 0 such that for all λ ∈ A and all u ∈ Up

holds

‖Tλu‖Lq ≤ Cp,q|λ|
n
q −n

p ‖u‖Lp .

Definition 15.2 (Off-diagonal estimates for families of operators)

Let A ⊂ C\{0} be a subset of the complex plane. We say that a family of operators

{Tλ}λ∈A satisfies Lp-Lq off-diagonal estimates of order K ∈ [0,∞) if there exists a

constant CK,p,q > 0 such that for all Borel sets E,F ⊂ Rn, all λ ∈ A and all u ∈ Lp

holds

‖χETλ(χFu)‖Lq ≤ CK,p,q|λ|
n
q −n

p (1 +
d(E,F )

|λ| )−K‖χFu‖Lp ,

where d(E,F ) := infx∈E,y∈F |x− y|Rn denotes the distance between E and F and χE

denote the characteristic functions of a set E.
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Definition 15.3 (Biparameter off-diagonal estimates for families of operators)

Let A,B ⊂ C\{0} be two subsets of the complex plane. We say that a family

of operators {Tλ1,λ2
}(λ1,λ2)∈A×B satisfies Lp-Lq biparameter off-diagonal estimates in

(λ1, λ2) of order K ∈ [0,∞) if there exists a constant CK,p,q > 0 such that for all

Borel sets E,F ⊂ Rn, all (λ1, λ2) ∈ A× B and all u ∈ Lp holds

‖χETλ1,λ2
(χFu)‖Lq ≤ CK,p,q|λ1|

n
q −n

p

(
1 +

d(E,F )

|λ2|

)−K

‖χFu‖Lp .

15.2. First order Dirac operators

We are interested in families of operators defined by the bounded holomorphic

functional calculus of the following special class of bisectorial operators.

Assumption 15.4. — Let n,N ∈ N∗. Let D be a first order differential operator

on Rn acting on functions valued in CN that satisfies the conditions (D0), (D1) and

(D2) in [63]. These are:

1) D has the representation

D = −i

n∑
j=1

D̂j∂j

with matrices D̂j ∈ L(CN ),

2) There exists κ > 0 such that the symbol

D̂(ξ) =
n∑

j=1

D̂jξj

satisfies κ|ξ‖e| ≤ |D̂(ξ)e| for all ξ ∈ Rn and all e ∈ R(D̂(ξ)),

3) There exists ωD ∈ [0, π
2 ) such that the spectrum of the symbol satisfies

σ(D̂(ξ)) ⊂ SωD
.

Further, let B be the operator defined via pointwise multiplication by the matrix func-

tion B(x), x ∈ Rn, with B ∈ L∞(Rn,L(CN )). We assume additionally one of the

following equivalent conditions:

4) Assume B satisfies the coercivity condition ‖Bu‖L2 � ‖u‖L2 for all u ∈ R2(D)

and there exists ω ∈ [0, π
2 ) such that BD is bisectorial of type ω on L2,

5) Assume B∗ satisfies the coercivity condition ‖B∗u∗‖L2 � ‖u∗‖L2 for all u∗ ∈
R2(D∗) and there exists ω ∈ [0, π

2 ) such that DB is bisectorial of type ω on L2.

In the sequel, we shall systematically assume without mention that Assumption 15.4

holds in all statements involving DB or BD.

Example 15.5. — The operatorsD and B appearing in the works [11] and [8] satisfy

Assumption 15.4. Further examples are in [65] and [63].

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2016



138 15. SETTING

Here, we do not assume that D is self-adjoint or that B satisfies a strict accretivity

condition. The equivalence of the conditions 4) and 5) was proven in [27]. The first

consequence of Assumption 15.4 is the following proposition due to [65].

Proposition 15.6. — Let 1 < q < ∞.

1) D is a bisectorial operator of type ωD with bounded holomorphic functional

calculus in Lq.

2) Lq = Nq(D) ⊕ Rq(D), i.e. D admits a kernel/range decomposition on

Lq(Rn,CN ),

3) Nq(D) and Rq(D), 1 < q < ∞, are complex interpolation families.

4) D satisfies the coercivity condition

‖∇u‖Lq(Rn,Cn⊗CN ) � ‖Du‖Lq(Rn,CN ) for all u ∈ Dq(D) ∩Rq(D) ⊂ W 1,q.

Here, we use the notation ∇u for ∇⊗ u and ‖u‖W 1,q = ‖u‖Lq + ‖∇u‖Lq .

5) The same properties hold for the adjoint D∗.

By [63] and [27, proposition 2.1], it follows that the operators BD and DB

have a meaning as unbounded operators in Lq with natural domains Dq(D) and

B−1Dq(D), the preimage of Dq(D) under B. Moreover, assumption 15.4 implies

the existence of an open interval I2 ⊂ (1,∞) containing 2 such that for all q ∈ I2
holds ‖Bu‖Lq ≥ C‖u‖Lq whenever u ∈ Rq(D) and ‖B∗u∗‖Lq′ ≥ C‖u∗‖Lq′ when-

ever u∗ ∈ Rq′(D∗). This was shown in [27] and [63] and used to extrapolate R-

bisectoriality. As L2-bisectoriality self-improves to L2-R-bisectoriality (1) we get from

the works [27, theorem 5.1], [65, lemma 2.4, theorem 2.5], [65, corollary 8.17] and

[70, theorem 5.3] (to recall the main ingredients) the following theorem.

Theorem 15.7. — There exists an open interval ID,B = (p−(D,B), p+(D,B)) con-

taining 2 and maximal in I2 such that the following properties for T ∈ {BD,DB}
and q ∈ ID,B hold:

1) T admits a kernel/range decomposition on Lq(Rn,CN ),

2) T is a bisectorial operator of type ω on Lq(Rn,CN ),

3) T has a bounded holomorphic functional calculus on Lq(Rn,CN ),

4) for each ν ∈ (ω, π
2 ) the family {(Id+λT )−1}λ∈C\Sν

satisfies Lq−Lq off-diagonal

estimates of order K for all K ∈ [0,∞).

Moreover, all the properties 1), 2), 3) and 4) fail whenever q = p±(D,B) ∈ I2.

For a more complete and more general version of this theorem we refer the reader

to [86]. Finally let us make a few remarks in relation to theorem 15.7.

1. We do not introduce this notion here, as it is not of further interest.
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Remark 15.8. — For T ∈ {BD,DB} and q ∈ ID,B let Tq be the Lq-realization.

Then

1) (BD)q = BD with domain Dq(BD) = Dq(D).

2) (DB)q = DB with domain Dq(DB) = B−1Dq(D).

3) Tp = Tq on Dp(T ) ∩Dq(T ).

4) f(Tp) = f(Tq) on Lp ∩ Lq for f ∈ H∞(
Ṡν , {0}

)
.

5) P
Rp(T )

= P
Rq(T )

and PNp(T ) = PNq(T ) on Lp ∩ Lq, where P
Rp(T )

denotes the

projection onto Rp(T ) along Np(T ) and PNp(T ) denotes the projection onto

Np(T ) along Rp(T ).

Proposition 15.9. — For q ∈ ID,B,

P
Rq(D)

: Rq(BD) −→ Rq(D)

is an isomorphism with inverse P
Rq(BD)

: Rq(D) → Rq(BD).

Proof. — Let h ∈ Rq(BD). Then h − P
Rq(D)

h ∈ Nq(BD) = Nq(D) according

to (104) for D and [27, proposition 2.1 (3)]. Thus P
Rq(BD)

(
h − P

Rq(D)
h
)
= 0 and

we see that P
Rq(BD)

: Rq(D) → Rq(BD) is the left inverse of P
Rq(D)

: Rq(BD) →
Rq(D). Reversing the roles of D and BD shows that P

Rq(BD)
: Rq(D) → Rq(BD)

is the right inverse of P
Rq(D)

: Rq(BD) → Rq(D).

Remark 15.10 (Similarity Property). — For q ∈ ID,B we know that

B : Rq(D) −→ Rq(BD)

is an isomorphism by [27, proposition 2.1, (2)]. In particular, for f ∈ H∞(Ṡν) we

have f(DB) = B−1f(BD)B on Rq(D) and f(BD) = Bf(DB)B−1 on Rq(BD).

Remark 15.11 (The interval for the adjoint operators). — Let A′ := {q/(q−1)|q ∈
A} for a subset A ⊂ (1,∞). By theorem 15.7 and [27, corollary 2.6] we have

(ID,B)
′ = ID∗,B∗ .

Remark 15.12 (The interval for B = Id). — Assumption 15.4 and proposition 15.6

imply ID,Id = (1,∞) and ID,B ⊂ ID,Id. Thus, whenever we are allowed to use

the conclusion of theorem 15.7 for T ∈ {DB,BD}, we are also allowed to use the

conclusion of theorem 15.7 for D.

Under assumption 15.4 we are allowed to use kernel/range decompositions and it

will be helpful in the sequel to have some properties for the range and the null space.

These observations were made in [63].

Lemma 15.13. — [63, Section 3.3] For p, q ∈ ID,B and T ∈ {BD,DB} the following

statements are true:
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1) We have with respect to Lp-topology the direct sum decomposition

Lp ∩ Lq = [Np(T ) ∩Nq(T )]⊕ [Rp(T ) ∩Rq(T )]

2) Np(T ) ∩Nq(T ) is dense in Np(T ) with respect to Lp-topology.

3) Rp(T ) ∩Rq(T ) is dense in Rp(T ) with respect to Lp-topology.

4) Np(T ) ∩ Lq ⊂ Nq(T ). Hence Np(T ) ∩Rq(T ) = {0}.
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16.1. Lp-Lq estimates in terms of decay properties of holomorphic func-

tions

There are connections of the bounded holomorphic functional calculus on Lq and

Lq−Lq off-diagonal estimates as described in the next lemma, which comes essentially

from [22, lemma 3.6]. Compare also [66, lemma 7.3] and [60, lemma 2.28]. Before,

let us define for f ∈ H∞(
Ṡν , {0}

)
the function ft ∈ H∞(

Ṡν , {0}
)
by

ft(λ) := f(tλ), λ ∈ Ṡν ∪ {0}.

So, one can define families of bounded operators {ft(T )}t>0 via the family of functions

{ft}t>0.

Proposition 16.1 (Lq-Lq off-diagonal estimates). — Let T ∈ {DB,BD}. Denote by

ω = ωDB = ωBD

the type of bisectoriality and let ν ∈ (ω, π
2 ). Let σ > 0 and τ > 0 be positive real num-

bers and q ∈ ID,B = (p−(D,B), p+(D,B)). Suppose ψ ∈ Ψτ
σ

(
Ṡν

)
and g ∈ H∞(Ṡν).

Then the family of operators {g(T )ψt(T )}t>0 satisfies Lq-Lq off-diagonal estimates of

order σ.

This is interesting in view of the following example.

Example 16.2 (Off-diagonal estimates and the semigroup)

Here, let us denote

sgnz := sgn(Re z), z̃ := sgn(z)z, z ∈ Ṡν , |T | := sgn(T )T.

1) Let T ∈ {DB,BD}. Denote by ω = ωDB = ωBD the type of bisectoriality and

let ν ∈ (ω, π
2 ). Then the decomposition

e−t|T | =
(
e−t|T | − (Id+itT )−1

)
+ (Id+itT )−1

shows that the semigroup {e−t|T |}t>0 satisfies Lq-Lq off-diagonal estimates of

any order K ∈ [0, 1] as the function

ψ(z) := e−|z| − (1 + iz)−1, z ∈ Ṡν ,

satisfies ψ ∈ Ψ1
1

(
Ṡν

)
.
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2) The example n = N = 1 and D = −i d
dx shows that we can not gain more in

general. The kernel of the semigroup {e−t|−i d
dx |} is the Poisson kernel

pt(x) :=
1

π

t

|x|2 + t2
.

Thus the semigroup does not satisfy L2 − L2 off-diagonal estimates of order

K > 1 in general.

For certain operators in the functional calculus of DB (or BD resp.) we obtain

even Lp-Lq off-diagonal estimates and Lp-Lq boundedness. More precisely we have

Proposition 16.3 (Lp-Lq off-diagonal estimates). — Let T ∈ {DB,BD}. Denote

by

ω = ωDB = ωBD

the type of bisectoriality and let ν ∈ (ω, π
2 ). Suppose p, q ∈ ID,B such that p < q

and τ > n
p − n

q . Then there exists c := cp,q > 0 such that for all 0 ≤ K < σ
c one has:

For all ψ ∈ Ψτ
σ

(
Ṡν

)
and all g ∈ H∞(Ṡν) the family {g(T )ψt(T )}t>0 satisfies Lp-Lq

off-diagonal estimates of order K. Moreover, one can choose

cp,q =
(
1−

(1
p
− 1

q

)( 1

p−(D,B)
− 1

p+(D,B)

)−1)−1

.(109)

Proof. — First we prove the following claim for Lp-Lq-boundedness, which is a special

case of the lemma taking E = F = Rn and K = 0.

Claim 16.4. — Suppose p, q ∈ ID,B such that p < q. Let ψ ∈ Ψτ
σ

(
Ṡν

)
, where σ > 0

and τ > n
p −

n
q , and g ∈ H∞(Ṡν). Then the family {g(T )ψt(T )}t>0 is Lp-Lq-bounded.

The proof of claim 16.4 is organized in several steps. The first step is

Claim 16.5. — Suppose q ∈ ID,B and p ∈ [q∗, q] ∩ ID,B, where the lower Sobolev

exponent is defined by q∗ = qn
q+n . Then for all λ ∈ C\Sν , the operator (Id+λDB)−1

is bounded from Rp(D) to Rq(D) with

‖(Id+λDB)−1u‖Lq � |λ|nq −n
p ‖u‖Lp .

Proof of claim 16.5. — We first consider estimates for the resolvent of BD and use

the similarity property to pass to DB later on. As

(Id+iBD)−1 : Rp(BD) −→ Rp(BD),

(Id+iBD)−1 : Rp(BD) −→ Dp(BD)

we deduce

P
Rp(D)

(Id+iBD)−1 : Rp(D) → Rp(D) ∩Dp(D) ⊂ W 1,p.
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Thus, by Sobolev embedding theorem, we obtain P
Rp(D)

(Id+iBD)−1u ∈ Lq for all

u ∈ Rp(BD) with

‖P
Rp(D)

(Id+iBD)−1‖Lq ≤ C‖u‖Lp .

Now if, moreover, u ∈ Rq(BD) then (Id+iBD)−1u ∈ Rq(BD). By the variant

of remark 15.8 for D we have P
Rp(D)

= P
Rq(D)

on Lp ∩ Lq. From that we deduce

P
Rp(D)

(Id+iBD)−1u = P
Rq(D)

(Id+iBD)−1u ∈ Rp(D) ∩Rq(D)

for all u ∈ Rp(BD) ∩Rq(BD). Since P
Rq(D)

: Rq(BD) → Rq(D) is an isomorphism

by proposition 15.9, we get

‖(Id+iBD)−1u‖Lq � ‖P
Rq(D)

(Id+iBD)−1u‖Lq � ‖u‖Lp

for all u ∈ Rp(D) ∩Rq(D). By remark 15.10 we know that B : Rp(D) → Rp(BD)

and B : Rq(D) → Rq(BD) are isomorphisms. Thus the similarity property in re-

mark 15.10 yields

‖(Id+iDB)−1u‖Lq � ‖u‖Lp

for all u ∈ Rp(D) ∩ Rq(D). Now, we use a rescaling argument and note that for

λ ∈ C\Sν , Bλ defined by multiplication of Bλ(x) := −iei arg λB(|λ|x) has the same

properties as B with uniform bounds in arg λ. Let

uλ(x) := u(|λ|x).
Then we have as above

‖(Id+iDBλ)
−1uλ‖Lq � ‖uλ‖Lp

and substitution |λ|x �→ x yields the estimate

‖(Id+λDB)−1u‖Lq � |λ|nq −n
p ‖u‖Lp .

for all u ∈ Rp(D) ∩Rq(D). By density, the operator (Id+λDB)−1 has the desired

extension to Rp(D).

The second step is:

Claim 16.6. — Suppose q ∈ ID,B and p ∈ [q∗, q] ∩ ID,B. Let ψ ∈ Ψτ
σ

(
Ṡν

)
, where

σ > 0 and τ > n
p − n

q , and g ∈ H∞(Ṡν). Then we have

‖g(DB)ψt(DB)u‖Lq � t
n
q −n

p ‖u‖Lp

for all t > 0 and all u ∈ Lp ∩ Lq (By density even for all u ∈ Lp.)

Proof of claim 16.6. — If u ∈ Rp(D) ∩Rq(D) we have for each θ ∈ (ω, ν)

‖g(DB)ψt(DB)u‖Lq �
∫
∂Sθ

|g(λ)‖ψ(tλ)‖|(Id−λ−1DB)−1u‖Lq |dλ
λ
|(110)

� t
n
q −n

p

∫
∂Sθ

|ψ(tλ)‖tλ|np −n
q |dλ

λ
|‖u‖Lp � t

n
q −n

p ‖u‖Lp
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by claim 16.5, (107) and the decay properties of ψ. For u ∈ Lp∩Lq we can use the the

decomposition in lemma 15.13, 1), associated to the operator DB and ψt(DB)ũ = 0

for all ũ ∈ Np(DB) ∩Nq(DB).

The third step is the proof of claim 16.4 in the case T = DB.

Let us denote q0 := q and ql := (ql−1)∗ for l ∈ N∗ and k := inf{l ∈ N∗ : ql ≤ p}.
Further, we set

δ :=
1

k + 1

(
τ −

(n
p
− n

q

))
,

ml := 1 + δ =
n

ql
− n

ql−1
+ δ for 1 ≤ l < k,

mk :=
n

p
− n

qk−1
+ δ =

n

p
− n

qk−1
+ δ.

Then we factorize

ψ(z) =
( k∏

l=1

(1 + z̃

1 + z̃
)ml

)
·
(1 + z̃

z̃

) kσ
k+1 ·

( z̃

1 + z̃

) kσ
k+1 · ψ(z) =: ζ(z)

k∏
l=1

ξl(z)

where z̃ := sgn(z)z and

ζ(z) :=
( k∏

l=1

(1 + z̃)ml

)(1 + z̃

z̃

) kσ
k+1

ψ(z), ξl(z) :=
( z̃

1 + z̃

) σ
k+1

( 1

1 + z̃

)ml

.

We observe that each ξl satisfies the conditions of claim 16.6: ξl ∈ Ψτl
σl

(
Ṡν

)
where

σl > 0, τl >
n
ql
− n

ql−1
, σk > 0, τk > n

p − n
qk−1

and ζ ∈ Ψ
(
Ṡν

)
. Hence, we have

ξlt(DB) : Lql−1 −→ Lql ,(111)

ξkt (DB) : Lqk−1 −→ Lp,(112)

ζt(DB) : Lp −→ Lp.(113)

Now, claim 16.4 in the case T = DB follows by iteration of claim 16.6.

The fourth step is to deduce claim 16.4 in the case T = BD.

From the case T = DB just proved, the similarity property

g(BD)ψt(BD) = Bg(DB)ψt(DB)B−1

on Rq(BD) and Rp(BD), the boundedness and coercivity of B on Rq(D) and Rp(D)

we get

‖g(BD)ψt(BD)u‖Lq � t
n
q −n

p ‖B−1u‖Lp � t
n
q −n

p ‖u‖Lp

for all u ∈ Rq(BD) ∩ Rp(BD). In the general case u ∈ Lq ∩ Lp we can use the

decomposition in lemma 15.13, 1) associated to the operator BD and ψt(BD)ũ = 0

for all ũ ∈ Np(BD) ∩Nq(BD). By density we conclude the assertion

‖g(BD)ψt(BD)u‖Lq � t
n
q −n

p ‖u‖Lp

for all u ∈ Lp. So, claim 16.4 is completely proved.
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Now, we turn to the conclusion of proposition 16.3 using claim 16.4.

First by normalizing, we may assume ‖ψ‖H∞(Ṡν)
= ‖g‖H∞(Ṡν)

= 1. We combine

Lr-Lr off-diagonal estimates and Lp0 -Lq0 boundedness to conclude Lp-Lq off-diagonal

estimates by interpolation, where p, q, r, p0, q0 ∈ ID,B . Since we use Lp0 -Lq0 bound-

edness we have to make sure that the family of holomorphic functions has enough

decay at infinity to use Lp0 -Lq0 boundedness. So, we define

ζαt (z) := g(z)(1 + tz̃)αψt(z),

where we recall z̃ = sgn(Re z)z for z ∈ Ṡν and α ∈ C such that Reα < τ and

observe that for fixed t > 0 the operator g(T )ψt(T ) is embedded in the analytic

family {ζαt (T )}α. Polar coordinates and arg(1 + tz̃) ∈ (−ν, ν) yields

sup
z∈Ṡν

|(1 + tz̃)α| ≤ eν| Imα||tz|Reα.

Using polar coordinates we can calculate that

|ζαt (z)| � eν| Imα| inf{|tz|σ, |tz|Reα−τ}
and consequently the symbol satisfies ‖ζαt ‖H∞(Ṡν)

� 1. Thus we can deduce from

proposition 16.1

‖χF ζ
α
t (T )(χEu)‖Lr � eν| Imα|

(
1 +

d(E,F )

t

)−σ

‖χEu‖Lr

for all r ∈ ID,B and all α ∈ C such that τ − Reα >
(
n
p − n

q

)
− Reα > 0. Now, let

p0, q0 ∈ ID,B . We have for all τ − Reα >
(
n
p − n

q

)
− Reα >

(
n
p0

− n
q0

)
‖χF ζ

α
t (T )(χEu)‖Lq0 � eν| Imα|t

n
q0

− n
p0 ‖χEu‖Lp0 .

by claim 16.4. Next, we will use Stein’s interpolation theorem for the analytic family

of operators {ζαt (T )}α with

1

p
=

1− θ

r
+

θ

p0

1

q
=

1− θ

r
+

θ

q0
.(114)

and θ :=
(
n
p − n

q − Reα
)(

n
p0

− n
q0

)−1
at Reα = 0. This yields

‖χF ζ
α
t (T )(χEu)‖Lq � MImαt

c1

(
n
q0

− n
p0

)(
1 +

d(E,F )

t

)−c0σ

‖χEu‖Lp

when Reα = 0. The constants c0, c1 are related to the formula in [52, theorem 1.3.7].

Choosing α = 0 yields

‖χF g(T )ψt(T )(χEu)‖Lq � tc1(
n
q0

− n
p0

)
(
1 +

d(E,F )

t

)−c0σ

‖χEu‖Lp(115)

By [52, theorem 1.3.7, exercise 1.3.8] we know that

c0 = 1− θ = 1−
(1
p
− 1

q

)( 1

p0
− 1

q0

)−1

,

c1 = θ =
(1
p
− 1

q

)( 1

p0
− 1

q0

)−1

.
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Thus, (115) reads

‖χF g(T )ψt(T )(χEu)‖Lq � t
n
q −n

p

(
1 +

d(E,F )

t

)−(1−θ)σ

‖χEu‖Lp .(116)

Since p, q are fixed in the relation and r is choosen depending on p0, q0, the pa-

rameter θ = θ(p0, q0) is determined by p0, q0. In order to minimize the factor(
1 + d(E,F )

t

)−σ(1−θ)
in (116), we minimize θ using (114). Indeed, we get by (114)

the relation

θ = θ(p0, q0) :=
(1
p
− 1

q

)( 1

p0
− 1

q0

)−1

and observe that

inf{θ(p0, q0)|p0, q0 ∈ ID,B} =
(1
p
− 1

q

)( 1

p−(D,B)
− 1

p+(D,B)

)−1

.

As we are allowed to choose p−(D,B) < p0 < q0 < p+(D,B) arbritrary in (114) we

get the estimate∥∥χF g(T )ψt(T )(χEu)
∥∥
Lq � t

n
q −n

p

(
1 +

d(E,F )

t

)−K

‖χEu‖Lp .

for each K ∈ [0,∞) such that σ > Kcp,q, where

cp,q :=
(
1−

(1
p
− 1

q

)( 1

p−(D,B)
− 1

p+(D,B)

)−1)−1

.

The next example shows that there are families of operators with finite σ in the

functional calculus, which satisfy off-diagonal estimates of each order K ∈ [0,∞),

showing that the condition σ > cK is sufficient but not necessary.

Example 16.7 (Lp-Lq off-diagonal estimates of arbritrary order)

Let T ∈ {BD,DB} and α,M ∈ N∗ with 0 < α ≤ M . Then the family{
(itT )α(Id+itT )−M

}
t>0

satisfies Lp-Lq off-diagonal estimates of order K for each K ∈ [0,∞) whenever p, q ∈
ID,B with p < q such that M − α > n

p − n
q .

Remark 16.8. — We do not know if the condition τ > n
p − n

q is necessary in propo-

sition 16.3.

Sometimes, it is appropriate to have the following variant of proposition 16.3 as

used in Part I (see proposition 3.13).

Proposition 16.9 (Lp-Lq biparameter off-diagonal estimates)

Let T ∈ {DB,BD}. Denote by

ω := ωDB = ωBD
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the type of bisectoriality and let ν ∈ (ω, π
2 ). Suppose p, q ∈ ID,B such that p < q and

let σ > 0, τ > n
p − n

q . Then there exists c := cp,q > 0 such that for 0 ≤ K < M
c one

has: Suppose that ψ ∈ Ψτ
σ

(
Ṡν

)
and ϕ ∈ H∞(Ṡν) are functions such that ϕ satisfies

|ϕ(λ)| � inf{|λ|M , 1}

for all λ ∈ Ṡν . Then the family {ψt(T )ϕr(T )}t≥r>0 satisfies Lp-Lq biparameter off-

diagonal estimates in (t, r) of order K. Moreover, one can choose

cp,q =
(
1−

(1
p
− 1

q

)( 1

p−(D,B)
− 1

p+(D,B)

)−1)−1

.(117)

Proof. — The conclusion of proposition 16.9 follows by analytic interpolation as in

proposition 16.3: in fact, we use interpolation between claim 16.4 (that is, proposi-

tion 16.3 in the case K = 0) and the next claim.

Claim 16.10. — With the assumption above and p = q the family {ψt(T )ϕr(T )}t≥r>0

satisfies Lq-Lq biparameter off-diagonal estimates in (t, r) of order M .

Proof of claim 16.10. — W.l.o.g. assume ‖ψ‖H∞(Ṡν)
≤ 1. Let u ∈ Lq with

suppu ⊂ E. We have for each θ ∈ (ω, ν)

‖ψt(T )ϕr(T )u‖Lq(F ) �
∫
∂Sθ

∣∣ϕ(rλ)| · |ψ(tλ)∣∣ · ‖(Id−λ−1T )−1u‖Lq(F )

∣∣∣dλ
λ

∣∣∣
�

∫
∂Sθ

|ϕ(λ)| ·
∣∣∣ψ( tλ

r

)∣∣∣(1 + d(E,F )

r
|λ|

)−K∣∣∣dλ
λ

∣∣∣ · ‖u‖Lq(E),

�
(
1 +

d(E,F )

r

)−M

‖u‖Lq(E)(118)

where K ∈ [0,∞) will be chosen below. For the proof of (118) we consider two cases.

On the one hand, if d(E,F )
r ≤ 1 we have∫

∂Sθ

|ϕ(λ)| ·
∣∣∣ψ( tλ

r

)∣∣∣(1 + d(E,F )

r
|λ|

)−K∣∣∣dλ
λ

∣∣∣ ≤ ∫
∂Sθ

|ϕ(λ)| · inf{1, |λ|−τ}
∣∣∣dλ
λ

∣∣∣ � 1.

In fact, the last estimate follows by splitting the contour integral at |λ| = 1 and using

that ∣∣∣ψ( tλ
r

)∣∣∣ �
⎧⎨⎩‖ψ‖H∞(Ṡν)

≤ 1, if |λ| ≤ 1,

| tλr |−τ ≤ |λ|−τ , if |λ| ≥ 1.

On the other hand if x := d(E,F )
r ≥ 1, we split∫

∂Sθ

|ϕ(λ)| ·
∣∣∣ψ( tλ

r

)∣∣∣(1 + d(E,F )

r
|λ|

)−K∣∣∣dλ
λ

∣∣∣
into three parts according to |λ| ≤ 1

x ,
1
x ≤ |λ| ≤ 1 and |λ| ≥ 1. From this the estimate∫

∂Sθ

|ϕ(λ)| ·
∣∣∣ψ( tλ

r

)∣∣∣(1 + d(E,F )

r
|λ|

)−K∣∣∣dλ
λ

∣∣∣ � (d(E,F )

r

)−M

(119)
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easily follows, required we choose K > M . In fact, for the first part we use the

inequality (1 + d(E,F )
r |λ|)−K ≤ 1 and for the second and third part we estimate(

1 +
d(E,F )

r
|λ|

)−K

≤
(d(E,F )

r

)−K

|λ|−K

for the same choice of K > M and evaluate the three integrals associated to the three

parts. The addition of the three evaluated parts is bounded by the right hand side

in (119).

The lemma is proved.

For the semigroup e−t|T | for T ∈ {BD,DB} we can only prove Rp(T ) − Rq(T )

boundedness whenever p, q ∈ ID,B with p ≤ q. More precisely, we prove that ft(T )

maps Rp(T ) to Rq(T ), whenever the holomorphic function f has enough decay at

infinity. We will apply this result to prove a Hardy-Littlewood-Sobolev inequality for

fractional operators |T |−α.

Corollary 16.11 (Lp-Lq theory for bounded holomorphic functions)

Let T ∈ {DB,BD}. Denote by ω := ωDB = ωBD the type of bisectoriality and

let ν ∈ (ω, π
2 ). Suppose p, q ∈ ID,B such that p ≤ q, and let g ∈ H∞(Ṡν) and f be

holomorphic function with

|f(λ)| � inf{1, |λ|−M}
for all λ ∈ Ṡν , where M > n

p −
n
q . Then the family {g(T )ft(T )}t>0 is Rp(T )−Rq(T )

bounded. In particular, the semigroup {e−t|T |}t>0 is Rp(T ) − Rq(T ) bounded for

all p, q ∈ ID,B with p ≤ q.

Proof. — The first part can be proved using McIntosh convergence lemma and ideas

from the proof in proposition 16.3. We leave this to the interested reader. The

statement for the semigroup follows from the special choice g = 1 and f(z) = e−z̃,

where z̃ = sgn(Re z)z as usual.

Remark 16.12. — In the situation of corollary 16.11, the family {g(T )ft(T )}t>0 is

Lp-Lq bounded whenever (fg)(0) = 0. This follows from corollary 16.11 and (108).

We treat the case (fg)(0) �= 0 in section 16.2.

16.2. Stability under multiplication by cut-off functions and the relation

to Ajiev’s work

Let us begin this section with our definition of stability under multiplication by

smooth cut-off functions/cut-off functions.

Definition 16.13. — Let Uq be a closed subspace of Lq, 1 ≤ q < ∞.
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	 We say Uq is stable under multiplication by cut-off functions if for any u ∈ Uq

and any characteristic function χE for a Borel measurable set E ⊂ Rn one has

χEu ∈ Uq.

	 We say Uq is stable under multiplication by smooth cut-off functions if for any

u ∈ Uq and any smooth complex-valued function ζ with compact support one

has ζu ∈ Uq.

Remark 16.14 (Equivalence). — We observe that both notions are equivalent. In-

deed, if Uq is stable by cut-off functions it is also stable under multiplication by

simple functions. Then by an approximation argument and the closedness of Uq it

follows that Uq is stable under multiplication by smooth cut-off functions. Conversely,

if Uq is stable under multiplication by smooth cut-off functions, then it follows from

the closedness of Uq and a mollifier approximation argument that Uq is stable under

multiplication by cut-off functions.

Remark 16.15 (Relation to Ajiev’s work). — 1) A combination of [1, theo-

rem 4.6 (a)] and [1, theorem 4.14] imply corollary 16.11 for a subclass of

function pairs (f, g).

2) A combination of [1, theorem 4.6 (b)], [1, theorem 4.14], [1, lemma 4.13] and

[1, remark 2] imply proposition 16.3 for a subclass of function pairs (ψ, g),

provided that the range Rp(T ) is stable under multiplication by (smooth) cut-

off functions.

We never used these notions. However, to compare with [1] we investigate whether

or not Rp(D) is stable under multiplication by (smooth) cut-off functions.

Definition 16.16. — Let D as in assumption 15.4 above and p ∈ (1,∞).

1) We define Vp to be the linear subspace of CN generated by −
∫
B
v for all balls

B ⊂ Rn and all v ∈ Rp(D).

2) We define Wp′ to be the linear subspace of CN generated by −
∫
B
w for all balls

B ⊂ Rn and all w ∈ Np′(D
∗)

Remark 16.17. — By the Lebesgue differentiation theorem any v ∈ Rp(D) takes

values in Vp almost everywhere. Similarly, any w ∈ Np′(D
∗) takes values in Wp′

almost everywhere. Thus, Vp is the space of almost everywhere values of all elements

in Rp(D) and Wp′ is the space of values of all elements in Np′(D
∗).

Remark 16.18. — Suppose 1 < p, q < ∞. Then Vp = Vq and Wp′ = Wq′ . This

follows from the density statements in lemma 15.13. Thus, we may set V = Vp and

W = Wp′ for one p ∈ (1,∞).

Proposition 16.19 (Stability under multiplication by smooth cut-off functions)

Let D as in assumption 15.4 above and p ∈ (1,∞).
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1) If Rp(D) = Lp, then Rp(D) is stable under multiplication by smooth cut-off

functions.

2) If Rp(D) �= Lp, then Rp(D) is stable under multiplication by smooth cut-off

functions if and only if V ⊥ W for the CN inner product.

This implies that if 1) or 2) holds for one p, it holds for all p.

Proof. — Assertion 1) is evident, so we turn to the proof of assertion 2).

Since Rp(D) is the polar set to Np′(D
∗), we have that Rp(D) is stable by mul-

tiplication of smooth cut-off functions if and only if 〈ξv, w〉 = 0 for all v ∈ Rp(D),

all w ∈ Np′(D
∗) and all smooth cut-off functions ζ. We claim that this is equivalent

to vw = 0 almost everywhere for all v ∈ Rp(D) and all w ∈ Np′(D
∗). As v, w are

arbitrary, this is equivalent to V ⊥ W .

Direction ⇒: If 〈ζv, w〉 = 0 for all such v, w, ζ then we have 〈ζξv, w〉 = 0 in

particular for all ξ ∈ Rn, where ζξ(x) := e−ix·ξζ(x). Let us denote by F the Fourier

transform. Then this implies F(ζvw)(ξ) = 0 for all ξ ∈ Rn by definition of the Fourier

transform. As ζvw ∈ L1, we deduce that ζvw = 0 almost everywhere. Choosing all

possible ζ, this concludes the proof of the first direction.

Direction ⇐: If vw = 0 almost everywhere for all v ∈ Rp(D) and all w ∈
Np′(D

∗) then ζvw = 0 almost everywhere for all these v, w and smooth cut-off ζ,

hence 〈ζv, w〉 = 0. This shows that ζv belongs to the polar set of Np′(D
∗), hence

ζv ∈ Rp(D). This concludes the proof of the stated equivalence and of the lemma.

Example 16.20. — We claim that the spaces Rp(DB) = Rp(D) associated to the

operators DB and D in [11] and [8] are not stable under multiplication by smooth

cut-off functions. Indeed, for D =
(

0 div

−∇ 0

)
, we have

Np′(D
∗) = Np′(D) = {u = (0, g) ∈ Lp′(Rn;Cm ⊕ [Cm ⊗ Cn]) ; divg = 0} �= {0},

hence W �= {0}. Next, we have that

Rp(D) = {u = (f, g) ∈ Lp(Rn;Cm ⊕ [Cm ⊗ Cn]) ; g = ∇h, h ∈ Ẇ 1,p(Rn,Cm)}.
Let c ∈ Cm and ξ ∈ Cm ⊗ Cn = (Cm)n. Taking f ∈ Lp which is constant with value

c on some ball and h ∈ Ẇ 1,p with h(x) =
∑n

i=1 xiξi in the same ball. We see that

(c, ξ1, . . . , ξn) ∈ V . Thus, CN ⊂ V (with N = m(1+n)). The claim follows as we are

in the situation of (2) in proposition 16.19 and W is not orthogonal to V .

This shows that Ajiev’s results do not apply to the main motivating example.

16.3. Lp-Lq estimates and the relation to the kernel/range decomposition

From the next proposition and example we will learn more about the relation of

kernel/range decomposition and the Lp-Lq boundedness of the related operators in

the functional calculus. The proposition shows that f(0) = 0 is a necessary condition
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for functions f to have Lp-Lq boundedness of the associated operator, whenever the

null space is not equal {0}. Before we state the proposition we make a definition.

Definition 16.21 (Not bounded). — Let X and Y be two Banach spaces and

T : X → X be a bounded linear operator. We say T is not bounded from X to Y and

write T : X � Y if there exists u ∈ X such that Tu /∈ Y or if there exists no constant

C > 0 such that for all u ∈ X holds ‖Tu‖Y ≤ C‖u‖X .

Proposition 16.22 (Necessary Condition). — Let T ∈ {DB,BD}. Denote by

ω := ωDB = ωBD

the type of bisectoriality and let ν ∈ (ω, π
2 ). Suppose there exists r ∈ ID,B such that

Nr(T ) �= {0} and let f ∈ H∞(
Ṡν , {0}

)
with f(0) �= 0. Then for all p, q ∈ ID,B such

that p �= q we have

f(T ) : Np(T ) � Lq.

In particular, for all p, q ∈ ID,B such that p �= q we have f(T ) : Lp � Lq.

Proof. — First, we note by lemma 15.13, (2)), that Nr(T ) �= {0} for one r ∈ ID,B is

equivalent to Nr(T ) �= {0} for all r ∈ ID,B . Thus we can assume

Np(T ) �= {0} �= Nq(T )

for particular p, q ∈ ID,B . Since f(T )u = f(0)u for all u ∈ Np(T ) we observe that

the statement f(T ) : Np(T ) � Lq(Rn,CN ) is equivalent to f(T ) : Np(T ) � Nq(T ),

which we prove next.

We begin with the case T = DB and let p, q ∈ ID,B . Since

(Np(DB))∗ = Np′(B
∗D∗) and (Nq(DB))∗ = Nq′(B

∗D∗),

we observe that f(DB) : Np(DB) → Nq(DB) is equivalent to

f∗(B∗D∗) : Nq′(B
∗D∗) −→ Np′(B

∗D∗)

by duality, where f∗(λ) := f(λ) for λ ∈ Ṡν ∪ {0}. Now, recall also that p, q ∈ ID,B

is equivalent to p′, q′ ∈ ID∗,B∗ by remark 15.11. Thus it suffices to consider the

case T = BD.

We turn to the case T = BD and assume that for p, q ∈ ID,B the operator f(BD)

defined by the bounded holomorphic functional calculus maps Np(BD) to Nq(BD),

with quantitative estimate

‖f(BD)u‖Lq ≤ C‖u‖Lp , ∀u ∈ Np(BD),

where C is of course independent of u. Since f(BD)u = f(0)u this estimate turns

into

|f(0)‖|u‖Lq ≤ C‖u‖Lp , ∀u ∈ Np(BD).(120)

Since Np(BD) = Np(D) is the null space of a constant coefficient partial differential

operator we observe that u ∈ Np(BD) is equivalent to us ∈ Np(BD) for all s > 0 by
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chain rule, where us(x) := u(sx) for all s > 0 and all x ∈ Rn. This means the null

space Np(BD) is invariant by rescaling. Thus, if we fix u ∈ Np(BD) such that u �= 0

we get the inequality

|f(0)‖|us‖Lq ≤ C‖us‖Lp , ∀s > 0,

from (120) above. But by substitution, this inequality is equivalent to the inequality

s
n
q −n

p ≤ C‖u‖Lp

|f(0)‖|u‖Lq

, ∀s > 0,(121)

for our fixed u ∈ Np(BD) with u �= 0. If p < q we get a contradiction in (121)

as s → 0. If p > q we get a contradiction in (121) as s → ∞.

Example 16.23. — In the proof of the last proposition we have seen that oper-

ators f(BD) do not regularize the null space Np(BD) whenever f(0) �= 0 and

Np(BD) �= {0}. In the special case of block form operators BD =
(

0 − div

A∇ 0

)
as in [27, Section 6] we have

Np(BD) = {u = (0, g) ∈ Lp(Rn;Cm ⊕ [Cm ⊗ Cn]) ; divg = 0}.

The interpretation in this special case is that f(BD) does not regularize the tangential

part of functions (0, g) which satisfy divg = 0. In this connection, we note also that

the space

Np(div) = {g ∈ Lp(Rn;Cm ⊗ Cn) ; divg = 0}.

is invariant by rescaling.

Corollary 16.24 (Null space equal zero). — Let T ∈ {DB,BD}. Denote by

ω := ωDB = ωBD

the type of bisectoriality and let ν ∈ (ω, π
2 ). Further, suppose there exists r ∈ ID,B

such that Nr(T ) = {0}.
1) For all p, q ∈ ID,B satisfying p ≤ q the semigroup {e−t|T |}t>0 is Lp-Lq bounded.

2) For all p, q ∈ ID,B such that 0 ≤ n
p −

n
q < 1 the family {(Id+itT )−1}t>0 satisfies

Lp-Lq off-diagonal estimates of order K for each K ∈ [0,∞).

Proof. — The easy details are left to the reader.

Corollary 16.24 really shows the link between Lp − Lq estimates for p < q and the

triviality of the null space.

Example 16.25 (cf. Part I, proposition 3.11). — Let T = BD. Moreover, suppose

n = 1 and D̂(ξ) is invertible for all ξ �= 0. Then we have ID,B = (1,∞) and for all

p ∈ ID,B , Np(BD) = Np(D) = {0}. The reader checks that the proof goes through

for B satisfying only coercivity instead of strict accretivity. In fact, the coercivity of B
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suffices to deduce invertibility of B ∈ L∞(R,L(CN )) from the Lebesgue differentiation

theorem.

16.4. Analytic extensions

Sometimes one is interested in complex times for the results above. So, for appro-

priate z ∈ C\{0} and f ∈ H∞(
Ṡν , {0}

)
we define

fz(λ) := f(zλ), λ ∈ Ṡν ∪ {0}
and treat this topic in the next remark.

Remark 16.26 (Analytic extension). — One can extend the results ...

	 ... in proposition 16.3 to families {g(T )ψz(T )}z∈Ṡβ
, β ∈ [0, π

2 − ω), provided

there exists ε ∈ (0, π
2 −ω−β) such that ψ ∈ Ψτ

σ

(
Ṡω+ε+β

)
and g ∈ H∞(Ṡω+ε+β),

	 ... in Example 16.7 to families {(izT )α(Id+izT )−M}z∈Ṡβ
, β ∈ [0, π

2 − ω),

	 ... in corollary 16.11 to families {g(T )fz(T )}z∈Ṡβ
, β ∈ [0, π

2 − ω), provided

there exists ε ∈ (0, π
2 − ω − β) such that g, f ∈ H∞(

Ṡω+ε+β , {0}
)
and f sat-

isfies |f(λ)| � inf{1, |λ|−M} for all λ ∈ Ṡω+ε+β . In particular, the family

{e−z|T |}z∈Ṡ+
β
, β ∈ [0, π

2 − ω) is Rp(T ) −Rq(T ) bounded.

	 ... in corollary 16.24 to the families {e−z|T |}z∈Ṡ+
β

and {(Id+izT )−1}z∈Ṡβ
, β ∈

[0, π
2 − ω).

Proof. — One can adapt the strategies in [7, Chapter 3.6]. Details are left to the

interested reader.

16.5. An Application

Here, we will essentially follow [7, Section 6.2] (1) to prove Lp-Lq estimates for

the fractional operators |DB|−α and |BD|−α with some simplifications in the final

limiting argument. We begin with the definition of |T |−α for T ∈ {DB,BD} and

α ∈ C, 0 < Reα < ∞. Fix p, q with Reα = n
p − n

q . For h ∈ Rp(T ) ∩Rq(T ), define

|T |−αh :=
1

Γ(α)

∫ ∞

0

tα−1e−t|T |hdt =
1

Γ(α)
lim

(ε,R)→(0,∞)

∫ R

ε

tα−1e−t|T |hdt,(122)

and observe that the improper Riemann integral converges in the strong sense

in Rq(T ) with respect to Lq topology. Indeed, convergence at 0 follows from

h ∈ Rq(T ) and Reα > 0, and convergence at ∞ follows from Reα = n
p − n

q and

‖e−t|T |h‖Lq � t
n
q −n

p t−1 by writing h = Tf with f ∈ Lp and using Rp(T ) to Rq(T )

boundedness of the semigroup.

1. We mention there are some inaccuracies in this argument that our argument fixes.
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The result we want to prove in this section is the following Hardy-Littlewood-

Sobolev inequality, which is the analogue to [7, Section 6.2].

Theorem 16.27 (Hardy-Littlewood-Sobolev inequality). — Let T ∈ {DB,BD}.
Suppose

p−(D,B) < p < q < p+(D,B).

Then |T |−α has a bounded extension from Rp(T ) to Rq(T ) whenever Reα = n
p − n

q .

Proof. — Fix Reα := n
p − n

q . Set

Tε,Rh :=
1

Γ(α)

∫ R

ε

tα−1e−t|T |hdt

for h ∈ Rp(T ) and 0 < ε < R < ∞. The first step is to establish the weak type

p − q estimate for Tε,R from Rp(T ) to Lq,∞ uniformly in ε, R. Choose q0, q1 with

p < q0 < q < q1 < p+(D,B). Since the semigroup e−t|T | is bounded from Rp(T )

to Rq0(T ) and to Rq1(T ) we get for h ∈ Rp(T ) with ‖h‖Lp = 1,∥∥∥ ∫ R

b

tα−1e−t|T |h dt
∥∥∥
Lq1

≤
∫ R

b

t
n
p −n

q −1‖e−t|T |h‖Lq1 dt

≤ C

∫ R

b

t
n
p −n

q −1t
n
q1

−n
p dt‖h‖Lp ≤ Cb

n
q1

−n
q ,

and similarly ∥∥∥ ∫ b

ε

tα−1e−t|T |h dt
∥∥∥
Lq0

≤ Cb
n
q0

−n
q ,

uniformly for ε, b, R such that 0 < ε < b < R < ∞. Hence, for all λ > 0 we get from

Tchebycheff’s inequality

|{|Tε,Rh| > λ}| ≤
∣∣∣{∣∣∣ ∫ R

b

tα−1e−t|T |h dt
∣∣∣ > λ

2

}∣∣∣+ ∣∣∣{∣∣∣ ∫ b

ε

tα−1e−t|Th dt
∣∣∣ > λ

2

}∣∣∣
≤ Cλ−q1bq1(

n
q1

−n
q ) + Cλ−q0bq0(

n
q0

−n
q ).

Thus, if we choose b−
n
q = λ, we get

|{|Tε,Rh| > λ}| ≤ Cλ−q, ∀λ ∈
(
R−n

q , ε−
n
q
)
.

Similarly, one proves in the case λ ≤ R−n
q

|{|Tε,Rh| > λ}| ≤ Cλ−q0Rq0(
n
q0

−n
q ) ≤ Cλ−q

and in the case λ ≥ ε−
n
q

|{|Tε,Rh| > λ}| ≤ Cλ−q1εq1(
n
q1

−n
q ) ≤ Cλ−q

to deduce the inequality

|{|Tε,Rh| > λ}| ≤ Cλ−q, ∀λ ∈ (0,∞).
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The second step is to proceed by real interpolation. Observe that the spaces Rp(D)

are real interpolation spaces for 1 < p < ∞ (This is shown in [63].)

For p−(D,B) < p < p+(D,B), we have Rp(DB) = Rp(D) and that Rp(DB)

and Rp(BD) are similar spaces under multiplication by B (remark 15.10). Thus,

the real interpolation property holds for Rp(T ) when p−(D,B) < p < p+(D,B) for

T ∈ {DB,BD}. Consider now a pair (p, q) with

Reα =
n

p
− n

q
and p−(D,B) < p < q < p+(D,B).

It is possible to pick two pairs (p0, q0) and (p1, q1) with the same properties and, in

addition, p0 < p < p1 and q0 < q < q1. By real interpolation, the weak type pi − qi
estimates yield the strong type p − q estimate, in the sense that Tε,R maps Rp(T )

to Lq, uniformly over 0 < ε < R < ∞.

The last step is a limiting argument. Assume h ∈ Rp(T ) ∩Rq(T ). We know that

Tε,Rh converges strongly to |T |−αh in Rq(T ) by construction as ε → 0 and R → ∞.

As we just showed

sup
0<ε<R<∞

‖Tε,Rh‖Lq ≤ C‖h‖Lp ,

we deduce ∥∥|T |−αh
∥∥
Lq ≤ C‖h‖Lp .

By density of Rp(T )∩Rq(T ) in Rp(T ) for the L
p topology (lemma 15.13, item 3),

|T |−α has a bounded extension from Rp(T ) to Lq. To see it maps into Rq(T ), we

observe that for h ∈ Rp(T ) ∩ Rq(T ), |T |−αh is by construction the limit in Lq of

elements in Rq(T ). Thus this remains by density for all h ∈ Rp(T ).
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