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GROUND STATE ENERGY
OF THE MAGNETIC LAPLACIAN

ON CORNER DOMAINS

Virginie Bonnaillie-Noël, Monique Dauge, Nicolas Popoff

Abstract. — The asymptotic behavior of the first eigenvalue of a magnetic Laplacian
in the strong field limit and with the von Neumann realization in a smooth domain
is characterized for dimensions 2 and 3 by model problems inside the domain or on
its boundary. In dimension 2, for polygonal domains, a new set of model problems
on sectors has to be taken into account. In this work, we consider the class of gen-
eral corner domains. In dimension 3, they include as particular cases polyhedra and
axisymmetric cones. We attach model problems not only to each point of the clo-
sure of the domain, but also to a hierarchy of “tangent substructures” associated with
singular chains. We investigate spectral properties of these model problems, namely
semicontinuity and existence of bounded generalized eigenfunctions. We prove esti-
mates for the remainders of our asymptotic formula. Lower bounds are obtained with
the help of an IMS type partition based on adequate two-scale coverings of the corner
domain, whereas upper bounds are established by a novel construction of quasimodes,
qualified as sitting or sliding according to spectral properties of local model problems.
A part of our analysis extends to any dimension.

c© Mémoires de la Société Mathématique de France 145, SMF 2016
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Résumé (Niveau fondamental du laplacien magnétique dans des domaines à coins)
Le comportement asymptotique de la première valeur propre du Laplacien magné-

tique en présence d’un champ de forte intensité et avec les conditions de von Neumann
sur un domaine régulier, est caractérisé en dimension 2 et 3 par des problèmes modèles
à l’intérieur du domaine et sur son bord. En dimension 2, quand il s’agit d’un domaine
polygonal, on doit inclure dans l’analyse un nouvel ensemble de problèmes modèles sur
des secteurs plans. Dans ce travail, nous considérons la classe générale des domaines
à coins. En dimension 3, ceux-ci comprennent en particulier les polyèdres et les cônes
de révolution. Nous associons des problèmes modèles non seulement à chaque point
de l’adhérence du domaine, mais également à une hiérarchie de structures tangentes
associées à des chaînes singulières. Nous explorons des propriétés spectrales de ces
problèmes modèles, en particulier la semi-continuité du niveau fondamental et l’exis-
tence de vecteurs propres généralisés. Nous démontrons des estimations de reste pour
nos formules asymptotiques. Les bornes inférieures sont obtenues à l’aide de partitions
de type IMS basées sur des recouvrements à deux échelles des domaines à coins. Les
bornes supérieures sont établies grâce à une construction originale de quasimodes,
qualifiés de fixes ou glissants selon les propriétés spectrales des problèmes modèles
locaux. Une partie de notre analyse s’étend à la dimension quelconque.
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PART I

INTRODUCTION





CHAPTER 1

INTRODUCTION OF THE PROBLEM AND

MAIN RESULTS

In this work we investigate the ground state energy of the magnetic Laplacian asso-

ciated with a large magnetic field, posed on a bounded three-dimensional domain and

completed by Neumann boundary conditions. This problem can be obtained by lin-

earization from a Ginzburg-Landau equation modelling the surface superconductivity

in presence of an exterior magnetic field the intensity of which is close to a (large) crit-

ical value, see e.g. [6, 5, 24]. Then the works [51, 40, 26, 28, 12, 29] highlight the

link between the bottom of the spectrum of a semiclassical Schrödinger operator with

magnetic field with the behavior of the minimizer of the Ginzburg-Landau functional.

The operator can also be viewed as a Schrödinger operator with magnetic field. The

problematics of large magnetic field for the magnetic Laplacian is trivially equiva-

lent to the semiclassical limit of the Schrödinger operator as the small parameter h

tends to 0. This problem has been addressed in numerous works in various situations

(smooth 2- or 3-dimensional domains, see e.g. the papers [6, 24, 52, 37, 39, 72] and

the book [30], and polygonal domains in dimension 2, see e.g. [43, 64, 8, 9]). Much

less is known for corner three-dimensional domains, see e.g. [64, 70], and this is our

aim to provide a unified treatment of smooth and corner domains, possibly in any

space dimension n. As we will see, we have succeeded at this level of generality for

n = 2 and 3, and have also obtained somewhat less precise results for any dimension n.

The semiclassical limit of the ground state energy is provided by the infimum of

local energies defined at each point of the closure of the domain. Local energies are

ground state energies of adapted tangent operators at each point. The notion of

tangent operator fits in with the problematic that one wants to solve. For example

if one is interested in Fredholm theory for elliptic boundary value problems, tangent

operators are obtained by taking the principal part of the operator frozen at each

point. Another example is the semiclassical limit of the Schrödinger operator with

electric field. For a rough estimate, tangent operators are then obtained by freezing
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the electric field at each point, and, for more information on the semiclassical limit,

the Hessian at each point has to be included in the tangent operator.

In our situation, tangent operators are obtained by freezing the magnetic field at

each point, that is, taking the linear part of the magnetic potential at each point. The

domain on which the tangent operator is acting is the tangent model domain at this

point. For smooth domains, this notion is obvious (the full space if the point is sitting

inside the domain, and the tangent half-space if the point belongs to the boundary).

For corner domains, various infinite cones have to be added to the collection of tangent

domains.

Almost all known results concerning the semiclassical limit of the ground state

energy rely on an a priori knowledge (or assumptions) on where the local energy is

minimal. For instance, this is known if the domain is smooth, or if it is a polygon with

openings ≤ π
2 and constant magnetic field. By contrast, for three-dimensional poly-

hedra, possible configurations involving edges and corners are much more intricate,

and nowadays this is impossible to know where the local energy attains its minimum.

Up until recently, it was not even known whether the infimum is attained.

In this work, we investigate the behavior of the local energy in general 3D corner

domains and we prove in particular that it attains its minimum. The properties that

we show allow us to obtain an asymptotics with remainder for the ground state energy

of the Schrödinger operator with magnetic field. In some situations, the remainder

is optimal. We also have partial results for the natural class of n-dimensional corner

domains. Let us now present our problematics and results in more detail.

1.1. The magnetic Laplacian and its lowest eigenvalue

The Schrödinger operator with magnetic field (also called magnetic Laplacian) in

a n-dimensional space takes the form

(−i∇+ A)2 =

n∑
j=1

(−i∂xj +Aj)
2,

where A = (A1, . . . , An) is a given vector field and ∂xj is the partial derivatives

with respect to xj with x = (x1, . . . , xn) denoting Cartesian variables. The field A

represents the magnetic potential. When set on a domain Ω of R
n, this elliptic

operator is completed by the magnetic Neumann boundary conditions

(−i∇+ A)ψ · n = 0

on ∂Ω, where n denotes the unit normal vector to the boundary. We assume in the

whole work that the field A is twice differentiable on the closure Ω of Ω, which we

write:

(1.1) A ∈ C 2(Ω).

MÉMOIRES DE LA SMF 145



1.1. THE MAGNETIC LAPLACIAN AND ITS LOWEST EIGENVALUE 5

This Neumann realization is denoted by H(A,Ω). If Ω is bounded with a Lips-

chitz boundary (1), the form domain of H(A,Ω) is the standard Sobolev space H1(Ω)

and H(A,Ω) is self-adjoint, non negative, and with compact resolvent. A ground

state of H(A,Ω) is an eigenpair (λ, ψ) associated with the lowest eigenvalue λ. If Ω is

simply connected, its eigenvalues only depend on the magnetic field defined as follows,

cf. [30, §1.1]. If ωA denotes the 1-form associated with the vector field A

(1.2) ωA =

n∑
j=1

Aj dxj ,

the corresponding 2-form σB

(1.3) σB = dωA =
∑
j<k

Bjk dxj ∧ dxk

is called the magnetic field. In dimension n = 2 or n = 3, σB can be identified with

(1.4) B = curl A.

When the domain Ω is simply connected (which will be assumed everywhere unless

otherwise stated), the eigenvectors corresponding to two different instances of A for

the same B are obtained from each other by a gauge transform and the eigenvalues

depend on B only.

Introducing a (small) parameter h > 0 and setting

Hh(A,Ω) = (−ih∇+ A)2 with magnetic Neumann b.c. on ∂Ω,

we get the relation

(1.5) Hh(A,Ω) = h2H
(A
h
,Ω
)

linking the problem with large magnetic field to the semiclassical limit h → 0 for the

Schrödinger operator with magnetic potential. Reminding that eigenvalues depend

only on the magnetic field, we denote by λh = λh(B,Ω) the smallest eigenvalue

of Hh(A,Ω) and by ψh an associated eigenvector, so that

(1.6)

{
(−ih∇+ A)2ψh = λhψh in Ω,

(−ih∇+ A)ψh · n = 0 on ∂Ω.

The behavior of λh(B,Ω) as h → 0 clearly provide equivalent information about the

lowest eigenvalue of H(Ă,Ω) when B̆ is large, especially in the parametric case when

B̆ = BB where the real number B tends to +∞ and B is a chosen reference magnetic

field.

From now on, we consider that B is fixed. We assume that it is smooth enough and,

unless otherwise mentioned, does not vanish on Ω. The question of the semiclassical

behavior of λh(B,Ω) has been considered in many papers for a variety of domains,

1. Or more generally if Ω is a finite union of bounded Lipschitz domains, cf. [53, Chapter 1] for

instance.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2016



6 CHAPTER 1. INTRODUCTION OF THE PROBLEM AND MAIN RESULTS

with constant or variable magnetic fields: Smooth domains [6, 50, 37, 27, 2, 71]

and polygons [43, 64, 7, 8, 9] in dimension n = 2, and mainly smooth domains

[52, 38, 39, 72, 30] in dimension n = 3. Until now, three-dimensional non-smooth

domains were only addressed in two particular configurations—rectangular cuboids

[64] and lenses [67, Chap. 8] and [70], with special orientations of the magnetic field

(that is supposed to be constant). We give more detail and references about the state

of the art in Chapter 2.

1.2. Local ground state energies

Let us make precise what we call local energy in the three-dimensional setting. The

domains that we are considering are members of a very general class of corner domains

defined by recursion over the dimension n (these definitions are set in Chapter 3).

In the three-dimensional case, each point x in the closure of a corner domain Ω is

associated with a dilation invariant, tangent open set Πx, according to the following

cases:

1) If x is an interior point, Πx = R
3,

2) If x belongs to a face f (i.e., a connected component of the smooth part of ∂Ω),

Πx is a half-space,

3) If x belongs to an edge e, Πx is an infinite wedge,

4) If x is a vertex v, Πx is an infinite cone.

Let Bx be the magnetic field frozen at x. The tangent operator at x is the magnetic

Laplacian H(Ax ,Πx) where Ax is the linear approximation of A at x, so that

curl Ax = Bx.

We define the local energy E(Bx ,Πx) at x as the ground state energy of the tangent

operator H(Ax ,Πx) and we introduce the global quantity (lowest local energy)

(1.7) E (B,Ω) := inf
x∈Ω

E(Bx ,Πx).

One of our objectives is to show the existence of a minimizer for these ground state

energies, achieved by a certain tangent cone associated with suitable generalized eigen-

functions, as we will specify later on.

The tangent operators H(Ax ,Πx) are magnetic Laplacians set on unbounded do-

mains and with constant magnetic field. So they have mainly an essential spectrum

and, only in some cases when x is a vertex, discrete spectrum. This fact makes it diffi-

cult to study continuity properties of the ground energy and to construct quasimodes

for the initial operator.

In the regular case, the tangent operators are magnetic Laplacians associated re-

spectively with interior points and boundary points, acting respectively on the full
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space and on half-spaces. The spectrum of the operator on the full space is well-

known and corresponds to Landau modes. The case of the half-spaces has also been

investigated for a long time [52, 39]): The ground state energy depends now on the

angle between the (constant) magnetic field and the boundary of the half-space. It is

continuous and increasing with this angle, so that the ground state is minimal for a

magnetic field tangent to the boundary, and maximal for a magnetic field normal to

the boundary. In all cases, it is possible to find a bounded generalized eigenfunction

satisfying locally the boundary conditions.

For two dimensional domains with corners, new tangent model operators have to be

considered, now acting on infinite sectors (see [64, 7]). For openings ≤ π
2 , the ground

state energy is an eigenvalue strictly less than in the regular case for the same value

of B. But for larger openings in 2D and conical or polyhedral singularities in 3D, it

becomes harder to compare ground state energies, and for a given tangent operator,

it is not clear whether there exist associated generalized eigenfunctions. Moreover, it

is not clear anymore whether the infimum of the ground state energies over all tangent

operators is reached.

In this work, for two or three dimensions of space, we provide positive answers to the

questions of existence for a minimum in (1.7) and for related generalized eigenvectors

associated with the minimum energy. First we have proved very general continuity

and semicontinuity properties for the function x �→ E(Bx ,Πx) as described now. Let F

be the set of faces f, E the set of edges e and V the set of vertices of Ω. They form

a partition of the closure of Ω, called stratification

(1.8) Ω = Ω ∪ ( ⋃
f∈F

f
) ∪ ( ⋃

e∈E

e
) ∪ ( ⋃

v∈V

v
)
.

The sets Ω, f, e and v are open sets called the strata of Ω, compare with [55] and

[62, Chap. 9]. We denote them generically by t and their set by T. Note that strata

do not contain their boundaries: faces do not include edges or vertices, and edges do

not include vertices. We will show the following facts:

(a) For each stratum t ∈ T, the function x �→ E(Bx ,Πx) is continuous on t.

(b) The function x �→ E(Bx ,Πx) is lower semicontinuous on Ω.

As a consequence, the infimum determining the limit E (B,Ω) in (1.7) is a minimum

(1.9) E (B,Ω) = min
x∈Ω

E(Bx ,Πx).

From this we can deduce in particular that E (B,Ω) > 0 as soon as B does not vanish

on Ω.

But we need more than properties a) and b) to show an upper bound for λh(B,Ω)

as h → 0. We need to construct quasimodes whatever is the geometry of Ω near the

minimizers of the local energy. For this we define a second level of energy attached

to each point x ∈ Ω which we denote by E ∗(Bx,Πx) and call energy on tangent

substructures. This quantity has been introduced on the emblematic example of edges
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in [69]: If x belongs to an edge, then Πx is a wedge. This wedge has two faces defining

two half-spaces Π±
x in a natural way: This provides, in addition with the full space R3,

what we call the tangent substructures of Πx. In this situation E ∗(Bx,Πx) is defined as

E ∗(Bx,Πx) = min
{
E(Bx ,Π

+
x ), E(Bx ,Π

−
x ), E(Bx ,R

3)
}
.

For a general point x ∈ Ω, E ∗(Bx,Πx) is the infimum of local energies associated with

the tangent substructures of Πx, that is all cones Πy associated with points y ∈ Πx\ t0
where t0 is the stratum of Πx containing the origin (for the example of a wedge, t0 is

its edge). Equivalently, E ∗(Bx,Πx) yields lim inf y→x E(Bx,Πy) for points y ∈ Ω that

are not in the same stratum as x. We show that E(Bx,Πx) ≤ E ∗(Bx,Πx). This may

be understood as a monotonicity property of the ground state energy for a tangent

cone and its tangent substructures.

The quantity E ∗(Bx,Πx) has a spectral interpretation: For a vertex x of Ω,

E ∗(Bx,Πx) is the bottom of the essential spectrum of H(Ax,Πx) so that if

E(Bx,Πx) < E ∗(Bx,Πx), there exists an eigenfunction associated with E(Bx,Πx).

For x other than a vertex, the interpretation of E ∗(Bx,Πx) is less standard: We show

that if E(B,Πx) < E ∗(Bx,Πx), then there exists a bounded generalized eigenvector

associated with E(Bx,Πx).

However, it remains possible that E(Bx,Πx) equals E ∗(Bx,Πx). This case seems

at first glance to be problematic, but we provide a solution issued from the recursive

properties of corner domains: We show that there always exists a tangent substructure

of Πx providing generalized eigenfunctions for the same level of energy.

1.3. Asymptotic formulas with remainders

Case of 3D domains. — A thorough investigation of local energies E(Bx ,Πx) and

E ∗(Bx,Πx) allows us to find asymptotic formulas with remainders for the ground state

energy λh(B,Ω) of the magnetic Laplacian on any 3D corner domain Ω as h → 0.

Our remainders depend on the singularities of Ω: The convergence rate is improved in

the case of polyhedral domains in which, by contrast with conical domains, the main

curvatures at any smooth point of the boundary remain uniformly bounded.

Figures 1.1, 1.2, 1.3 give several examples of corner domains: Both edge domains

in Figure 1.2 are polyhedral, such as the Fichera corner in the left part of Figure 1.3,

whereas the three other domains (Figure 1.1 and Figure 1.3-right) have conical points

where one main curvature tends to infinity.
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Figure 1.1. Examples (2) of 3D corner domains. Domains with corners.

Figure 1.2. Examples of 3D corner domains. Domains with edges.

Figure 1.3. Examples of 3D corner domains. Domains with edges and corners.

2. Figures drawn by M. Costabel with POV-ray.
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Our main results can be stated as follows (Theorems 5.1 and 9.1) as h → 0∣∣λh(B,Ω)− hE (B,Ω)
∣∣(1.10)

≤
⎧⎨⎩CΩ

(
1 + ‖A‖2W 2,∞(Ω)

)
h11/10, Ω corner domain,

CΩ

(
1 + ‖A‖2W 2,∞(Ω)

)
h5/4, Ω polyhedral domain.

Here the constant CΩ only depends on the domain Ω (and not on A, nor on h), and

‖A‖W 2,∞(Ω) denotes the standard L∞ Sobolev norm on C 2(Ω):

‖A‖W 2,∞(Ω) = max
1≤j≤n

max
|α|≤2

‖∂α
xAj‖L∞(Ω).

Note that the lower bound in (1.10) for the polyhedral case coincides with the one

obtained in the smooth case in dimensions 2 and 3 when no further assumptions are

imposed, cf. Section 2.3 below.

Besides, if B vanishes somewhere in Ω, the lowest local energy E (B,Ω) is zero,

and we obtain the upper bound in any 3D corner domain Ω (Theorem 9.1)

(1.11) λh(B,Ω) ≤ CΩ

(
1 + ‖A‖2W 2,∞(Ω)

)
h4/3,

which, in view of [36, 25], is optimal. Indeed, we also improve the upper bound in

(1.10) recovering the power h4/3 for general potentials that are 3 times differentiable

in polyhedral domains, namely

(1.12) λh(B,Ω) ≤ hE (B,Ω) +

{
CΩ

(
1 + ‖A‖2W 3,∞(Ω)

)
h9/8, Ω corner domain,

CΩ

(
1 + ‖A‖2W 3,∞(Ω)

)
h4/3, Ω polyhedral domain.

Note that the h4/3 rate was known for smooth three-dimensional domains, [39, Propo-

sition 6.1 & Remark 6.2] and that (1.12) extends this result to polyhedral domains

without loss.

Two-dimensional corner domains are curvilinear polygons. The curvature of their

boundary satisfies the same property of uniform boundedness than polyhedral do-

mains. That is why the asymptotic formulas with remainder in h5/4 (and even h4/3

for the upper bound) are valid.

With the point of view of large magnetic fields in the parametric case B̆ = BB,

the identity (1.5) used with h = B−1 provides

(1.13) λ(B̆,Ω) = B2λB−1(B,Ω),

therefore (1.10) yields obviously as B → ∞

(1.14)
∣∣λ(B̆,Ω)−BE (B,Ω)

∣∣ ≤ {CΩ

(
1 + ‖A‖2W 2,∞(Ω)

)
B9/10, Ω corner domain,

CΩ

(
1 + ‖A‖2W 2,∞(Ω)

)
B3/4, Ω polyhedral domain,
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where A is a potential associated with B. Note that BE (B,Ω) = E (B̆,Ω) by homo-

geneity. In the same spirit, improved upper bounds (1.12) can be written as

(1.15) λ(B̆,Ω) ≤ BE (B,Ω) +

{
CΩ

(
1 + ‖A‖2W 3,∞(Ω)

)
B7/8, Ω corner domain,

CΩ

(
1 + ‖A‖2W 3,∞(Ω)

)
B2/3, Ω polyhedral domain.

Estimates involving B only. — In formulas (1.10) the remainder estimates depend

on the magnetic potential A. It is possible to obtain estimates depending on the

magnetic field B and not on the potential as long as Ω is simply connected. For this,

we consider B as a datum and associate a potential A with it. Operators A : B �→ A

lifting the curl (i.e., such that curl ◦A = I) and satisfying suitable estimates have

been considered in the literature. We quote [20] in which it is proved that such lifting

can be constructed as a pseudo-differential operator of order −1. As a consequence

A is continuous between Hölder classes of non integer order:

∀� ∈ N, ∀α ∈ (0, 1), ∃K�,α > 0, ‖A B‖W �+1+α,∞(Ω) ≤ K�,α‖B‖W �+α,∞(Ω).

Choosing A = A B with � = 2 and α > 0 in (1.10), or with � = 3 and α > 0 in (1.12),

we obtain remainder estimates depending on B only.

Generalization to n-dimensional corner domains. — We have also obtained a weaker

result valid in any space dimension n, n ≥ 4. Combining Sections 4.4 and 5.3 we can

see that the quotient λh(B,Ω)/h converges to E (B,Ω) as h → 0 and that a general

lower bound with remainder is valid. For a n-dimensional polyhedral domain, this

lower bound is the same as in dimension 3:

(1.16) −CΩ

(
1 + ‖A‖2W 2,∞(Ω)

)
h5/4 ≤ λh(B,Ω)− hE (B,Ω).

Generalization to non simply connected domains. — If Ω is not simply connected,

the first eigenvalue of the operator H(A,Ω) will depend on A, and not only on B. A

manifestation of this is the Aharonov Bohm effect, see [33] for instance. Our results

(1.10)–(1.11) still hold for the first eigenvalue λh = λh(A,Ω) of Hh(A,Ω). Note that,

by contrast, the ground state energies of tangent operators H(Ax,Πx) only depend

on the (constant) magnetic field Bx because the potential Ax is linear by definition.

Therefore the lowest local energy only depends on the magnetic field and can still be

denoted by E (B,Ω) even in the non simply connected case.

1.4. Contents

Our work is organized in five parts. Part I is introductory and contains two chap-

ters, the present introduction and Chapter 2 where we review related literature. Part

II is devoted to the relevant classes of corner domains and associated model tangent

structures. The proof of lower bounds for the quotient λh(B,Ω)/h is also presented in

this part since it does not require finer tools. In Part III we investigate more specific

features of the (two- and) three-dimensional model magnetic Laplacians, and prove
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several different upper bounds. Part IV deals with improvements and generalizations

in various directions. The last part gather appendices.

Let us give more details on the contents of the core parts (II to IV) of this work.

Part II. — In Chapter 3 we define recursively our class of corner domains Ω in dimen-

sion n, alongside with their tangent cones Πx and singular chains X = (x0, x1, . . . ).

We particularize these notions in the case n = 3 and prove weighted estimates for the

local maps and their derivatives. The weights are powers of the distance to conical

vertices around which one main curvature blows up. We investigate a special class of

functions acting on singular chains. The local energy enters this class.

In Chapter 4, we introduce the tangent operators attached to each magnetic Lapla-

cian on a corner domain and establish weighted estimates of the linearization error.

We deduce a rough general upper bound for the quotient λh(B,Ω)/h for corner do-

mains in any dimension n ≥ 2.

In Chapter 5 we prove the lower bound hE (B,Ω)−Ch11/10 ≤ λh(B,Ω) for general

3D corner domains by an IMS-type formula based on a two-scale partition of unity. In

the particular case of polyhedra, a one-scale standard partition suffices, which yields

the improved lower bound hE (B,Ω) − Ch5/4 ≤ λh(B,Ω). We can generalize these

lower bounds to any dimension n, letting appear the power 1 + 1/(3 · 2ν+1 − 2) of h

with an integer ν ∈ [0, n] depending on the corner domain Ω.

Part III. — In Chapter 6 we introduce the lowest energy E ∗(B,Π) on tangent sub-

structures of a model cone Π associated with a constant magnetic field B. Then we

classify magnetic model problems on three-dimensional model cones (taxonomy): We

characterize as precisely as possible their ground state energy, their lowest energy on

tangent substructures, and their essential spectrum.

We show in Chapter 7 one of the most original results of our work, in view of

the construction of quasimodes: To each point x0 in Ω are associated its tangent

structures ΠX characterized by a singular chain X originating at x0. Among them,

there exists one for which the tangent operator H(AX,ΠX) possesses suitable bounded

generalized eigenvectors (said admissible) with the same energy as the local energy

at x0:

E(BX ,ΠX) = E(Bx0 ,Πx0).

Chapter 8 is devoted to the investigation of various continuity properties of the

local ground energy E(Bx,Πx).

In Chapter 9, by a construction of quasimodes based on admissible generalized

eigenvectors for tangent problems, we prove the upper bounds

(1.17) λh(B,Ω) ≤ hE (B,Ω) + Chκ,

with κ = 11/10 or κ = 5/4 depending on whether Ω is a corner domain or a poly-

hedral domain. Our construction critically depends on the length ν of the singular

chain X that provides the generalized eigenvector. When ν = 1, we are in the classical
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situation: It suffices to concentrate the support of the quasimode around x0, and we

qualify it as sitting . When ν = 2, the chain has the form X = (x0, x1): Our quasimode

is decentered in the direction provided by x1, has a two-scale structure in general, and

we qualify it as sliding . When ν = 3, the chain has the form X = (x0, x1, x2) and our

quasimode is doubly sliding . In dimension n = 3, considering chains of length ν ≤ 3

is sufficient to conclude.

Part IV. — To show the improved upper bounds (1.12), we revisit, in Chapter 10,

admissible generalized eigenvectors by analyzing the stability of their structure under

perturbation. In Chapter 11, we prove refined upper bounds of type (1.17) with

improved rates κ = 9/8 and κ = 4/3 when Ω is a general corner domain and a

polyhedral domain, respectively, but with a constant C involving now the norm W 3,∞

of the magnetic potential instead of the norm W 2,∞. This proof is based on the

same stratification as the previous one, combined with a new classification depending

on the number of directions along which the admissible generalized eigenvector is

exponentially decaying.

In Chapter 12, we address various improvements or extensions of our results. We

mention in particular the situation where one has a corner concentration, that is a

genuine eigenvector in a tangent cone associated with the lowest local energy. This

provides the existence of asymptotics as h → 0 for the first eigenpairs on the corner

domain. We conclude our work by sketching the similarities with another, simpler,

problem issued from the superconductivity, namely the Robin boundary conditions

for the plain Laplace operator.

1.5. Notations

We denote by 〈. , .〉O the L2 Hilbert product on the open set O of Rn

〈
f, g
〉
O =

∫
O
f(x) ḡ(x) dx.

When there is no confusion, we simply write 〈f, g〉 and ‖f‖ = 〈f, f〉1/2.
For a generic (unbounded) self-adjoint operator L we denote by Dom(L) its domain

and S(L) its spectrum. Likewise we denote by Dom(q) the domain of a quadratic

form q.

Domains as open simply connected subsets of R
n are in general denoted by O

if they are generic, Π if they are invariant by dilatation (cones) and Ω if they are

bounded.

The quadratic forms of interest are those associated with magnetic Laplacians,

namely, for a positive constant h, a magnetic potential A ∈ C 2(Ω), and a generic
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domain O
qh[A,O](f) :=

〈
(−ih∇+ A)f, (−ih∇+ A)f

〉
O(1.18)

=

∫
O
(−ih∇+ A)f · (−ih∇+ A)f dx,

with its domain

Dom
(
qh[A,O]

)
=
{
f ∈ L2(O), (−ih∇+ A)f ∈ L2(O)

}
.

For a bounded domain Ω, Dom(qh[A,Ω]) coincides with H1(Ω). For h = 1, we omit

the index h, denoting the quadratic form by q[A,O]. In the same way we introduce

the following notation for Rayleigh quotients

(1.19) Qh[A,O](f) =
qh[A,O](f)

〈f, f〉O , f ∈ Dom(qh[A,O]), f �= 0,

and recall that, by the min-max principle

(1.20) λh(B,Ω) = min
f∈Dom(qh[A,Ω]) \ {0}

Qh[A,Ω](f).

In relation with changes of variables, we will also use the more general form with

metric:

(1.21) qh[A,O,G](f) =

∫
O
(−ih∇+ A)f ·G((−ih∇+ A) f

) |G|−1/2 dx,

where G is a smooth function with values in 3 × 3 positive symmetric matrices and

|G| = detG. Its domain is

Dom(qh[A,O,G]) =
{
f ∈ L2

G(O), G1/2(−ih∇+ A)f ∈ L2
G(O)

}
,

where L2
G(O) is the space of the square-integrable functions for the weight |G|−1/2

and G1/2 is the square root of the matrix G. The corresponding Rayleigh quotient is

denoted by Qh[A,O,G].

The domain of the magnetic Laplacian with Neumann boundary conditions on the

set O is

Dom
(
Hh(A,O)

)
=
{
f ∈ Dom(qh[A,O]), (−ih∇+ A)2f ∈ L2(O)(1.22)

and (−ih∇+ A)f · n = 0 on ∂O}.
We will also use the space of the functions which are locally (3) in the domain of

Hh(A,O):

Dom loc

(
Hh(A,O)

)
:=
{
f ∈ H1

loc(O), (−ih∇+ A)2f ∈ H0
loc(O)(1.23)

and (−ih∇+ A)f · n = 0 on ∂O}.
When h = 1, we omit the index h in (1.22) and (1.23).

3. Here Hm
loc(O) denotes for m = 0, 1 the space of functions which are in Hm(O ∩ B) for any

ball B.
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CHAPTER 2

STATE OF THE ART

Here we collect some results from the literature about the semiclassical limit for

the first eigenvalue of the magnetic Laplacian depending on the geometry of the

domain and the variation of the magnetic field. We briefly mention in Section 2.1 the

case where the domain has no boundary, or when Dirichlet boundary conditions are

considered. No restriction of dimension is imposed in these cases. Then we review in

more detail what is known on bounded domains with Neumann boundary conditions

in dimension 2 and 3, in Sections 2.2 and 2.3, respectively. To keep this chapter

short and easy to read, we mainly focus on results related with our problematics,

i.e., the general asymptotic behavior of the ground state energy without any further

assumption on the minimum local energy.

2.1. Without boundary or with Dirichlet conditions

Here M is either a compact Riemannian manifold without boundary or R
n, and

Hh(A,M) is the magnetic Laplacian associated with the 1-form ωA defined in (1.2).

In this general framework, the magnetic field B is the antisymmetric matrix corre-

sponding to the 2-form σB introduced in (1.3). Then for each x ∈ M the local energy

at x is the intensity

(2.1) b(x) := 1
2 Tr
(
[B∗(x) · B(x)]1/2)

and E (B,M) = b0 := inf x∈M b(x). It is proved by Helffer and Mohamed in [36] that

if b0 is positive and under a condition at infinity if M = R
n, then

−Ch5/4 ≤ λh(B,M)− hE (B,M) ≤ Ch4/3.

More precise results can be proved in dimension 2 when b admits a unique positive

non-degenerate minimum [35, 74]. Note that the cancellation case b0 = 0 has also

been considered in various situations, see for example [36, 34, 25, 14]. Finally, the
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case of Dirichlet boundary conditions is very close to the case without boundary,

see [36, 37] and Section 12.4.

2.2. Neumann conditions in dimension 2

By contrast, when Neumann boundary conditions are considered on the boundary,

the local energy drops significantly as it was established in [75] by Saint-James and

de Gennes as early as 1963. In this review of the dimension n = 2, we classify

the domains into two categories: those with a regular boundary and those with a

polygonal boundary.

2.2.1. Regular domains. — Let Ω ⊂ R
2 be a regular domain and B be a regular

non-vanishing scalar magnetic field on Ω. To each x ∈ Ω is associated a tangent

problem. According to whether x is an interior point or a boundary point, the tangent

problem is the magnetic Laplacian on the plane R
2 or the half-plane Πx tangent

to Ω at x, with the constant magnetic field Bx ≡ B(x). The associated spectral

quantities E(Bx,R
2) and E(Bx,Πx) are respectively equal to |Bx| and |Bx|Θ0 where

Θ0 := E(1,R2
+) is a universal constant whose value is close to 0.59 (see [75]). With

the quantities

(2.2) b = inf
x∈Ω

∣∣B(x)
∣∣, b′ = inf

x∈∂Ω

∣∣B(x)
∣∣, and E (B,Ω) = min(b, b′Θ0)

the asymptotic limit

(2.3) lim
h→0

λh(B,Ω)

h
= E (B,Ω)

is proved by Lu and Pan in [50]. Improvements of this result depend on the geometry

and the variation of the magnetic field as we describe now.

Constant magnetic field. — If the magnetic field is constant and normalized to 1,

then E (B,Ω) = Θ0. The following estimate is proved by Helffer and Morame:

−Ch3/2 ≤ λh(1,Ω)− hΘ0 ≤ Ch3/2 ,

for h small enough [37, §10], while the upper bound was already given by Bernoff and

Sternberg [6]. This result is improved in [37, §11] in which a two-term asymptotics

is proved, showing that a remainder in O(h3/2) is optimal. Under the additional

assumption that the curvature of the boundary admits a unique and non-degenerate

maximum, a complete expansion of λh(1,Ω) is provided by Fournais and Helffer [27],

moreover they also give a complete asymptotic expansion of the higher eigenvalues

and of the associated eigenfunctions.
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Variable magnetic field. — In [37, §9], several different estimates for remainders are

proved, function of the place where the local energy attains its minimum: In any case

−Chκ− ≤ λh(B,Ω)− hE (B,Ω) ≤ Chκ+

.

with

(a) κ− = κ+ = 2 if the minimum is attained inside the domain and

(b) κ− = 5/4, κ+ = 3/2 if the minimum is attained on the boundary.

Under non-degeneracy hypotheses, the optimality in the first case (a) is a conse-

quence of [35], whereas the eigenvalue asymptotics provided in [71, 73] yields that

the upper bound in the latter case (b) is sharp. Note that in [73], the full asymp-

totic expansion of all the low-lying eigenpairs is obtained under these hypotheses,

completing the analysis from [27].

2.2.2. Polygonal domains. — Let Ω be a curvilinear polygon and let V be the

(finite) set of its vertices. In this case, new model operators appear on infinite sectors

Πx tangent to Ω at vertices x ∈ V. By homogeneity E(Bx ,Πx) = |B(x)|E(1,Πx) and

by rotation invariance, E(1,Πx) only depends on the opening α(x) of the sector Πx.

Let Sα be a model sector of opening α ∈ (0, 2π). Then

E (B,Ω) = min
(
b, b′Θ0,min

x∈V
|B(x)|E(1,Sα(x))

)
.

In [7, §11], it is proved that −Ch5/4 ≤ λh(B,Ω) − hE (B,Ω) ≤ Ch9/8. Moreover,

under the assumption that a corner attracts the minimum energy

(2.4) E (B,Ω) < min(b, b′Θ0),

the asymptotics provided in [8] yield the sharp estimates from above and below with

power h3/2.

From [43, 7] follows that for all α ∈ (0, π
2 ]:

(2.5) E(1,Sα) < Θ0.

Therefore condition (2.4) holds for constant magnetic fields as long as there is an angle

opening αx ≤ π
2 . Finite element computations by Galerkin projection as presented

in [9] suggest that (2.5) still holds for all α ∈ (0, π). Let us finally mention that

if Ω has straight sides and B is constant, the convergence of λh(B,Ω) to hE (B,Ω) is

exponential [8].

The asymptotic expansion of eigenfunctions and higher eigenvalues is also per-

formed in [8] under an hypothesis on the spectrum of the tangent operators at corners.

We will describe these results in more details in Section 12.1.
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2.3. Neumann conditions in dimension 3

2.3.1. Regular domains. — For a continuous magnetic field B it is known (see [52]

and [38]) that (2.3) holds. In that case

E (B,Ω) = min
(
inf
x∈Ω

|B(x)|, inf
x∈∂Ω

|B(x)|σ(θ(x))),
where θ(x) ∈ [0, π

2 ] denotes the unoriented angle between the magnetic field and the

boundary at point x, and the quantity σ(θ) is the bottom of the spectrum of a model

problem, cf. Section 6.2.

Constant magnetic field. — Here the magnetic field B is assumed without restriction

to be of unit length. Then there exists a non-empty set Σ of ∂Ω on which B(x) is

tangent to the boundary, which implies that E (B,Ω) = Θ0. Then Theorem 1.1 of [39]

states that ∣∣λh(B,Ω)− hE (B,Ω)
∣∣ ≤ Ch4/3.

Under some extra assumptions on Σ, Theorem 1.2 of [39] yields a two-term asymp-

totics for λh(B,Ω) showing the optimality of the previous estimate.

Variable magnetic field. — For a smooth non-vanishing magnetic field there holds

[30, Theorem 9.1.1] (see also [52])∣∣λh(B,Ω)− hE (B,Ω)
∣∣ ≤ Ch5/4.

In [39, Remark 6.2], the upper bound is improved to Ch4/3. Finally, under extra

assumptions, a three-term quasimode is constructed in [72], providing the sharp upper

bound Ch3/2.

2.3.2. Singular domains. — Until now, two examples of non-smooth domains

have been addressed in the literature. In both cases, the magnetic field B is assumed

to be constant.

Rectangular cuboids. — This case is considered by Pan [64]: The asymptotic limit

(2.3) holds for such a domain and there exists a vertex v ∈ V such that E (B,Ω) =

E(B,Πv). Moreover, in the case where the magnetic field is tangent to a face but is

not tangent to any edge, we have

E(B,Πv) < inf
x∈Ω\V

E(B,Πx).

Lenses. — The domain Ω is supposed to have two faces separated by an edge e that

is a regular loop contained in the plane x3 = 0. The magnetic field considered is

B = (0, 0, 1). It is proved in [67] that, if the opening angle α of the lens is constant

and ≤ 0.38π,

inf
x∈e

E(B,Πx) < inf
x∈Ω\e

E(B,Πx)
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and that the asymptotic limit (2.3) holds with an estimate in Ch5/4 from above and

below. When the opening angle of the lens is variable and under some non-degeneracy

hypotheses, a complete eigenvalue asymptotics is obtained in [70] resulting into the

optimal error estimate in Ch3/2.
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PART II

CORNER STRUCTURE AND LOWER

BOUNDS





CHAPTER 3

DOMAINS WITH CORNERS AND THEIR SINGULAR

CHAINS

Domains with corners are widely addressed in the subject of Partial Differential

Equations, mainly in connection with elliptic boundary problems. The pioneering

work in this area is the paper [45] by Kondrat’ev devoted to domains with conical

singularities. Such a domain is locally diffeomorphic to cones with smooth sections. It

is singular at a finite number of points, called vertices or corners, see Figure 1.1, p. 9.

Domains with edges are locally diffeomorphic to a wedge and singular points form a

submanifold of the boundary, see Figure 1.2. They were addressed in [46, 56, 57]

among others. A combination of corners and edges in dimension 3 or higher produces

a delicate interaction of several distinct singular types, see Figure 1.3. Such domains

can be classified as “corner domains” or “manifold with corners”. A Fredholm theory

was initiated by Maz’ya and Plamenevskii [54, 55]. Since then, different aspects have

been addressed, singularities [22, 47], pseudodifferential calculus [76, 59, 60, 61, 77],

regularity in analytic weighted spaces [32, 19], among many others, and without

mentioning the huge literature on numerical approximation.

In this work, for the sake of completeness and for ease of further discussion, we

introduce a class of corner domains with a Cartesian structure in any space dimen-

sion n. This definition is recursive over the dimension, through two intertwining

classes of domains

1) Pn, a class of infinite open cones in R
n.

2) D(M), a class of bounded connected open subsets of a smooth manifold without

boundary — actually, M = R
n or M = S

n, with S
n the unit sphere of Rn+1.

Such definition is in the same spirit as [22, Section 2].

3.1. Tangent cones and corner domains

We call a cone any open subset Π of Rn satisfying

∀ρ > 0 and x ∈ Π, ρx ∈ Π,

and the section of the cone Π is its subset Π ∩ S
n−1. Note that S0 = {−1, 1}.
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Definition 3.1 (Tangent cone). — Let Ω be an open subset of M = R
n or

M = S
n. Let x0 ∈ Ω. The cone Πx0 is said to be tangent to Ω at x0 if there ex-

ists a local C∞ diffeomorphism Ux0 which maps a neighborhood Ux0 of x0 in M onto

a neighborhood Vx0 of 0 in R
n and such that

(3.1) Ux0(x0) = 0, Ux0(Ux0 ∩Ω) = Vx0 ∩Πx0 and Ux0(Ux0 ∩ ∂Ω) = Vx0 ∩ ∂Πx0 .

We denote by Jx0 the Jacobian of the inverse of Ux0 , that is

(3.2) Jx0(v) := dv(U
x0)−1(v), ∀v ∈ Vx0 .

We also assume that the Jacobian at 0 is the identity matrix: Jx0(0) = In. The open

set Ux0 is called a map-neighborhood and (Ux0 ,U
x0) a local map.

The metric associated with the local map (Ux0 ,U
x0) is Gx0 defined as

(3.3) Gx0 = (Jx0)−1((Jx0)−1)�.

The metric Gx0 at 0 is the identity matrix.

Because of the constraint Jx0(0) = In, the tangent cone Πx0 does not depend on

the choice of the map-neighborhood Ux0 or the local map (Ux0 ,U
x0). Therefore when

there exists a tangent cone to Ω at x0, it is unique. Note also that the constraint

Jx0(0) = In is not restrictive for the domains: If there exists a local map J at x0 that

does not fulfil this constraint, it suffices to consider the new map J(0)−1 ◦J to remedy

this.

Definition 3.2 (Class of corner domains). — The classes of corner domains

D(M) (M = R
n or M = S

n) and tangent cones Pn are defined as follows:

Initialization, n = 0:

1) P0 has one element, {0},
2) D(S0) is formed by all (non empty) subsets of S0.

Recurrence: For n ≥ 1,

1) Π ∈ Pn if and only if the section of Π belongs to D(Sn−1),

2) Ω ∈ D(M) if and only if for any x0 ∈ Ω, there exists a tangent cone Πx0 ∈ Pn

to Ω at x0.

Polyhedral domains and polyhedral cones form important subclasses of D(M)

and Pn.

Definition 3.3 (Class of polyhedral cones and domains)

The classes of polyhedral domains D(M) (M = R
n or M = S

n) and polyhedral

cones Pn are defined as follows:

1) The cone Π ∈ Pn is a polyhedral cone if its boundary is contained in a finite

union of subspaces of codimension 1. We write Π ∈ Pn.
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2) The domain Ω ∈ D(M) is a polyhedral domain if all its tangent cones Πx are

polyhedral. We write Ω ∈ D(M).

Here is a rapid description of corner domains in lower dimensions n = 1, 2, 3.

1) n = 1

a) The elements of P1 are R, R+ and R−.
b) The elements of D(S1) are S

1 and all open intervals I ⊂ S
1 such that

I �= S
1.

2) n = 2

a) The elements of P2 are R2 and all plane sectors with opening α ∈ (0, 2π),

including half-planes (α = π).

b) The elements of D(R2) are curvilinear polygons with piecewise non-

tangent smooth sides (corner angles α �= 0, π, 2π). Note that D(R2)

includes smooth domains.

c) The elements of D(S2) are S2 and all curvilinear polygons with piecewise

non-tangent smooth sides in the sphere S
2.

3) n = 3

a) The elements of P3 are all cones with section in D(S2). This includes R3,

half-spaces, wedges and many different cones like octants or circular

cones.

b) The elements of D(R3) are tangent in each point x0 to a cone Πx0 ∈
P3. Note that the nature of the section of the tangent cone determines

whether the 3D domain has a vertex, an edge, or is regular near x0.

Ω

xC•

•xB
•xA

•

•

•

Figure 3.1. Tangent sectors for a curvilinear polygonal domain

In Figure 3.1, we show an example of a domain belonging to D(R2) with some of

its tangent sectors. Examples are given in Figures 1.1, 1.2 and 1.3 for n = 3. Those

in Figure 1.1 have corners and are not polyhedral, whereas those in Figure 1.2 have

only edges and are polyhedral. In Figure 1.3, domains have both corners and edges,

the first one is polyhedral whereas the second is not. In Figures 3.2 and 3.3 we display

two of these examples with their tangent cones at one of their vertices.
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Figure 3.2. Example of 3D corner domains with their tangent cones at

vertices: the Cayley tetrahedron

Figure 3.3. Example of 3D corner domains with their tangent cones at

vertices: a domain with edge and corners

We will give later on (Section 3.5) a more exhaustive description of the class D(R3)

of 3D corner domains.

Remark 3.4. — In dimension 2, the cones are sectors. So their sides are contained

in one-dimensional subspaces, and they are “polyhedral”. We deduce that

(3.4) P2 = P2 and D(M) = D(M) for M = R
2 or S2.

In dimension 3, a non-degenerate circular cone (i.e., different from R
3 or a half-space)

is not polyhedral, whereas an octant is.

The recursive procedure of Definition 3.2 may generate various classes of domains.

Let us give two examples:

1) In [55], recursive sytem of cylindrical coordinates are used to define corner

domains. This provides a larger class than ours. For instance, in dimension

n = 2, any piecewise smooth domain is admissible, except outward cusps. This
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definition of domains fits with operators that are regular with respect to such

system of coordinates, and not only in Cartesian coordinates.

2) In [22], cracks and slits of any dimension are admissible. The recursive definition

is similar to ours with the exception that a boundary point can be associated

with several distinct maps. Such a framework does not seem to be essential for

our study, although this generalization would be possible.

The definition of manifolds with corners [61] is not recursive: Manifolds are defined

through an atlas of maps with domains contained in R
k
+ ×R

n−k for any k = 0, . . . , n.

Any manifolds with corners that is a domain in R
n belongs to D(Rn) and even

to D(Rn) (it is polyhedral), but the converse is not true.

Remark 3.5. — In dimension n = 2, any domain in D(Rn) has a Lipschitz bound-

ary, but in dimension n ≥ 3, this is no longer true. However any corner domain is a

finite union of Lipschitz domains, cf. [22, Lemma (AA.9)].

3.2. Admissible atlases

We are going to introduce the notion of admissible atlas for a corner domain, so

that the associated diffeomorphisms satisfy some uniformity properties. We need

some definitions and preliminary results first.

Notation 3.6. — For v ∈ R
n, we denote by 〈v〉 the vector space generated by v. For

r > 0, we denote by Nr(v) := r−1v the scaling of ratio r−1. Note that Nr−1 = N−1
r .

The following lemma illustrates the coherence of Definition 3.1.

Lemma 3.7. — Let Ω be an open subset of M and x0 ∈ Ω such that there exists

a tangent cone Πx0 ∈ Pn to Ω at x0 with map-neighborhood Ux0 . Then for all u0
in Ux0 ∩ Ω there exists a tangent cone Πu0 ∈ Pn to Ω at u0.

Proof. — Let u0 ∈ Ux0 ∩ Ω. We have to prove that there exists a tangent cone Πu0

at u0 in the sense of Definition 3.1 and that Πu0 ∈ Pn. Let Ω̂x0 = Πx0 ∩ S
n−1 be the

section of Πx0 . Let (Ux0 ,U
x0) be a local map and v0 = Ux0(u0) ∈ Πx0 . We denote by

(r(v0), θ(v0)) ∈ (0,+∞)× Ω̂x0 its polar coordinates:

(3.5) r(v0) := ‖v0‖ and θ(v0) :=
v0

‖v0‖ .

By the recursive definition there exists a tangent cone Πθ(v0) ∈ Pn−1 to Ω̂x0 at θ(v0).

Let Uθ(v0) be an associated diffeomorphism which sends a map-neighborhood Uθ(v0)

of θ(v0) onto a neighborhood Vθ(v0) of 0 ∈ R
n−1. We may assume without restriction

that there exists a n-dimensional ball with center θ(v0) and radius ρ1 ∈ (0, 1) such

that

(3.6) Uθ(v0) = B(θ(v0), ρ1) ∩ S
n−1.
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Then we set (1) U(1,θ(v0)) = B(θ(v0), ρ1) and define on U(1,θ(v0)) the diffeomorphism –

using polar coordinates (r(v), θ(v)):

(3.7) U(1,θ(v0)) : v �−→ (r(v)− 1,Uθ(v0)
(
θ(v)
))
.

There holds d(1,θ(v0))U
(1,θ(v0)) = In. Define

(3.8) Πv0 := 〈v0〉 ×Πθ(v0).

Notice that Πv0 ∈ Pn. It is the tangent cone to Πx0 at the point (1, θ(v0)) and

U(1,θ(v0)) maps U(1,θ(v0)) on a neighborhood of 0 ∈ R
n. Let

(3.9) Uv0 := N−1
r(v0)

◦U(1,θ(v0)) ◦Nr(v0).

Then Uv0 is a diffeomorphism defined on

(3.10) Uv0 := ‖v0‖ U(1,θ(v0)) = B(v0, ρ1‖v0‖).
Let us define

(3.11) Uu0 := (Ux0)−1(Uv0).

It is a neighborhood of u0. Let

(3.12) Uu0(u) := Jx0(v0)
(
Uv0 ◦Ux0(u)

)
be defined for u ∈ Uu0 . Note that the differential of Uu0 at the point u0 is the identity

matrix In. Let us set finally

(3.13) Πu0 := Jx0(v0)(Πv0).

Then the map-neighborhood Uu0 , the diffeomorphism Uu0 and the cone Πu0 satisfy

the requirements of Definition 3.1 and Πu0 is the tangent cone to Ω at u0. Since Πv0

belongs to Pn, there holds Πu0 ∈ Pn.

Remark 3.8. — If the tangent cone Πx0 is polyhedral , the procedure for constructing

Uu0 can be simplified as follows: We define v0 and its polar coordinates (r(v0), θ(v0))

as before. Since Πx0 is polyhedral, the ball B(θ(v0), ρ1) (3.6) is such that the set

Ũ := B(θ(v0), ρ1) ∩Πx0

is homogeneous with respect to θ(v0), that is

v ∈ Ũ and ρ ∈
[
0,

ρ1
‖v − θ(v0)‖

]
=⇒ ρv + (1− ρ)θ(v0) ∈ Ũ .

The set

Ṽ :=
{
v ∈ R

n| v + θ(v0) ∈ Ũ}
defines a polyhedral cone Π̃ in a natural way by {v ∈ R

n| ∃ρ > 0 ρv ∈ Ṽ}. Defining

Uv0 as the translation Tv0 : v �→ v− v0, we find that Π̃ = Πv0 . Then, with this simple

definition of Uv0 we still define Uu0 by (3.12). On the other hand, by uniqueness of

1. We distinguish between the point θ(v0) ∈ ̂Ωx0 and its polar coordinates (1, θ(v0)).
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tangent cones, the new definition of Πv0 coincides with the old one (3.8). Finally, Πu0

is still defined by (3.13).

Lemma 3.9. — Let (Ux0 ,U
x0) be a local map with image a neighborhood Vx0 of 0,

and such that Jx0(0) = In. There exists r0 > 0 such that B(0, r0) ⊂ Vx0 and for any

v, v′ ∈ B(0, r0)
(3.14)

∥∥u′ − u− (v′ − v)
∥∥ ≤ 1

2 ‖v′ − v‖,
with u = (Ux0)−1(v) and u′ = (Ux0)−1(v′).

Proof. — Let r1 be such that v, v′ ∈ B(0, r1) ⊂ Vx0 . A Taylor expansion of

(Ux0)−1(v′) around v gives∥∥(Ux0)−1(v′)− (Ux0)−1(v)− Jx0(v)(v′ − v)
∥∥ ≤ 1

2 ‖dJx0‖L∞(B(0,r1)) · ‖v′ − v‖2.
Another Taylor expansion of Jx0(v) around 0 gives

‖Jx0(v)− Jx0(0)‖ ≤ ‖dJx0‖L∞(B(0,r1)) · ‖v‖.
Since (Ux0)−1(v) = u, (Ux0)−1(v′) = u′ and Jx0(0) = In, we deduce∥∥(u′−u)−(v′−v)

∥∥ ≤ (‖dJx0‖L∞(B(0,r1))·‖v‖ + 1
2 ‖dJx0‖L∞(B(0,r1))·‖v′−v‖

)
·‖v′−v‖.

If we choose r0 ≤ min
{
r1, 1/(4‖dJx0‖L∞(B(0,r1)))

}
, we have

‖dJx0‖L∞(B(0,r1)) · ‖v‖+ 1
2 ‖dJx0‖L∞(B(0,r1)) · ‖v′ − v‖ ≤ 1

2 , ∀v, v′ ∈ B(0, r0),
which ends the proof.

Proposition 3.10. — (i) The domain Ω belongs to D(Rn) if and only if there exists

a finite set X ⊂ Ω satisfying the two conditions

1) for each x0 ∈ X, there exists a cone Πx0 ∈ Pn and a local map (Ux0 ,U
x0) such

that (3.1) holds,

2) the set Ω is covered by the union of the map neighborhoods Ux0 for x0 ∈ X.

(ii) The equivalence (i) still holds if one requires that for all x0 ∈ X and all

u, u′ ∈ Ux0 , inequality (3.14) holds.

Proof. — (i) The “if” direction is a consequence of the definition of D(Rn) and, in

particular, the fact that Ω is compact and can be covered by a finite number of map-

neighborhoods. The “only if” direction is a consequence of the compactness of Ω and

of Lemma 3.7.

(ii) This part is then a consequence of Lemma 3.9 (and of the compactness of Ω,

of course).

Definition 3.11 (Admissible atlas). — Let Ω ∈ D(M). An atlas (Ux,U
x)x∈Ω is

called admissible if it comes from the following recursive procedure:
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1) Take a finite set X ⊂ Ω as in Proposition 3.10 together with the associated map-

neighborhoods and diffeomorphisms (Ux0 ,U
x0) for x0 ∈ X, satisfying moreover

inequality (3.14).

2) Assume that for each x0 ∈ X the map-neighborhood Ux0 contains a ball

B(x0, 2Rx0) for some Rx0 > 0 and that the balls with half-radius B(x0, Rx0)

cover Ω.

3) All the other map-neighborhoods and diffeomorphisms (Ux,U
x) with x ∈ Ω \X

are constructed by the recursive procedure (3.5)–(3.12), based on admissible

atlases for the sections Ω̂x0 associated with the set of reference points x0 ∈ X.

In the polyhedral case, the straightforward construction described in Remark 3.8

is preferred.

As a direct consequence of Lemmas 3.7, 3.9, and Proposition 3.10, we obtain the

existence of admissible atlases.

Theorem 3.12. — Let Ω be a corner domain in D(M). Then Ω admits an admissible

atlas.

For an admissible atlas, we can express the derivative of the diffeomorphism as

follows: Let x0 ∈ X, u0 ∈ Ux0 and v0 := Ux0(u0). Differentiating (3.12), we get

(3.15) ∀v ∈ Vu0 , Ju0(v) = Jx0(v) Jv0
(
Uv0(v)

) (
Jx0(v0)

)−1
,

and (3.9) provides:

(3.16) Jv0
(
Uv0(v)

)
= J(1,θ(v0))

(
U(1,θ(v0))

( v

‖v0‖
))

.

3.3. Estimates for local Jacobian matrices

We give in Proposition 3.13 several estimates for the Jacobians Jx0 (3.2) and the

metric Gx0 (3.3) of all the diffeomorphisms contained in an admissible atlas of a

corner domain Ω. All estimates are consequence of local bounds in L∞ norm on the

derivative of Jacobian functions. We denote for any x0 ∈ Ω

(3.17) Kx0(v) = dvJ
x0(v), v ∈ Vx0 .

After considering the case of reference points x0 ∈ X, we deal with points u0 ∈ Ω

close to a reference point x0 such that Πx0 ∈ Pn: in that case the quantities Ku0 for

u0 ∈ Ux0 remain bounded uniformly in Ux0 . The next estimate is a global version of

the first one when assuming that Ω ∈ D(M). The last estimate deals with points u0
close to a reference point x0 such that the section Ω̂x0 of Πx0 is polyhedral (2): in that

case we show that for u0 ∈ Ux0 , the quantity Ku0 is controlled by ‖u0− x0‖−1. These

estimates will be useful when using change of variables on quadratic form defined on

corner domains in dimension 3. An important feature of these estimates is a recursive

2. But this does not imply that the tangent cone Πx0 is polyhedral.
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control of their domain of validity: In each case we exhibit such domains as balls with

explicit centers and implicit radii. The principle is to start from the finite number of

reference points x0 ∈ X provided by an admissible atlas and proceed with points u0
which are not in this set using Lemma 3.7 and Remark 3.8. The outcome is that

estimates are valid in a ball around u0 with radius ρ(u0) proportional to the distance

dist(u0,X) of u0 to the set of reference points, the proportion ratio ρ(û1) being a

similar radius associated with the section Ω̂x0 ∈ D(Sn−1).

Proposition 3.13. — Let Ω ∈ D(M) and (Ux,U
x)x∈Ω be an admissible atlas with

set of reference points X ⊂ Ω. Then we have the following assertions:

(a) Let x0 ∈ X. With Rx0 introduced in Definition 3.11, there exists c(x0) such

that

(3.18)

{ ‖Kx0‖L∞(B(0,Rx0 ))
≤ c(x0),

‖Jx0 − In ‖L∞(B(0,r)) + ‖Gx0 − In ‖L∞(B(0,r)) ≤ rc(x0) for all r ≤ Rx0 .

(b) Let x0 ∈ X such that Πx0 ∈ Pn. Then there exists a constant c(x0) such that for

all u0 ∈ Ω∩B(x0, Rx0), u0 �= x0, there holds, denoting û1 := Ux0u0/‖Ux0u0‖ ∈
Ω̂x0

(3.19)

{ ‖Ku0‖L∞(B(0,ρ(u0))) ≤ c(x0) with ρ(u0) =
1
3 ρ(û1) ‖u0 − x0‖,

‖Ju0 − In ‖L∞(B(0,r)) + ‖Gu0 − In ‖L∞(B(0,r)) ≤ rc(x0) for all r ≤ ρ(u0).

(c) Let Ω ∈ D(Rn), then there exists c(Ω) such that for all u0 ∈ Ω, there holds,

with û1 as above,

(3.20)

{ ‖Ku0‖L∞(B(0,ρ(u0))) ≤ c(Ω) with ρ(u0) =
1
3 ρ(û1) dist(u0,X),

‖Ju0 − In ‖L∞(B(0,r)) + ‖Gu0 − In ‖L∞(B(0,r)) ≤ rc(Ω) for all r ≤ ρ(u0).

(d) Let x0 ∈ X be such that the section Ω̂x0 = Πx0 ∩ S
n−1 belongs to D(Sn−1).

Then there exists c(x0) such that for all u0 ∈ Ω ∩ B(x0, Rx0), u0 �= x0:

(3.21)

⎧⎪⎪⎨⎪⎪⎩
‖Ku0‖L∞(B(0,ρ(u0))) ≤ 1

‖u0−x0‖ c(x0) with ρ(u0) =
1
3 ρ(û1) ‖u0 − x0‖,

‖Ju0 − In ‖L∞(B(0,r)) + ‖Gu0 − In ‖L∞(B(0,r))

≤ r
‖u0−x0‖ c(x0) for all r ≤ ρ(u0).

Proof. — (a) The estimate for Kx0 in (3.18) comes from the definition of a map-

neighborhood. The bound in (3.18) on Jx0 − In follows immediately because of the

Taylor estimate

(3.22) ‖Jx0(v)− In ‖ ≤ ‖v‖ · ‖Kx0‖L∞(B(0,‖v‖)), v ∈ Vx0 .

Concerning the bound (3.18) on Gx0 − In, we rely on the Taylor estimate

(3.23) ‖Gx0(v)− In ‖ ≤ ‖v‖ · ‖Kx0‖L∞(B(0,‖v‖)) · ‖(Jx0)−1‖3L∞(B(0,‖v‖)).
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(b) Since Πx0 is polyhedral, we can take advantage of Remark 3.8: For u0 in the

ball B(x0, Rx0), the local map (Uu0 ,U
u0) is defined by (3.10)–(3.12) where, for some

ρ1 < 1,

v0 = Ux0(u0), Uv0 = B(v0, ρ1‖v0‖), and Uv0(v) = v − v0.

Note that the radius ρ1 is the radius ρ(û1) of a map neighborhood of û1 := v0/‖v0‖,
which plays the same role as ρ(u0) in one dimension less.

We recall that our admissible atlas satisfies Condition (1) of Definition 3.11. Apply-

ing (3.14) with the couples {(u, u0), (v, v0)} and {(u0, x0), (v0,0)}, we deduce that

Uu0 contains the ball B(u0, 1
3ρ1‖u0 − x0‖). On the other hand, in this case (3.15)

reduces to

(3.24) ∀v ∈ Vu0 , Ju0(v) = Jx0(v) (Jx0(v0))
−1.

Thus, we deduce from the above formula that

(3.25) ‖Ku0‖L∞(Vu0 )
≤ ‖Kx0‖L∞(Vx0 )

‖(Jx0)−1‖L∞(Ux0 )
.

All of this proves estimate for Ku0 in (3.19).

The bound in (3.19) on Ju0 −In follows immediately because of the Taylor estimate

(3.22) where x0 is replaced by u0. Concerning the bound on Gu0 − In, we start from

the Taylor estimate (3.23) where we replace x0 by u0. It remains to bound ‖(Ju0)−1‖.
We note that we have, thanks to (3.24)

Ju0(v)−1 = (Jx0(v0)) (J
x0(v))−1.

Whence the bound (3.19) on Gu0 − In.

(c) Applying Proposition 3.10 to Ω ∈ D(M), we deduce from (3.25):

(3.26) sup
x∈Ω

‖Kx‖L∞(Vx) ≤ max
x0∈X

(‖Kx0‖L∞(Vx)‖(Jx0)−1‖L∞(Ux)

)
< +∞.

(d) Differentiating (3.15) with respect to v yields

(3.27)

Ku0(v) = Kx0(v) Jv0
(
Uv0(v)

) (
Jx0(v0)

)−1
+ Jx0(v) dvJ

v0
(
Uv0(v)

) (
Jx0(v0)

)−1
.

Using in turn (3.16) we calculate

dvJ
v0(Uv0(v)) = dv

{
J(1,θ(v0))

(
U(1,θ(v0))

(
v

‖v0‖
))}

= 1
‖v0‖ K(1,θ(v0))

(
U(1,θ(v0))

(
v

‖v0‖
))(

J(1,θ(v0))
(
U(1,θ(v0)( v

‖v0‖ )
))−1

.(3.28)

Recall that U(1,θ) is deduced from Uθ by formula (3.7) on the domain U(1,θ(v0)) =

B(θ(v0), ρ0), cf. (3.6). Therefore there exists a constant c(ρ0) ≥ 1 such that

‖J(1,θ)‖L∞(V(1,θ)) ≤ c(ρ0)‖Jθ‖L∞(Vθ) and ‖K(1,θ)‖L∞(V(1,θ)) ≤ c(ρ0)‖Kθ‖L∞(Vθ).
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We deduce

‖Ku0‖ ≤ c′(ρ0)
(
‖Kx0‖ · ‖Jθ(v0)‖ · ‖(Jx0)−1‖(3.29)

+
‖(Jθ(v0))−1‖

‖v0‖ · ‖Jx0‖ · ‖Kθ(v0)‖ · ‖(Jx0)−1‖
)

where we have omitted the mention of the L∞ norms. Since the section Ω̂x0 belongs

to D(Sn−1), we deduce from (c) and (3.26) applied to the section Ω̂x0 that

sup
θ∈Ω̂x0

‖Jθ‖L∞(Vθ) < +∞ and sup
θ∈Ω̂x0

‖Kθ‖L∞(Vθ) < +∞.

Therefore the r.h.s. of (3.29) is controlled by c(x0)/‖v0‖. Using (3.14) we obtain that

‖v0‖ � ‖u0 − x0‖, whence the bound (3.21) on Ku0 . The bound (3.21) for Ju0 − In

follows immediately as in point (a). Finally, to prove the bound on Gu0 − In, we

combine the Taylor estimate (3.23) (at u0) with the estimate of Ku0 in (3.21) and the

formula for (Ju0)−1(
Ju0(v)

)−1
=
(
Jx0(v0)

)(
Jv0(Uv0(v))

)−1(
Jx0(v)

)−1
,

deduced from (3.15). It remains to use (3.16) to bound (Jv0(Uv0(v)))−1, which ends

the proof.

Remark 3.14. — In dimension n = 2, domains Ω ∈ D(R2) are always in case (b)

or (c) of Proposition 3.13 since D(R2) = D(R2), cf. (3.4). In dimension n = 3, Propo-

sition 3.13 still covers all possibilities: Indeed, since D(S2) = D(S2), one is at least in

case (d). In higher dimensions n ≥ 4, Proposition 3.13 does not provide estimates for

all possible singular points. General estimates would involve distance to non-discrete

sets of points, see (3.36) later on. However Proposition 3.13 is sufficient for the core

of our investigation, which, for independent reasons, is limited to dimension n ≤ 3.

Remark 3.15. — We can use the computation of Ku0 in the proof of Proposition 3.13

to obtain estimates for its differentials d�Ku0 , � = 1, 2, . . . Note that in (3.29), the

worst term is 1/‖v0‖. By differentiating � times (3.27), we obtain an upper bound

in 1/‖v0‖�+1. Thus we have the following improvements in Proposition 3.13:

1) In cases (a), (b) and (c), the estimates for Kx0 and Ku0 are still valid for their

differentials d�Kx0 and d�Ku0 , respectively.

2) Let x0 ∈ X such that Ω̂x0 = Πx0 ∩ S
n−1 belongs to D(Sn−1). Then there

exists c(x0) such that for all u0 ∈ Ω ∩ B(x0, Rx0), u0 �= x0, there holds, with

û1 := Ux0u0/‖Ux0u0‖

‖d�Ku0‖L∞(B(0,ρ(u0))) ≤
1

‖u0 − x0‖�+1
c(x0)(3.30)

with ρ(u0) =
1
3 ρ(û1) ‖u0 − x0‖.
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3.4. Strata and singular chains

In this section, we exhibit a canonical structure of tangent cones and corner do-

mains.

Definition 3.16. — Let On denote the group of orthogonal linear transformations

of Rn.

1) We say that a cone Π is equivalent to another cone Π′ and denote Π ≡ Π′ if
there exists U ∈ On such that UΠ = Π′.

2) Let Π ∈ Pn. If Π is equivalent to R
n−d × Γ with Γ ∈ Pd and d is minimal for

such an equivalence, Γ is said to be a minimal reduced cone associated with Π

and we denote by d(Π) := d the reduced dimension of the cone Π.

3) Let x ∈ Ω and let Πx be its tangent cone. We denote by d0(x) the dimension of

the minimal reduced cone associated with Πx. We call this integer the reduced

dimension of Ω at x.

Remark 3.17. — If there exists a linear isomorphism between Π and Π′ then d(Π) =

d(Π′).

3.4.1. Recursive definition of the singular chains. — The notation C(Ω) rep-

resents the set of the singular chains of Ω, which are defined as follows:

Definition 3.18 (Singular chains). — A singular chain X = (x0, x1, . . . , xp) ∈
C(Ω) (with p a non negative integer) is a finite collection of points defined according

to the following recursive procedure.

Initialization: x0 ∈ Ω,

– Let Cx0 be the tangent cone to Ω at x0 (here Cx0 = Πx0).

– Let Γx0 ∈ Pd0
be its minimal reduced cone: Cx0 = U0(Rn−d0 × Γx0).

– Alternative:

� If p = 0, stop here.

� If p > 0, then (3) d0 > 0 and let Ωx0 ∈ D(Sd0−1) be the section of Γx0

Recurrence: xj ∈ Ωx0,...,xj−1 ∈ D(Sdj−1−1). If dj−1 = 1, stop here (p = j). If not:

– Let Cx0,...,xj be the tangent cone to Ωx0,...,xj−1
at xj ,

– Let Γx0,...,xj ∈ Pdj
be its minimal reduced cone: Cx0,...,xj = Uj(Rdj−1−1−dj ×

Γx0,...,xj ).

– Alternative:

� If p = j, stop here.

� If p > j, then dj > 0 and let Ωx0,...,xj ∈ D(Sdj−1) be the section of

Γx0,...,xj .

3. If d0 = 0, we have necessarily p = 0.

MÉMOIRES DE LA SMF 145



3.4. STRATA AND SINGULAR CHAINS 35

Note that n ≥ d0 > d1 > · · · > dp. Hence p ≤ n. Note also that for p = 0, we

obtain the trivial one element chain (x0) for any x0 ∈ Ω.

Notation 3.19. — For any x ∈ Ω, we denote by Cx(Ω) the subset of chains X ∈ C(Ω)

originating at x, i.e., the set of chains X = (x0, . . . , xp) with x0 = x. Note that the

one element chain (x) belongs to Cx(Ω). We also set

(3.31) C∗
x(Ω) =

{
X ∈ Cx(Ω), p > 0

}
= Cx(Ω) \

{
(x)
}
.

We set finally, with the notation 〈y〉 for the vector space generated by y,

(3.32) ΠX =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Cx0 = Πx0 if p = 0,

U0
(
R

n−d0 × 〈x1〉 × Cx0,x1

)
if p = 1,

U0
(
R

n−d0 × 〈x1〉 × · · · ×
×Up−1

(
R

dp−2−1−dp−1 × 〈xp〉 × Cx0,...,xp

)
. . .
)

if p ≥ 2.

Note that if dp = 0, the cone Cx0,...,xp coincides with R
dp−1−1, leading to ΠX = R

n.

Definition 3.20. — Let X = (x0, . . . , xp) be a chain in C(Ω).

1) The cone ΠX defined in (3.32) is called a tangent structure [of Ω] at x0, and if

X �= (x0), ΠX is called a tangent substructure of Πx0 .

2) Let X
′ = (x′0, . . . , x

′
p′) be another chain in C(Ω). We say that X

′ is equivalent

to X if x′0 = x0 and ΠX′ = ΠX.

This notion of equivalence is well suited to the class of operators that we consider

in this paper.

The reader interested in examples of singular chains may find in Section 3.5.2 an

enumeration of all possible singular chains in dimension 3, with reference to Fig-

ures 1.1, 1.2 and 1.3 for illustration.

3.4.2. Strata of a corner domain. — We introduce a partition of Ω according

to the value of the reduced dimension d0 at each point.

Definition 3.21. — Let Ω ∈ D(Rn). For d ∈ {0, . . . , n}, let
(3.33) Ad(Ω) = {x ∈ Ω, d0(x) = d},
where d0(x) si the reduced dimension of Ω at x, see Definition 3.16. We call stratum,

or d-stratum of Ω any connected components of Ad(Ω). The strata are generically

denoted by t and their set by T.

Particular cases:

– A0(Ω) coincides with Ω.

– A1(Ω) is the subset of ∂Ω of the regular points of the boundary (the corre-

sponding strata being the faces in dimension n = 3 and the sides in dimension

n = 2).
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– If n = 2, A2(Ω) is the set of corners.

– If n = 3, A2(Ω) is the set of edge points.

– If n = 3, A3(Ω) is the set of corners.

Proposition 3.22. — Let t ∈ Ad(Ω) be a stratum. Then t is a smooth submani-

fold (4) of codimension d. In particular An(Ω) is a finite subset of ∂Ω.

Thus, the strata of a corner domain have a structure of manifold “from inside”, but

not up to the boundary in general. By contrast, the strata of a manifold with corners

are themselves manifold with corners.

Proof. — Let x0 ∈ t and (Ux0 ,U
x0) be an associated local map. The tangent cone

at x0 writes

Πx0 = U(Rn−d × Γx0),

with Γx0 ∈ Pd. For simplicity, we may assume that U = In. Denote by π the orthogo-

nal projection on R
n−d and set π⊥ := In −π. Let u ∈ Ux0 and v = Ux0(u). According

as π⊥(v) is 0 or not, the tangent cone Πv at v to Πx0 has distinct expressions.

1) If π⊥(v) = 0, then Uv can be taken as the translation by v and Πv = Πx0 .

2) If π⊥(v) �= 0, we introduce the cylindrical coordinates (r(v), θ(v), π(v)) of v

with:

(3.34) r(v) = ‖π⊥(v)‖, θ(v) =
π⊥(v)
‖π⊥(v)‖ ∈ Ωx0 with Ωx0 = Γx0 ∩ S

d−1.

Let Πθ(v) ∈ Pd−1 be the tangent cone to Ωx0 at θ(v). We have, see the proof

of Lemma 3.7,

(3.35) Πv := R
n−d × 〈π⊥(v)〉 ×Πθ(v).

In any case, the tangent cone Πu is linked to Πv by the formula Πu = Jx0(v)(Πv). We

deduce:

1) If π⊥(v) = 0, then d(Πu) = d(Πx0) (cf. Remark 3.17), therefore d0(u) =

d0(x0) = d and u ∈ Ad(Ω).

2) If π⊥(v) �= 0, then d(Πu) = d(Πv) and we have d0(u) ≤ d− 1 < d0(x0) = d.

Therefore u ∈ Ad(Ω) if and only if π⊥(v) = 0. We conclude that

Ad(Ω) ∩ Ux0 = (Ux0)−1
(
π(Vx0)

)
.

Hence the stratum t is a smooth submanifold of codimension d.

Remark 3.23. — Let Ω be a corner domain and X be the set of reference points of

an admissible atlas, cf. Definition 3.11. Let x0 ∈ X. As a consequence of the above

4. This means that for each x0 ∈ t there exists a neighborhood U ⊂ t of x0 and an associate local

diffeomorphism from U onto an open set in Rn−d.
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proof we find that for any u0 ∈ B(x0, Rx0), we have the inequality d0(u0) ≤ d0(x0).

Thus, in particular, the set of corners An(Ω) has to be contained in X.

3.4.3. Topology on singular chains. — Here we introduce a distance on equiv-

alence classes of the set of chains C(Ω), for the equivalence already introduced in

Definition 3.20. This will allow to introduce natural notions of continuity and lower

semicontinuity on chains.

Let us denote by BGL(n) the ring of linear isomorphisms L with norm ‖L‖ ≤ 1,

where

‖L‖ = max
x∈Rn\{0}

‖Lx‖
‖x‖ .

Definition 3.24. — Let X = (x0, . . . , xp) and X
′ = (x′0, . . . , x

′
p′) be two singular

chains in C(Ω). We define the distance D(X,X′) ∈ R+ ∪ {+∞} as

D(X,X′) = ‖x0 − x′0‖+
1

2

{
min

L∈BGL(n)
LΠX=Π

X′

‖L− In ‖+ min
L∈BGL(n)
LΠ

X′=ΠX

‖L− In ‖
}
,

where the second term is set to +∞ if ΠX and ΠX′ do not belong to the same orbit

for the action of BGL(n) on Pn.

Remark 3.25. — 1) The distance D(X,X′) is zero if and only if the chains X and

X
′ are equivalent.

2) As a consequence of the proof of Proposition 3.22, the strata of Ω are contained

in orbits of the natural action of BGL(n) on chains.

3) The distance between two chains X and X
′ is infinite when the associated tan-

gent structures ΠX and ΠX′ cannot be mapped from each other by a linear

application. For example, this is the case when the reduced dimensions of ΠX

and ΠX′ are distinct. The components of C(Ω) separated by an infinte distance

are, in certain sense, the closure of the statra, see Remark 3.34 for a description

in dimension n = 3.

4) Inside each stratum of a polyhedral domain, the distance D between chains of

length 1 is equivalent to the standard distance in R
n. This is no longer true

for strata containing conical points in their closure for the standard distance.

Conical points are “blown up” by the distance D, cf. Remark 3.34 again.

5) If Ω is a manifold with corners of dimension n, each tangent structure ΠX

is homeomorphic to R
d
+ × R

n−d where d is its reduced dimension. Thus the

distance D splits C(Ω) in at most n+ 1 components separated from each other

by an infinite distance. Each of these components may contain several distinct

connected components.

We define a partial order on chains.

Definition 3.26. — Let X = (x0, . . . , xp) and X
′ = (x′0, . . . , x

′
p′) be two singular

chains in C(Ω). We say that X ≤ X
′ if p ≤ p′ and xj = x′j for all 0 ≤ j ≤ p.
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Theorem 3.27. — Let Ω be a corner domain in D(M) with M = R
n or S

n, and

F : C(Ω) → R be a function such that

(i) F is continuous on C(Ω) for the distance D

(ii) F is order-preserving on C(Ω) (i.e., X ≤ X
′ implies F (X) ≤ F (X′)).

Then for all chain X = (x0, . . . , xp) ∪ {∅}, the function (with the convention that

Ω∅ = Ω)

Ωx0,...,xp � x �−→ F ((x0, . . . , xp, x))

is lower semicontinuous. In particular Ω � x �→ F ((x)) is lower semicontinuous.

Proof. — The proof is recursive over the dimension n.

Initialization (n = 1). Let Ω belong to D(M) with M = R or S
1. Then Ω is an

open interval (c, c′). The chains in C(Ω) are

– X = (x0) for x0 ∈ (c, c′) with ΠX = R,

– X = (x0) for x0 = c and x0 = c′, with ΠX = R+ and R−, respectively,
– X = (x0, x1) for x0 = c or x0 = c′, and x1 = 1, with ΠX = R.

The function F is continuous on C(Ω). By definition of the distance D:

D
(
(x), (c, 1)

)
= ‖x− c‖ and D

(
(x), (c′, 1)

)
= ‖x− c′‖, ∀x ∈ (c, c′).

Therefore, as x → c, with x �= c, F ((x)) tends to F ((c, 1)). By assumption F ((c, 1)) ≥
F ((c)), and the same at the other end c′. This proves that F is lower semicontinuous

on Ω = [c, c′].

Recurrence. We assume that Theorem 3.27 holds for any dimension n
 < n. Let

us prove it for the dimension n.

a) Let X0 be a non-empty chain in C(Ω). Then ΩX0
belongs to D(Sn

�

) for a n
 < n.

The chains Y ∈ C(ΩX0
) correspond to the chains (X0,Y) in C(Ω) and the corresponding

tangent substructures ΠY ∈ Pn� and ΠX0,Y ∈ Pn are linked by a relation of the type,

cf. (3.32)

ΠX0,Y = U0
(
R

n−d0 × 〈x1〉 × · · · ×ΠY

)
.

Hence the distances D
(
(X0,Y), (X0,Y

′)
)
and D

(
Y,Y′) can be compared:

D
(
(X0,Y), (X0,Y

′)
)
=

1

2

{
min

L∈BGL(n)
LΠX0,Y=Π

X0,Y′

‖L− In ‖+ min
L∈BGL(n)

LΠ
X0,Y′=ΠX0,Y

‖L− In ‖
}

≤ 1

2

{
min

L�∈BGL(n�)
L�ΠY=Π

Y′

‖L
 − In� ‖+ min
L�∈BGL(n�)
L�Π

Y′=ΠY

‖L
 − In� ‖
}

≤ D
(
Y,Y′).

Let us define the function F 
 on C(ΩX0
) by the partial application

F 
(Y) = F ((X0,Y)), Y ∈ C(ΩX0
).
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Since F is continuous on C(Ω), the above inequality between distances proves that F 


is continuous on C(ΩX0
). Likewise the monotonicity property is obviously transported

from F to F 
. Therefore the recurrence assumption provides the lower semicontinuity

of F 
 on ΩX0 , hence of x �→ F ((X0, x)) on the same set.

b) It remains to prove that x �→ F ((x)) is lower semicontinuous on Ω. Let x0 ∈ Ω.

At this point we follow the proof of Proposition 3.22. For any u ∈ Ux0 , we define π,

π⊥ and v like there and encounter the same two cases:

1) If π⊥(v) = 0, then Πv = Πx0 . Hence Πu = Jx0(v)(Πx0). Since Jx0(v) tends

to In as v → 0, the distance D((x0), (u)) tends to 0 as u tends to x0. By the

continuity assumption, F ((u)) tends to F ((x0)).

2) If π⊥(v) �= 0, let x1 be the element of Ωx0 defined by x1 = π⊥(v) ‖π⊥(v)‖−1.

Let Πx1 ∈ Pd−1 be the tangent cone to Ωx0 at x1. We find

Πv = R
n−d × 〈π⊥(v)〉 ×Πx1 = Πx0,x1 .

Hence Πu = Jx0(v)(Πx0,x1). Like before, we deduce that the distance

D((x0, x1), (u)) tends to 0 as u tends to x0. By the continuity assump-

tion, F ((u)) tends to F ((x0, x1)), which by the monotonicity assumption, is

larger than F ((x0)).

This ends the proof of the theorem.

3.4.4. Singular chains and admissible atlases. — The aim of this section is to

provide an overview of map-neighborhoods and Jacobian estimates in the framework

of singular chains. In their generality, these facts are not needed for our study of

magnetic Laplacians, which is restricted to dimension n ≤ 3 for distinct reasons that

we will explain later on. Nevertheless, full generality sheds some light on the recursive

process present in the very definition of admissible atlases and in the domain of validity

of estimates in Proposition 3.13.

Chains of atlases. — Denote by X(Ω) the set of reference points of an admissible

atlas for a corner domain Ω. The chain of atlases of a corner domain Ω is defined as

follows:

0) Start from the set X(Ω) of reference points x0 ∈ Ω, as in Definition 3.11.

1) For each x0 ∈ X(Ω), choose an admissible atlas of the section Ωx0 ∈ D(Sd0−1),

with set X(Ωx0) of reference points x1 ∈ Ωx0 .

2) For each x1 ∈ X(Ωx0), choose an admissible atlas of the section Ωx0,x1 ∈
D(Sd1−1), with set X(Ωx0,x1) of reference points x2 ∈ Ωx0,x1 . And so on...

Cylindrical coordinates. — The natural coordinates associated with chains of atlases

are recursively defined cylindrical coordinates. Let u0 ∈ Ω.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2016



40 CHAPTER 3. DOMAINS WITH CORNERS AND THEIR SINGULAR CHAINS

1) If u0 �∈ X(Ω), pick x0 ∈ X(Ω) such that u0 ∈ Bn(x0, Rx0) (n-dimensional ball).

Then define v0 = Ux0u0 and, if d0 > 0, its cylindrical coordinates

π0(v0) ∈ R
n−d0 , r(v0) = ‖v0 − π0(v0)‖, and u1 =

v0 − π0(v0)

r(v0)
∈ Ωx0 .

If d0 = 0, π0 = In, then stop.

2) If u1 �∈ X(Ωx0), pick x1 ∈ X(Ωx0) such that u1 ∈ Bd0(x1, Rx1) ∩ S
d0−1. Then

define v1 = Ux0,x1u1 and, if d1 > 0, its cylindrical coordinates

π1(v1) ∈ R
d0−1−d1 , r(v1) = ‖v1 − π1(v1)‖, and u2 =

v1 − π1(v1)

r(v1)
∈ Ωx0,x1 .

If d1 = 0, π1 = In, then stop. And so on...

Let vp∗ be the last element of the sequence v0, v1, . . . . In any case p∗ ≤ n.

Local maps. — The local maps are recursively constructed using the natural coordi-

nates associated with chains.

0) If u0 = x0 ∈ X(Ω), use the local map (Ux0 ,U
x0) and stop.

1) If u0 �∈ X(Ω), a local map (Uu0 ,U
u0) is defined by the formulas hereafter. The

map neighborhood Uu0 can be chosen as (Ux0)−1(Uv0) with

Uv0 = Bn−d0(π0(v0), Rx0)× r(v0) U(1,u1), U(1,u1) = Bd0(u1, ρ1), Uu1 = U(1,u1)∩Sd0−1.

The diffeomorphism Uu0 is defined by Jx0(v0) (Uv0 ◦Ux0) with

Uv0 =
(
Tπ0(v0), N

−1
r(v0)

◦U(1,u1) ◦Nr(v0)

)
and U(1,u1) = (T1, U

u1),

where Tπ0(v0) is the translation v �→ v − π0(v0) in R
n−d0 , and T1 is the trans-

lation by 1 for the radius in polar coordinates. If u1 = x1 ∈ X(Ωx0), stop.

2) If u1 �∈ X(Ωx0), a local map (Uu1 ,U
u1) is defined like in step (1), replacing x0

by x1, v0 by v1, Bn−d0 by Bd0−1−d1 , π0(v0) by π1(v1), Bd0 by Bd1 , and finally

u1 by u2. . .

Estimates on Jacobian matrices. — Let u0 ∈ Ω. As explained in Remark 3.8, as

soon as a polyhedral cone Γx0,...,xp is reached in the construction, the corresponding

diffeomorphism U(1,up+1) is chosen as a translation, so it is the same for Uup+1 , and

the norm of its differential is bounded. By recursion, this implies the estimate for the

differential Ku0 of Ju0

(3.36) ‖Ku0‖ ≤ c(Ω)

r(v0) · · · r(vp−1)

with the convention that if p−1 < 0, the denominator is 1.The same estimate is valid

if up ∈ X(Ωx0,...,xp−1) with the convention that Ωx0,...,xp−1 = Ω if p− 1 < 0. Note that

p = 0 for any u0 if the domain Ω is polyhedral. In turn, the domain of validity of

estimates (3.36) is (at least) a ball centered at u0 of radius

(3.37) ρ(u0) = r(Ω) r(v0) · · · r(vp∗).
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3.5. 3D domains

In this section we refine our analysis for the particular case of 3D domains. In each

case we provide an exhaustive description of the possible singular chains. We also

determine some consequences of Proposition 3.13.

3.5.1. Faces, edges and corners

Definition 3.28. — Let Ω ∈ D(R3). We denote by F the set of the connected

components of A1(Ω) (faces), E those of A2(Ω) (edges) and V the finite set A3(Ω)

(corners).

Let x0 ∈ Ad(Ω) with d < 3, then Πx0 ∈ P3. Let x0 ∈ V, we distinguish between two

cases:

1) If Πx0 ∈ P3, then x0 is a polyhedral corner.

2) If Πx0 /∈ P3, then x0 is a conical point. We denote by V◦ the set of conical

points.

Combining Proposition 3.13 and Remark 3.4, we obtain local estimates for the

Jacobian matrix and the metric issued from changes of variables pertaining to an

admissible atlas:

Corollary 3.29. — Let Ω ∈ D(R3) and (Ux,U
x)x∈Ω be an admissible atlas. Note

that the set of its reference points X contains V (cf. Remark 3.23), thus in particular

the set of conical corners V◦. There exists c(Ω) > 0 such that

(a) for all x0 ∈ X, for all r ≤ Rx0 :

‖Jx0 − I3 ‖L∞(B(0,r)) + ‖Gx0 − I3 ‖L∞(B(0,r)) ≤ rc(Ω),

(b) for all u0 ∈ Ω \ X, for all r ≤ ρ(u0):

‖Ju0 − In ‖L∞(B(0,r)) + ‖Gu0 − In ‖L∞(B(0,r)) ≤ r

dV◦(u0)
c(Ω),

with ρ(u0) as in Proposition 3.13 and

(3.38) dV◦(u0) =

{
1 if V◦ = ∅,

dist(u0,V◦) else.

Remark 3.30. — Note that estimate (b) blows up when we get closer to a conical

point without reaching it, while at any conical point x0 ∈ V◦, we have the good

estimate (a). This will lead to distinct analyses depending on how far x0 is from V◦.

3.5.2. Singular chains of 3D corner domains

Proposition 3.31. — Let Ω ∈ D(R3). Then chains of length ≤ 3 are sufficient to

describe all equivalence classes of the set of chains C(Ω). If moreover Ω ∈ D(R3),

chains of length 2 are sufficient.
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Proof. — Let x0 ∈ Ω. In Description 3.32 we enumerate all chains starting from x0
with their tangent substructures according as x0 is an interior point, a face point, an

edge point, or a vertex.

Description 3.32 (See examples 3.33 for an illustration)

1) Interior point x0 ∈ Ω. Only one chain in Cx0(Ω): X = (x0). ΠX ≡ R
3.

2) Let x0 belong to a face. There are two chains in Cx0(Ω):

(a) X = (x0) with ΠX = Πx0 , the tangent half-space. ΠX ≡ R
2 × R+.

(b) X = (x0, x1) where x1 = 1 is the only element in R+∩S
0. Thus ΠX = R

3.

3) Let x0 belong to an edge. There are three possible lengths for chains in Cx0(Ω):

(a) X = (x0) with ΠX = Πx0 , the tangent wedge (which is not a half-space).

The reduced cone of Πx0 is a sector Γx0 the section of which is an interval

Ix0 ⊂ S
1.

(b) X = (x0, x1) where x1 ∈ I x0 .

(i) If x1 is interior to Ix0 , ΠX = R
3. No further chain.

(ii) If x1 is a boundary point of Ix0 , ΠX is a half-space, containing one

of the two faces ∂±Πx0 of the wedge Πx0 .

(c) X = (x0, x1, x2) where x1 ∈ ∂Ix0 , x2 = 1 and ΠX = R
3.

4) Let x0 be a corner. There are four possible lengths for chains in Cx0(Ω):

(a) X = (x0) with ΠX = Πx0 , the tangent cone (which is not a wedge). It

coincides with its reduced cone. Its section Ωx0 is a polygonal domain

in S
2.

(b) X = (x0, x1) where x1 ∈ Ωx0 .

(i) If x1 is interior to Ωx0 , ΠX = R
3. No further chain.

(ii) If x1 is in a side of Ωx0 , ΠX is a half-space.

(iii) If x1 is a corner of Ωx0 , ΠX is a wedge. Its edge contains one of the

edges of Πx0 .

(c) X = (x0, x1, x2) where x1 ∈ ∂Ωx0

(i) If x1 is in a side of Ωx0 , x2 = 1, ΠX = R
3. No further chain.

(ii) If x1 is a corner of Ωx0 , Cx0,x1 is plane sector, and x2 ∈ I x0,x1 where

the interval Ix0,x1 is its section.

(A) If x2 is an interior point of Ix0,x1 , then ΠX = R
3.

(B) If x2 is a boundary point of Ix0,x1 , then ΠX is a half-space.

(d) X = (x0, x1, x2, x3) where x1 is a corner of Ωx0 , x2 ∈ ∂Ix0,x1 and x3 = 1.

Then ΠX = R
3.

As a consequence of this description we may identify equivalence classes in Cx0(Ω).

It remains to consider edge points and corners:

— If x0 is an edge point, there are 4 equivalence classes: X = (x0), X = (x0, x
±
1 )

with x−1 , x
+
1 the ends of Ix0 , and X = (x0, x◦1) with x◦1 any chosen point in Ix0 .
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Figure 3.4. The tree of singular chains with numbering according to De-

scription 3.32 (‘Half’ is for half-space)

— If x0 is a polyhedral corner, the set of the equivalence classes of Cx0(Ω) is finite

according to the following description. Let xj1, 1 ≤ j ≤ N , be the corners of Ωx0 ,

and fj1, 1 ≤ j ≤ N , be its sides (notice that there are as many corners as sides). There

are 2N+2 equivalence classes: X = (x0) (vertex), X = (x0, x
j
1) with 1 ≤ j ≤ N (edge-

point limit), X = (x0, x
◦,j
1 ) with x◦,j1 any chosen point inside fj1 (face-point limit), and

X = (x0, x◦1) with x◦1 any chosen point in Ωx0 (interior point limit).

— If x0 belongs to V◦, the set of chains which are face-point limits is infinite.

Moreover, chains (x0, x1, x2) obtained by the general above procedure (4)-(c)-(ii)-(B)

can be irreducible: Such chains represent the limit of a conical face close to an edge.

Example 3.33. — We link some cases of the enumeration in Description 3.32 with

the corner domains in Figures 1.1, 1.2 and 1.3:

– Cases 1 and 2 occur for all interior points and all points inside a face (regular

points of the boundary), respectively.

– Case 3 (points inside an edge) occurs for domains in Figure 1.2 and 1.3. Together

with cases 1 and 2, case 3 is sufficient to describe all singular chains of domains

in Figure 1.2.

– Case 4 (corner point) occurs in Figures 1.1 and 1.3. For Figure 1.1, cases 4 (a),

4 (b-i) and (b-ii) are enough to describe all singular chains issued from a corner,

whereas for Figure 1.3, all subcases of case 4 are needed.
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Remark 3.34. — The exhaustion of chains done in Description 3.32 allows to figure

out what are the connected components of the set of chains C(Ω) for the distance D:

– The corner chains X = (x0) are isolated from each other.

– Let e be an edge. The chains X = (x0) with x0 ∈ e are completed by suitable

corner chains X = (x0, x1) such that x0 ∈ ∂ e and ΠX is a wedge. The resulting

set endowed with distance D is homoemorphic to e with the standard distance

(except if e has only one end, in analogy with the shape of the boundary pre-

sented in Figure 3.1). Convex and nonconvex edges are at infinite distance from

each other.

– If Ω is polyhedral, we have something similar for the faces: With f a chosen

face, the chains X = (x0) with x0 ∈ f are completed by suitable edge chains

X = (x0, x1) and suitable corner chains X = (x0, x1, x2) such that ΠX is a half-

space. The resulting set endowed with distance D is homoemorphic to f with

the standard distance (with a few exceptions as above).

– If Ω is not polyhedral, and if the face f contains a conical point x0, the contribu-

tion of the corner chains X = (x0, x1, x2) does not reduce to a single chain with

a single half-space ΠX. We have now a blow up of the boundary of f near x0.

Distinct faces are at finite nonzero distance from each other in general (the ex-

ception is when two faces share a corner and a tangent plane passing by this

corner).

– Finally, Ω is homoemorphic to the union of all chains X starting with any x0 ∈ Ω

and such that ΠX = R
3.
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CHAPTER 4

MAGNETIC LAPLACIANS AND THEIR TANGENT

OPERATORS

Let A be a magnetic potential associated with the magnetic field B on a corner

domain Ω ∈ D(R3). We recall that Ω is assumed to be simply connected, and that

the corresponding magnetic Laplacian is Hh(A,Ω) = (−ih∇ + A)2. At each point

x0 ∈ Ω is associated a local map (Ux0 ,U
x0) and a tangent cone Πx0 , cf. (3.1). We

will associate a tangent magnetic potential to Πx0 and provide formulas and esti-

mates for the operator transformed by the local map (Ux0 ,U
x0) from the magnetic

Laplacian Hh(A,Ω).

4.1. Change of variables

Let Ω ∈ D(R3). We consider a magnetic potential A ∈ C 1(Ω). Let x0 ∈ Ω. Let

us recall that with x0 are associated the local smooth diffeomorphism Ux0 (3.1), the

Jacobian matrix Jx0 (3.2) of the inverse of Ux0 and the associated metric Gx0 (3.3).

According to formulas (A.4)–(A.5), we introduce the magnetic potential Ax0 and

magnetic field Bx0 = curl Ax0 transformed by Ux0 in Vx0 ∩Πx0

(4.1)

{
Ax0 := (Jx0)�

(
(A− A(x0)) ◦ (Ux0)−1

)
,

Bx0 := | det Jx0 | (Jx0)−1
(
B ◦ (Ux0)−1

)
.

We also introduce the phase shift

(4.2) ζ x0h (x) = ei〈A(x0), x〉/h, x ∈ Ω,

so that there holds for any f in H1(Ω)

(4.3) qh[A,Ω](f) = qh
[
A− A(x0),Ω

]
(ζ x0h f).

To f ∈ H1(Ω) with support in Ux0 we associate the function ψ

(4.4) ψ := (ζ x0h f) ◦ (Ux0)−1,
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defined in Πx0 , with support in Vx0 . For any h > 0 Lemma A.3 provides the identities

(4.5) qh[A,Ω](f) = qh
[
Ax0 ,Πx0 ,G

x0
]
(ψ) and ‖f‖L2(Ω) = ‖ψ‖L2

Gx0
(Πx0 )

,

where the quadratic forms qh[A,Ω] and qh[A
x0 ,Πx0 ,G

x0 ] are defined in (1.18)

and (1.21), respectively. Using the Rayleigh quotient, we immediately deduce

(4.6) Qh[A,Ω](f) = Qh[A
x0 ,Πx0 ,G

x0 ](ψ).

4.2. Model and tangent operators

Definition 4.1. — We call model operator any magnetic Laplacian H(A,Π) where

Π ∈ P3 and A is a linear potential associated with the constant magnetic field B.

We denote by E(B,Π) the bottom of the spectrum (ground state energy) of H(A,Π)

and by λess(B,Π) the bottom of its essential spectrum.

Let Ω ∈ D(R3) and A ∈ C 1(Ω). For each x0 ∈ Ω we set

(4.7) Bx0 = B(x0) and Ax0(v) = ∇A(x0) · v, v ∈ Πx0 ,

so that Bx0 is the magnetic field frozen at x0 and Ax0 the linear part
(1) of the potential

at x0.

By extension, for each singular chain X = (x0, x1, . . . , xp) ∈ C(Ω) we set

(4.8) BX = B(x0) and AX(x) = ∇A(x0) · x, x ∈ ΠX.

We have obviously

curl AX = BX.

Definition 4.2. — Let Ω ∈ D(R3) and A ∈ C 1(Ω). Let X ∈ C(Ω) be a singular

chain of Ω. The model operator H(AX ,ΠX) is called a tangent operator .

Remark 4.3. — The notion of equivalence classes between singular chains as intro-

duced in Definition 3.20 is sufficient for the analysis of operators Hh(A,Ω) in the case

of magnetic fields B smooth in Cartesian variables. Should B be smooth in polar

variables only, the whole hierarchy of singular chains would be needed.

The potential Ax0 and the field Bx0 are connected to the potential Ax0 and field

Bx0 (4.1) obtained through the local map: Since dUx0(x0) = I3 by definition, we have

(4.9) Bx0(0) = Bx0 .

Likewise, let Ax0
0 be the linear part of Ax0 at the vertex 0 of Πx0 . Then:

(4.10) Ax0(0) = 0 and Ax0
0 = Ax0 .

Local and minimum energies are introduced as follows.

1. In (4.7), ∇A is the 3× 3 matrix with entries ∂kAj , 1 ≤ j, k ≤ 3, and · v denotes the multipli-

cation by the column vector v = (v1, v2, v3)�.
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Definition 4.4. — Let Ω ∈ D(R3) and B ∈ C 0(Ω). The application x �→ E(Bx ,Πx)

is called local ground energy (with E(B,Π) introduced in Definition 4.1). We define

the lowest local energy of B on Ω by

(4.11) E (B,Ω) := inf
x∈Ω

E(Bx ,Πx).

The relations with singular chains and the question whether E (B,Ω) is a minimum

are addressed later on Chapter 8.

4.3. Linearization

Starting from the identity (4.5) qh[A,Ω](f) = qh[A
x0 ,Πx0 ,G

x0 ](ψ), we want to

compare qh[A
x0 ,Πx0 ,G

x0 ](ψ) with the term qh[A
x0
0 ,Πx0 ](ψ) = qh[Ax0 ,Πx0 ](ψ) ob-

tained by linearizing the potential and the metric.

4.3.1. Change of metric. — Here we compare L2 norm and quadratic forms as-

sociated with the metric Gx0 , with the corresponding quantities associated with the

trivial metric I3. Like in Proposition 3.13 and Corollary 3.29, and for the same rea-

sons, we have essentially two distinct cases, resulting into a uniform approximation

in a polyhedral domain, and a controlled blow up close to conical points when they

are present.

Lemma 4.5. — Let Ω ∈ D(R3) and (Ux,U
x)x∈Ω be an admissible atlas. We recall that

the set of reference points X contains the set of conical vertices V◦. Let A ∈ C 2(Ω)

be a magnetic potential and, for x0 ∈ Ω, let Ax0 be the potential (4.1) produced by the

local map Ux0 . There exists c(Ω) such that

(a) for all x0 ∈ X and r ∈ (0, Rx0), for all ψ ∈ H1(Πx0) satisfying supp(ψ) ⊂
B(0, r), we have:

(4.12)

{∣∣qh[Ax0 ,Πx0 ,G
x0 ](ψ)− qh[A

x0 ,Πx0 ](ψ)
∣∣ ≤ c(Ω) r qh[A

x0 ,Πx0 ,G
x0 ](ψ),∣∣‖ψ‖L2

Gx0
(Πx0 )

− ‖ψ‖L2(Πx0 )

∣∣ ≤ c(Ω) r ‖ψ‖L2(Πx0 )
.

(b) for all u0 ∈ Ω \ X and r ∈ (0, ρ(u0)) (with ρ(u0) given by Proposition 3.13),

for all ψ ∈ H1(Πu0) satisfying supp(ψ) ⊂ B(0, r), we have:

(4.13)

⎧⎪⎨⎪⎩
∣∣qh[Au0 ,Πu0 ,G

u0 ](ψ)− qh[A
u0 ,Πu0 ](ψ)

∣∣
≤ c(Ω) r

dV◦ (u0)
qh[A

u0 ,Πu0 ,G
u0 ](ψ),∣∣‖ψ‖L2

Gu0
(Πu0 )

− ‖ψ‖L2(Πu0 )

∣∣ ≤ c(Ω) r
dV◦ (u0)

‖ψ‖L2(Πu0 )
,

with dV◦ defined in (3.38).

Proof. — The lemma is a direct consequence of Corollary 3.29 providing estimates for

the L∞ norm of the difference Gx0 − I3. Let τi = τi(x) be the eigenvalues of Gx0(x).

The estimate on Gx0 − I3 implies a similar estimate for max{‖τi − 1‖L∞ , 1 ≤ i ≤ 3},
which allows to compare the quadratic forms associated with Gx0 and with I3.
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Combining the identities (4.5) with Lemma 4.5, we see that it is equivalent to deal

with qh[A,Ω](f) or qh[A
x0 ,Πx0 ](ψ) modulo a well-controlled error. This will be useful

later on when we will estimate the corresponding Rayleigh quotients (see Chapters 5

and 9).

4.3.2. Linearization of the potential. — We estimate the remainders due to the

linearization Ax0
0 at the vertex 0 of the tangent cone Πx0 of the potential Ax0 resulting

from a local map. For this, we first use a Taylor expansion around 0 in Πx0 .

Lemma 4.6. — Let x0 ∈ Ω. For any r > 0 such that Vx0 ⊃ B(0, r)
(4.14) ∀v ∈ B(0, r) ∩Πx0 ,

∣∣Ax0(v)− Ax0
0 (v)

∣∣ ≤ 1
2‖Ax0‖W 2,∞(B(0,r)∩Πx0 )

· |v|2.

So we have to estimate the second derivatives of the mapped potentials Ax0 .

Lemma 4.7. — Let Ω ∈ D(R3) with an associated admissible atlas with set of refer-

ence points X. Let A ∈ C 2(Ω) be a magnetic potential. For x0 ∈ Ω, let Ax0 be the

potential (4.1). There exists c(Ω) such that

(a) for all x0 ∈ X,

(4.15)
∥∥d2Ax0(v)

∥∥ ≤ c(Ω)‖A‖W 2,∞(Ω), ∀v ∈ B(0, Rx0).

(b) for all u0 ∈ Ω \ X, with ρ(u0) given in Proposition 3.13 and dV◦ defined in

(3.38),

(4.16) ‖d2Au0(v)‖ ≤ c(Ω)
(‖A‖W 1,∞(Ω)

dV◦(u0)
+ ‖A‖W 2,∞(Ω)

)
, ∀v ∈ B(0, ρ(u0)).

Proof. — Let u0 ∈ Ω. Differentiating twice (4.1), for u ∈ Ux0 and v = Uu0(u), we

obtain

‖d2Au0(v)‖ � ‖dKu0(v)‖ · ∣∣A(u)− A(u0)
∣∣

+
∥∥Ku0(v)

∥∥ · ∥∥Ju0(v)∥∥ · ∥∥dA(u)∥∥+ ∥∥Ju0(v)∥∥3 · ∥∥d2A(u)
∥∥.

(a) When u0 = x0 ∈ X, inequality (4.15) is a consequence of Proposition 3.13 and

Remark 3.15 (1).

(b) Let u0 ∈ Ω \ X and x0 ∈ X such that u0 ∈ Ux0 . The above inequality,

Proposition 3.13 and Remark 3.15 (2) yield for v ∈ B(0, ρ(u0)),

‖d2Au0(v)‖ � |u− u0|
|u0 − x0|2 ‖A‖W 1,∞ +

1

|u0 − x0| ‖A‖W 1,∞ + ‖A‖W 2,∞

� 1

|u0 − x0| ‖A‖W 1,∞ + ‖A‖W 2,∞ .

Here we have used the inequality |u− u0| ≤ |u0 − x0| which holds by construction of

the admissible atlas.
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Estimates between Ax0 and Ax0
0 deduced from the combination of Lemmas 4.6 and

4.7 allow to compare qh[A
x0 ,Πx0 ](ψ) and qh[A

x0
0 ,Πx0 ](ψ) via identity (A.6) which

writes

qh[A
x0 ,Πx0 ](ψ) = qh[A

x0
0 ,Πx0 ](ψ) + 2Re

〈
(−ih∇+ Ax0

0 )ψ, (Ax0 − Ax0
0 )ψ
〉

+ ‖(Ax0 − Ax0
0 )ψ‖2.

This will be extensively used in Chapters 5 and 9.

4.4. A general rough upper bound

Before tackling lower bounds in the next chapter, relying on the perturbation

estimates provided by Lemmas 4.5 and 4.7, we are going to prove a very general

rough upper bound for the Rayleigh quotients Qh[A,Ω] (1.19) as h → 0. This proof

does use any specific feature of three-dimensional problems. So we present it in the

n-dimensional framework.

In the n-dimensional case, the magnetic field is a 2-form and associated magnetic

potentials are 1-forms that we write by using their representation as vector fields in

a canonical basis of Rn, see (1.2)–(1.3). In dimension n, E(B,Π) and E (B,Ω) are

defined as in Definition 4.4.

In this context we prove a rough upper bound on the first eigenvalue of Hh(A,Ω)

by using only elementary arguments. We need the following Lemma, that will also be

useful later:

Lemma 4.8. — Let Ω ∈ D(Rn) and let A ∈ C 2(Ω) be a magnetic potential associated

with the magnetic field B. Let x0 ∈ Ω be a chosen point and let ε > 0. Then there

exists h0 > 0 such that for all h ∈ (0, h0) there exists a function fh supported near x0
satisfying

Qh[A,Ω](fh) ≤ h
(
E(Bx0 ,Πx0) + ε

)
,

where E(Bx0 ,Πx0) is the ground state energy of H(Ax0 ,Πx0).

Proof. — Let (Ux0 ,U
x0) be a local map with Ux0 : Ux0 �→ Vx0 ⊂ Πx0 , cf. (3.1). This

change of variables transforms the magnetic potential into Ax0 given by (4.1):

Ax0 = (Jx0)�
(
(A− A(x0)) ◦ (Ux0)−1

)
.

Denote by Ax0
0 its linear part. Recall that curl Ax0

0 = Bx0 . By definition of

E(Bx0 ,Πx0) there exists ψ ∈ Dom(q[Ax0
0 ,Πx0 ]) a L2-normalized function such that

q[Ax0
0 ,Πx0 ](ψ) ≤ E(Bx0 ,Πx0) +

1
4ε.

Let us consider a smooth cut-off function χ with support in B(0, 1) and equal to 1

on B(0, 1
2 ). Then the functions with compact support x �−→ χ( x

R )ψ(x) converge to ψ
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in Dom(q[Ax0
0 ,Πx0 ]) as R → ∞. Therefore there exists R = R(ε, x0) > 0 and a new

function ψ ∈ Dom(q[Ax0
0 ,Πx0 ]) with support in B(0, R) which satisfies

q[Ax0
0 ,Πx0 ](ψ) ≤ E(Bx0 ,Πx0) +

1
2ε.

For h > 0, define the L2-normalized function ψh(x) = h−n/4ψ(h−1/2x) so that, cf.

Lemma A.4,

qh[A
x0
0 ,Πx0 ](ψh) ≤ h

(
E(Bx0 ,Πx0) +

1
2ε
)
.

We have the inclusion supp(ψh) ⊂ B(0, h1/2R) and therefore there exists hε > 0 such

that for all h ∈ (0, hε), supp(ψh) ⊂ Vx0 . Combining (A.6) with a Cauchy-Schwarz

inequality we find

(4.17) qh[A
x0 ,Πx0 ](ψh) ≤ qh[A

x0
0 ,Πx0 ](ψh)

+ 2
√
qh[A

x0
0 ,Πx0 ](ψh)

∥∥(Ax0 − Ax0
0 )ψh

∥∥+ ∥∥(Ax0 − Ax0
0 )ψh

∥∥2.
Notice now that the estimates (a) of Proposition 3.13 are still valid for any chosen x0
in Ω with constants c(x0) and radius Rx0 depending on x0. Hence estimates (a) of

Lemma 4.7 holds at x0 with a constant c(x0) replacing the uniform constant c(Ω).

Therefore applying Lemma 4.6 with r = h1/2R we get c = c(ε, x0) > 0 such that

‖(Ax0 − Ax0
0 )ψh‖ ≤ cR2h‖ψh‖, ∀h ∈ (0, hε).

Let Gx0 be the metric associated with the change of variables (see Section 4.1). Again

(a) of Lemma 4.5 is valid for all x0 ∈ Ω with c(x0) instead of c(Ω). Applying this

with r = h1/2R provides another constant c = c(ε, x0) > 0 such that∣∣qh[Ax0 ,Πx0 ,G
x0 ](ψh)− qh[A

x0 ,Πx0 ](ψh)
∣∣ ≤ cRh1/2 qh[A

x0 ,Πx0 ](ψh),(4.18) ∣∣‖ψh‖L2
Gx0

(Πx0 )
− ‖ψh‖L2(Πx0 )

∣∣ ≤ cRh1/2 ‖ψh‖L2(Πx0 )
.(4.19)

According to Section 4.1 (4.1)–(4.5), we define for h ∈ (0, hε):

fh := (ζ x0h )−1 ψh ◦Ux0 with ζ x0h (x) = ei〈A(x0), x〉/h, x ∈ Ux0 ∩ Ω

and we have

qh[A,Ω](fh) = qh[A
x0 ,Πx0 ,G

x0 ](ψh) and ‖fh‖L2(Ω) = ‖ψh‖L2
Gx0

(Πx0 )
.

Thus, combining with (4.17)–(4.19) we deduce

Qh[A,Ω](fh) ≤ (1 + cRh1/2)
(
Qh[A

x0
0 ,Πx0 ](ψh) + c(R2h3/2 +R4h2)

)
≤ (1 + cRh1/2)

(
h
(
E(Bx0 ,Πx0) +

1
2ε
)
+ c(R2h3/2 +R4h2)

)
.

We can write this in the form

Qh[A,Ω](fh) ≤ h
(
E(Bx0 ,Πx0) +

1
2ε+ h1/2Mε(h)

)
,

where Mε(h) is a bounded function for h ∈ [0, hε] that depends on ε > 0. We deduce

the lemma by choosing h so small that h1/2Mε(h) ≤ 1
2ε.

As a consequence of Lemma 4.8 and the min-max principle we obtain:
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Proposition 4.9. — Let Ω ∈ D(Rn) and let A ∈ C 2(Ω) be a magnetic potential

associated with the magnetic field B. Then the first eigenvalue λh(B,Ω) of H(A,Ω)

satisfies

lim sup
h→0

λh(B,Ω)

h
≤ E (B,Ω).
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CHAPTER 5

LOWER BOUNDS FOR GROUND STATE ENERGY

IN CORNER DOMAINS

In this section we establish a lower bound for the first eigenvalue λh(B,Ω) of the

magnetic Laplacian Hh(A,Ω) with Neumann boundary conditions.

Theorem 5.1. — Let Ω ∈ D(R3) be a corner domain, and let A ∈ C 2(Ω) be a

magnetic potential. Then there exist CΩ > 0 and h0 > 0 such that for all h ∈ (0, h0):

λh(B,Ω)(5.1)

≥
{
hE (B,Ω)− CΩ

(
1 + ‖A‖2W 2,∞(Ω)

)
h11/10, Ω general corner domain,

hE (B,Ω)− CΩ

(
1 + ‖A‖2W 2,∞(Ω)

)
h5/4, Ω polyhedral domain.

We recall that the quantity E (B,Ω) is the lowest local energy defined in (4.11).

Remark 5.2. — If the magnetic field B vanishes, then E (B,Ω) = 0 and Theorem 5.1

is obvious. By contrast, if B does not vanish on Ω, we will see in Corollary 8.5

that E (B,Ω) > 0.

Structure of the proof. — The proof proceeds from an IMS partition argument coupled

with the analysis of remainders due to the cut-off effects, the local maps and the

linearization of the potential. The less classical piece of the analysis is our special

construction of cut-off functions in regions close to conical points x0 ∈ V◦, where a

second, smaller, scale is introduced.

We choose first an admissible atlas on Ω according to Definition 3.11 and we recall

that the conical points are part of the set X of its reference points.

Splitting off the conical points. — We start with a (smooth) macro partition of unity

on Ω, independent of h, (Ξ0, (Ξx)x∈V◦) which aims at separating the conical points,

i.e., such that

– suppΞ0 ∩V◦ = ∅,

– for any x0 ∈ V◦, suppΞx0 ⊂ B(x0, Rx0).
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Here Rx0 is the radius associated with the reference point x0 in the admissible atlas.

In the polyhedral case, i.e., when V◦ = ∅, we simply set Ξ0 ≡ 1.

For any f ∈ H1(Ω) IMS formula (see Lemma A.5) gives

qh[A,Ω](f) = qh[A,Ω](Ξ0f) +
∑
x∈V◦

qh[A,Ω](Ξxf)− h2
(∥∥(∇Ξ0)f

∥∥2 + ∑
x∈V◦

∥∥(∇Ξx)f
∥∥2)

≥ qh[A,Ω](Ξ0f) +
∑

x0∈V◦
qh[A,Ω](Ξxf)− Ch2‖f‖2.(5.2)

In Section 5.1, we give a lower bound of qh[A,Ω](Ξ0f). In the polyhedral case,

this will finish the proof. Section 5.2 is devoted to conical points and estimates of

qh[A,Ω](Ξxf).

5.1. Estimates outside conical points

Here we prove a lower bound for qh[A,Ω](Ξ0f).

IMS localization. — Let δ ∈ (0, 1
2 ) be an exponent which will be determined later

on. Now, we make a h-dependent partition of suppΞ0 ∩ Ω with size hδ. Relying on

Lemma B.1, we can choose for 0 < h ≤ h0 (h0 small enough) a finite set C (h) of

points c ∈ Ω together with radii ρc equivalent to hδ (with uniformity as h → 0) such

that

1) The union of balls B(c, ρc) covers suppΞ0 ∩ Ω

2) Each ball B(c, 2ρc) is contained in a map-neighborhood of the admissible atlas

3) The finite covering condition holds

Relying on Lemma B.2, we choose an associate partition of unity
(
ξc
)
c∈C (h)

such that

ξc ∈ C∞
0 (B(c, ρc)), ∀c ∈ C (h) and Ξ0

∑
c∈C (h)

ξ2c = Ξ0 on Ω,

and satisfying the uniform estimate of gradients

(5.3) ∃C > 0, ∀h ∈ (0, h0), ∀c ∈ C (h), ‖∇ξc‖L∞(Ω) ≤ Ch−δ.

The IMS formula (see Lemma A.5) provides for all f ∈ H1(Ω)

qh[A,Ω](Ξ0f) =
∑

c∈C (h)

qh[A,Ω](ξc Ξ0f)− h2
∑

c∈C (h)

‖∇ξc Ξ0f‖2L2(Ω)

and using (5.3) we get C = C(Ω) > 0 such that

(5.4) qh[A,Ω](Ξ0f) ≥
∑

c∈C (h)

qh[A,Ω](ξcΞ0f)− C h2−2δ‖Ξ0f‖2L2(Ω).
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Local control of the energy. — For each center c ∈ C (h), we are going to bound from

below the term qh[A,Ω](ξc Ξ0f) appearing in (5.4). By construction supp(ξc Ξ0f) is

contained in the map-neighborhood Uc. Using (4.2) and (4.4), we set

(5.5) ψc := (ζ ch ξc Ξ0f) ◦ (Uc)−1, with ζ ch(x) = ei〈A(c), x〉/h.

According to (4.5) with x0 replaced by c, we have

(5.6) qh[A,Ω](ξcΞ0f) = qh[A
c,Πc,G

c](ψc) and ‖ξc Ξ0f‖L2(Ω) = ‖ψc‖L2
Gc (Πc).

In order to replace the metric Gc by the identity, we apply Lemma 4.5 with r � hδ.

Using that the distance dV◦ to conical points is bounded from below by a positive

number on suppΞ0, we obtain the existence of a constant c(Ω) > 0 such that for all

centers c ∈ C (h)

(5.7) Qh[A
c,Πc,G

c](ψc) ≥
(
1− c(Ω)hδ

)
Qh[A

c,Πc](ψc).

We now want to replace Ac in the above Rayleigh quotient by its linear part Ac
0 at

0. For this we use identity (A.6) with ψ = ψc and O = Πc:

(5.8) qh[A
c,Πc](ψc) = qh[A

c
0,Πc](ψc)

+ 2Re
〈
(−ih∇+ Ac

0)ψc, (A
c − Ac

0)ψc

〉
+
∥∥(Ac − Ac

0)ψc

∥∥2.
This yields qh[A

c,Πc](ψc) ≥ qh[A
c
0,Πc](ψc)− 2 (qh[A

c
0,Πc](ψc))

1/2 ‖(Ac−Ac
0)ψc‖ by

Cauchy-Schwarz inequality, leading to the parametric estimate (based on inequality

2ab ≤ ηa2 + η−1b2)

(5.9) ∀η > 0, qh[A
c,Πc](ψc) ≥ (1− η)qh[A

c
0,Πc](ψc)− η−1‖(Ac − Ac

0)ψc‖2.
Since curl Ac

0 = Bc, we have the lower bound by the minimum local energy at c:

qh[A
c
0,Πc](ψc) ≥ hE(Bc,Πc)‖ψc‖2(5.10)

≥ hE (B,Ω)‖ψc‖2.(5.11)

According to Lemmas 4.6 and 4.7 (note that dV◦ ≥ r0 > 0 on suppΞ0), we have

(5.12) ‖(Ac − Ac
0)ψc‖ ≤ c(Ω)‖A‖W 2,∞(Ω)h

2δ‖ψc‖.
Combining (5.9)–(5.12) we deduce for all η > 0:

qh[A
c,Πc](ψc) ≥ (1− η)hE (B,Ω)‖ψc‖2 − η−1h4δc(Ω)2‖A‖2W 2,∞(Ω) · ‖ψc‖2.

Choosing η = h2δ− 1
2 to equilibrate ηh and η−1h4δ, we get the following lower bound

for all c ∈ C (h):

qh[A
c,Πc](ψc) ≥

(
hE (B,Ω)− CΩ

(
1 + ‖A‖2W 2,∞(Ω)

)
h2δ+ 1

2

)‖ψc‖2.(5.13)
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Conclusion. — Combining the previous localized estimate (5.13) with (5.7) we de-

duce:

qh[A,Ω](ξc Ξ0f)(5.14)

≥ (hE (B,Ω)− CΩ(1 + ‖A‖2W 2,∞(Ω))(h
2δ+ 1

2 + h1+δ)
)‖ξc Ξ0f‖2.

Summing up in c ∈ C (h), we obtain

(5.15)

∑
c∈C (h) qh[A,Ω](ξc Ξ0f)

‖Ξ0f‖2L2(Ω)

≥ hE (B,Ω)−CΩ(1+ ‖A‖2W 2,∞(Ω))(h
2δ+ 1

2 +h1+δ).

Using (5.4), we get another constant CΩ > 0 such that for all f ∈ H1(Ω),

(5.16) Qh[A,Ω](Ξ0f) ≥ hE (B,Ω)− CΩ(1 + ‖A‖2W 2,∞(Ω))
(
h2δ+ 1

2 + h1+δ + h2−2δ
)
.

In the polyhedral case, Ξ0 ≡ 1 and the remainders are optimized by taking δ = 3
8

in (5.16), which implies Theorem 5.1 in this case.

5.2. Estimates near conical points

Let x0 ∈ V◦. We estimate qh[A,Ω](Ξx0f) from below.

IMS partition. — For h > 0 small enough we construct a special covering of the

support of Ξx0 . We recall that this support is included in the ball B(x0, Rx0). We

cover B(x0, Rx0) ∩ Ω by a finite collection of h-dependent balls B(c, ρc):
– The first ball is centered at x0 itself and its radius is 2hδ0 : B(c, ρc) = B(x0, 2hδ0).

Here the exponent δ0 ∈ (0, 1
2 ) will be chosen later on.

– The other balls B(c, ρc) cover the annular region hδ0 ≤ |x− x0| < Rx0 and their

radii are � hδ0+δ1 where the new exponent δ1 > 0 is such that δ0 + δ1 < 1
2

and will be also chosen later on. Thanks to Lemma B.1 the set C (h, x0) of

the centers and the corresponding radii can be taken so that the conditions of

this lemma are satisfied (inclusion in map-neighborhoods, finite covering), see

previous case Section5.1.

So this covering contains a “large” ball centered at the corner and a whole bunch of

smaller ones covering the remaining part.

Relying on Lemma B.2, we choose an associate partition of unity
(
ξc
)
c∈{x0}∪C (h,x0)

such that

ξc ∈ C∞
0 (B(c, ρc)), ∀c ∈ {x0} ∪ C (h, x0), and Ξx0

∑
c∈{x0}∪C (h,x0)

ξ2c = Ξx0 on Ω,

and satisfying the following uniform estimate of gradients for all h ∈ (0, h0):

for c = x0, ‖∇ξc‖L∞(Ω) ≤ Ch−δ0 and ∀c ∈ C (h, x0),(5.17)

‖∇ξc‖L∞(Ω) ≤ Ch−δ0−δ1 .
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Using the IMS formula (see Lemma A.5), we have like previously in (5.4)

qh[A,Ω](Ξx0f) ≥ qh[A,Ω](ξx0 Ξx0f)(5.18)

+
∑

c∈C (h,x0)

qh[A,Ω](ξc Ξx0f)− Ch2−2(δ0+δ1)‖Ξx0f‖2.

Local control of the energy. — When c = x0, we can proceed in the same way as

in the polyhedral case due to the “good” estimates stated in Lemma 4.5 (a) and

Lemma 4.7 (a). So we obtain a similar estimate as in (5.14): There exists a con-

stant C = C(Ω) such that for any function f ∈ H1(Ω)

qh[A,Ω](ξx0Ξx0f)(5.19)

≥ (hE (B,Ω)− C(1 + ‖A‖2W 2,∞(Ω))(h
2δ0+

1
2 + h1+δ0)

)‖ξx0Ξx0f‖2.
When c ∈ C (h, x0), we have to revisit the arguments leading from (5.5) to the

final individual estimate (5.14). First we define ψc like in (5.5), replacing the cut-

off Ξ0 by Ξx0 . Then we have (5.6) mutatis mutandis. Next we have to use Lemma

4.5 (b) with u0 = c to flatten the metric. Here we have to take the distance dV◦(c)

to conical points into account. By construction dV◦(c) coincides with |c − x0|, so is

larger than hδ0 , while the quantity r equals ρc, thus is � hδ0+δ1 : In short

r

dV◦(c)
=

ρc

|c− x0| � hδ1 .

Hence, we obtain in place of (5.7):

(5.20) Qh[A
c,Πc,G

c](ψc) ≥
(
1− c(Ω)hδ1

)
Qh[A

c,Πc](ψc).

For the linearization of the potential Ac, the expressions (5.8)–(5.11) are still valid,

leading to the parametric estimate

(5.21) ∀η > 0, qh[A
c,Πc](ψc) ≥ (1− η)hE (B,Ω)‖ψc‖2 − η−1

∥∥(Ac − Ac
0)ψc

∥∥2.
Here we use Lemmas 4.6 and 4.7 (b) and obtain, since ρc � hδ0+δ1 and dV◦(c) ≥ hδ0

∥∥(Ac − Ac
0)ψc

∥∥ ≤ c(Ω)
ρ2c

dV◦(c)
‖A‖W 2,∞(Ω)‖ψc‖(5.22)

≤ c(Ω)hδ0+2δ1‖A‖W 2,∞(Ω)‖ψc‖.

Combining (5.21) with (5.22) and taking η = hδ0+2δ1− 1
2 we deduce for all c ∈ C (h, x0),

qh[A
c,Πc](ψc) ≥

(
hE (B,Ω)− C(Ω)

(
1 + ‖A‖2W 2,∞(Ω)

)
hδ0+2δ1+

1
2

)
‖ψc‖2,(5.23)

and then with (5.20) (and (5.6) with Ξx0)

qh[A,Ω](ξcΞx0f)(5.24)

≥
(
hE (B,Ω)− C(1 + ‖A‖2W 2,∞(Ω))(h

δ0+2δ1+
1
2 + h1+δ1)

)
‖ξcΞx0f‖2.
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Summing up (5.19) and (5.24) for c ∈ C (h, x0), and combining with the IMS formula,

we deduce

Qh[A,Ω](Ξx0f)(5.25)

≥ hE (B,Ω)− C
(
h2δ0+

1
2 + h1+δ0 + h

1
2+δ0+2δ1 + h1+δ1 + h2−2(δ0+δ1)

)
,

with C = c(Ω)(1 + ‖A‖2W 2,∞(Ω)).

Conclusion. — Combining (5.2), (5.16) and (5.25), we deduce

(5.26) Qh[A,Ω](f) ≥ hE (B,Ω)− Ch2 − C
(
h2δ+ 1

2 + h1+δ + h2−2δ
)

− C
(
h2δ0+

1
2 + h1+δ0 + h

1
2+δ0+2δ1 + h1+δ1 + h2−2(δ0+δ1)

)
,

with C = c(Ω)(1 + ‖A‖2W 2,∞(Ω)).

Remind that the error with power δ0 and δ1 only appears when Ω has conical

points. To optimize the remainder, we first choose δ = 3/8. We have now to optimize

parameters δ0, δ1 under the constraints 0 < δ0 + δ1 < 1
2 , δ0 > 0, δ1 > 0. We have

min(1 + δ0,
1
2 + 2δ0) =

1
2 + 2δ0, and min(1 + δ1,

1
2 + δ0 + 2δ1) =

1
2 + δ0 + 2δ1.

We are reduced to solve{
1
2 + 2δ0 = 1

2 + δ0 + 2δ1
1
2 + 2δ0 = 2− 2δ0 − 2δ1

⇐⇒
{
2δ1 = δ0
3
2 = 4δ0 + 2δ1

⇐⇒ δ0 =
3

10
and δ1 =

3

20
.

Then we get C(Ω) > 0 such that

(5.27) ∀f ∈ H1(Ω), Qh[A,Ω](f) ≥ hE (B,Ω)− C(Ω)
(
1 + ‖A‖2W 2,∞(Ω)

)
h11/10.

For further use we extract the following corollary of the previous proof:

Corollary 5.3. — Let x0 ∈ Ω and K := B(x0, δ) with δ > 0. We define

EK(B,Ω) := inf
x∈Ω∩K

E(Bx,Πx).

Then there exists C > 0 and h0 > 0 such that for all h ∈ (0, h0) and for all f ∈
Dom(qh[A,Ω]) with support supp f ⊂⊂ K:

Qh[A,Ω](f) ≥ hEK(B,Ω)− Ch11/10.

Proof. — The corollary is obtained by slight modifications in the above proof. First

we make a covering of Ω ∩K instead in Ω. Therefore in the lower bound (5.10), we

only have to consider c ∈ K, and the energy is bounded below by EK(B,Ω) in (5.11).

We finally reached (5.27) and deduce the corollary.
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5.3. Generalization

For the proofs above, we used very little knowledge on the magnetic Laplacians—

essentially the change of gauge, the change of variables, and the perturbation iden-

tity (A.6). The finest part of the analysis is related to the corner structure. With the

same approach and relying on the general estimates presented in Section 3.4.4, we are

able to establish lower bounds for the ground state energy of magnetic Laplacians in

n-dimensional corner domains.

Let Ω ∈ D(Rn), and let us introduce ν as the maximal integer such that there

exists a singular chain (x0, . . . , xν−1) of length ν with a non-polyhedral reduced cone

Γx0,...,xν−1
. We make the convention that ν = 0 if all tangent cones are polyhedral.

Using an IMS partition on a hierarchy of balls of size hδ0 , hδ0+δ1 , . . . , hδ0+δ1+···+δν

according to the position of their centers, and taking advantage of estimates (3.36),

we arrive to the following collection of errors

h1+δ0 , h1+δ1 , . . . , h1+δν

h
1
2+2δ0 , h

1
2+δ0+2δ1 , . . . , h

1
2+δ0+···+δν−1+2δν

h2−2(δ0+δ1+···+δν),

which is optimized choosing

δk = 2ν−kδν , k = 0, . . . , ν, with δν =
3

3 · 2ν+2 − 4
.

The outcome is the following lower bound

λh(B,Ω) ≥ hE (B,Ω)− C(Ω)
(
1 + ‖A‖2W 2,∞(Ω)

)
h1+1/(3·2ν+1−2).

Here E (B,Ω) is the natural generalization of (4.11) to n-dimensional domains. The

results of Theorem 5.1 correspond to the values ν = 1 and ν = 0. Note that the

remainder O(h5/4) is valid in a polyhedral domain in any dimension (ν = 0).
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CHAPTER 6

TAXONOMY OF MODEL PROBLEMS

Refined estimates for an upper bound of the ground state energy λh(B,Ω) will be

obtained with the help of quasimode constructions. This relies on a better knowledge

of tangent model problems H(AX,ΠX) for any singular chain X of Ω. In this section,

we review and, when required, complete, essential facts concerning three-dimensional

model problems, that is magnetic Laplacians H(A,Π) where Π is a cone in P3 and

A is a linear potential.

With the aim of constructing quasimodes for our original problem on Ω, we need

(bounded) generalized eigenvectors for its tangent problems. To introduce such eigen-

vectors we make use of the localized domain Dom loc (H(A,Π)) of the model magnetic

Laplacian H(A,Π) as introduced in (1.23):

Definition 6.1 (Generalized eigenvector). — Let Π ∈ P3 be a cone and A a linear

magnetic potential. We call generalized eigenvector for H(A,Π) a nonzero function

Ψ ∈ Dom loc(H(A,Π)) associated with a real number Λ, so that

(6.1)

{
(−i∇+ A)2Ψ = ΛΨ in Π,

(−i∇+ A)Ψ · n = 0 on ∂Π.

Let Π ∈ P3 be a 3D cone and let B be a constant magnetic field associated with

a linear potential A. Let d be the reduced dimension of Π and Γ ∈ Pd be a minimal

reduced cone associated with Π. We recall from Definition 3.16 that this means that

Π ≡ R
3−d×Γ and that the dimension d is minimal for such an equivalence. By analogy

with Definition 3.19, C0(Π) denotes the set of singular chains of Π originating at its

vertex 0 and C∗
0(Π) is the subset of chains of length ≥ 2. Note that C∗

0(Π) is empty if

and only if Π = R
3, i.e., if d = 0. We introduce the energy on tangent substructures:

Definition 6.2 (Energy on tangent substructures). — We define the quantity

(6.2) E ∗(B,Π) :=

{
infX∈C∗

0(Π) E(B,ΠX) if d > 0,

+∞ if d = 0,
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which is the infimum of the ground state energy of the magnetic Laplacian over all

the singular chains of length ≥ 2.

We will see later in Chapter 7 that this quantity plays a key role in the existence of

generalized eigenvectors that have exponential decay properties in certain directions.

Now, in each of Sections 6.1–6.4 we consider one value of the reduced dimension d,

ranging from 0 to 3 and give in each case relations between the ground state energy

E(B,Π) and the energy on tangent substructures E ∗(B,Π), and we provide general-

ized eigenvectors Ψ if they exist.

On the one hand, thanks to Lemma A.4, we may reduce the arguments to the case

of a magnetic field of unit length: |B| = 1. On the other hand, quantities E(B,Π)

and E ∗(B,Π) are independent of a choice of Cartesian coordinates. Thus, once Π

and a constant magnetic field B of unit length are chosen, we exhibit a system of

Cartesian coordinates x = (x1, x2, x3) that allows the simplest possible description of

the configuration (B,Π). In these coordinates, the magnetic field can be viewed as a

reference field, and for convenience, we denote it by B = (b0, b1, b2). We also choose

a corresponding reference linear potential A, since we have gauge independence by

virtue of Lemma A.1.

6.1. Full space (d = 0)

Π is the full space. We take coordinates x = (x1, x2, x3) so that

Π = R
3 and B = (1, 0, 0),

and choose as reference potential A = (0,−x3

2 , x2

2 ). It is classical (see [48]) that the

spectrum of H(A,R3) is [1,+∞). Therefore

(6.3) E(B,R3) = 1.

A generalized eigenvector associated with the ground state energy is

(6.4) Ψ(x) = e−(x2
2+x2

3)/4 with Λ = 1.

6.2. Half-space (d = 1)

Π is a half-space. We take coordinates x = (x1, x2, x3) so that

Π = R
2 × R+ := {(x1, x2, x3) ∈ R

3, x3 > 0} and B = (0, b1, b2) with b21 + b22 = 1,

and choose as reference potential A = (b1x3 − b2x2, 0, 0). We note that

(6.5) E ∗(B,R2 × R+) = E(B,R3) = 1.

There exists θ ∈ [0, 2π) such that b1 = cos θ and b2 = sin θ. Due to symmetries we

can reduce to θ ∈ [0, π
2 ]. Denote by F1 the Fourier transform in x1-variable and by τ
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the dual variable. We have:

F1 H(A,R2 × R+) F∗
1 =

∫ ⊕

τ∈R

Ĥτ (A,R2 × R+) dτ.

where Ĥτ (A,R2 × R+) = (τ + b1x3 − b2x2)
2 − ∂2

2 − ∂2
3. We discriminate three cases:

6.2.1. Tangent field. — θ = 0, then Ĥτ (A,R2 × R+) = (τ + x3)
2 − ∂2

2 − ∂2
3. Let

ξ be the partial Fourier variable associated with x2. Define the operators

Ĥξ,τ (A,R2 × R+) = (τ + x3)
2 + ξ2 − ∂2

3 and H(τ) = D2
3 + (τ + x3)

2,

where H(τ) (sometimes called the de Gennes operator) acts on L2(R+) with Neumann

boundary conditions. Its first eigenvalue is denoted by μ(τ), moreover

infS
(
Ĥτ,ξ(A,R2 × R+)

)
= μ(τ) + ξ2.

From [23]) we know that μ admits a unique minimum denoted by Θ0 � 0.59 for the

value τ0 = −√
Θ0. Hence

(6.6) E(B,R2 × R+) = Θ0 < E ∗(B,R2 × R+).

If Φ denotes an eigenvector of H(τ0), the corresponding generalized eigenvector for

H(A,Π) is

(6.7) Ψ(x) = e−i
√
Θ0x1 Φ(x3) with Λ = Θ0.

6.2.2. Normal field. — θ = π
2 , then Ĥτ (A,R2×R+) = (τ −x2)

2−∂2
2−∂2

3. There

holds for all τ ∈ R, infS(Ĥτ (A,R2 × R+)) = 1 (see [52, Theorem 3.1]), hence

(6.8) E(B,R2 × R+) = 1 = E ∗(B,R2 × R+).

6.2.3. Neither tangent nor normal. — θ ∈ (0, π
2 ). Then for any τ ∈ R,

Ĥτ (A,R2 ×R+) is isospectral to Ĥ0(A,R2 ×R+) the ground state energy of which is

an eigenvalue σ(θ) < 1, cf. [38]. We deduce

(6.9) E(B,R2 × R+) = σ(θ) < 1 = E ∗(B,R2 × R+)..

This eigenvalue σ(θ) is associated with an exponentially decreasing eigenvector Φ

that is a function of (x2, x3) ∈ R × R+. The corresponding generalized eigenvector

for H(A,Π) is

(6.10) Ψ(x) = Φ(x2, x3) with Λ = σ(θ).

We recall from the literature:

Lemma 6.3. — The function θ �→ σ(θ) is continuous and increasing on (0, π
2 )

(see [38, 52]). Set σ(0) = Θ0 and σ(π2 ) = 1. Then the function θ �→ σ(θ) is of

class C 1 on [0, π
2 ] (see [10]).
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6.3. Wedges (d = 2)

Π is a wedge and let α ∈ (0, π) ∪ (π, 2π) denote its opening. Let us introduce the

model sector Sα and the model wedge Wα

Sα =

{ {x = (x2, x3), x2 tan
α
2 > |x3|

}
if α ∈ (0, π),

{x = (x2, x3), x2 tan
α
2 > −|x3|

}
if α ∈ (π, 2π),

Wα = R× Sα.

We take coordinates x = (x1, x2, x3) so that

Π = Wα and B = (b0, b1, b2) with b20 + b21 + b22 = 1,

and choose as reference potential A = (b1x3 − b2x2, 0, b0x2). The singular chains of

C∗
0(Wα) have three equivalence classes, cf. Definition 3.20 and Description 3.32 (3):

The full space R
3 and the two half-spaces Π±

α corresponding to the two faces ∂±Wα

of Wα. Thus

E ∗(B,Wα) = min
{
E(B,R3), E(B,Π+

α ), E(B,Π−
α )
}
.

Let θ± ∈ [0, π
2 ] be the angle between B and the face ∂Π±

α . We have, cf. Lemma 6.3,

(6.11) E ∗(B,Wα) = min{1, σ(θ+), σ(θ−)} = σ(min{θ+, θ−}).
With τ the dual variable of x1 and

(6.12) Ĥτ (A,Wα) = (τ + b1x3 − b2x2)
2 − ∂2

2 + (−i∂3 + b0x2)
2

we have

F1 H(A,Wα) F∗
1 =

∫ ⊕

τ∈R

Ĥτ (A,Wα) dτ.

Thus

(6.13) E(B,Wα) = inf
τ∈R

s(B,Sα; τ) with s(B,Sα; τ) := infS
(
Ĥτ (A,Wα)

)
.

We quote from [69, Theorem 3.5]:

Lemma 6.4. — Let α ∈ (0, π) ∪ (π, 2π). There holds the inequality

(6.14) E(B,Wα) ≤ E ∗(B,Wα).

Moreover, if E(B,Wα) < E ∗(B,Wα), then the function τ �→ s(B,Sα; τ) reaches its

infimum. Let τ∗ be a minimizer. Then E(B,Wα) is the first eigenvalue of the operator

Ĥτ∗(A,Wα) and any associated eigenfunction Φ has exponential decay. The function

(6.15) Ψ(x) = eiτ
∗x1Φ(x2, x3)

is a generalized eigenvector for the operator H(A,Wα) associated with Λ = E(B,Wα).

Finally, let us quote now the continuity result on wedges from [69, Theorem 4.5]:

Lemma 6.5. — The function (B, α) �→ E(B,Wα) is continuous on S
2 × ((0, π) ∪

(π, 2π)).
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6.4. 3D cones (d = 3)

Denote by λess(B,Π) the bottom of the essential spectrum of H(A,Π).

Theorem 6.6. — Let Π ∈ P3 be a cone with d = 3, which means that Π is not a

wedge, nor a half-space, nor the full space. Let B be a constant magnetic field. With

the quantity E ∗(B,Π) introduced in (6.2), we have

λess(B,Π) = E ∗(B,Π).

Recall Persson’s Lemma [66] that gives a characterization of the bottom of the

essential spectrum:

Lemma 6.7. — Let Π ∈ P3 and let A be a linear magnetic potential associated

with B. For R > 0, we define DomR
0 (q[A,Π]) as the subspace of functions Ψ in

Dom(q[A,Π]) with compact support, and suppΨ ∩ B(0, R) = ∅. Then we have

λess(B,Π) = lim
R→+∞

(
inf

Ψ∈DomR
0 (q[A,Π]) \ {0}

Q[A,Π](Ψ)
)
.

Before proving Theorem 6.6, we show

Lemma 6.8. — Let Π ∈ P3 be a cone with d = 3, let Ω0 = Π ∩ S
2 be its section.

Then E ∗(B,Π) coincides with the infimum of the local energy over singular chains of

length 2:

(6.16) E ∗(B,Π) = inf
x1∈Ω0

E(B,Π0,x1).

Proof. — For all singular chains X and X
′ in C∗(Π) such that X ≤ X

′ , the inequality
E(ΠX, B) ≤ E(ΠX′ , B) is a consequence of (6.6), (6.8), (6.9), and (6.14). Hence (6.16).

Proof of Theorem 6.6. — Combining Lemmas 6.7 and A.4, we get that

(6.17) λess(B,Π) = lim
h→0

(
h−1 inf

Ψ∈Dom1
0(qh[A,Π]) \ {0}

Qh[A,Π](Ψ)
)
.

Upper bound for λess(B,Π). — Let ε > 0. By Lemma 6.8 there exist x ∈ Ω0 and an

associated chain X = (0, x) of length 2 such that

(6.18) E(B,ΠX) < E ∗(B,Π) + ε.

Let x′ := 2x. Notice that the tangent cone to Π at x′ is Πx′ = ΠX and therefore

E(B,Πx′) = E(B,ΠX). We use Lemma 4.8 (that clearly applies even though Π is

unbounded): So there exists h0 > 0 such that for all h ∈ (0, h0) we can find fh
normalized and supported near x′ satisfying h−1Qh[A,Π](fh) ≤ E(B,ΠX) + ε. Since

|x′| = 2, we may assume without restriction that supp(fh) ∩ B(0, 1) = ∅. Combining

this with (6.18) we get

1

h
Qh[A,Π](fh) ≤ E ∗(B,Π) + 2ε,
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and therefore deduce from (6.17) the upper bound of λess(B,Π) by E ∗(B,Π).

Lower bound for λess(B,Π). — Notice that for all x ∈ Π \ B(0, 1), we have Πx = ΠX

where X = (0, x/|x|). Therefore (see (6.16)):

inf
x∈Π\B(0,1)

E(B,Πx) = E ∗(B,Π).

Then we easily deduce the lower bound from Corollary 5.3 and (6.17).

Corollary 6.9. — Let Π ∈ P3 be a cone with d = 3. Assume that

E(B,Π) < E ∗(B,Π).

Then any eigenfunction Ψ of H(A,Π) associated with the lowest eigenvalue E(B,Π),

satisfies the following exponential decay estimates:

∀c <
√

E ∗(B,Π)− E(B,Π), ∃C > 0, ‖ec|x|Ψ‖ ≤ C‖Ψ‖.
Proof. — Recall that Theorem 6.6 states that the bottom of the essential spectrum is

E ∗(B,Π). Therefore we are in the standard framework for the techniques à la Agmon,

see [1], and also [7, Section 7] for its application on plane sectors.
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CHAPTER 7

DICHOTOMY AND SUBSTRUCTURES FOR MODEL

PROBLEMS

Relying on the exhaustive description of model problems provided above, we arrive

to one of the main results, the “dichotomy” Theorem 7.3 that states the existence of

a generalized eigenvector (called admissible) living on a tangent structure of a cone

Π ∈ P3 and associated with the ground state energy. In this section, the local energies

E(B,ΠX) related to singular chains X ∈ C0(Π), play for the first time a major role in

the analysis.

7.1. Admissible Generalized Eigenvectors

Definition 7.1 (Admissible Generalized Eigenvector). — Let Π ∈ P3 be a cone.

Recall that d(Π) ∈ [0, 3] is the dimension of its minimal reduced cone. Let A be a

linear magnetic potential. A generalized eigenvector Ψ forH(A,Π) (cf. Definition 6.1)

is said to be admissible if there exist an integer k ≥ d(Π) and a rotation U : x �→ (y, z)

that maps Π onto the product R3−k ×Υ with Υ a cone in Pk, and such that

(7.1) Ψ ◦U−1(y, z) = eiϑ(y,z) Φ(z) ∀y ∈ R
3−k, ∀z ∈ Υ,

with some real polynomial function ϑ of degree ≤ 2 and some exponentially decreasing

function Φ, namely there exist positive constants cΨ and CΨ such that

(7.2) ‖ecΦ|z|Φ‖L2(Υ) ≤ CΦ‖Φ‖L2(Υ).

“Admissible Generalized Eigenvector” will be shortened as AGE.

The following lemma will be used for going from any tangent operator to one of

the reference situations described in Chapter 6. Its proof is straightforward and relies

on Lemmas A.1, A.3, A.4, and A.7.

Lemma 7.2. — Let Π ∈ P3 be a cone and A be a linear potential. Assume that Ψ is

an AGE for H(A,Π) associated with the energy E(B,Π), of the form (7.1).
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(a1) For all b > 0, the function

Ψb : x �−→ Ψ
( x√

b

)
,

is an AGE for H(b−1A,Π) associated with the energy E(b−1B,Π) =

b−1E(B,Π). This AGE has the form (7.1) with

Ub = U, ϑb(y, z) = ϑ(b−1/2y, b−1/2z), Φb(z) = Φ(b−1/2z).

(a2) The function

Ψ− : x �→ Ψ(x),

is an AGE for H(−A,Π) associated with the energy E(−B,Π) = E(B,Π). This

AGE has the form (7.1), with

U− = U, ϑ−(y, z) = −ϑ(y, z), Φ−(z) = Φ(z).

(b) Let A′ be another linear potential such that curl A′ = curl A. Then there exists

a polynomial φ of degree ≤ 2 such that A′ = A+∇φ. The function

Ψ′ : x �−→ e−iφ(x)Ψ(x),

is an AGE for H(A′,Π) associated with E(B,Π). This AGE has the form (7.1),

with

U′ = U, ϑ′ = ϑ− φ ◦U−1, Φ′ = Φ.

(c) Let J ∈ O3 be a rotation, ΠJ := J(Π) and AJ := J ◦ A ◦ J−1. Introduce the

constant magnetic field BJ = J(B), so that curl AJ = BJ. Then

ΨJ : x �−→ Ψ ◦ J−1(x)

is an AGE for H(AJ,ΠJ) associated with E(BJ,ΠJ) = E(B,Π). It has the

form (7.1), with

UJ = U ◦ J−1, ϑJ = ϑ, ΦJ = Φ.

7.2. Dichotomy Theorem

Theorem 7.3 (Dichotomy Theorem). — Let Π ∈ P3 be a cone and B �= 0 be a

constant magnetic field. Let A be any associated linear magnetic potential. Recall

that E(B,Π) is the ground state energy of H(A,Π) and E ∗(B,Π) is the energy on

tangent substructures, see Definition 6.2. Then,

(7.3) E(B,Π) ≤ E ∗(B,Π),

and we have the dichotomy:

(i) If E(B,Π) < E ∗(B,Π), then H(A,Π) admits an Admissible Generalized Eigen-

vector associated with the value E(B,Π).

(ii) If E(B,Π) = E ∗(B,Π), then there exists a singular chain X ∈ C∗
0(Π) such that

E(B,ΠX) = E(B,Π) and E(B,ΠX) < E ∗(B,ΠX).
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Remark 7.4. — In the case (ii), we note that by statement (i) applied to the

cone ΠX, H(A,ΠX) admits an AGE associated with the value E(B,Π).

Remark 7.5. — If B = 0, there is no magnetic field and E(Π, B) = 0. An associated

AGE is the constant function Ψ ≡ 1.

Proof of Theorem 7.3.. — The proof relies on an exhaustion of cases based on Chap-

ter 6 combined with a hierarchical classification of model problems on tangent struc-

tures of a cone Π.

Geometrical invariance. — Thanks to Lemma 7.2, we may assume that B is of unit

length, choose any suitable Cartesian coordinates and any suitable linear potential.

Hence, to prove the theorem, we may reduce to the reference configurations investi-

gated in Sections 6.1–6.3.

Algorithm of the proof. — We first establish the theorem when d = 0, then we apply

the following analysis for increasing values of d = d(Π) from 1 to 3:

1) Check inequality (7.3).

2) Check assertion (i).

3) Prove that there exists a singular chain X ∈ C∗
0(Π) such that E ∗(B,Π) =

E(B,ΠX). Since d(ΠX) < d, assertion (ii) will be a consequence of the analysis

made for lower dimensions.

This procedure applied to reference problems described in Chapter 6 will provide the

theorem.

d = 0. — Here Π = R
3, see Section 6.1. We have E(B,R3) = 1 and E ∗(B,R3) = +∞,

moreover there always exists an admissible generalized eigenvector associated with 1,

see (6.4). Theorem 7.3 is proved for d = 0.

d = 1. — The model cone is R
2 × R+, see Section 6.2. Inequality (7.3) has already

been proved, see (6.6), (6.8), (6.9). We also know that

E(B,R2 × R+) < E ∗(B,R2 × R+)

if and only if B is not normal to the boundary. In this case, AGE have already been

written, see (6.7) and (6.10), so point (i) of Theorem 7.3 holds in the non-normal case.

When B is normal, E(B,R2 ×R+) = E ∗(B,R2 ×R+). The sole tangent substructure

is R3 and we have E ∗(B,R2×R+) = E(B,R3) < E ∗(B,R3) (see the above paragraph

d = 0). Therefore Theorem 7.3 is proved for d = 1.

d = 2. — The model cone is the wedge Wα, see Section 6.3. Inequality (7.3) and

assertion (i) come from Lemma 6.4. To deal with case (ii), we define ◦ ∈ {−,+}
satisfying θ◦ = min(θ−, θ+) and Π◦

α as the corresponding face. Due to (6.11)

E ∗(B,Wα) = σ(θ◦) = E(B,Π◦
α).
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Therefore in case (ii) we reduce to the situation d = 1 and Theorem 7.3 is proved

for d = 2.

d = 3. — Due to Theorem 6.6, we have E ∗(B,Π) = λess(B,Π) and therefore (7.3).

Moreover if E(B,Π) < E ∗(B,Π), the existence of an eigenfunction with exponential

decay is stated in Corollary 6.9. Therefore (i) is proved.

It remains to find X ∈ C∗
0(Π) such that E ∗(B,Π) = E(B,ΠX). Define on C∗

0(Π)

the function F (X) = E(B,ΠX). Let Ω0 denotes the section of Π, define the function

F 
 on C(Ω0) by the partial application

F 
(Y) = F ((0,Y)), Y ∈ C(Ω0).

Since (7.3) has already been proved for d ≤ 2, we have for all Y and Y
′ in C(Ω0):

(7.4) Y ≤ Y
′ =⇒ F 
(Y) ≤ F 
(Y′).

Let us show that F 
 is continuous with respect to the distance D introduced in

Definition 3.24. Since Ω0 has a finite number of vertices, the chains Y ∈ C(Ω0)

such that ΠY is a sector (and ΠX = Π(0,Y) is a wedge) are isolated for the topology

associated with the distance D. If Y is such that Π(0,Y) = R
3, then F 
(Y) = 1

(see (6.3)). Therefore it remains to treat the case where the tangent substructures

Π(0,Y) are half-spaces. Let Y and Y
′ be such chains. Denote by θ (resp. θ′) the

unoriented angle in [0, π
2 ) between B and ΠX (resp. between B and ΠX′). We have

|θ − θ′| → 0 as D(Y,Y′) → 0. Moreover

F 
(Y)− F 
(Y′) = E(B,ΠX)− E(B,ΠX′) = σ(θ)− σ(θ′).

As a consequence of the continuity of the function σ, see Lemma 6.3, we get that

F 
(Y) − F 
(Y′) goes to 0 as D(Y,Y′) goes to 0. This shows that F 
 is continuous

on C(Ω0). Thanks to (7.4), we can apply Theorem 3.27: the function Ω0 � x �→
F 
((x)) = E(B,Π0,x) is lower semicontinuous on Ω0. Since Ω0 is compact, it reaches

its infimum. Combining this with Lemma 6.8, we get:

∃ x1 ∈ Ω0, E ∗(B,Π) = E(B,Π0,x1).

Therefore (ii) follows from the analysis of lower dimensions and Theorem 7.3 is proved.

Remark 7.6. — Any AGE provided by case (i) of Theorem 7.3 satisfies:

∀cΦ <
√

E ∗(B,Π)− E(B,Π), ∃CΦ > 0, ‖ecΦ|z|Φ‖L2(Υ) ≤ CΦ‖Φ‖L2(Υ).

This is a consequence of the exponential decays given by [10, Theorem 1.3] for

half-planes, [69, Proposition 4.2] for wedges, and Corollary 6.9 for 3D cones.
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7.3. Examples

In the case d = 1, i.e., when the model cone Π is a half-space, it is known whether

we are in situation (i) or (ii) of the Dichotomy Theorem. This is not the case in

general for model cones Π with d ≥ 2, and only in few cases it is known whether

inequality (7.3) is strict or not. We provide below some examples of wedges and 3D

cones where E(B,Π) has been studied. In this whole section B ∈ S
2 is a constant

magnetic field of unit length.

Example 7.7 (Wedges). — Let α ∈ (0, π) ∪ (π, 2π).

1) For α small enough there holds E(B,Wα) < E ∗(B,Wα), see [69] and [67,

Chap. 7].

2) Let B = (0, 0, 1) be tangent to the edge. Then E ∗(B,Wα) = Θ0 and

E(B,Wα) = E(1,Sα), cf. Section 2.2.2. According to whether the ground state

energy E(1,Sα) of the plane sector Sα is less than Θ0 or equal to Θ0, we are

in case (i) or (ii) of the dichotomy.

3) Let B be tangent to a face of the wedge and normal to the edge. Then

E ∗(B,Wα) = Θ0. It is proved in [68] that E(B,Wα) = Θ0 for α ∈ [π2 , π)

(case (ii)).

Example 7.8 (Octant). — Let Π = (R+)
3 be the model octant. We quote from

[64, §8]:
1) If the magnetic field B is tangent to a face but not to an edge of Π, there exists

an edge e such that E ∗(B,Π) = E(B,Πe) and there holds E(B,Π) < E(B,Πe).

We are in case (i).

2) If the magnetic field B is tangent to an edge e of Π, E ∗(B,Π) = E(B,Πe) =

E(B,Π). Moreover by [64, §4], E(B,Πe) = E(1,Sπ/2) < Θ0 = E ∗(B,Πe). We

are in case (ii).

Example 7.9 (Circular cone). — Let Cα be the right circular cone of angular open-

ing α ∈ (0, π). It is proved in [13, 15] that

1) For α small enough, E(B, Cα) < E ∗(B, Cα).
2) If B = (0, 0, 1), then E ∗(B, Cα) = σ(α/2).

Example 7.10 (Sharp cone). — The above result on circular cones is generalized

in [11] to sharp cones of any section in the following sense. Let ω be a curvilinear

polygon in D(R2) and for α > 0, let the cone Πα be defined as

Πα =
{
x = (x1, x2, x3) ∈ R

3, x3 > 0 and
1

α

(x1

x3
,
x2

x3

)
∈ ω
}
.

When α is small, Πα can be qualified as “sharp”. It is proved in [11] that for α small

enough, E(B, Cα) < E ∗(B, Cα).
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7.4. Scaling and truncating Admissible Generalized Eigenvectors

AGE’s are corner-stones for our construction of quasimodes. Here, as a preparatory

step towards final construction, we show a couple of useful properties when suitable

scalings and cut-off are performed.

Let H(A,Π) be a model operator that has an AGE Ψ associated with the value Λ.

Then for any positive h, the scaled function

(7.5) Ψh(x) := Ψ
( x√

h

)
, for x ∈ Π,

defines an AGE for the operator Hh(A,Π) associated with hΛ:

(7.6)

{
(−ih∇+ A)2Ψh = hΛΨh in Π,

(−ih∇+ A)Ψh · n = 0 on ∂Π.

We will need to localize Ψh. For doing this, let us choose, once for all, a model cut-off

function χ ∈ C∞(R+) such that

(7.7) χ(r) = 1 if r ≤ 1 and χ(r) = 0 if r ≥ 2.

For any R > 0, let χ
R
be the cut-off function defined by χ

R
(r) = χ

(
r
R

)
, and, finally

(7.8) χh(x) = χ
R

( |x|
hδ

)
= χ
( |x|
Rhδ

)
with 0 ≤ δ ≤ 1

2
.

Here the exponent δ is the decay rate of the cut-off. It will be tuned later to optimize

remainders.

Since Ψh belongs to Dom loc(Hh(A,Π)), we can rely on Lemma A.6 to obtain the

following identity for the Rayleigh quotient of χhΨh:

(7.9) Qh[A,Π](χhΨh) = hΛ + h2ρh with ρh =
‖ |∇χh|Ψh‖2
‖χhΨh‖2 .

The following lemma estimates the remainder ρh:

Lemma 7.11. — Let Ψ be an AGE for the model operator H(A,Π). Let k be the num-

ber of independent decaying directions of Ψ, cf. (7.1)–(7.2). Let Ψh be the rescaled

function given by (7.5) and let χh be the cut-off function defined by (7.7)–(7.8) involv-

ing parameters R > 0 and δ ∈ [0, 1
2 ]. Then there exist constants C0 > 0 and c0 > 0

depending only on h0 > 0, R0 > 0 and Ψ such that

ρh =
‖ |∇χh|Ψh‖2
‖χhΨh‖2 ≤

{
C0 h

−2δ if k < 3,

C0 h
−2δ e−c0h

δ−1/2

if k = 3,

for all R ≥ R0, h ≤ h0 and δ ∈ [0, 1
2 ].

Proof. — By assumption Ψ(x) = eiϑ(y,z) Φ(z) for Ux = (y, z) ∈ R
3−k × Υ, where U

is a suitable rotation, and there exist positive constants cΨ, CΨ controlling the ex-

ponential decay of Φ in the cone Υ ∈ Pk, cf. (7.2). Let us set T = Rhδ, so that

χh(x) = χ(|x|/T ).
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Let us first give an upper bound for ‖ |∇χh|Ψh‖: If k < 3, then

‖ |∇χh|Ψh‖2 ≤ CT−2

∫
|y|≤2T

dy

∫
Υ∩{|z|≤2T}

∣∣∣Φ( z√
h

)∣∣∣2dz
= CT−2 T 3−k hk/2‖Φ‖2L2(Υ),

else, if k = 3

‖ |∇χh|Ψh‖2 ≤ CT−2

∫
Υ∩{T≤|z|≤2T}

∣∣∣Φ( z√
h

)∣∣∣2dz
= CT−2 hk/2

∫
Υ∩{Th− 1

2 ≤|z|≤2Th− 1
2 }

∣∣Φ(z)∣∣2dz
≤ CT−2 hk/2 e−2cΨT/

√
h

∫
Υ∩{Th− 1

2 ≤|z|≤2Th− 1
2 }

e2c|z|
∣∣Φ(z)∣∣2dz

≤ CT−2 hk/2 e−2cΨT/
√
h ‖Φ‖2L2(Υ).

Let us now consider ‖χhΨh‖ (we use that 2|y| < R and 2|z| < R implies |x| < R):

‖χhΨh‖2 ≥
∫
2|y|≤T

dy

∫
Υ∩{2|z|≤T}

∣∣∣Φ( z√
h

)∣∣∣2dz
= CT 3−khk/2

∫
Υ∩{2|z|≤Th− 1

2 }

∣∣Φ(z)∣∣2dz
≥ CT 3−khk/2 I(Th− 1

2 ) ‖Φ‖2L2(Υ)

where we have set for any S ≥ 0

I(S) :=
(∫

Υ∩{2|z|≤S}

∣∣Φ(z)∣∣2dz)(∫
Υ

∣∣Φ(z)∣∣2dz)−1

.

The function S �→ I(S) is continuous, non-negative and non-decreasing on [0,+∞).

It is moreover increasing and positive on (0,∞) since Φ, as a solution of an elliptic

equation with polynomial coefficients and null right hand side, is analytic inside Υ.

Consequently, I(Th− 1
2 ) = I(Rhδ− 1

2 ) is uniformly bounded from below for R ≥ R0,

h ∈ (0, h0), δ ∈ [0, 1
2 ] and thus

ρh ≤
{
CT−2

{I(Th− 1
2 )
}−1 ≤ C0h

−2δ if k < 3,

CT−2 e−2cΨT/
√
h
{I(Th− 1

2 )
}−1 ≤ C0h

−2δe−c0h
δ−1/2

if k = 3,

where the constants C0 and c0 in the above estimation depend only on the lower

bound R0 on R, the upper bound h0 on h, and on the model problem associated

with x0, provided δ ∈ [0, 1
2 ]. Lemma 7.11 is proved.

Remark 7.12. — The estimate of ρh provided by Lemma 7.11 is still true when

k = 0, i.e., when Ψ has no decay direction (but is of modulus 1 everywhere).
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CHAPTER 8

PROPERTIES OF THE LOCAL GROUND

STATE ENERGY

In this chapter we describe the regularity properties of the local ground state

energy. The main result of this section is that the function x �→ E(Bx,Πx) is lower

semicontinuous on a corner domain and therefore it reaches its infimum.

8.1. Lower semicontinuity

Theorem 8.1. — Let Ω ∈ D(R3) and let B ∈ C 0(Ω) be a continuous magnetic field.

Then the function ΛΩ : x �→ E(Bx,Πx) is lower semicontinuous on Ω.

Proof. — For X = (x0, . . . ) ∈ C(Ω), define the function F (X) := E(Bx0 ,ΠX), which

coincides on the chains of length 1 with the function ΛΩ : F ((x0)) = ΛΩ(x0). Recall

that we have introduced a partial order on C(Ω), see Definition 3.26. Then due to (7.3)

applied to ΠX for any chain X, the function F : C(Ω) �→ R+ is clearly order preserving.

Let us show that it is continuous with respect to the distance D (see Definition 3.24).

Let X ∈ C(Ω) and X
′ tending to X. This means that x′0 tends to x0 in R

3 and that there

exists J ∈ BGL(3) tending to the identity I3 such that J(ΠX) = ΠX′ . In particular

for X′ close enough to X, the reduced dimensions of the cones ΠX and ΠX′ are equal:

d(ΠX′) = d(ΠX).

1) If ΠX = R
3, then F (X) = |Bx0 | and F (X′) = |Bx′0 |, and since B is continuous,

F (X′) converges toward F (X) when D(X′,X) → 0.

2) When ΠX is a half-space, we denote by θ(X) the angle between ΠX and Bx0 .

We have θ(X′) → θ(X) when D(X′,X) → 0. Moreover

F (X′)− F (X) = |Bx′0 | · σ
(
θ(X′)

)− |Bx0 | · σ
(
θ(X)
)
,

therefore F (X′) tends to F (X) due to Lemma 6.3 and the continuity of B.

3) When ΠX is a wedge, there exists (U,U′) in O3 and (α, α′) in (0, π) ∪ (π, 2π)

such that U(ΠX) = Wα and U′(ΠX′) = Wα′ . Therefore

F (X′)− F (X) = E
(
U(Bx0),Wα

)− E
(
U′(Bx′0),Wα′

)
,
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with α′ → α and U′ → U when D(X′,X) → 0. Lemma 6.5 and the continuity

of B ensure that F (X′) tends to F (X).

4) Finally chains X such that ΠX is a 3D cone are of length 1 and are isolated in

C(Ω) for the topology associated with D (see Proposition 3.22).

Therefore F is continuous on C(Ω). We apply Theorem 3.27: The function x �→
F ((x)) = ΛΩ(x) is lower semicontinuous on Ω.

As a consequence of the above theorem, the function x �→ ΛΩ(x) reaches its infimum

over Ω. This fact will be one of the key ingredients to prove an upper bound with

remainder for λh(B,Ω) in the semiclassical limit.

Remark 8.2. — Recall that any stratum t ∈ T has a smooth submanifold structure

(see Proposition 3.22). Denote by Λt the restriction of the local ground energy to t.

Then it follows from above that Λt is continuous. Moreover if Ω ∈ D(R3), one can

prove that Λt admits a continuous extension to t. But this is not true anymore if t

contains a conical point.

Remark 8.3. — Let B be a constant magnetic field and Ω be a straight polyhedron.

So, its faces are plane polygons and its edges are segments of lines. The following

properties hold.

(a) For each stratum t ∈ T, the function Λt : t � x �→ E(B,Πx) is constant.

(b) As a consequence of (7.3) and of the lower semicontinuity, E (B,Ω) is the min-

imum of the corner local energies:

E (B,Ω) = min
v∈V

E(B,Πv).

(c) A stratum t ∈ T being chosen we have

∀x ∈ t, E ∗(B,Πx) = min
t′∈N(t)

Λt′ ,

where N(t) := {t′ ∈ T, t ⊂ ∂ t′} \ {t} is the set of the strata adjacent to t.

(d) As a consequence of a), c) and the Dichotomy Theorem, there exists x0 ∈ Ω

such that

E (B,Ω) = E(B,Πx0) < E ∗(B,Πx0).

8.2. Positivity of the ground state energy

The classical diamagnetic inequality (see [44, 78] for example) implies that the

ground state energy is in general larger than the one without magnetic field, that is 0

in our case due to Neumann boundary conditions. Usually it is harder to show that

this inequality is strict. A strict diamagnetic inequality has been proved for the

Neumann magnetic Laplacian in a bounded regular domain, in [30, Section 2.2]. For

our unbounded domains Π with constant magnetic field, we have:
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Proposition 8.4. — Let Π ∈ P3 and B �= 0 be a constant magnetic field. Then

E(B,Π) > 0.

Proof. — It is enough to make the proof for magnetic field of unit length, see

Lemma A.4. Let d ∈ [0, 3] be the reduced dimension of the cone Π. If d = 0, then

E(B,Π) = 1 (see (6.3)). If d = 1, then E(B,Π) is expressed with the function σ that

satisfies σ(θ) ≥ Θ0 > 0 for all θ ∈ [0, π
2 ], see Lemma 6.3. When d = 2, the strict

positivity has been shown in [69, Corollary 3.9].

Assume now that d = 3. If we are in case (i) of Theorem 7.3, then there exists

an eigenfunction Ψ ∈ L2(Π) for H(A,Π) associated with E(B,Π). Assume that

E(B,Π) = 0, then due to the standard diamagnetic inequality (see [44, Lemma A]),

we have

0 ≤
∫
Π

∣∣∇|Ψ|∣∣2 ≤
∫
Π

∣∣(−i∇− A)Ψ
∣∣2 = 0,

that leads to Ψ = 0, which is a contradiction. If we are in case (ii) of Theorem 7.3,

then there exists a tangent substructure ΠX of Π with d(ΠX) < 3 such that E(B,Π) =

E(B,ΠX) that is strictly positive due to the analysis of the cases d ≤ 2, see above.

Combining the above proposition with Theorem 8.1, we get:

Corollary 8.5. — Let Ω ∈ D(R3) and let B ∈ C 0(Ω) be non-vanishing. Then we

have

E (B,Ω) > 0.
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CHAPTER 9

UPPER BOUNDS FOR GROUND STATE ENERGY IN

CORNER DOMAINS

In this section, we prove an upper bound involving error estimates that contains

the same powers of h as the lower bound in Theorem 5.1.

Theorem 9.1. — Let Ω ∈ D(R3) be a general 3D corner domain, and let A ∈ C 2(Ω)

be a magnetic potential.

(a) Then there exist CΩ > 0 and h0 > 0 such that

(9.1) ∀h ∈ (0, h0), λh(B,Ω) ≤ hE (B,Ω) + CΩ

(
1 + ‖A‖2W 2,∞(Ω)

)
h11/10.

(b) If Ω is a polyhedral domain, this upper bound is improved:

(9.2) ∀h ∈ (0, h0), λh(B,Ω) ≤ hE (B,Ω) + CΩ

(
1 + ‖A‖2W 2,∞(Ω)

)
h5/4.

(c) If there exists a point x0 ∈ Ω such that B(x0) = 0, then E (B,Ω) = 0 and we

have the optimal upper bound

(9.3) ∀h ∈ (0, h0), λh(B,Ω) ≤ CΩ

(
1 + ‖A‖2W 2,∞(Ω)

)
h4/3.

(d) If there exists a corner x0 such that E (B,Ω) = E(Bx0 ,Πx0) < E ∗(Bx0 ,Πx0)

then

(9.4) ∀h ∈ (0, h0), λh(B,Ω) ≤ hE (B,Ω) + CΩ(1 + ‖A‖2W 2,∞(Ω))h
3/2| log h|.

(e) If Ω is a straight polyhedron and B is constant,

(9.5) ∀h ∈ (0, h0), λh(B,Ω) ≤ hE (B,Ω) + Ch2.

We recall the notation Qh[A,Ω](ϕ) (1.19) for Rayleigh quotients and the min-max

principle

λh(B,Ω) = min
ϕ∈H1(Ω) \ {0}

Qh[A,Ω](ϕ).
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9.1. Principles of construction for quasimodes

By lower semicontinuity (see Theorem 8.1), the energy x �→ E(Bx,Πx) reaches its

infimum over Ω. Let x0 ∈ Ω be a point such that

E(Bx0 ,Πx0) = E (B,Ω).

By the dichotomy result (Theorem 7.3) there exists a singular chain X starting at x0
such that (see also notation (4.8)):

E(BX,ΠX) = E(Bx0 ,Πx0) and E(BX,ΠX) < E ∗(BX,ΠX).

For shortness, we denote ΛX = E(BX,ΠX). Still by Theorem 7.3, there exists an AGE

for the tangent model operator H(AX,ΠX) denoted by ΨX and associated with ΛX

(9.6)

{
(−i∇+ AX)

2ΨX = ΛXΨ
X in ΠX,

(−i∇+ AX)Ψ
X · n = 0 on ∂ΠX.

For h > 0, we define ΨX

h by using the canonical scaling (7.5). This gives an AGE

for the operator Hh(AX,ΠX) associated with the value hΛX. Let χh be the cut-off

function defined by (7.7)–(7.8) involving the parameter R > 0 and the exponent

δ ∈ (0, 1
2 ). Then the function

(9.7) (χhΨ
X

h)(x) = χ
( |x|
Rhδ

)
ΨX

( x√
h

)
, for x ∈ ΠX,

is a canonical quasimode on the tangent structure ΠX for the model operator

Hh(AX,ΠX): Indeed the identity (7.9) and Lemma 7.11 yield

(9.8) Qh[AX,ΠX](χhΨ
X

h) = hΛX +O(h2−2δ).

Let us recall that the fact that ΨX

h belongs to Dom loc(Hh(AX,ΠX)) is essential for

the validity of the identity above.

In order to prove Theorem 9.1, we are going to construct a family of quasimodes

ϕ
[0]
h ∈ H1(Ω) satisfying the estimate for h > 0 small enough and the suitable power κ

(9.9) Qh[A,Ω](ϕ
[0]
h ) ≤ hΛX + CΩ

(
1 + ‖A‖2W 2,∞(Ω)

)
hκ.

The rationale of this construction is to build a link between the canonical quasimode

χhΨ
X

h on the tangent structure ΠX with our original operator Hh(A,Ω).

Let ν be the length of the chain X. By Proposition 3.31, we can always reduce

to ν ≤ 3. We write

X = (x0, . . . , xν−1) with ν ∈ {1, 2, 3}.
Our quasimode ϕ

[0]
h will have distinct features according to the value of ν: We will

need ν−1 intermediaries ϕ
[j]
h , 0 < j < ν, between ϕ

[0]
h and the final object ϕ

[ν]
h defined

by the truncated AGE given in (9.7), i.e.,

(9.10) ϕ
[ν]
h = χhΨ

X

h .
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For j = 1, . . . , ν, the function ϕ
[j]
h is defined in the tangent structure Πx0,...,xj−1

. At a

glance:

ν = 1: The quasimode ϕ
[0]
h is deduced from ϕ

[1]
h = χhΨ

X

h through the local map Ux0 .

This is the classical construction: We say that the quasimode is sitting be-

cause as h → 0 the supports of ϕ
[0]
h are included in each other and concentrate

to x0, see Figure 9.2.

ν = 2: The quasimode ϕ
[0]
h is deduced from ϕ

[1]
h through the local map Ux0 , and ϕ

[1]
h

is itself deduced from ϕ
[2]
h = χhΨ

X

h through another local map Uv1 connected

to the second element x1 of the chain. We say that the quasimode is sliding

because as h → 0 the supports of ϕ
[0]
h are shifted along a direction x̂1 deter-

mined by x1. At this point, the construction will be very different depending

on whether x0 is a conical point or not, and we say that the quasimodes are

respectively hard sliding and soft sliding, see Figure 9.3.

ν = 3: The quasimode ϕ
[0]
h is still deduced from ϕ

[1]
h through Ux0 , and ϕ

[1]
h from ϕ

[2]
h

through Uv1 . Finally ϕ
[2]
h is itself deduced from ϕ

[3]
h = χhΨ

X

h through a third

local map Uv2 connected to the third element x2 of the chain. We say that

the quasimode is doubly sliding because as h → 0 the supports of ϕ
[0]
h are

shifted along two directions x̂1 and x̂2 determined by x1 and x2, respectively.

At each level of these constructions, different transformations of the quadratic form

will be performed. We organize them in three steps :

[a] for a change of variable into a higher tangent substructure,

[b] for a linearization of the metrics,

[c] for a linearization of the potential.

This construction is illustrated in Figure 9.1.

Let us introduce some notation.

Notation 9.2. — 1) If U is a diffeomorphism, let U∗ be the operator of compo-

sition:

U∗(f) = f ◦U.

2) If ζ vh is a phase, let Zv
h be the operator of multiplication Zv

h(f) = f ζ vh.

We are going to define recursively functions ϕ
[j]
h assuming that ϕ

[j+1]
h is known.

Typically, these relations will take the form

(9.11) ϕ
[j]
h = Z

vj
h ◦Uvj∗ (ϕ

[j+1]
h ).

Remark 9.3. — Since x0 is determined, we can always assume that x0 belongs to

the reference set X of an admissible atlas. The error rate that we will obtain in the

end will depend on whether ν = 1 or is larger, and on whether x0 is a conical point

or not.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2016



84 CHAPTER 9. UPPER BOUNDS FOR GROUND STATE ENERGY IN CORNER DOMAINS

Figure 9.1. Construction of quasimodes

9.2. First level of construction and sitting quasimodes

We perform the first change of variables as in Section 4.1: The local diffeomorphism

Ux0 sends (a neighborhood of) x0 in Ω to (a neighborhood of) 0 in Πx0 .

[a1]. — Let Ax0 be the new potential (4.1) deduced from A−A(x0) by the local map

Ux0 . Let ζ x0h (x) = ei〈A(x0), x/h〉, for x ∈ Ω. Let us introduce the relation

(9.12) ϕ
[0]
h = Zx0

h ◦Ux0∗ (ϕ
[1]
h ),

and let r
[1]
h be the radius of the smallest ball centered at 0 containing the support

of ϕ
[1]
h in Πx0 . The number r

[1]
h is intended to converge to 0 as h tends to 0, see

Figure 9.2 for a representation of the support of ϕ
[0]
h .

Using (4.5), we have

(9.13) Qh[A,Ω](ϕ
[0]
h ) = Qh[A

x0 ,Πx0 ,G
x0 ](ϕ

[1]
h ).
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Figure 9.2. Support of sitting quasi-modes

[b1]. — We now linearize the metric Gx0 in (9.13) by using Lemma 4.5, case (a). We

find the relation between the Rayleigh quotients

(9.14) Qh[A,Ω](ϕ
[0]
h ) = Qh[A

x0 ,Πx0 ](ϕ
[1]
h )
(
1 +O(r

[1]
h )
)
,

which implies

(9.15)
∣∣∣Qh[A,Ω](ϕ

[0]
h )− Qh[A

x0 ,Πx0 ](ϕ
[1]
h )
∣∣∣ ≤ CΩ r

[1]
h Qh[A

x0 ,Πx0 ](ϕ
[1]
h ).

[c1]. — We recall that Ax0
0 is the linear part of Ax0 at 0. Using relation (A.6) with

A = Ax0 and A′ = Ax0
0 and a Cauchy-Schwarz inequality, we obtain

(9.16)
∣∣∣qh[Ax0 ,Πx0 ](ϕ

[1]
h )− qh[A

x0
0 ,Πx0 ](ϕ

[1]
h )
∣∣∣ ≤ 2

(
a
[1]
h

√
μ
[1]
h +

(
a
[1]
h

)2)‖ϕ[1]
h ‖2,

where we have set

(9.17) μ
[1]
h = Qh[A

x0
0 ,Πx0 ](ϕ

[1]
h ) and a

[1]
h =

‖(Ax0 − Ax0
0 )ϕ

[1]
h ‖

‖ϕ[1]
h ‖

.

By Lemmas 4.6 and 4.7 (a), and since ϕ
[1]
h is supported in the ball B(0, r[1]h ), we have

(9.18) a
[1]
h ≤ C(A)

(
r
[1]
h

)2
with C(A) = CΩ

(
1 + ‖A‖2W 2,∞(Ω)

)
.

Putting together (9.16)–(9.18), we obtain

(9.19)
∣∣∣Qh[A

x0 ,Πx0 ](ϕ
[1]
h )− Qh[A

x0
0 ,Πx0 ](ϕ

[1]
h )
∣∣∣ ≤ C(A)

((
r
[1]
h

)2√
μ
[1]
h +

(
r
[1]
h

)4)
.

Using the above estimate (9.19), we have

r
[1]
h Qh[A

x0 ,Πx0 ](ϕ
[1]
h ) ≤ r

[1]
h

(
Qh[A

x0
0 ,Πx0 ](ϕ

[1]
h ) + C(A)

((
r
[1]
h

)2√
μ
[1]
h +

(
r
[1]
h

)4))
.

Combining this last inequality, (9.19) and (9.15), we have for r
[1]
h small enough∣∣Qh[A,Ω](ϕ

[0]
h )− Qh[A

x0
0 ,Πx0 ](ϕ

[1]
h )
∣∣(9.20)

≤ C(A)
(
μ
[1]
h r

[1]
h +

(
r
[1]
h

)2√
μ
[1]
h +

(
r
[1]
h

)4)
.
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[Conclusion 1]. — If ν = 1, we set, as already mentioned, ϕ
[1]
h = χhΨ

X

h . Note that

Ax0
0 coincides with AX. To tune the cut-off χh, we choose the exponent δ as δ0 and

the radius R as 1. Therefore r
[1]
h = O(hδ0) and by (9.8) μ

[1]
h = O(h). Using (9.20)

and again (9.8), we deduce

(9.21) Qh[A,Ω](ϕ
[0]
h ) ≤ hΛX + C(A)

(
h2−2δ0 + h1+δ0 + h

1
2+2δ0 + h4δ0

)
.

So we can conclude in the sitting case. Choosing δ0 = 3/8, we optimize remainders

and we get the upper bound

λh(B,Ω) ≤ hE (B,Ω) + CΩ

(
1 + ‖A‖2W 2,∞(Ω)

)
h5/4.

Case when B(x0) = 0. — If B(x0) = 0, the function ΨX ≡ 1 is an AGE on Πx0

associated with the value ΛX = 0. We are in the sitting case ν = 1 and the estimate

(9.20) is still valid. But now (9.8) (combined with Remark 7.12) yields

Qh[AX,ΠX](χhΨ
X

h) ≤ Ch2−2δ.

Choosing δ as δ0 as above, we deduce μ
[1]
h = O(h2−2δ0). Hence

(9.22) Qh[A,Ω](ϕ
[0]
h ) ≤ C

(
h2−2δ0 + h2−2δ0+δ0 + h1−δ0+2δ0 + h4δ0

)
.

Choosing δ0 = 1/3, we optimize remainders and we get the upper bound

λh(B,Ω) ≤ CΩ

(
1 + ‖A‖2W 2,∞(Ω)

)
h4/3.

Case when x0 is a corner and ΨX is an eigenvector. — Since

E(Bx0 ,Πx0) < E ∗(Bx0 ,Πx0) and λess(Bx0 ,Πx0) = E ∗(Bx0 ,Πx0)

by Theorem 6.6, the generalized eigenfunction ΨX of H(Ax0 ,Πx0) provided by The-

orem 7.3 is an eigenfunction and has exponential decay. Here X = (x0) and the

quasimode ϕ
[0]
h is sitting. Using (4.14) and Lemma 4.7 (a), we get CΩ > 0 such that

∀x ∈ supp(ϕ
[1]
h ),

∣∣(Ax0 − Ax0
0 )(x)

∣∣ ≤ CΩ‖Ax0‖
W 2,∞(supp(ϕ

[1]
h ))

· |x|2.
Using the change of variable X = xh−1/2 and the exponential decay of ΨX we get

(9.23) a
[1]
h =

‖(Ax0 − Ax0
0 )ϕ

[1]
h ‖

‖ϕ[1]
h ‖

≤ CΩ‖Ax0‖
W 2,∞(supp(ϕ

[1]
h ))

· h.

Using (9.16) with estimate (9.23) and Lemma 7.11, for any δ ∈ (0, 1
2 ], we get

Qh[A
x0 ,Πx0 ](ϕ

[1]
h ) ≤ hΛX + C

(
h2−2δe−chδ− 1

2 + ‖A‖W 2,∞(Ω)h
3
2 + ‖A‖2W 2,∞(Ω)h

2
)

≤ hΛX + C
(
1 + ‖A‖2W 2,∞(Ω)

)
(h2−2δe−chδ− 1

2 + h
3
2 ).

Thanks to (9.15), the quasimode ϕ
[0]
h satisfies

Qh[A,Ω](ϕ
[0]
h ) ≤ (1 +O(hδ)

){
hΛX + C

(
1 + ‖A‖2W 2,∞(Ω)

)
(h2−2δe−chδ− 1

2 + h3/2)
}

≤ hΛX + C
(
1 + ‖A‖2W 2,∞(Ω)

){
h1+δ + h2−2δe−chδ− 1

2 + h3/2
}
.
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Here C denotes various constants depending on Ω but independent from h ≤ h0

and δ ≤ 1
2 . We optimize this by taking δ = 1

2 − ε(h) with ε(h) chosen so that h1+δ =

h2−2δe−chδ− 1
2 , i.e.,

h
3
2−ε(h) = h1+2ε(h)e−ch−ε(h)

.

We find

ech
−ε(h)

= h− 1
2+3ε(h), i.e., h−ε(h) = 1

c (− 1
2 + 3ε(h)) log h.

The latter equation has one solution ε(h) which tends to 0 as h tends to 0. Replacing

h−ε(h) by the value above in h
3
2−ε(h), we find that the remainder is a O(h3/2| log h|).

Case when Ω is a straight polyhedron and B constant. — According to Remark

8.3 (d), we may assume that (B,Πx0) is in case (i) of the Dichotomy Theorem. We

construct a sitting quasimode near x0. Since the magnetic field is constant, we may

associate a linear magnetic potential A. Define now ϕ
[0]
h from ϕ

[1]
h as in (9.12) and

tune the cut-off by choosing δ = 0 and R > 0 large enough such that the support of

χh is contained in a map-neighborhood Vx0 of 0 in Πx0 .

Notice that Ux0 is the translation x �→ x−x0 and that the linear part of the potential

satisfies Ax0
0 = Ax0 . Therefore the error terms due to the change of variables and the

linearization of the potential appearing in step [b1] are zero, and (9.20) is improved

in

Qh[A,Ω](ϕ
[0]
h ) = Qh[A

x0
0 ,Πx0 ](ϕ

[1]
h ).

Estimate (9.5) is then a direct consequence of identity (7.9) combined with

Lemma 7.11.

9.3. Second level of construction and sliding quasimodes

We have now to deal with the case ν ≥ 2. So X = (x0, x1) or (x0, x1, x2). Here we

use the same notation as the introduction of singular chains in Section 3.4.

Let U0 ∈ O3 such that Πx0 = U0(R3−d0 × Γx0) where Γx0 is the reduced cone

of Πx0 . Let Ωx0 = Γx0 ∩ S
d0−1 be the section of Γx0 . By definition of chains, x1

belongs to Ωx0 and let Cx0,x1 be the tangent cone to Ωx0 at x1. Then the tangent

substructure Πx0,x1 is determined by the formula

Πx0,x1 = U0
(
R

3−d0 × 〈x1〉 × Cx0,x1

)
.

Let us define the unit vector x̂1 by the formulas

(9.24) x̂1 := (0, x1) ∈ R
3−d0 × Γx0 and x̂1 = U0 x̂1 ∈ Πx0 ∩ S

2.

With this definition, the substructure Πx0,x1 is the tangent cone to Πx0 at the point x̂1.

Note that in the case when x0 is a vertex of Ω, the above formulas simplify: Πx0 is

its own reduced cone, Πx0,x1 = 〈x1〉 × Cx0,x1 , and x̂1 coincides with x1.

Note also that the cone Πx0,x1 can be the full space, a half-space or a wedge, and

that x̂1 gives a direction associated with Πx0,x1 starting from the origin 0 of Πx0 :
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Figure 9.3. Sliding quasi-modes

1) If Πx0,x1 ≡ R
3, then x̂1 belongs to the interior of Πx0 .

2) If Πx0,x1 ≡ R
2 × R+, then x̂1 belongs to a face of Πx0 .

3) If Πx0,x1 ≡ Wα, then x̂1 belongs to an edge of Πx0 .

Unless we are in the latter case (Πx0,x1 is a wedge), the choice of x̂1 is not unique.

Set v1 = d
[1]
h x̂1 where d

[1]
h is a positive quantity intended to converge to 0 with h.

The vector v1 is a shift that allows to pass from the cone Πx0 to the substructure

Πx0,x1 , which is also the tangent cone to Πx0 at the point v1. Let Uv1 be a local

diffeomorphism that sends (a neighborhood Uv1 of) v1 in Πx0 to (a neighborhood

Vv1 of) 0 in Πx0,x1 . We can assume without restriction that Uv1 is part of an admissible

atlas on Πx0 .

[a2]. — By the change of variable Uv1 , the potential Ax0
0 − Ax0

0 (v1) becomes Av1

(cf. (4.1))

Av1 = (Jv1)�
((

Ax0
0 − Ax0

0 (v1)
) ◦ (Uv1)−1

)
with Jv1 = d(Uv1)−1.

Let ζ v1h (x) = ei〈A
x0
0 (v1), x/h〉, for x ∈ Πx0 . We introduce the relation

(9.25) ϕ
[1]
h = Zv1

h ◦Uv1∗ (ϕ
[2]
h ),

and let r
[2]
h be the radius of the smallest ball centered at 0 containing the support

of ϕ
[2]
h in Πx0,x1 , see Figure 9.3 for a representation of the support of ϕ

[0]
h . This new

quantity is also intended to converge to 0 with h.

We now have a turning point of the algorithm: if x0 is not a conical point, we use

the fact that Uv1 is a translation. Then Gv1 = I and Av1 coincides with its linear

part Av1
0 . Steps [b] and [c] are replaced by the identity

(9.26) Qh[A
x0
0 ,Πx0 ](ϕ

[1]
h ) = Qh[A

v1
0 ,ΠX](ϕ

[2]
h ),

and we are able to make a direct estimation of the quasimodes, see the [Conclusion2(a)]

below. We will called them soft sliding quasimodes.

If x0 is a conical point, we continue the algorithm as described below:
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[b2]. — Using (4.5) and (4.13) in Lemma 4.5, we find a relation between Rayleigh

quotients of the same form as (9.14), with O(r
[1]
h ) replaced by O(r

[2]
h /d

[1]
h ). Like

for (9.15), we deduce∣∣∣Qh[A
x0
0 ,Πx0 ](ϕ

[1]
h )− Qh[A

v1 ,Πx0,x1 ](ϕ
[2]
h )
∣∣∣ � r

[2]
h

d
[1]
h

Qh[A
v1 ,Πx0,x1 ](ϕ

[2]
h ).(9.27)

[c2]. — Let Av1
0 be the linear part of Av1 at 0 ∈ Πx0,x1 . Thus, by relation (A.6) and

a Cauchy-Schwarz inequality, we have

(9.28)
∣∣∣qh[Av1 ,Πx0,x1 ](ϕ

[2]
h )− qh[A

v1
0 ,Πx0,x1 ](ϕ

[2]
h )
∣∣∣ ≤ C

(
a
[2]
h

√
μ
[2]
h +

(
a
[2]
h

)2)‖ϕ[2]
h ‖2,

with

(9.29) μ
[2]
h = Qh[A

v1
0 ,Πx0,x1 ](ϕ

[2]
h ) and a

[2]
h =

‖(Av1 − Av1
0 )ϕ

[2]
h ‖

‖ϕ[2]
h ‖

.

By Lemmas 4.6–4.7, case (b), and since ϕ
[2]
h is supported in the ball B(0, r[2]h ), we

have

(9.30) a
[2]
h �

(
r
[2]
h

)2
d
[1]
h

.

Using (9.27)–(9.30), we find, if r
[2]
h /d

[1]
h is small enough,∣∣Qh[A

x0
0 ,Πx0 ](ϕ

[1]
h )− Qh[A

v1
0 ,Πx0,x1 ](ϕ

[2]
h )
∣∣(9.31)

� μ
[2]
h

r
[2]
h

d
[1]
h

+

(
r
[2]
h

)2
d
[1]
h

√
μ
[2]
h +

(
r
[2]
h

)4(
d
[1]
h

)2 .
[Conclusion 2]. — If ν = 2, we set, as already mentioned, ϕ

[2]
h = χhΨ

X

h . Note that

Av1
0 coincides with AX. We have now to distinguish two cases, according as x0 is or

not a conical point.

(a) Soft sliding. If x0 is not a conical point, i.e., x0 �∈ V◦, the local map Uv1 is the

translation x �→ x−v1. To tune the cut-off χh, we choose the exponent δ as δ0 and the

shift d
[1]
h as hδ0 . We choose the radius R for the cut-off χh (7.8) so that the support

of χ
R

is contained in a map neighborhood Vv1 of 0 in Πx0,x1 , i.e., a neighborhood

such that:

Uv1(Uv1 ∩Πx0) = Vv1 ∩Πx0,x1 ,

where Uv1(x) = x − v1 and Uv1 = Vv1 + v1. Then r
[1]
h and r

[2]
h are both O(hδ0) and

we can combine (9.26) with (9.20) and the cut-off estimate (9.8). Moreover for h

small enough, the quantities μ
[1]
h is O(h), and we deduce the estimate (9.21) as in the

case ν = 1, which leads, like in the sitting case, to the upper bound (9.2) with h5/4.

The latter step ends in particular the handling of the polyhedral case since we can

always reduce to chains of length ν ≤ 2 in polyhedral domains, cf. Proposition 3.31.
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(b) Hard sliding. If x0 is a conical point, to tune the cut-off χh, we choose the

exponent δ as δ0 + δ1 and the shift d
[1]
h as hδ0 , with δ0, δ1 > 0 such that δ0 + δ1 < 1

2 .

We choose the radius R equal to 1. Therefore r
[2]
h = O(hδ0+δ1) and r

[1]
h = O(hδ0).

By (9.8) μ
[2]
h = O(h) and, since for h small enough, r

[2]
h /d

[1]
h is arbitrarily small, we

also deduce with the help of (9.31) that μ
[1]
h = O(h). Putting this together with (9.20)

and (9.31), and using (9.8) once more, we deduce the estimate

(9.32) Qh[A,Ω](ϕ
[0]
h ) ≤ hΛX + C

(
h1+δ0 + h

1
2+2δ0 + h4δ0

)
+ C
(
h2−2δ0−2δ1 + h1+δ1 + h

1
2+δ0+2δ1 + h2δ0+4δ1

)
.

The exponents that appear here are the same as for the lower bound (5.26). Thus

taking δ0 = 3/10 and δ1 = 3/20, we optimize remainders and deduce

λh(B,Ω) ≤ hE (B,Ω) + CΩ

(
1 + ‖A‖2W 2,∞(Ω)

)
h11/10.

9.4. Third level of construction and doubly sliding quasimodes

It remains to deal the case ν = 3. In that case, the chain X = (x0, x1, x2) is such

that

– x0 is a conical point,

– x1 is a vertex of Ωx0 , x̂1 coincides with x1, the corresponding edge of Πx0 is

generated by x1, and Πx0,x1 is a wedge,

– x2 is an end of the interval Ωx0,x1 , it corresponds to a point x̂2 on a face of

Πx0,x1 , defined as in (9.24). Finally Πx1,x1,x2 = ΠX is a half-space.

Set v2 = d
[2]
h x̂2 where d

[2]
h is a positive quantity intended to converge to 0 with h.

Let Uv2 be the translation that sends (a neighborhood of) v2 in Πx0,x1 to (a neigh-

borhood of) 0 in ΠX = Πx0,x1,x2 .

[a3]. — By the change of variable Uv2 , since Jv2 = I3, the potential Av1
0 − Av1

0 (v2)

becomes

Av2 =
(
Av1

0 − Av1
0 (v2)

) ◦ (Uv2)−1,

and it coincides with its linear part Av2
0 . Let ζ v2h (x) = ei〈A

v1
0 (v2), x/h〉, for x ∈ Πx0,x1 .

We define

(9.33) ϕ
[2]
h = Z v2

h ◦Uv2∗ (ϕ
[3]
h ).

Since Gv2 = I3, we have

(9.34) Qh[A
v1
0 ,Πx0,x1 ](ϕ

[2]
h ) = Qh[A

v2
0 ,ΠX](ϕ

[3]
h ).
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[Conclusion 3]. — We set, as already mentioned ϕ
[3]
h = χhΨ

X

h . We have Av2
0 = AX.

We choose the exponent δ as δ0 + δ1, the shifts d
[2]
h as hδ0+δ1 and d

[1]
h as hδ0 , with

δ0, δ1 > 0 such that δ0+δ1 < 1
2 . We conclude as the conical case at level 2 and obtain

again (9.32). We deduce

λh(B,Ω) ≤ hE (B,Ω) + CΩ

(
1 + ‖A‖2W 2,∞(Ω)

)
h11/10.

9.5. Conclusion

The outcome of the last four sections is the achievement of the proof of Theo-

rem 9.1. We may notice that there is only one configuration where we cannot prove

the convergence rate h5/4: This is the case when all points with minimal local en-

ergy x0 satisfy all the three conditions

1) x0 is a conical point (x0 ∈ V◦),

2) The model operator H(Ax0 ,Πx0) has no eigenvalue below its essential spectrum,

3) The geometry around x0 is not trivial i.e., the derivative Kx0(0) of the Jacobian

is not zero.
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PART IV

IMPROVED UPPER BOUNDS





CHAPTER 10

STABILITY OF ADMISSIBLE GENERALIZED

EIGENVECTORS

In order to confirm our claim for the improved upper bounds (1.12), we need to

revisit AGE’s (Admissible Generalized Eigenvectors) of model problems H(A,Π). In

particular we want to know what are their stability properties under perturbation of

the constant magnetic field B = curl A.

10.1. Structure of AGE’s

In this section we recall from Chapter 6 the model reference configurations (B,Π)

owning an AGE and give a comprehensive overview of their structure in a table.

Let B be a constant magnetic field and Π a cone inP3. Remind that d = d(Π) is the

reduced dimension of Π, cf. Definition 3.16. Let us assume that E(B,Π) < E ∗(B,Π).

Therefore by Theorem 7.3 there exists an AGE Ψ that has the form (7.1). We recall

the discriminant parameter k ∈ {1, 2, 3} that is the number of directions in which

the generalized eigenvector has an exponential decay. For further use we call (G1),

(G2), and (G3) the situation where k = 1, 2, and 3, respectively. As a consequence of

Lemma 7.2, it is enough to concentrate on reference configurations for the magnetic

field B, its potential A and the cone Π. In such a reference configuration the AGE

writes as

Ψ(y, z) = eiϑ(y,z) Φ(z) ∀y ∈ R
3−k, ∀z ∈ Υ.

In Table 1 we gather all possible situations for the couple of dimensions (k, d). We

provide the explicit form of an admissible generalized eigenfunction Ψ of H(A,Π) in

variables (y, z) ∈ R
3−k ×Υ where A is a reference linear potential associated with B.

Note that the cone Υ on which Ψ has exponential decay does not always coincide

with the reduced cone Γ of Π.

Remark 10.1. — Table 1 provides all reference situations where condition (i) of

the Dichotomy Theorem holds. This condition guarantees the existence of an AGE.

However there exist cases where this condition does not hold and, nevertheless, there
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Table 1. AGE of H(A,Π) when E(B,Π) < E ∗(B,Π), written in variables (y, z).

exists an AGE. An example of this is the half-space Π = R+ × R
2 with coordinates

(y, z1, z2), and B the field (1, 0, 0) normal to the boundary. We take the same reference

potential as in the case Π = R
3 and we find, as described in [52, Lemma 4.3], that

the same function Ψ : (y, z) �→ e−|z|2/4 displayed in row 2 of Table 1 is also an

AGE for H(A,R+ × R
2), since it satisfies the Neumann boundary conditions at the

boundary y = 0.

10.2. Stability under perturbation

Here we describe stability properties of AGE’s under perturbations of the magnetic

field B.

Assume that we are in case (i) of the dichotomy (Theorem 7.3). We recall that the

notations (G1), (G2) and (G3) refer to the number k = 1, 2, 3, of independent decaying

directions for the AGE, cf. Section 10.1. We first note that we do not need any stability

analysis in situation (G3) since the points x in Ω ∈ D(R3) for which d(Πx) = 3 are

but corners, so they are isolated. By contrast, points in situation (G1) or (G2) are not

isolated, in general. A perturbation of the magnetic field has distinct effects in each

case. The geometrical situation leading to (G1) is clearly not stable. However, we

prove in the following lemma the local stability of case (i) of the dichotomy, together

with local uniform estimates for exponential decay in situation (G2).

Lemma 10.2. — Let B0 be a nonzero constant magnetic field and Π be a cone in P3

with reduced dimension d ≤ 2. Assume that E(B0,Π) < E ∗(B0,Π).

(a) There exists a positive ε0 such that in the ball B(B0, ε0), the function B �→
E(B,Π) is Lipschitz-continuous and for all B ∈ B(B0, ε0),

E(B,Π) < E ∗(B,Π.
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(b) We suppose moreover that (B0,Π) is in situation (G2). For B ∈ B(B0, ε0), we

denote by ΨB an AGE given by Theorem 7.3. Then there exists ε1 ∈ (0, ε0]

such that (B,Π) is still in situation (G2) if B ∈ B(B0, ε) and ΨB has the form

ΨB(x) = eiϕ
B(y,z)ΦB(z) for UBx = (y, z) ∈ R×Υ,

with UB a suitable rotation, and there exist constants ce > 0 and Ce > 0 such

that there hold the uniform exponential decay estimates

(10.1) ∀B ∈ B(B0, ε1), ‖ΦBece|z|‖L2(Υ) ≤ Ce‖ΦB‖L2(Υ).

Proof. — Let us distinguish the three possible situations according to the value of d.

Case d = 0 : When Π = R
3, we have E(B,Π) = |B| and E ∗(B,Π) = +∞.

Combining row 2 of Table 1 and Lemma 7.2, the admissible generalized eigenvector

ΨB is explicit. Thus (a) and (b) are established in this case.

Case d = 1 : When Π is a half-space, we denote by θ(B) the unoriented angle

in [0, π
2 ] between B and the boundary. Then E(B,Π) = |B|σ(θ(B)). The function

B �→ θ(B) is Lipschitz outside {0} and, moreover, the function σ is C 1 on [0, π/2]

(see Lemma 6.3). We deduce that the function B �→ σ(θ(B)) is Lipschitz outside {0}.
Thus point (a) is proved. Assuming furthermore that (Π, B0) is in situation (G2), we

have θ(B0) ∈ (0, π
2 ) and there exist ε > 0, θmin and θmax such that

∀B ∈ B(B0, ε), θ(B) ∈ [θmin, θmax] ⊂ (0, π
2 ).

The admissible generalized eigenvector is constructed above. The uniform exponential

estimate is proved in [10, §2].
Case d = 2 : When Π is a wedge, point (a) comes from [69, Proposition 4.6]. Due

to the continuity of B �→ E(B,Π) there exist c > 0 and ε > 0 such that

∀B ∈ B(B0, ε), E ∗(B,Π)− E(B,Π) > c.

Point (b) is then a direct consequence of [69, Proposition 4.2].

The proof of Lemma 10.2 is complete.

Remark 10.3. — 1) Lemma 10.2 (a) is still valid when d = 3. This can be proved

by arguments similar to those employed in [69, Section 4] for wedges.

2) Lipschitz with respect to the aperture angle of the wedge in case (i) of the

Dichotomy Theorem, whereas one can prove only 1
3 -Hölder regularity under pertur-

bations in the general case (i.e., without the condition E(B0,Π) < E ∗(B0,Π)).

Remark 10.4. — A constant magnetic field enters the family of long range mag-

netic fields. So Lemma 10.2 can be related to some spectral analyses of Schrödinger

operators in R
n under long range magnetic perturbations. Such perturbations do

not pertain to the usual Kato theory. When the spectrum has a band structure, the

question of the stability of, e.g., its lower bound with respect to the strength of the
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perturbation has been addressed by many authors, see for example [3, 4] for the con-

tinuity, then [63, 16] for Hölder properties, and [18] for Lipschitz continuity in the

case of constant magnetic fields.

As a consequence of the local uniform estimate (10.1), we obtain the following local

uniform version of Lemma 7.11 for situation (G2).

Lemma 10.5. — Let B0 be a nonzero constant magnetic field and Π a cone in P3.

Assume that E(B0,Π) < E ∗(B0,Π) and that k = 2. With ε1 given in Lemma 10.2 (b),

for any B ∈ B(B0, ε1) let Ψ
B be an AGE for (B,Π). Let δ0 < 1

2 be a positive number.

Let ΨB
h be the rescaled function given by (7.5) and let χh be the cut-off function defined

by (7.7)–(7.8) involving parameters R > 0 and δ ∈ [0, δ0]. Let R0 > 0. Then there

exist constants h0 > 0, C1 > 0 depending only on R0, δ0 and on the constants ce, Ce

in (10.1) such that for all R ≥ R0, h ≤ h0 and δ ∈ [0, δ0]

ρh =
‖ |∇χh|ΨB

h‖2
‖χhΨB

h‖2
≤ C1 h

−2δ.

Proof. — We obtain an upper bound of ‖ |∇χh|ΨB
h‖2 as in the proof of Lemma 7.11.

Let us now deal with the lower-bound of ‖χhΨ
B
h‖2. With T = Rhδ and k = 2, we

have

‖χhΨ
B
h‖2 ≥ CT 3−khk/2

∫
Υ∩
{
2|z|≤Th− 1

2

} ∣∣ΦB(z)
∣∣2 dz

≥ CT 3−khk/2
(
1− Cee

−ceRhδ−1/2)‖ΦB‖2L2(Υ).(10.2)

Since 0 ≤ δ ≤ δ0 < 1
2 , there holds Cee

−ceRhδ−1/2

< 1
2 for h small enough or R large

enough. Thus we deduce the lemma.
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CHAPTER 11

IMPROVEMENT OF UPPER BOUNDS FOR MORE

REGULAR MAGNETIC FIELDS

For our improvement of remainders, in comparison with Theorem 9.1 our sole

additional assumption is a supplementary regularity on the magnetic potential (or

equivalently on the magnetic field). Our result is also general, in the sense that it

addresses general corner domains.

Theorem 11.1. — Let Ω ∈ D(R3) be a general corner domain, A ∈ C 3(Ω) be a

magnetic potential such that the associated magnetic field does not vanish.

(i) Then there exist C(Ω) > 0 and h0 > 0 such that

(11.1) ∀h ∈ (0, h0), λh(B,Ω) ≤ hE (B,Ω) + C(Ω)
(
1 + ‖A‖2W 3,∞(Ω)

)
h9/8.

(ii) If Ω is a polyhedral domain, this upper bound is improved:

(11.2) ∀h ∈ (0, h0), λh(B,Ω) ≤ hE (B,Ω) + C(Ω)
(
1 + ‖A‖2W 3,∞(Ω)

)
h4/3.

The strategy is to optimize the construction of adapted sitting or sliding quasimodes

by taking actually advantage of the decaying properties of AGE’s ΨX associated with

the minimal energy E (B,Ω). In fact, our proof of the h11/10 or h5/4 upper bounds as

done in Chapter 9 weakly uses the exponential decay of generalized eigenfunctions in

some directions. It would also work with purely oscillating generalized eigenfunctions.

Now the proof of the h9/8 or h4/3 upper bound makes a more extensive use of fine

properties of the model problems: First, the decay properties of admissible gener-

alized eigenvectors, and second, the Lipschitz regularity of the ground state energy

depending on the magnetic field, cf. Lemma 10.2.

The method depends on the number k of directions in which ΨX has exponential

decay, namely whether we are in situation (G1), (G2) or (G3). Indeed, situation

(G3) is already handled in Theorem 9.1 (d) and we have already obtained a better

estimate in this case. So it remains situations (G1) and (G2) which are considered in

Section 11.1 and 11.2, respectively.
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Like for Theorem 9.1 we start from suitable AGE’s ΨX and construct sitting or

sliding quasimodes adapted to the geometry. In comparison with the proof of The-

orem 9.1, the strategy is to improve step [c] that consists in the linearization of the

magnetic potential, see Section 9.1 and Figure 9.1: We take more precisely advantage

of the decaying property of the AGE ΨX, choosing coordinates in which ΨX takes

the form of reference, as listed in Table 1. Then we adopt different strategies de-

pending on whether we are in situation (G1) or (G2): The improvement relies on a

Feynman-Hellmann formula for (G1), and a refined Taylor expansion of the potential

for (G2).

We recall that x0 ∈ Ω is a point such that E(Bx0 ,Πx0) = E (B,Ω). Theorem 7.3

and Remark 7.4 provide the existence of a singular chain X that satisfies

E (B,Ω) = E(Bx0 ,Πx0) = E(BX,ΠX) < E ∗(BX,ΠX).

We now split our analysis according to the two geometric configurations (G1)

and (G2):

(G1) ΠX is a half-space and Bx0 is tangent to the boundary, cf. row 1 of Table 1.

(G2) We are in one of the following situations:

� ΠX = R
3, cf. row 2 of Table 1,

� ΠX is a half-space, Bx0 is neither tangent nor normal to ∂ΠX, cf. row 3

of Table 1,

� ΠX is a wedge, cf. row 4 of Table 1.

In each configuration, the estimates concerning the constructed quasimodes depend

on the length ν of the chain X and on whether x0 is a conical point or not. The relevant

categories of quasimodes are qualified as sitting (ν = 1), hard sliding (ν = 2, x0 conical

point), soft sliding (ν = 2, x0 not a conical point), and doubly sliding (ν = 3), see

Section 9.1.

11.1. (G1) One direction of exponential decay

In situation (G1) the generalized eigenfunction has exponential decay in one vari-

able z. The upper bounds (9.16) and (9.28) are obtained by a Cauchy-Schwarz in-

equality. We are going to improve them, going back to the identity (A.6) and using a

Feynman-Hellmann formula to simplify the cross term in (A.6).

In situation (G1) ΠX is a half-space and BX is tangent to its boundary. Denote by

(y, z) = (y1, y2, z) ∈ R
2 × R+ a system of coordinates of ΠX such that BX is tangent

to the y2-axis. In these coordinates, the magnetic field BX writes (0, b, 0).

In the rest of this proof, we will assume without restriction that b = 1. Indeed,

once quasimodes are constructed for b = 1, Lemmas A.4 and A.7 allow to convert

them into quasimodes for any b. Thus we have ΛX = Θ0, cf. row 1 of Table 1.
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The principle of the quasimode construction is to replace the last relation (9.10)

ϕ
[ν]
h = χhΨ

X

h with the new relation

(11.3) ϕ
[ν]
h = U∗ ◦ ZF

h (χ
�
h Ψh)

where U is the rotation x �→ x� := (y, z) that maps ΠX onto the reference half-space

R
2 × R+, the function χ�

h is the cut-off in tensor product form (here for simplicity

we denote χ
R
by χ) defined as

(11.4) χ�
h (y, z) = χ

( |y|
hδ

)
χ
( z

hδ

)
.

ZF
h is a change of gauge and Ψh a canonical generalized eigenvector defined as follows.

The canonical reference potential (see row 1 of Table 1)

(11.5) A(y, z) = (z, 0, 0),

is such that curl A = (0, 1, 0). We know (see Section 10.1) that the function

(11.6) Ψh(y, z) := e−i
√
Θ0 y1/

√
h Φ
( z√

h

)
is a generalized eigenvector of Hh(A,R2 × R+) for the value hΘ0. Here Φ is a nor-

malized eigenvector associated with the first eigenvalue of the de Gennes operator

−∂2
z + (z −√

Θ0)
2. By identity (7.9) and Lemma 7.11 we obtain the cut-off estimate

(11.7) Qh[A,R
2 × R+](χ

�
h Ψh) = hΘ0 +O(h2−2δ) = hΛX +O(h2−2δ).

Let J be the matrix associated with U. In variables x�, the tangent potential AX is

transformed into the potential A�
0

(11.8) A�
0(x

�) = J�(AX(x)),

that satisfies

curl A�
0 = curl A.

Since A and A�
0 are both linear, there exists a homogenous polynomial function of

degree two F � such that

(11.9) A�
0 −∇�F

� = A.

Therefore, e−iF 	/hΨh is an admissible generalized eigenvector for Hh(A
�
0,R

2 × R+)

associated with the value hΛX.

11.1.1. Sitting quasimodes. — This is the case when ν = 1 and X = (x0). Thus

Πx0 coincides with ΠX. We keep relation (9.12) linking ϕ
[0]
h to ϕ

[1]
h and ϕ

[1]
h is now

defined by the formula

(11.10) ϕ
[1]
h (x) = e−iF 	(x	)/hχ�

h (y, z)Ψh(y, z) = e−iF 	(x	)/hψh(y, z), ∀x ∈ ΠX,

Here we set for shortness

ψh := χ�
h Ψh and V �

h := supp(χ�
h ).
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Let J be the matrix associated with U. Let A� be the magnetic potential associated

with Ax0 in variables x�:

(11.11) A�(x�) = J�
(
Ax0(x)

) ∀x ∈ Vx0 .

Then A�
0 (11.8) is its linear part at 0. We have

Qh[A
x0 ,Πx0 ](ϕ

[1]
h ) = Qh[A

�,R2 × R+](e
−iF 	/hψh)(11.12)

= Qh[A
� −∇F �,R2 × R+](ψh).

Now we apply (A.6) with A = A� −∇F � and A′ = A. Using (11.9) we find

A− A′ = A� − A�
0,

and write, instead of (9.16)

qh[A
� −∇F �,R2 × R+](ψh) = qh[A,R

2 × R+](ψh)(11.13)

+ 2Re

∫
R2×R+

(−ih∇+ A)ψh(x
�) · (A� − A�

0)(x
�)ψh(x�) dx

�(11.14)

+
∥∥(A� − A�

0)ψh

∥∥2.(11.15)

As in Section 9.2 [e1], we bound from above the term (11.15) using Lemma 4.6

(11.16)
∥∥(A� − A�

0)ψh

∥∥2 ≤ C(Ω)‖A�‖2
W 2,∞(V �

h )
· h4δ · ‖ψh‖2.

Let us now deal with the term (11.14). We calculate (−ih∇+ A)ψh using (11.6):

(−ih∇+ A)ψh(x
�) = e−i

√
Θ0 y1/

√
h ×⎧⎪⎪⎨⎪⎪⎩χ

( |y|
hδ

)
χ
(

z
hδ

)⎡⎢⎢⎣
(z −√

hΘ0) Φ
(

z√
h

)
0

−i
√
hΦ′( z√

h

)
⎤⎥⎥⎦− ih1−δ

⎡⎢⎢⎣
y1

|y|χ
′( |y|

hδ ) χ(
z
hδ )

y2

|y|χ
′( |y|

hδ ) χ(
z
hδ )

χ( |y|
hδ ) χ

′( z
hδ )

⎤⎥⎥⎦Φ( z√
h

)⎫⎪⎪⎬⎪⎪⎭ .

Since Φ and χ are real valued functions, the term (11.14) reduces to a single term:

Re

∫
R2×R+

(−ih∇+ A)ψh(x
�) · (A� − A�

0)(x
�)ψh(x�) dx

�(11.17)

=

∫
R2×R+

(z −
√
hΘ0) |ψh(x

�)|2A(rem,2)
1 (x�) dx�

=

∫
R2×R+

(z −
√
hΘ0)

∣∣Φ( z√
h

)∣∣2 · ∣∣χ( |y|
hδ

)∣∣2 · ∣∣χ( z
hδ

)∣∣2A(rem,2)
1 (x�) dx�,

where A
(rem,2)
1 denotes the first component of A� − A�

0. We write

(11.18) A
(rem,2)
1 (x�) = P

(2)
1 (y) +R

(2)
1 (x�) +A

(rem,3)
1 (x�),
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where A
(rem,3)
1 is the Taylor remainder of degree 3 of the first component of A� at 0,

whereas P
(2)
1 (y) +R

(2)
1 (x�) is a representation of its quadratic part in the form

P
(2)
1 (y) = a1y

2
1 + a2y

2
2 + a3y1y2 and R

(2)
1 (x�) = b1z

2 + b2zy1 + b3zy2.

As in (A.2), we have:

‖A(rem,3)
1 ‖L∞(V �

h ) ≤ C‖A�‖W 3,∞(V �
h ) · h3δ,

leading to, with the help of the variable change Z = z/
√
h and the exponential decay

of Φ: ∣∣∣ ∫
R2×R+

(
z −
√
hΘ0

) ∣∣ψh(x
�)
∣∣2 A(rem,3)

1 (x�) dx�
∣∣∣(11.19)

≤ C‖A�‖W 3,∞(V �
h ) · h

1
2+3δ · ‖ψh‖2.

Likewise, combining the exponential decay of Φ, the change of variable Z = z/
√
h

and the localization of the support in balls of size Chδ, we deduce∣∣∣ ∫
R2×R+

(
z −
√
hΘ0

) ∣∣ψh(x
�)
∣∣2 R(2)

1 (x�) dx�
∣∣∣(11.20)

≤ C‖A�‖W 2,∞(V �
h ) · hmin( 3

2 ,1+δ) · ‖ψh‖2.

Let us now deal with the term involving y �→ P
(2)
1 (y). Due to a Feynman-Hellmann

formula applied to the de Gennes operator H(τ) at τ = −√
Θ0 (cf. [37, Lemma A.1])

we find by the scaling z �→ z/
√
h the identity∫

R+

(
z −
√

hΘ0

) ∣∣Φ( z√
h

)∣∣2 dz = 0.

Thus we can write∫
R2×R+

(
z −
√
hΘ0

) ∣∣ψh(x
�)
∣∣2 P (2)

1 (y) dx�

=

∫
R2

P
(2)
1 (y)

∣∣χ( |y|
hδ

)∣∣2dy ∫
z∈R+

g
(
z −
√
hΘ0

) ∣∣Φ( z√
h

)∣∣2χ( z
hδ

)2
dz

=

∫
R2

P
(2)
1 (y) g|χ( |y|

hδ

)∣∣2dy ∫
z∈R+

g(z −
√

hΘ0

) ∣∣Φ( z√
h

)∣∣2(χ( z
hδ

)2 − 1
)
dz.

The support of the integral in z is contained in z ≥ Rhδ with δ < 1
2 . Therefore, using

once more the changes of variables Y = y/hδ and Z = z/
√
h, we find:∣∣∣ ∫

R2×R+

(
z −
√
hΘ0

) ∣∣ψh(x
�)
∣∣2P (2)

1 (y) dx�
∣∣∣ ≤ C‖A�‖W 2,∞(V �

h ) · h
1
2+4δe−chδ−1/2

.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2016



104 CHAPTER 11. IMPROVEMENT OF UPPER BOUNDS

Since ‖ψh‖2 ≥ Ch
1
2+2δ (see (10.2)), this leads to:∣∣∣ ∫
R2×R+

(
z −
√

hΘ0

) |ψh(x
�)|2P (2)

1 (y) dx�
∣∣∣(11.21)

≤ C‖A�‖W 2,∞(V �
h ) · e−chδ−1/2 ‖ψh‖2.

Collecting (11.19), (11.20), and (11.21) in (11.14), we find the upper bound∣∣∣Re ∫
R2×R+

(−ih∇+ A�
0) · ψh(x

�) · (A� − A�
0) · ψh(x�) dx

�
∣∣∣(11.22)

≤ C
(‖A�‖W 3,∞(V �

h ) · h
1
2+3δ + ‖A�‖W 2,∞(V �

h ) · h1+δ
)‖ψh‖2.

Returning to (11.12) via (11.13) and combining (11.22) with (11.16), we deduce

Qh[A
x0 ,Πx0 ](ϕ

[1]
h ) ≤ Qh[A,R

2 × R+](ψh)

+ C
(‖A�‖W 3,∞(V �

h ) h
1
2+3δ + ‖A�‖W 2,∞(V �

h ) h
1+δ + ‖A�‖2

W 2,∞(V �
h )

h4δ
)
.

Inserting the cut-off error (11.7) for qh[A,R2 × R+](ψh) we obtain

(11.23) Qh[A
x0 ,Πx0 ](ϕ

[1]
h ) ≤ hΛX + C h2−2δ

+ C
(‖A�‖W 3,∞(V �

h ) h
1
2+3δ + ‖A�‖W 2,∞(V �

h ) h
1+δ + ‖A�‖2

W 2,∞(V �
h )

h4δ
)
.

Using Lemma 4.7 for case (i) we deduce the uniform bound for the derivatives of the

potential

‖A�‖W 3,∞(V �
h ) ≤ C‖Ax0‖W 3,∞(Vx0 )

≤ C ′‖A‖W 3,∞(Ω).

Thus, we deduce from (11.23)

Qh[A
x0 ,Πx0 ](ϕ

[1]
h ) ≤ hΛX + C(Ω)

(
1 + ‖A‖2W 3,∞(Ω)

)
(h2−2δ + h1+δ + h

1
2+3δ + h4δ).

The quasimode ϕ
[0]
h on Ω being still defined by (9.12), we deduce from (9.15) with

r
[1]
h = O(hδ) the final estimate

(11.24) Qh[A,Ω](ϕ
[0]
h ) ≤ hΛX+C(Ω)

(
1+‖A‖2W 3,∞(Ω)

)
(h2−2δ+h1+δ+h

1
2+3δ+h4δ).

Choosing δ = 1
3 we optimize remainders and deduce the upper bound (11.2) in situ-

ation (G1)-sitting.

11.1.2. Hard sliding. — This is the case when ν = 2 and x0 ∈ V◦ (i.e., x0 is a

conical point). So X = (x0, x1) and Πx0,x1 coincides with ΠX. We keep relations (9.12)

and (9.25) linking ϕ
[0]
h to ϕ

[1]
h and ϕ

[1]
h to ϕ

[2]
h , respectively, and ϕ

[2]
h is now defined by

the formula

(11.25) ϕ
[2]
h (x) = e−iF 	(x	)/hχ�

h (y, z)Ψh(y, z) = e−iF 	(x	)/hψh(y, z), ∀x ∈ ΠX,

and A� is the magnetic potential associated with Av1 (step [a2]) in variables x�,

(11.26) A�(x�) = J�
(
Av1(x)

) ∀x ∈ Vv1 .
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We recall that Πv1 = ΠX. We have, instead of (11.12):

(11.27) Qh[A
v1 ,Πv1 ](ϕ

[2]
h ) = Qh[A

� −∇F �,R2 × R+](ψh),

and (9.28) is replaced by the analysis of (11.13)–(11.15) which goes along the same

lines as before, ending up at, instead of (11.23)

(11.28) Qh[A
v1 ,Πv1 ](ϕ

[2]
h ) ≤ hΛX + C h2−2δ

+ C
(‖A�‖W 3,∞(V �

h ) h
1
2+3δ + ‖A�‖W 2,∞(V �

h ) h
1+δ + ‖A�‖2

W 2,∞(V �
h )

h4δ
)
.

But now we have to use Lemma 4.7 for case (ii) after specifying the different scales: As

in Section 9.3 step [e2] (b) we take |v1| = d
[1]
h = O(hδ0) and δ = δ0+δ1, so the support

of ψh is contained in a ball of radius r
[2]
h = O(hδ0+δ1). The radius r

[1]
h is a O(hδ0).

By using Remark 3.15, we can see that (4.16) generalizes to higher derivative of Av1 ,

and thus we may estimate the derivatives of the potential after change of variables:

‖A�‖W �,∞(V �
h ) ≤ C‖Av1‖

W �,∞(B(0,r
[2]
h ))

(11.29)

≤ C ′h−(�−1)δ0‖A‖W �,∞(Ω), � = 2, 3,

and (11.28) provides

Qh[A
v1 ,Πv1 ](ϕ

[2]
h ) ≤ hΛX

+ C
(
1 + ‖A‖2W 3,∞(Ω)

)
× (h2−2δ0−2δ1 + h−2δ0h

1
2+3δ0+3δ1 + h−δ0h1+δ0+δ1 + h−2δ0h4δ0+4δ1

)
.

Combining the above inequality with (9.20) that bounds

Qh[A,Ω](ϕ
[0]
h )− Qh[A

x0
0 ,Πx0 ](ϕ

[1]
h )

and (9.27) that bounds Qh[A
x0
0 ,Πx0 ](ϕ

[1]
h )− Qh[A

v1 ,Πx0,x1 ](ϕ
[2]
h ) we find

Qh[A,Ω](ϕ
[0]
h ) ≤ hΛX(11.30)

+ C
(
1 + ‖A‖2W 2,∞(Ω)

) (
h1+δ0 + h

1
2+2δ0 + h4δ0 + h1+δ1

)
+ C
(
1 + ‖A‖2W 3,∞(Ω)

) (
h2−2δ0−2δ1 + h

1
2+δ0+3δ1 + h1+δ1 + h2δ0+4δ1

)
.

Choosing δ0 = 5
16 and δ1 = 1

8 , we deduce the upper bound (11.1) in situation (G1)-

hard sliding.

11.1.3. Soft sliding. — This is the case when ν = 2 and x0 is not a conical point.

We keep relations (9.12) and (9.25) linking ϕ
[0]
h to ϕ

[1]
h and ϕ

[1]
h to ϕ

[2]
h , respectively,

and ϕ
[2]
h is defined by formula (11.25) as in the hard sliding case. But now the analysis

is different because we can take advantage of the fact that the change of variables Uv1

is the translation x �→ x− v1. Concatenating formulas (9.25) and (11.25), we obtain

(recall that U is the rotation x �→ x�)

(11.31) ϕ
[1]
h = Zv1

h ◦Uv1∗ ◦U∗(e−iF 	/hψh).
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Our aim is a direct evaluation of Qh[A
x0 ,Πx0 ](ϕ

[1]
h ), based on the above representa-

tion. Here we take the potential A� in the canonical half-space R
2 × R+ as (11.11).

Let us set v�1 := Uv1. Then there holds the following sequence of identities, cf. (11.12)

for the last one,

Qh[A
x0 ,Πx0 ](ϕ

[1]
h ) = Qh[A

x0 − Ax0
0 (v1),ΠX]

(
Uv1∗ ◦U∗(e−iF 	/hψh)

)
= Qh[A

x0(·+ v1)− Ax0
0 (v1),ΠX]

(
U∗(e−iF 	/hψh)

)
= Qh[A

�(·+ v�1)− A�
0(v

�
1),R

2 × R+](e
−iF 	/hψh)

= Qh[A
�(·+ v�1)− A�

0(v
�
1)−∇F �,R2 × R+](ψh).

For the calculation of the potential, we check that

A�(·+ v�1)− A�
0(v

�
1)−∇F � = A�(·+ v�1)− A�

0(·+ v�1) + A�
0(·+ v�1)− A�

0(v
�
1)−∇F �

= A�(·+ v�1)− A�
0(·+ v�1) + A�

0 −∇F �

= A�(·+ v�1)− A�
0(·+ v�1) + A.

Then, instead of (11.13)–(11.15) we obtain that

qh[A
�(·+ v�1)− A�

0(v
�
1)−∇F �,R2 × R+](ψh)

is now the sum of three terms:

qh[A,R
2 × R+](ψh)

+ 2Re

∫
R2×R+

(−ih∇+ A)ψh(x
�) · (A�(x� + v�1)− A�

0(x
� + v�1)

)
ψh(x�) dx

�

+
∥∥(A�(·+ v�1)− A�

0(·+ v�1))ψh

∥∥2.
Since |v1| = hδ, the estimate (11.16) obviously becomes∥∥(A�(·+ v�1)− A�

0(·+ v�1))ψh

∥∥2 ≤ C(Ω)‖A�‖2
W 2,∞(v	1+V �

h )
· h4δ ‖ψh‖2.

As for estimates (11.17)-(11.22) of the crossed term, we may use the fact that the

vector x̂1 introduced in (9.24) belongs to a face of Πx0 (see the prologue of Section 9.3).

It is the same for v1 = hδ x̂1. Therefore v�1 is tangent to the boundary of R2 × R+,

it has no component in the z direction and can be written v�1 = hδ x̂�1 = (hδp, 0) in

coordinates x�. We use the same splitting (11.18) of the potential, at the point x�+ v�1

A
(rem,2)
1 (x� + v�1) = P1(y + hδp) +R1(x

� + hδ x̂�1) +A
(rem,3)
1 (x� + hδ x̂�1).

Then all estimates (11.17)–(11.22) of the crossed term are still valid now, replacing

the norm in W �,∞(supp(ψh)) by the norm in W �,∞(v�1 + supp(ψh)) (for � = 2, 3).

As before we arrive to the upper bound (11.24) for the Rayleigh quotient of our

quasimode and conclude as in the sitting case.
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11.1.4. Double sliding. — This is the case when ν = 3. So x0 is a conical point.

We keep relations (9.12) and (9.25) linking ϕ
[0]
h to ϕ

[1]
h and ϕ

[1]
h to ϕ

[2]
h , respectively,

and ϕ
[2]
h is now defined by the formula

(11.32) ϕ
[2]
h (x) = Zv2

h ◦Uv2∗ ◦U∗
(
e−iF 	/hψh

)
.

and A� is the magnetic potential (11.26) associated with Av1 (step [a2]) in variables x�.

A reasoning similar to the soft sliding case yields the same conclusion (11.30) like in

the hard sliding case.

The proof of Theorem 11.1 is over in situation (G1).

11.2. (G2) Two directions of exponential decay

In situation (G2) the generalized eigenfunction ΨX has two directions of decay,

z1 and z2, leaving one direction y with a purely oscillating character. In this case,

we are going to improve the linearization error, namely estimates (9.18) and (9.30):

Until now we have used that Ax0(x)− Ax0
0 (x) is a O(|x|2). Here, by a suitable phase

shift (which corresponds to a change of gauge), we can eliminate from this error the

term in O(|y|2), replacing it by a O(|y|3). The other terms containing at least one

power of |z|, we can take advantage of the decay of ΨX. This phase shift is done by

a change of gauge on the last level of construction, that is on the function ϕ
[ν]
h , as in

the (G1)-case. The sitting modes will be constructed following exactly this strategy,

whereas concerning sliding modes, we have to linearize the potential at a moving point

v := hδ x̂, instead of 0 as previously. Let us develop details now. The quasimode ϕ
[0]
h

is still defined on Ω by formula (9.12) ϕ
[0]
h = Zx0

h ◦Ux0∗ (ϕ
[1]
h ), and relations (9.13)–(9.15)

are still valid.

11.2.1. Sitting quasimodes. — Here we make an improvement of step [c1], see

Figure 9.1. Let U be the rotation x �→ x� := (y, z) that maps Πx0 onto the model

domain R×Υ which equals R×Sα, R
2×R+ or R3. Let A� be the magnetic potential

associated with Ax0 in variables x� given by (11.11) and A�
0, A

x0
0 (= AX) be their linear

parts at 0. Applying Lemma A.2 in variables (u1, u2, u3) = (y, z1, z2) with � = 1 gives

us a function F such that ∂2
y(A

� −∇F )(0) = 0 leading to the estimates∣∣(A� − A�
0 −∇F

)
(x�)
∣∣(11.33)

≤ C(Vx0)
(‖Ax0‖W 2,∞(Vx0 )

(|y||z|+ |z|2)+ ‖Ax0‖W 3,∞(Vx0 )
|y|3).

We define our new quasimode by

(11.34) ϕ
[1]
h = U(e−iF/hψh), in Πx0 ,

with ψh a given function in R×Υ. Using (A.3) and (A.6), we have

(11.35) Qh[A
x0 ,ΠX](ϕ

[1]
h ) = Qh[A

� −∇F,R×Υ](ψh) ≤ μ
[1]
h + 2â

[1]
h

√
μ
[1]
h + (â

[1]
h )2,
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where we have set, by analogy with (9.17),

(11.36) μ
[1]
h = Qh[A

�
0,R×Υ](ψh) and â

[1]
h =

‖(A� − A�
0 −∇F )ψh‖
‖ψh‖ .

We set ψh = χh Ψh where Ψ is the admissible generalized eigenvector of H(A�
0,R×Υ)

in natural variables as introduced in (7.1) and Ψh its scaled version.

The following lemma provides an improvement when compared to Lemmas 4.6–4.7,

due to estimates (11.33) which replace (4.14).

Lemma 11.2. — With the previous notation, there exist constants C(Ω) > 0 and

h0 > 0 such that for all h ∈ (0, h0)

â
[1]
h =

‖(A� − A�
0 −∇F )ψh‖
‖ψh‖(11.37)

≤ C(Ω)
(‖A�‖W 2,∞(V �

h )(h+ h
1
2+δ0) + ‖A�‖W 3,∞(V �

h )h
3δ0
)
.

Proof. — Using the form of the admissible generalized eigenvector Ψ:

Ψ(x�) = eiϑ(x
	)Φ(z) with x� = (y, z),

we obtain by definition of ψh

|ψh(x
�)| = χ

R

( |x�|
hδ0

)∣∣∣Φ( z

h1/2

)∣∣∣.
Using the changes of variables Z = zh−1/2 and Y = yh−δ0 , we find the bounds∥∥∥|y|3 χ

R

( |x�|
hδ0

)
Φ
( z

h1/2

)∥∥∥ ≤ h3δ0 ‖ψh‖,∥∥∥|y| |z| χ
R

( |x�|
hδ0

)
Φ
( z

h1/2

)∥∥∥ ≤ hδ0+
1
2 ‖ψh‖,∥∥∥|z|2 χ

R

( |x�|
hδ0

)
Φ
( z

h1/2

)∥∥∥ ≤ h ‖ψh‖.

Summing up the latter three estimates and using (11.33) lead to the lemma.

Now, since Remark 3.15 allows to generalize Lemma 4.7 to higher derivatives of

the potential as in (11.29), we use (9.8) and Lemmas 11.2, 4.6 and 4.7 for case (i)

in (11.35) and combine this with (9.15) to deduce

Qh[A,Ω](ϕ
[0]
h )(11.38)

≤ hΛX + C(Ω)(1 + ‖A‖2W 3,∞(Ω))(h
2−2δ0 + h

3
2 + h1+δ0 + h

1
2+3δ0 + h6δ0).

We optimize this upper bound by taking δ0 = 1
3 . The min-max principle provides

Theorem 11.1 with a remainder in O(h4/3) in the case (G2) with X = (x0).
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11.2.2. Sliding quasimodes. — We assume now ν ≥ 2, so X = (x0, x1) or

(x0, x1, x2). We use the notation of Section 9.3. The main difference with Section 9.3

is that we deal with the linear part of Ax0 at v1 instead of 0, that is:

Ax0
v1(x) := ∇Ax0(v1) · x, x ∈ Πx0 .

By the change of variable Uv1 , the potential Ax0
v1 becomes Â

v1
(cf. (4.1))

Â
v1

= (Jv1)�
((
Ax0

v1 − Ax0
v1(v1)

) ◦ (Uv1)−1
)

with Jv1 = d(Uv1)−1.

Let ζ̂ v1h (x) = ei〈A
x0
v1
(v1), x/h〉, for x ∈ Πx0 and Ẑv1

h be the operator of multiplication

by ζ̂ v1h . By analogy with (9.25), we introduce the relation

(11.39) ϕ
[1]
h = Ẑv1

h ◦Uv1∗ (ϕ
[2]
h ).

Let us assume for the end of this section that ν = 2. Let Â
v1
0 be the linear part of Â

v1

at 0 ∈ Πx0,x1 . We have curl Â
v1
0 = Bx0

v1 where the constant Bx0
v1 is the magnetic field

Bx0 frozen at v1.

We have E(Bx0 ,ΠX) < E ∗(Bx0 ,ΠX). Due to Lemma 10.2, we have

(11.40) ∃ ε > 0, ∀v1 ∈ B(0, ε) ∩Πx0 , E(Bx0
v1 ,ΠX) < E ∗(Bx0

v1 ,ΠX),

and (Bx0
v1 ,ΠX) is still in situation (G2). Let Uv1 (J the associated matrix) be the

rotation x �→ x� := (y, z) that maps ΠX onto the model domain R×Υ. Let A�,v1 be

the magnetic potential associated with Â
v1

in variables x� and A�,v1
0 be its linear part

at 0. Due to (11.40), we are still in case (i) of the Dichotomy Theorem 7.3. We use

now the admissible generalized eigenvector Ψv1 of H(A�,v1
0 ,R×Υ) in natural variables

as introduced in (7.1) and its scaled version Ψv1
h . The associated ground state energy

is denoted by

(11.41) Λv1 = E(Bx0
v1 ,ΠX).

An important point is that, choosing ε > 0 small enough, we may assume that, in

virtue of Lemma 10.2 (b), the functions Ψv1 are uniformly exponentially decreasing

(11.42) ∃ c > 0, C > 0, ∀v1 ∈ B(0, ε), ‖Ψv1ec|z|‖L2(Υ) ≤ C ‖Ψv1‖L2(Υ).

We are arrived at point where the situation is similar as in the sitting case, with the

new feature that the generalized eigenvectors Ψv1
h depend (in some smooth way) on

the parameter v1. We define the new function on ΠX by

(11.43) ϕ
[2]
h = Uv1(e−iF v1/hψv1

h ),

where ψv1
h = χhΨ

v1
h has a support of size r

[2]
h = O(hδ0+δ1) and the phase shift F v1

will be chosen later. As always we denote

μ
[2]
h = Qh[A

�,v1
0 ,ΠX](ψ

v1
h ).
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The function v �→ Λv is Lipschitz-continuous by Lemma 10.2 (a) and thus one has

|Λv1 − Λ0| ≤ C|v1|. Combining this with Lemma 10.5, we have

μ
[2]
h ≤ hΛv1 + Ch2−2δ0 ≤ hΛX + C(h1+δ0 + h2−2δ0).

Now we distinguish whether our quasimode is soft or hard sliding (x0 is not, or is, a

conical point).

Soft sliding. — If x0 is not a conical point, we recall as mentioned in Section 9.3 that

Uv1 is a translation. As in Section 11.1.3 we have

Qh[A
x0 ,Πx0 ](ϕ

[1]
h ) = Qh[A

�(·+ v�1)− A�

v	1
(v�1)−∇F v1 ,R×Υ](ψv1

h )

≤ μ
[2]
h + 2

√
μ
[2]
h ‖(A�(·+ v�1)− A�

v	1
(·+ v�1)−∇F v1

)
ψv1
h ‖

+ ‖(A�(·+ v�1)− A�

v	1
(·+ v�1)−∇F v1

)
ψv1
h ‖2,

where we have used the relation A�(·+v�1)−A�

v	1
(v�1)−A�,v1

0 = A�(·+v�1)−A�

v	1
(·+v�1).

We now use Lemma A.2 to choose F v1 such that A�(·+ v�1)− A�

v	1
(·+ v�1)−∇F v1 is

still controlled by the r.h.s. of (11.33). The proof of Lemma 11.2 is still valid due to

the uniform control (11.42), and provides:∥∥(A�(·+ v�1)− A�

v	1
(·+ v�1)−∇F v1

)
ψv1
h

∥∥
≤ C(Ω)

(‖A�‖W 2,∞(V �
h )(h+ h

1
2+δ0) + ‖A�‖W 3,∞(V �

h )h
3δ0
) · ‖ψv1

h ‖.

The proof goes along as in the sitting case and we deduce the same estimate (11.38)

with a remainder in O(h4/3).

Hard sliding. — If x0 is a conical point, using formulas (A.3) and (A.6), we have

Qh[Â
v1
,ΠX](ϕ

[1]
h ) = Qh[A

�,v1 −∇F v1 ,R×Υ](ψv1
h )(11.44)

≤ μ
[2]
h + 2â

[2]
h

√
μ
[2]
h + (â

[2]
h )2,

where we have set

(11.45) â
[2]
h =

‖(A�,v1 − A�,v1
0 −∇F v1)ψv1

h ‖
‖ψv1

h ‖ .

Like previously, Lemma A.2 gives a function F v1 satisfying∣∣(A�,v1 − A�,v1
0 −∇F v1

)
(x�)
∣∣(11.46)

≤ C(Vx0)
(
‖A�,v1‖W 2,∞(|y||z|+ |z|2) + ‖A�,v1‖W 3,∞ |y|3

)
.
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Due to the uniform estimate (11.42), the proof of Lemma 11.2 still applied. Combine

this with (11.29) gives

â
[2]
h ≤ C(‖A�,v1‖W 2,∞(supp(ψ

v1
h )) (h+ h

1
2+δ0+δ1) + ‖A�,v1‖W 3,∞(supp(ψ

v1
h )) h

3δ0+3δ1)

≤ C(‖A‖W 2,∞(Ω) (h
1−δ0 + h

1
2+δ1) + ‖A‖W 3,∞(Ω) h

δ0+3δ1).

Then Relation (9.32) becomes

Qh[A,Ω](ϕ
[0]
h ) ≤ hΛX + C (h2−2δ0 + h1+δ0)(11.47)

+ C(h2−2δ0−2δ1 + h1+δ0 + h1+δ1)

+ C
(
h

3
2−δ0 + h1+δ1 + h

1
2+δ0+3δ1 + h2δ0+6δ1

)
.

Choosing δ0 = 5
16 and δ1 = 1

8 gives the upper-bound (11.1) in situation (G2) for

hard sliding quasimodes.

11.2.3. Doubly sliding quasimode. — In that case, as mentioned in Section 9.4,

ν = 3, X = (x0, x1, x2), x0 is a conical point and Uv2 is a translation. We define

(11.48) ϕ
[2]
h = Ẑ v2

h ◦Uv2∗ (ϕ
[3]
h ),

where Ẑ v2
h is the operator of multiplication by ζ̂ v2 with ζ̂ v2h (x) = ei〈Â

v1
v2
(v2), x/h〉 and

Â
v2

=
(
Â

v1
v2 − Â

v1
v2(v2)

) ◦ (Uv2)−1,

with coincides with its linear part Â
v2
0 . Since Gv2 = I3, we have

(11.49) Qh[Â
v1
0 ,Πx0,x1 ](ϕ

[2]
h ) = Qh[Â

v2
0 ,ΠX](ϕ

[3]
h ).

We set in the same spirit as above, ϕ
[3]
h = Uv2(e−iF v2/hχhΨ

v2
h ). The constant magnetic

field Bv1,v2
0 = curl Â

v2
0 is the magnetic field Bx0 frozen at v1, transformed by Uv1

and then frozen at v2. Once again, (Bv1,v2
0 ,ΠX) is still in situation (G2) for h small

enough and we may use Lipschitz estimates for the associated ground state energy and

uniform decay estimates for the associated AGE. As in the soft sliding case described

above, we take advantage of the translation Uv2 and get a better estimate for the last

linearization (that is step [c2], see Figure 9.1) by a suitable choice of F v2 . We can

conclude as the conical case at level 2 and obtain again (11.47). We deduce

λh(B,Ω) ≤ hE (B,Ω) + C(Ω)
(
1 + ‖A‖2W 3,∞(Ω)

)
h9/8.

The proof of Theorem 11.1 is now complete in case (G2).
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CHAPTER 12

CONCLUSION: IMPROVEMENTS AND EXTENSIONS

In this work we have shown how a recursive structure of corner domains allows to

analyze the Neumann magnetic Laplacian and its ground state energy λh(B,Ω). To

conclude, we discuss some standard consequences in the situation of corner concen-

tration. We also address the issues of generalizing our results to any dimension. We

finally mention the adaptation of our methods to different boundary value problems,

namely the Dirichlet magnetic Laplacian and the Robin Laplacian in the attractive

limit.

12.1. Corner concentration and standard consequences

Let Ω be a 3D corner domain and B be a magnetic field. For each corner v ∈ V

of Ω, let us denote by Kv the number of eigenvalues of the tangent model op-

erator H(Av ,Πv) which are below the minimal local energy outside the corners

inf x∈Ω\V E(Bx ,Πx). If no such eigenvalue exists, we set Kv = 0. If they do exist, we

denote them by λ(k)(Bv ,Πv), k = 1, . . . ,Kv, so that

∀v ∈ V, ∀1 ≤ k ≤ Kv, λ(k)(Bv ,Πv) < inf
x∈Ω\V

E(Bx ,Πx).

Setting K(B,Ω) =
∑

v∈V Kv, we assume that we are in the case of corner concentra-

tion, i.e.,

K(B,Ω) > 0.

Then several standard consequences hold for the eigenvalue asymptotics of the first

K(B,Ω) eigenvalues λ
(k)
h (B,Ω) of the magnetic Laplacian Hh(A,Ω). Indeed, for

1 ≤ k ≤ K(B,Ω), we denote by E (k)(B,Ω) the k-th element (repeated with multi-

plicity) of the collection of eigenvalues λ(j)(Av ,Πv) of the model operators, for v ∈ V

and 1 ≤ j ≤ Kv. Then we have

(12.1)
∣∣λ(k)

h (B,Ω)− hE (k)(B,Ω)
∣∣ ≤ Ch3/2, ∀k, 1 ≤ k ≤ K(B,Ω).
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In fact, we can prove like in [8, Section 7] a complete asymptotics expansion in power

of h1/2 for the eigenvalues λ
(k)
h (B,Ω), 1 ≤ k ≤ K(B,Ω) and (12.1) is a consequence.

Furthermore, we have corner localization of the eigenvectors. Another consequence of

the complete expansion of the low-lying eigenvalues is the monotonicity of the ground

state energy B �→ λ(B̆,Ω) (1.13) in the point of view of large magnetic field. This

can be seen as a strong diamagnetic inequality and relies on the same arguments as

in [12, Section 2.1].

12.2. The necessity of a taxonomy

Let us emphasize the role of the taxonomy of model problems discussed earlier.

The proof of upper bounds with remainder for λh strongly relies on the existence

of generalized eigenfunctions for model operators associated with the minimum of

local energies. Our Dichotomy Theorem provides a positive answer and is based on

an exhaustive description of the ground state of model operators depending on the

dimension d ∈ {0, . . . , 3} of reduced cones, i.e., on spaces, half-spaces, wedges and 3D

cones, respectively. In cases d ≤ 2, the analysis is made through a fibration (i.e., a

partial Fourier transform), leading to a new operator that is not a standard magnetic

Laplacian. As consequence, the analysis of the key quantity E ∗ seems to be specific

to each dimension.

Besides, in higher dimensions, a magnetic field B can be identified in each point

x ∈ Ω with a n×n antisymmetric matrix, thus determines n
2 or n−1

2 two-dimensional

invariant subspaces P j
x when n is even or odd, respectively (for instance, in dimension

n = 3, the space P 1
x is the orthogonal space to the vector Bx). Given a cone R

ν × Γ

with ν > 0, its interaction with the planes P j
x can be highly non-trivial and there

is no reason that there exists a magnetic potential which depends on less variables

than n. Thus the fibration process we have used does not seem available in general

in the n dimensional case. At this stage, a recursive analysis of the ground state of

the magnetic Laplacian does not seem possible without a deeper analysis of tangent

model operators, namely a complete taxonomy valid for all dimension.

12.3. Continuity of local energies

A standard procedure to investigate the stability of the ground state energy of a

self-adjoint operator consists in constructing quasimodes issued from the spectrum

of the unperturbed problem, using them for the perturbed operator, and concluding

with the min-max principle. This procedure applied to the ground state energy of

model problems associated with H(A,Ω) would provide upper semicontinuity under

perturbation and, therefore, upper semicontinuity for the local energy x �→ E(Bx,Πx)

on each stratum t of Ω.
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In the case of Neumann boundary conditions, we have proved the continuity on

each stratum by using once more the taxonomy of model problems. In particular

Lemma 6.5 uses intensively the structure of the magnetic Laplacian on wedges and

is linked to our Dichotomy Theorem, see [69]. The lower semicontinuity of the local

energy between strata is a consequence of Theorem 3.27, and relies on the continuity

on each stratum. By contrast with Dirichlet conditions, Neumann boundary condi-

tions imply a decrease of the local ground energy on strata of higher codimensions,

including possible discontinuities between strata.

In the general n dimensional case, the sole known result is the continuity of the

local energy on the interior stratum, i.e., Ω itself. Indeed, for any x ∈ Ω, we have

E(Bx,Πx) = b(x) with b(x) defined in (2.1). The generic regularity is in fact Hölder

of exponent 1
2n as mentioned in [42, Lemma 5.4]).

12.4. Dirichlet boundary conditions

If one considers now the magnetic Laplacian with Dirichlet boundary conditions,

the situation of the local energies denoted now ED(Bx,Πx) is far simpler than in the

Neumann case. For any interior point x ∈ Ω, ED(Bx,Πx) = E(Bx,R
n) is equal to the

intensity bx of Bx (with bx = b(x) defined in (2.1)). If x lies in the boundary of Ω, by

Dirichlet monotonicity, ED(Bx,Πx) ≥ E(Bx,R
n), and the converse inequality is the

consequence of a standard argument involving Persson’s Lemma, cf. Theorem 6.6.

Thus, like in the case without boundary, the sole ingredient in local energies is the

intensity of the magnetic field in each point x ∈ ∂Ω. At this point, we could generalize

the estimates of [36]

−C−h5/4 ≤ λh(B,Ω)− hE (B,Ω) ≤ C+h4/3

to any domain Ω with Lipschitz boundary and C 3(Ω) magnetic potential with non-

vanishing magnetic field B, including the case when the minimum is attained on the

boundary. The key arguments are the following:

Lower bound: One uses a IMS partition technique in order to linearize the

potential on each piece of the partition, but without local maps. Then, when a local

support crosses the boundary of Ω, one simply uses the lower bound λh(Bx0 ,Ω) ≥
λh(Bx0 ,R

n) for the “central point” x0 of this local support.

Upper bound: For x0 ∈ ∂Ω, one constructs interior sliding quasimodes with

support in a cone interior to Ω and with vertex x0. In order to obtain the refined

convergence rate h4/3 instead of h5/4, one has to use a gauge transform similar to

that in [36, p. 54–55].
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12.5. Robin boundary conditions with a large parameter for the Laplacian

The spectral behavior of the Neumann magnetic Laplacian has some analogy with

the following Robin boundary eigenvalue problem that consists in solving

(12.2)

{−Δψ = λψ in Ω,

∇ψ · n− βψ = 0 on ∂Ω,

where β ∈ R is a parameter. This problem also arises from a linearization of the

Ginzburg-Landau equation, in the zero field regime (see [31]). The asymptotics of

the ground state energy λR
β (Ω) in the attractive limit β → +∞ has been studied in

[49, 41, 65] and presents several similarities with the semiclassical Neumann magnetic

Laplacian. It is still relevant to define the local energies E(Πx) as the ground state

energies of tangent operators (with β = 1). These energies satisfy E(Πx) ≤ −1 for

any x ∈ ∂Ω. It is proved in [49] that for any domain with corner Ω satisfying the

uniform interior cone condition, we have

lim
β→+∞

λR
β (Ω)

β2
= E (Ω),

where E (Ω) is defined as inf x∈Ω E(Πx) like in the magnetic case. But the finiteness

of E (Ω) is not guaranteed in this framework. In [17], general n-dimensional corner

domains belonging to the class D(Rn) are considered, and the bottom of the spectrum

is analyzed using the technique developed in the present work. In comparison with the

magnetic Laplacian, a more favorable feature is a convenient separation of variables

on any tangent cone written in reduced form as R
n−d × Γ: The associated tangent

operator becomes In−d ⊗HR(Γ)+(−Δ|Rn−d)⊗Id where HR(Γ) is the Robin Laplacian

on Γ for β = 1. Thus the difficulties linked to the taxonomy mentioned in 12.2

disappear in this case, and the analysis can be performed in any dimension. In a

first step, the lower semicontinuity of the local energies is proved by recursion over

the dimension, giving the existence of a minimizer for the local energies, hence the

finiteness of E (Ω). For large β, the estimate

|λR
β (Ω)− E (Ω)β2| ≤ Cβ2− 2

2ν+3

is proved for the same integer ν depending on the domain as introduced in Section

5.3. The upper bound relies on a recursive multi-scale construction of quasimodes,

whereas the lower bound is based on a ν + 1-scale partition of the unity adapted to

admissible atlases.
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APPENDIX A

MAGNETIC IDENTITIES

A.1. Gauge transform

Lemma A.1. — Let O ⊂ R
n be a domain and let ϑ be a regular function on O. Let A

be a regular potential. Then

∀ψ ∈ Dom
(
qh[A,O]

)
, qh[A+∇ϑ,O](e−iϑ/hψ) = qh[A,O](ψ).

This well-known result is a consequence of the commutation formula

(−ih∇+ A+∇ϑ)(e−iϑ/hψ) = e−iϑ/h(−ih∇+ A)ψ.

Lemma A.2. — Let O be a bounded domain such that 0 ∈ O. Let u = (u1, u2, u3)

denote Cartesian coordinates in O. Let A ∈ C 3,∞(O) be a magnetic potential such

that A(0) = 0. Let A0 denote the linear part of A at 0. Let � be an index in {1, 2, 3}.
(a) There exists a change of gauge ∇F where F is a polynomial function of degree 3,

so that

1) the linear part of A−∇F at 0 is still A0,

2) the second derivative of A−∇F with respect to u� cancels at 0:

∂2
u�
(A−∇F )(0) = 0,

3) the coefficients of F are bounded by ‖A‖W 2,∞(O).

(b) Let us choose � = 1 for instance. We have the estimate

(A.1) |A(u)− A0(u)−∇F (u)|
≤ C(O)

(‖A‖W 2,∞(O)

(|u1u2|+ |u1u3|+ |u2|2 + |u3|2
)
+ ‖A‖W 3,∞(O)|u1|3

)
,

where the constant C(O) depends only on the outer diameter of O.

Proof. — The Taylor expansion of A at 0 takes the form

A = A0 + A(2) + A(rem,3),
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where A(2) is a homogeneous polynomial of degree 2 with 3 components and A(rem,3)

is a remainder:

(A.2)
∣∣A(rem,3)(u)

∣∣ ≤ ‖A‖W 3,∞(O) · |u|3 for u ∈ O.

Let us write the m-th component A
(2)
m of A(2) as

A(2)
m (u) =

∑
|α|=2

am,αu
α1
1 uα2

2 uα3
3 for u = (u1, u2, u3) ∈ O.

(a) Now, the polynomial F can be explicitly determined. It suffices to take

F (u) = u2
�

(
a1,α∗u1 + a2,α∗u2 + a3,α∗u3 − 2

3a�,α∗u�

)
,

where α∗ is such that α∗
� = 2 (and the other components are 0). Then

∇F (u) = u2
�

⎛⎝a1,α∗

a2,α∗

a3,α∗

⎞⎠
and point (a) of the lemma is proved.

(b) Choosing � = 1, we see that the m-th components of A(2) −∇F is

A(2)
m (u)− (∇F )m(u) = am,(1,1,0)u1u2 + am,(1,0,1)u1u3

+ am,(0,1,1)u2u3 + am,(0,2,0)u
2
2 + am,(0,0,2)u

2
3.

Hence A(2) −∇F satisfies the estimate∣∣(A(2)(u)−∇F (u)
∣∣ ≤ ‖A‖W 2,∞(O)

(|u1u2|+ |u1u3|+ |u2|2 + |u3|2
)
.

But

A− A0 −∇F = A(2) −∇F + A(rem,3).

Therefore, with (A.2)

|A(u)−A0(u)−∇F (u)| ≤ ‖A‖W 2,∞(O)

(|u1u2|+|u1u3|+|u2|2+|u3|2
)
+‖A‖W 3,∞(O)|u|3.

Using finally that |u|3 ≤ 12(|u1|3 + |u2|3 + |u3|3) ≤ C(O)(|u1|3 + |u2|2 + |u3|2), we
conclude the proof of estimate (A.1).

A.2. Change of variables

Let G be a metric of R3, that is a 3 × 3 positive symmetric matrix with regu-

lar coefficients. For a smooth magnetic potential, the quadratic form of the associ-

ated magnetic Laplacian with the metric G is denoted by qh[A,O,G] and is defined

in (1.21). The following lemma describes how this quadratic form is involved when

using a change of variables:
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Lemma A.3. — Let U : O → O′, u �→ v be a diffeomorphism with O, O′ domains

in R
3. We denote by J := d(U−1) the jacobian matrix of the inverse of U. Let A be a

magnetic potential and B = curl A the associated magnetic field. Let f be a function

of Dom(qh[A,O]) and ψ := f ◦U−1 defined in O′. For any h > 0 we have

(A.3) qh[A,O](f) = qh[Ã,O′,G](ψ) and ‖f‖L2(O) = ‖ψ‖L2
G(O′)

where the new magnetic potential and the metric are respectively given by

(A.4) Ã := J�(A ◦U−1
)
and G := J−1(J−1)�.

The magnetic field B̃ = curl Ã in the new variables is given by

(A.5) B̃ := | det J| J−1
(
B ◦U−1

)
.

Let ρ > 0, using the previous lemma with the scaling Uρ := x �→ √
ρ x we get

Lemma A.4. — Let O be a domain in R
n and set

rO :=
{
x ∈ R

n, x = rx′ with x′ ∈ O}
for a chosen positive r. Let B be a constant magnetic field and A be an associated

linear potential. For any ψ ∈ Dom(q[A,O]) normalized in L2(O), we define for any

positive ρ

ψρ(x) := ρ−n/4ψ
( x√

ρ

)
, ∀x ∈ O.

Then ψρ belongs to Dom(qρ[A,
√
ρO]), is normalized in L2(

√
ρO) and we have

1) q[A,O](ψ) = ρ q[ρ−1A,
√
ρO](ψρ) = ρ−1qρ[A,

√
ρO](ψρ),

2) E(B,O) = ρE
(
ρ−1B,

√
ρO).

A.3. Comparison formula

Let O be a domain and let A and A′ be two magnetic potentials. Then, for any

function ψ of Dom(qh[A,O]) ∩Dom(qh[A
′,O]), we have:

(A.6) qh[A,O](ψ) = qh[A
′,O](ψ)+2Re

〈
(−ih∇+A′)ψ, (A−A′)ψ

〉
O+‖(A−A′)ψ‖2.

A.4. Cut-off effect

In this section we recall standard IMS formulas. This kind of formulas appear for

Schrödinger operators in [21], but they can also be found in older works like [58]. In

this section A denotes a regular magnetic potential and notations are those introduced

in Section 1.5.

The first formula describes the effect of a partition of the unity on the energy of a

function which is in the form domain, see for example [79, Lemma 3.1]:
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Lemma A.5 (IMS formula). — Assume that χ1, . . . , χL ∈ C∞(O) are such that∑L
�=1 χ

2
� ≡ 1 on O. Then, for any ψ ∈ Dom(qh[A,O])

qh[A,O](ψ) =
L∑

�=1

qh[A,O](χ�ψ)− h2
L∑

�=1

‖ψ∇χ�‖2L2(O)

The second formula describes the energy of a function satisfying locally the Neu-

mann boundary conditions when applying a cut-off function, see for example [37,

(6.11)]:

Lemma A.6. — Let χ ∈ C∞
0 (O) a real smooth function and ψ ∈ Dom loc(Hh(A,O)).

Then we have

qh[A,O](χψ) = Re
〈
χ2Hh(A,O)ψ, ψ

〉
O + h2 · ‖ |∇χ|ψ‖2L2(O).

Orientation of the magnetic field. — Let B be a magnetic field. It is known that

changing B into −B does not affect the spectrum of the associated magnetic Lapla-

cian. More precisely we have:

Lemma A.7. — Let O ⊂ R
3 be a domain, B be a magnetic field and A an associated

potential. Then Hh(−A,O) and Hh(A,O) are unitarily equivalent. We have

∀ψ ∈ Dom
(
qh[A,O]

)
, qh[−A,O](ψ) = qh[A,O](ψ)

and ψ is an eigenfunction of Hh(A,O) if and only if ψ is an eigenfunction of

Hh(−A,O).
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PARTITION OF UNITY SUITABLE FOR IMS

TYPE FORMULAS

Our partitions of unity on general corner domains have to be compatible with an

admissible atlas (Definition 3.11).

Lemma B.1. — Let n ≥ 1 be the space dimension. M denotes R
n or S

n. Let Ω

in D(M) be a corner domain with an admissible atlas (Ux,U
x)x∈Ω . Let K > 1 be a

coefficient. Then there exist a positive integer L and two positive constants ρmax and

κ ≤ 1 (depending on Ω and K) such that for all ρ ∈ (0, ρmax], there exists a (finite)

set Z ⊂ Ω × [κρ, ρ] satisfying the three properties:

1) We have the inclusion Ω ⊂ ⋃(x,r)∈Z B(x, r)
2) For any (x, r) ∈ Z , the ball B(x,Kr) is contained in the map-neighborhood Ux,

3) Each point x0 of Ω belongs to at most L different balls B(x,Kr).

Before performing the proof of this lemma, let us draw some easy consequence on

the existence of suitable IMS type partitions of unity in corner domains.

Lemma B.2. — Let Ω ∈ D(Rn) and choose K = 2. Let (L, ρmax, κ) be the param-

eters provided by Lemma B.1. For any ρ ∈ (0, ρmax] let Z ⊂ Ω × [κρ, ρ] be an

associate set of pairs (center, radius). Then there exists a collection of smooth func-

tions (χ(x,r))(x,r)∈Z with χ(x,r) ∈ C∞
0 (B(x, 2r)) satisfying the identity (partition of

unity) ∑
(x,r)∈Z

χ2
(x,r) = 1 on Ω

and the uniform estimate of gradients

∃C > 0, ∀(x, r) ∈ Z , ‖∇χ(x,r)‖L∞(Ω) ≤ Cρ−1,

where C only depends on Ω. By construction any ball B(x, 2r) is a map-neighborhood

of x included the maps of an admissible atlas.
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Proof. — Let ξ(x,r) ∈ C∞
0 (B(x, 2r)), with the property that ξ(x,r) ≡ 1 in B(x, r),

and satisfying the gradient bound ‖∇ξ(x,r)‖L∞(R3) ≤ Cr−1 where C is a universal

constant. Then we set for each (x0, r0) ∈ Z

χ(x0,r0) =
ξ(x0,r0)

(
∑

(x,r)∈Z ξ2(x,r))
1/2

.

Due to property 1) in Lemma B.1,
∑

(x,r)∈Z ξ2(x,r) ≥ 1 and due to property 3),∥∥∥ ∑
(x,r)∈Z

∇ξ2(x,r)

∥∥∥
L∞(R3)

≤ CLΩ.

We deduce the lemma.

Here are preparatory notations and lemmas for the proof of Lemma B.1.

Let Ω ∈ D(M) and K > 1. If the assertions of Lemma B.1 are true for this Ω and

this K, we say that Property P(Ω,K) holds. We may also specify that the assertion

by the sentence

Property P(Ω,K) holds with parameters (L, ρmax, κ).

Let U∗ ⊂⊂ U be two nested open sets. We say that the property P(Ω,K;U∗,U)
holds (1) if the assertions of Lemma B.1 are true for this Ω and this K, with discrete

sets Z ⊂ (U∗ ∩ Ω)× [κΩρ, ρ] and with 1)–3) replaced by

1) We have the inclusion U∗ ∩ Ω ⊂ ∪(x,r)∈Z B(x, r)
2) For any (x, r) ∈ Z , the ball B(x,Kr) is included in U and is a map-

neighborhood of x for Ω

3) Each point x0 of U ∩ Ω belongs to at most L different balls B(x,Kr).

Like above the specification is

Property P(Ω,K;U∗,U) holds with parameters (L, ρmax, κ).

In the process of proof, we will construct coverings which are not exactly balls, but

domains uniformly comparable to balls. Let us introduce the local version of this new

assertion. For 0 < a ≤ a′ we say that

Property P[a, a′](Ω,K;U∗,U) holds with parameters (L, ρmax, κ)

if for all ρ ∈ (0, ρmax], there exists a finite set Z ⊂ (U∗ ∩ Ω)× [κΩρ, ρ] and open sets

D(x, r) satisfying the four properties:

1) We have the inclusion U∗ ∩ Ω ⊂ ∪(x,r)∈Z D(x, r)

2) For any (x, r) ∈ Z , the set (2) D(x,Kr) is included in U and is a map-

neighborhood of x for Ω

3) Each point x0 of U ∩ Ω belongs to at most L different sets D(x,Kr)

4) For any (x, r) ∈ Z , we have the inclusions B(x, ar) ⊂ D(x, r) ⊂ B(x, a′r).

1. This is the localized version of property P(Ω,K).
2. Here D(x,Kr) is the set of y such that x+ (y − x)/K ∈ D(x, r).
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Note that

P[1, 1](Ω,K;U∗,U) = P(Ω,K;U∗,U).
Lemma B.3. — If Property P[a, a′](Ω,K;U∗,U) holds with parameters (L, ρmax, κ),

then

Property P(Ω, a
a′K;U∗,U) holds with parameters (L, a′ρmax, κ).

Proof. — Starting from the covering of U∗ ∩ Ω by the sets D(x, r) and using con-

dition 4), we can consider the covering of U∗ ∩ Ω by the balls B(x, a′r). Then

r′ := a′r ∈ [κa′ρ, a′ρ] = [κρ′, ρ′] with ρ′ < a′ρmax.

Concerning conditions 2) and 3), it suffices to note the inclusions

B(x, a
a′
Kr′) ⊂ D(x,

1

a′
r′K) = D(x, rK).

The lemma is proved.

Proof Lemma B.1. — The principle of the proof is a recursion on the dimension n.

Step 1. Explicit construction when n = 1

The domain Ω and the localizing open sets U∗ and U are then open intervals. Let

us assume for example that U∗ = (−�, �), U = (−�− δ, �+ δ) and Ω = (0, �+ δ′) with
�, δ > 0 and δ′ > δ. Let K ≥ 1. We can take

ρmax = min
{ �

K
, δ
}

and for any ρ ≤ ρmax the following set of couples (xj , rj), j = 0, 1, . . . , J

x0 = 0, r0 = ρ and xj = ρ+
2j − 1

K
ρ, rj =

ρ

K
for j = 1, . . . , J

with J such that xJ < � and ρ + 2J+1
K ρ ≥ �. If xJ < � − ρ

K , we add the point

xJ+1 = ρ+ 2J
K ρ. The covering condition 1) is obvious.

Concerning condition 2), we note that the bound ρmax ≤ �
K implies that [0,Kr0) =

[0,Kρ) is a map-neighborhood for the boundary of Ω, and the bound ρmax ≤ δ

implies that when j ≥ 1, the “balls” (xj − Krj , xj + Krj) = (xj − ρ, xj + ρ) are

map-neighborhoods for the interior of Ω.

Concerning condition 3), we can check that L = K + 2 is suitable.

Step 2. Localization

Let Ω ∈ D(Rn) or Ω ∈ D(Sn). For any x ∈ Ω, there exists a ball B(x, rx) with

positive radius rx that is a map-neighborhood for Ω. We extract a finite covering of Ω

by open sets B(x(�), 1
2r

(�)). We set

U∗
� = B(x(�), 1

2r
(�)
)

and U� = B(x(�), r(�)).
The map U� := Ux(�) transforms U∗

� and U� into neighborhoods V∗
� and V� of 0 in

the tangent cone Π� := Πx(�) . Thus we are reduced to prove the local property

P(Π�,K;V∗
� ,V�) for any �. Indeed
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– The local diffeomorphism U� allows to deduce Property P(Ω,K;U∗
� ,U�) from

Property P(Π�,K
′;V∗

� ,V�) for a ratio K ′/K that only depends on U� (this relies on

Lemma B.3).

– Properties P(Ω,K;U∗
� ,U�) imply Property P(Ω,K;∪� U∗

� ,∪� U�) = P(Ω,K)

(it suffices to merge the (finite) union of the sets Z corresponding to each U�).

Step 3. Core recursive argument

If Ω0 is the section of the cone Π, Property P(Ω0,K) implies Property

P(Π,K ′;B(0, 1),B(0, 2)) for a suitable ratio K ′/K. We are going to prove this

separately in several lemmas (B.4 to B.6). Then the proof Lemma B.1 will be

complete.

Lemma B.4. — Let Γ be a cone in Pn−1. For � = 1, 2, let B� and I� be the ball

B(0, �) of R
n−1 and the interval (−�, �), respectively. We assume that Property

P(Γ,K;B1,B2) holds (with parameters (L, ρmax, κ)). Then Property

P[1,
√
2 ](Γ× R,K;B1 × I1,B2 × I2)

holds.

Proof. — Let us denote by y and z coordinates in Γ and R, respectively. For ρ ≤ ρmax,

let ZΓ be an associate set of couples (y, ry). For each y we consider the unique set of

equidistant points Zy = {zj ∈ [−1, 1], j = 1, . . . , Jy} such that

zj − zj−1 = 2ry and z1 + 1 = 1− zJy < ry.

Then we define

(B.1) Z (ρ) =
{
(x, rx), for x = (y, z) with (y, ry) ∈ ZΓ, z ∈ Zy and rx = ry

}
.

The associate open set D(x, rx) is the product

D(x, rx) = B(y, ry)× (z − ry, z + ry).

We have the inclusions B(x, rx) ⊂ D(x, rx) ⊂ B(x,√2 rx) and it is easy to check

that Property P[1,
√
2](Γ × R,K;B(0, 1) × I1,B(0, 2) × I2) holds with parameters

(L′, ρmax, κ) with L′ = LK.

Lemma B.5. — Let Ω be a section in D(Sn−1), let Π be the corresponding cone, and

let I� be the interval (2−�, 2�) for � = 1, 2. We define the annuli

A� =
{
x ∈ Π, |x| ∈ I� and

x

|x| ∈ Ω
}
.

We assume that Property P(Ω,K) holds (with parameters (L, ρmax, κ)). Then, for

suitable constants a and a′ (independent of Ω and K), Property P[a, a′](Π,K;A1,A2)

holds.
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Proof. — Let us consider the diffeomorphism

(B.2) T : Ω× (−2, 2) −→ A2, x = (y, z) �−→ x̆ = 2zy

in view of proving Property P[a, a′](Π,K;A1,A2), for a given ρ ≤ ρmax, we define a

suitable set Z̆ (ρ) using the set Z (ρ) introduced in (B.1)

(B.3) Z̆ (ρ) =
{
(x̆, rx), for x̆ = Tx with (x, rx) ∈ Z (ρ)

}
,

and the associated open sets

D̆(x̆, rx) = T
(D(x, rx)

)
.

We can check that

B(x̆, arx) ⊂ D̆(x̆, rx) ⊂ B(x̆, a′rx)
with a = 1

8 log 2 and a′ = 8
√
2 log 2 and that Property P[a, a′](Π,K;A1,A2) holds

with parameters (L′, ρmax, κ) for L′ = NLK with an integer N independent of L

and K.

Lemma B.6. — Let Ω be a section in D(Sn−1), let Π be the corresponding cone, and

let B� be the balls B(0, �) of Rn for � = 1, 2. We assume that Property P(Ω,K) holds

with parameters (L, ρmax, κ) for a ρmax ≤ 1. Then Property P[a, a′](Π,K;B1,B2)

holds for suitable constants a and a′ (independent of Ω and K) and with parameters

(L′, 1, κρmax).

Proof. — Let ρ ≤ 1 and let M be the natural number such that

2−M−1 < ρ ≤ 2−M .

On the model of (B.2)-(B.3), we set

Z̆ m =
{
(2−mTx, 2−mrx), with (x, rx) ∈ Z (2mρmaxρ)

}
, m = 0, . . . ,M,

and the associated open sets are

(B.4) 2−mT
(D(x, rx)

)
with (x, rx) ∈ Z (2mρmaxρ).

The set Z̆ associated with the cone Π in the ball B1 is

{(0, ρ)} ∪
M⋃

m=0

Z̆ m

and the associated open sets are the reunion of the sets (B.4) for m = 0, . . . ,M

and of the ball B(0, ρ). As the radii rx belong to [κ2mρmaxρ, 2
mρmaxρ], we have

2−mrx ∈ [κρmaxρ, ρmaxρ]. Since ρ itself belongs to the full collection of radii r, we

finally find r ∈ [κρmaxρ, ρ]. The finite covering holds with L′ = 3NLK + 1 for the

same integer N appearing at the end of the proof of Lemma B.5.
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[32] Guo (Benqi) & Babuška (Ivo) – Regularity of the solutions for elliptic prob-
lems on nonsmooth domains in R3. I. Countably normed spaces on polyhedral
domains, Proc. Roy. Soc. Edinburgh Sect. A, t. 127 (1997), no. 1, pp. 77–126.

[33] Helffer (Bernard) – Effet d’Aharonov-Bohm sur un état borné de l’équation
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